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ABSTRACT 

This dissertation investigates two methods of spread spectrum (SS) signal 

characteristic estimation for the two principle types of SS systems, frequency-hopped 

(FH) and direct sequence SS. The exponential averaging detector is used to detect and 

estimate the hopped frequencies of a SS-FH signal in the presence of interference signals 

as well as additive-white-Gaussian-noise (AWGN). The detection method provides an 

estimate of the AWGN plus inference spectrum using exponential averaging and then 

generates an estimate of the desired signal spectrum by combining the estimated AWGN 

plus interference spectrum with the composite (desired signal plus interference plus 

AWGN) spectrum. Finally, this dissertation evaluates the detector’s performance as a 

function of the exponential coefficient, the combining method, the probability of false 

alarm, signal-to-AWGN ratio, and signal-to-interference ratio.  

The second method of SS signal characteristic estimation uses a digital ad-hoc 

chip rate estimator (ACRE). The ACRE is used to estimate the chip rate of a half-sine 

pulse shaped SS direct-sequence signal. The ACRE is explained in relation to its 

similarities and contrasts to the chip rate detector. The components and performance of 

the ACRE are presented for standard-ACRE, ACRE with additional filtering, and ACRE 

with incrementing. The additional filtering results in a reduced chip rate search range but 

yields improved estimation performance and incrementing has the potential for parallel 

processing, resulting in dramatically decreased computational time, without loss of 

performance. 
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EXECUTIVE SUMMARY 

This research investigates detection and estimation methods for the two most 

common types of spread spectrum (SS) systems, frequency-hopped (FH) SS and direct 

sequence (DS) SS. For FH-SS, detection and estimation of the hop-frequencies is 

examined using an exponential averaging detector. For DS-SS, detection and estimation 

of the chip rate is examined using an ad-hoc chip rate estimator (ACRE).  

The background for both detection and estimation methods in the areas of design 

criteria, signals, analytic tools and a literature review is presented. Then the exponential 

averaging detector along with the signals and metrics that are used to evaluate its 

performance are described; specifically, this work investigates the effect of additive-

white-Gaussian-noise (AWGN) along with wideband and narrow band interference 

signals as compared to the FH-SS signal. The detection method provides an estimate of 

the AWGN plus inference spectrum using exponential averaging and then generates an 

estimate of the desired signal spectrum by combining the estimated AWGN plus 

interference spectrum with the composite (desired signal plus interference plus AWGN) 

spectrum.  

Scaled subtraction and quotient-combining methods are described, and the 

analytic expression for the probability density function (pdf) of the random variable (RV) 

that models the detector’s output with scaled-subtraction-combining and an AWGN plus 

BPSK input is developed. It was shown that an analytic expression for the pdf of the RV 

that models the detector’s output with either combining method and an AWGN plus 

BPSK plus CW input is mathematically intractable as far as can be determined. 

Therefore, a heuristic approach to estimate the pdf of the signal spectral estimate RV 

when the detector input signal is interference plus AWGN is addressed. 

The exponential averaging detector’s simulation set-up, decision criteria 

development, and various simulation results are discussed in detail. The simulation set-up 

includes the description of the various parameters and signals used. The decision criteria 

section investigates two methods to heuristically evaluate a pdf model of the detector’s 

output: histograms and goodness-of-fit tests. Upper and mid-estimates for the probability 



xx 

of false alarm are developed to set the detector’s threshold. Simulation results include 

performance guidelines, heuristic support of the Gaussian postulate, the detector data 

evaluated by the goodness-of-fit tests, threshold estimates, bounds on fP , and an 

evaluation of the detector’s performance.  

The performance of the detector for various values of signal-to-noise ratio (SNR) 

and signal-to-interference ratio (SIR) is displayed as plots of simulation-based estimates 

of the dP  versus SIR for fixed SNR and analyzed. From the simulation estimate of the 

probability of false alarm, the upper-estimate for the probability of false alarm is selected. 

The second method of SS signal characteristic estimation, ACRE, is developed 

and described next. Although theoretical analysis of the system is investigated, 

simulation results are primarily used to describe and set parameters. The approach used to 

develop ACRE is to compare and contrast it to the CRD approach. One contrast between 

ACRE and the CRD is that the CRD requires an estimate of the chip rate, whereas ACRE 

only requires a range of values for the chip rate. Thus, as the name implies, the primary 

purpose of the CRD is to detect the chip rate and not to estimate it. ACRE simultaneously 

searches a specified bandwidth and estimates the chip rate. This simultaneous search and 

estimation provides a significant performance advantage over the CRD, which requires 

that the detector scan through a specified bandwidth in order to detect the chip rate. 

However, simultaneous search and chip rate estimation results in increased computational 

complexity. 

The performance of the CRD with half-sine pulse shaping is shown using Fourier 

series coefficients. ACRE is then described in a block diagram and the various blocks 

discussed, such as how the PSD estimator block closely parallels the CRD spectral 

component and the motivation and implementation of frequency bin baselining. The 

complexity of deriving an analytic expression for the pdf of the RV that models the 

ACRE output is discussed briefly, and from this a heuristic approach is implemented. 

Next, the ACRE simulation set-up, decision criteria development and simulation 

results are discussed. The simulation set-up includes a description of the various 

parameters and signals used. In the decision criteria section, a threshold is generated 

using the estimated pdf and a predetermined fP . The decision criteria as a function of 



xxi 

time bandwidth product (TBW) and the application of the central limit theorem are 

discussed and three ACRE-based simulation approaches are considered: standard-ACRE, 

ACRE with additional filtering, and ACRE with incrementing.  

The performance of the three ACRE simulations are plotted with SNR versus a 

simulation based estimate of the probability of detection. Standard ACRE’s performance 

improved 1 dB as the TBW is doubled. Filtering trades off chip rate search range for 

estimation performance. A quantitative illustration of the trade-off is that the reduction of 

the search range to a quarter of the original range generated an additional 5 to 6 dB in 

performance gain. Incrementing shows the potential for parallel processing without loss 

of performance as well as trading performance for computations. A quantitative 

illustration of incrementing shows that the relative computational cost, 20 times the 

standard cost, generated small 1 dB of performance gain. The practical application of the 

ACRE scheme in this time of ever increasing, inexpensive processing power is greatly 

expanded since it can be implemented with parallel processing, and additional processing 

can be exchanged for performance.  
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I. INTRODUCTION 

A. BACKGROUND 
The estimation of signal parameters is a broad and growing field. There are 

numerous commercial and military applications of signal parameter estimation. Two 

commercial uses of signal parameter estimation are receiver synchronization and 

bandwidth management. Two military applications of signal parameter estimation are 

signal identification and signal deciphering. Military signal identification is used for both 

communication and radar system identification. Covert communications consist of 

various low probability of detection (LPD) and low probability of intercept (LPI) 

transmissions. LPD transmissions can be accomplished with highly directive antennas 

producing a narrow beam, power control, and/or waveform techniques [1]. Spread 

spectrum (SS) is an important class of both LPD and LPI waveform techniques and are 

the only LPD methods discussed in this paper.  

Communications system design plays a significant factor in how easy signal 

parameter estimation is. As an example, if interference with other signals occupying the 

same bandwidth is not a significant issue, then increasing the transmitted power may be a 

desirable solution to improving system performance, thus making signal parameter 

estimation easier. In the case of LPD and LPI signals, significant challenges are 

encountered in signal parameter estimation. Although SS signals are not necessarily 

either LPD or LPI, they do pose distinct challenges to detection, interception, and signal 

parameter estimation. 

1. Detectors and Design Criteria Examples 
Polydoros and Weber [2] describe an LPI signal as a spread spectrum waveform 

whose spreading code is unknown to the interceptor. Consequently, the potential 

interceptor must use wideband detection techniques since a correlation detector cannot be 

used [3]. The correlation detector is a good example of a detector whose performance is 

greatly degraded unless a considerable amount of a-priori signal information is known. 

The correlation detector integrates the product of two waveforms and then makes a 

decision using a comparator with a decision criteria generated threshold [4]. If the two 
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waveforms are related, their cross-correlation is non-zero, and in general, the two 

waveforms only differ in their noise elements and in one of them being passed through a 

channel transfer function [4]. The advantage of the correlation detector is that the effect 

of the noise tends toward zero as the integration time increases. 

The matched filter provides insight into the correlation demodulator since it 

produces the same signal at the decision output assuming an additive white Gaussian 

noise (AWGN) channel [5]. The matched filter maximizes the signal-to-noise ratio (SNR) 

in AWGN. The matched filter frequency response is the complex conjugate of the 

transmitted signal’s frequency response multiplied by a phase shift [5]. From this it is 

clear that significant a-priori knowledge is required to implement the matched filter and 

achieve optimum performance with respect to SNR. Additionally, the correlation detector 

tends away from the optimum with respect to SNR as the two waveforms multiplied by 

each other tend away from each other. 

Whereas the correlation detector’s design is based on the presence of considerable 

a-priori knowledge, the radiometer (or energy detector) requires very little. The 

radiometer shown in Figure 1 is the optimum receiver for a signal that is modeled as a 

stationary Gaussian process in the presence of AWGN [3, 6, 7]. In light of the bandpass 

filter (BPF) in Figure 1, the bandwidth must also be known in order for the receiver to be 

optimum. It is also assumed that the signal is either present or absent during the entire 

integration time interval. From this discussion of the correlation detector and radiometer, 

it is clear that detectors widely vary with respect to the a-priori knowledge which they 

require.  

 

 
Figure 1 Radiometer. 
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The motivation behind the radiometer’s design is that by squaring the signal a 

considerable portion of the signal’s energy is converted to baseband. The radiometer is 

said to be optimum in the sense that it implements a likelihood ratio test (LRT) [7]. The 

LRT is used to set the decision criteria, or threshold. There are a number of LRTs. A few 

common decision rules are maximum a posteriori (MAP), Bayes’, and Neyman-Pearson 

(N-P). The N-P decision rule requires the least amount of information, as is shown in the 

development of the four decision rules to be discussed.  

For signal detection there are two hypotheses: the signal is present 1H or the 

signal is not present 0H . Based on one or more observations Y of a signal modeled as a 

random variable y, a decision between the two hypotheses is determined. The decision 

maximizes the probability of a correct decision, and the decision rule can be stated as 

   choose 0H  if 0 1( | ) ( | )P H y P H y>  and  

   choose 1H  if 1 0( | ) ( | ),P H y P H y>  

where ( | )iP H y  is the conditional probability of iH  given y. The same decision rule in a 

more common form is 

 
1

0

1

0

( | ) 1,
( | )

H

H

P H y
P H y

><  (1.1) 

which means choose 1H  if the ratio is greater than one and choose 0H  if the ratio is less 

than one [8]. 

An alternate form of (1.1) is desirable since the probability density function (pdf) 

of y given iH  is often known vice ( | )iP H y . From Bayes’ rule  

 | ( | ) ( )
( | ) ,

( )
iY H i i

i
Y

f y H P H
P H y

f y
=  (1.2) 

where ( )Yf y  is the pdf of the random variable (RV) y, ( )| |
iY H if y H  is the conditional 

pdf of y given that the event iH  has occurred, and ( )iP H  is the probability of iH . 

Rewritten using (1.2), (1.1) is equivalent to  
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The MAP decision rule  
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is obtained by rearranging (1.3), where ( )L y  is the likelihood ratio [8]. Bayes’ decision 

rule 
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is similar to MAP except that it includes the decision cost for both decisions when they 

are correct and incorrect, where ijC is the decision cost with i indicating the decision and j 

indicating the event [8].  

In many applications 0( )P H  and 1( )P H  are unknown. Another way of managing 

the possibility of making an incorrect decision is by introducing the probability of false 

alarm fP . The N-P criterion sets a bound on fP  and then maximizes the probability of 

detection dP  within the bounds of fP  [9]. Once fP is set, a decision threshold γ  is 

generated from 
0| 0( | )Y Hf y H  using 

 
0| 0( | ) ,f Y HP f y H dy

γ

∞

= ∫  (1.6) 

where γ  is the threshold [5]. The threshold γ  is substituted for the right hand side of 

(1.4) or (1.5) to generate the basic form of the N-P decision rule [8]: 
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Figure 2 shows a graphical representation of the N-P decision rule.  
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Figure 2 Conditional pdfs with a threshold which sets the detector fP  and dP . 

 

The process used to solve for the pdf of a RV which is a function of multiple RVs 

is reviewed to provide background for methods used to obtain pdfs from this work as 

applied in (1.6) to determine the thresholds. This process is based on a change of 

variables in two-dimensional integrals [10]. The first step is to choose “companion” 

functions that facilitate the change of variables in terms of the initial RVs u  and q  

 
( , )
( , ),

z u q
w u q

ϕ
ξ

=
=

 (1.8) 

and then solve for their reciprocal “companion” equations in terms of the substitution RV 

[10] 

 
( , )
( , ).

u z w
q z w

α
β

=
=

 (1.9) 

Next the Jacobian transformation is solved for by taking the determinant of  

 .z wJ

z w

α α

β β

∂ ∂
∂ ∂=
∂ ∂
∂ ∂

 (1.10) 
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The third step is to map the range of the initial RV onto the range of the substitution RV. 

Let the substitution range be R . Then the joint density of the substitution RV , ( , )z wp z w  

is determined using the formula  

 , ,( , ) ( ( , ), ( , )) , ( , ) ,z w r sp z w p z w z w J z w Rα β= ∈  (1.11) 

and zero otherwise. Finally the marginal density ( )zp z  is solved by integrating the joint 

density , ( , )z wp z w  over the range of w as shown below 

 ,( ) ( ( , ), ( , )) ,
w

z r s
R

p z p z w z w J dwα β= ∫  (1.12) 

where wR  is range of w . 

Signal parameter estimation is the focus of some detectors. When the signal in 

question is a direct sequence spread spectrum signal, a key signal parameter of interest is 

the chip rate. The chip rate detector (CRD) is a good example of a signal parameter 

estimation detector. One implementation of the CRD is shown in Figure 3 [11]. From the 

diagram it is clear that certain knowledge of the signal must be known or estimated prior 

to the CRD producing the desired results. The signal characteristics that must be known 

a-priori are the carrier frequency, phase, and the chip rate. The chip rate detector uses the 

signal phase in the offset frequency generator within the spectral component.  
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Figure 3 Block diagram of a CRD from [11]. 

 

A simple explanation of the CRD scheme follows. It can be shown that the delay-

and-multiply block generates a signal which can be represented as the superposition of a 

non-deterministic and a deterministic signal with a rate-line at the chip rate cR . The 

output of the nonlinear block is bandpass filtered to reduce noise. Next, the output of the 

bandpass filter is downconverted to baseband using the offset frequency generator. The 

offset frequency generator block requires phase, carrier frequency, and chip rate 

estimates for ( )s t . The lowpass filter in the spectral component is optional since the 

integrator acts as a narrowband filter which is used to increase the SNR. Finally, a 

decision is made using a comparator. The generation of the deterministic signal is 

illustrated in Figure 4 [3]. From [3] the product of the non-return-to-zero baseband direct 

sequence (DS) SS signal and its delay are the sum of a deterministic signal and a random 

signal given that the delay D satisfies cD T≤ , where cT  is the chip period. In this 
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configuration the deterministic signal is a rectangular pulse train with pulse width cT D−  

and period cT . For cD T> the product of the signal and its delayed version does not 

contain a deterministic component, and the average is zero assuming that the information 

signal is polar and consists of equally likely ones and zeros. 

 

 
Figure 4 Illustration of how a delay and multiply of a rectangular pulse train with 

itself can be separated into a deterministic portion and a data preserving 
portion, assuming the delay is less than the period of the pulse. 

 

The a-priori signal knowledge needed for the CRD’s operation can be estimated 

using the following methods. If the carrier frequency cf  is not known, then it can be 

estimated using a squaring circuit if the underlying data is binary-phase shift keying 

(BPSK) modulated. Note that a squaring circuit is effective since a significant amount of  
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power resides near 2 cf  for DS-SS signals once the signal is squared [2]. This 

characteristic also makes squaring the signal an effective way to determine cf  even 

though very little power is centered near cf  for DS-SS signals [1].   

As for the phase, it can be estimated by taking the inverse tangent of the ratio of 

the downconverted in-phase and quadrature components when it is not known. 

Alternatively, an estimate of the phase can be obtained using a narrowband filter centered 

on the chip rate followed by an envelope detector [11]. 

If the chip rate is unknown a-priori, then the chip rate must be scanned for. The 

scanning process is based on the CRD acceptable range of performance, given that the 

delay does not maximize the chip rate-line. The power in the cR  rate-line is computed 

using the exponential Fourier series coefficient that corresponds to the cR  frequency. The 

exponential Fourier series coefficients are obtained using 

 ( ) ( )
0

2 exp 2 ,
cT

n n
c

c g t j f t dt
T

π= −∫  (1.13) 

where ( )g t  is a bounded periodic function of period cT  [12]. From (1.13), the Fourier 

series coefficient that corresponds to the cR  spectral line is 

 ( ) ( )
0

0.52 rect exp 2 ,
c

c

T
c

R c
c c

t T D
c j R t dt

T T D
π

− −⎛ ⎞
= −⎜ ⎟−⎝ ⎠

∫  (1.14) 

where  

 ( ) ( ) ( )rect 2 2 ,t u t u tτ τ τ= + − −  (1.15) 

and u(t) is the step function. Equation (1.14) can be evaluated to yield 

 ( ) ( )1 exp 22 exp 2 ,
c

c

T
c

R c
c D

j R D
c j R t dt

T j
π

π
π

− −
= − =

−∫  (1.16) 

which can be expressed 

 ( ) ( )2 exp sin .
cR c cc j R D R Dπ π

π
−

= −  (1.17) 

 
 
 



 10

From (1.17), we get 

 ( )
2 2

2

4 sin .
cR cc R Dπ

π
=  (1.18) 

The maximum cR  rate-line corresponds to half the chip rate, as seen in Figure 5. 

A common scan range for the CRD’s delay is 2 3 4c cT D T≤ ≤ . This delay scan range 

ensures that the power in the cR rate-line does not go more than 3 dB below the 

maximum, as seen in Figure 5. 

 

 
Figure 5 Normalized power in the CRD cR  rate-line as a function of delay with 

respect to the chip period for a rectangular pulse. 
 

The hop rate of frequency-hopped signals is another signal parameter of interest 

for detection and estimation. The detectors vary from the optimum performance of the 

maximum-likelihood based detector with nearly complete a-priori signal knowledge to a 

sub-optimum multi-hop radiometer with little a-priori signal knowledge [13, 14]. 

Although the details of these detectors are not described here, it is sufficient to note that 

each detector’s design is based on differing trade-offs of performance for a-priori 

knowledge. 
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Some guidelines for performance versus a-priori knowledge trade offs exist. The 

loss of chip synchronicity in an optimum coherent detector cost between 0.6 dB and 1.4 

dB [2]. Another way to consider this statement is that an asynchronous detector loses 0.6 

dB to 1.4 dB of performance as compared to its synchronous counterpart. Detectors that 

combine two independent observations gain 1.5 dB to 3 dB of performance for non-

coherent and coherent detectors, respectively [3]. The performance of signal detectors 

varies and they are often displayed in plots of SNR versus probability of detection dP  for 

a given probability of false alarm fP . 

A common component in many communications systems is a Hilbert transform 

circuit. The Hilbert transform can be used to demodulate amplitude modulation (AM) 

signals, and in some modems it is used to detect baud rate. The Hilbert transform of a 

real-valued signal ( )s t  is 

 ( ) ( ) 1 ,s t s t
tπ

= ∗)  (1.19) 

where * is the convolution operator and is defined as [5] 

 ( ) ( ) ( ) ( ) ( ) .y t x h t x h t dτ τ τ τ τ
∞

−∞

≡ ∗ − = −∫  (1.20) 

The frequency response representation of the Hilbert transform is [5] 

 ( ) ( )sgn ,H f j f= −  (1.21) 

where ( )sgn ⋅  is the signum function, defined as 

 ( )
1, 0

sgn 0, 0.
1, 0

f
f f

f

>⎧
⎪≡ =⎨
⎪− <⎩

 (1.22) 

From (1.21) it is clear that if a signal and the product of its Hilbert transform and j 

are summed in the frequency-domain, then the composite signal’s frequency response for 

negative frequencies is zero. The addition of signals and scalar multiplication in either the 

time or frequency-domain is equivalent since the inverse Fourier transform is a linear 

operation. Thus, the summation of the signal and the product of its Hilbert transform and  
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j is equivalently implemented in the time-domain as shown in Figure 6. An illustrative 

example of a potential frequency response associated with passband signals in Figure 6 is 

shown in Figure 7.  

 

 
Figure 6 Analytic signal generator for real-valued input s(t). 

 

 
Figure 7 Illustration of signals in the circuit of Figure 6. 

 

The output signal z(t) shown in Figure 6 is an analytic signal since its spectrum is 

zero for all negative frequencies [5]. An analytic signal is also called the pre-envelope of 

the signal. Since real signals have an even symmetry magnitude frequency response, the 

frequency response of z(t) shown in Figure 7 illustrates that z(t) is a complex signal. The 

complex signal z(t) in polar coordinates can be expressed by  
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 ( ) ( ) ( )exp ,z t A t j tφ= ⎡ ⎤⎣ ⎦  (1.23) 

where ( )A t  is the signal’s amplitude, or envelope, and ( )tφ  is the signal’s phase. The 

amplitude of a complex signal is the square root of the product of the signal and its 

complex conjugate. Thus, the product of ( )z t  and its complex conjugate produces the 

squared envelope of ( )z t .  

The AM application illustrates how the Hilbert transform can be used to convert a 

bandpass signal to a baseband signal. An AM signal can be represented by  

 ( ) ( ) ( )cos 2 ,cx t A t f tπ=  (1.24) 

where A(t) is the baseband information signal, and cf  is carrier frequency which is much 

greater than the frequency content in A(t).  

2. Signals 
This section provides a brief description of the signal and noise types used in 

following sections. A detailed survey of the topics briefly discussed in this section can be 

found in [3, 5, 15]. M-ary phase-shift keying (MPSK) is widely used and its time-domain 

representation is given by 

 [ ]( ) 2 cos 2 2 , 0,1,.., 1,MPSK c crs t A f t i M i Mπ π= + = −  (1.25) 

where 2
cA  is the average received signal power, crf  is the carrier frequency, and M is the 

number of discrete phases used to represent symbols [5]. A constellation representing the 

eight discrete phases in 8PSK is shown in Figure 8. As the name and (1.25) indicate, the 

signal information is in the phase.  
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Figure 8 A constellation representation of 8PSK. 

 

When 2M =  the MPSK signal is binary and is called BPSK. A BPSK signal can 

be written as  

 ( ) ( )( ) 2 cos 2 ,BPSK c crs t A d t f tπ=  (1.26) 

where d(t) is the information signal consisting of a polar pulse train of positive ones and 

negative ones. The RV that is used to model the information signal is not described by a 

pdf but rather a probability mass function (pmf) since the information signal takes on a 

finite number of values, specifically positive one and negative one. The pmf of the 

information signal is shown in Figure 9 [16]. 

 

 
Figure 9 The pmf of the information signal in a BPSK signal. 
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M-ary frequency-shift keying (MFSK) is another widely used modulation scheme, 

and its time-domain representation is given by: 

 ( )( ) 2 cos 2 , 0,1,.., 1,MFSK c crs t A f i T t i Mπ= + = −⎡ ⎤⎣ ⎦  (1.27) 

where T  is the symbol period. The 1 T  frequency increments are the minimum spacing 

at which dissimilar symbols will be uncorrelated over a symbol time for non-coherent 

detection. The signal representing the different symbols are orthogonal when the 

frequency increment is an integer multiple of 1 T , as shown in (1.27) [15]. 

Another common modulation scheme is minimum-shift keying (MSK). The MSK 

scheme can be viewed a special case of either offset quadrature PSK (OQPSK) or a 

special case of continuous phase modulation (CPM) [15]. A time-domain representation 

of MSK is given by: 

 
( ) ( )

( ) ( )
( ) 2 ( )cos 2 cos 2

( )sin 2 sin 2 ,
MSK c I cr

Q cr

s t A d t t T f t

d t t T f t

π π

π π

= +⎡⎣
⎤⎦

 (1.28) 

where ( )Id t  is the set of even bits and ( )Qd t  is the set of odd bits [15]. The sinusoidal 

terms, ( )cos 2t Tπ  and ( )sin 2t Tπ  with the argument 2t Tπ  can be viewed as 

representing some type of pulse shaping.  

Pulse shaping is commonly used for bandwidth control and can also be used to 

reduce the likelihood of detection [3]. For example, in [17] it is shown that pulse shaping 

can be used in some network environments to reduce transmit power. In [18] an IEEE 

802.15.4 compliant radio transceiver uses half-sine and raised cosine pulse shaping. 

Nyquist shaped pulses are specifically designed to provide bandwidth control and reduce 

intersymbol interference (ISI) [5]. Some common shaped pulses used are half sine, raised 

cosine, and Gaussian. A half sine pulse is a sine wave for half a period, such as that 

mentioned in the MSK signal defined above. The raised cosine pulse is given by 

 ( ) ( )
2 2 2

sin / cos /
( ) ,

/ 1 4 /rc

t T t T
p t

t T t T
π πβ

π β
=

−
 (1.29) 

where β is the roll-off factor and has a range from zero to one [3]. When 0β =  the 

spectrum of the raised cosine is a rectangle pulse between frequencies ( )1 2T± . Note 
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that generating (1.29) when 0β =  requires that the raised cosine pulse has an infinite 

duration, which is not practical. Truncating the two extreme ends of the raised cosine 

pulse, results in a realizable pulse approximating the raised cosine. Similarly, the 

Gaussian pulse must also be truncated and is generated by 

 ( )2 2 2( ) exp ,Gp t a W a t Wπ π= −  (1.30) 

where W  is the bandwidth of the pulse spectrum and 0.5ln 2a =  in [19].  

As mentioned earlier, SS techniques also reduce the likelihood of detection. As 

the name indicates, the signal spectrum is spread making the signal bandwidth much 

greater than the bandwidth that is required without using spread spectrum [9]. In addition 

to reducing the likelihood of detection, SS techniques also improve performance in 

narrow and broadband jamming environments. This reduced susceptibility to jamming 

allows multiple access of numerous signals on the same bandwidth. However, SS 

techniques do not improve performance in the presence of AWGN only.  

One SS technique previously mentioned is DS-SS. One form of DS-SS is the 

product of a BPSK modulated signal and a chipping signal, where the two signals are 

synchronized so that the start of a symbol interval corresponds to the start of a chip 

interval, and the chip period is an integer multiple of the symbol period. For a DS-SS 

signals using BPSK, the time-domain signal can be expressed as 

 ( ) ( ) ( ),DS BPSKs t c t s t=  (1.31) 

where ( )c t  is the chipping signal and ( )BPSKs t  is (1.25), when 2M = . The chipping 

signal is commonly obtained from a pseudo-noise (PN) sequence, which is easy to 

generate using a shift register and exclusive-OR gates and models a true random binary 

sequence fairly well [5]. Another SS technique is frequency-hopping (FH), where the 

carrier frequency is periodically switched (hopped) following a predetermined pattern. A 

PN sequence is a common way of generating the predetermined pattern. MFSK is a 

common modulation scheme used with FH-SS techniques.  
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The most common type of noise considered is AWGN. In general, AWGN is of 

the form 

 ( ) ( ) ( ),n t t j tξ ψ= +  (1.32) 

where ( )tξ and ( )tψ are modeled as independent, real-valued, Gaussian distributed 

processes with zero mean and identical constant power spectral densities. The metric 

used to describe the amount of AWGN in a signal summed with AWGN is the SNR, 

defined as 

 

2

2

( )
lim ,

( )

T

T
TT

T

s t dt
SNR

n t dt

−

→∞

−

⎡ ⎤
⎢ ⎥
⎢ ⎥≡
⎢ ⎥
⎢ ⎥
⎣ ⎦

∫

∫
 (1.33) 

when the AWGN is real [20]. In the digital domain, when there are finite samples, the 

SNR is defined as 

 

2

1

2

1

( )
,

( )

N

l
measured N

l

s l
SNR

n l

=

=

=
∑

∑
 (1.34) 

where N is the number of samples. However, any of the previously described signals can 

be considered noise since noise refers to any unwanted signal [15].  

When unwanted modulated signals are summed with the desired signal, the metric 

used is the signal-to-interference ratio (SIR). The SIR is computed in the same way as the 

SNR except that the interference signal replaces the noise in (1.33) and (1.34). When 

unwanted, modulated signals and noise are summed with the desired signal another 

metric used is the signal-to-interference-noise ratio (SINR). The SINR is computed in the 

same way as the SNR except that the interference plus the noise replaces the noise in 

(1.33) and (1.34). Although the SINR provides a single metric by which to gauge 

performance, using both SNR and SIR provides more information and a clearer 

representation of the results. For this reason SINR is not used in this dissertation. The use 

of the noise-to-interference-ratio (NIR) with SINR provides the same amount of 

information as SNR with SIR.  



 18

B. LITERATURE REVIEW  

There is a considerable amount of published research in the area of detection and 

estimation of signals and signal parameters. The detection environment that is to be 

considered determines what methods are used in designing the detector. The detection 

environment is determined by what signal(s) are to be detected, the type of noise to be 

suppressed, the channel type to be compensated for, and the detector’s knowledge of the 

signal(s), noise, and channel. The detector’s knowledge may be very specific knowledge 

such as the signal’s center frequency or may be less specific such as the range of 

frequencies where the signal’s center frequency might be found. 

Another design factor is determining whether the detector will process the data in 

the time or frequency-domain. The time-domain is further differentiated into continuous 

time and sampled, or discreet, time. In this dissertation the time-domain will specifically 

refer to the continuous time-domain unless otherwise specified. The correlation detector 

is an example of a time-domain detector. According to the Wiener Kinchine theorem, the 

time and frequency-domain representations are equivalent in principle, but due to 

practical implementation issues, they are not in practice [21].  

The general design approach also must be selected. An example of this idea 

comes from [22] where two design approaches are discussed. The first approach 

discussed chooses the detector structure and then optimizes its parameters as in the CRD 

where a half chip delay is optimum for rectangular, baseband pulses. The second 

approach determines the order of the detector (i.e., using a quadratic non-linearity) and 

then solves for the kernel that maximizes the spectral line SNR for a given signal. The 

selection of the non-linearity transformation applied should be the lowest order non-

linearity that emphasizes the spectral line, as increasing the non-linearity order results in 

decreasing output SNR levels when the SNR (dB) is negative. The optimum design with 

respect to maximizing the SNR, for a BPSK signal using the second design approach 

produces the detector shown in Figure 10. Although this approach is desirable since it 

maximizes the spectral line SNR, the a-priori knowledge required to implement the 

matched filter may in some cases requires a sub-optimum detector be used instead. 
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Figure 10 Optimum PSK detector from [22]. 

 

These choices, along with others that are not mentioned, predicate that there are 

numerous detection and estimation approaches. This section is intended as a brief 

sampling of those areas in detection and estimation that are applicable to the research 

presented in this dissertation.  

An excellent sample article is [11], which focuses on the laboratory performance 

of SS detectors. This article outlines a general form of some common SS detectors, and 

gives the specific characteristics for a radiometer, squaring carrier detector, and CRD. 

The performance of these detectors was compared to the theoretical performance 

postulated in [23] and [24] as well as a number of other papers.  

An example illustrating how specific knowledge of the noise only and noise plus 

signal statistics are used in detectors is discussed in [23]. The detection of signals with 

increased complexity such as pulse shaping is discussed in [24]. One of the interesting 

findings that [24] presents is that the rate-line SNR produced in a CRD with a Nyquist 

pulse from (1.29) where 4β =  is 20 dB down from a rectangular pulse signal, and [24] 

also illustrates the significant impact that pulse shaping has on some detection methods.  

A discussion of the delay-and-multiply method structure and optimization via the 

pre-filter with respect to a defined figure of merit is presented in [25]. The figure of merit 

is defined as the ratio of the power at the output of the prefilter-delay-and-multiply 

(PFDM) given signal input and the power spectral density (PSD) of the output of the 

PFDM given signal plus noise input. The low SNR case is considered so that the 

denominator of the figure of merit is approximated by the PSD of the output of the 

PFDM given noise only. Two other items worth mentioning are that the expression used 

for the figure of merit is an upper bound derived from the Cauchy-Schwartz inequality, 

and the optimum prefilter is constrained to be a linear filter.  
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Increasing the order of the non-linearity transformation beyond two is another 

approach used in detection. This higher order non-linearity approach is used in carrier 

detection in [26], [27] and [28]. These articles focus on detecting the carrier frequency of 

PSK signals with binary, quadrature (balanced), and quadrature (unbalanced) 

configurations. Note that ‘unbalanced’ means that the I and Q channels have unequal 

power. These results are important since detectors such as the CRD require the carrier 

frequency as an input.  

The references discussed so far are applicable to DS-SS signals and not FH-SS 

signals. In [21] a number of detection methods are discussed and compared for unknown 

sinusoids in noise, which is applicable to FH-SS signals. The types of detection 

approaches that are compared are a radiometer, fast Fourier transform (FFT) based 

detection, and correlation based detection with a number of different autoregression 

models. The results illustrate the trade-offs between performance and complexity.  

FH signal detection using autocorrelation techniques as in [21] continue to be 

discussed and developed as in [29]. The autocorrelation detection technique follows the 

block diagram shown in Figure 11. Each lag element output from the real-time 

autocorrelation block is the integration of the product of the input signal with a delayed 

version of the signal. This step of the processes is very similar to the method used in the 

CRD. The integration time in [29] is a single hop time interval, thus it is called a single-

hop-observation auto-correlation (SHAC) technique. The power sampling is the square of 

the signal sampled. The final step of weighted accumulation normalizes and sums each 

sample which is related to a specific lag by a function of the lag and the input signal 

duration. The last step also uses a receiver-selected parameter which accounts for the 

term weighted in the last block of Figure 11.  

 

 
Figure 11 Autocorrelation processing from [29] and [30]. 
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In addition to SHAC there is also the multi-hop-observation auto-correlation 

(MHAC) technique, where the autocorrelation integration time is defined over multiple 

hop time intervals [30]. By power sampling in the MHAC domain, the hop-rate 

information is preserved while frequency and phase dependencies are suppressed. This 

idea to the use of the MHAC technique to estimate the hop-rate as in [30], [31], and [32]. 

The hop-rate estimate discussed in [30], [31], and [32] is a maximum-likelihood 

estimation. A method describing how to use the results from SHAC and MHAC to 

estimate hop timing is presented in [31]. A recursive variety of MHAC is discussed in 

[32]. 

Frequency-domain correlation detection techniques are also used, and the 

development of these correlation detection techniques are discussed in [33], [34], [35], 

and [36]. The development and advantages of a spectral correlation function are 

discussed in [33] and [34] for both analog and digital modulations, respectively. These 

results show that the spectral-correlation density function is a generalization of the PSD 

and contains additional information.  

A block diagram of the spectral-correlation analyzer is shown in Figure 12 [35], 

where the rightmost block on the lower branch represents the complex conjugate 

operation. Specific α  values are selected based on the potential frequency range of the 

cyclostationary properties imbedded in the signal of interest. Note that the spectral-

correlation density function ( )xS fα  is approximate since the input ( )x t  is finite in 

duration. A number of spectral-correlation density function plots are presented in [33] 

and [34] for phase-modulated signals, frequency-modulated signals, amplitude-shift 

keying (ASK), QPSK, MSK, and other signal types.  
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Figure 12 Spectral-correlation analyzer block diagram from [35]. 

 

The spectral-correlation density function and its applicability to estimation and 

detection are discussed in [35], where the bi-frequency plane is developed as an analysis 

tool. The bi-frequency plane plots frequency verses α . The type of pre-filtering used on 

the signal determines the support region within the bi-frequency plane. The pre-filters 

discussed in [35] are low-pass filters (LPF), BPF, and high-pass filters (HPF). Frequency 

shift filtering is also discussed in [35]. 

The significant computational costs associated with frequency-domain correlation 

detection techniques prompted research in the development of computationally efficient 

algorithms to perform cyclic spectral analysis [36]. The fast Fourier transform (FFT) 

accumulation method and the strip spectral correlation algorithm subdivide the support 

region in the bi-frequency plane to increase computational efficiency [36]. For the LPF 

pre-filter case, the FFT accumulation method subdivides the region into a number of 

diamond shapes, while the strip spectral correlation algorithm subdivides the region into 

strips. Each strip covers a number of the FFT accumulation method’s sub-regions. Both 

methods cover the entire support region. Results in [36] illustrate how computational 

costs may be reduced, by subdividing the frequency range of interest.  
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Other approaches focus on detecting signals by using autoregressive (AR), 

moving-average (MA), and autoregressive moving-average (ARMA) techniques, as 

illustrated in [37]. This specific ARMA-based approach focuses on estimating the signal 

PSD in the presence of white Gaussian noise and smoothes out chip rate-lines to estimate 

the PSD. By smoothing the chip rate-lines, the rate-lines become indiscernible from any 

other aspect of the PSD.  

Avoiding detection and estimation is another area of research. An interesting 

approach to avoid chip rate detection of DS-SS signals is by changing the chip rate as in 

[38]. This article illustrates how increased transmitter/receiver complexity may be used to 

increase the difficulty in signal detection. In [38] the chip rate hopping is purported to 

make the signal undetectable with input SNR less than -11 dB, given an optimum 

detection bandwidth is available for processing. 

A more common form of reducing a signal’s detectability is to use pulse shaping. 

An article which addresses this research area is [39]. This paper proposes that ideally any 

detector can be defeated if the detector knowledge is applied to the signal. To avoid 

detection the signal must be sufficiently band-limited and the appropriate amplitude 

weightings implemented. The types of symbol amplitude distributions considered in the 

paper are binary, Gaussian, and quantized Gaussian.  

Finally, it is worth mentioning the names of a few authors whose work stands out 

in this area of research: Douglas A. Hill [11, 26, 27, 28], Andreas Polydoros [2, 21, 29] 

and William A. Gardner [22, 33, 34, 35].  
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II. FREQUENCY-HOP ESTIMATION USING EXPONENTIAL 
AVERAGING 

SS signals are used to maintain performance in a jamming environment [5]. A 

jamming environment is defined as that found when interference signals or jamming 

signals are present. The presence of interference signals in addition to AWGN increases 

the difficulty of detecting a FH signal. FH detection methods are dependant on the 

amount of a-priori knowledge of the channel, the interference signals, and the FH signal. 

In the case of perfect knowledge of the previous three factors, an optimum detector can 

be constructed. However, alternate approaches are required since this is rarely the case.  

This chapter expanded on the work in [40] by including AWGN in addition to the 

interference signals. Specifically, this chapter investigates the estimation of frequency 

hops from a SS-FH signal in the presence of a wideband interference signal, narrowband 

interference signals, and AWGN. Results derived in this section assume that the noise is 

AWGN, the interfering signals are high power wideband (relative to a frequency hop bin 

bandwidth) signals and narrow band continuous wave CW tones, the FH signal is 

bounded within a given bandwidth, and the FH sequence is fixed for an entire search 

cycle.  

The exponential averaging FH detector is shown in Figure 13. The input into the 

detector is the sum of the FH signal, interference signal, and AWGN. Before the 

detector’s output can be used, all of the buffers shown by the set of delay blocks must be 

filled. The operator after the FFT is the absolute value squared. The connections after the 

absolute value squared block that go down are used to estimate the noise plus interference 

spectral estimate ( )M k  using the weight factor ρ  and the detector output ( )S k%  which is 

the FH signal spectral estimate. The two combining methods considered in this work are 

scaled subtraction and quotient-combining.  
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Figure 13 Exponential Averaging Frequency Hop Detector diagram. 

 

A. EXPONENTIAL AVERAGING FH DETECTOR 
Exponential averaging is used to generate a spectral estimate of the AWGN plus 

the interference. The digitized signal is separated into small data segments, which are 

transformed into the frequency-domain using the discrete Fourier transform (DFT). The 

DFT of a data block ( ) 1
0|Nnx n −

=⎡ ⎤⎣ ⎦  is given by: 

 ( ) ( )
1

0

( )exp 2 , 0,1,..., 1,
N

n

X k x n j N nk k Nπ
−

=

= − = −⎡ ⎤⎣ ⎦∑  (2.1) 

where N is the number of samples [41]. In (2.1) ( )X k  is in general complex. Although 

the magnitude squared operation is used in the Hop detector diagram shown in Figure 13, 

an equally valid choice is the magnitude since the detectability of the FHs is determined 

by their value relative to the AWGN noise plus interference levels. The scaled spectral 

estimate of the AWGN plus interference is expressed analytically as 

 ( ) ( )
1

0

,
L

l
l

l

M k Y kρ
−

=

= ∑  (2.2) 
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where ( )M k  is the noise plus interference spectral estimate, ρ  is a weight factor which 

has values ranging from zero to one, L is the number of segments that the data is 

separated into, and ( )lY k  is the magnitude squared of the DFT of the lth segment. The 

primary method used for selecting the parameters ρ , N, and L was by trial and error, 

based on simulation results. However, a brief discussion of exponential averaging and the 

interrelation of N and L provide some intuitive sense from which to subjectively address 

the selection of N and L. 

The spectral average of a series of sample sets from the same random process 

tends to produce a smooth shape as the number of sample sets increases. This result is 

fairly intuitive in that the underlying spectrum of the random process tends to become 

more self evident as more data is averaged. Thus, it is not intended as a noise reduction 

method in and of itself, since the noise is not reduced but rather smoothed out.  

Continuing with the description of the exponential averaging detector, the spectral 

estimate of the FH signal is obtained by combining the noise plus interference spectral 

estimate with the composite (desired signal, interference, and noise) spectrum. The two 

combining methods developed in this research are referred to as “scaled-subtraction-

combining” and “quotient-combining,” and use element-by-element operations with 

respect to the frequency bins.  

Scaled-subtraction-combining is motivated from the basic idea that the time-

domain sum of the signal, AWGN, and interference is the input into the exponential 

averaging detector, so a natural separating operator to consider is subtraction. Since the 

Fourier transform is a linear operator which is closed under vector addition, using 

subtraction in a frequency-domain representation of the signal is consistent.  

The FH signal spectral estimation process using scaled-subtraction-combining is 

expressed analytically as 

 ( ) ( ) ( )
1

0

,
L

s l
l

S k Y k M kβ
−

=

= −⎡ ⎤⎣ ⎦∑%  (2.3) 
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where β  is a scaling factor and the operation is implemented element-by-element with 

respect to k. The scaling factor β  is used to normalize ( )M k  with respect to the average 

values of ( )lY k  and is given by  

 
11

0

1 1
1

L
l

L
l

ρβ ρ ρ
ρ

−−

=

−⎛ ⎞= = ≈ −⎜ ⎟ −⎝ ⎠
∑  (2.4) 

which represents the value which approximately normalizes ( )M k  and is exact when 

( )lY k  is fixed. The term ( )lY k  can be moved out of the summation in (2.2) if ( )lY k  

does not vary in time since ( ) ( )l mY k Y k=  for all value of l and m, resulting in 

( ) ( )lM k Y kβ = . The reciprocal of β  is the geometric series, so the approximation for 

β  is exact as L approaches infinity.   

The scaling factor is a natural consequence of exponential averaging since ( )M k  

is compared with ( )lY k  yet ( )M k  gets larger as 1ρ →  and the number of branches 

increases. By using the scaling factor, the AWGN plus interference spectral estimate and 

the input spectrum are similar in magnitude, which provides the greatest emphasis on the 

signal spectrum when subtraction combining is used.  

The FH signal spectral estimation process using quotient-combining is expressed 

analytically as 

 ( ) ( ) ( )
1

0

,
L

q l
l

S k Y k M k
−

=

= ∑%  (2.5) 

where the quotient is taken element-by-element with respect to k. The scaling factor β  

can also be included in the quotient-combining scheme as a normalizing factor although 

it is not needed since only the relative difference in bins is important versus the absolute 

difference. Thus, by using quotient-combining, the frequency response of the AWGN 

plus interference is approximately normalized over the entire frequency range of interest. 

The quotient-combining scheme frequency bin output is unitless. This ratio based 

normalization allows bins in different frequency regions that have different magnitude 

local averages to be easily compared with each other.  
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Note that a time varying signal is disproportionately represented in ( )M k . The 

lack or excess representation of a time varying signal in ( )M k  is related to the weight 

factor and the branch(s) that include(s) the time varying signal. FH signals are just such 

signals. From this observation the individual frequency hops of a FH-SS signal are 

distinguished from the AWGN and interference signals in (2.5) since the spectrum of a 

FH-SS signal varies in time and the individual hops are usually not proportionally 

represented in ( )M k .  

The amount that the FH signal is disproportionately represented in ( )M k  is 

related to the hop rate and the period over which the average is taken. This characteristic 

illustrates why an estimated range of the FH signals period must be known a-priori, since 

a number of the frequency hops will be completely unrepresented in the spectral estimate 

if the averaging period is significantly less than the FH sequence cycle  

The discussion above is most easily seen when linear averaging versus 

exponential averaging is applied. However, exponential averaging weights more recent 

elements more heavily. Thus, exponential averaging provides a convenient method to 

retain the benefits of averaging and potentially suppressing signals with a time varying 

spectrum. The parameter ρ  determines how heavily recent elements are weighted in the 

exponential average. A few factors that help determine ρ  are the data size available for 

processing, the FH hop cycle duration, and the duration of a full cycle for the interference 

signal. Thus, by the time a hop is represented in a segment its previous representation is 

negligible in ( )M k . Similarly, the factors used to determine ρ  are also used to 

determine what values should be chosen for N and L.  

The values of N and L are inversely proportional, assuming that the data segments 

do not overlap nor are they zero padded. This assumption implies that the segment size 

and N are equal. The value of N also has an upper bound of the data length and a more 

practical upper restriction due to errors that result from exceeding machine memory. The 

value of N has a lower bound due to the required frequency resolution. As an example,  
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for most applications a 64 point DFT to evaluate a 10 MHz bandwidth is insufficient. 

Finally, the value of N should be chosen to be an integer power of two, which allows the 

DFT to be evaluated using a FFT without requiring zero padding.  

In general it is better to choose smaller values of N within the range previously 

discussed. The reason that a smaller segment size is desired is that it reduces the chance 

that a segment contains multiple hops and, thus, increases the suppression of the FH 

signal by the exponential averaging. Once the value of N is determined, then the value of 

L is the integer number of times that N goes into the data length. Data that does not make 

up a complete sample set can either be disregarded or zero padded and used. 

 

B. SIGNALS AND METRICS 
The FH signal used to evaluate the exponential averaging FH detector discussed 

in this research is a FH-MSK waveform with seven frequency hops. The carrier 

frequency is 10 MHz. The FFT of the FH signal is shown in Figure 14.  

 
Figure 14 Fourier transform of FH/MSK signal, 50sf =  MHz. 
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The interference signal is the sum of a BPSK signal with a carrier frequency of 10 

MHz and a continuous wave (CW) signal. The FFT of the BPSK interference signal is 

shown in Figure 15. The FFT of the CW interference signal is show in Figure 16. There 

are 21 CW signals in the bandwidth of interest. The FFT of the composite interference 

signal is shown in Figure 17. The FFT of the FH-MSK signal plus the interference signal 

is shown in Figure 18. The signals are sampled at 50 MHz. 

 

 
Figure 15 Fourier transform of the BPSK interference signal, 50sf =  MHz. 
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Figure 16 Fourier transform of the CW interference signal, 50sf =  MHz. 

 

 
Figure 17 Fourier transform of the composite interference signal (BPSK plus CW), 

50sf =  MHz. 
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Figure 18 Fourier transform of the sum of the FH-MSK and interference signals, 

50sf =  MHz.  

 

The BPSK signal is selected because of its relatively flat spectrum near the center 

of the main lobe relative to the bandwidth of a FH bin. The CW signal was selected for 

its narrowband characteristic which is similar to a tone jamming signal. Tone jamming 

can be the most effective noise jammer to FH systems [3]. Since the two interference 

signals are dissimilar, the combination of the two signals summed with AWGN is a 

reasonably hostile environment in which to evaluate the detector. Visually, it is clear that 

it can be difficult to find the FH-MSK signal, especially for low SIR.  

The performance metrics are SIR, SNR, and dP . The signal power in the SIR and 

SNR metrics is the power in the FH-MSK signal. The interference power in the SIR 

metric is the power of the BPSK and CW signals summed in the time-domain. The noise 

power in the definition of the SNR quantity is the power of the AWGN. SIR and SNR  
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quantities are varied by scaling normalized time-domain signals. The metric dP  is 

estimated by simulation, dividing the number of detections by the number of simulations 

runs for a fixed fP .  

 

C. ANALYTIC DECISION CRITERIA 
It is desirable that the selected performance measures enhance the detector’s 

performance to the greatest extent possible. The detector is not the optimum detector 

since there is limited a-priori knowledge. However, the decision criteria that the detector 

uses to evaluate the data can be optimized with respect to the detector. What is meant by 

optimum decision criteria in this context are that fP  does not exceed a preset value and 

that dP  is maximized. The threshold is obtained by using (1.6) where sS%  in Figure 13 is 

the RV that models the signal at the input into the comparator when only noise 

(undesirable signals) are present.  

Determining the pdf of S%  in the interference plus AWGN detector input case 

| ( | )S x i nf S x i n= + = +%
% , so that it can be used in (1.6) to obtain the threshold is not a simple 

table look-up nor is it available elsewhere. In Subsection II.C.1 the analytic expression 

for | ( | )
s BPSK s BPSKS x i nf S x i n= + = +%

%  is developed, where | ( | )
s BPSK s BPSKS x i nf S x i n= + = +%

%  is a 

special case of | ( | )S x i nf S x i n= + = +%
%  with the interference equal to the BPSK interference 

signal and scaled-subtraction combining is used. The special case pdf is obtained by 

solving for the pdf of S%  when the detector’s input is only AWGN, | ( | )S x nf S x n= =%
%  and 

then from this intermediate step, intuition is employed to obtain 

| ( | )
s BPSK s BPSKS x i nf S x i n= + = +%

% .  

Subsection II.C.2 develops the analytic expression for the general case where the 

interference includes the CW signals for both combining methods to the point that an 

unknown joint pdf is necessary to proceed with an analytic solution. Although the work  
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in Subsections II.C.1 and II.C.2 is not used in this dissertation it is presented for potential 

use in the future with respect to the special case and as justification to solve for 

| ( | )S x i nf S x i n= + = +%
%  using heuristic methods considered in Chapter III.  

1. Special Case Detector Output pdf Analysis 
First, the AWGN only detector input case is considered and next results are 

expanded to include the BPSK interference signal for the scaled-subtraction combining 

method. The delays shown in Figure 13 preceding the FFT inputs ensure that the 

segments of data that are inputs to the FFT do not overlap in time. The RV that models 

the input into a specific FFT block is independent of the RVs that model all the inputs 

into the other FFT blocks. To find the pdfs of the RVs that model the output of the FFTs, 

the FFT input pdf is transformed as the sum of scaled, independent, Gaussian RVs with 

the result  

 ( )
1

2( ) [ ]exp ,
N

l l
m

j kmX k x m N
π

=

−= ∑  (2.6) 

where ( )lX k  is a RV representing the kth frequency bin output of the lth branch in the 

exponential averaging detector, N is both the number of FFT frequency bins and the 

number of samples in a segment, and [ ]x m  is the mth input element into the FFT.  

Next Euler’s formula is applied to the exponential term in (2.6), resulting in 

 ( ) ( )
1

2 2( ) [ ] cos sin .
N

l l
m

km kmX k x m jN N
π π

=

⎡ ⎤= −⎣ ⎦∑  (2.7) 

It is observed that, for a specific frequency bin, the trigonometric functions reduce to 

scalars having values between a negative one and a positive one. Recall that when the RV 

y ax b= + , where x is a RV, and a and b are scalars the pdf of y is given by [42] 

 ( ) 1 .y x
y bf y f

a a
−⎛ ⎞= ⎜ ⎟

⎝ ⎠
 (2.8) 

Equation (2.8) indicates that, in general, the distribution does not change except for a 

scaling factor when 0b = . The summation of the resulting scaled, independent, 

identically distributed (IID) RVs, in the case of AWGN, generates a RV that is Gaussian 
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with a mean scaled by 
1

N

m
m

a
=
∑  and a variance scaled by 2

1

N

m
m

a
=
∑  [43]. The scaling factor of 

the mean is zero since it is the non-normalized average of a cosine or sine over an integer 

multiple of 2π . The variance scaling factor is also a constant and is one-half. Thus, given 

the detector input is AWGN, the FFT output pdf is a complex Gaussian with zero mean 

and the input variance scaled by 0.5N , where N is the number of frequency bins in the 

FFT. 

For the case when x is the sum of a BPSK signal and AWGN, the analysis is 

different, as the characteristic function approach is taken to determine the pdf of the sum 

of the two RVs. The characteristic function of the random variable y is defined as [44] 

 ( ){ }( ) exp .y E j yω ωΦ ≡  (2.9) 

The relationship between the characteristic function and the pdf are given by [44]:  

 ( ) ( ) 11 ( )exp ( ) |
2y y y yf y j j y d FT jω ω ω ω
π

∞
−

−∞

⎡ ⎤= Φ − = Φ⎣ ⎦∫  (2.10) 

and 

 ( ) ( ) ( )( ) exp .y y yf y j y dy FT f yω ω
∞

−∞

⎡ ⎤Φ = = ⎣ ⎦∫  (2.11) 

Note, the association of the constant 1
2π

 and the sign of the exponential in the Fourier 

and inverse Fourier transform pair varies [12, 44]: The characteristic function of the 

Gaussian RV y is given by 

 ( )2 2( ) exp 2 ,y jω μω σ ωΦ = −  (2.12) 

where μ  is the mean of y and 2σ  is the variance of y [45]. From (2.9) the pdf of y is not 

required if ( )y g x=  and the pdf of the RV x is known since the expected value of a 

function of a RV is given by 

 { } ( ) ( ) ,xE y g x f x dx
∞

−∞

= ∫  (2.13) 

where ( )xf x  is the pdf of x [46].  
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The characteristic function of the sum r of two independent RVs u and n is the 

product of the summed RVs’ characteristic functions: i.e., [47] 

 ( ) ( ) ( ).r u nj j jω ω ωΦ = Φ Φ  (2.14) 

The characteristic function of a zero mean Gaussian RV is [47]  

 ( )2 2( ) exp 2 .n ω σ ωΦ = −  (2.15) 

BPSK signal’s properties are discussed before the characteristic function is 

developed. Recall that a BPSK signal can be represented as 

 ( )cos ,cu A tω θ= +  (2.16) 

where cω is the carrier angular frequency and θ  is a RV that contains the BPSK signal’s 

data. The RV θ  has values 0,θ π=  and pmf  

 ( ) ( )1( ) .
2

fθ θ δ θ δ θ π= + −⎡ ⎤⎣ ⎦  (2.17) 

The characteristic function of u is obtained by first generating a function of the RV θ  

using the entering argument of the expectation in (2.9) and substituting ( )u θ from (2.16) 

for y , and is given by  

 ( ) ( )( )exp .g j uθ ω θ=  (2.18) 

The characteristic function of u is obtained by substituting (2.18) into (2.9) to yield  

 ( ){ }( ) ,u E gω θΦ =  (2.19) 

and then applying (2.13) to the right side of (2.19) which gives the characteristic function 

of u as  

 ( ) ( )( ) .u g f dθω θ θ θ
∞

−∞

Φ = ∫  (2.20) 

Substituting (2.16) into (2.18), and substituting the result and (2.17) into (2.20) yields 

 ( ) ( ) ( )1( ) exp cos .
2u cj A t dω δ θ δ θ π ω ω θ θ

∞

−∞

Φ = + − +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦∫  (2.21) 

At that point, the variable t in (2.21) is set to zero without loss of generality since the 

statistical properties are time invariant. Next, the characteristic function in (2.21) 

simplifies to 
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 ( ) ( )1( ) exp exp .
2u j A j Aω ω ωΦ = + −⎡ ⎤⎣ ⎦  (2.22) 

Substituting (2.15) and (2.22) into (2.14), leads to the characteristic function of 

the sum of the BPSK interference signal and the AWGN expressed as 

 ( ) ( )2 2( ) cos exp 2 .r j Aω ω σ ωΦ = −  (2.23) 

Substituting (2.23) into (2.10), leads to 

 ( ) ( ) ( ) ( ) ( )2 21 1 exp exp exp 2 exp .
2 2rf r j A j A j r dω ω σ ω ω ω
π

∞

−∞

= + − − −⎡ ⎤⎣ ⎦∫  (2.24) 

The pdf of r is further simplified by rearranging (2.24) as  

 
( ) ( ) ( ) ( )

( ) ( ) ( )

2 2

2 2

1 exp exp 2 exp
4

exp exp 2 exp .

rf r j A j r d

j A j r d

ω σ ω ω ω
π

ω σ ω ω ω

∞

−∞

∞

−∞

⎧
⎡ ⎤= − − +⎨ ⎣ ⎦

⎩
⎫

⎡ ⎤− − − ⎬⎣ ⎦
⎭

∫

∫
 (2.25) 

Noting that the elements in the square brackets are of the form of the Gaussian 

characteristic function in (2.12), and are given as ( )2 2
1( ) exp 2r j Aω ω σ ωΦ = −  and 

( )2 2
2 ( ) exp 2r j Aω ω σ ωΦ = − − , allows (2.24) to be simplified as 

 ( ) ( ) ( )1 2
1 1( )exp ( )exp .

2 2r r rf r j r d j r dω ω ω ω ω ω
π π

∞ ∞

−∞ −∞

= Φ − + Φ −∫ ∫  (2.26) 

Since (2.26) is in the form of (2.10), and 1rΦ  and 2rΦ  are Gaussian characteristic 

functions, ( )rf r  may be rewritten as 

 ( ) ( ) ( )2 2

2 22 2

1 1 1exp exp ,
2 2 22 2

r

r A r A
f r

σ σπσ πσ

⎡ ⎤⎛ ⎞ ⎛ ⎞+ −
= − + −⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

 (2.27) 

which is the sum of two Gaussian distributions scaled by one half with means A±  and 

variance 2σ . 

When r is the input into the delays shown in Figure 13, the output of the delays 

can be viewed as nearly independent if the segment length is much greater than the BPSK 

bit rate. Note that there are many bits in each segment of data or in a given branch so that 

there are few bits common to any two segments compared to the total number of bits 
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when the segment length is much greater than the BPSK bit rate. From this discussion, 

the RV at the input of a specific FFT block is considered independent of the RVs at the 

inputs of all the other FFT blocks. Since the FFT is a linear operator and ( )rf r  can be 

viewed as the sum of two Gaussian distributions, the analysis for the AWGN-only input 

can be used to determine the pdf of the output of the FFT given r is the detector input. 

Thus, given that r is the detector input, the pdf of the FFT output is a complex Gaussian 

with zero mean with the input variance scaled. The variance scaling factor is twice the 

variance of one of the Gaussians times 0.5N  where N is the number of frequency bins in 

the FFT. 

The block next to the FFT operation shown in Figure 13 can be chosen as either 

the absolute value or the absolute value squared. The selection of either operation is 

arbitrary since the relative difference of the FH signal versus the AWGN plus 

interference is desired. The absolute value squared is selected in this work, which leads 

to: 

 
( , ) ( , )

2 2( ) ( ) ( ),
l i l qlY k X k X k= +  (2.28) 

where ( , ) ( )l iX k  and ( , ) ( )l qX k  are the in-phase and quadrature components of the complex 

Gaussian RV ( )lX k , respectively.  

Recall that ( )lY k  is a central chi-squared pdf when ( )lY k  is defined as  

 ( )
( , )

2

1

( ),
l m

d

l
m

Y k X k
=

= ∑  (2.29) 

where 
( , )

( ), 1,2,...,
l m

X k m d=  are independent identically distributed (IID) Gaussian RVs 

with zero mean and variance 2σ  [5]. The generic chi-squared pdf of Y is given by: [5] 

 ( ) ( ) ( )/ 2 1 2
/ 2

1 exp / 2 , 0.
2 / 2

d
Y d df Y Y Y Y

d
σ

σ
−= − ≥

Γ
 (2.30) 

Since (2.30) reduces to the exponential distribution in the case of interest; i.e., when 

2d =  where d corresponds to the inphase and quadrature signal components, the pdf of 

( )lY k  is an exponential distribution [42] 
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 ( ) ( ) 2

1exp , 0, .
2lY l l l l l lf Y Y Yλ λ λ
σ

= − ≥ =  (2.31) 

The diagram in Figure 13 forks into two paths. The lower path, which leads to the 

noise interference spectral estimate, is considered first. Each ( )lY k  term is scaled by lρ  

where ρ  is the weight factor in (2.2). We obtain the value of lλ  in (2.31) as 
( )2 2

1
2 lρ σ

 

by using the transformation in (2.8) to account for scaling of ( )lY k  by lρ . The L 

branches are then summed to generate the noise interference spectral estimate ( )M k . The 

pdf of ( )M k  is obtained as the convolution of the L pdfs of the RVs ( )l
lY kρ  where 

0,1,..., 1l L= − .  

Since convolution in one domain is equivalent to multiplication in the transform 

domain, the Lth order convolution is found using transforms. The pdfs of ( )l
lY kα  are 

transformed using the Laplace transform  

 ( ) ( )
0

( )exp ,H s h t st dt
∞

= −∫  (2.32) 

since the RVs ( )l
lY kρ  are greater or equal to zero [42]. The Laplace transform of the pdf 

of ( )l
lY kρ , from (2.31) and (2.32) is given by 

 ( ) ( ) ,
l

l
lY k

l

F Y k
s
λ
λ

=⎡ ⎤⎣ ⎦ +
 (2.33) 

where 
( )2 2

1 .
2

l l
λ

ρ σ
=  Taking the inverse Laplace transform of the product of L pdfs of 

the form in (2.33), leads to the pdf of ( )M k  as 

 ( ) ( )
1

-1

0

,
L

l
M k

l l

f M k
s
λ
λ

−

=

⎧ ⎫
=⎡ ⎤ ⎨ ⎬⎣ ⎦ +⎩ ⎭

∏L  (2.34) 

where {}-1 ⋅L  is the inverse Laplace transform. Equation (2.34) can be simplified to  

 ( ) ( )
1 1

-1

0 0

1 .
L L

lM k
l l l

f M k
s

λ
λ

− −

= =

⎧ ⎫⎛ ⎞=⎡ ⎤ ⎨ ⎬⎜ ⎟⎣ ⎦ +⎝ ⎠ ⎩ ⎭
∏ ∏L  (2.35) 
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Next, a partial fraction expansion is used to obtain the inverse Laplace transform. By 

expanding the product in (2.35) into the sum of easily inverted ratios, the inverse is 

obtained as  

 
1 1

0 0

1 ,
L L

l

l ll l

A
s sλ λ

− −

= =

=
+ +∏ ∑  (2.36) 

where Al are scalars [48]. The value of A0 is obtained by multiplying both sides of (2.36) 

by ( )0s λ+  and setting 0.s λ= −  As a result, every element in the summation except for 

the 0th element goes to zero. The left hand side of (2.36) is similar except that the 

( )0s λ+  element is factored out. By repeating this process L times, all Al scalars are 

obtained, resulting in  

 
1

0

1 .
L

l
i i l
i l

A
λ λ

−

=
≠

⎛ ⎞
= ⎜ ⎟−⎝ ⎠
∏  (2.37) 

Thus, from (2.36) and (2.37), the pdf in (2.35) can be written as 

 ( ) ( )
1 1

-1

0 0

.
L L

l
lM k

l l l

Af M k
s

λ
λ

− −

= =

⎧ ⎫⎛ ⎞=⎡ ⎤ ⎨ ⎬⎜ ⎟⎣ ⎦ +⎝ ⎠ ⎩ ⎭
∏ ∑L  (2.38) 

Using (2.31) and (2.33) in (2.38), we get the pdf of ( )M k   

 ( ) ( ) ( )( ) ( )
1 1

0 0

exp , 0.
L L

l l lM k
l l

f M k A M k M kλ λ
− −

= =

⎛ ⎞= − ≥⎡ ⎤ ⎜ ⎟⎣ ⎦
⎝ ⎠
∏ ∑  (2.39) 

The next step is specific to the combining method being considered. First we 

consider the scaled-subtraction-combining method, and later the quotient-combining 

method in the next subsection. Substituting (2.2) into (2.3), we get 

 ( ) ( ) ( )
1 1

0 0

,
L L

L i
s l i

l i

S k Y k Y kβ ρ
− −

−

= =

⎡ ⎤= −⎢ ⎥⎣ ⎦
∑ ∑%  (2.40) 

which can be algebraically manipulated to get 

 ( ) ( ) ( )
1

0

1 .
L

L l
s l

l

S k L Y kβρ
−

−

=

= −∑%  (2.41) 
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The pdf which models the RV ( )sS k%  is obtained by applying the similarity between (2.2) 

and (2.41) to determine that ( ) ( )
s sS kf S k⎡ ⎤⎣ ⎦%

%  is of the same form as ( ) ( )M kf M k⎡ ⎤⎣ ⎦  in (2.39), 

and then accounting for the only difference between the right hand sides of (2.2) and 

(2.41) which is the scalar in the summation. Thus, the pdf of ( )sS k%  is given as 

 ( ) ( ) ( ) ( )
1 1

0 0

exp , 0,
s

L L

s l l l s sS k
l l

f S k A S k S kλ λ
− −

= =

⎛ ⎞⎡ ⎤ ⎡ ⎤= − ≥⎜ ⎟⎣ ⎦ ⎣ ⎦⎝ ⎠
∏ ∑%

% % %  (2.42) 

where 
( )2 2

1
2 1

l L lL
λ

βρ σ−
=

−
  

2. General Case Detector Output pdf Analysis  
This subsection first addresses the detector output pdf using quotient-combining 

with an AWGN plus BPSK signal input, next it adds the CW signal to the AWGN plus 

BPSK signal input, resulting in a mathematically intractable solution. These results 

motivate the use of heuristic methods to estimate | ( | )S x i nf S x i n= + = +%
% , since the 

expression for | ( | )S x i nf S x i n= + = +%
%  includes unknown joint pdf’s, when the detector’s 

input is the BPSK plus CW interference signal and AWGN for both combining methods. 

This subsection is presented as justification to obtain | ( | )S x i nf S x i n= + = +%
% using heuristic 

methods. 

The pdf of the signals representing the detector’s output in the quotient-

combining case is now considered. The pdf of the ratio of two RVs is given by:  

 ( ) ( ) ( ) ( )
0

0

, , ,z xy xyf z yf yz y dy y f yz y dy
∞

−∞

= + −∫ ∫  (2.43) 

where x and y are RVs, /z x y= , and ( , )xyf x y  is the joint pdf of x and y [42]. Equation 

(2.43) simplifies to  

 ( ) ( )
0

, ,z xyf z yf yz y dy
∞

= ∫  (2.44) 

when the RVs x and y are non-negative [42].Since the joint pdf of ( )M k  and ( )lY k  is not 

known, a less direct approach is taken. Letting  
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 ( ) ( ) ( )l
l lM k M k Y kρ= −%  (2.45) 

we get from (2.45) and (2.5)  

 ( ) ( )
( ) ( ) ( )

1 1 1

0 0

.
L L

l
q ll

l ll l

Y k
S k q k

M k Y kρ

− − −

= =

= = ⎡ ⎤⎣ ⎦+∑ ∑%
%

 (2.46) 

Inverting and algebraically manipulating the summand in (2.46), we get 

 ( ) ( )
( )

.ll
l

l

M k
q k

Y k
ρ= +

%
 (2.47) 

The RV ( )lq k  is the ratio of two independent, non-negative RVs plus a constant. The 

motivation for this manipulation is that since the RVs are independent a pdf of their ratio 

can be obtained. Taking into account the shifting represented by the constant, we obtain 

the inverse of the resulting RV and its pdf, which is the summand in (2.46). 

The difference between the pdf of ( )lM k%  and the pdf of ( )M k  is that ( ) 'lM k s%  

pdf does not include the lth term in either the summation or the product. Thus, the pdf of 

( )lM k%  is given by 

 ( ) ( ) ( ) ( )
1 1

0 0

exp , 0.
l

L L

l i i i l lM k
i i
i l i l

f M k A M k M kλ λ
− −

= =
≠ ≠

⎛ ⎞
⎜ ⎟⎡ ⎤ ⎡ ⎤= − ≥⎣ ⎦ ⎣ ⎦⎜ ⎟⎜ ⎟
⎝ ⎠
∏ ∑%

% % %  (2.48) 

The joint pdf of the RVs ( )lM k%  and ( )lY k  is the product of their respective pdfs 

since they are independent. From (2.31) and (2.48) the joint pdf of ( )lM k%  and ( )lY k  is 

given by 

 ( ) ( ) ( ) ( ) ( ) ( )
1 1

0 0

, exp exp ,
l l

L L

l l l l l i i i lM k Y k
i i
i l i l

f M k Y k Y k A M kλ λ λ λ
− −

= =
≠ ≠

⎛ ⎞
⎜ ⎟⎡ ⎤ ⎡ ⎤= − −⎡ ⎤⎣ ⎦⎣ ⎦ ⎣ ⎦⎜ ⎟⎜ ⎟
⎝ ⎠
∏ ∑%

% %   (2.49) 

where ( ) 0lY k ≥ , ( ) 0lM k ≥% , and 
( )2 2

1 .
2

i i
λ

ρ σ
=  The pdf of ( )lq k , using (2.8), (2.44), 

and (2.49), is 
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( )( ) ( ) ( ) ( ){

( ) ( )

0

1 1

0 0

exp

exp .

lq l l l l l l

L L

i i i l l
i i
i l i l

f q k M k q k M k

A M k dM k

λ λ

λ λ

∞

− −

= =
≠ ≠

⎡ ⎤= − ×⎣ ⎦

⎫⎛ ⎞
⎪⎜ ⎟ ⎡ ⎤− ⎬⎣ ⎦⎜ ⎟⎜ ⎟ ⎪⎝ ⎠ ⎭

∫

∏ ∑

% %

% %

 (2.50) 

The next step in obtaining the pdf of ( )qS k%  is determined by recalling the relationship 

between ( )qS k%  and ( )lq k  from (2.46) and (2.47), respectively. Since ( )lq k  is the 

inverse of the summand of (2.46), the pdf of ( )lq k  inverse is determined. The pdf of the 

inverse of a RV is 

 ( ) 2

1 1
y xf y f

y y
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 (2.51) 

where the function of the RV x is 1y x=  and ( )xf x  is the pdf of x [42]. From (2.50) 

and (2.51), the pdf of the inverse of ( )lq k  is 

 

( )( ) ( ) ( ) ( ) ( ){

( ) ( )

1

21 1 1

0

1 1

0 0

exp

exp .

l
l l l l l l lq

L L

i i i l l
i i
i l i l

f q k q k M k q k M k

A M k dM k

λ λ

λ λ

−

∞
− − −

− −

= =
≠ ≠

⎡ ⎤ ⎡ ⎤= − ×⎣ ⎦ ⎣ ⎦

⎫⎛ ⎞
⎪⎜ ⎟ ⎡ ⎤− ⎬⎣ ⎦⎜ ⎟⎜ ⎟ ⎪⎝ ⎠ ⎭

∫

∏ ∑

% %

% %

 (2.52) 

The final step in solving for the pdf of ( )qS k%  is to sum L ( )1
lq k−  RVs. Recall that the pdf 

of the sum of two RVs is [42] 

 ( ) ( ),z xyf z f z y y dy
∞

−∞

= −∫  (2.53) 

where the summed RVs are x and y, and z x y= + . This leaves the issue of what the joint 

pdf of ( ) ( ) ( ) ( ) ( ) ( )1 1 1
1 2

1 1 1
1 2....

, ,....,
L

Lq k q k q k
f q k q k q k− − −

− − −⎡ ⎤⎣ ⎦  is. Since the RVs ( )1
lq k− , where 

1,2,...l L=  are dependent RVs, the solution of  
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( ) ( ) ( ) ( ) ( ) ( )1 1 1
1 2

1 1 1
1 2....

, ,....,
L

Lq k q k q k
f q k q k q k− − −

− − −⎡ ⎤⎣ ⎦  is not trivial at this point. Before an analytic 

expression for ( ) ( )
q qS kf S k⎡ ⎤⎣ ⎦%

%  is pursued any further, the effect of CW interference is 

included. 

The direct approach of adding the AWGN and the CW signal to the interference 

and then following the method used above to determine the desired pdf was considered. 

The pdf of the sum of AWGN and a CW signal is  

 ( ) ( )2 2 2

2 2
0

cos1 exp exp ,
2 2 2p

B p uf p dud
π θ σ θ

π σ

∞

−∞

⎡ ⎤− − ⎛ ⎞−
= ⎢ ⎥ ⎜ ⎟

⎝ ⎠⎢ ⎥⎣ ⎦
∫ ∫  (2.54) 

where p is a RV that represents the sum of AWGN and the CW signal, B is the maximum 

amplitude of the CW signal, θ  is the phase of the CW signal which is modeled as a 

uniform random variable, and 2σ  is the variance of the AWGN [47]. Due to the 

complexity of (2.54), an analytic expression for the pdf of ( )lY k as in (2.31) was not 

determined. Since the FFT is a linear operation, summing the individually processed CW 

signal with the AWGN plus BPSK interference signal after the FFT is an equivalent 

alternative approach.  

The delays shown in Figure 13 preceding the FFT inputs will, in general, cause 

the CW segments to appear as having different phases, as shown in Figure 19. The initial 

phase shown in branch one of Figure 19 is also unknown. At this juncture the research 

could focus on solving for ,l cθ  for the 0,1,..., 1l L= − branches and the 1,2,...,c C=  

frequencies of the CW tones, where C is 21 for this research. Alternatively, another 

approach is to model ,l cθ , 0,1,..., 1l L= − , 1,2,...,c C= , as uniform RVs.  
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Figure 19 An example of the CW input in the first four branches, just prior to the FFT 

block. 

 

A method to estimate ,l cθ , 0,1,..., 1l L= −  and 1,2,...,c C=  is presented in this 

paragraph and subsequently rejected due to its complexity. Energy detectors are used to 

estimate the C frequencies of the CW signal [11]. A phase-locked loop is used to estimate 

0,cθ  for each 1,2,...,c C= , and the values , , 1,2..., 1l c l Lθ = −  and 1,2,...,c C=  are 

obtained using the CW frequencies, the sampling frequency, and the segment length [20]. 

In this approach the FFT of the CW interference is no longer probabilistic but 

deterministic and can be combined with (2.27) using (2.8). The pdfs of ( )l cY k  

1,2,...,c C=  are then modeled as non-central, chi-squared distributions where ck  are the 

frequency bins that correspond to the C frequencies of the CW tones. Because of the 

complexity of this approach in estimating the CW frequencies and the phases, it was not 

pursued.  

The approach taken is to model ,l cθ , 0,1,..., 1l L= −  and 1,2,...,c C= , as uniform 

RVs. The phases are identically distributed and each pdf is 
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 ( )
,

,
,

1 rect ,
2 2l c

l c
l cfθ

θ
θ

π π
⎛ ⎞= ⎜ ⎟
⎝ ⎠

 (2.55) 

where ‘rect’ is defined in (1.15). The CW interference is made up of C tones expressed as 

 ( ) ( ), ,cos 2 ,
cl c cw l cv t B f tπ θ= +  (2.56) 

where 
ccwf , 1,2,...,c C=  are the frequencies of each CW tone [5]. Using trigonometric 

identities, (2.56) can be rewritten as  

 ( ) ( ) ( ) ( ) ( ), , ,cos cos 2 sin sin 2 .
c cl c l c cw l c cwv t B f t B f tθ π θ π= −  (2.57) 

The Fourier transform of ( ),l cv t  is 

 

( ) ( ) ( ) ( ) ( ){
( ) ( ) }

, , ,cos cos 2 sin sin 2

cos 2 sin 2

c cl c l c cw l c cwV f B f t f t

ft j ft dt

θ π θ π

π π

∞

−∞

⎡ ⎤= − ×⎣ ⎦

−⎡ ⎤⎣ ⎦

∫
 (2.58) 

From the orthogonality of even and odd functions over the interval from negative infinity 

to positive infinity, the product of the cosine and sine functions go to zero, reducing 

(2.58) to [49] 

 
( ) ( ) ( ) ( )

( ) ( ) ( )

, ,

,

cos cos 2 cos 2

sin sin 2 sin 2 .

c

c

l c l c cw

l c cw

V f A f t ft dt

jA f t ft dt

θ π π

θ π π

∞

−∞

∞

−∞

= +∫

∫
 (2.59) 

From [50] (2.59) simplifies to  

 
( ) ( ) ( )

( ) ( )
, ,

, .

c c

c c

l c l c cw cw

l c cw cw

V f a f f f f

jb f f f f

δ δ

δ δ

⎡ ⎤= − + + +⎣ ⎦
⎡ ⎤− − +⎣ ⎦

 (2.60) 

where ( ), ,cos
2l c l c
Ba θ=  and ( ), ,sin

2l c l c
Bb θ= , as shown in Figure 20. Thus, the Fourier 

transform of the CW signal has non-zero values at plus and minus the CW frequencies. 

The discrete version of (2.60) is similar if the Nyquist criteria is met and if the data set 

used is sampled for an integer multiple of the period of the input sinusoid. Since there are 

multiple input sinusoids and none of their frequencies are known, the second condition is  
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not necessarily met, as the example in Figure 19 illustrates. However, the maximum non-

zero input is still at plus and minus the CW frequencies, and the analysis first addresses 

these values. 

 

 
Figure 20 Fourier transform of sinusoids. 

 

The next steps are to sum the RVs, take the absolute value squared of the 

summation, and derive the resulting pdf. The absolute value squared of the sum of the 

RVs influenced by the maximum non-zero CW input is  

 
( , ) ( , )

2 2

, ,( ) ( ) ( ) .
l i l ql c c l c c l cY k X k a X k b⎡ ⎤ ⎡ ⎤= + + +⎣ ⎦ ⎣ ⎦

%  (2.61) 

We can rewrite (2.61) as 

 
( , ) ( , ) ( , ) ( , )

2 2 2 2
, , , ,( ) ( ) ( ) 2 ( ) 2 ( ) .

l i l q l i l ql c c c l c c l c c l c l cY k X k X k a X k b X k a b= + + + + +%  (2.62) 

The equation in (2.62) is further simplified to  

 
( , ) ( , ) ( , ) ( , )

2
2 2

, ,( ) ( ) ( ) 2 ( ) 2 ( )
4l i l q l i l ql c c c l c c l c c

BY k X k X k a X k b X k
⎧ ⎫⎡ ⎤= + + + +⎨ ⎬⎣ ⎦⎩ ⎭

%  (2.63) 

since 
2

2 2
, , .

4l c l c
Ba b+ =  As in (2.28) the pdf of the term in [ ]⋅  is central chi-squared with 

two degrees of freedom. From (2.8) the pdf of the term in {}⋅ is (2.30) where ( )l cY k  is 

shifted by 
2

4
B− .  
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The substitution of ,l cb  for ( ),l cg θ  and (2.55) for ( )
, ,l c l cfθ θ  in (2.19) yields the 

characteristic function of ,l cb  

 ( )
,

,
, ,

1( ) exp sin rect
2 2 2l c

l c
b l c l c

Bj d
θ

ω ω θ θ
π π

∞

−∞

⎛ ⎞⎡ ⎤Φ = ⎜ ⎟⎢ ⎥⎣ ⎦ ⎝ ⎠∫  (2.64) 

which can be further simplified to 

 ( )
, , ,

1( ) exp sin .
2 2l cb l c l c

Bj d
π

π

ω ω θ θ
π −

⎡ ⎤Φ = ⎢ ⎥⎣ ⎦∫  (2.65) 

From [50] (2.65) is the Bessel function of the first kind and order zero:  

 
, 0( ) .

2l cb
BJ ωω ⎛ ⎞Φ = ⎜ ⎟

⎝ ⎠
 (2.66) 

The characteristic function of ,l ca  is obtained similarly, except an alternate representation 

of the Bessel function of the first kind and order zero, given by  

 ( ) ( )0
0

1 exp cosJ z jz d
π

θ θ
π

= ±⎡ ⎤⎣ ⎦∫  (2.67) 

is used along with symmetry to produce [47, 50].  

 
, 0( ) .

2l ca
BJ ωω ⎛ ⎞Φ = ⎜ ⎟

⎝ ⎠
 (2.68) 

Substituting (2.68) for ,l ca  and (2.66) for ,l cb  into (2.10), we get the pdfs of ,l ca  and ,l cb  
as 

 ( ) ( )
, , 0 ,

1 exp
2 2l ca l c l c

Bf a J j a dω ω ω
π

∞

−∞

⎛ ⎞= −⎜ ⎟
⎝ ⎠∫  (2.69) 

 ( ) ( )
, , 0 ,

1 exp ,
2 2l cb l c l c

Bf b J j b dω ω ω
π

∞

−∞

⎛ ⎞= −⎜ ⎟
⎝ ⎠∫  (2.70) 

respectively.  

The pdf of the product of two RVs is 

 ( ) 1 ,z xy
zf z f x dx

x x

∞

−∞

⎛ ⎞= ⎜ ⎟
⎝ ⎠∫  (2.71) 

where the function of the RV z is z xy=  and ( ),xyf x y  is the joint pdf of x and y [42]. 

Since ,l ca  and 
( , )

( )
l i cX k  are independent RVs, (2.71) is used to determine the pdf of the 
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term 
( , ),2 ( )
l il c ca X k , where the constant is accounted for by applying (2.8). The pdf of 

( , ),2 ( )
l ql c cb X k  may be obtained in a similar manner. The last step in finding the pdf of 

( )l cY k%  in (2.63) is to use (2.53) to sum the RVs 
( , ),2 ( )
l il c ca X k , 

( , ),2 ( )
l ql c cb X k , and ( )l cY k  

shifted by 
2

4
B− . Since the RVs are not independent their joint pdf does not equal the 

product of their individual pdfs. Thus, an analytic solution for | ( | )S x i nf S x i n= + = +%
%  is 

mathematically intractable.  

The exponential averaging FH detector along with the signals and metrics used 

with the detector were presented in this chapter. The detector’s two combining methods, 

quotient and scaled-subtraction-combining, were discussed. The analytic solution to the 

pdf that models the detector’s output with scaled-subtraction-combining and an AWGN 

plus BPSK input was developed. Finally, it was shown that an analytic expression for the 

pdf that models the detector’s output with either combining method and an AWGN plus 

BPSK plus CW input is mathematically intractable using the given approach. Therefore, 

a heuristic approach to estimating the pdf of | ( | )S x i nf S x i n= + = +%
%  is addressed in the next 

chapter. 
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III. EXPONENTIAL AVERAGING DETECTOR SIMULATION 
METHODS AND RESULTS  

This chapter describes the exponential averaging detector’s simulation set-up, 

develops the decision criteria selected and presents simulation results. The simulation set-

up includes a description of the various parameters and signals used. The decision criteria 

section investigates two methods to heuristically estimate the pdf of the RV that models 

the detector’s output; histograms and goodness-of-fit tests. Simulation results include 

performance guidelines, a sample histogram of the data, and an evaluation of goodness-

of-fit tests considered in this work, a postulated pdf of the RV representing the detector’s 

output supported with probability plots of the data, the selection of a threshold, and an 

evaluation of the detector’s performance.  

Simulations discussed in this chapter were generated using MATLAB. The FH-

MSK, BPSK, and CW signals used are approximately 20 ms long, with a sampling 

frequency equal to 50 MHz (i.e. 1,032,192 samples). The FFT length used to compute the 

spectrum was generally set to a power of 2. A minimum spectral resolution of 24 kHz is 

assumed for the simulations resulting in a minimum FFT length equal to 211. The 

minimum number of points in the FFT is used unless stated otherwise. The minimum 

spectral resolution assumption is based on a-priori knowledge of the modulation type, 

hop rate, and the minimum frequency spacing required for signal orthogonality. Initial 

results obtained after zero padding the data to increase the spectral resolution did not 

yield a substantial improvements and therefore zero padding was not considered further. 

The search range selected for the simulations was from 0 to 25 MHz. The frequency hops 

of interest lie between 6 and 13 MHz. For this reason, the x axis of the figures displaying 

the frequency response is limited from 5 to 15 MHz, even though the data is processed 

between 0 and 25 MHz.  

 

A. INTERFERENCE/NOISE SPECTRUM ESTIMATION 
The scaled spectral estimate of the interference shown earlier in Figure 17 plus 

AWGN is generated using (2.2) and is shown in Figure 21 for SIR equaling zero dB and 
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SNR equaling nine dB. Figure 21 is comparable with Figure 17 which does not include 

AWGN since a relatively large value of SNR compared to SIR is used. The spectrum is 

generated using a 214 point FFT which is eight times larger than the minimum FFT length 

so that Figure 21 compares better with Figure 17, which was generated using a 220 point 

FFT. A direct comparison with a 220 point FFT cannot be done without zero padding 

since the data is segmented to facilitate exponential averaging. Although the different 

scaling of Figure 17 and Figure 21 does not show it clearly, Figure 21 has a larger 

average magnitude than Figure 17. This phenomenon is attributed to the fact that the 

results in Figure 21 include a FH signal and AWGN, which are not included in Figure 17. 

The SIR and SNR are obtained by holding the FH signal amplitude constant and varying 

the power of the interference and AWGN signals to obtain the desired SIR and SNR, 

respectively. 

 

 
Figure 21 Scaled spectral interference estimates for 0.99ρ =  (top) and 0.9ρ =  

(bottom). 
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Two interference-plus-AWGN spectral estimates are shown in Figure 21 to 

illustrate the influence of ρ  on the estimate. The two most noticeable differences 

between the two estimates are the emerging spike at 11.7 MHz when 0.99ρ =  and the 

slightly larger magnitude of the spike at 12.1 MHz when 0.9ρ = . Less obvious are 

differences at 6.9, 9.6, and 12.7 MHz. The spikes at 9.6, and 12.7 MHz are somewhat 

obscured on this scale since they are within 75 and 35 kHz, respectively, of CW signals. 

The spike at 12.1 MHz is not obscured by the CW signal that is within 50 kHz since it is 

in a null of the BPSK spectrum. The spikes are components of the FH-MSK signal. From 

these observations, it can be deduced that different values of ρ  suppress components of 

the FH signal differently. A method for exploiting this behavior is discussed in the next 

section.  

 

B. FH SIGNAL SPECTRUM ESTIMATION 

Variations in the emphasis of the FH signal due to changing ρ  can be exploited 

using the quotient and scaled-subtraction combining methods described in Section I.A. 

The exponential averaging detector’s output with quotient-combining is shown in Figure 

22 with SNR and SIR equal to zero and a 213 point FFT. The numbers 1 through 7 in 

Figure 22 show the temporal hop order with seven being the most recent hop. A few of 

the factors that contribute to the variance in the magnitude of the hop frequencies in the 

spectral FH signal estimate are: the interference spectrum near the hop frequency, the 

BW of each FFT bin and the BW of the FH-SS, the SNR level, and the value of ρ . 

Trends in the hop magnitude variability are discussed; however a detailed explanation of 

the influence from each of these factors on the hop magnitude variability is reserved for 

future work. 
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Figure 22  Spectral FH signal estimate using quotient-combining for 0.99ρ =  (top) 

and 0.9ρ =  (bottom). 

 

It is speculated that, the dips in the spectral FH signal estimation in the top plot of 

Figure 22 at hops six and seven are attributed to the over emphasis of those hops in the 

noise plus interference spectral estimate. Hops one through four are underestimated or 

suppressed in the noise plus interference spectral estimate which result in peaks. Hop 

number five is not shown in the top plot of Figure 22 since it is proportionally estimated 

in the noise plus interference spectral estimate. The smaller value of 0.9ρ =  in the 

bottom plot in Figure 22 shows similar results except that the shift between positive and 

negative hops occurs quicker and allows hop number five to potentially be detected. 

Finally, Figure 22 shows that the noise variance significantly increases as ρ  decreases. 

The exponential averaging detector’s output with scaled-subtraction-combining is 

shown in Figure 23 with SNR and SIR equal to zero and a 213 point FFT. The 

phenomenon of the hops shifting from above to below the noise floor does not occur with 

scaled-subtraction-combining as it does with quotient combining, nor does the noise floor 
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variance increase as significantly as ρ  decreases. The quotient-combining method is 

more sensitive to changes in ρ  with respect to the lower noise floor variance and, thus, 

requires a larger ρ  value to maintain a certain performance level. The scaled-

subtraction-combining method is less sensitive to the perturbation and has similar 

performance levels for the range 0.8 1ρ< < . Although a better understanding of the 

factors contributing to the magnitude variance could lead to further exploiting the 

differences mentioned (i.e.; hop order estimation) this area of research is reserved for 

future work. 

 

 
Figure 23 Spectral FH signal estimate using scaled-subtraction-combining for 0.99ρ =  

(top) and 0.9ρ =  (bottom). 
 

This difference in sensitivity relegates the quotient-combining method to values 

of ρ  relatively close to one. Since the contribution of earlier segments increases as the 
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value of ρ  approaches one, more data segments are needed when ρ  is closer to one. 

This result indicates that the quotient-combining method requires more data segments 

than does the scaled-subtraction method. As the SIR and SNR are lowered, however, the 

quotient-combining method outperforms the scaled-subtraction-combining method as 

shown in Table 1 and Table 2. The values in the tables are generated using a few 

simulations and are representative of general trends observed. The Table 1 and Table 2 

results are presented as performance guidelines versus performance measures since they 

were evaluated visually and do not include any probabilistic measures.  

 

Table 1 Number of frequency hops visually detected by the exponential averaging 
FH detector given a seven hop FH/MSK signal, quotient-combining, and 
respective SNR and SIR. 

 
SNR dB (across) 
SIR dB (down) 

0 -3 -6 -9 -12 

2 6 6 6 6 5 
-1 6 6 6 6 4 
-4 6 6 6 5 4 
-7 6 6 5 5 3 
-10 4 4 4 4 2 
-13 3 3 2 2 1 
-16 1 1 0 0 0 

 

Table 2 Number of frequency hops visually detected by the exponential averaging 
FH detector given a seven hop FH/MSK signal, scaled-subtraction-
combining and respective SNR and SIR. 

 
SNR dB (across) 
SIR dB (down) 

0 -3 -6 -9 -12 

2 7 7 7 7 2 
-1 7 7 7 7 2 
-4 7 7 5 3 1 
-7 5 4 3 2 0 
-10 2 1 1 1 0 
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C. DECISION CRITERIA TOOLS 

The decision criteria are determined by estimating Pf and solving for the decision 

threshold γ  using (1.6). The heuristic estimation of | ( | )S x i nf S x i n= + = +%
%  is addressed in 

this section to obtain the threshold γ . Three methods to estimate | ( | )S x i nf S x i n= + = +%
%  

heuristically are discussed; first we consider a histogram based scheme to estimate the 

data pdf or cumulative distribution function (CDF). Next, we investigate a model based 

scheme where we hypothesize a specific distribution and then test the data against the 

hypothesis to determine if their similarities are statistically significant using a goodness-

of-fit test [51]. Finally, we cover graphical analysis, which is an easy and common way 

of supporting a postulated distribution without providing any objective statistical measure 

with which to evaluate how well the postulated distribution matches the data [52] 

The probability plotting and the goodness-of-fit based method have the advantage 

of modeling the required pdf with a specifically defined function, which may provide a 

better understanding of the process, whereas the histogram estimate of the pdf is a purely 

heuristic approximation. The goodness-of-fit based scheme is preferred to the probability 

plotting and histogram schemes since it produces a statistical measure of significance, 

when the goodness-of-fit test requirements are met and a hypothesized pdf can be 

determined with a sufficient confidence to justify the increased complexity of the 

goodness-of-fit test(s). 

Note that a maximum-likelihood simulation based approach may also be used to 

estimate the pdf. Classical maximum-likelihood estimation can be summarized as finding 

the value of θ  that maximizes the likelihood of  

 ( ) ( )m
1

x x | ,
n

n
m

f f θ
=

=∏r r  (3.1) 

where mxr  is vector of n IID RVs, and θ  is an unknown parameter in ( )f x  [53]. We 

selected not to pursue this approach further because we assume ( )f x  to be known a-

priori; and there is no indicator in the maximum-likelihood method to determine how 

inaccurate ( )f x  is when the assumption is incorrect.  
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1. The Histogram as a pdf Estimator 

The oldest and most commonly used pdf estimator is the histogram [54]. A 

histogram is a graphical representation of the number of events in adjacent intervals over 

a given range. To generate a histogram, we divide the range [ , ]a b  into N equally wide 

bins ( )1 ,
2 2n

a b a bs a n a n+ +⎡ ⎤⎛ ⎞ ⎛ ⎞= + − +⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
 where 1,2,...,n N= , sum the number of 

events M that occur in each bin xn, ( 1,2,...,n N= ), and plot the value of xn over the 

corresponding bin interval sn. The histogram pdf estimate ( )xxf%  is then scaled by 

( )
N

b a M−
 so that ( ) 1.

b

x
a

f x dx =∫ %  

An issue with histogram pdf estimation is that ( )xf x%  has up to 1N +  

discontinuities at the intersections of the bins. Thus, this method of construction leaves 

room for improvement when ( )xf x  is assumed to be smooth. A simple approach to 

smooth ( )xf x%  is to use spline interpolation [53]. Another approach is to apply a 

windowing function scaled by xn at the center of each bin and sum the results to 

determine ( )xf x% . The windowing function is called a kernel, and a Gaussian shape is an 

example of a commonly used kernel [53, 54]. Reference [55] calls the process described 

above Parzen’s estimator. 

The histogram pdf estimate ( )xf x%  is still defined on a truncated range and 

models when ( )xf x  has an infinite range such that [53] 

 ( )

( )

( )
for

0 otherwise.

x
b

xx
a

f x
a x b

f x dxf x

⎧
≤ ≤⎪

⎪= ⎨
⎪
⎪⎩

∫%  (3.2) 
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Note that the accuracy of ( )xf x%  increases as M increases, as shown by the fact that the 

mean squared error (MSE) of ( )xxf%  goes to zero as M →∞  [53]. The accuracy of 

( )xf x%  is also dependent on N and how histogram discontinuities are smoothed out. 

The selection of N can be based on different rules of thumb such as using seven to 

ten bins, N M= , 10log( )N M=  for 30M > , or some scaled version of these rules 

[56]. One analytic method to determine N is based on minimizing the mean integrated 

squared error (MISE) defined as [54] 

 ( ) ( ) ( )
2

0

1 .
T

x x xMISE f x E f x f x dx
T

⎡ ⎤ ⎡ ⎤≡ −⎣ ⎦ ⎣ ⎦∫% %  (3.3) 

The value of N that minimizes the MISE is determined by minimizing the parameter C 

defined as 

 ( )
2

2
,

k
C

ν−
=

Δ
 (3.4) 

where the mean of the events in the bins is equal to 
1

1 N

n
n

k x
N =

= ∑ , the variance of the 

events in the bins ( )2

1

1 N

n
n

x k
N

ν
=

= −∑ , and the bin width b a
N
−

Δ =  [57].  

2. Goodness-of-Fit Tests 
Estimating the pdf type through hypothesis testing has the major disadvantage 

that the test is only valid for a specified distribution. However, the test produces a metric 

by which to judge how well the data matches the specified distribution. There are 

different types of goodness-of-fit tests. This discussion focuses on specific tests and then 

moves to a more general discussion.  

The Kolmogorov-Smirnov (K-S) test described in [51] and [58] compares a 

empirical or heuristic CDF ( )MF x  with the hypothesized CDF ( )F x  and then evaluates 

the distribution of the result, which is not dependent on ( )F x  when it is continuous. The 

function ( )MF x  is generated by summing the number of events iX  that are less than x 

and dividing by the total number of events M; i.e.,  
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 ( ) 1 2number of , ,..., that are ,M
M

X X X xF x
M

≤
=  (3.5) 

where iX , 1,2,...,i M=  are independent observations [58, 59]. The two components to 

the comparison of ( )F x  and ( )MF x  are [58] 

 
( ) ( )

( ) ( )
max ,

min .

M M

M M

K M F x F x

K M F x F x

+

−

= −⎡ ⎤⎣ ⎦

= −⎡ ⎤⎣ ⎦
 (3.6) 

The statistical significance of ( )MF x  with respect to ( )F x  is then reduced to a table 

look up using MK +  and MK −  [58]. 

A possible application of the K-S test in this research is to select ( )F x  as the 

histogram pdf estimate and evaluate how well additional data fits the hypothesized ( )F x . 

Another application is to examine the histogram of the data and determine if it visually 

compares well with any known distributions and then use those distributions as ( )F x . 

However, the K-S test cannot be used since ( )F x ’s parameters should not be estimated 

from the data itself, and no other mean and variance estimates are known [51]. Further, 

another drawback of the K-S test is that it is most sensitive to data at the median of the 

distribution. Therefore, other goodness-of-fit tests without such drawbacks are considered 

next.  

Perhaps the best known, most used, and oldest goodness-of-fit test is the chi-

squared test, which was introduced by Karl Pearson in 1900 [51], [52], and [58]. The chi-

squared test is similar to the histogram in that the test first divides the data into N 

adjacent intervals or bins 0 1 1 2 1[ , ),[ , ),...,[ , ]N Na a a a a a− , where xn 1,2,...,n N= equals the 

number of data points in the nth interval [51]. If 0a = −∞  or Na →∞ , then the 

appropriate inclusive square brace is changed to a exclusive curved brace [51]. The test 

statistic is given by 

 
( )2

2

1

,
N

n n

n n

x Mf
Mf

χ
=

−
= ∑

(

 (3.7) 
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where M is the total number of data points, and ( )
1

n

n

a

n x
a

f f x dx
−

= ∫
( (

, where ( )xf x
(

is the 

hypothesized pdf. As the name indicates, the test statistic is modeled as a chi-squared RV 

regardless of ( )xf x
(

. If the hypothesis is true, then the distribution of 2χ  converges to 

chi-squared with degree-of-freedom 1N −  as M →∞  when the data is independent [51, 

59, 60]. 

Unlike the K-S test, the chi-squared test is valid when ( )xf x
(

 parameters are 

estimated using the data. For the case when the mean and variance are estimated to 

specify a Gaussian pdf as ( )xf x
(

, the degree-of-freedom for 2χ ’s pdf is reduced by two 

[61]. Tables of 2χ  with respect to the acceptance or rejection of the null hypothesis are 

provided in [58], [61], and [62]. 

Comparing the performance between two similar schemes such as the K-S test 

and the chi-squared goodness-of-fit tests becomes an issue. According to [63], [64], and 

[65], the advantages of the K-S test over the chi-squared test is that the K-S test is valid 

with smaller data sets than the chi-squared test, and for any data set size it appears to be a 

more accurate test. Hubert Lilliefors modified the K-S test so that data estimated pdf 

parameters can be included in the hypothesized pdf [65]. The advantages of the K-S test 

over the chi-squared test are maintained with the modified K-S test. The modified K-S 

test in [65] is now known as the Lilliefors’ test. Tables of the statistical significance of 

Lilliefors’ test statistic are computed using Monte Carlo simulations and may be found in 

[65]. 

Goodness-of-fit tests can be separated into five broad categories: the chi-squared 

test, empirical distribution function (edf) tests, moment tests, regression tests, and 

miscellaneous tests [52]. The chi-squared test is the only test in the chi-squared test 

category, while the K-S test and the Lilliefors’ test are edf tests. The inclusion of a 

moment test provides broad coverage of the goodness-of-fit test categories.  

There are a number of goodness-of-fit tests in the moment category including the 

first one introduced by Karl Pearson in 1895 [52]. The Jarque-Bera (J-B) test, or Bera-
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Jarque test, depending on the author, is selected as the moment categorized goodness-of-

fit test since it uses multiple moments. As a side note, the original papers list Bera first, 

but placing Jarque first is more common in the literature, so J-B is used here. The J-B test 

is designed to determine if data can be accepted or rejected as Gaussian distributed data 

within a specified statistically significance, by using the properties of the third and fourth 

standard moments of a Gaussian distribution. The third standard moment is also called 

the measure of skewness or just skewness 1b . The fourth standard moment is also called 

the measure of kurtosis or just kurtosis 2b . The skewness is a measure of symmetry and 

is defined as 

 3
1 3 ,b μ

σ
≡  (3.8) 

where iμ  is the thi  moment, and σ  is the standard deviation or 2μ  [66]. The kurtosis is 

a measure of peakness and is defined as [66]  

 4
2 4 .b μ

σ
≡  (3.9) 

For a Gaussian pdf 1 0Gb =  which shows that the pdf is symmetric and 2 3Gb = . Some 

texts use excess kurtosis 2 2 3excessb b= −  versus kurtosis, so that the skewness and excess 

kurtosis of a Gaussian pdf are both equal to zero.  

The J-B test statistic is defined as 

 
( )2

21
3

,
6 24

bbMλ
⎡ ⎤−
⎢ ⎥≡ +
⎢ ⎥
⎣ ⎦

%%
 (3.10) 

where M is the number of data samples mx  1,2,...,m M= , and 1b%  and 2b% are generated by 

substituting the data estimated appropriate thi  moments 
1

1 M
i

i m
m

x
M

μ
=

= ∑% into (3.8) and  

(3.9), respectively [66]. It has been shown that the pdf of the test statistic λ  converges to 

a chi-squared distribution with two degrees of freedom as M →∞  [66]. We note the J-B 

test is sensitive to outlying data points since it is based on multiple moments [67].  
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3. Graphical Analysis 

Graphical analysis has the disadvantages of being less formal and producing 

subjective results which are evaluated visually and the advantages that it is easily 

implemented and commonly accepted in engineering analysis [52]. The histogram plotted 

with an equation can be a method of graphical analysis as shown in Figure 24, which 

plots a histogram of the exponential averaging detector’s output and compares it to a 

Gaussian pdf (red line). This graphical analysis provides visual support that the 

exponential averaging detector’s output can be modeled as a Gaussian pdf.  

 

 
Figure 24 Gaussian estimate (line) and histogram of a single frequency bin component 

within the composite spectral estimation. 

 

The empirical CDF used in the K-S test, (3.5), can be plotted and compared with a 

hypothesized CDF to graphically analyze the data, as shown in Figure 25, where the 25 

data elements used to construct the empirical CDF were randomly generated with the 

hypothesized CDF expression. The results in Figure 25 represent the worst visual 

comparison between the empirical CDF and hypothesized CDF for a dozen simulations to 

illustrate the errors associated with graphical analysis compounded by the use of a small 
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data set. The estimated CDF parameters can be obtained by iteratively least-squares-

fitting the data and the hypothesized CDF, where the least-squares-fit is the minimum 

sum of the squares of the residuals of the data and the hypothesized CDF.  

 

 
Figure 25 Empirical CDF (solid line with data points) and hypothesized CDF (dashed 

line). 

 

The quantile versus quantile (qq) plot is another way to visually compare data to a 

distribution, which transforms the hypothesized distribution into a straight line so that the 

linearity of the transformed data illustrates the relation between the hypothesized 

distribution and the data. A quantile is a segment taken at a regular interval; i.e., each 

quantile is a percentile when there are one hundred quantiles. The qq plot plots the 

quantiles of the distribution versus the quantiles of the data. The qq plot is most 

susceptible to error at the tail regions of the pdf. The qq plot of a sample of the 

exponential averaging detector’s output and that of a Gaussian pdf are shown in Figure 

26, and support the postulate that the exponential averaging detector’s output can be 

modeled as a Gaussian RV. Note that data mean on the y-axis corresponds to zero on the 

x-axis, and the variance is the slope when the qq-plot distribution and data are Gaussian. 
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Figure 26 QQ plot of output data from the exponential averaging detector versus a 

Gaussian distribution.  

 

D.  SIMULATION RESULTS 
The two areas of focus with respect to the simulation results are the generation of 

the decision criteria and an appraisal of the detector’s performance. Simulations are 

performed using MATLAB, where intrinsic MATLAB functions are used when 

available. From (1.6) and Figure 13, the two parameters required to obtain the threshold 

are fP  and ( )| ( ) |S k x i nf S k x i n= +
⎡ ⎤= +⎣ ⎦%
% , 0,1,..., 1k N= − , where N is the number of FFT 

bins. The value of fP  is based on performance parameters which are subjectively chosen. 

The value of 112N = . To narrow the scope of the dissertation, the remainder of the 

exponential averaging research uses quotient-combining since quotient-combining has 

performance advantages over scaled-subtraction-combining at low SNR values, as shown 

in Table 1 and Table 2.  
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1. Detector Output Distribution Graphical Analysis 

Based on the ranges of NIR used in the simulation detector performance appraisal 

in Subsection III.D.4, the values of NIR considered are 10 through 10−  dB, and 

0.99ρ = . The data matrices used in the plots have dimensions 1,000 by 1,024  where the 

first dimension represents the number of times the detector simulation was run with 

AWGN and interference inputs, and the second dimension corresponds to the minimum 

number of positive frequency FFT bins, covering frequencies 0 to 25 MHz. The number 

of detector simulations chosen was based on trying different numbers of simulations and 

subjectively choosing 1,000. Histograms with a Gaussian fit and qq-plots for all positive 

frequency bins are visually comparable and support the postulate that the detector’s 

output can be modeled as a Gaussian RV when 0.99ρ =  and NIR ranges from 10 to 10−  

dB. A random cross section of the results when 0.99ρ =  and NIR= 10−  dB is shown in 

Figure 27 and Figure 28. 

 

 
Figure 27 Gaussian estimate (line) and histogram of nine frequency bins from the 

output of the exponential averaging detector with NIR= 10−  and 0.99ρ = . 
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Figure 28 QQ plot of output data of nine frequency bins from the output of the 

exponential averaging detector with NIR= 10−  and 0.99ρ = . 

 

Further validation of the Gaussian postulate is recommended for future work due 

to the disadvantages of this approach as discussed in Section III.C. Additional 

simulations when 0.99ρ <  showed significantly different results, and this trend is 

considered in the next subsection using the goodness-of-fit tests discussed in Subsection 

III.C.2.  

2. Distribution Model Trend Analysis 

The three goodness-of-fit tests are used to analyze the distribution model trend. 

The three steps used to analyze the distribution model trend are: 

1) evaluate the goodness-of-fit tests using Gaussian distributed random numbers, 

2) evaluate the goodness-of-fit results when evaluating a distribution where 

changing parameters makes it visually more similar to a Gaussian.  
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3) evaluate the data trend from the output of the exponential averaging detector as 

ρ  changes when it is processed by the goodness-of-fit tests and compare the results to 

the performance measures determined in the previous two steps. 

The goodness-of-fit tests output can be viewed as a binary output of either accept 

or reject the null hypothesis that the data has a Gaussian distribution for a specific 

statistical significance α  [51, 52 58]. The value of α  corresponds to the probability that 

the data has a Gaussian distribution but the null hypothesis is rejected, i.e., α  is the 

probability of false rejection of the null hypothesis. The output of the goodness-of-fit 

tests can instead be the value of α  at which the test transitions from accepting to 

rejecting the null hypothesis. A common value of α  for the goodness-of-fit tests used in 

this research is 0.05  [42, 51, 52, 58]. 

The data matrices used in the tests have dimensions 1,024  by 1,000  as in 

Subsection III.D.1. Simulations used to evaluate steps one through three use the 

goodness-of-fit test binary output of either accepting or rejecting the null hypothesis. The 

binary goodness-of-fit output is generated for the 1,024 rows of data. The value of α  is 

linearly incremented over the range 0.01 0.2α≤ ≤ . Test results are plotted as α  versus 

the unit normalized number of data rows where the goodness-of-fit test rejects the null 

hypothesis. The unit normalization maps the range [0, 1024]  to [0, 1] , to allow for a 

direct comparison between x and y axes.  

The evaluation of the goodness-of-fit tests using Gaussian distributed random 

numbers (solid line) is shown in Figure 29. Note that Figure 29 includes the plot of α  

versus α  (dashed line) as a frame of reference to illustrate the rate which Gaussian 

distributed random sequences are expected to be rejected by the goodness-of-fit tests. As 

expected, the number of rejections of the Gaussian distributed random numbers (solid 

line) increases as α  increases. Figure 29 also provides a visual representation of the 

minimum amount of error that can be expected from the goodness-of-fit tests when 

evaluating Gaussian distributed data. Thus, data which is tested cannot be expected to be  
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closer to the reference (dashed line) than the Gaussian distributed random sequences 

(solid line) are. The solid line plots in Figure 29 are included as a performance reference 

in all goodness-of-fit plots that follow. 

 

 
Figure 29 Goodness-of-fit tests using Gaussian distributed random numbers (solid 

line) and α  versus α  (dashed line) as a frame of reference. 

 

Next, the goodness-of-fit tests are evaluated for random sequences that follow a 

central chi-squared distribution (2.30). This type of distribution is selected since it arose 

in Chapter II. The chi-squared distribution parameter degrees-of-freedom d is varied to 

evaluate the chi-squared distribution for a number of different shapes. The range 

evaluated is [ ]1,100d = . Figure 30 is included to provide examples of the potential visual 

similarity between chi-squared pdfs with degrees of freedom greater than thirty nine and 

Gaussian pdfs that have been visually fit to the chi-squared distributions. The ‘chi-

squared’ subscripts in Figure 30’s legend indicate the degrees-of-freedom parameter for 
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the chi-squared plots and the ‘Norm’ subscripts indicate which chi-squared distribution 

the normal distribution was visually fitted to. The left ‘Norm’ plots were fitted at the 

peaks of the chi-squared plots and the right ‘Norm’ plots were fitted at the tails. Visually, 

the chi-squared and Gaussian pdfs are similar, especially as d  increases. 

 

 
Figure 30 Chi-squared pdfs where the degrees of freedom are indicated by the 

subscript (solid line) and corresponding Gaussian pdfs (dashed line). 

 

The evaluation of the goodness-of-fit tests using random sequences with a chi-

squared distribution where the degree-of-freedom is the subscript (solid lines) and 

Gaussian distributed random numbers (dashed line) as a frame of reference for the range 

[ ]40,100d =  by increments of 20 is shown in Figure 31. The visual similarity of the chi-

squared pdfs and the Gaussian pdfs shown in Figure 30 indicate that the goodness-of-fit 

tests restrictively accept the null hypothesis as shown in Figure 31. The goodness-of-fit 
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tests’ performance in Figure 31 shows the capability of the tests to identify the increased 

similarity between the chi-squared and Gaussian pdf as the chi-squared degrees-of-

freedom parameter increases. Of the three goodness-of-fit tests used, the J-B test is the 

strictest test when chi-squared distributed data is used, as shown by the results in Figure 

31.c being closer to unity than Figure 31.a and Figure 31.b.  

 

 
Figure 31 Goodness-of-fit tests using chi-squared distributed random numbers where 

the degree-of-freedom is the subscript (solid lines) compared with and 
Gaussian distributed random numbers (dashed line) as a frame of reference. 

 

Four other distributions were chosen to visually evaluate the goodness-of-fit tests. 

The Gamma and Student T distributions are chosen for their similarities to the Gaussian 

distribution in some cases [68]. As an aside, the chi-squared and exponential distributions 

are special cases of the Gamma distribution. The Rayleigh and uniform distributions are  
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chosen for their dissimilarities to the Gaussian distribution, while at the same time the 

uniform distribution is symmetric and the Rayleigh distribution is not as unsymmetrical 

as some other distributions such as the exponential distribution. 

The pdf for the Gamma distribution is given by 

 ( ) ( ) ( )1 exp , 0; 0; 0

0, 0,

a
a

x

x x x a
af x

x

β β β−

Γ

⎧
− > > >⎪Γ= ⎨

⎪ <⎩

 (3.11) 

where a  and β  are parameters of the distribution and ( )aΓ  is the gamma function [68]. 

Figure 32 is included to provide examples of the visual similarity between Gamma pdfs 

with 25a ≥  and Gaussian pdfs. For the simulations shown Figure 33, 1β =  and 

[ ]25,100a = . Figure 33 shows that the tests are very effective at distinguishing between 

Gaussian and Gamma distributed data while at the same time being able to recognize the 

trend of increased pdf similarities for the two data types. Of the three goodness-of-fit 

tests used, the J-B test is the strictest test when Gamma distributed data is used, as shown 

by the results in Figure 33.c being closer to unity than Figure 33.a and Figure 33.b.  

 
Figure 32 Gamma pdfs where 1β =  and a is indicated by the subscript (solid line) and 

corresponding Gaussian pdfs (dashed line). 
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Figure 33 Goodness-of-fit tests using Gamma distributed random numbers where 

1β =  and a  is the subscript (solid lines) compared with and Gaussian 
distributed random numbers (dashed line) as a frame of reference. 

 

The pdf for the Student’s t distribution is given by 

 ( )
( )

( )1 22
1

2 1 ,
2x T

xf x
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νπν ν

− +
+⎛ ⎞Γ⎜ ⎟ ⎛ ⎞⎝ ⎠= +⎜ ⎟Γ ⎝ ⎠
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where ν  is a parameter of the distribution [68]. Figure 34 is included to provide 

examples of the potential visual similarity between Student’s t pdfs with 4ν ≥  and 

Gaussian pdfs. For the simulations shown in Figure 35, [ ]8,25ν = . When 1v =  and 

2v = , the chi-squared goodness-of-fit test generated a constant output of approximately 

0.007 and 0.39, respectively, for the entire range of [ ]0.01,0.2α = , and MATLAB 

generated the warning  'After pooling, some bins still have low expected counts. The chi-

square approximation may not be accurate.' The MATLAB warning and the dubious 
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constant results make this type of error easy to identify and disregard. The rest of the 

results are consistent with the results shown in Figure 35 which shows that the tests are 

effective at distinguishing between Gaussian and Student’s t distributed data while at the 

same time being able to recognize the similarities of the two data types in certain cases. 

For example, as ν  increases and the Student’s t pdf becomes more similar to a Gaussian 

pdf, the goodness-of-fit tests’ results in Figure 35 get closer to the Gaussian distributed 

random numbers (dashed line) which is used as a frame of reference for distribution trend 

analysis.  

 

 
Figure 34 Student’s t pdfs where ν  is indicated by the subscript (solid line) and 

corresponding Gaussian pdfs (dashed line). 
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Figure 35 Goodness-of-fit tests using Student’s t distributed random sequences where 

4ν ≥  is the subscript (solid lines) compared with and Gaussian distributed 
random sequences (dashed line) as a frame of reference. 

 

The pdf expression for the Rayleigh distribution is given by 

 ( ) ( )22 exp , 0; 0

0, 0,
x R

ax ax x a
f x

x

⎧ − > >⎪= ⎨
≤⎪⎩

 (3.13) 

where a  is a parameter of the distribution [68]. Plots of the results are not shown since 

the goodness-of-fit test simulations rejected the null hypothesis completely over the range 
1 710 ,10a − −⎡ ⎤= ⎣ ⎦  for the random sequences generated with a Rayleigh distribution. The 

goodness-of-fit test simulations also rejected the null hypothesis completely for random 

sequences generated with a uniform distribution. This result was expected since Rayleigh 

and uniform distributions do not remotely resemble a Gaussian distribution. 
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Now that the goodness-of-fit tests ability to evaluate the trend of increased data to 

Gaussian pdf similarity for several different distributions, the data from the output of the 

exponential averaging detector is evaluated using goodness-of-fit tests. The variables 

considered when evaluating the output of the exponential averaging detector with the 

goodness-of-fit tests are the NIR, and the weight factor ρ  from (2.2) for quotient-

combining. The data pdf Gaussian postulate is better supported as ρ  increases for the 

simulations presented, as shown in Figure 36. The results improved slightly with an NIR 

of 10 dB and degraded slightly with an NIR of 10−  dB. The results obtained with an NIR 

of 10±  dB does not warrant showing since the change is slight. 

 

 
Figure 36 Goodness-of-fit tests using the output from the exponential averaging 

detector with 0 (dB) NIR, a ρ  of 0.96, 0.97, and 0.98, and quotient-
combining (solid lines) compared with Gaussian distributed random 
numbers (dashed line) as a frame of reference 
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3. Setting the Threshold 

The previous subsection substantiates the claim that the output of the exponential 

averaging detector can be modeled as a Gaussian RV when the scaling factor ρ  is 

sufficiently close to one. To fully define a Gaussian pdf, the mean and variance must be 

known. The focus of this subsection is to estimate the mean and variance of a Gaussian 

pdf that can then be used to set a threshold value for the positive frequency bins of the 

exponential averaging detector’s output.  

With the exponential averaging detector’s output modeled as a Gaussian RV, 

estimated mean and variance are now determined. The standard deviation (std) is used 

instead of the variance since it is a common input for determining threshold values with a 

Gaussian RV. The mean and std of each bin for NIR equaling ten, zero, and negative ten 

dB are shown in Figure 37, Figure 38, and Figure 39, respectively. The scale for all three 

plots is the same for comparison purposes. The complexity of the comparison increases 

as the NIR level decreases since the interference signal’s influence is increased. This 

increased influence is especially significant around the carrier frequency of the BPSK 

interference signal which corresponds to bin 410 as shown in Figure 38 and Figure 39. 

This increased influence results in maximum mean values and a local std decrease 

centered around bin 410. These results are obtained from a single trial which used 1,024 

sets of 1,000 data elements each. 
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Figure 37 Quotient-combining, NIR=10 dB, ρ =0.99 FFT frequency bin versus FFT 

bin mean (top) and FFT frequency bin versus FFT bin std (bottom). 

 
Figure 38 Quotient-combining, NIR=0 dB, ρ =0.99 FFT frequency bin versus FFT bin 

mean (top) and FFT frequency bin versus FFT bin std (bottom). 
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Figure 39 Quotient-combining, NIR= 10−  dB, ρ =0.99 FFT frequency bin versus FFT 

bin mean (top) and FFT frequency bin versus FFT bin std (bottom). 

 

Two methods to evaluate the data shown in Figure 37 to Figure 39 are developed 

to provide an upper and mid-estimate of fP . Two estimates are developed so that they 

can be compared to the simulation based estimate of the fP  and the closer estimate 

method selected for later work. The mean and std used for the upper-estimate correspond 

to the bin with the maximum value of ( )3 xx σ+ , where x  is the mean and xσ  is the std 

for the three data sets shown in Figure 37 to Figure 39, resulting in the upper-estimate 
3

, 1.3 10f uP −= × . The std estimate is based on the minimum variance unbiased estimator, 

which uses a normalizing factor of one minus the number of data elements [61, 69].  

The method used to obtain the mid-estimate of the probability of false alarm ,f mP  

is to determine the average number of std of separation from the mean to the upper-

estimate threshold for all the bins and then use this threshold to determine ,f mP . The 

estimate ,f uP  or ,f mP  closest to the simulation-based false alarm ratio fP%  is selected as 

the probability of false alarm estimate for future work.  
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Table 3 shows the results from the two methods discussed above. Results are 

obtained with FFT length equal to 211, there are 210 positive frequency bins that 

correspond to frequencies from 0 to 25 MHz, the output from each one of these bins is 

considered a RV, and the methods described to set mid and upper-estimates of fP . The 

std and the mean rows in Table 3 correspond to the bin mean and std values which 

maximize ( )3 xx σ+ . The mid-estimate of fP  is computed using a rounded average 

number of std of separation from the mean to the upper-estimate threshold for all bins in 

the three cases presented in Table 3. 

 

Table 3 The extreme threshold values in Figure 37, Figure 38, and Figure 39 and the 
process of computing them. 

NIR (dB) 10 0 10−  

std 15.7 14.5 11.4 

Separation (# std) 3 3 3 

Product 47.1 43.5 34.2 

Mean 504.5 508.4 519.1 

Bin max. ( )3 xx σ+  551.6 551.9 553.3 

uγ  553.3 553.3 553.3 

Threshold mean 548.5 548.5 547.4 

Average # std  3.4 3.5 3.8 

 

The probability density function is consistent for noise to interference ratios from 

20 dB to − 16 dB throughout the spectrum. Before the threshold is applied, the FH 

signal’s effect on the distribution must be understood. The effect of a hop on a frequency 

bin’s distribution varies depending on whether the hop is detected as a minimum or a 

maximum. If the hop is detected as a maximum, then the mean is positively shifted. 
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When the hop is detected as a minimum, the mean is negatively shifted. Thus, the 

threshold must be used at both positive and negative values to ensure that both maxima 

and minima hops are detected. This doubles the value of fP .  

4. Detector Performance 
The simulation results are presented as graphs of the detector’s performance for 

each specific hop. The graphs plot estimated dP  verses SIR for a fixed SNR. Hops are 

numbered according to their temporal order as indicated in previous figures. Hop number 

five was not included since its estimated dP  is less than 0.01. The dP  estimates are based 

on 5,000 simulations, and SNR values are − 3 dB, − 9 dB, and − 15 dB in order to cover 

the exponential averaging detector’s effective range of performance.  

The threshold for the simulation is set using the upper-estimate of the probability 

of false alarm and a std separation of three. The simulation based false alarm error ratio 

fP%  is 46.7 10−× . The false alarm ratio is generated using 250,000 simulations where each 

simulation processed over a million data points. These results indicate that the upper-

estimate is conservative since ,f uP  is larger than fP% . The mid-estimate computed from 

the last row of Table 3 is 4
, 3.6 10f mP −= ×  and underestimates fP . Thus, the upper 

estimate is selected as the preferred probability of false alarm estimation method based 

on the simulation-based false alarm error ratio and the a conservative estimation 

approach. The consequences of the probability of false alarm upper-estimate selection are 

that the detector’s performance is displayed as detecting at higher SINR for a given 

estimated fP  and decreased probability that fP%  is greater than the estimated fP . In other 

words, using the upper-estimate gives a more pessimistic result for the SINR required to 

successfully detect the signal but is a more conservative technique than using the mid-

estimate, which gives overly optimistic results. 

The general trend that the number of hops that are detectable is reduced as the 

SIR decreases is illustrated from the simulation results when SNR = − 3 dB, as shown in 

Figure 40. The order at which specific hops are obscured from detection is a combination 

of the local SIR at the hop frequency, the SNR, and the temporal hop order where the 
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mid-hops are more obscured, as discussed in Section III.B. In an SIR dominated 

environment, the temporal hop order and local SIR at the hop frequencies predominantly 

determine the order at which specific hops are obscured. The frequency hop with the 

lowest local SIR is hop four with hops one and seven a fraction of a dB higher, hops two, 

three, and five about 6 dB higher, and hop six approximately 10 dB higher, as shown in 

Figure 18.  

 

 
Figure 40 Estimated dP  versus SIR with an SNR = − 3 dB for six of the seven hops as 

indicated using an exponential averaging FH detector with quotient-
combining. Hop number five was excluded due to its low estimated dP . 

 

Based on the local SIR and temporal order, the first hop expected to be obscured 

from detection is hop four; however, as discussed in Section III.B, hop five is obscured 

from detection. Thus, the temporal order of hops obscured is shifted to more recent 

temporal mid-hops. Hop four is the next hop to be obscured from detection, followed by 
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hops one and seven as a result of the local SIR. The more recent end-hop, hop seven, has 

a one dB performance advantage over the earlier end-hop, hop one, showing the 

emphasis of the recent end-hop. At low SIR relative to the SNR, the detector’s 

performance with hops two and three is dominated by the SIR as compared to the one dB 

performance difference shown by the hop order influence with hops one and two. Note 

that the relative performance between hop four and hops two and three is approximately 6 

dB, which corresponds to the local SIR difference between the hops. Figure 40 shows 

that the last hop to be obscured from detection is hop six, which is obscured 9 dB down 

compared to hop four and closely corresponds to hop six being 10 dB up from hop four 

with respect to the local SIR. The abrupt change in the estimated probability of detection 

for specific hops is indicative of a jamming environment or, equivalently, an environment 

where the influence of SIR versus SNR dominates the detector’s performance. Finally, no 

relation is observed between the estimated probability of detection for a specific hop and 

the hop’s proximity to a CW signal when SNR= 3− dB. 

Simulation results obtained for SNR= 9− dB further support the general 

observation that the number of detectable hops is reduced as SIR decreases, as shown in 

Figure 41. The increased influence of SNR on the detector’s performance is shown by the 

less abrupt change of the estimated probability of detection for hops two, three, four, and 

six in Figure 41. The detector’s better performance with end-hops versus mid-hops as the 

significance of SNR increases over SIR is also illustrated by performance differences 

between hops two and three as shown in Figure 40 and Figure 41. In addition the 

minimum influence of SNR on the detection of hops one and seven is shown by the 

similar abrupt change in the estimated probability of detection. These observations 

indicate that the relation between the hop order and the detector’s performance increases 

as SNR increases as relative to SIR. Finally, the results shown in Figure 40 indicate no 

specific relationship between the estimated probability of detection for a specific hop and 

the hop’s proximity to a CW signal seems to exist when SNR= 9− dB. 
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Figure 41 Estimated dP  versus SIR with an SNR = − 9 dB for six of the seven hops as 

indicated using an exponential averaging FH detector with quotient-
combining. Hop number five was excluded due to its low estimated dP . 

 

Figure 42 presents results obtained for SNR=− 15 dB. The following comments 

can be made: the number of detectable hops are reduced as SIR decreases, the gradual 

change in the estimated probability of detection for all hops is due to the dominant 

influence of SNR versus SIR with respect to the detector’s performance, and the detector 

exhibits better performance with end-hops one, two, and seven as compared to mid-hops 

three and six which illustrates the relationship between the end-hop versus mid-hop 

performance as SNR increases relative to SIR. Finally, the performance results when SIR 

dominates provide a limiting performance measure for decreased SNR illustrated in 

Figure 41 and Figure 42. 
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Figure 42 Estimated dP  versus SIR with an SNR = − 15 dB for six of the seven hops 
as indicated using an exponential averaging FH detector with quotient-
combining. Hop number five was excluded due to its low estimated dP . 

 

Figure 43 compares the detector’s performance when the threshold γ  is set to 3.5 

stds (dashed line) and 3 stds (solid line) above the mean, corresponding to probabilities of 

false alarm upper-estimates of 4
, 4.6 10f uP −= ×  and 3

, 2.6 10f uP −= × , respectively. Results 

show the loss of performance is approximately 0.5 dB for the decreased probability of 

false alarm. The simulation-based false alarm error ratio fP%  is 42.12 10−× , which further 

supports the use of the probability of false alarm upper-estimate. 
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Figure 43 Estimated dP  versus SIR with an SNR = − 3 dB with γ  set at 3.5 stds  

(dashed line) and 3 stds (solid line) above the mean for six of the seven hops 
as indicated using an exponential averaging FH detector with quotient-
combining. Hop number five was excluded due to its low estimated dP . 

 

The simulation set-up, decision criteria development, and the simulation results 

were presented in this chapter. The simulation set-up included a description of the various 

parameters and signals used. The decision criteria discussed three methods to 

heuristically estimate a pdf to model the RV representing the detector’s output; 

histograms, probability plots, and goodness-of-fit tests. Findings heuristically support the 

postulate that the RV that models the detector’s output can be modeled as Gaussian. 

From the postulated pdf, the detector’s threshold was set, and upper and mid-estimates 

for the probability of false alarm were developed. 
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IV. ACRE THEORY  

An intermediate step between the detection and interception of signals is the 

estimation of signal characteristics. One of the primary signal characteristics of DS-SS 

signals is the chip rate cR . This chapter and the next investigate the performance of an 

ad-hoc non-linear chip rate estimator for DS-SS pulse-shaped, PSK signals.  

A common method of chip rate detection is the CRD discussed in Chapter I and 

shown in Figure 3. The theoretical and laboratory performance of a CRD is well 

documented for rectangular pulse shapes [1, 11]. The a-priori signal knowledge that the 

CRD requires to operate is discussed in this chapter along with a simple analysis of the 

degradation of the CRD performance due to half-sine shaped pulses versus rectangular 

pulses. The CRD requires an a-priori estimation of the chip rate. Thus, as the name 

implies, the primary purpose of the CRD is to detect the chip rate and not to estimate it. 

From this discussion of the CRD, a digital ad-hoc chip rate estimator (ACRE) is 

developed and described. Similarities and differences between the CRD and the ACRE 

are presented later in the chapter.  

 

A. CRD PERFORMANCE WITH HALF-SINE PULSE SHAPING  
The CRD performance is degraded when the signal uses pulse shaping. The 

degradation resulting from using a half-sine shaped pulse over a rectangular pulse is 

briefly considered. The deterministic pulse-trains generated by the half-chip-delay-and-

multiply for both a rectangular pulse and a half-sine pulse are shown in Figure 44. The 

signal generated from the delay-and-multiply of the half-sine shaped pulse is a half-sine 

at twice the frequency and half the amplitude, as shown in the center plot of Figure 44.  

 



 88

 
Figure 44 Half chip delay and multiply results for a half-sine shaped pulse and a 

rectangular pulse. 

 

From (1.13), the power in the cR rate-line for a half-sine shaped pulse is computed 

using the exponential Fourier series coefficient 
cRc  that corresponds to the cR frequency, 

where 
cRc  is defined as 
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Following the approach used for rectangular pulses, we evaluate the integral in (4.1) by 

expanding the product of the sine terms which leads to  
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Next, integrating the top term in [ ]⋅  in (4.2) and expressing the exponential as 

trigonometric functions using Euler’s formula (4.2), we get  
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Finally we evaluate the integral in (4.3) by expanding the product of the trigonometric 

functions as the sum of trigonometric functions which leads to  
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The magnitude of (4.4) does not reduce to a compact expression as in (1.18) for 

rectangular pulses, so (4.4) is evaluated numerically, and results shown in Figure 45. The 

equation is evaluated in MATLAB and the results checked by numerically integrating 

with MathCAD. The normalized power in the cR rate-line for a half-sine shaped pulse as 

a function of D with half-sine pulse shaping is much different than the rectangular pulse 

as shown in Figure 45 and Figure 5, respectively. Results show that the maximum 

cR rate-line power is located at a delay of zero (i.e., a squaring circuit versus a delay-and-

multiply). From this observation, it is clear that the nonlinear operation of a delay-and-

multiply for half-sine shaped pulses is sub-optimum.  
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Figure 45 Normalized power in the CRD cR  rate-line as a function of delay with 

respect to the chip period for a half-sine pulse. 
 

B. AD-HOC CHIP RATE ESTIMATOR (ACRE) DESCRIPTION 

1. Overview of ACRE through the PSD Estimator 

The ACRE is constructed from the basic structure of the CRD. The block diagram 

of the ACRE is shown in Figure 46. The DS-SS signal is first down converted to 

baseband. The down-converted signal is represented in complex baseband form. 

Analogous to the CRD, cf  is either known or estimated using the procedure discussed in 

Chapter I. The I and Q channels are converted from analog to digital waveforms. Since 

the signals of interest are phase-shift keyed signals, with their data in the phase 

component, the signal phase is generated using [ ] [ ]{ }( ) arctan Im ( ) Re ( )k r k r kθ =  with a 

four quadrant arctan where ( )r k  is the input into the phase detector and k is a digital time 

reference. This transformation is the first of three non-linear transforms used in the 

ACRE scheme.  
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Figure 46 Block diagram of ACRE. 

 

Following the phase detector, a Hilbert transform-based envelope detector is then 

used. The idea of using the Hilbert transform in this work loosely originated from its 

application in AM single-side-band demodulation and the instantaneous phase changes 

observed in a DS-SS signal. The Hilbert transform generates ( )z k  as discussed in 

Chapter I. The analytic representation of ( )kθ is ( )z k , as shown in Figure 47 and 

illustrated in Figure 7. The second non-linear process in the ACRE squares the I and Q 

components of the analytic function ( )z k  to produce the envelope squared. Note, that the 

square root of the squared envelope could be taken to produce the envelope, but was 

deemed unnecessary since only the relative difference between the noise and the signal is 

desired.  

 

 
Figure 47 Envelope squared generator. 

 

The PSD of the envelope detector’s output is estimated next. The PSD estimator 

block in ACRE is loosely analogous to the non-linearity and the spectral component 
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blocks in the CRD. The first step in drawing this analogy is to view the PSD estimate 

process as two separate parts, first the discrete estimation of the autocorrelation, and 

second the Fourier transform of the autocorrelation. The PSD estimate may be computed 

using the biased form of the sampled autocorrelation [ ]xR l
)

: 
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where sN  is the total number of samples and ( )* is the complex conjugate operation.  

The estimated PSD ( )j
xS e ω)

, also known as the correlogram is obtained by 

computing the discrete time Fourier transform of (4.5) as 

 ( ) [ ] ; ,
L

j j l
x x s

l L

S e R l e L Nω ω−

=−

= <∑
) )
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where L is usually one-tenth sN  [70]. The autocorrelation operation is the third and final 

non-linearity in the ACRE process. The transform step in (4.6) is digitally analogous to 

the analog spectral component in the CRD. The step of multiplying j le ω−  in the 

summation in (4.6) is analogous to the offset frequency generator block in the CRD 

diagram. When the PSD estimator block is viewed this way, it is clear that the chip rate is 

automatically searched for in the ACRE scheme, whereas the CRD scans for the chip 

rate. Obviously, a disadvantage of this process is its increased complexity. In addition the 

ACRE scheme does not automatically take advantage of the chip rate knowledge, when it 

is available. Thus, other methods of chip rate detection may be better suited when the 

chip rate is known prior to detection. As a related aside, intermediate filtering can be 

included when the potential frequency range of the chip rate is narrowed, as this 

operation will result in increased SNR and subsequently improves the detector’s 

performance. 

The summation in (4.6) is digitally analogous to the analog integration of the 

CRD spectral component. Although the two previous analogies were direct, the indices of 

summation and the limits of integration are indirectly analogous. The reason for the last 

analogy being referred to as indirect is that the discrete autocorrelation’s maximum is less 

than the number of samples, and the PSD’s maximum summation index is also less than 
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the number of samples without zero padding. Depending on the method used to estimate 

the PSD, the summation may have more than an order of magnitude fewer elements than 

the number of samples when the PSD estimated is computed discretely [70].  

To further illustrate the ‘indirect’ analogy, the spectral resolution of the integrator 

is the inverse of the integration time, whereas the spectral resolution is determined by the 

sampling frequency and the number of angular frequencies used in the discrete PSD 

estimate. The output of each bin of the PSD estimate is analogous to the output voltage V 

of the CRD. Thus, the PSD estimate acts as a filter bank which illustrates how ACRE 

scans for, detects, and estimates the chip rate simultaneously. 

From this simple analysis it is seen that the transform within the ACRE PSD 

estimator block has analogous properties to the spectral component block of the CRD. 

Although the correlogram PSD estimation method is useful to illustrate the motivation 

behind using a PSD estimator, other PSD estimation methods are more effective with 

respect to data required and frequency resolution [70]. The PSD estimate used in the 

ACRE simulations is the periodogram ( )j
xP e ω)

 defined as 

 
21( ) ( ) ,j j

x
s

P e X e
N

ω ω=
)

 (4.7) 

using Welsh windowing where sN  is the total number of samples and ( )jX e ω  is the 

Fourier transform of the input signal [70]. 

2. ACRE Frequency Bin Baselining 

A specific rate-line cR is detected in the CRD scheme. In the ACRE scheme a 

frequency range is scanned, and cR  is detected and estimated simultaneously. These 

simultaneous scan, detect, and estimation operations require multiple frequency bins 

outputs to be evaluated. Unlike the CRD integration output, the PSD estimator output in a 

specific bin is highly dependent on the PSD of the DS-SS signal, and there are a large 

range of PSD estimator output values when comparing a low frequency bin to a high 

frequency bin. This range of values within a bin is primarily attributed to bins located at 

the PSD’s nulls. The larger range of values between low frequency and high frequency 

bins is attributed to the general downward trend of the PSD. Thus, ACRE deviates from 
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the CRD in that the outputs from the various bins are locally averaged. This operation is 

done so that the most likely rate-line estimate, denoted as ceR , can be selected from the 

frequency bins. The frequency bin baselining allows a comparison of bins across the 

frequency search range so that ceR  can be evaluated. The evaluation is a relative 

evaluation (i.e., ceR  is 3 dB greater than the second most likely estimate). The idea of 

baselining is illustrated in Figure 48, where the response in red at 1 MHz is distinct but is 

not the maximum value. The blue line is the smoothed data that is used to baseline the 

response in red so that the maximum value selection criteria can be used.  

 

 
Figure 48 An illustration showing the motivation for baselining a signal so that it can 

be compared throughout its entire frequency range. 

 

Three approaches to baselining the frequency bins are considered next. The first 

approach uses the theoretical ACRE PSD estimate, from which simulation results can be 

baselined. Unfortunately, the theoretical ACRE PSD is mathematically intractable. A 

second approach estimates the ACRE PSD with a long sample of AWGN only as input to 
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baseline the signal. However, this approach does not account for changes in the channel 

and is computationally intensive. A third possible approach uses LPF data as the baseline.  

The LPF baseline implementation uses the fact that frequency bin outputs can be 

compared to each other when each output is baselined by a local average of the frequency 

bins near it. A local average operation is obtained by summing a number of elements near 

the frequency bin of interest. Note that dividing the results by the number of summed 

elements is not necessary when the same number of elements is used for all averages. The 

process of discrete summing is equivalent to analog integration, while integration can be 

viewed as a type of LPF. This thought process led to the use of a LPF in baselining the 

data.  

The LPF data is then combined with the non-filtered data by subtraction in the 

bottom branch and by division in the top branch of the baseliner, as shown in Figure 49. 

The two methods of baselining and the LPF used were obtained experimentally. The 

same LPF is used in both LPF blocks and is a linear phase FIR filter of order 50 with a 

cutoff frequency of 100 kHz, a sampling frequency of 50 MHz, passband ripple of one-

half a dB, a stopband ripple five dB, passband desired amplitude of unity, a stop band 

desired magnitude of zero and was generated using a Parks-McClellan based algorithm in 

MATLAB.  

 

 
Figure 49 Frequency bin baselining and comparators. 
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The idea of applying filters in series loosely came from the series filter setup in 

wavelet schemes. The LPFs in a series configuration versus a single LPF of twice the 

order experimentally provided smoother results with lower computations in the initial 

evaluations of a small sample set of experiments and further analysis of this phenomenon 

is not presented in this work. Simulations showed that decision 1 and 2 configurations 

generate similar initial results. The top branch leading to decision 1 is referred to as the 

division baseline method and the bottom branch leading to decision 2 is referred to as the 

summing baseline method. 

The probability density function (pdf) of the RV that models the signal at the 

input of the comparator is estimated using simulations. This step is necessary as the 

thresholding method used in the CRD scheme is not theoretically shown to be applicable, 

and a theoretical solution for the PSD estimator output RV pdf is mathematically 

intractable. From the estimated pdf, a threshold is generated using (1.6) and a selected fP  

value, and a simulation-based estimate of the probability of detection is generated. 

This chapter introduced the concept of the ACRE scheme, and compared it to the 

CRD approach. The performance of the CRD with half-sine pulse shaping was 

investigated using Fourier series coefficients. Two baseline methods used to compare the 

different frequency bin outputs of ACRE were presented. 
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V. ACRE SIMULATION METHODS AND RESULTS 

The simulation set-up, decision criteria development, and the simulation results 

are presented in this chapter. Various parameters and signals which are used to evaluate 

ACRE’s performance are described in the simulation set-up. The functional relationship 

between the decision criteria and the time bandwidth product (TBW) is discussed. Some 

subjective comparisons are made between CRD and ACRE performances. Finally, a 

summing baseline method is selected, three variations on the ACRE detector are 

discussed and their performances presented.  

 

A. SIMULATION SET-UP 
Simulations are performed using MATLAB. The noise is generated with an 

intrinsic function in MATLAB. The signal used is a QPSK signal with half-sine pulse 

shaping. The evaluation represented is in terms of SNR level. Note that the SNR 

parameter must be converted to energy per chip-to-noise power spectral density c oE N  

to compare the results for the CRD in [11], which leads to: 

 
0 0

,c c c cE T E RSNR
N BW N BW

= =  (5.1) 

where BW is the bandwidth. 

The duration of the data processed is labeled and is generally between 1 and 32 

ms. The bin bandwidths used to evaluate ACRE are approximately 6 kHz and 24 kHz. 

Based on the bin bandwidths used, the maximum resolution of cR  using ACRE is 

approximately 3 kHz regardless of the duration of the data processed, when the estimate 

of the chip-rate is selected as the mid-frequency of the chosen bin. The number of bins is 

increased or the frequency range is decreased to improve the resolution of cR . The 

expected range of cR  varies between 0.5 to 25 MHz. The assumed cR  search range 

requires that the sampling frequency sf  be equal to or greater than 50 MHz by the 

Nyquist theorem. The FIR realization of the Hilbert transform reduces the low end of the  
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cR  frequency search range from zero to 500 kHz and is a potential source of error. The 

direct connection input to the output summer from Figure 6 zero pads the front and back 

of the data with one half the Hilbert filter order.  

LPFs used to provide frequency bin baselining reduce the lower end of the cR  

search range if the LPF cutoff frequency is within the cR  search range. Experimental 

results show that cR  is not detected when 0.002c sR f< , the detection of cR  is not 

affected by the frequency bin baselining when 0.05c sR f> , values of cR between these 

ranges are progressively less affected as cR  increases. The frequency bin baselining in 

the following simulations do not limit the search range of cR .  

 

B. DECISION CRITERIA 
The approach used in this chapter to support the postulate that the ACRE output 

can be modeled as a Gaussian RV is similar to that described in Chapter III. One 

difference in the approach used in this chapter is that the TBW is the primary limiting 

factor with respect to whether ACRE’s output can be modeled as a Gaussian RV as 

compared to the weight factor being the primary limiting factor for the exponential 

averaging detector. The TBW metric is selected since it is used in other detectors to 

determine whether or not the central limit theorem can be applied to the output of those 

detectors to assume that the detector output can be modeled as a Gaussian RV [3, 23, 29].  

The ACRE output data used for the initial comparison with Gaussian distributed 

data has a 6TBW ≈  when the number of frequency bins is 213, covering frequencies 25−  

to 25 MHz, and the duration of the data sets is one ms with a sampling frequency of 50 

MHz. The 6TBW ≈  value is selected since it is the lowest value of TBW  considered. 

Figure 50 through Figure 53 illustrate the visual similarities between the output of ACRE 

and Gaussian data for the summing and division baselining methods discussed in 

Subsection IV.B.2, using both histograms fit with a Gaussian estimate and qq plots. The 

output data is postulated as Gaussian since the results in Figure 50 through Figure 53 

support that postulate. 
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Figure 50 Gaussian estimate (line) and histogram of nine frequency bins from the 

output of the ACRE with the summing baseline method and 6TBW ≈ . 

 

 
Figure 51 QQ plot of output data of nine frequency bins from the output of the ACRE 

with the summing baseline method and 6TBW ≈  versus a Gaussian 
distribution.  
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Figure 52 Gaussian estimate (line) and histogram of nine frequency bins from the 

output of the ACRE with the division baseline method and 6TBW ≈ . 

 

 
Figure 53 QQ plot of output data of nine frequency bins from the output of the ACRE 

with the division baseline method and 6TBW ≈  versus a Gaussian 
distribution.  
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The goodness-of-fit tests used in Chapter III are applied for four combinations of 

BW and time as shown in Figure 54 and Figure 55 for both ACRE baseline methods, and 

the results, in light of Chapter III, support the assumption that the Gaussian model 

improves as TBW increases. These results are not intended as proof that the data is well 

modeled as Gaussian but rather as support of the trend with respect to TBW. The 

performance of the two baseline methods with respect to the goodness-of-fit tests used is 

surprisingly similar. 

 

 
Figure 54 Goodness-of-fit tests using the output from ACRE with the summing 

baseline method the subscript of T  is the time in ms and the subscript of 
BW  is the bandwidth in kHz (solid lines) compared with Gaussian 
distributed random numbers (dashed line) as a frame of reference. 
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Figure 55 Goodness-of-fit tests using the output from ACRE with the division baseline 

method the subscript of T  is the time in ms and the subscript of BW  is the 
bandwidth in kHz (solid lines) compared with Gaussian distributed random 
numbers (dashed line) as a frame of reference 

 

Only one baseline method is needed, and the summing baseline method is chosen 

to determine the threshold since this method results in an output that is modeled as a 

Gaussian slightly better than with the division baseline method. The spectral growth in 

Section V.C also supports the selection of the summing baseline method over the division 

baseline method. The mean and std for each bin for the ACRE output using the summing 

baseline method when 30TBW ≈ is shown in Figure 56. The results in Figure 56 show 

that the mean and std of the ACRE output from bin to bin are low variance variables. 

Since the results for the other values of TBW are similar to those shown Figure 56, they 

are not shown. The ACRE output bin mean and bin std appear similar to AWGN: they 

are examined using a histogram fitted with a Gaussian distribution in Figure 57 for 

30TBW ≈  and are postulated as Gaussian based on the results. 
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Figure 56 Frequency bin versus bin mean (top) and frequency bin versus bin std 

(bottom) for ACRE output with the summing baseline method and 
30TBW ≈ . 

 

 
Figure 57 Gaussian estimate (line) and histogram of nine frequency bins from the 

output of the ACRE with the division baseline method and 30TBW ≈ . 
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Mid and upper-estimates of the mean and std of the Gaussian pdf which models 

ACRE’s output are obtained from the data using the postulate that ACRE’s output, the 

bin mean, and bin std can all be modeled as a Gaussian distributed RV. The mid-estimate 

of the ACRE output mean bx  is obtained by first taking the mean of each bin output b  

and then taking the mean of the bin means for the bins within the frequency search range. 

The mid-estimate of the ACRE output std 
b

xσ  is obtained by first taking the std of each 

bin output bσ  and then taking the mean of the bin stds for the bins within the frequency 

search range.  

To obtain an upper-estimate of the ACRE output mean and std, an additional 

parameter d is needed. The parameter d is analogous to the number of std above the mean 

that a threshold is set to achieve a desired probability of false alarm. The upper-estimate 

of the ACRE output mean is obtained by first taking the mean of each bin output b , then 

taking the std of the bin means bσ  multiplied by d, and then summing the result with the 

mid-estimate of the ACRE output mean resulting in ( )b bx dσ+ . The upper-estimate of 

the ACRE output std is obtained by first taking the std of each bin output bσ , then taking 

the std of the bin stds 
bσ

σ  multiplied by d, and then summing the result with the mid-

estimate of the ACRE output std resulting in ( )b b
x dσ σσ+ . 

Given the foregoing, the ACRE threshold is set. The threshold upper-estimate is 

postulated as  

 ( ) ( ) ,
b bu b bx d d x dσ σγ σ σ⎡ ⎤= + + +⎣ ⎦  (5.2) 

where d is the same as discussed in the preceding paragraph. The threshold mid-estimate 

is postulated as m xx dγ σ= + . Threshold estimates and associated statistics for seven 

different TBW values are shown in Table 4. The values for the threshold estimates are set 

such that the probability of false alarm 42.33 10fP −= × , which corresponds to 3.5d =  std 

above the mean [43]. The additional lower value of 3.18d =  for the threshold upper-

estimate and higher value of 3.89d =  for the mid threshold estimate are shown in Table 

4 to facilitate a comparison of the two threshold estimations in Section V.C.  
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Table 4 Simulation based statistics used to compute the threshold estimates along 
with two values for the threshold estimates with respect to the TBW. 

TBW 
bx  bσ  

b
xσ  

bσ
σ  uγ  mγ  

d - - - - 3.5 3.18 3.89 3.5 

24 10-3 0.0261 0.8222 0.0186 3.20 2.88 3.20 2.87 

36 10-3 0.0213 0.673 0.0154 2.62 2.35 2.62 2.36 

48 10-3 0.0184 0.578 0.0129 2.25 2.03 2.25 2.03 

72 10-3 0.0149 0.4711 0.0107 1.83 1.66 1.83 1.65 

96 10-3 0.0129 0.4076 0.0093 1.59 1.43 1.59 1.43 

144 10-3 0.0105 0.3328 0.0074 1.29 1.17 1.30 1.17 

192 10-3 0.0092 0.2879 0.0064 1.12 1.01 1.12 1.01 

 

From Table 4 it is clear that the simulation based std statistics used to compute the 

threshold estimates vary with respect to the TBW. Since only the std related statistics 

vary, some properties of the variance are considered. The first property considered is that 

the variance of the product of a RV and a constant is 

 ( ) ( )2 2 2var var ,aX a X a σ= =  (5.3) 

where a is a constant, X is a RV, and 2σ  is the variance of the RV [71]. Another property 

is that the variance of the sum of n IID RVs with variance 2σ  is [71] 

 2

1

var .
n

i
i

X nσ
=

⎛ ⎞ =⎜ ⎟
⎝ ⎠
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Applying (5.3) to the scalar 1 n and (5.4) to the summation 
1

n
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i
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=
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The value n is related to the number of samples and, hence, TBW since the BW and 

sampling frequency are constant in the simulations, and the std equals the positive square 

root of the variance. As a result, it is expected that bσ  will vary as the inverse square of 

the TBW. 

This expected result is confirmed in Figure 58.a along with similar results for 
b

xσ  

and 
bσ

σ , shown in Figure 58.b and Figure 58.c, respectively. The y-axis is normalized by 

the smallest TBW, which is 24. The x-axis is normalized by the value of the statistic 

which corresponds to the smallest TBW. From (5.5) and the results in Figure 58, a single 

measure of the statistics in Table 4 for a specific TBW can be extrapolated for other 

TBW values. 

 
Figure 58 The Table 4 simulation results plotted using the normalized TBW and 

inverse square of the statistics bσ  (plot a), 
b

xσ (plot b), and 
bσ

σ  (plot c). 
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C. STANDARD ACRE RESULTS (HALF-SINE PULSE SHAPING) 

This section presents a simulation-based evaluation of standard ACRE. Variations 

of ACRE will be presented in Section V.D, and ACRE as thus far presented is referred to 

as “standard ACRE.” The PSD estimate’s output is in dB. An example of the output from 

the PSD estimator is shown in Figure 59. Figure 60 shows the output of standard ACRE. 

The results contributed to the decision of using the summing baseline method instead of 

the division baseline method. The output from the division baseline method is 

dimensionless. Decision 2 from Figure 49 is the output of the summing baseline method. 

As seen in Figure 60, the division baseline method (top) has spectral growth at the high 

frequencies.  

 
Figure 59 PSD output signal (red) with frequency bin baseline signal (blue). 
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Figure 60 Input into the comparator for the division (top) and the summing (bottom) 

baseline methods. 

 

Single simulations with chip rates that spanned the search range were evaluated to 

ensure that ACRE would perform over the entire chip rate search range. Figure 60 shows 

the simulation SNR values used are relatively high, as seen by the relative difference 

between the chip rate line and the noise. All single simulation results are within 2 dB for 

the summing baseline method. The chip rate shown in Figure 60 and the threshold upper 

estimates are used for the remaining simulations discussed in this chapter. The value 

6BW = kHz is used in the remaining simulations in this section. Figure 61 plots the 

probability of detection estimate versus SNR levels for various TBW values.  
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Figure 61 Estimated dP versus SNR with standard ACRE for data durations from four 

to thirty-two ms with the associated upper-estimate of the probability of 
false alarm for d=3.5. 

 

The probability of detection estimate is based on the ratio of the number of times 

the standard ACRE output exceeds the threshold at the frequency bin corresponding to 

the chip rate to the number of times that standard ACRE is cycled for that simulation run. 

Each simulation run corresponds to a specific value of TBW and SNR, the number of 

cycles per run is 5,000. The value 3.5d =  is selected to generate results shown in Figure 

61. The simulation estimate of the probability of false alarm and the time for each 

simulation result, as indicated by T’s subscript, are shown in the legend of Figure 61. 

Simulation results in Figure 61 show a 1 dB standard ACRE performance 

improvement as the TBW is doubled. The estimate of the probability of false alarm for all 

TBW is significantly lower than the probability of false alarm associated with the 

threshold upper-estimate 4
_ 2.33 10f uP −= ×  obtained using 3.5ud = . The threshold mid-

estimates with 3.89d =  are equivalent to the threshold upper-estimates for 3.5d =  with 
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specified TBW values as shown in Table 4. From this relation, the probability of false 

alarm associated with the threshold mid-estimate is 6
_ 50 10 ,f mP −= ×  obtained using 

3.89.md =  The simulation based estimate of the probability of false alarm ranges in value 

from 67 10−×  to 628 10 ,−×  as shown in Figure 61. These simulation based estimates of 

probability of false alarm exceed both 6
_ 50 10f mP −= ×  and 4

_ 2.33 10f uP −= × , thus the 

threshold mid-estimate approach is selected. 

An additional simulation set was run using a threshold upper-estimate with 

3.18d =  or equivalently using a threshold mid-estimate with 3.5d =  per the results in 

Table 4, and results are shown in Figure 62. As expected the lower threshold shifts the 

standard ACRE performance curves to the left, and the estimated probability of false 

alarm increases. The improved estimated probability of detection is a little less than half a 

dB. The estimated probability of false alarm for all values of TBW are less than the 

probability of false alarm associated with the threshold mid-estimate of 
6

_ 233 10f mP −= × . The final observation of the simulation results shown in Figure 61 and 

Figure 62 is that the estimated probability of false alarm increases with increasing TBW.  
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Figure 62 Estimated dP versus SNR with standard ACRE for data durations from four 

to thirty-two ms with the associated upper-estimate of the probability of 
false alarm for d=3.18. 

 

Simulations indicate that the relative change of the estimated probability of false 

alarms associated with the simulation results in Figure 61 is approximated by the relative 

change in TBW to the 0.65 power, using a similar approach which generated the results 

in Figure 58. The 0.65 power is determined visually verses a least squares fit since this 

result is intended to be a subjective observation. Similarly, the relative change of the 

estimated probability of false alarms associated with the simulation results in Figure 62 is 

approximated by the relative change in TBW to the 0.53 power. The explanation for this 

observation is undetermined. 

 

D. INCREMENTING ACRE AND ACRE WITH ADDITIONAL FILTERING 
RESULTS (HALF-SINE PULSE SHAPING) 

The probability of false alarm is set as 0.025fP =  to compare ACRE and CRD 

approaches as in [11], which corresponds to 1.96 std above the mean [43]. In the 
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simulations there are numerous false alarms since the fP  is set such that on average a 

false alarm will occur once every 40 measurements. As a result, a different method is 

used to determine the estimated probability of detection. The bin with the maximum 

amplitude is assumed to be an estimate of the chip rate ceR . The signal is present in the 

simulations, so the dP  estimate equals the number of times that ce cR R=  in a given 

simulation divided by the number of runs in the simulation. Each dP  estimate is 

computed with five thousand simulations. 

An example of the output from the PSD estimator with additional filtering is 

shown in Figure 63. The flat frequency response in Figure 63 illustrates how filtering 

reduces the upper frequency search range. Another factor that contributed to the decision 

to use the summing baseline method versus the division baseline method is that the 

ACRE with division baselining appears to have a frequency component throughout the 

bins, as shown by the oscillating response of the ACRE output in the top plot of Figure 

64.  

 

 
Figure 63 PSD output signal (red) with frequency bin baseline signal (blue) below 

with additional filtering. 
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Figure 64 Comparator input for division (top) and summing (bottom) baseline methods 

when additional filtering is used. The duration of the data segment is greater 
than 32 ms. 

 

The three main categories of simulation are standard-ACRE, ACRE with added 

filtering, and ACRE with incrementing. Standard-ACRE follows the block diagram in 

Figure 5, and results are presented in Figure 65. ACRE with added filtering has a LPF 

prior to the PSD estimator, thus reducing the cR search range. The filtering used to 

produce the results in Figure 66 reduced the cR  search range to 0.5 to 6 MHz from 0.5 to 

22.5 MHz. Additional filtering improves the performance by five to six dB at a cost of 

reducing the search range to about a quarter of the original range. 
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Figure 65 Estimated dP versus SNR with standard ACRE for data durations of 1 ms 

and 5 ms. 

 

 
Figure 66 Estimated dP  versus SNR with added filter ACRE compared with standard 

ACRE for data durations of 1 and 5 ms. 



 115

The bandwidth of the CRD integrator is inversely proportional to the integration 

time [11]. To narrow the PSD estimator bin bandwidth, either more points must be 

included or less bandwidth must be covered. An alternate approach is to sum the output 

results for a number of independent time frames. The number of factors that must be met 

to ensure this approach is valid is not addressed in this work. Rather, the approach is 

evaluated with simulations. Set-size is the number of times that the PSD estimate is 

summed. The set-size can be non-overlapping such as a set size of 5 where data of 

duration 5 ms is separated into five 1 ms data sets, then processed and the results 

summed. Alternately, overlapping the time frames to produce more bin estimates within 

the same time frame is also briefly evaluated. Increment-size is the ratio of previously 

unprocessed data to the amount of data used to compute a PSD estimate. 

ACRE with incrementing is accomplished by processing subsections of the data 

through the PSD estimator, summing the processed data, frequency bin baselining the 

summed data, and making a decision at the comparator. Figure 67 shows simulation 

results for two incrementing approaches which use a data duration of 5 ms. In the first 

approach the set-size is five and five separate 1 ms results are summed. In the second 

approach, twenty-one 1 ms subsection results are summed, where each successive 

subsection overlaps the next subsection by twenty percent, or 0.2 ms. The comparable 

performance of standard-ACRE and ACRE with incrementing illustrates the potential to 

process the data in parallel without performance loss.  
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Figure 67 Estimated dP  versus SNR with standard ACRE compared with incremented 

ACRE, with and without overlap. The total data duration is 5 ms for all 
simulations. 

 

The potential to parallel process the data has some distinct advantages. One 

advantage is that the time requirements to process data maybe greatly reduced. Another 

advantage is that previously processed data can be combined with unprocessed data to 

further validate results. The results in Figure 67 illustrate how increment-processing 1 ms 

segments can lower the noise floor and move the dP  curve to the left. The most obvious 

advantage is the 1 dB performance advantage achieved using overlap as illustrated in 

Figure 67. Overlapping provides improved performance at the cost of increased 

computational complexity.  

Reference [11] has similarly shaped laboratory based performance curves with 

associated corresponding theoretical functions. Although some performance comparisons 

between the CRD and the ACRE can be discussed, it is not equitable to compare their 

performance closely. The comparison can only be taken so far since the ACRE is 

considerably more complex and is designed to estimate the chip rate, whereas the CRD 

requires more signal characteristic a-priori knowledge and is designed to detect the chip 
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rate when the baseband data waveform uses rectangular pulses. Other dissimilarities 

include digital versus analog computing and the respective chip rate frequency ranges for 

which the CRD and the ACRE are effective. 

The simulation set-up, decision criteria development, and simulation results were 

presented in this chapter. The simulation set-up includes a description of the various 

parameters and signals used. The decision criteria as a function of TBW and the 

application of the central limit theorem were discussed. The summing baseline method 

was selected. Standard ACRE, ACRE with additional filtering, and incremented ACRE 

were discussed and their performances compared. 
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VI. CONCLUSIONS  

This research investigated detection and estimation methods for the two most 

common types of SS systems, frequency-hopped SS and direct sequence SS. For FH-SS, 

detection and estimation of the hop-frequencies was examined. For DS-SS, detection and 

estimation of the chip rate was examined. For FH-SS, we extended the work originally 

developed in [40] to evaluate the detector in an interference plus AWGN environment, 

and preliminary results are reported in [72]. For DS-SS, we considered an ad-hoc chip-

rate estimator scheme, and preliminary results were reported in [73]. This section 

summarizes findings observed for the exponential averaging FH detector and the ad-hoc 

chip-rate estimator. Section VI.B provides recommendations for future work, and Section 

VI.C summarizes the contributions of this dissertation. 

 

A. SUMMARY AND CONCLUSIONS  

1. Exponential Averaging FH Detector 

Chapter II presented an extension of the exponential averaging FH detector in 

[40]. Several major differences exist between the work discussed in [40] and that 

examined in this dissertation. This work investigates the effect of AWGN, which was not 

considered in [40], along with wideband interference and narrow band interference 

signals which was considered earlier. Next, estimation of the PSD was conducted using 

the absolute value squared instead of the absolute value operation, and the spectral 

estimate of the interference plus noise was computed using a summation, a weight factor, 

and a scaling factor instead of obtaining it recursively in order to reduce computational 

and analytic complexity.  

Different initial conditions were used in terms of the recursive computation of the 

spectral estimate, resulting in improved detector performances for weight factors close to 

one. Note that the initial conditions in [40] are such that the number of estimated 

frequency hops decreases when the weight factor approaches unity, but the estimate of  
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the remaining hops is more pronounced. As an aside, although the use of the weight 

factor is described in a consistent way for the two references, the weight factor as 

described [40] is one minus the weight factor in [72] and this dissertation.  

Signals used were described along with the metrics by which the detector is 

evaluated. The detector’s performance was displayed as plots of SIR versus simulation-

based estimates of the dP  for given SNR values. The scaled subtraction and quotient-

combining methods were described, and the analytic expression for the pdf that models 

the detector’s output with scaled-subtraction-combining and an AWGN plus BPSK input 

was developed. Finally, it was shown that an analytic expression for the pdf that models 

the detector’s output with either combining method and an AWGN plus BPSK plus CW 

input is mathematically intractable as far as can be determined. Therefore, a heuristic 

approach to estimating the pdf of | ( | )S x i nf S x i n= + = +%
%  was addressed in Chapter III. 

Chapter III provided the exponential averaging detector’s simulation set-up, 

decision criteria development, and various simulation results. The simulation set-up 

included the description of the various parameters and signals used. The decision criteria 

section investigated two methods to heuristically evaluate a pdf model of the detector’s 

output: histograms and goodness-of-fit tests. Simulation results included performance 

guidelines, an evaluation of the goodness-of-fit tests, the detector data evaluated by the 

goodness-of-fit tests, threshold estimates, bounds on fP , and an evaluation of the 

detector’s performance. Finally, the performance of the detector for various values of 

SNR and SIR was investigated. 

2. ACRE 
ACRE was developed and described in Chapter IV. Although theoretical analysis 

of the system is investigated, simulation results are primarily used to describe and set 

parameters. The approach used to develop ACRE is by comparing and contrasting it to 

the CRD approach. One contrast between ACRE and the CRD is that the CRD requires 

an estimate of the chip rate, whereas ACRE only requires a range of values for the chip 

rate. Thus, as the name implies, the primary purpose of the CRD is to detect the chip rate 

and not to estimate it. ACRE simultaneously searches a specified bandwidth and 
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estimates the chip rate. This simultaneous search and estimation provides a significant 

performance advantage over the CRD, which requires that the detector scan through a 

specified bandwidth in order to detect the chip rate. However, simultaneous search and 

chip rate estimation results in increased complexity. 

The performance of the CRD with half-sine pulse shaping is shown using Fourier 

series coefficients. Results showed the performance of the CRD with a half-sine shaped 

pulse is degraded significantly. ACRE is then described in a block diagram and the 

various blocks described. The PSD estimator block closely parallels the CRD spectral 

component.  

The need to compare a number of sequential frequency bins, covering the 

frequency search range, requires that a method to baseline the bins’ output be developed. 

The motivation for baselining a signal so that it can be compared throughout its entire 

frequency range was presented. The summing and division methods of baselining the 

bins’ output were developed. Section IV.B briefly discussed the complexity of deriving 

an analytic expression for the pdf of the RV that models the ACRE output. The decision 

to use a simulation-based estimate of the RV that models the ACRE output was discussed 

in Chapter IV and implemented in Chapter V. 

Chapter V presented the ACRE simulation set-up, decision criteria development 

and simulation results. The simulation set-up includes a description of the various 

parameters and signals used. In the decision criteria section, a threshold was generated 

using the estimated pdf and a predetermined fP . The decision criteria as a function of 

TBW and the application of the central limit theorem were discussed. The summing 

baseline method was selected based on performance comparisons of the two baseline 

methods. Some subjective comparisons were made between the CRD and the ACRE 

performances.  

Three ACRE-based simulation approaches were considered: standard-ACRE, 

ACRE with additional filtering, and ACRE with incrementing. Filtering trades off chip 

rate search range for estimation performance. A quantitative illustration of the trade-off is 

that the reduction of the search range to a quarter of the original range generated an 
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additional 5 to 6 dB in performance gain. Incrementing shows the potential for parallel 

processing without loss of performance as well as trading performance for computations. 

A quantitative illustration of incrementing shows that the relative computational cost, 20 

times the standard cost, generated small 1 dB of performance gain. The performance of 

the three ACRE simulations were plotted with SNR versus a simulation based estimate of 

the probability of detection.  

 

B. CONTRIBUTIONS OF THIS RESEARCH 
This study expanded and improved original work presented in [40]. The increased 

complexity and realism of AWGN was added to the wideband plus narrow band 

interference detector input signals. It is a common mistake in research of this type to 

neglect the effects of AWGN since, generally, the narrowband interference noise power 

is assumed to be dominant. However, this approach often obscures the effect that AWGN 

has on the process and the significant interaction between the effects of AWGN and the 

narrowband interference that frequently occurs. Hence the addition of AWGN is a 

significant improvement over previous work on this detector. Next, detection 

performance was improved by changing the exponential averaging FH detector’s initial 

conditions. The change in initial conditions allowed for the use of weight factors which 

are closer to one without the drawback of suppressing any estimated frequency hops, 

which was a drawback in [40]. 

The restructure of the detector code from a recursive algorithm and the addition of 

the scaling factor, along with other minor changes, facilitated changes in the initial 

conditions and allowed an analytic analysis of the pdf of the RV which models the 

detector’s output for a special case. The analytic expression for the pdf of the RV which 

models the detector’s output for the special case of the input being AWGN plus a BPSK 

signal given scaled-subtraction-combining was obtained. The study heuristically 

supported the postulate that detector’s output can be modeled by a Gaussian RV. Upper 

and mid-estimates for the probability of false alarm were developed to set the detector’s 

threshold.  
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The development of the exponential averaging FH detector’s decision criteria laid 

the ground work for the detector to be evaluated. The detector’s performance was 

evaluated over a significant range of SNR and SIR, and the results were plotted as a 

simulation-based probability of detection estimate versus SIR for fixed SNR and 

probability of false alarm. From the simulation estimate of the probability of false alarm, 

the upper-estimate for the probability of false alarm was selected. 

Finally, this research also presented the conception, development, 

implementation, and evaluation of ACRE. This research heuristically supported the 

postulate that standard ACRE’s output can be modeled as a Gaussian RV. Upper and 

mid-probability of false alarm estimates were developed and the mid-estimate was 

selected based on the simulation probability of false alarm results. Standard ACRE’s 

performance with a pulse shaped signal input was evaluated, and the result plotted as a 

simulation-based probability of detection estimate versus SNR for a fixed probability of 

false alarm. The result was a probability of detection estimate of one-half at SNR= 11−  

dB and SNR= 15−  dB for TBW=24 and TBW=196, respectively. Based on the 

simulation results, standard ACRE’s performance improved 1 dB as the TBW was 

doubled. 

ACRE with additional filtering and incremented ACRE were developed as two 

variations of standard ACRE. Results showed additional filtering improves performance 

at a cost of a reduced the search range and increased computational complexity. 

Incremented ACRE shows the potential for parallel processing without loss of 

performance. Incrementing ACRE with overlap exchanges processing for performance. 

The practical application of the ACRE scheme in this time of ever increasing inexpensive 

processing power is greatly expanded since it can be implemented with parallel 

processing and additional processing can be exchanged for performance. 

 

C. RECOMMENDATIONS FOR FUTURE WORK 

This investigation, while answering some questions, also led to some unanswered 

issues. This section provides some recommended areas of future work. It seems 

reasonable that the exponential averaging FH detector can be used to estimate the hop 
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order of a SS-FH signal imbedded in AWGN plus interference signals, and this is a 

promising area of future work. To flush out the idea, a hop-by-hop analysis of the 

detector’s performance to determine factors for hop detection variation, along with 

methods to mitigate the performance differences, is recommended as a first step. One 

question to be answered is how the size of the shift influences which hop frequencies are 

suppressed when the shifted data is evaluated with the detector. The use of smaller data 

segments is a potential option since lower weight factors such as 0.8ρ =  are effective 

with scaled-subtraction-combining in the estimation of individual hops. The processed 

smaller data segments could potentially be combined and evaluated to obtain a hop order 

estimate.  

Another area recommended for future work is the evaluation of both the 

exponential averaging FH detector and ACRE with other channels such as a fading 

channel, a wider set of parameters such as the weight factor and bin sizes, other signal 

types such as MPSK, other pulse shapes such as Gaussian and raised cosine, validate the 

Gaussian output postulate, and compare the performance of both schemes to other similar 

detection and estimation schemes. A final area recommended for future work is the 

investigation of the limits of ACRE with incrementing and the development of efficient 

algorithms to implement the parallel processing of incremented ACRE.  
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