

Calhoun: The NPS Institutional Archive DSpace Repository

An evaluation of a modified binary search procedure for use with the Bruceton method in sensitivity testing

Hicks, Donald Lee
Monterey, California ; Naval Postgraduate School

https://hdl.handle.net/10945/14993

This publication is a work of the U.S. Government as defined in Title 17, United States Code, Section 101. Copyright protection is not available for this work in the United States.

AN EVALUATION OF A MODIFIED BINARY SEARCH PROCEDURE FOR USE WITH THE BRUCETON METHOD IN SENSITIVITY TESTING
by

Donald Lee Hicks

United States Naval Postgraduate School

THESIS

AN EVALUATION OF A MODIFIED BINARY SEARCH PROCEDURE FOR USE WITH THE BRUCETON METHOD IN SENSITIVITY TESTING

by

Donald Lee Hicks

September 1970

This document has been approved for public
release and sale; its distribution is unlimited.

$$
I^{--}
$$

An Evaluation of a Modified Binary Search Procedure for use with the Bruceton Method in Sensitivity Testing
by
Donald Lee HicksMajor, United States Marine Corps
B.S., United States Naval Academy, 1957
Submitted in partial fulfillment of therequirements for the degree of
MASTER OF SCIENCE IN OPERATIONS RESEARCH
from the
NAVAL POSTGRADUATE SCHOOL
September 1970

Mearer H j- $\operatorname{Hos} 01$

ABSTRACT

Two methods of obtaining sensitivity data were simulated on an electronic computer for the purpose of comparing the accuracy of the estimates of the parameters of an underlying cumulative normal response function. The first method simulated the standard Bruceton procedure while the second used a modified binary search routine with a portion of the sample in order to obtain maximum likelihood estimates of the input parameters for use in a follow-on Bruceton test.

The results showed both methods to be effective in estimating the mean but with slightly more variability in the estimates obtained by the second procedure. Both methods underestimated the standard deviation again with more variability in the estimates obtained by the second procedure. When the prior parameter estimates were unknown and the applicable stimulus level bounded, the second method yielded estimates favorably comparable to those expected from the Bruceton procedure with suitable prior input estimates.
I. INTRODUCTION 7
II. THE MODEL 9
III. TESTING METHODS 11
A. BRUCETON METHOD 11

1. Description 11
2. Discussion 12
B. BRUCETON METHOD PRECEDED BY SEARCH 13
3. Description 13
4. Discussion 19
IV. SIMULATION 21
A. DESCRIPTION 21
B. MEASURES OF EFFECTIVENESS 22
C. DISCUSSION 23
D. RESULTS 24
V. CONCLUSIONS AND RECOMMENDATIONS 26
A. CONCLUSIONS 26
5. Estimation of the Mean 26
6. Estimation of the Standard Deviation 26
7. Extension of the Search Phase for the Starting Sequence 26
8. Use of Search Technique 26
B . RECOMMENDATIONS 26
9. Reduction of Sample Size 26
10. Random Selection of Response Function Parameters 27
COMPUTER PROGRAM 28
BIBLIOGRAPHY 40
INITIAL DISTRIBUTION LIST 41
FORM DD 1473 43

LIST OF FIGURES AND TABLES

Figure Page
1 Starting Sequence 15
2 S_{U} Sequence 16
3 S* Sequence 17
4 S_{L} Sequence 18
5 Response Sequences and Parameter Estimates 20
Table Page
I Table of Experimental Results 25

$$
6
$$

I. INTRODUCTION

Frequently a statistician is faced with the problem of determining the level of a stimulus which critically affects the performance of a device. The nature of the testing to be discussed is such that once some positive level of the stimulus is applied to the device either a response or a non-response can be immediately observed and, in either case, the device is altered so that a bonafide result cannot be obtained from a second test. Tests of this type are known as sensitivity tests.

One of the many problems besetting those involved in explosives research is that of providing measures and specifying rules to provide for the safe handling and transportation of explosives. Many different types of sensitivity testing apparatus have been developed for laboratory use, the most common being those that subject some quantity of explosive to the impact load of a falling drop-weight from some controllable height. At least as late as October 1965 there remained two important physical problems to be solved; namely, that of establishing a measure of stimulus not highly apparatus-dependent and then that of translation of these results to safe handing rules [1]. These problems are not addressed in this paper but should be kept in mind when considering the overall problem.

In the early 1940's, a technique for obtaining sensitivity data was developed and used in explosives research at the Explosives Research Laboratory, Bruceton, Pennsylvania which has come to be called synonymously, the Braceton, Staircase, or "Up and Down" Method.

The aim of this method of testing is to increase the accuracy with which certain critical values of the stimulus may be estimated, notably the median (or mean) and standard deviation. The accuracy of the method
depends in part on the stimulus level at which the first item is tested and the interval spacing for subsequent levels of testing [2].

When the stimulus levels mentioned above cannot be determined prior to testing or when little confidence is placed on the available estimates, a preliminary (or search) phase of testing may be desirable to obtain maximum likelihood estimates prior to employing the Bruceton Method with the remainder of the sample. A procedure to do this is offered as an alternative method.

The comparative accuracies of the two techniques were examined through the use of simulation conducted on a high-speed electronic computer. All parameters and estimates considered as inputs to the simulation were kept within ranges for which the Bruceton Method is considered to yield accurate results [2].

II. THE MODEL

Let x be an applied stimulus level $\left(x_{\varepsilon}[0, \infty)\right.$) and $y=y(x)$ be the associated response $(y \in\{0,1\}$ where " 0 " denotes no response and " 1 " denotes response). At any given stimulus level consider y to be the realization of a Bernoulli random variable, Y, with response probability

$$
p(x)=\operatorname{Prob}(Y=1 \mid x)
$$

The function $p(x)$ is called the response function and is further specified as
and

$$
\begin{array}{ll}
p(x) \cong 0 & x_{\in}[0, a] \\
0<p(x)<1 & x_{\in}(a, b) \\
p(x) \cong 1 & x_{\in}[b, \infty)
\end{array}
$$

The intervals $[0, a],(a, b)$ and $[b, \infty)$ are called the zero-response region, the mixed-response region, and the one-response region respectively. It is assumed that $p(x)$ is a monotonely increasing function for stimulus values in the mixed-response region. Thus, $\mathrm{p}(\mathrm{x})$ can be considered as the cumulative distribution function for a random variable X such that

$$
p(x)=\operatorname{Prob}(x \leq x)
$$

In this context the random variable X can be interpreted as a threshold stimulus level, thus
and

$$
\begin{align*}
& \operatorname{Prob}(Y=1 \mid x)=\operatorname{Prob}(X \leq x)=p(x) \\
& \operatorname{Prob}(Y=0 \mid x)=\operatorname{Prob}(X>x)=1-p(x) \tag{3}
\end{align*}
$$

It is assumed the X is distributed Normal $\left(\mu, \sigma^{2}\right)$; that is

$$
p(x)=\varphi\left(x \mid \mu, \sigma^{2}\right)
$$

where $\varphi\left(x \mid \mu, \sigma^{2}\right)$ represents the cumulative normal distribution with mean
μ and variance σ^{2}. In particular

$$
\operatorname{Prob}(x \leq \mu)=p(\mu)=0.5
$$

III. TESTING METHODS

A. BRUCETON METHOD

1. Description

Based on intuition or past experiments, the experimenter selects a priori estimates of μ and σ. Call these estimates μ_{I} and σ_{I} and let $d=\sigma_{I}$.

The experimenter tests the first item at or near μ_{I}. If there is a response the second item is tested at a level d units below μ_{I}, otherwise the second item is tested at a level d units above μ_{I}. In the same manner, each of the remaining items is tested at a level d units above or below the previous test level according as there was not or there was a response observed for the previous test. Thus the sample is concentrated about the mean and one would expect nearly equal numbers of responses and non-responses. In fact, the number of nonresponses at any level will not differ by more than one from the number of responses at the next higher level [2].

Let N denote the total number of observations of the less frequent event and $n_{0}, n_{1}, n_{2}, \cdots n_{k}$ denote the frequencies of this event at each level where n_{0} corresponds to the lowest level and n_{k} the highest level at which the less frequent event occurs.

The final estimates of μ and σ are based on the first two moments of the stimulus levels. Since the intervals are equally spaced, these moments can be computed in terms of the sums
and

$$
\begin{aligned}
& A=\sum_{i} i n_{i} \\
& B=\sum_{i} i^{2} n_{i} .
\end{aligned}
$$

Let $\hat{\mu}$ be the estimate of μ by this method. Then

$$
\hat{\mu}=x^{\prime}+d\left(\frac{A}{N} \pm \frac{1}{2}\right)
$$

where x^{\prime} represents the lowest level at which the less frequent event occurs [2]. The plus sign is used when the analysis is based on nonresponses, and the minus sign when it is based on responses [2].

If $\left(N B-A^{2}\right) / N^{2}>.3$ the sample standard deviation is

$$
\mathrm{s}=1.620 \mathrm{~d}\left(\frac{\mathrm{NB}-\mathrm{A}^{2}}{\mathrm{~N}^{2}}+.029\right)
$$

Otherwise, a more elaborate calculation must be employed and is described in Ref. 2.

To obtain confidence intervals, estimates of the standard deviations of the sample mean and sample standard deviation, say s_{m} and s_{s} respectively, are given by

$$
s_{m}=\frac{G s}{\sqrt{N}}
$$

and

$$
\mathrm{s}_{\mathrm{s}}=\frac{\mathrm{Hs}}{\sqrt{\mathrm{~N}}}
$$

where the factors G and H are dependent on the ratio $\frac{d}{s}$ and the position of the mean relative to the testing levels. Plots of these factors are available in Ref. 1.
2. Discussion

Only rarely is the threshold stimulus Z normally distributed. It is usually the case that some scale transformation of Z, say X, is made so that X is normally distributed in the vicinity of the mean. This transformation is done prior to testing to determine μ_{I} and σ_{I}. Only after all analysis is completed are the values scaled back to the original stimulus measure [2].

The size of the sample is critical to the accuracy of the estimation. Note that at most only half of the sample is used in the analysis so that, for example, if thirty items are tested the maximum possible value of N is fifteen. The analysis is based on large sample theory which in the case mentioned would be applied to a sample of size fifteen [2] [4].

Unless normality of the variate is assured this method does not yield accurate results for the small and large percentage points. This is unfortunate since in most applications one would be more interested in a small percentage point as a measure of safety and a large percentage point as a measure of reliability. At any rate, an estimate of a percentage point j is

$$
\mathrm{j}=\hat{\mu}+\mathrm{ks}
$$

where k is chosen from tables of the standard normal deviate to give the desired percentage [2]. One could then conduct tests in the vicinity of this value to refine the estimate.

B. BRUCETON METHOD PRECEDED BY SEARCH

1. Description

In the event that a priori estimates of μ and σ are not available some economic method of attaining these estimates is desired. A method proposed and described below is a modified binary search technique.

Again, the assumption is that the threshold stimulus (or some transformation of it) is normally distributed and $p(x)$ can be represented by a cumulative normal distribution.

As noted from the model

$$
\operatorname{Prob}(Y=0 \mid x \leq a) \cong 1
$$

and

$$
\operatorname{Prob}(Y=1 \mid x \geq b) \cong 1
$$

The first step in the procedure, then, is to select values for a and b. (In the case of complete uncertainty these could be the limiting values of the testing apparatus) and commence the binary search starting at

$$
x=(a+b) / 2
$$

If $p(x)$ were a step function, repetition of this method would locate the step in an interval of any desired length. In general, however, the mixed-response region has non-zero width and a non-response would merely indicate that the applied stimulus is in the mixed response region or below while a response would indicate that it was in the mixed response region or above.

If a test at x_{1} yields a response and a test at x_{2} yields a non-response while $x_{1}<x_{2}$ it is certain that both x_{1} and x_{2} are in the mixed response region. This condition is called a response inversion and is the basic indicator for the modified binary search technique. The description of the procedure is best followed by referring to Figures 1 through 4.

Sequence S^{*} is a cyclic one indicating that a reduction in step size should be taken. Test levels are selected attempting to reproduce this sequence. Failure to do this results in the basir inversion sequence S_{0}. Tests are then made at the end of this sequence to result in one of three terminal situations S_{1}, S_{2}, or S_{3}. In the event the mixed response region is relatively narrow and near a or b, several binary reductions may be necessary to reproduce S^{*} or one of the terminal situations. These circumstances are represented by S_{L} and $S_{U}[3]$.

STARTING SEQUENCE
Figure 1

S_{U} SEQUENCE
Figure 2

S* SEQUENCE
Figure 3

$S_{\text {L }}$ SEQUENCE
Figure 4

Maximum likelihood estimates of μ and σ are available for sequences S_{1}, S_{2}, and S_{3} and developed as described below [3].
2. Discussion

It is assumed that all trials are independent. Thus the probability of the sequence S_{1} is $\operatorname{Prob}\left(S_{1}\right)=\operatorname{Prob}\left(Y_{1}=0, Y_{2}=0, Y_{3}=1, Y_{4}=0, Y_{5}=1, Y_{6}=1 \mid X_{1}, X_{2}, X_{3}, X_{4}, X_{5}, X_{6}\right)$

$$
=\prod_{i=1}^{6} \operatorname{Prob}\left(Y_{i}=y_{i} \mid x_{i}\right)
$$

where

$$
\begin{aligned}
\operatorname{Prob}\left(Y_{i}=y_{i} \mid x_{i}\right) & =\varphi\left(x_{i}\right) \text { if } y_{i}=1 \\
& =1-\varphi\left(x_{i}\right) \text { if } y_{i}=0
\end{aligned}
$$

and

$$
\varphi\left(x_{i}\right)=\operatorname{Prob}\left(x_{i} \leq x_{i}\right)=\int_{-\infty}^{x_{i}} \frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{1}{2} \frac{(x-\mu)^{2}}{2}} \sigma^{2} d x
$$

Maximum like lihood estimates for μ and σ can then be established using standard normal tables for each of the terminal situations. These estimates are indicated on Figure 5.

$$
s^{*}
$$

So

S_{3}

RESPONSE SEQUENCES AND PARAMETER ESTIMATES
Figure 5

IV. SIMULAT. ON

A. DESCRIPTION

Al1 simulated experiments were conducted on an IBM $360 / 67$ computer using the FORTRAN IV programming language. The basic program is attached. The response function $p(x)$ used was cumulative normal with $\mu=30$ and $\sigma=3$.

The sample size was kept at seventy for each experiment to provide some assurance that the analytical sample would be suitable for large sample analysis.

The basic test procedure was to draw a random number on the unit interval and compare this to $F(x)$, a function of a standard normal variate specified as

$$
F(x)=\frac{1}{2}\left[1-\operatorname{erf}\left(\frac{x}{\sqrt{2}}\right)\right] \quad \text { if } x<0
$$

and

$$
F(x)=\frac{1}{2}\left[1+\operatorname{erf}\left(\frac{x}{\sqrt{2}}\right)\right] \quad \text { if } x \geq 0
$$

where

$$
\operatorname{erf}(v)=\frac{2}{\sqrt{\pi}} \int_{0}^{v} e^{-t^{2}} d t
$$

(The function subprogram erf is an IBM-supplied subprogram.) If the random number was less than or equal to $F\left(x_{i}\right)$ then a response was counted for the $i^{\text {th }}$ level; otherwise a non-response was counted.

Six different cases were tested using the straight Bruceton procedure (METHOD 1) with two different input estimates of μ and three different input estimates of σ. Case 1 considered exact estimates; i.e., $\mu_{I}=\mu$ and $\sigma_{I}=\sigma$. Case 2 considered $\mu_{I}=\mu-6$ and $\sigma_{I}=\sigma$.

Cases 3 and 4 considered $\mu_{I}=\mu$ and $\sigma_{I}=\sigma / 2,2 \sigma$ respectively while Cases 5 and 6 repeated Cases 3 and 4 except $\mu_{I}=\mu-6$. For each of the six cases 1000 experiments were conducted each utilizing a different sequence of random numbers.

The search procedure (METHOD 2) was then incorporated into each of the above six cases using the a prior estimates, μ_{I} and σ_{I}, to determine estimates for stimulus levels a and b and thereby the size of the binary reduction as indicated in Figure 1. The program then followed the flow shown in Figures 1 through 4 until either a terminal sequence was reached or the search was arbitrarily terminated as discussed in subparagraph C below. The Bruceton procedure was then used until the sample was exhausted.

The final case, Case 7, indicated complete lack of knowledge of μ and σ but considered the upper and lower stimulus level limits of the test apparatus to be 100 and 0 respectively.

B. MEASURES OF EFFECTIVENESS

At the completion of all experiments for each case, several measures were obtained for comparison. First, average values of the parameters were determined to be

$$
\overline{\hat{\mu}}=\sum_{i} \hat{\mu}_{i} / N
$$

and

$$
\overline{\hat{\sigma}}=\sum_{i} \hat{\sigma}_{i} / N
$$

where $\hat{\mu}_{I}$ and $\hat{\sigma}_{I}$ are the a posteriori estimates of μ and σ for the $i^{\text {th }}$ experiment and n, the number of experiments used. Next, as measures of variability

$$
s_{\hat{\mu}}^{2}=\sum_{i}\left(\hat{\mu}_{i}-\mu\right)^{2} / n-1
$$

and

$$
s_{\hat{\sigma}}^{2}=\sum_{i}\left(\hat{\sigma}_{i}-\sigma\right) / n-1
$$

were calculated. In addition, the program listed the maximum and minimum estimates of both μ and σ.

C. DISCUSSION

In Chapter III it was noted that sequences $S *, S_{U}$, and S_{L} are cyclic. In order to simplify the program it was necessary to artificially terminate these situations at some point and calculate the input values for the Bruceton test. The estimate of μ used was

$$
\mu_{s}=\left(x_{1}+x_{2}\right) / 2
$$

where x_{1} and x_{2} are adjacent testing levels and $x_{2}>x_{1}$ with $y_{1}=0$ and $y_{2}=1$. The estimate of σ used was

$$
\sigma_{s}=\left(x_{2}-x_{1}\right) / 2
$$

for Cases 1 through 6 and

$$
\sigma_{s}=\left(x_{2}-x_{1}\right) / 6
$$

for Case 7. The former estimate of σ was chosen arbitrarily while the latter estimate was based on the estimate of the mixed response region being 6σ. While the number of terminations of this type was insignificant for the first six search cases, in the final case over 600 experiments were thus terminated requiring the program to be expanded to permit more recycling. The point is that the artificial termination does not represent the search procedure. This problem would not arise in field experimentation until either the sample was exhausted or the step size reduction of stimulus level indicated was too narrow to be measured or controlled by the test apparatus.

Also in the interest of program simplification those experiments for which

$$
\frac{N F}{-A^{2}} \frac{N^{2}}{5} \leq 3
$$

were not used for analyses. This limitation invalidated the measures of effectiveness for the Bruceton cases where $\sigma_{I}=2 \sigma$.

D. RESULTS

The results of the simulation are listed in Table I. It is questionable that the measures listed under Method 1 are valid for Cases 4 and 6 in that only .381 and .393 of the possible experiments were used. These two cases and Case 4 under Method 2 (where .661 of the possible experiments were used) are the only ones for which $\overline{\hat{\sigma}}>\sigma$.

In general the extreme estimates are more widely separated and the variability of $\hat{\sigma}$ is greater in Method 2.

Estimates of μ range from 27.8823 to 31.7647 for Method 1 and 27.937 to 31.91 for Method 2.

Estimates of σ range from . 8741 to 6.5027 for Method 1 and .3498 to 9.8328 for Method 2 .

The lowest average $\hat{\mu}, 29.9113$, was obtained under Method 1, Case 5, while the highest average $\hat{\mu}, 30.1175$, was obtained under Method 2, Case 3.

The lowest average $\hat{\sigma}, 2.3748$, was obtained under Method 2, Case 5, while the highest average $\hat{\sigma}, 2.9474$, was obtained under Method 1 , Case 5. (Case 6 is not counted under Method 1 nor is Case 4 under both methods.)

TABLE OF EXPERIMENTAL RESULTS

		METHOD 1		METHOD 2	
		$\hat{\mu}$	$\hat{\sigma}$	$\hat{\mu}$	$\hat{\sigma}$
CASE 1					
$\mu_{\mathrm{I}}=30$	AVE	30.0067	2.8320	30.0117	2.8609
$\sigma_{I}=3$	MAX	31.7647	5.7904	31.7813	5.9343
$\mathrm{a}=18$	MIN	28.5000	1.6089	28.2187	1.1241
$b=42$	VAR	. 2523	. 4128	. 2514	. 5831
CASE 2					
$\mu_{\mathrm{I}}=24$	AVE	29.9641	2.9040	30.0317	2.8819
$\sigma_{I}=3$	MAX	31.6765	5.8249	31.6875	9.1369
$a=12$	MIN	28.3235	1.6250	28.1976	. 9512
$b=36$	VAR	. 2656	. 4225	. 2666	. 6336
CASE 3					
$\mu_{\mathrm{I}}=30$	AVE	$30.0<95$	2.7216	30.1175	2.8615
$\sigma_{I}=1.5$	MAX	31.6071	6.1197	31.9100	7.7997
$a=24$	MIN	28.4118	. 8741	28.5950	. 8697
$b=36$	VAR	. 2046	. 7409	. 2693	. 9081
CASE 4					
$\mu_{\mathrm{I}}=30$	AVE	29.9683	3.5424	29.9750	3.0721
$\sigma_{I}=6$	MAX	31.4571	6.0266	31.6875	6.3569
$a=6$	MIN	28.0286	--	27.9370	1.6170
$b=54$	VAR	. 2574	. 4639	. 2619	. 4522
CASE 5					
$\mu_{\mathrm{I}}=24$	AVE	29.9113	2.9474	29.9363	2.3748
$\sigma_{I}=1.5$	MAX	31.4773	5.9257	31.4063	7.9507
$a=18$	MIN	28.2353	. 9452	28.1961	. 3498
$b=30$	VAR	. 2220	. 8748	. 2184	1.4889
CASE 6					
$\mu_{\mathrm{I}}=24$	AVE	29.9493	3.5438	30.0247	2.8398
$\sigma=6$	MAX	31.4118	6.5027	31.5756	6.4201
$a=0$	MIN	27.8823	--	28.2552	1.1252
$b=48$	VAR	. 2639	. 4785	2490	. 6300
CASE 7					
--	AVE	--	--	30.0123	2.7280
--	MAX	--	--	31.8229	9.8328
$a=0$	MIN	--	--	27.9541	. 5082
$\mathrm{b}=100$	VAR	--	--	. 2628	2.1041

TABLE I

V. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS

1. Estimation of the Mean

Both methods estimate the mean effectively.
2. Estimation of the Standard Deviation

Both methods tend to under-estimate the standard deviation with no predictable bias and are therefore unsuitable for use in safety or reliability statements. This conclusion agrees with the findings of Hampton [4] as it pertains to the Bruceton Method.
3. Extension of the Search Phase for the Starting Sequence

Termination of the search phase with sequence S_{1} in the starting sequence (see Figure 1) may yield estimates of σ greater than twice the actual value. To avoid this it is advisable to extend the search phase as described in Ref. 3.
4. Use of Search Technique

The search procedure should be used in those cases where there is not independent evidence that the estimate of σ is within the range for which the Bruceton Method is recommended (i.e., $\sigma / 2<\sigma_{I}<2 \sigma$).

B. RECOMMENDATIONS

Further testing of Method 2 is recommended under the circumstances listed below.

1. Reduction of Sample Size

It would be of incerest to reduce the sample size to the point where the effective sample is small, say 15 , and compare the Bruceton procedure with the search procedure using the entire sample for the search.

2. Random Selection of Response Function Parameters

A more valid test of both methods would be achieved by randomally selecting values of μ and σ over some range and using the on-line computer facility to conduct the simulation.

THIS PROGRAM SIMULATES SENSITIVITY TFSTING BY ROTH THE GRIICFTON METHOD (WHEN IANY=O) AND THF RRUCETON MFTHOD PRECEDED BY THF MODIF IEO BINARY SEARCH (WHEN I ANY=1). THE UNDERIYING RESPONSE FUNTIBN IS CUMULATIVF NDRMAL $(30,71$. THE INDUT FSTIMATES DF THE MEAN AND THE STANDARD DEVIATION ARF CALLED EXPII AND EXSIG RESPPECTIVELY.

```
THE PRINCIPIE VAOIARIF NAMES ARE AS FOLLOWS...
    AACT IS THE STIMULIIS VALUE AT THE UPPFR LIMIT DF THE
        MIXED RESPNNSE PEGION.
    BACT IS THE STIMILUS VALVE AT THE LOWER LIMIT OF THF
        MIXED RESPONSE RERION.
    A AND B ARE FSTIMATFS OF AACT ANO RACT RESPECTIVFLY.
```



```
    IXX(J) IS THF CUMUIATIVF COUNT OF RESPIINSES AT X(J)
    IS IS THE SAMPLE SITE.
    NU IS THE ENTRY NUMBER FOR THE RANDOM NUMRER GENERATOR,
        IJNIF
    N COUNTS THE NUMREQ OF FXPFERIMENTS.
    RN IS THE RANDOM NIMMFR ON (O.1) RETIIRNFD RY UNIF.
    FOFX IS THE VALUE OF THE RESPONSF FIINCTION RETURNFD BY
        SUBPROFRANS XNCDF AND SNCOF.
    ISUMO IS THF TOTAL NUMBFR OF NON-RESPONSES FOR ONE EXPFR-
        IMENT.
        ISUMX IS THE TOTAL NUMBFQ OF DESPONSES FOR ONE EXPERIMENT
        NT IS THF MINIMIIM DF ISUMO AND ISUMX.
    NS(J) IS THE FREOUENCY OF THE LESS FREOUENT EVENT AT X(J)
    NG(J) REARRAMGES NS(J) SO THAT NGIII=NSII) WHERE XII) IS
        THE LOWEST STIMULUS LEVEL AT WHICH THE LESS FREOUENT
        EVENT OCCURS. CALCULATF THE FIRST MOMENT,SUMAP.
    AR(J) IS USED TO C.ALCULATF THE FIRST MOMENT,SUMAPAP
```



```
        EVFNT OCCURS
    XMUEST IS THE FINAL. ESTIMATF OF THF TRUE MFAN,XMU.
    DEVEST IS THE FINAL ESTIMATE OF THE TRUE STANDARD DEVIAT-
        ION,XSIG.
    FMU(J) IS THF DIFFERENCE OF XMUEST ANO XMIS.
    EDEV(J) IS THE DIFFERENCE OF DEVEST AND XSIG.
    SAMAVM AND SAMAVD ARE THE SAMPLE AVERAGE FRRORS OF XMUEST
        ANO DEVEST RESPECTIVFLY.
    SAMSQM AND SAMSDD ARF THF AVERAGF MEAN SQUARE FRRRRS OF
        XMUEST AND DEVFST RESPFCTIVFLY.
    NOGO IS THE NUMBER OF EXPERIMENTS NOT USED IN THE FINAL
        ANALYSIS
                        OIMENSION ARRAYS AND FORMAT
                SIMULATE PRIICETON FIRST THEN SEARCH
        IANY=0
    69 THING=0.
```

 INITIALIZE INTERNAL AND DUTPUT VARIABLFS
 SET EXPFRIMENT COUNTER, SAMPLE SIZE COUNTER, ANI NU.
 LCOUNT = 1
 \(N \cup=12371\)
 $103 \mathrm{~N}=1$
IF(IANY.FO.0) NBQ $=0$
IF (IANY.EQ.I) NBR=1
SET INPIIT VARIARLES
$X M I=30$.
XSIG=3.
$A=0$.
$B=100$.
$E \times M U=50$ 。

EXS If $\mathrm{F}_{5}=12.5$
$A=F \times M U-I 0 * E X S I S_{3}$
$B=E X M U+I$ O＊EXSIG
$X 1=(A+B) / 2$ ．
$10=4$
INC $=0$

```
PROVIDE BRANCH TO STANDARD RRUCETON
```


IF（NBR．EQ．O1 GO TO 33

CONDUCT SEARCH
CALL UNIF（RN，N！（I）
FOFX $=X N C D F(X I, X M U, X S I G)$
IF（RN．LE．FOFX）GO T？ 9500
$X_{2}=(E+X 1) / 2$ 。
NBR $=$ NBR＋ 1
CALL UNIF（RN，A11J）
FOFX＝XNCOF（X2，XMU，XSIT）
IF（RN．LE．FOFXI GO TO O？ 20
$\times 3=(\cap+\times 2) / 2$ ．
$N B R=N B R+1$
CALL UNIF（RN，NU）
FOF X＝XNCDF（X3，XMU，XSIC）
IF（RN．LE．FOFX）GO TO 9125
$X^{4}=(B+X 3) / 2$ 。
$N B R=N B R+1$
CALL UNIF（RN，NII）
FOFX $=X N C D F(X 4, X M U, X S I G)$
IF（RN．LF．FOFX）GO TO 9063
$\times 5=(8+\times 4) / 2$ 。
$N B R=N B R+1$
CALL UNTF（RN，NII）
FDF $X=X N C D F(X 5, X M U, X S I G)$
IF（RN．LE．FOFX）Gก TO 1313
EXMU＝（R＋X5）／2
EXSIG $=(\times 5-\times 4) / 2$ 。
EXSIr $=2$＊＊ E XSIG
EXSIG＝EXSIG／6．
GO TO 7000
1313 EXMU $=(\times 5+\times 4) / 2$ ．
EXSIG＝（X5－X4）／2．
EXSIG＝2．＊EXSIG
EXSIG＝EXSIG／6．
GO TO 7000
$9063 \times 5=(\times 3+\times 2) / 2$ ．
$N B R=N B R+1$
CALL UNIF（RN，NIJ）
$F \cap F X=X N C D F(X 5, X M(1, X S I G)$
IF（RN．LE．FOFX）GO TO 1314
$X 6=(\times 3+\times 4) / 2$ ．
$N B R=N R R+1$
CALL UNIF（RN，NU）
FOFX $=$ XNCDF（XG，XM11，XSIS ）
IF（RN．LE．FOFX）r，TO 1316
$E X M U=(\times 6+\times 4) / 2$
EXSIG＝（X5－X3） 2 。
EXSIG＝？＊＊ EXSIG
EXSIG＝XSIG／6．
GO TO 7000
$1316 \begin{aligned} & \text { EXMU }=(\times 6+\times 3) / 2 ; \\ & \text { EXSIG }=(\times 6-\times 3) / 2 .\end{aligned}$
EXSIG＝2．$\ddagger=X S I G$
EXSIG＝FXSIG／5．
Gก TO 7000
$1314 \times 6=2 . * \times 2-\times 5$
$N B R=N B R+1$
CBLL UNIF（RN，NII）
FOFX $=X \operatorname{NCDF}(X 6, X M), X S I F)$
IF（PN．LE．FOFX）GO TO 1315
$X B=X 5$

```
    DFLX=X5-X2
    FXMU=XR+DELX/2.
    EXSIG=1.3*DELX
    GO T\cap }700
1315 XB= X6
    DELX=X2-X6
    EXMU=XR-リFLX/&
    CXSIF=6*DELX
    GO T\cap 7000
9125 X4=(X2+X1)/2.
    NBR=NBR +1
    CALL. UNIF(RN,NH)
    FOFX=XNCDFF(Xム, XMU, XSIG)
    IF(RN.LE.FCFX) GO TO 9094
    X5=(x2+X3)/2.
    NAR=NRR+1
    CALL UNIF(RN,NU)
    FOFX=XNCDF(X5, XMU,XSIG)
    IF(RN.LE.FOFX) GO TO }904
    XS = (R+X3)/2.
    NBR=NBR+1
    CALL UNIF(RN,NU)
    FOFX = XNCDF (XG, XMU,XSIr, )
    IF(RN.LE.FOFX) GO T\cap OO24
    X7=2.*B-X6
    NBR=NRR+1
    CALL INNIE(RN,NII)
    FDFX=XNCDF(X7,XMIS,XSIF, 
    IF(PN.LE.FOFX) rOO TO 9012
    XB=X7
    DELX=XB-R
    EXMU=XR+DELX/4.
    EXSIG=6.*DELX
    GO TO 7000
0012 XB=X3
    DELX=X5-XR
    EXMII=XB+DELX/2.
    EXSIG=1.3*DELX
    G0 T? 7000
9024 EXMU=(X3+X5)/2.
    EXSIr,= (X3-X5)/2.
    EXSIG=2.*EXSIG
    EXSIG=FXSIG/6.
    GO TO 7000
9047 x6 = ( }\times4+4\times2)/2
    NRR=NBR+1
    CALL UNIF(RN,NII)
    FOFX=XNCDF(XG,XMIJ,XSIT,)
    IF(RN.LE.FOFX) GO TO 9011
    EXMU=(X5+X2)/2
    FXSIG=(\times5-X2 1/2
    EXSIG=2.*FXSIG
    EXSIG=EXSIG/6.
    GO TO }700
9011 }\times7=2.*\times4-X
    NBR=NBR+1
    CALL UNIF(RN,NII)
    FOFX= XNCDF(X7, XMU,XSIG)
    IF(RN.LF.FOFX) r,O TO 9010
    XB=X6
    DELX=X?-XR
    EXMUS=XR+DEIX/2.
    EXSIG=1.2\operatorname{sin}[1.X
    GO TH }700
9010 XB= X7
    DELX=X4-X7
    EXMU=XB-DELX/&.
    EXSIS=6*DELX
    GO TO 7000
    9094 X5=2* X1-X4
    NBR=NBR+1
    CALL IJNIF(RN,NU)
```

```
    F\capFX=XNCOF(X5, XM11,XSIC)
    IF(RN.LE.FOFX) GO TO 9003
    XB=X4
    OELX=X?-X4
    EXMU=XR + DFLX/2.
    EXSIr= 1. 3*DELX
    GO TO }700
    XR=X5
    DELX=X1-X5
    EXMU=XR-DELX/4.
    EXSIG=6.*DELX
    GO TO 7000
9250 X3=(A+X1)/2.
    NBR=NBP+1
    CALL IJNIF(RN,NIJ)
    FOFX=XNCDF(X3, XMII, XSIT,)
    IF(RN.LE.FOFX) GO TO Q375
    x4=(x)+x2 )/2.
    NBR=NBR+1
    CALL UNIF(RN,NII)
    FOFXX=XNCOF(X4,XMU,XSIG)
    IF(RN.LE.FOFX) GO TD 9OO4
    X5=(B+X2)/2.
    NBR=NBR+1
    CALL UNIF(RN,NU)
    FOFX=XNCDF (X5,XMIJ,XSIS.)
    IF(RN.LE.FOFX) GO TO 0005
    X6=2* B-X5
    NRR=NBR+1
    CALL UNJF(RN,NIJ)
    FOFX = XNCDF(X5,XMU,XSIG)
    IF(RN.LE.FOFX) GO TO 9006
    XR=X6
    DELX=X6-R
    EXMUJ=XR+\capELX/4.
    EXSIG=f*DELX
    GO TO }700
9006 XB=X2
    DELX=X5-XB
    EXMU=XR+DELX/?.
    EXSIS=1.3*DELX
    GO Tn 7000
9005 EXMU=(X2+X4)/2.
    EXSIG=(\times2-X4)/2.
    FXSIG=?.*FXSIG
    EXSIG=EXSIG/6.
    GO TO 7000
9004 <5=(\times1+x3)/2.
    NBR=NRR+1
    CALL UNIF(RN,NU)
    FOFX=XNCDF(X5,XMU, XSIC,)
    IF(RN.LE.FOFX) GO TO 5555
    FXMU=(X1+X4)/2
    EXSIG=(X4-X1)/2.
    EXSIG=2.*FXSIG
    EXSIG=FXSIG/6.
    GO TO 7000
5555 X6 = 2.* * 2-x5
    NBR = NRR +1
    CALL IJNIF(RN,NIJ)
    FOFX=XNCDF(XA, XMI), XSIC,)
    IF(RN.LE.FOFX) GO TO }900
    XB=X5
    DELX =X 1-XR
    EXMU=XR+חFLX/?.
    FXSIG=1. 3*nELX
    GO TO 7000
9 0 0 7
    XB= X6
    DELX=X3-XB
    FXMUS=XB-DFLX/4.
    EXSIG=6*DELX
    GO TO 7000
```

```
\(0375 \times 4=2 \cdot * A-\times 3\)
    NBR = NRR + 1
    CALL UNIF(RN,NU)
    FOFX \(=\) XNCDF \(\left(X 4, X^{M 1(1, X S I T,)}\right.\)
    IF (RN.LE.FOFX) GO TO 9376
    \(X 8=\times 3\)
    DELX \(=X 1-X P\)
    \(E X M U=X R+D E L X / 2\).
    EXSIG=1.3*DELX
    GO TO 7000
\(9376 \times 8=\times 4\)
    \(D E L X=A-X A\)
    EXMU=XR-DELX/4.
    EXSIG=6*DELX
    GO TO 7000
\(9500 \times 2=(\Delta+\times 1) / 2\).
    NBR \(=N P R+1\)
    CALL UNIF(RN,NU)
    FOFX \(=X N C D F(X 2, X M U, X S I G)\)
    IF(RN.LE.FOFX) GO TO 9501
    \(X 3=(X 1+B) / 2\).
    \(N B R=N R R+1\)
    CALL UNIF (RN,NII)
    FOFX \(=X N C D F(X 3, X M U, X S I G)\)
    IF (RN.LE.FOFX) rn TO 5556
    \(X_{4}=2\) * \(R-\times 3\)
    \(N B R=N B R+1\)
    CALL UNIF(RN, NU)
    FOFX \(=X N C D F(X 4, X M 11, X S I F)\)
    IF(RN.LE.FOFXI GO TO 5554
    \(X R=X 4\)
    DEL \(X=X 4-X R\)
    EXMU=XR+DELX/4.
    EXSIG=6*DELX
    GO Tח 7000
\(5554 \times 8=\times 1\)
    \(D E L X=X 3-X 8\)
    \(E X M U=X B+D F L X / 2\).
    EXSIT \(=1 \cdot 3 *\) DELX
    GO TO 7000
\(5556 \times 4=(\times 1+\times 2) / 2\).
    \(N R R=N B P+1\)
    CALL UNIF(RN, NU)
    FOFX \(=\) XNCDF \((X 4, X M 1), X S I C)\)
    IF (RN.LE.FOFX) GO TO 5557
    \(X 5=(X 1+X 3) / 2\) 。
    NBR = NBR +1
    CALL UNIF(RN, NU)
    FOFX \(=X N C D F(X 5, X M 1), X S I F)\)
    IF(RN.LE.FOEX) GO TO 5553
    \(\times 6=2 . \times 3-\times 5\)
    \(N B R=N B R+1\)
    CALL UNIFIRM, NU)
    FDFX \(=X N C D F(X E, X M U, X S I G)\)
    IF(RN.LE.FOFXI GO TO 5559
    \(X B=X 6\)
    \(D E L X=X R-X 3\)
    \(E X M U=X B+D E L X / 4\).
    EXSIG=6*DELX
    GO TO 7000
\(5559 \times B=\times 1\)
    OELX \(=X 5-X 1\)
    \(E X M U=X R+D E L X / ?\).
    EXSIG=1. 3 *DELX
    GO TO 7000
5553 EXMU \(=\left(X_{4}+X_{1}\right) / 2\).
    EXSIG \(=(X]-\times 4) / 2\) 。
    EXSIG=EXSIG/3.
    GO TO 7000
\(5557 \times 5=(4+X 2) / 2\) 。
    \(N B R=N B R+1\)
    CALL UNIF (RN, NU)
```

```
    FOFX=XNCDF(X5, XMUN,XSIC)
    IF(RN.LE.FOFX) GO TO 5561
    X6 = ( X2 + X4 )/2.
    NBR = NBR+1
    CALL IJNIF(RN,NII)
    FOFX=XNCDF(X6, XMU, XSIG)
    IF(RN.LF.FOFXI GO TO 121
    X7=( X4+X1)/2.
    NBR=NBP+1
    CALL UNIF(RN,NU)
    FOFX=XNCDE(XT, XMU, XSIGI
    IF(RN.LE.FOFX) GO TO 122
    XR=2.** * - X7
    NRR=NRR+1
    CALL IUNIF(RN,N!II)
    FOFX=XNCDF (X8, XM1],XSIG,)
    IF(RN.LE.FOFX) ro TO 123
    FXMII=XQ + (X8-X1):/4.
    EXSIG=6.*(*99-X1)
    G0 T0 7000
123 EXMU=(X44+X7)/2.
    EXSIG=1.3*(X7-X4)
GO TO 7000
122 XR=(Xt+ Y,4)/2.
    NBR=NBR+1
    CALL UNIF(RN,NUI)
    FOFX=XNCOF (X8, XM1), XSIG)
    IF(RN.LE.FOFXIG? TO 124
    X9= (X4+X71/2.
    NQR=NRR+1
    CALL UNIF(RN,NU)
    FOFX=XNCDF (XO,XMU,XSIC)
    IF(RN.LE.FQFXI GO TO 125
    EXMU=(X4+XG)/?.
    EXSIG=1. 3*(X9-X4)
    GO TO 7000
125 EXMU=(X8+X4)/2.
    EXSIF=(X4-X8)/6.
    GO TO }700
124 }\times9=(\times2+\times6)/2
    NBR=NBR+1
    CALL UNIF(RN,NII)
    FOFX=XNCDF(XO, XMU,XSIT,)
    IF(RN.LE.FOFXI GO TO 126
    EXMU=(X6+X.8)/?.
    EXSIG=(X8-X6)/6.
    GO TO }700
126 EXMU)=(X9+X6)/2
    EXSIG=1.2*(XS-X9)
    GO TO 7000
121 }\times7=(\times5+\times2)/2
    NRR=NBR+1
    C.ALL UNIF(RN,NU)
    FOFX=XNCDF(X7, XMU, XSIG)
    IF(RN.LF.FOFXI GO TO 127
    XB=(XG+X2)/2.
    NBR=NBF+1
    CALL UNIF(RN,NH)
    F\capFX=XNCDF(XQ,XMI),XSIC,)
    IF(RN.LE.FOFX) SO TO 128
    XO=(XG+X4)/2.
    NBR=NBR+1
    CALL UNIFF(RN,NII)
    FOFX=XNC.DF (X9, X^1), XSIC,)
    IF(RN.LE.F\capFX) rONTO 129
    EXMU=(X6+X9)/2.
    EXSIG=1.3*(X9-X6)
    GO TO }700
129 EXMU = (XR +X6)/2
    EXSIG=(X6-X8)/万.
    GO T0 7000
128 <9 = ( x7+ X2)/2.
```

```
    \(N B R=N R R+1\)
    CALL UNIFIRN,NUI)
    FOFX \(=\) XNCOF (X9, XMII, XSIG)
    IF(RN.LF.FOFX) rn Tn 130
    EXMII \(=(X 2+X 8) / 2\).
    EXSIG=(XR-X2)/6.
    GO TO 7000
\(130 \quad E X M U=(X 9+X 2) / 2\).
    EXSIG \(=1 \cdot 3 *(\times 2-\times 0)\)
    GOTD 7000
127 EXM1) \(=(\times 7+\times 2) / 2\).
    EXSIG \(=1 \cdot 3 \times(\times 2-\times 7)\)
    GO TO 7000
\(5561 \times 6=2 * * A-X 5\)
    NBR \(=N B R+1\)
    CALL UNIF (RN, NII)
    FOFX \(=\) XNCDF \(\left.(X 5, X M I), X S I F_{5}\right)\)
    IF(RN.LE.FOFX) ती TH 5560
    \(X R=X 5\)
    \(D E L X=X 5-A\)
    \(E X M()=X R+D E L X / 2\).
    EXSIG=1.3*nELX
    GO TO 7000
\(5560 \quad X R=\times 5\)
    \(D E L X=A-X G\)
    \(E X M U=X Q-\cap E L X / 4\).
    EXSIG=6*DELX
    GO TO 7000
\(9501 \times 3=(A+\times 2) / 2\).
    \(N B R=N B R+1\)
    CALL UNIF(RN,NII)
    FOFX \(=X N C D F(X 3, X M U, X S I G)\)
    IF(RN.LE.FOFX) तก Tก 9503
    \(X_{4}=(X i+X 2) / 2\).
    \(N R R=N R ?+1\)
    CALL UNIF(RN,NU)
    FOFX \(=X\) NCDF \((X 4\), XMII, XSIT)
    IF (RN:LE.FOFX) GO TO 9504
    \(\times 5=2 * \times 1-\times 4\)
    NBR = NRR +1
    CALL UNIF(RN,NU)
    FOFX \(=X \operatorname{NCDF}(X 5, X M U, X S I G)\)
    IF(RN.LF. FDFX) GO TO 9080
    \(X R=X 5\)
    \(D E L X=X B-X 1\)
    \(E X M(J=X Q+\) DELX 14 .
    EXSIT \(=6 *\) DELX
    \(G 0 \quad 707000\)
\(\times R=x ?\)
9080
\(x R=x 2\)
\(D E L X=X 4-X 2\)
    \(E X M U=X P+D F L X / 2\).
    EXSIG=1.3*DELX
    GO TO 7000
\(9504 \times 5=(\times 3+\times 2) / 2\).
    \(N B R=N R R+1\)
    CALL UNIF(RN,N!I)
    FOFX \(=\) XNCDF (X5, XMI), XSIG)
    IF(RN.LE.FOFX) 万O TO 9081
    \(X_{6}=(X 2+X 4) / 2\).
    \(N B R=N B R+1\)
    CAIL IINIE(RN, NUI)
    FOFX \(=\) XNCDF (X6, XMII, XSIG)
    IF(RN.LE.FחFX) GO TП QOR2
    \(X 7=2 . * \times 4-\times 5\)
\(N B R=N R Q+1\)
CALL UNIF(ぶ!, N11)
FOFX = XNCDF (X?, XMU, XSIG)
IF(RN.LE.FOFX) GO TO 9083
\(X R=X 7\)
DELX \(=\times 7-\times 4\)
\(E X M U=X R+D E L X / 4\).
EXSIG=6*DELX
```

```
9033 GR=XR TO 7000
    DELX=X6-X2
    EXM|I=XR + DELX/2.
    EXSIG=1. 2*DELX
    GO TO 7000
0082 EXMU=(X5+X2)/2.
    FXSIG=(X2-X5)/8.
    GO TO 7000
9081 }\times6=(\times3+\Delta)/2
    NRR=NRR+1
    CALL UNIF(RN,NU)
    FOFX= XNCDF(XS, XMU,XSIG)
    IF(RN.LE.F\capFX) GO TD 9084
    EXMUI=(X3+X5)/2.
    EXSIG=(X5-X2)/6.
    GO TO 7000
909& }\times7=2**4-X
    NRR=NRD+1
    CALL UNIF(RN,NU)
    FOFX=XNCDF(X?, XMU, XCIG)
    IF(RN.LE.FOFX) G\cap TO }903
    XR= X6
    DELX=X3-X6
    EXMU=XB+DFLX/2.
    EXSIG=1.3*DELX
    G0 TO }700
0.085 XB=X7
    DELX=A-X7
    FXMU=XB-\capFLX/L.
    FXSIG= S*DELX
    G0 TO 7000
9503 X4=(\times3+4)/2.
    NBR=NBR+1.
    CALL UNIF(RN,NU)
    FOFX=XNCDF (X4, XM1), XSIT,)
    IF(RN.LE.FOFX) GO TO }950
    X5=(X2+X3)/2.
    NBR=NBR+!
    CALL UNIF(RN,NH)
    FOFX=XNCDF{X5, XMU,XSIT, 
    IF(RN.LE.FOFX) GO TO 950?
    XB=2** *2-X5
    NBR=NBR+1
    CALL UNIF(RN,NU)
    FOFX=XNCDF{X6, XMU,XSIG}
    IF(RN.LE.FOFX) GO TO 9510
    XR=X6
    DELX=X6-X2
    FXMU=XR+\capELX/%.
    EXSIG=6*DELX
    GO TO }700
9510 XR= X3
    DELX=X5-X3
    EXMU=XR+DELX/2.
    EXSIG=1.3*DELX
    GO TO }700
9509 X6 = ( X3+X4)/2.
    NBR=NBQ+1
    CALL UNIF(RN,NIJ)
    FOFX=XNC.DF(XS,XM|, XSIC,)
    IF(RN.LE.FOFX) GO TM O511
    FXMU=(X6+X3)/2
    EXSIC,=(X3-X6)/2.
    EXSIC=2.*EXSIG
    EXSIT%=FXSIG/6.
    GO TO 7000
9511 EXMU=(X4+X6) '?
    EXSIG=(X6-X4)/2.
    EXSIG=2.*EXSIG
    EXSIG=EXSIG/G.
    GO TO }700
```

```
9507 x5=(x4+4)/2.
    NRR=NRR+1
    CALL UNIF(RN,NIJ)
    FOFX=XNCDF(X5,XMU,XSIC,)
    IF(RN.L.E.FOFXI GO TO Q508
    EXMU=(X4+X5) /2
    EXSIG=(X4-X5)/2.
    EXSIG=2.*EXSIG
    EXSIG=EXSI
9505 EXM(1= (X5+4)/2.
    EXSIG=(X4-X5)/2.
    EXSIG=2.*EXS IG,
    EXSIG= =XSIG/6.
    GOTM 7000
7 0 0 0
    XR=0.
    DELX=O.
    WRITE(G,1004) FXMU, EXSIG
    IF(EXSIG.LT.O.I EXSIG=-EXSIS,
    OPT=0.
    DIF=0.
    XINC=0.
    OPT=EXMU-4.*EXSIG
    IF(OPT.LT.A) GO TO 1003
    XINC=(OPT-A)/EXSIG
    INC=XINC/I
    DIF=XINC-INC
    IF(DIF.GE.S5) INC=INC+1
    IF(DIF.LT..5) INC=INC.
    GO TO 1001
1003 A=?PT
    INC=O
    1001 M=IQ+INC+1
    33 IS = 7 O-NRR
    M=IO+INC+1
                CONDUCT BRUCETON TEST
CLEAR ARRAYS
    DO 10 I= 1 , 200
    X(I)=0.
    IXO(I)=0
    IXX(I)=0
    NS(I)=0
    NG(I)=0
    SUM\DeltaR=0.
    SUMBR=0.
    AR (I)=0.
    BR(I)=0.
    10 CONTINUE
LOAD X ARRAY
    DO 20 J=1,200
    X(J)=A+(J-1)*EXSIG
    20 CONTINUE
CONDUCT EXPERIMENT
    30 CALL UNIF(RN,N(I)
    FOFX=XNCDF(X(M),XMIS,XSIG)
    IF(RN.GT.FOFX)r,O TO 40
    IXX(M)=IXX(M)+1
    M=M-1
    N=N+I
50 IF(N.GT.IS) GO TO 60
GO TO 30
    IXO(M)=I XO(M)+1
    M=M+1
    N=N+1
    GO TC 50
```

```
COUNT RESPONSES AND NON-RESPDNSES
    60 ISNMX=0
        ISIJMn=0
        DO 1& J=1,200
        ISUMX=ISIJMX+IXX(J)
        ISUMO=ISUMO+IXD(J)
        NS(J)=0
        AR(J)=0.
        RR (J)=0.
        NG(J)=0
    14 CONTINUF
DETERMINE I.ESS FREQUENT EVENT AND LOAD NS
    IF(ISUMX.LE.ISIMO) GO TO 15
    NT = I SUMD
    IFLAG=0
    OO 21 J=1.200
    NS(J)=IXO(J)
21 CONTINUE
    GO TO 18
    15 NT = I SUMX
    IFLAG=1
    DO 22. J=1.200
    NS(J)=IXX(J)
22 CONTINIIF
DETERMINE FIRST AND SECOND MOMENTS
    IE JCOUNT=1.
    17 IF(NS(JCOUNT).GT.O) GO TO 1.9
    JCOUNT = JCOUNT + I
    IFIJCOUNT.GE.つOOI GD TO 10&
    GO TO 17
    18 MCOUNT=200-.1C.OINT
    DO 19 J=1,MCOUNT
    NG(J)=NS(JCOINNT+J-1)
    AR(J)=(J-1)*NG(J)
    SUMAR = SUMAR + AR (.J)
    BR(J)=((J-1)**2)*NG(J)
    SUMPR = SUMARR + BR (J)
    19 CONTINUE
    YPRIME=X(JCOUNT)
CALCULATE ESTIMATES DF MEAN ANO STANOARD DEVIATION
    IF(IFLAG.FQ.O)XMUFST=YPRIMF+EXSIG*(1S!JMAR/NT)+(1.1?.))
    IF(.NOT.IFLAG.EO.OIXMUEST=YPRIMF+EXSIG*((SIIMAR/NT)-11.
    SIGFAC=((NT*S(IMBR)-(SUMAP**2))/(NT**2)
    IF(SIGFAC.GT.. 3) תO TO 1000
    FMU(LCOUNT)=0.
    EOEV(LCOIJNT)=0.
    NOGO=NOGO+1
    GO TO 104
    1000 DEVEST=1.62%EXSIG*(SIGFAC+.029)
LOAD EMII AND EDEV
    FMU(LCOUNT) = XMIJFST-XMII
    EDEV(LCOUNT)=DFVEST-XSIG
    ADDMU=ADDMU+FMU(LCOUNT)
    ADOSIG=ADOSIG+F\capEV(ICOUNT)
    ADDM|O=ADDM(1O+F:MIS(LC,OIINT)**?
    ADDSDQ = ADOSDD+FDFV(ICOUNT)**2
    IF(FMU(LCOUNT):IT.0.) GO TO Ol
    IM(JHI = TMUHI +I
    IF(EM|I(LCOUNT).GT.HIMII) HIMII=FMU(LCDUNT)
    IFI.NOT.EMU(LCOUNTI.GT.HIMUI HIMU=HIMUS
    GO T0 %3
92NOMlI=NOM(1+1
    GO T\cap ?3
91 IMULO=IMIJLO+1
    IF(EMU(LCOUNT).LT.SMLOI SMLO=EMU(LCOUNT)
```

```
    93
    IF ( NOT. EMIU(LCOUNT) LT. SMLO) SMLD=SMLO
    IF (FOEV(LCOIJNT). IT.O.) 「,O TN 9 a
    IF (FOEV LCOOUNT).ED.O.1 GO TO 05
    IDEVHI= IDEVHI + 1
    IF (EDFV (LCOUNT) GTT. DEVHI ) DFVHI =FDFV(LCOIJNT)
    IF (. NDT.EПEV(LCDUNT). RT, DFVHI) DEVHI = DEVHI
    GO TO 104
95 NODE \(V=N O D E V+1\)
    GO TO 10 \%
94. IDEVLO=IDEVLO+1
    IF (EDEV(LCOINT) LT. OEVLO) DEVLD=ENEV(LCOIJNTI
    IF (.NOT. EnEV (LCMUNT).LT.DEVLTI DEVLח=DFVLO
    JC OUNT \(=0\)
    SIGFAC \(=0\).
    XMUF ST \(=0\).
    DEVEST=0.
    SUMAR \(=0\).
    SUMBR \(=0\).
    LCOUNT = LCOUNT + 1
                    HAVE 1000 EXPERIMENTS BEEN CONDUCTED?
    IF(LCOUNT.LT.1001) GOTO 103
    IF EXPERIMENTS COMPLFTED CALCULATE AND WRITE PESULTS
    EXNOGO=NOG?
    SAMAVM = \(\triangle D O M 11 /(1000 .-\) - XNOGO)
    SAMAVD \(=\triangle D O S I G /\left(1000^{\circ}-E \times N O G \cap\right)\)
    SAMSOM = \(\triangle \cap D M 1 O /(079 .-\Gamma N O G O)\)
    SAMSQD \(A\) ADOSNO \(/(990-5 \times N O G O)\)
    IF (IANY.EQ. 11 GO TO 35
    \(I A N Y=I A N Y+i\)
    GO TH 69
35
    STOP
    END
```


SURROUTINE UNIF(RN, NU)

SURRQUTINF RETURNS RANDOM NUMBER UNIFORM ON 10.11 .

REAL MOD
MOD $=2 * * 31$
$N R=129 * N 11+1$
$R N=N R / M O D$
IF (RN.LT.O.O1 RN $=-R N$
NUI $=N R$.
RETURN
END

$$
\text { FUNCTION XNCDF }(V, X M U, S X)
$$

```
FUNCTION SURPROTRAM CALCULATES CIMMLATIVE NORMAL.
\(X\) IS AN R.V. WITH NEAN. XM!I, AND STANDARD DEVIATION, SX.
\(A R G=(V-X M U) / S X\)
XNCDF = SNCDF(ARG)
RETURN
END
```

$$
\text { FUNCTION SNCDF }(X)
$$

FUNCTION SURPROGRAM CALCULATES STANDARD CUMILATIVE NORMAL. DATA TEST/O.0/ IF (TEST.NE.O.O) GO TO 100 SR2 = SORT (2.0)
$100 \quad$ SNCOF 10
TEST=1.
SNCOF $=11.0+E R F(X / S R 2) 1 / 2.0$
RC TURN
END

BIB LIOGRA PHY

1. Boyars, C. and Levine, D., "Drop-Weight Sensitivity Testing of Explosives", Pyrodynamics, v. 6, p. 54, 1968.
2. Dixon, W. J., and Mood, A. M., "A Method for Obtaining and Analyzing Sensitivity Data", Journal of the American Statistical Association, v. 43, p. 109-126, 1948.
3. Tysver, J. B., A Binary Search Procedure for Use in Sensitivity Testing, submitted to a technical journal for publication, U. S. N. Postgraduate School, Monterey, California, July 1970.
4. Naval Ordnance Laboratory Technical Report 66-117, Monte Carlo Investigations of Small Sample Bruceton Tests, by L. D. Hampton, p. 3.
5. Defense Documentation Center 2
Cameron Station
Alexandria, Virginia 22314
6. Library, Code 0212 2
Naval Postgraduate School
Monterey, California 93940
7. Associate Professor J. B. Tysver, Code 55Ty 1
Department of Operations Analysis
Naval Postgraduate School
Monterey, California 93940
8. Major Donald L. Hicks, USMC 1
20 Mesa Vista Drive
Boise, Idaho 83705
9. Library, Department of Operations Analysis 1
Naval Postgraduate School
Monterey, California 93940

$$
42
$$

(Security classification of illle, body of abstract and indexing annotation must be ontered when the overall report Is classilied)
Naval Postgraduate School
Monterey, California 93940

Unclassified
2b. GROUP

An Evaluation of a Modified Binary Search Procedure for Use with the Bruceton Method in Sensitivity Testing
4. DESCRIPTIVENOTES (TYPE of report and.inclusive dates)

Master's Thesis; September 1970
5. AUTMOR(S) (First name, middle initial, last name)

Donald Lee Hicks

10. DISTRIBUTION STATEMENT

This document has been approved for public release and sale; its distribution is unlimited.

Two methods of obtaining sensitivity data were simulated on an electronic computer for the purpose of comparing the accuracy of the estimates of the parameters of an underlying cumulative normal response function. The first method simulated the standard Bruceton procedure while the second used a modified binary search routine with a portion of the sample in order to obtain maximum likelihood estimates of the input parameters for use in a follow-on Bruceton test.

The results showed both methods to be effective in estimating the mean but with slightly more variability in the estimates obtained by the second procedure. Both methods underestimated the standard deviation again with more variability in the estimates obtained by the second procedure. When the prior parameter estimates were unknown and the applicable stimulus level bounded, the second method yielded estimates favorably comparable to those expected frol the Bruceton procedure with suitable prior input estimates.

Sensitivity testing

Bruceton method

Maximum likelihood estimates

Computer simulation

An evaluation of a modified binary searc

32768001014053
DUDLEY KNOX LIBRARY

