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ABSTRACT

Two methods of obtaining sensitivity data were simulated on an

electronic computer for the purpose of comparing the accuracy of the

estimates of the parameters of an underlying cumulative normal response

function. The first method simulated the standard Bruceton procedure

while the second used a modified binary search routine with a portion of

the sample in order to obtain maximum likelihood estimates of the input

parameters for use in a follow-on Bruceton test.

The results showed both methods to be effective in estimating the

mean but with slightly more variability in the estimates obtained by the

second procedure. Both methods underestimated the standard deviation -

again with more variability in the estimates obtained by the second

procedure. When the prior parameter estimates were unknown and the

applicable stimulus level bounded, the second method yielded estimates

favorably comparable to those expected from the Bruceton procedure with

suitable prior input estimates.
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I. INTRODUCTION

Frequently a statistician is faced with the problem of determining

the level of a stimulus which critically affects the performance of a

device. The nature of the testing to be discussed is such that once

some positive level of the stimulus is applied to the device either a

response or a non-response can be immediately observed and, in either

case j the device is altered so that a bonafide result cannot be obtained

from a second test. Tests of this type are known as sensitivity tests.

One of the many problems besetting those involved in explosives

research is that of providing measures and specifying rules to provide

for the safe handling and transportation of explosives. Many different

types of sensitivity testing apparatus have been developed for laboratory

use, the most common being those that subject some quantity of explosive

to the impact load of a falling drop-weight from some controllable height.

At least as late as October 1965 there remained two important physical

problems to be solved; namely, that of establishing a measure of stimulus

not highly apparatus -dependent and then that of translation of these

results to safe handling rules [1]. These problems are not addressed in

this paper but should be kept in mind when considering the overall problem,

In the early 1940's, a technique for obtaining sensitivity data was

developed and used in explosives research at the Explosives Research

Laboratory, Bruceton, Pennsylvania which has come to be called synony-

mously, the Bruceton, Staircase, or "Up and Down" Method.

The aim of this method of testing is to increase the accuracy with

which certain critical values of the stimulus may be estimated, notably

the median (or mean) and standard deviation. The accuracy of the method





depends in part on the stimulus level at which the first item is tested

and the interval spacing for subsequent levels of testing [2].

When the stimulus levels mentioned above cannot be determined prior

to testing or when little confidence is placed on the available estimates,

a preliminary (or search) phase of testing may be desirable to obtain

maximum likelihood estimates prior to employing the Bruceton Method with

the remainder of the sample. A procedure to do this is offered as an

alternative method.

The comparative accuracies of the two techniques were examined

through the use of simulation conducted on a high-speed electronic

computer. All parameters and estimates considered as inputs to the

simulation were kept within ranges for which the Bruceton Method is

considered to yield accurate results [2].





II. THE MODEL

Let x be an applied stimulus level (xe;[o,<»)) and y = y(x) be the

associated response (ye<o,l> where "o" denotes no response and "1"

denotes response). At any given stimulus level consider y to be the

realization of a Bernoulli random variable, Y, with response

probability

p(x) = Prob (Y = l|x)

The function p(x) is called the response function and is further

specified as

p(x) = xe [o,a]

< p(x) < 1 xe (a,b)

and p(x) = 1 xe [b,=°)

The intervals [o,a], (a,b) and [b,°°) are called the zero-response

region, the mixed-response region, and the one-response region

respectively. It is assumed that p(x) is a monotonely increasing

function for stimulus values in the mixed-response region. Thus,

p(x) can be considered as the cumulative distribution function for a

random variable X such that

p(x) = Prob (X < x). [3]

In this context the random variable X can be interpreted as a thres-

hold stimulus level, thus

Prob (Y = l|x) = Prob (X < x) = p(x)

and Prob (Y = o|x) = Prob (X > x) = 1 - p(x). [3]

2
It is assumed the X is distributed Normal (\a,o ); that is

p(x) = Cp(x|(i,0 )

where cp(x^,a ) represents the cumulative normal distribution with mean





2
. ,

|i and variance a . In particular

Prob (x < \a) = p(\d) =0.5. [3]

10





III. TESTING METHODS

A. BRUCETON METHOD

1 . Description

Based on intuition or past experiments, the experimenter selects

a priori estimates of p. and a. Call these estimates |j and o_ and let

d = or

The experimenter tests the first item at or near n . If there

is a response the second item is tested at a level d units below \i ,

otherwise the second item is tested at a level d units above \i . In

the same manner, each of the remaining items is tested at a level d

units above or below the previous test level according as there was not

or there was a response observed for the previous test. Thus the

sample is concentrated about the mean and one would expect nearly equal

numbers of responses and non-responses. In fact, the number of non-

responses at any level will not differ by more than one from the

number of responses at the next higher level [2].

Let N denote the total number of observations of the less

frequent event and n
ft

,n.. ,n~ ,
• • tl denote the frequencies of this event

at each level where n_ corresponds to the lowest level and n, the

highest level at which the less frequent event occurs.

The final estimates of \A and a are based on the first two

moments of the stimulus levels. Since the intervals are equally

spaced, these moments can be computed in terms of the sums

A = £ i n.
1

l

2
and B = S i n.

.

i
X

11





Let [A be the estimate of g. by this method. Then

&-«• + d(|±D

where x' represents the lowest level at which the less frequent event

occurs [2]. The plus sign is used when the analysis is based on non-

responses, and the minus sign when it is based on responses [2].

2 2
If (NB-A )/N > .3 the sample standard deviation is

2

s = 1.620 d (~p_ + .029^)

m

2
zl
o

N

Otherwise, a more elaborate calculation must be employed and is

described in Ref. 2.

To obtain confidence intervals, estimates of the standard

deviations of the sample mean and sample standard deviation, say s

and s respectively, are given by
s

_ Gs

and

Hs
s = —
s

J*

where the factors G and H are dependent on the ratio — and ther
s

position of the mean relative to the testing levels. Plots of these

factors are available in Ref. 1.

2 . Discussion

Only rarely is the threshold stimulus Z normally distributed.

It is usually the case that some scale transformation of Z, say X, is

made so that X is normally distributed in the vicinity of the mean.

This transformation is done prior to testing to determine \± and a .

Only after all analysis is completed are the values scaled back to the

original stimulus measure [2].

12





The size of the sample is critical to the accuracy of the

estimation. Note that at most only half of the sample is used in the

analysis so that, for example, if thirty items are tested the maximum

possible value of N is fifteen. The analysis is based on large sample

theory which in the case mentioned would be applied to a sample of size

fifteen [2] [4].

Unless normality of the variate is assured this method does

not yield accurate results for the small end large percentage points.

This is unfortunate since in most applications one would be more

interested in a small percentage point as a measure of safety and a

large percentage point as a measure of reliability. At any rate, an

estimate of a percentage point j is

A
j = n + ks

where k is chosen from tables of the standard normal deviate to give

the desired percentage [2]. One could then conduct tests in the

vicinity of this value to refine the estimate.

B. BRUCETON METHOD PRECEDED BY SEARCH

1. Description

In the event that a priori estimates of [i and a are not

available some economic method of attaining these estimates is desired.

A method proposed and described below is a modified binary search

technique.

Again, the assumption is that the threshold stimulus (or

some transformation of it) is normally distributed and p(x) can be

represented by a cumulative normal distribution.

As noted from the model

Prob (Y = 0|x < a) = 1

13





and

Prob (Y = l|x > b) = 1.

The first step in the procedure, then, is to select values for a and b.

(In the case of complete uncertainty these could be the limiting values

of the testing apparatus) and commence the binary search starting at

x = (a + b)/2.

If p(x) were a step function, repetition of this method would locate

the step in an interval of any desired length. In general, however,

the mixed-response region has non-zero width and a non-response would

merely indicate that the applied stimulus is in the mixed response

region or below while a response would indicate that it was in the

mixed response region or above.

If a test at x
1
yields a response and a test at x yields a

non-response while x.. < x„ it is certain that both x- and x
?

are in the

mixed response region. This condition is called a response inversion

and is the basic indicator for the modified binary search technique.

The description of the procedure is best followed by referring to

Figures 1 through 4.

Sequence S* is a cyclic one indicating that a reduction in step

size should be taken. Test levels are selected attempting to reproduce

this sequence. Failure to do this results in the basir inversion

sequence S . Tests are then made at the end of this sequence to result

in one of three terminal situations S
1

, S~ , or S_. In the event the

mixed response region is relatively narrow and near a or b , several

binary reductions may be necessary to reproduce S* or one of the

terminal situations. These circumstances are represented by S and

S„ [31.

14
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Figure 1
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Maximum likelihood estimates of \i and a are available for

sequences S
1

, S_, and S_ and developed as described below [3].

2. Discussion

It is assumed that all trials are independent. Thus the

probability of the sequence S, is

Prob (sp - Prob (Y^O, Y
2
=0, Y

3
=l, Y

4
=0, Y

5
=l, Y

&
=1 |x

][
^ ,X

3
,X
4
,X

5
,X

fi
)

where

= it Prob (Y. = y. x.)
. , i i i
1=1

Prob (Y. = y. x.) = cp(x.) if y. = 1

and

= 1 - cpCx^ if y =

cp(x.) = Prob (X. -: x.) = f
—-— e

2 ^ dx.1_ L
J 72TT

a
-00

Maximum likelihood estimates for \± and a can then be established

using standard normal tables for each of the terminal situations.

These estimates are indicated on Figure 5.
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IV. SIMULATION

A. DESCRIPTION

All simulated experiments were conducted on an IBM 360/67 computer

using the FORTRAN IV programming language. The basic program is

attached. The response function p(x) used was cumulative normal with

[X = 30 and a = 3

.

The sample size was kept at seventy for each experiment to provide

some assurance that the analytical sample would be suitable for large

sample analysis.

The basic test procedure was to draw a random number on the unit

interval and compare this to F(x), a function of a standard normal

variate specified as

and

F(x) -
| [l - erf Q0\

F(x) - I [l + erf
(jp[

if x <

if x >

where

erf (v) =~ e
2

dt

(The function subprogram erf is an IBM-supplied subprogram.) If the

random number was less than or equal to F(x.) then a response was

counted for the i level; otherwise a non-response was counted.

Six different cases were tested using the straight Bruceton pro-

cedure (METHOD 1) with two different input estimates of \i and three

different input estimates of a. Case 1 considered exact estimates;

i.e., (j = [l and <j = a. Case 2 considered u = ^i-6 and a, = a-

21





Cases 3 and 4 considered |j = |j and a
T

= a/2, 2<j respectively while

Cases 5 and 6 repeated Cases 3 and 4 except |j.
= (j-6. For each of the

six cases 1000 experiments were conducted each utilizing a different

sequence of random numbers

.

The search procedure (METHOD 2) was then incorporated into each

of the above six cases using the a prior estimates, \i and o T > to

determine estimates for stimulus levels a and b and thereby the size

of the binary reduction as indicated in Figure 1. The program then

followed the flow shown in Figures 1 through 4 until either a terminal

sequence was reached or the search was arbitrarily terminated as dis-

cussed in subparagraph C below. The Bruceton procedure was then used

until the sample was exhausted.

The final case, Case 7, indicated complete lack of knowledge of (j.

and a but considered the upper and lower stimulus level limits of the

test apparatus to be 100 and respectively.

B. MEASURES OF EFFECTIVENESS

At the completion of all experiments for each case, several

measures were obtained for comparison. First, average values of the

parameters were determined to be

A A ,

\X - S l^/N
i

and

a A ,

a = E aVN
i

A A th
where \j. and o are the a posteriori estimates of \jl and q for the i

experiment and n, the number of experiments used. Next, as measures of

variability

22





and

2 a 2
s a - S ((j - |_i) /n-1
^ i

s a = S (a. - a)/n-l
a . i

were calculated. In addition, the program listed the maximum and

minimum estimates of both [j and a.

C. DISCUSSION

In Chapter III it was noted that sequences S*, S , and S are
U Li

cyclic. In order to simplify the program it was necessary to

artificially terminate these situations at some point and calculate

the input values for the Bruceton test. The estimate of \j. used was

where x
1
and x_ are adjacent testing levels and x

9
> x, with y =

and y_ = 1. The estimate of a used wasy2

a
s

- (x
2

- x
x
)/2

for Cases 1 through 6 and

°s
= (x

2
• x

l
)/6

for Case 7. The former estimate of a was chosen arbitrarily while the

latter estimate was based on the estimate of the mixed response region

being 6a. While the number of terminations of this type was insignifi-

cant for the first six search cases, in the final case over 600 experi-

ments were thus terminated requiring the program to be expanded to

permit more recycling. The point is that the artificial termination

does not represent the search procedure. This problem would not arise

in field experimentation until either the sample was exhausted or the

step size reduction of stimulus level indicated was too narrow to be

measured or controlled by the test apparatus.

23





Also in the interest of program simplification those experiments

for which

F__L_a! < 3
2 - ,J

N

were not used for analyses. This limitation invalidated the measures

of effectiveness for the Bruceton cases where a = 2<j.

D. RESULTS

The results of the simulation are listed in Table I. It is

questionable that the measures listed under Method 1 are valid for

Cases 4 and 6 in that only .381 and .393 of the possible experiments

were used. These two cases and Case 4 under Method 2 (where .661 of

the possible experiments were used) are the only ones for which

O > O.

In general the extreme estimates are more widely separated and the

variability of a is greater in Method 2.

Estimates of \j. range from 27.8823 to 31.7647 for Method 1 and

27.937 to 31.91 for Method 2.

Estimates of a range from .8741 to 6.5027 for Method 1 and .3498

to 9.8328 for Method 2.

A
The lowest average \l, 29.9113, was obtained under Method 1, Case 5,

while the highest average |j, 30.1175, was obtained under Method 2,

Case 3.

The lowest average a, 2.3748, was obtained under Method 2, Case 5,

while the highest average a, 2.9474, was obtained under Method 1,

Case 5. (Case 6 is not counted under Method 1 nor is Case 4 under

both methods
.

)

24





TABLE OF EXPERIMENTAL RESULTS

METHOD 1 METHOD 2

A
M

A
a

A
M

A
a

CASE 1

Mj = 30 AVE 30.0067 2.8320 30.0117 2.8609

a
x

= 3 MAX 31.7647 5.7904 31.7813 5.9343

a = 18 MIN 28.5000 1.6089 28.2187 1.1241

b = 42 VAR .2523 .4128 .2514 .5831

CASE 2

Mj = 24 AVE 29.9641 2.9040 30.0317 2.8819

a
x

= 3 MAX 31.6765 5.8249 31.6875 9.1369

a = 12 MIN 28.3235 1.6250 28.1976 .9512

b = 36 VAR .2656 .4225 .2666 .6336

CASE 3

Mx
= 30 AVE 30.0295 2.7216 30.1175 2.8615

a, = 1.5 MAX 31.6071 6.1197 31.9100 7.7997

a = 24 MIN 28.4118 .8741 28.5950 .8697

b = 36 VAR .2046 .7409 .2693 .9081

CASE 4

Hj = 30 AVE 29.9683 3.5424 29.9750 3.0721

a, = 6 MAX 31.4571 6.0266 31.6875 6.3569

a = 6 MIN 28.0286 -- 27.9370 1.6170
b = 54 VAR .2574 .4639 .2619 .4522

CASE 5

Hj = 24 AVE 29.9113 2.9474 29.9363 2.3748

Qj = 1.5 MAX 31.4773 5.9257 31.4063 7.9507

a = 18 MIN 28.2353 .9452 28.1961 .3498

b = 30 VAR .2220 .8748 .2184 1.4889

CASE 6

Mj = 24 AVE 29.9493 3.5438 30.0247 2.8398

a = 6 MAX 31.4118 6.5027 31.5756 6.4201
a = MIN 27.8823 -- 28.2552 1.1252
b = 48 VAR .2639 .4785 .2490 .6300

CASE 7

-- AVE -- -- 30.0123 2.7280
-- MAX -- -- 31.8229 9.8328
a = MIN -- -- 27.9541 .5082

b = 100 VAR -- -- .2628 2.1041

TABLE I
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V. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS

1. Estimation of the Mean

Both methods estimate the mean effectively.

2

.

Estimation of the Standard Deviation

Both methods tend to under-estimate the standard deviation with

no predictable bias and are therefore unsuitable for use in safety or

reliability statements. This conclusion agrees with the findings of

Hampton [4] as it pertains to the Bruceton Method.

3

.

Extension of the Search Phase for the Starting Sequence

Termination of the search phase with sequence S, in the starting

sequence (see Figure 1) may yield estimates of a greater than twice

the actual value. To avoid this it is advisable to extend the search

phase as described in Ref. 3.

4. Use of Search Technique

The search procedure should be used in those cases where there

is not independent evidence that the estimate of a is within the range

for which the Bruceton Method is recommended (i.e., a/2 < aT < 2a).

B. RECOMMENDATIONS

Further testing of Method 2 is recommended under the circumstances

listed below.

1. Reduction of Sample Size

It would be of interest to reduce the sample size to the point

where the effective sample is small, say 15, and compare the Bruceton

procedure with the search procedure using the entire sample for the

search.

26





2 . Random Selection of Response Function Parameters

A more valid test of both methods would be achieved by

randomally selecting values of \j and a over some range and using

the on-line computer facility to conduct the simulation.

11





COMPUTER PROGRAM

THIS PROGRAM SIMULATES SENSITIVITY TESTING BY BOTH THE RRUC-
FTQNI METHOD (WHEN IANY = 0) AND THF BRUCETON METHOD PRFCEDED
BY THE MODIFTHI BINARY SEARCH (WHT-N IANY=1).THE UNDERLYING
RESPONSE FUNTION IS CUMULATIVE NORMAL C*0, "*) .THP IN^UT EST-
IMATES OF THE MEAN AND TH= STANDARD DEVIATION ARE CALLED
EXMij AND EXSIG RESPECTIVELY.

THE PRINCIPLE VARIABLE NAMES ARF AS FOLLOWS...
AACT IS THP STIMULUS VALUE AT THE UPPER LIMIT OF THE

MIXED RESPONSE REGION.
BACT IS TH C STIMULUS VALUE AT THE LOWER LIMTT OF THE

MIXED RESPONSE REGION.
A AND B ARE ESTIMATES OP AACT AND RACT RESP CCT I VFLY.
X(J) IS THE STIMULUS LEVEL OF THE JTH. STIMULUS.
IXO(J) IS THE CUMULATIVE COUNT OF NON-RESPONSES AT X(J).
IXX(J) TS THF CJJMUIATIVF COUNT OF RESPONSES AT XU)
IS IS THE SAMPLE SI7E.
NU IS THE ENTRY NU M BER FOR THE RANHOM NUMRER GENERATOR,

UN I F .

N COUNTS THE NUMBER OF EXPERIMENTS.
RN IS THE RANDOM NUMBER ON (0,1) RETURNED RY UNIF.
FOEX IS THE VALUE OF THE RESPONSE FUNCTION RETURNFO BY

SUBPROGRAMS XNCDF AND SNCDF.
I SUMO TS THE TOTAL NUMRFR OF NON-RESPONSES FOR ONE EXPER-

IMENT.
ISUMX IS TH C TOTAL NUMBER OF RESPONSES FOR ONE EXPERIMENT
NT IS THE MINIMUM of TSUMO AND ISUMX.
NS(J) IS THE FPEOU c NCY HF THE LESS FREQUENT EVENT AT X(J)
NG(J) REARRANGES NS(J) SO THAT NG(1)=NS(I) WHER C X(I) IS

THE LOWEST STIMULUS LEVEL AT WHICH THE LESS FREQUENT
EVENT OCCURS.

AR(J) IS USED to CALCULATE THE first MOMENT ,SUMAP .

BR(J) IS USED TO CALCULAT C THE SFCOND MOMENT, SUMRR

.

YPRIME IS THE LOWEST LEVEL AT WHICH THE LESS FREQUENT
EVENT OCCURS

XMUEST IS THE FINAL ESTIMATE Oc THF TRUE M-<\N,XMU.
DEVEST IS THE FINAL ESTIMATE OF THE TRUE STANDARD DEVIAT-

EMUuVlS THF oiFFEPENCE OF XMUEST AND XMU.
EDEVU) IS THE DIFFERENCE OF DEVEST AND XSIG.
SAMAVM AND SAMAVD ARE THE SAMPLE AVERAGE FPRORS OF XMlJFST

AND DEVEST R

E

SPECTI VFLY.
SAMSQM AND SAMSQD ARE THE AVERAGE mc^n SQUARE errors OF

XMUEST AND DEVEST RESPECTIVELY.
NOGH IS THE NUMRER OF EXPERIMENTS NOT USED IN THE FINAL

ANALYSIS

DIMENSION ARRAYS AND FORMAT

SIMULATE RRUCETON FIRST THEN SEARCH
IANY=0

69 THING=0.

INITIALIZE INTERNAL AND OUTPUT VARIABLES

SET EXPERIMENT COUNTER, SAMPLE SIZE COUNT c R, ANH NU.

LC0UNT=1
NU=1??71

103 N=l
IF( IANY.FQ.O) MBR =
IF( IANY.EQ.l) NBR = 1

SET INPUT VARIABLES
XMU=30.
XSIG=3.
A = 0.
B=100.
EXMU-50.

28





FXSIG=12.5
A= FXMU-IQ*FXSTO
B = EXMU*IQ*FXSIG
Xl=( A+B) /2.

INC =

PROVIDE BRANCH TO STANDARD RRUCETON

IF<NBR.EO.O) GO TO 33

CONDUCT SFARCH

CALL UNIF
FOFX=XNCD
IFCRN.LE.
X2=( P+Xl)
NBR=NBR+1
CALL UNIP
FOFX=XNCO
IF(«N.LE.
X3 = < R+X2)
NBR=NBR+1
CALL UNIF
FOFX=XNCD
IFCRN.LE.
X4=(B+X3)
NBR=NBR+l
CALL UNIF
FOFX=XNCD
IFfRN.LF.
X5=(R+XA)
NBR=NBR+1
CALL UN' IP
FOFX=XNCD
IFCRN.LE.
EXMU=( B+X
FXSIG=(X5
EX SI 0=2.*
EXSTG=EXS
GO TO 700

1313 FXMU=(X5+
EXSIG=<X5
EXSIG=2.*
EXSIG=EXS
GO TO 7C0

9063 X5=(X3+X2
NBR=NRP+1
CALL UNIF
FOFX=XNCD
IF(RN.L£.
X6=< X3+X4
NBR=NRR+1
CALL UNIF
FOFX=XNCD
IF(RN.LE.
EXMU=( X6 +
EXSIG=(X6
EXSI0=2.*
EXSIG=-XS
GO TO 700

1316 FXMU=( X6+
EXSIG=( X6
EX SI 0=2.*
EXSIG=FXS
GO TO 700

1314 X6=2.*X2-
NBR=NBP+1
CfiLL UNIF
FOFX=XNCD
IFCRN.LE.
XB=X5

(RN,NU)
F(X1 .X^U
FO^X) GO
/2.

{PN,NM)
F( X?,XMI)
FO^X) GO
/2.

(RN t NU)
F( X3 T XMU
FD^X) GO
/2.

(RNtNU)
F( XA,X^U
FOFX) GO
/2.

CRN,NU)
F( X5»XMU
FOFX) GO
5)/2.
-X4)/2.
r XSIG
IG/6.

X^)/2.
-XM/2.
EXSIG
IG/6.

) /2.

(RNtNU)
FCX5,XMU
FOFX) GO
)/2.

(RN,NU)
F( X6,XMU
FOFX) 00
X4)/2.
-X3)/2.
FXSIG
IG/6.

X3) /2.
-XD/2.
C XSIG
10/6.

X5

( P M N' I

)

F(X6,X*>U
FOFX) GO

,XSIG)
TO 9500

,XSIG)
TO 9250

t X S I )

TO 9125

,XSIO)
TO 9063

, XSIO)
TO 1313

tXSIO)
TO 1314

, X S 1 )

TO 1316

,XSIO)
TO 1315
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DELX=X5-X2
FXMU=XB+0ELX/2.
HXSIG=1.3*DELX
GO TO 7000

1315 XB=Xt
0ELX=X2-X6
EXMU=XB-0FLX/4.
c XSIG=**nELX
GO TH 700

9125 X4=( X2 + XI ) /2.
N8R=NBR+1
CALL UNIF(RN,NU)
FOFX=XNrDF(X^,XM
IF(PM.LE.FOPX) G
X5=( X2+X3)/2.
NBR=NBR+1
CALL UNIF(RN,NU)
FOFX=XNCDF( X5, X^
IF(RN.LE.FOFX) G
X6=(B+X3) /2.
NBR=MBR+1
CALL UNIF(PN,NU)
FOFX=XN'CDF( X6,X^1
IF(RN.LF.FOFX) G
X7=2.*B-X6
NBR=MBR+1
CALL UNIF(RN,NU)
F0FX=XNCDF(X7 t XM
IFIPN'.LE.FO^X) G
XB=X7
DFLX^XB-B
EXMU=XP+0ELX/4.
FXSIG=6.*DELX
GO TO 7000

^012 XB = X3
DELX=X6-XR
EXMU=XB+DELX/2.
FXSIG=1.3*0ELX
GO TO 7000

9024 EXMU=( X3+X5) /2.
EXSIG=(X3-X r>) '2.
EXSIG=2.*FXS!G
EXSIG=i=XSIG/6.
GO TO 7000

9047 X6=( X4+X2) /2.
NBR=NBR*-1
CALL UN IF (RN, Nil)
FOFX=XNCDF( X6,XM
IFCPN.LE.FO^X) G
FXMU=( X5+X2) /2.
FXSIG=(X5-X2) /?.
EXSIG=2.*EXSIG
EXSIG=FXSIG/6.
GO TO 7000

9011 X7 = 2.*X4-X6
N8R=NBR+1
CALL UNIF(RN»NUI
F0FX=XNCDF(X7,XM
IF(RM.LF.FOFX) G
XB = X6
DELX=X?-XB
FXMU=XB4-OELX/2.
FXSIG=l.^ nFLX
GO TO 7000

9010 XB=X7
DELX=X4-X7
FXMU=XB-OELXM.
EXSIG=6*0ELX
GO TO 7000

9094 X5=2*X1-X4
NBR=N8R+1
CALL UNTF(RM,NU)

UtXSI
TO

UtXSI
TO

U , X S

I

TH

U,XST
TO

G)
909^

G)
9047

G)
9024

r,)

9012

U,XSI
TO

G)
9011

U , X S T

n to
G)
9010
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9003

9250

9006

9005

9004

5555

9007

F0FX =

IF(RN
XR = X4
DELX =
EXMU =

EXSIG
GO IP
XB=X5
DELX =

EXMU=
E X S I

G

GO TO
X3=(£
NBR = N
CALL
FOFX =

IFCRN
X4 = ( X
NBR = N
CALL
FOFX =

I F ( R M
X5=(B
NBR=M
CALL
FOFX =
IF(RN
X6=2*
NBR = N
CALL
FOFX =

IF(RN
XB = X6
DELX =
EXM|J=
EXSIG
GO TO
XB = X2
DELX =
FXMIJ=
EXSIG
GO TO
EXMU=
EXSIG
FXSIG
EXSIG
GO TO
X5=( X
NBR = N
CALL
FOFX =

I F ( R NJ

EXMU =

EXSIG
EXSIG
EXSIG
GO TO
X6 = 2.
NBR = N
CALL
FOFX =

IF(RN
X8 = X5
OELX =
EXMIJ =

FXSIG
GO TO
XB=X6
DELX =

FXMU =

EXSIG
GO TO

XNCOFCX
.LE.FOF

X2-X4
XR+DFLX
=1 .3*DF
7000

X1-X5
XR-OELX
=6.*DEL
7000

+X1)/?.
BR + 1

UNIF(RN
XNCOF(X
.LE.FO c

1 +X2)/2
BR + 1

UMIF(RN
XMCDF(

X

.LE.FOF
+ X2) /2.
RR + 1

UNIF(RN
XNCDF( X
.LE.FOF
B-X5
BR + 1
UNTFf&N
XNCDF(X
.LE.FOc

X6-R
XR+HELX
=f*DELX
7000

X5-XR
XB+DELX
=1.3*DE
7000

( X2+X4)
=( X2-X4
=2.*EXS
= EXSIG/
7000

1+X3J/2
RR + 1
UMIF(PNI
XNCDF( X
.LE.FOF
( X1+X4)
=(X4-X1
=2.*FXS
= F X S I G /
7000

* X 3- X 5
RR + 1
l)NIF(PM
XNCOF( X
.LE.FOF

Xl-X«
XR+nFLX
=1.3*DE
7C00

X3-XB
XR-OFLX
= f>*OELX
7000

5,XMU t

X) GO

/?
LX

X S I G )

TH QQ03

/4.
X

»NU)
3,XMU t

X) GO

,NU1
4, XMI.I,

X) GO

, NU

)

5,XV!J t

X) GO

6,XMU,
X) GH

/4.

/?.
LX

/2.
)/2
IG
6.

,NU)
5»XM|J t

X) GO
/2.
)/2.
IG
6.

XSIG)
TO 93 75

XSIG)
TO 9004

XSIG)
TO c 005

XSIG)
TO QQ06

XSIG)
TO 5555

,NUJ
(S, XMIJ.
X) GH

/?
LX

XSIG)
TO 9007

M.
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9375 X4=?.*A-X3
NBR=NBR+1
CALL UNIF(PN f NU)
FOFX = XNCDF< X4,XMU»
IF(PN.LE.FOPX) GO
XB=X3
DELX=X1-XR
FXMU=XR+OELX/2.
EXSIG=1.3*OELX
GO TG 7000

9376 XB=X4
DELX=A-XB
EXMU=XR-HELX/4.
EXSIG=6*DELX
GO TO 7000

9500 X2=(A+Xl)/2.
NBR=NPR+l
CALL UNIF(RNfNU)
F0FX=XNCDF(X2 tXMU,
IF(RN.LE.FOFX) GO
X3=( Xl+B) /2.
MBP=NRR+l
CALL UNIF(RNtNM)
FOFX=XNC0F(X3,XVU,
IF(RN.LE.FOFX) GO
X4=2.*R-X3
NBR=NBR+1
CALL UNIF(RN,NU)
FOFX = XNC0F{X4,XM|),
IF(PN.LE.FOFX) GO
XB = X4
DELX=X4-XR
EX^U=XB+DELX/4.
FXSIG=6*DELX
GO TO 7000

5554 XR=Xl
DELX=X3-XB
EXMU=XB+DFLX/2.
EXSIG=1.3*QELX
GO TO 7000

5556 X4=( Xl+X2)/2.
NBR=NBP+1
CALL UNIF(RN.NU)
F0FX=XNCDF(X4tXM!} t

IF(RN.LE.FOFX) GO
X5=( X1+X3) /2.
NBR=NBR+1
CALL UNTF(RNfNU)
FOFX=XNCDF( X5.XMU,
IF(PN.LE.FT=X) GO
X6=2.*X3-X5
NBR=NBR*l
CALL UNIF(RN 9 NU)
FGFX=XNC0F(X6,XMU t

IF(RN.LE.FOPX) GO
XB = X6
DELX=XB-X3
EXMU=XB+0ELX/4.
EXSIG=6*DELX
GO TO 7000

5559 XB=X1
DELX=X5-Xl
FXMU=XB+OELX/?.
EXSIG=1.3*PELX
GO TO 7000

5553 EXMU=( X4+X1) /2.
EXSIG=(X]-X4)/?.
EXSIG=FXSIG/3.
GO TO 7000

5557 X5=(A+X2)/2.
NBR=NBR+l
CALL UNIF(RN,NU)

X S I G )

TO 9376

XSIG)
TO 9501

XSIG)
TO 5556

XSIG)
TO 5554

XSIG)
TO 5557

XSIG)
TO 5553

XSIG)
TO 5559
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FOFX=X
IF(RN.
X6=( X2
NRR=NR
CALL ')

FOFX=X
I F ( R N .

X7=( X4
NBR=NB
CALL U
FOFX=X
I F ( P. M .

XR=2.*
NBR=NB
CALL U
FHFX=X
IF(PN.
EXMU=X
EXSIG=
GO TO

123 FXMl)=(
EXSIG=
GO m

122 X«=(X6
NBP = N'B

CALL U
FO^X=X
IF(RN.
X9=( X^
NBR=NB
CALL U
FOFX=X
IF(RN.
EXMU=(
E X S I G=
GO TO

125 FXMU=(
EXSIG=
GO TO

124 X9=(X2
NBR=NB
CALL U
FOFX=X
I F i R N .

EXMU=<
EXSIG=
GO TO

126 EXMU={
EXSIG=
GO TO

121 X7=(X5
NBR=NB
CALL U
FOFX=X
IF(RN.
XR=( X6
NBR=MB
CALL U
FHFX=X
I F ( R N .

X9=( Xf
NBR=NB
CALL U
FOFX=X
IF(RN.
EXMU=(
FXSIG=
GO TO

129 EXMU=(
FXSIG=
GO TO

128 X9=(X7

MCDF( X
LE.FOF
+ X4) fl
R + l

N I F { R N
NCOF(X
LF.FOf
+ X1) /2
R + l

NIF(RN
NCD r

(

X

LE . F OF
X1-X7
R + l
NIFfRN
NCDF(X
LE.FOF
«+( XR-
6.*< X3
7000
X4+X7)
1.3*(X
7000
+X4)/2
R + l
NIF1RNI
NCOF(X
LE.FOF
+X7) /2
R + l

NIMRN
NCDFCX
LE.FOP
X4+X9)
1.3*(X
7000
X8+X4)
( X4-XR
7000
+X6)/2
R + l
NI C (PN
NCDF(X
LE.FOF
Xf+X8)
( X8-X6
7000
X9+X6)
l.?*(X
7000
+X2)/2
R + l

N I F { R M
NCDF(X
LE.FOF
+X2)/2
R + l

N I F ( R N
NCDFCX
LE.FOF
+X4)/2
R + l

NTF( RN
NCDF(X
LE.FOF
X6+X9)
1 .3*(

X

7000
XR+X6)
( X6-X8
7000
+X2)/2

, X S I G )

TO 5561

»XSIG)
TO 121

XSIG)
TO 122

, X S I G )

TO 123

5, XMll
X) GO

,NH)
6,XMU
X) GO

tMU)
7 f XM|.J

X ) GO

R,XW|J
X) GO
XI) M
-XI)

/2.
7- X4

)

• Nil)
B.XMij, XSTG)
X) GO TO 124

,NU)
, XMM

X) GO
/?.
9-X4)

/2.
)/6.

,NU)
Q, XMU
X) GO
/2.
)/6.

r?.
6-X9)

»NU)
7, X W U
X) GO

iNM)
8 t XMij
X) GO

,NH)
9, XMIJ
X) GO
/2.
9-X6)

/2.
)/6.

»XSIG)
TO 125

tXSIG)
TO 126

,XSIG)
TO 127

, X S I G )

TO 128

, X S I G )

TO 129
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CALL UNTFCRN
FOFX=XNCOF(

X

IFIRN.LF.FGP
FXMU=( X2+XP)
EXSI0=( XR-X2
GO TO 7000

130 EXMU=( X9+X2)
EXSIG=l.3*(X
GO TO 7000

127 EXMH=( X7+X2)
EXSIG=1.3*(X
GO TO 7000

5561 X6=2.*A-X5
NBR=NBR+1
CALL UMIFfPN
FOFX=XNCDF(X
IFIRN.LE.FOF
XR=X5
0ELX=X5-A
EXMU=XR+OSlX
EXSIG=1.3*05
GO TO 7000

556C XR = X5
0ELX=A-X6
EXMU=XB-OELX
EXSIG=6*0tLX
GO TO 7000

9501 X3=(A+X2)/2.
NRR=NRR+1
CALL UN'IFfR.N
FOFX=XNCDF(X
IF(RN.LE.POP
X4*< X1+X2) /?
NBR=N&R+1
CALL UN IF CRN
FOFX=XNCDF(

X

!F(RN.LE.FOF
X5=2.*X1-X4
N3R=NRR+1
CALL UNIF(RN
FOFX=XNCDF(

X

IFCRN.LE.FOF
XP = X^
DELX=XR-X1
EXMU=XB+OELX
EXSI0=6*DELX
GO TO ^000

9030 XR=X2
DELX=X4-X2
FXMU=XR+DFLX
EXSIG-] .3*DE
GO TO 7000

9504 X5=( X3+X2)/2
NBR=NPR+1
CALL UNIF(RN
FOFX = XN'COF(X
IF(RN.LE.FO*=
X6=( X2+X4) /2
NBR=NBR+1
CALL HNI C (RN
FOFX=XNCOF( X
TF(RN.LF.FnP
X7=2 .*X4-X6
NBR=NRR+1
CALL UNIF(^i
FOFX=XMCDF(X
IF(RN.LE.FOF
XP=X7
DELX-X7-X4
EXMU = XB*-PELX
«r XSIG=6*DFLX

i Nil)
9, XMIJ,
x) on
/2.
)/6.

/2.
2-X°)

/2.
2-X7)

,MII)
6,X^Ut
X) GO

XSIG)
TO 130

XSIG)
TO 5560

/2.
LX

/4.

,NU)
3, XMU,
X) GO

tNU)
4,XMM f

X) GO

f NU)
5,XMU,
X) GO

/4.

/2.
LX

f MU)
5,X*>U,
X) GO

iNU)
6.XMU,
X) GO

XSIG)
TO 9503

XSIG)
TO 9504

XSIG)
TO 9080

tNUI
7,X*MJ,
X) GO

XSIG)
TO 9081

XSIG)
TO Q0R2

XSIG)
TO 9083

/4.
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9033

9082

9031

9034

^035

9503

9510

9509

9511

GO TO
XB = X2
D£LX=X
FXM()=X
EXSIG=
GO TQ
EXMU=(
FXSIG=
GO TO
X6=( X3
N'BR=N&
CALL U
FOFX=X
I F ( R M .

FXMU=(
F X S I G=
GO Tn
X7=2.*
NBR=NR
CALL U
FOFX=X
IF(RN.
X3=X6
DELX=X
FXMU=X
FXSIG=
GO TO
XB = X7
DELX=A
PXMU=X
FXSIG=
GO TH
X4=(X3
NRR=NB
CALL U
FOFX=X
IF(PN.
X5=< X2
NBR=NB
CALL U
FOFX=X
IF(RN.
X6=2.*
NRR=NR
CALL U
FOFX=X
IF(PN.
XR = X6
DELX=X
FXMU=X
EXSIG=
GO TO
XB = X3
DELX=X
FXMU=X
FXSIG=
GO TO
X6=( X3
NRR=MB
CALL U
FOFX=X
IF(RN.
FXMU=(
FXSTG=
EXSIG=
EXSf 0=
GO TO
EXMU=(
FXSTn=
FXSIG=
EXSIG=
GO TO

7000

6-X2
B + np
1.3*
7000
X5 + X
( X2-
7000
+ £ ) /
R+l
NIF(
NCDF
LE. C

X3 + X
( X*-
7000
A-X6
R+l
NIP{
MCD^
LE.F

LX/2.
DFLX

2)/2.

2.

RM t NU)
( Xfr.XWU
HFX) GO
5)/2.
X^)/6.

, X S T G )

TO 9034-

RNtNU)
(X7 t XMU»XMG)
OFX) GO TO 9035

3-X6
B+DFLX/2
1.3*nELX
7000

-X7
B-DF
6*DE
7000
+ A) /
R + l

NIF<
NCDF

LX/^.
LX

2.

RNtNU)
(X^,XMlJ

LE.FOFX) GO
/2.+ X3)

R + l

NUF(
NCOF
Lf.F
X2-X
R + l
NTF(
NCOF
LE.F

RM,NIM
(X5 t XMU
OPX) GO
5

RN,NU)
(X6.XMIJ
OFX) GO

, X S T )

TO 9507

, XSIG)
TO 9509

, X S I G )

TO 9510

6-X2
B+OELX/6
6*DELX
7000

5-X3
B + DE
1.3*
7000
+ X^)
R + l

NIF(
NCDF
LE.F
X6+X
( X3-
2.* c

FXSI
TOOO
X4 + X
( X6-
2.*E
C XSI
7000

LX/2.
OELX

/2.

RN,NU)
( X5,X^U
OF X ) GO
3) /2.
X6)/2.
XSIG
G/6.

6) /2.
X4)/2.
XSIG
G/5.

. X S 1 )

TO 9511
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9507

9509

7000

1003

1001
33

X5=( X4
NRR=NR
CALL LI

FOFX=X
IF(RN.
FXMU=(
EXSIG=
EXSIG=
EXSIG=
on to
EXMU=(
FXSIG=
EXSIG=
EXSIG=
GO TO
XR = 0.
OELX=0
WRITF(
IF(EXS
OPT=0.
DIF=0.
XINC=0
OPT=EX
IF(OPT
XTNC=(
1NC=XT
0IF=XI
IF(DIF
IF(DIF
GO TP
A=OPT
INC =
M=IO+I
IS=70-
M=IQ+I

+ A)
o + l

NIP
NCD
LE.
X^ +
( X4
2.*
FXS
700
X5 +
(X4
2.*
FXS
700

/2.

(RNtNU)
F( X5,XMU, XSIG)
FO c X) GH TG 9508
X5)/2.
-X5)/2.
EXSIG
IG/6.

A}/2.
-X5)/2.
FXSIG
TG/6.

6, LOOM FXMU»EXSIG
IG.LT.O.) EXSIG=-EXSIG

MU-4.*EXSIG
.LT.A) GO TG
GPT-A)/FXSIG
NC/i
NC-INC
.GE..5)
.LT..5)
1001

NC + 1
NBR
NC + 1

1003

IMC=TNC+l
TNC=INC

CONDUCT BRUCETON TEST

CLEAR ARRAYS
DO 10 1=1 t 200
X( I )=0.
IXO( I )=0
IXX( I)=0
NS( I )=0
NG( I 1=0
SUMAR-0.
SUMRR=0.
AR(I )=0.
BR( I ) = 0.

10 CONTINUE

LOAD X ARRAY
DO 20 J=l,200
X( J)=A+( J-1)*EXSIG

20 CONTINUE

CONDUCT EXPERIMENT
30 CMl UNIP(RN t MU)

FGFX =XNCDF(X(M) »XMt) t xSIG)
IF(RN.GT.FGPX)GG TO 40
IXX(M)=IXX(M)+1
M=M-1
N=N+1

5 IF(N.GT.IS) GG TG 60
GO TG 30

40 IX0(M)=IX0(M)+1
M = M+]
N=N+1
GO TO 50

PERFORM BRUCETON ANALYSIS
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COUNT RESPONSES AMD NON-RESPONSES
6 ISUMX=0

ISUMn=o
no i* j=i t 2oo
ISUMX=TSUMX*JXX( J)
ISU^O=ISUM0+IXO( J)
NS( J)=0
AR( J )=0.
RR( J ) = 0.
NG< J)=0

14 CONTINUE

DETERMINE LESS FREQUENT EVENT AND LOAD NS
IF( 1SUMX.LE.ISUM0) r,n TO 15
NT=!SUMO
IFLAG-0
00 21 J=l,200
NS( J)=IXO( J)

21 CONTINUE
GO TO 16

15 NT= I SUM

X

IFLAG=]
DO 22 J=lt200
NS( J)=TXX< J)

22 CONTINUE

DETERMINE FIRST AND SECOND MOMENTS
16 JC0UNT=1
17 IF(NS( JCOUNT).GT.O) GO TO IS

JC0UNT=JC0UNT*1
!F(JCOUNT.GF.2O0) GO TO 104
GO TO 17

IB MC0UNT = 200- .IC.OHNT
DO 19 J = 1 , MCOU'«'T
NG( J)=NS( JCHUNT4 J-l

)

AR( J)=( J-1)*NG( J)
SUMAR=SUMAR+AR( J)
BR( J )=<< J-l )**2)*NGU)
SUMPR = SUMRR4-B« ( J)

19 CONTINUE
YPRIME=X( JCOUNT)

CALCULATE ESTIMATES O c MEAN AND STANDARD DEVIATION
IE( IFl AG.FO.O)XMUEST = YPPIMF + EXSIG*( ( SUMAR/NT ) + ( \ m /?. . ) )

IE(.NOT.IFLAG.EO.O) XMUEST= YPR

I

M^+EXS IG* ( ( SUMAR/NT )-( 1

.

SIGFAC=( (NT*Sl)MRR)-(SUMAR**2) ) /(NT**2)
IF(SIGFAC.GT..3) GO Tn 1000
EMU(LCOUNT)=0.
EOEV(LCOUNT)=0.
N0GP = N0G0«-1
GO TO 104

1000 DEVEST=1.62*EXSIG*(SIGFAC+.029I

LOAD EMU AND EDEV

FMU(LC RUNT)=XMUEST-XMU
FDEV(LCOUNT)=DFVEST-XSIG
ADDMU=ADDMU-»-FMU< LCOUNT)
ADDSIG=AnDSIG + EnEV( I COUNT)
ADDMUQ=ADDMUO+FMU( LC^UNT ) **?
ADDSDO=ADDSDO+FDEV( LCOUNT) **2
IF(PMU(LCOUMT) .l.T.0. ) GO TO 91
IF(EMU(LCniJNT) .FO.O.) GO TO 92
IMUHI = IMIJHI + 1

1 F ( F M ll ( L COUM T ) . G T . H I MM ) H I Ml j = F MM ( L C OUNT )

IFl .NO'.FMU(LCOUMT) .GT.HIMU) HI MU = HI mij

GO TO 93
92 N0MU=N0MU4-1

GO TO o^
91 IMUL0=IMUL0+1

IF(EMU(LCOUNT) .I.T.SMLO) SMLO=EMU(LCOUNT)
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) DFVHI=FDFV(LCOUNT)
OFVHI) nEVHl=DEVHI

IF( .NOT.EMU(LCOUNT) . LT.SMl.O) SMLO=SMLO
^3 IF(FOEV(LCni)NT) .IT.O. ) GO Tn 9^-

IF(FDEV(LCDUNT) .EO.O.) GO TO «5
IDEVHI=IDEVHI+1
IF(EDPV(LCnUMT) . GT.DEVHI
IF( .NOT.EDEV(LCOUNT) .GT,
GO TO 104

95 N0DEV=N0DEV+1
GO TO )0<>

94 IDEVL0=IDEVL0+1
IF(LDEV(LCO'JNT).LT.DEVLO) DEVLO=EDFV(LCOUNT

)

IF( . NOT. FOE V(LC HUNT ).LT.DEVLO) OEVLO=DFVLO
104 JCOUNT=0

SIGFAC=0.
XMUFST=0.
DEVEST=0.
SUMAR=0.
SU w BR=0.
LC0UNT=LC0UNT+1

HAVE 1000 EXPERIMENTS BFEN CONDUCTED ?

IF(LCOUNT.LT.lOOl) GO to 103

TF EXPERIMENTS COMPLETED CALCULATE AND WRITE RESULTS

EXN0GO=N0GO
SAMAVM=ADDMU/( 1 000.

-

c XNOGO

)

SAMAVD=ADDSIG/( 1000. -E X NOG H)
SAMSOM=AODMUO/( Q 09. -F XNOGO)
SAMSOD= ADD S^0/( 99°.

-

c XNOGO)
IF( IANY.EO.l) GO TO 35
IANY=IANY+1
GO TO 6«?

35 STOP
END

SUBROUTINE UNIF(RN t NU)

SUBROUTINE RETURNS RANDOM NUMBER UNIFORM ON (0,1)

REAL MOD
MOD= 2**31
NR=129*NU+1
RN=NR/MOD
IF(RN.LT.O.O) RN=-RN
NU=NP
RETURN
END

FUNCTION XNCDF( V,XMU»SX)

FUNCTION SUBPRnr7 p AM CALCULATES
X IS AN R.V. WITH MEAN,XMij t AND

ARG=( V-XMU)/SX
XNCDF=SNCDF( ARG)
RETURN
END

CUMULATIVE NORMAL.
STANDARD DEVIATION, SX

FUNCTION SNCDF(X)
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FUNCTION SUBPROGRAM CALCULATES STANDARD CUMIMATTVF NORMAL.
DATA TPST/O.O/
IF( TEST. NE. O.O) GO TO 100
SR2= SQRT(P.O)
TFST=1.

100 SNCDF=( 1.0+ERF(X/SR2>) /2.0
R c TURN
END
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