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ABSTRACT

Mean velocities , turbulence intensities, and Reynolds stresses

were measured in a circular convex wall jet. The entire mean velocity

profile for angular position 6 > 35 degrees was determined to be similar.

The turbulent flow field was nowhere self preserving and thus the total

flow was not similar. Strikingly different jet growth rates were evi-

denced between the inlet (6
< 35 degrees) transition region and the fully

developed flow regions (6 > 35 degrees). The overall level of turbulence

was found to be higher for a convex wall jet flow in comparison to a

concave wall jet flow. However, maximum turbulence intensities

occurred closer to the wall for increasing distance along the surface

indicating the stabilizing effect of the convex wall. The turbulent shear

stress u'v' was dominant in comparison with u'w' and did not vanish

where the mean velocity gradient became zero. Hence for further

analyses of turbulent convex wall jet flow the classical eddy viscosity

models which neglect the effects of curvature cannot be incorporated

.
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LIST OF SYMBOLS

A cross sectional area of nozzle
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b representative jet thickness as defined in Eq. (7)

CF(P) pressure correction factor

CF(T) temperature correction factor

m, n, p exponents as defined in Eqs . (7b) and (10)

P pressure

P total pressure
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R radius of curvature of quadrant

s constant as defined in Eq. (7b)

u, v, w local mean velocity components

u' , v 1

, w' turbulent velocity components (rms values)

U maximum fluid velocity in a given profile

U ,„ one half of maximum fluid velocitv
m/2

U average velocity in the nozzle
o
W power jet width

X, k constants as defined in Eq. (7)

x downstream distance measured from origin of jet

y distance from surface to the local velocity

y distance from surface to the maximum local velocitym
y
in distance from surface to point where u = 0.5 U
2
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convex wall angular position

v kinematic viscosity
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p fluid density
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I. INTRODUCTION

The need for a basic understanding of the flow field common to

fluid computing elements underlies a series of investigations at the

Naval Postgraduate School involving two dimensional wall jets blowing

over both plane and curved surfaces

.

Extensive studies were undertaken by Kesler IlJ and Johnson! 2]

on the attachment of turbulent wall jets to convex walls. The effects

of both wall setback and control port opening on such flows were fully-

investigated in these studies. Richardson [3] extensively investigated

the flow in a two dimensional inclined plane wall jet which again con-

tained both a' control port and a setback. These studies supplement the

investigations involving wall jets flowing over plane and curved surfaces

previously performed by Sawyer [4], Newman £5J , Fekete £6J and

Guitton [7] .

The classical theoretical study of the plane "wall jet" is that

of Glauert £8J , who designated the flow field as such. More recently

Wyganski and Champagne I 9j considered the laminar flow over a curved

surface and determined a unique similarity condition for this configuration,

Schwarz and Cosart £10] determined that the flow in an incompres-

sible, turbulent, plane wall jet configuration was self preserving. This

self preservation was primarily based upon the assumption that the

laminar viscous stresses were negligibly small in comparison to the

turbulent Reynolds stresses of the flow.

Giles, Hays and Sawyer _[11J , by considering the equations of

motion, again with the viscous terms neglected, proved that the flow

in the outer part of a two dimensional, curved, turbulent wall jet blow-

ing over a surface of a logarithmic spiral profile is self preserving.

Finally, Margolis and Lumley £ 12j performed a detailed study

of turbulence in curved layers in a closed channel. This investigation





showed that for a convex surface (the "unstable" case) the curved shear

layer spreads more rapidly than for a concave surface. By considering

turbulent energy balance these investigators concluded that turbulent

transport increased rapidly, as the flow developed, in the unstable

case and decreased in the stable case (concave surface).

Considering the foregoing, an investigation of the flow field in

a curved wall jet wherein both the laminar and the turbulent stresses

are considered is recognized as a configuration needing investigation.

Thus, the experimental portion of the present study is a

comprehensive investigation of the flow field of a two dimensional,

turbulent wall jet over a convex surface of constant radius. There is

no control port or setback on the test section.

The theoretical portion defines two attempts to determine a

similarity condition for the flow by the introduction of a suitable eddy

viscosity formulation into the flow equations. Neither attempt resulted

in a succGssiUi conclusion.
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II. THEORETICAL CONSIDERATIONS

The equations of motion and continuity for a two dimensional,

incompressible and turbulent flow over a curved wall may be written

2
13, p. 112 4th ed. , neglecting terms in the order of (y /R) and

higher/ as

L/

*1 (1)

- (
X **AlH\( 9*/V

'~)

2_ ri*%)^ - o

(2)

(3)

The total shear stress, that is viscous and turbulent, may be written as

X -
/
if. +

T ,

/fc
)2_(_^i

7f / (4)

Introducing Eq. (4) into Eq. (1) and simplifying, one has, for isotropic

turbulence,
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1+ %)rjj

/ **)£ 2. t
R ]

(5)

Integrating Eq. (5) from y**5 and evaluating terms leads to the

following general form [3 Eq. (20) p. 25]

iA? {^^{{^}^=\y^y{{ *'*%)
Jj}4,

<o ft?

^Mvu"
(6)

/ Jo
x ^ >lK->,;)

uXI -kHi^b
Wyganski _[9j , using an analogous procedure to that used by

Glauert £8] , in which the latter derived an integral invariant by con-

sidering the exterior momentum flux, obtained a unique similarity

solution for both convex and concave surfaces when the local radius

3/4
of curvature is proportional to x

In an analogous manner, a search was made for a similarity

stream function for Eq. (5), using the turbulent shear model employed

by Sawyer 111] ,

t _XbU.
3y * '

(7)

where X and k are constants and b(x) and U (x) are the jet thicknessm
and local maximum velocity. The boundary conditions for the flow of

a jet over a surface are

y=0,u = v=0

y -*»
, u =

(7a)
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Defining a similarity stream function as u = ^i , (l+y/R)v =

where ty
=x f(n),n = sy/x and the radius of curvature R = ax K

and substituting from above in Eq. (5) one obtains

2w.-2v--l

+•

— "X

3ip

3x"

(7b)

For similar solutions Lo exist the equation should become

independent of x, which leads to the requirement that

m + n = 1 (9)

To obtain a second relation between m and n attempts were made

to derive an integral invariant by considering the exterior momentum

flux, as in the studies of Glauert [8] and Wygnanski [ 9] . An invariant

condition exists if the right hand side of Eq. (6), with the shear stress

as in Eq. (7) and for the given boundary conditions, could be proved to be

equal to zero. Three approaches used in attempts at proving this con-

dition ultimately failed.

In a further attempt, following Schwarz and Cosart, similarity

functions were defined such that

u.iqoo, ^-^m^-^m -^r^^ (10)
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In Eq. (1) and (2) writing, for isotropic turbulence,

(P + dlT
71")"' (P + py~^~2

)
= P and elimlnatin9 p

t
in E<5« (D and ( 2 )

the following equation is obtained,

V ^y_ _( [^ Jo Au\"*± - 1L _ __^_{ ( lu Jul

a->c

( *- ^)
(ID

1 /r; "^ * ^r

Substituting in Eq. (11) from (10) the following form is obtained

after suitable rearrangement,

-LL^U•Vc Sl_l^?
J

3~ K(»+ts

^) S
»x R(l+- R̂)

^x R(i +l^
(12)

IL "^S
J

a* R-( i + n^y
i lJ

'dw - sOu
2*

- 2 Uv 3S IK 2U^U*"*• ~ H-

s ^ kO-1-
1^) 3*. R ( i 4- \S/fC)

7>*
*"(**• 1SM)

If the flow is self preserving the functions f(n), g^n), g2( Tw

and g,«(n) are independent of x and thus the solution of Eq. (12)
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requires that the coefficients of the universal functions be either

non-zero constants or zero. The nonrepetitive coefficients of Eq. (12)

are

x

(13)

' "rV- ~^T '

~

Let

ILU) = ft PC

(14)

Substituting from Eq. (14) in each of the terms in (13), for each of these

coefficients to be a non-zero constant (for a non-trivial solution) it is

required that the exponents of x for each term are zero. This leads to

the requirement that

3m - n - 1 = (a)

2 m - p - 1 = (b)

2 m - 2p + n - 1 = (c)

2m - 2n = (d) , .

2m - p - n = (e)

This is, five equations for the three unknowns m, n, p.

For the present, considering the slope of the gradient of the shear

negligible, that is g'
' - 0, allows Eq. (15d) to be eliminated. Then

forcing Eq. (15e) to the form of Eq. (15b) gives rise to the condition

that -.

9 12" W
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and

m =

n = 1

P= -1

The condition that m = is that U (x) = constant. Experimental
ixi

evidence, to be discussed later, does not substantiate this condition

at all. It is apparent that the term in Eq. (12) containing the slope of

the gradient of the shear cannot be neglected, that is, g' ' ^ and

this fact is borne out by the experimental results obtained

.

Sawyer [ 7 ] considering the viscous stress terms as negligible in

comparison with turbulent shear stresses, obtained a similarity condition

for Eq. (1). It is to be noted that the flow in the outer part of a two

dimensional, curved, turbulent wall jet is approximately self preserving

if the ratio of jet thickness to wall radius of curvature is constant along

the jet. For a jet blowing over a surface this condition is satisfied for

a logarithmic spiral profile only.

16





III. EXPERIMENTAL EQUIPMENT AND PROCEDURE

A. EXPERIMENTAL APPARATUS

Figure 1 shows the arrangement of the experimental apparatus.

The general operation of the apparatus is given below.

Air passing through a 10 micron filter, at approximately 120 psig,

was supplied to the apparatus through a one inch stop valve and pressure

regulator. From the regulator the air was directed into the power jet

of the test section through an appropriately sized Fisher-Porter Rota-

meter and a length of 3/4" I.D. plastic tubing.

A two-channel Constant-Temperature Hot Wire Anemometer

(DISA-55D01) was used in making both mean velocity and turbulence mea-

surements. A single wire and two cross wire (UV and UW) directional

probes attached to a micrometer traverse were used to measure the

velocity and turbulence profiles .

B. TEST SECTION

The test section was fabricated from a 2-1/2" sheet of plexiglass

placed between two half-inch sheets of plexiglass (see Figures 2 and 3).

The lower section of the power jet and the test section were machined

in one piece. The quadrant was of radius three inches. The upper

section of the power jet was machined from a 2-1/2" sheet of plexiglass

to suit. The faces in contact with the fluid were given a final hand

polishing.

The two side plates were made of 1/2" plexiglass sheets.

A circular slot for the hot-wire mounting was machined in both side

plates. These slots have a common center of curvature with the

quadrant to ensure consistent radial settings of the wire.

The two sections of the power jet were then dowelled to one of

the side plates to form the power jet of width 2-1/4" and length 9"
,

converging to a 1/4" width over the length of half inch from the entrance

17





to the quadrant. The test section was completed by placing the other

side plate on top of the power jet and quadrant sections and bolting the

resulting assembly together.

C. PROCEDURE

Each run consisted of first selecting a flow rate. Then the

appropriate D.C. and A.C. voltages were recorded at intervals from

the surface cf quadrant up to 1.5 inches. The interval between readings

was .010 inch nearer the surface and at positions where sudden changes

in voltages were noted; elsewhere it was 0.050 inch. Runs were carried

out every 15 degrees, from 5 to 65 degrees, along the quadrant for every

flow rate

.

The flow rate was established with Fisher-Porter rotameters of

capacity 19.8 SCFM and 76.8 SCFM at 100%.

Flow rates corresponding to 95% of the full capabity on the 19.8

SCFM and 55% of full capacity on the 76.8 SCFM rotameters were used.

These flow rates resulted in Reynolds numbers, based on the power jet

width of 1/4" , of 9340 and 21040 respectively. (The latter is the more

common Reynolds number used in association with fluidic amplifiers.)

Calibration of each wire utilized was performed using a Model 1125

Calibrator manufactured by Thermo-Systems , Inc. Calibration curves

2
were drawn for each wire used. The intercept (V ) and slope (B) from

the linear calibration curve drawn were used in subsequent calculations.

D. DATA REDUCTION

The following procedure was used in the reduction of the test data:

The flow rate in standard cubic feet per minute was first calculated

by using Q(SCFM) = Rotameter reading x 100% full flow capacity

x CF(T) x CF(P)

where

CF(T) = atmospheric temperature correction factor

18





and

CF(P) - atmospheric pressure correction factor.

The correction factors were obtained from the Fisher-Porter

instruction manual.

Next the average velocity in the nozzle was calculated from

U (ft/sec) = "

A
c

where

A = cross sectional area of the nozzle. .. ,. r

c V W
The Reynolds number was calculated as Re = . All fluidw v

properties were evaluated a't 14.7 psia and 70°F.

u
The normalized velocity profiles were obtained by plotting

m
y

against ~r~ where U was the maximum fluid velocity in a given

profile, y was the radial distance from the surface of the quadrant and

R was the radius of the quadrant. The turbulence intensities

M_/ X__/ w_ ancj tke distribution of the u'v' and u'w' correlation were
u u u

y
also plotted against ~r~.

K
Normalized velocity profiles, turbulent intensities and u'v' and

u'w' correlations were also plotted against y/y /0 where y /n is the
m/ Z m/ l

radial distance from surface to point where u = 0.5 U .m

19





IV. DISCUSSION OF EXPERIMENTAL

RESULTS AND CONCLUSIONS

Measurements of mean velocities, turbulence intensities u' , v'

,

w' and turbulent shear stress distributions u'v' , u'w 1 were performed.

A single wire probe and two cross wire probes (uv and uw configurations)

were utilized. It was possible to measure to within 0.010 inch from

the surface of the quadrant with the single wire and the uw cross wire

probes. The closest point of measurement from the surface for the

uv cross wire was 0.060 inch.

The mean velocity profiles obtained using the three sets of wires

independently were in close agreement (+5 per cent) with each other at

corresponding angular positions. This indicates that a very high degree

of reliability can be placed upon the experimental data obtained.

Figures 4 and 5 ^how the mean velocity profiles, for the two

Reynolds numbers tested, plotted non-dimensionally with respect to

the maximum profile velocity U and the radius of the quadrant R.
m

These plots show that for any angular position the velocity profiles

for the two flow rates coincide convincingly for any value of y/R, thus

indicating that for the flow rates considered the flow spread parameters

y and y /n are independent of the Reynolds number. The kinks occur-m m/2
ring in the =5 degs. curves are attributed to the effect of the upper

wall of the nozzle upon the flow issuing from it.

Figure 6 shows the mean velocity distribution for Re = 9340 at

15 degree intervals along the midplane for © = 5 to 65 degrees. It

is to be noted from the similarity in all jet profiles that the jet remains

attached even at 65 degrees. Figure 7 is the velocity profiles of the

flow at = 5 degree position at 5 stations across the length of the

nozzle. The close approach to a two dimensional flow pattern is seen

20





from the relatively small changes noted throughout the traverses. This

is particularly so for the middle of the section.

In an attempt to determine the mean velocity similarity parameters

the non-dimensional mean velocity profiles for the 35 and 65 degree

angular positions for the two Reynolds numbers were plotted as shown

in Fig. 8. Also shown on this figure is the theoretical curve predicted

for the outer region of a free jet by Glauert [ 8 ]as given by

U . 5.e-£.L_

a'Vva
OS'S

( ^ - !U

There is good agreement with the theory for the outer region with

some divergence for y/y /n > 1.2. This divergence may be attributed
m/ 1

to the unstable nature of the outer region and to the centripetal effects

due to the curvature in a wall jet flowing over a convex surface. It is

well to note Glauert 1

s caution, in such comparisons, that agreement

between experimental data and his calculated profiles does not neces-

sarily mean that the assumptions made by him about the constancy of

shear stress distribution in this region were correct. In fact,

Richardson L3] showed that agreement with Glauert' s theory in the

case of a plane wall jet flow in the outer region was mainly due to

the loss of momentum in this region being very small. Furthermore,

Sawyer [l4j, on the basis of a first order mixing length theory, indi-

cates that entrainment can also contribute to a deviation in the

velocity profile for a curved jet as compared to that of the plane

jet case.

Figures 9a and 9b show the growth of the jet around the surface

of the quadrant. In Fig. 9a two markedly distinctive growth patterns

are portrayed—the first, 5 to 35 degrees, being governed by entrain-

ment effects while the second, 35 to 65 degrees, being governed more

by curvature and wall effects. This case is in stark contrast to those

21





of Fekete and Sawyer which show a constant growth pattern throughout.

Figure 9b shows the difference existent betv/een the growth of a free

and a curved wall jet. Again, two distinct growth patterns are portrayed

for the curved wall jet compared to the constant growth of the free jet.

The turbulent intensities are shown grouped for discussion

purposes in Figs. 10 - 12, 13 - 15, 16 - 18, 20 - 22, and 23 - 25.

The first graph in each group displays the local turbulence intensity

figures; the following two graphs show the analogous turbulence intensity

for each of the two Reynolds numbers tested non-dimensionalized with

respect to the maximum profile velocity, U and the jet growth parameter,
m

y /0 . The amazing orderliness wrought by this particular non-
m/ 1

dimensionalizing is striking.

The kinks apparent in all the local turbulence intensity curves at

the 5 degree position again arise from the effect of the upper nozzle

lip upon the issuing jet.

The turbulent intensities at the lower Reynolds numbers are

larger than those at the higher ones, as would be expected, due to the

more complete mixing effected at the lower velocity which enables

turbulent energy to be cross transferred more freely.

The relative order of magnitude of the local turbulence intensities

is u 1

> v' m w' . The intensities are largest where the turbulent

shear is maximum and reach their minimum values where the mean

velocity is maximum; these intensities begin with a non-zero value

close to the wall.

These figures also show that the maximum turbulent intensities

occur closer to the surface of the quadrant for increasing indicat-

ing a stabilizing effect due to the growth of the inner layer. This trend

is the reverse of that observed by Margolis and Lumley J 12] in an

enclosed curved channel. It must be noted, however, that the

Margolis data is non-dimensionalized with a constant characteristic
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length whereas herein y , , which increases monotonically with G ,

is used to non-dimensionalize the data.

The turbulent intensities are high up to a value of y/y ,n - 1.6
m/ 1

for the 35 and 65 degree angular positions due to the turbulent energy

produced near the surface, where shear rates are high, being transported

by centripetal effects to regions where the local production is small.

Guitton [7] found that the longitudinal turbulent intensity

increased from concave to plane flow and from plane to convex flow.

Figure 19 shows the local longitudinal component for the wall jet on

a concave surface as obtained from Guitton and that for the convex

surface under investigation. It is evident that the local longitudinal

turbulence intensity does indeed increase, although the angular

position and Reynolds number tested for the concave surface are much

higher than those for the convex surface. Guitton hesitated to link

this increase of intensity to the growth of the turbulent region as

he did not have turbulent shear stress data available. The u'v' distri-

butions shown in Figs. 21-22 and the turbulent intensities in Figs. 10-18

indicate the growth in the shear stress and in the anisotropy of the flew.

Thus the increase in longitudinal turbulence intensity for the convex

flow can be attributed to the growth of the turbulent region due to

centripetal effects.

Of final noteworthiness in the turbulence intensity data is the

radial turbulent velocity component distribution v' . At the higher

Reynolds number, the magnitude of this component, non-dimensionalized

with respect to U , is smaller than the other turbulent intensities due
m

mainly to the overpowering effects of entrainment on the mean radial

velocity.

Entrainment effects also appear in the lower Reynolds number

data as affecting the dampening of the radial component, that is, the

decay' of this component is slowed due to entrainment mean velocity

effects interacting with centripetal acceleration effects.
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The measurements of turbulent correlations u*v' and u'w' are

shown in Figs. 20 to 25. The u'v' correlation is positive throughout

the flow. The curvature of the convex surface gives rise to the effects

of centripetal acceleration which causes a negative v' to be associated

with a negative u' resulting in a positive u'v' correlation. Further,

the presence of a destabilizing effect, that is a negative gradient

of angular momentum, as shown by Eskinazi and Yeh [16] , which is

associated with the outer part of the convex flow, combines to enhance

the positive correlation.

In Figs. 21 and 22 the effect of the upper lip of the nozzle is

again evidenced in the shear stress data for the 5 degree angular

position, hieing more prominent in the high Reynolds number flow

where the initial shear forces are higher.

Figures 23 - 25 show that the u'w 1 correlation varies from negative

to positive values for the flow away from the surface of the quadrant.

The overall average of u ! w r tends toward zero as it should for a planar

flow.

Of final note with respect to the u'v' shear stress data is the

fact that this stress does not vanish where the mean velocity gradient

is zero. This was also observed by Poreh, Tsuei and Cermak £15] in

the case of a turbulent radial wall jet. Obviously the conventional

eddy viscosity model -u'v' = e j- used in the plane surface

cases cannot be applied here. Thus a model of eddy viscosity like

that of Sawyer's is seen to be more appropriate to the case of curved

turbulent flows

.

In conclusion, the primary characteristics of a turbulent, two

dimensional sir jet flowing over a convex surface of constant radius are:

1. The entire mean velocity profile for 0> 35 degrees up to 65

degrees, as measured here, are similar, but the turbulent

flow in this configuration is not self preserving. Thus the

total flow is not self preserving. The mean velocity over
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the field, however, is independent of the flow Reynolds

number based on the nozzle width.

2. The overall level of turbulence is higher in a convex wall

jet in comparison to that in a concave wall jet. This increase

can be contributed to centripetal effects which enhance the

transport of wall created turbulent energy to areas of low local

energy production.

3. The local turbulent intensities are ordered such that

u' > v 1 ^ w' . However, maximum turbulence intensities

occur closer to the surface for increasing distance along

the surface, indicating the stabilizing effect of the convex

wall.

4. Entrainment effects are most evidenced in the turbulent

flow field by the dampening action of the entrained mean flow,

in opposition to the centripetal effects of the geometry, upon

the radial turbulence intensity distribution.

5. The inlet region, < 35 degrees, is a transition

region wherein entrainment effects predominate, a fact strikingly

evidenced by the difference between jet growth rates for the

transition and the fully developed regions.

6. The turbulent shear stress term u'v 1 is positive throughout

the flow and does not vanish where the mean velocity gradient

is zero as shown in Figs. 21 and 22. Thus conventional eddy

viscosity models cannot be applied to this flow field. The

Reynolds stress term u'w' is small and has no overall effect

upon the planar flow field.
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V. RECOMMENDATIONS FOR FUTURE WORK

The foregoing investigation suggests that the following areas

should be subject to further study:

1. Detailed examination of the transition region, 0-35 degrees,

with respect to entrainment effects should be initiated.

2. Determination of an appropriate eddy viscosity model for

curved wall jet flows should be made.

3. Analytical studies to determine a similarity condition

for the equations of motion, with both laminar and turbulent

shear stress terms included, should be continued.

4. The turbulent flow field in a plane inclined wall jet

geometry should be investigated for comparison with the findings

in this study.

5. The effects of setback and control opening upon turbulent

flow field in this convex wall jet flow geometry should be

studied with a view toward fluidic applications.
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FIG. 1. Experimental Equipment

FIG. 2. Test Section
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