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ABSTRACT

The effects of power system faults upon a generator with a super-
conducting field winding are presented and discussed. Induced current,
heating, and electromechanical stress effects upon the superconducting
field winding and rotor structure are investigated. Design criteria
are developed which insure that a superconducting generator can survive
a power system fault.

Two classes of faults are considered and design criteria relating
to each are developed. Survival of a short-term fault which is cleared
by a system circuit breaker requires maintenance of super conductivity;
survival of a sustained fault which cannot be cleared requires mainte-
nance of machine structural integrity without permanent damage.

An example design for a 1000 MVA superconducting generator is

developed. The design illustrates that it is possible to satisfy the

criteria for fault survival, while maintaining the advantages of lower
weight, lower synchronous reactance, improved efficiency, better damp-
ing characteristics, larger I_ t, and higher rotor natutal frequencies
than for a comparable conventional generator.
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GLOSSARY OF SYMBOLS

B - flux density

E - Young's Modulus

e_ - per-unit field voltage

F - outer field winding support radius

f - torsional natural frequency

H - magnetic field intensity

I
2

- per-unit steady-state negative sequence armature current

I - rated armature current
a

i - per-unit zero sequence current

i, ~ per-unit negative sequence current

i - current (subscript indicates circuit)

I
2

t - rotor thermal capacity (units-seconds)

J. - rated armature current density

j
- /TT

K_ - damping coefficient

IC - optimum damping coefficient

K ,
- shield attenuation factor

att

% - machine active length
m

JL - end- turn length

L - self-inductance (subscript indicates particular circuit)
A

M - mutual inductance (subscripts indicate particular circuit)

p
- d/dt

R - shield geometric mean radius

R. - shield inner radius

R - shield outer radius
o

r - resistance (subscript indicates particular circuit)

S, - stator inner radius

S - stator outer radius
o

T - shield time constant
Si

T - shield higher order diffusion time constants
sn &

T - inner radius of iron shield (or conducting stator shield)
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Glossary of Symbols (continued)

T' , T" ... etc. - transient and subtransient time constants
do do

defined in Appendix I

T
f

- field time constant

V - machine rated terminal voltage
cl

v , v , v., v .... etc. - voltages used in Appendix I
\X S Ct Q CJ

x, x, - per-unit synchronous reactance

x - if used in expression for flux density, x - S. /S

x' , xl - per-unit transient reactance

x", Xj
1 - per-unit subtransient reactance

x , x - per-unit system or external reactance
c S

x - maximum radial deflection of shield for 3 <t> fault
max

Greek Symbols

Ai - per-unit increase in field current following fault

AT - temperature rise

A - shield thickness

Af
- field support thickness

Ai , - per unit increase in positive sequence, direct-axis
di

current following a fault

6 - magnetic skin depth

X - flux (subscript indicates particular circuit linking flux)

y - permeability of free space

V - Poisson's Ratio

p - electrical resistivity

p - mass density

a - electrical conductivity

a - yield strength in tension

a - yield strength in shear
s

0*

T
- tensile stress due to rotation

CT - radial mechanical stress

T - torque (total on rotor)

T - torque (subscript indicates structure to which torque is

applied)
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Glossary of Symbols (continued)

\p - flux (subscript indicates circuit linking flux)

0) - angular swing frequency of machine
s

a) - line angular frequency

0) - ring frequency of cylindrical shell
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CHAPTER I

Introduction and Statement of the Problem

The increasing demand for electric power has made practical the use

of higher and higher rated generating units. Economic advantages are

realized in the capital and operational costs of both the prime mover

and the generator as the unit rating increases [1]. A point of diminishing

returns in economic advantage is reached for the generator above ratings

of about 1000 MVA for the reasons given below. Generators with super-

conducting field windings can extend this limit; thus, the economies of

scale can be realized in even higher rated units. [2]

The economy realized in conventional generators from increased

rating is the result of better armature cooling and thus more effective

use of the armature copper* However, as the rated current for a given

machine is increased, the per-unit reactances of the machine are increased

and the inertia constant is decreased, both of which degrade the transient

stability margin. To decrease synchronous reactance, air gap lengths

must be increased, resulting in the requirement for more excitation power

and greater power loss in the field winding. Hence, the larger rated

machine with the better utilized armature becomes less efficient and

less economical in an operational sense. The crossover occurs at a

rating of about 1000 MVA.

The capital cost advantage associated with higher rated units is

offset above 1000 MVA for conventional generators by construction and

shipping considerations. The stator iron makes the larger machines so

heavy that they must be shipped in pieces and assembled at the site.
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Rotor diameters are limited by mechanical stresses requiring length

increases for increased power ratings. Therefore, weight increases pro-

portional to length further complicate shipping and assembly. Lower rotor

mechanical natural frequencies are another result of increased length.

Generators with superconducting field windings do not require iron

in the rotor or stator to produce high magnetic flux density at the

armature bars. With no resistance loss in the field winding, and no

concern with iron saturation, the ampere turns of the field winding can be

increased to produce up to about 50 kilogauss in the machine center and

20 to 30 kilogauss in the armature region.

Elimination of iron has several beneficial effects. First, machine

weight is reduced; also, the elimination of iron within the armature pro-

vides space for more armature conductors. The machine volume for a

given power rating is thus reduced. Insulation problems in the armature

are also reduced because of the absence of iron at ground potential;

machines can thus be designed for higher voltages. Second, machines

without iron have lower reactances. Even though the inertia is reduced,

transient stability margin has been shown to improve over conventional

machines [5]. Third, the superconducting generator is slightly more

efficient because of the elimination of field winding resistance losses.

The configuration for a superconducting generator is as shown in

Fig. 1-1. The armature is at room temperature; it is similar to a con-

ventional armature except for the absence of iron interleaved with the

conductor bars. A winding scheme developed by Kirtley and Smith [21]

permits use of much less insulation, and provides better utilization of

the armature space for carrying current. A laminated iron shield
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surrounds the armature to provide a uniform boundary for the magnetic

fields and eliminate unbalanced forces upon the field winding.

The superconducting field winding is located inside a liquid helium

space in the rotor and is maintained at 4.2° K. Surrounding the field

winding is a thermal shield maintained at approximately 20° K to inter-

cept thermal radiation from the room temperature parts. The outer part

of the rotor is a conducting electrical shield to intercept asynchronous

magnetic fields produced in the armature. If the superconducting field

winding were exposed to these asynchronous fluxes, losses would be pro-

duced and the field winding could be driven normal. The layer of stainless

steel beneath the electrical shield provides structural support for the

shield when it is subjected to large electromechanical stresses under

fault conditions.

Superconducting generators have been shown to possess several

operational and economic advantages over conventional machines. However,

the effects of faults upon these generators have not been studied. The

large oscillating torques and large armature currents producing rotor

heating following a short circuit on a power system have been known and

studied for many years. The internal effects produced by these fault

conditions would seem to be more severe in a superconducting generator

for the following reasons:

1) The thermal isolation of the rotor to minimize conduction heat

leak into the cryogenic region makes it structurally more

vulnerable to large electromechanical stresses.

2) Low thermal capacity of rotor parts at cryogenic temperatures

can result in a temperature rise due to rotor heating during
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faults. Small temperature rise in the superconductor can cause

it to go normal.

3) Induced currents in the field winding may cause it to go normal

if the critical current is reached, or if hysteresis losses raise

its temperature sufficiently.

The first consideration in making superconducting generators able to

withstand the effects of faults is the superconducting winding itself.

If a short-terra fault drives the superconductor normal, it might be neces-

sary to remove the generator from the system, whereas maintenance of

superconductivity would probably make continued operation possible after

the fault is cleared. The superconductor can be driven normal if (a):

the current rises above the critical value; (b) : the temperature rises

due to heat transfer from other rotor parts, or due to internal heat

generation in the superconductor itself; (c) : possibly, excess motion of

the superconductor results during the fault.

The electrical shields, cylindrical conducting shells around the

field winding, serve to mitigate all of these fault effects. A large

portion of the induced currents, eddy current heating, and oscillating

stresses associated with the period following a fault, are transferred

from the superconducting winding to these shields. The problems of

keeping the superconductor superconducting are, in part, traded off for

problems of making the electrical shields able to withstand the fault

effects.

The second consideration in making the superconducting generator

able to survive faults concerns the structural integrity of the rotor.
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The generator rotor is subjected to large electromechanical stresses

following a fault. These stresses include not only the well known shear

stresses associated with fault torques, but also normal stresses, because

of the initial exclusion of demagnetizing armature flux from the rotor.

The rotor torque-supporting structure at the rotor ends of a superconduct-

ing generator is minimized to reduce heat leak by conduction to the cryo-

genic region. In addition, much of the fault torque is taken by the

electrical shield, which is of relatively thin material. Hence, both

the rotor thermal distance pieces and the electrical shield are vulner-

able to fault torques. The electrical shield is also subjected to the

normal electromechanical stresses. Its only radial support is at the

ends, to prevent thermal communication directly to the field winding

region, making it particularly susceptible to deformation from these

radial stresses.

The electrical shield has evolved from the standard thermal radia-

tion shield used in helium dewars. The original function of the thermal

shield was to intercept steady-state radiant energy from the room-temp-

erature stator. Also, it intercepts electromagnetic energy in the form

of asynchronous magnetic fields produced by armature phase imbalance,

and serves as a damper winding to damp machine oscillations. This study

shows that it can also provide protection for the superconducting wind-

ing during fault conditions. Providing protection from asynchronous mag-

netic fields is shown to imply that the shield intercepts the transient

electromechanical stresses during faults.
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To provide sufficient mechanical support for the electrical shield,

it is more efficient to place the electrical shield at room temperature

to minimize conduction heat leak into the cryogenic region. The function

of thermal radiation shielding is then transferred to a radiation shield

at cryogenic temperatures. The electrothermal shield proposed by Thullen

[17] has thus become an electrical shield at room temperature to inter-

cept asynchronous flux and take the electromechanical stresses, and a

thermal shield at cryogenic temperature to intercept thermal radiation.

This study of fault effects in the superconducting generator reveals

additional benefits of the electrical and thermal shields for fault pro-

tection, but at the same time yields requirements upon their design to

insure the ability of the generator to survive faults. This study is an

attempt to develop the analytical tools necessary to predict the environ-

ment to which the rotor is subjected following the fault. The electrical,

thermal, and mechanical responses of the affected parts are investigated

in an attempt to identify potential critical failures. The steady-state

aspects of the shields' performances are also compiled. Sample calcula-

tions have been made for the existing 80 KVA machine, the 2 MVA machine

now being built, and power system size generators of 1000MVA rating,

which is included in Chapter II to indicate the relative importance of

the fault effects and the measures necessarv to protect against them.

The ultimate test of how a superconducting generator performs under

fault conditions can be answered only with some experimental experience

with a real generator subjected to a fault. This study is primarily

analytical, but supporting experiments to check critical aspects of the

analytical models were performed and are reported in Chapter V.
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The existing 80 KVA generator was subjected to a three-phase fault at

low level. More experiments are planned for this machine and for the

2 MVA machine being built.
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CHAPTER II

Results and Example Design

The purpose of this study is to evaluate the performance of a power-

system size superconducting generator under fault conditions normally

encountered in operation. The design requirements necessary to insure

that the generator can survive fault conditions are to be identified and

established. Two classes of fault conditions will be considered. The

first will be a short-term fault which is cleared by a system circuit

breaker. The duration of a short-term fault will be five to 15 cycles,

depending on the type of circuit breaker. The second class of fault will

be a sustained fault which occurs on the machine side of the system cir-

cuit breaker, such as the machine terminals, and cannot be cleared by

circuit breaker action.

The criteria for survival of these two classes of faults will be as

follows. To survive the short-term fault, superconductivity of the field

winding must be maintained. If the superconducting winding is driven

normal during the period before the fault is cleared, the machine must be

removed from the system. If superconductivity is maintained, the machine

can continue to supply power to the system through the remaining unfaulted

lines after the fault has been cleared. To survive a sustained fault,

structural integrity of the generator must be maintained so that perma-

nent damage does not result.

Maintenance of superconductivity through a short-term fault requires

that heat dissipation be limited in the cryogenic region where the field

winding is located, and that the level of current induced in the field

winding be limited. Superconductors can be driven normal, if their
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temperature rises more than a few degrees, or if their current level

increases above a critical level. Maintenance of structural integrity

during a sustained fault requires that the rotor parts subjected to the

large electromechanical stresses be substantial enough not to yield. The

yielding criterion also applies to the short-term fault, but it is more

critical for the sustained fault because of the large amount of heating

due to the dissipation from induced currents in the rotor structure.

To maintain superconductivity, a rotating, electrically conducting

shield must be provided to intercept the asynchronous magnetic fields pro-

duced by trapped armature fluxes and unbalanced conditions of the arma-

ture phases. The damper windings or bars of conventional generators serve

this purpose, and limit heating of the rotor iron. However, for the super-

conducting generator, the electrical shield must not have thermal commu-

nication with the field winding region. The induced currents and dissi-

pation must be intercepted outside the cryogenic region. This study shows

that a shield which intercepts the induced currents and dissipation also

intercepts the large electromechanical stresses associated with faults.

To support these stresses, considerable mechanical structure must be pro-

vided for the electrical shield. A room-temperature electrical shield

appears to be the most economical design, because of the large conduction

heat leak through the structure which would result for a cryogenic shield.

To intercept thermal radiation from the room-temperature electrical

shield, a secondary thermal shield is provided at a temperature somewhat

above that of the field winding (e.g., 20° K) . The electrothermal shield

proposed by Thullen [17] thus becomes a room -temperature electrical shield

to intercept dissipation and electromechanical stresses and a cryogenic





22

thermal shield to Intercept thermal radiation.

The transfer of transient electromechanical stresses from field wind-

ing to a room-temperature electrical shield is very desirable, since it

permits the use of minimum structure to support the field winding, and

thus limit heat conduction into the 4.2° K region. However, during fault

conditions, the power dissipation rate in the electrical shield far

exceeds the cooling rate; therefore the electrical shield's temperature

will rise, depending on its thermal capacity. Since structural proper-

ties of metals are degraded as their temperatures rise above room tempera-

ture, the ability of the electrical shield to withstand the electromechan-

ical stresses is related to its thermal capacity.

In addition to the fault survival criteria which affect the electri-

cal shield design, certain steady-state requirements must be considered.

First, the electrical shield will serve as a damper winding to damp

machine oscillations following a transient. Second, a steady-state elec-

trical dissipation will occur due to slight armature current phase unbal-

ance. The rotor cooling system must be designed to remove this heat. To

minimize steady-state losses in the electrical shield, a highly electric-

ally conducting material is desirable. This also makes the shield effec-

tive in intercepting asynchronous magnetic fields during fault conditions.

But a highly conducting shield with sufficient thickness to provide ther-

mal capacity provides very little damping. Conflicting requirements

therefore result from shielding, steady-state dissipating, and damping.

The requirement upon the electrical shield design can be summarized

as follows

:





23

1) Keep steady-state power dissipation to a level acceptable for

a reasonable cooling system.

2) Provide as much damping of machine oscillations as possible.

3) Maintain sufficient shielding of asynchronous magnetic fields

to protect the superconducting winding in the steady state, and

during short-term faults.

4) Provide thermal capacity to absorb transient dissipation without

excessive temperature rise for a sustained fault.

5) Provide sufficient structure to support the transient electro-

mechanical stresses.

6) Insure that no rotor mechanical natural frequencies are near

frequencies of electromechanical or rotational stresses.

This study provides a quantitative expression of the above effects in

order to arrive at an acceptable design which compromises between the

conflicting requirements. The following sections of this chapter discuss

the tradeoffs of shielding, damping, structural integrity, thermal capa-

city, and steady-state performance. Section II-4 presents a design for a

1000 MVA machine which is based upon these requirements. Chapters III

and IV present in more detail the analytical tools which have been devel-

oped to evaluate the fault effects and steady-state requirements on the

superconducting generator. Chapter V is a summary of experiments which

have been performed to lend credence to some of the analytical expres-

sions. Chapter VI is a summary of results and conclusions with suggest-

ions for further work.
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II-l Keeping the Superconductor Superconducting

During the period immediately following a fault, the most adverse

conditions are developed, which can tend to drive the superconducting

field winding normal. Alternating currents are induced in the field

winding, as well as a rise in the dc current level due to the demagnetizing

effect of the armature fault currents. A large heat load is imposed in

the rotor, due to trapped flux in the armature, and resulting imbalance of

shorted armature phases. Alternating stresses are exerted in the rotor

which can produce motion of the winding, and possibly degrade its per-

formance. Just how critical each of these effects is in producing a super-

conducting to normal conductivity transition in the winding will require

experimental investigation, as can be done with the generator presently

being built. This section is intended to illustrate the design require-

ments for a shield to mitigate the adverse effects upon the field winding.

The degree of protection which the electrical shield affords the

superconducting field winding is related to the shield attenuation factor.

This factor indicates the degree to which asynchronous magnetic flux, pro-

duced in the stator, is excluded from the rotor, and is numerically equal

to the ratio of the asynchronous magnetic field inside the shield to the

asynchronous field which would exist without the shield. The factor is

involved in expressions for induced field current, rotor heating in the

cryogenic region, and mechanical stresses excited upon the field winding.

The attenuation produced by an electrical shield is a steady-state

phenomenon dependent on the frequency of the asynchronous magnetic flux.

Associated with any conducting cylindrical shield there is an L/R time

constant equivalent to the time constant of the damper winding circuit
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used to model generators. Due to the process of magnetic diffusion in

the continuum conducting shield, there are in fact an infinite number of

such time constants, but the longest of these we will call the "electrical

shield time constant", T and it is given by

T ,
= CAay R

si o

A shield thickness

R » shield radius

a shield electrical conductivity

where C is a constant depending upon geometry. The relationship between

attenuation factor and the shield time constant is simple for a shield

whose thickness is less than the magnetic skin depth for the frequency of

the asynchronous magnetic fields. If the shield is thicker than a skin

depth, the expression is less direct.

For (o)T )
2 > 1, co - angular frequency of asynchronous flux,

X S 1 X

relative to the rotor
.,

6 > A

5 < A

A (II-l)
5

skin depth at frequency w

A shield thickness

RjjRq are the inner and outer shield radii.

The above expressions do not correspond for 6 - A because higher-

order correction terms have been omitted from the second expression for

6 < A. However, it should be clear that, as the shield thickness A or
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the shield conductivity O increases, T increases, and the attenuation

factor becomes a smaller number.

Since protection of the field winding against conditions tending to

drive it normal is related to the attenuation factor, the first impression

is that K
tt

should be made as small as possible. This implies a shield

with a very long T . However, the shield must also serve as a damper
5 1

winding. A shield with a long time constant has a low resistance, and is

not very effective in damping machine swings. Reference [5] has shown

that the optimum value of shield time constant for damping is given by

x + x

S S i X + X

where u) is the angular frequency of machine swings, and x is the exter-

nal reactance through which the machine is connected to an infinite

electrical bus. Reference [5] shows that this optimum shield time cons-

tant is nearly independent of x because of the dependence of u) upon x .

Therefore, given the synchronous and subtransient reactances, the shield

time constant for optimum damping is fairly well determined. As T is

increased or decreased from this optimum value, the damping coefficient

is decreased, as predicted by reference [5].

Shield time constant and attenuation factor are related, as was

indicated previously. Therefore the shield time constant cannot be set

arbitrarily at the optimum damping value without consideration of the

requirements for attenuation. These will be set by the induced field

current and thermal dissipation in the cryogenic region during faults

which can drive the superconductor normal. To provide a basis for the

tradeoff consideration between damping and attenuation, induced field
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current and heating are covered in the following section.

Induced Current in the Field Winding

Type II superconductors carrying direct currents with no loss will

exhibit a transition to normal conductivity if sufficient alternating cur-

rent is superimposed on the direct current. Losses are known to be

associated with the alternating currents, [11,12], but evidence does exist

that the transition is not independent of the dc level; that is, the

transition appears to occur if the peak current (ac and dc) attains a

critical value [10].

Following any type of short circuit on a synchronous generator,

there is a rise in the direct current level in the field winding, and a

superimposed alternating current. These changes in field current are due

to the demagnetizing effect of the armature fault currents and the mag-

netic flux trapped by the shorted armature phases.

A conducting shield surrounding the field winding will attenuate the

level of alternating current induced, but can only limit the rate of rise

of the direct current level. In section IV-A, expressions for the induced

field currents, ac and dc, for three-phase and line-to-line short circuits

on a generator are presented. Following a three-phase short circuit on

a generator occurring at t • 0, the field current will have the following

form, assuming that the field time constant is much longer than the shield

time constant:

t
t

1f- ho^ + JHrL ^- e T;i>1 + i
fac

The field current is expressed in per-unit, where the base is the

field current necessary to produce rated open-circuit voltage. The
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value i. is the per-unit field current before the fault; x,x' are the

synchronous and transient reactances in per unit; T" is the short circuit

subtransient time constant which is related to T by Eq. (A-15) ; i
f

is
s ac

the peak per-unit value of induced alternating current in the field wind-

ing after the fault.

The field current before the short circuit i. will increase by an

amount Ai, (x-x')Ail due to the demagnetizing effect of the armature

currents. (For the three=phase fault Ai' Voc /x' , but other cases can

be evaluated using Table IV-1.) This rise occurs exponentially with the

subtransient time constant (which is related to the shell time constant)

.

The maximum level reached by the field current will depend upon the time

necessary for the circuit breaker to interrupt the fault, and upon the

value of the shield time constant. If we assume that the circuit breaker

can operate in 5 cycles, the maximum per-unit increase in field current

can be calculated as a function of the shield time constant. For a sub-

transient time constant short compared to 5 cycles, the field current rise

will be about 0.6 per unit for a three-phase short circuit upon the 1000

MVA machine of section II-4. Other cases can be slightly worse. For

example, operation at zero power factor overexcited with a line-to-line

short circuit produces a field current of .84 per unit. Other cases can

be estimated, using Table IV-1. Unsymmetrical short circuits from load

depend on initial conditions and system reactance.
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The point of the last paragraph is that, for a representative fault

condition, such as a three-phase short circuit, it is possible to relate

field current rise to shield time constant. The longer the shield time

constant, the less the rise. But in making the shield time constant

longer, damping ability of the shield is degraded. From reference [5] it

is possible to calculate the change in damping coefficient for an increase

in shield time constant above the optimum value. In addition, the level

of induced alternating field current can be calculated, using Eqs . (III-8),

Table IV-2, and Eqs. (A-53-54)

.

The results are plotted in Fig. II-l. The ratio KD/IC relates

damping coefficient to its optimum value and the ratio T /T relater e r si si opt

shield time constant to the value of T producing optimum damping. The
S 1

plot of Ktj/Kt) versus T /T indicates the loss of damping versus

increase (or decrease) of shield time constant from its value for opti-

mum damping. Also plotted are the per-unit values of field current rise

and peak alternating induced field current versus T /T for a three-r ° si si opt

phase short circuit from load with breaker opening after 5 cycles. For

example, if T is increased to twice its optimum value, damping will be

80% of optimum, field current rise will be limited to 39 per unit, and

peak induced alternating field current will be 0.25 per unit.

Figure II-l is intended to give an indication of the loss of damp-

ing associated with limiting the field current rise during a fault. The

requirements of machine damping will depend on the installation. The

field current rise will determine how the operating point of the super-

conductor is set so that superconductivity will not be lost before the

breaker opens. It is obvious from Fig. II-l that, even for the best
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FIGURE II-l

Damping and Field Current Surge vs. Shield Time Constant
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damping shield, the induced ac is small and the dissipation will probably

have a smaller effect in causing a transition than the current level rise.

Heating in the 4.2° K Region During Faults

During the period immediately following a fault, considerable heat-

ing occurs within the rotor, due to trapped armature flux and imbalance

of the shorted phases. The heating which is of most immediate Interest,

as far as maintenance of superconductivity is concerned, is the heating

which occurs within the 4.2° K region where the field winding is located.

There is a steady heat leak into this region, due to conduction through

the mechanical supports from the room-temperature region radiation from

the thermal shield, and dissipation from asynchronous flux which pene-

trates the electrical shield.

The cooling system must be sized to handle this steady-state energy

input rate. During the fault period, an increase in this 4.2° K region

heat load is experienced, the magnitude of which is dependent upon the

electrical shield's attenuation factor. The sources of this increase are

the larger asynchronous flux during the fault, and the increased radiation

from the shield due to its temperature rise.

Two cases are of interest concerning heating in the 4° K region.

First is the short-term fault which is cleared in 5 to 15 cycles. The

total energy input to the 4° region must not raise the field winding

above its critical temperature, so that superconductivity is not lost.

Second is the case of a sustained fault which cannot be interrupted by

the circuit breaker. In this case, the primary concern is not necessarily

maintenance of superconductivity, but prevention of permanent damage to
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the machine. If the field winding is driven normal, a large dump of magnetic

energy will occur within the cryogenic region. This must be anticipated

in order that the rotor be designed to withstand such an occurance.

The rate of energy dissipation in the containment vessel depends on

the attenuation factor of the electrical shield, and on the thickness of

the stainless steel vessel. For the 1000 MVA machine of section II-4a,

stainless steel thickness of .29 inches gives maximum dissipation. A

thinner shell is resistance-limited; a thicker one is reactance-limited

until the shell is thicker than a skin depth, which is about 1.8 inches.

The short term (5 cycles) temperature rise in the 4° region is shown in

Fig. II-2 as a function of the electrical shield attenuation factor, and

with containment vessel thickness as a parameter. This temperature rise

depends upon the thermal capacity of the rotor. The liquid helium has

by far the largest specific heat of any material in the 4.2° K region,

and contributes almost all the total heat capacity. It has been assumed

here that helium occupies 10% of the field winding volume. A larger per-

centage would give more heat capacity; however, if the field winding goes

normal, all the liquid will be vaporized and must be vented. Therefore,

for safety reasons , it is probably advisable to keep the percentage of

helium as low as possible.

The results shown in Fig. II-2 indicate that maintenance of supercon-

ductivity for a short circuit cleared in five cycles will require that

the attenuation factor for frequency w be kept below .01 in order to

keep the temperature rise less than one degree. Optimum damping can still

be realized for an attenuation factor less than .01 if the shield is

thick compared to a skin depth, i.e., when the second part of Eq. (II-l)
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FIGURE II-

2

Temperature Rise in 4 Region vs. Shield Attenuation Factor
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(Temperature rise for 3 phase fault cleared after 5 cycles

with containment vessel thickness as a parameter.)
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applies. In section II-4 is presented an example in which optimum damp-

ing is obtained with an attenuation factor of .0016.

Another interpretation of Fig. II-2 is to say that the containment

vessel should be made of a nonconducting material, or that some provision

be made for breaking up the long eddy current paths in the containment

vessel. However, stainless steel appears to be the best structural mater-

ial for the containment vessel, and design of a laminated vessel would be

difficult. It is probably more practical to assume that the proposed con-

figuration of a stainless steel vessel will be used. In such case, an

electrical shield with adequate attenuation will be required. Additional

benefits result from an attenuation factor of .01 or less, as will be

shown in the following section concerning structural integrity of the

field winding. This attenuation can be realized consistent with reason-

able damping. Therefore, it remains to be demonstrated that a shield

can be designed to produce this attenuation and damping, and have suffi-

cient structural and thermal capacity to survive fault condition itself.
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II-2 Maintaining Structural Integrity of the Rotor During Faults

During the period following an armature short circuit, very large

stresses are exerted on the rotor. The parts which are subjected to

these stresses are at the same time being heated by induced currents, with

the result that their structural properties are degraded. Maintenance

of structural integrity involves consideration of the thermal capacity

of the rotor parts subjected to the stresses and heating. The following

sections discuss the magnitudes of the stresses exerted on the field wind-

ing and the electrical shield. The thermal capacity of the rotor for

sustained faults is then investigated.

Rotor Fault Torques

The torque exerted upon the rotor following a short circuit has a

large oscillating component and a much smaller unidirectional component.

The maximum torque occurs during the subtransient period; if the rotor

can survive the first few cycles, it will survive the fault, provided

the mechanical natural frequencies of the turbine generator rotor are

not excited by the oscillating stresses. A structurally sufficient

model roust therefore be substantial enough to resist the subtransient

stresses and have its natural vibrational frequencies above the excita-

tion frequencies.

Field Winding Fault Torques

One of the principal benefits of the electrical shield is the

attenuation of oscillating torques applied to the field winding. Table

II-l shows the peak per unit total torque upon the rotor and the torque

on the field winding for several types of faults from various conditions
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of loading. The supporting calculations are from Appendix I with the

analytical expressions from Chapter IV. For attenuation factors less

than .01, as were seen to be required for maintenance of superconduct-

ivity during short term faults, the level of alternating field winding

torque is less than 3 % of rated torque.

Table II-l Fault Torques

Condition
Peak per unit

Torque on Rotor
Peak Torque upon Field Wind-

ing for Various Attenuation
Factors K

.001 .01

att «v
.1

Three-phase short circuit

at terminals from load

at p. .85 6.7 .0025 .025 .25

Line-line short circuit

at terminals from rated load

at p f
= .85 10.5 .0017 .017 .17

Closure out of phase by

120" (x£ .26)
6.35 .0014 .014 .14

The maximum torque which will be exerted upon the field winding is

essentially the rated torque of the machine. The benefit of field wind-

ing fault torque limitation is that the structural supports for the field

winding can be minimized. The conduction heat leak into the 4.2° K

region can be reduced, thus reducing the capacity of the refrigeration

system required.
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Fault Torques Upon the Electrical Shield

The total reaction torque upon the rotor can be calculated indepen-

dent of the details of damper shielding, as is done in many references

(e.g. [14]). The total torque acting on the rotor is exerted primarily

on the electrical shield, if the attenuation factor is low as is required

to maintain superconductivity during the short-term fault. The peak

alternating torques in per-unit acting on the shield are calculated from

the expressions in section A-l-b and are listed in Table II-l for various

fault conditions.

If the electrical shield is to withstand the fault torques, the

yield stress in shear of the shield material must not be exceeded at the

maximum temperature reached by the shield under the fault condition.

Torsional buckling of the shield is also possible, but for practical

shield designs is a higher limit than yielding in shear. Torsional oscil-

lation natural frequencies of practical shields are always considerably

above the double line frequency of the fault torque for unbalanced faults.

In section II-4 of this chapter, a shield design is proposed which is

sufficient to resist these modes of failure.

Since most of the fault torques are taken by the shield, its sup-

ports must have considerably more structural strength than the field

winding supports. It is therefore more difficult to provide thermal

isolation of the electrical shield consistent with adequate mechanical

support. Although the MIT 2 MVA machine has a 20° K shield rotating in

a vacuum relative-motion gap, it appears, based on structural support

of the shield, that a room-temperature shield would be more practical

for power-system-size generators. This assumes that adequate steady-state
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cooling of the shield under slight imbalance is possible. This will be

considered in the section on steady state performance. However, the most

practical configuration for the 1000 MVA machine rotor appears to be a

heavy, well supported, room-temperature electrical shield with the 4.2° K

region containing the field winding, supported by thermal distance pieces

which need to support only slightly above rated torque and can minimize

the conduction heat leak. A secondary shield can be provided at approxi-

mately 20° K to intercept thermal radiation from the room-temperature

shield. The conduction heat leak through the field winding supports can

also be intercepted at 20° K, making the heat load in the 4.2° K region

quite small.

The amount of structure necessary to support the transient torques

upon a 1000 MVA machine is considerable. Let us assume that the field

winding is supported by a structure adequate to withstand rated torque,

which is about the maximum it will feel as was shown in the last section.

If the field winding is supported by a solid shaft of stainless steel

with yield stress of 60,000 psi, it must be seven inches in radius. To

allow for the helium plumbing and current leads, the support must, in

fact, be hollow. Figure II-3 shows the required field support thickness

A f
as a function of the outer field winding support radius FQ . As F

increases, the required A decreases, lowering the heat leak to the 4.2° F

region. For a value of F 9 in., the rate of gain in thermal isolation

is decreasing. If a 2-inch buildup of superconductor is assumed, the

inner radius of the shield support is set. The righr-hand portion of

Fig. II-3 then indicates the required thickness of the shield support

to withstand the maximum transient torque, which is approximately 10 per
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FIGURE II- 3
-

Shield and Field Winding Support Thickness vs.
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unit. The resulting shield support

is roughly 5.4" in thickness. If the

shield were to be run at cryogenic

temperature, the heat leak through the

supports would be at least 5 KW.

Coupled with the steady-state shield

dissipation (as discussed in the next

section) , this would require nearly

a megawatt of refrigerator power.

The alternative is to run the shield at room temperature, cooling it

in a manner similar to the rotor cooling of conventional machines. The

heat leak through the field winding support can be limited to about 523

watts, and no negative sequence dissipation is experienced under steady-

state because of the shielding of the room-temperature shield. A

second cryogenic shield at a temperature slightly above the field winding

can be used to intercept the thermal radiation from the room-temperature

shield. This second shield can also be used to provide a lower effective

attenuation factor to asynchronous flux during faults, and thus limit the

temperature rise during short-term faults. The over-all configuration

will be given in section II-4.

Normal Stresses Uoon the Electrical Shield
- - * II || . .1 !!

During the subtransient period following an armature short circuit,

the demagnetizing flux produced by the armature fault currents is

excluded from the electrothermal shield. A normal stress is produced

which is nonuniform around the shield, and which tends to flatten it into

an elliptical shape. In addition, the asynchronous fluxes as seen on the
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rotor produced by trapped armature fluxes and armature imbalance are

also excluded from the shield. These fluxes also produce a traveling

wave of deflection on the shield, so it must have sufficient rigidity to

this type of stress to limit the maximum deflection to a tolerable level,

If the shield is not sufficiently resistant to radial deflection itself,

provision must be made for radial stops upon the surface of the contain-

ment vessel inside, to limit the extent of the deflection. The ring

natural frequencies of the shield must also be kept above the highest

frequency of excitation, which is twice line frequency.

The maximum radial deflection of the shield and its ring natural

frequencies are primarily functions only of its thickness. Additional

radial stiffness can be obtained by the addition of a stainless steel

cylindrical shell inside the electrothermal shield. As will be seen in

the design in section II-4, this is probably necessary to withstand the

transient torques. In addition, radial stops located on the helium con-

tainment vessel and supported radially through the field winding support

can also be provided. Contact would not be made between the shield and

the stops under normal conditions, so there would be no radial heat con-

duction. Only during a transient deflection would the shield come into

contact with the stops.

Figure III-4 shows a plot of the maximum radial deflection under

transient and the lowest natural ring frequency as a function of shield

thickness. For a self-supported shield, considerable material thickness

is required to limit resulting deflections.

Thermal Capacity of the Electrical Shield

In section II-l, the thermal capacity of the 4.2° K region was con-
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sidered to determine the temperature rise for a short-term fault in order

to maintain superconductivity in the field winding. For a sustained

fault upon a machine which cannot be interrupted, such as a three-phase

short circuit at the machine terminals, the primary concern is the

ability of the electrical shield to absorb the resultant Seating without

suffering permanent damage. The measure of a machine's ability to absorb

transient heating which greatly exceeds the cooling rated is expressed

by the quantity I t, where I is the per-unit negative sequence armature
2 2

current, and t is the time for which I is applied. For example, a

machine with I
2
t 8 seconds would withstand 1=1 for a period of 8

2 2

seconds without permanent damage. The industry standard for turbine gen-

erators is I
2
t £ 8 seconds. The standard is presently under discussion.

Turbine generator manufacturers are trying to have the standard lowered,

because of the difficulty of obtaining thermal capacity in conventional

generator designs. To satisfy this requirement, the electrical shield

2
must have sufficient heat capacity to absorb energy equivalent to I t £ 8

seconds without damage. A value of I,
2
t greater than 8 seconds would be

very desirable.

If the material and thickness of an electrical shield is selected,

a value for I t can be determined by assuming an initial operating temp-

erature for the shield and performing a step-by-step calculation of the

temperature as a function of time for L 1, taking into account the

dependence of conductivity and specific heat upon temperature. The

maximum temperature is determined by the loss of yield strength with

increased temperature. At cryogenic temperature, specific heat and elec-

trical resistivity of materials are both low; as temperature is increased,





both increase, but specific heat levels off near room temperature, while

2
resistivity continues to increase. The result is that the I t associated

with a temperature rise from 20° K to 300° K is about the same as that for

a rise from 300° K to 650° K.

2
The nature of an I t number like 10 seconds is misleading. It

2

implies that a machine can withstand a fault condition for 10 seconds,

in which case thermal diffusion would permit heat to be distributed to

all structure in contact with the electrical shield, and additional ther-

mal capacity would be available from the stainless steel reinforcement

backing the shield. In fact, what we are trying to provide is sufficient

thermal capacity such that a terminal three-phase short circuit will not

heat the shield to a point where structural damage can result. For a

three-phase fault, the value of I is of the order of (x
n
)

l which is

6.25 per unit, and the duration of the heating is approximately the arma-

ture time constant, which is about 0.3 second. In a period of .3 seconds,

almost no heat is conducted into the underlying stainless steel because

of its lower thermal conductivity. The value of I
2
t required to absorb

2

the dissipation of a three-phase terminal short circuit is

Voc
(I

2
°3

«, short circuit " IF (T
a
+ T

d>

This number is I
2
t 12.7 seconds for the 1000 MVA machine of section

2

I 1-4. In order to provide this thermal capacity, only the heat capacity

of the conducting material of the shield can be relied upon. The impli-

cation is then that the conducting material must be made thick enough to

provide the thermal capacity. However, from Eq. (A-56) , it is seen that

the shield time constant increases as the thickness. Calculation shows

that a shield with sufficient thermal capacity at room temperature
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initially, and of high-conductivity copper to reduce steady-state loss,

would have a time constant three times the value for optimum damping,

thus reducing the damping to 60% of optimum. For a copper shield at 20° K

if sufficient thickness for heat capacity is provided, the electrothermal

shield time constant will be nearly 150 times the optimum value, and pro-

duce almost no damping.

In order to overcome this problem, there are two possible alterna-

tives. We can use a material of lower conductivity, permitting a thicker

shield without an excessively long time constant. In order that the shield

attenuate the asynchronous fields sufficiently to limit dissipation in the

stainless steel support structure below it, the shield material should be

thicker than the magnetic skin depth at the asynchronous frequency. The

steady-state power dissipation is proportional to the square root of

the shield resistivity. Hence, the higher-resistance material will re-

sult in larger steady-state shield dissipation.

A second alternative for providing thermal capacity of the shield,

and limiting the shield time constant, is the use of a circumferentially

slotted shield. This technique permits the designer to use a high-

conductivity material for the shield, like electrolytic copper, and reduce

the steady-state losses. The disadvantage is that the copper has low

yield strength and must be held down upon its supporting tube with steel

banding. The technique of slotting does permit independent selection

of thermal capacity and time constant with the use of high-conductivity,

low-loss material. The slotting technique is explained in the following

paragraphs

.

If narrow circumferential slots are machined into the shield, the
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time constant of the shield is reduced because the resistance of the

shield to axial current flow has been increased. In chapter V are pre-

sented expressions for the resistance increase associated with such an

operation, along with experimental verification. The result is that, by

proper selection of depth and spacing of slots, it is possible to adjust

the time constant (and hence the attenuation factor) of a conducting

shield without seriously affecting its thermal capacity.

Figure II-5 shows the cross-

section of a shield taken by a

plane containing the cylindrical

axis. The shield's resistance

to current flow and hence its

time constant, are determined by

the quantities S, t, and h,

while the thermal capacity is

' J 4U
*?

-S-»
\U

Slotted shield cross section

Figure I1-5

determined primarily by the thickness, w.

For example, a room-temperature copper shield 1.5 inches thick in the

1000 MVA machine would have an I t - 20 seconds, but a time constant of
2

T - .384 seconds. Slots .1 inch wide and one inch deep, spaced one inch

apart, will reduce the time constant to T » .189 seconds, but maintain

I
2
t 18.8 seconds. The thermal diffusion time associated with con-

2

duction of heat through the one-inch-thick "fins" is .52 seconds, indi-

cating that, for a .327 sec. armature time constant, approximately full

advantage of the copper's thermal capacity will be realized. However,

the thermal diffusion time for one inch of stainless steel is 14.5 sec,

indicating that it will provide very little thermal capacity for transients
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Determination of the thermal capacity, or I
2
t, of a shield, depends

2

on the maximum temperature to which the shield will be permitted to rise.

For the example quoted in the last paragraph, the copper shield was per-

mitted to rise to 650° K or 377° C. This is consistent with the tempera-

ture rise estimated for the amortissem of conventional generators for an

I t of 8 seconds [20]. The rotor surface temperature for conventional
2

generators for I 2
t - 8 seconds is estimated at 460° C and for I

2
t 12

2 2

seconds, at 580° C from reference [20].

A temperature of 377° C is in the low annealing range for copper;

hence, the maximum yield strength which can be counted upon is about 2000

psi for fully annealed copper. As shown in section II-4, this is insuf-

ficient to withstand the centrifugal stresses; sufficient strength to

withstand the fault stresses can be provided by stainless steel backing.

The big problem is in holding the copper on with steel banding.

Use of the slotted electrical shield proposed above can permit the

2
machine designer to determine the thermal capacity, and hence the I t,

of the generator consistent with damping and attenuation requirements.

It is possible to provide larger thermal capacity with the thick copper

shield than with the iron rotor of a conventional machine, because of

the larger thermal conductivity of copper. The iron rotor of the con-

ventional machine is heated to extremely high temperatures before much

heat has been conducted into the bulk of the rotor.

The first alternative, of a thick shield of higher resistance mater-

ial, has been chosen for the design presented in section II-4. The

material selected for the shield (Phosphor Bronze) has considerably

higher yield strength than electrolytic copper; it can therefore withstand
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the centrifugal stresses without external support rings, and can carry a

significant portion of the shear stresses resulting from fault torques.

The steady state dissipation for armature imbalance is higher than it

would be for a slotted high-conductivity shield, but it is still small

compared to the rotor heat load of a conventional machine of comparable

size.

II-3 Steady-State Performance of the Electrical Shield for Unbalanced

Load

The primary design consideration concerning steady-state operation

of the electrical shield is the power dissipation due to armature current

imbalance. To keep this dissipation as low as possible for a given mater-

ial, the shield must be thicker than the skin depth of the induced cur-

rents due to imbalance, which is twice line frequency. The dissipation

is then proportional to the square root of shield resistivity. This

implies that advantage is gained from a cryogenic shield; however, the

important factor is the amount of refrigerator power required to remove

the heat dissipated in the shield. Added to this negative-sequence heat-

ing is the conduction heat leak for a refrigerated shield. Because of

the heavy supports necessary to support transient torques, this heat

leak is quite large.

Table II-2 gives a comparison between the heat loads due to negative

sequence and conduction for shields at room temperature, 77° K, and 20° K.

Also computed are the refrigerator power for the cryogenic shields and

the cooling power for the room-temperature shield. The numbers concern-

ing refrigerator power should be taken only as qualitative, but do indi-

cate the very definite trend that higher shield temperature can be cooled
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more economically.

Table II-2

Cooling Power Required for Shield as a Function of

Shield Temperature

p
Shield Temp- Conduction Dissipation Total compressor Total blower
erature Heat Load for I .1 Heat Load p refrig. or compressor

oK (KW) (KW) (KW) Power (KW)

20 5 10 15 50 750

77 4 35.4 39.4 9.4 370

300 150 150 (add 100KW 250
for fan power)

The other steady-state considerations of the shield's performance

are its mechanical natural frequencies, and the centrifugal stress level

in the conducting layer. The critical natural frequencies include the

torsional frequency of the shield, the ring natural frequency for radial

vibration, and the lateral vibration frequency of the shield between

its end supports. The formulae for these calculations are given in

chapter HI, and results for a 1000 MVA machines are in section II-4.

None of these natural frequencies appears to be a problem because of

the thick shield support required by transient torques.

The stress in an outer, high-conductivity copper layer due to centri-

fugal stress is a problem, because of the rotor diameter. The yield

stress of the copper is low because of its purity and annealed condition.

The critical radius for centrifugal stress at a yield stress of 10,000 psi

is 13 inches. Since the rotor must be larger than this, it would be nec-

essary to provide retaining rings of stainless steel upon the copper
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shield. The dissipation in these rings is small because of their

limited axial length. Another possibility is to use fiberglass or some

other nonconductor to tie down the electrothermal shield copper layer.

Use of a lower-conductivity, higher-strength material can eliminate this

problem, as has been done in the design presented in section II-4.

II-A 1000 MVA Superconducting Generator; an Example

Designs for 1000 MVA superconducting generators by Thullen [17] and

Kirtley [21] have not included consideration of the electromechanical

stresses imposed on the rotor during faults. Least-weight designs have

been developed, but calculations show that they are not structurally suf-

ficient in the rotor to withstand the transient torques and forces. The

design presented in this section has started with the least-weight con-

figuration developed by Kirtley [21] and altered it in such a manner as

was necessary to produce a machine which can survive fault conditions

consistent with the results of this study.

Considerable weight has been added to the rotor; however, this is

necessary to provide structural integrity. The least-weight machine

on the basis of Kirtley' s work, had been shown to be long and small in

diameter, as opposed to the previous design developed by Thullen [17].

It has been necessary in the present design to increase rotor diameter

somewhat; however, an effort was made to keep the rotor diameter as

small as possible, in the belief that this is probably nearer the least-

weight configuration that could be developed consistent with fault-

survival ability. No weight optimization has been done for the present

design, but it can be done using Kirtley 's techniques with the requirement

for fault survival included. The design used by Kirtley did not have an
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iron shield over the end turns . The end turns are then assumed to con-

tribute inductance, but generate no voltage. More recent designs have

included iron shielded end turns which contribute more to effective

length. Therefore, optimum designs may in fact be shorter and larger

in diameter. Such a machine makes satisfaction of fault-survival criteria

even easier, because of the increased effectiveness of rotor structure

at a larger radius.

It was decided to develop a design which maintained a subtransient

reactance of .15 per unit. Decreasing the subtransient reactance to a

lower value results in a rapid increase in the maximum per-unit transient

torque which must be tolerated. A 15% subtransient reactance results in

a maximum subtransient torque of about 10 per unit; this is for a line-

to-line short circuit at the terminals while operating at rated condition.

The three-phase short circuit at the terminals results in a maximum

torque of 6.7 per unit. The case of 10 per unit torque may seem rather

drastic, but the object is to show that it is possible to develop a design

consistent with such a requirement; the occurrence of such a fault is

entirely conceivable.

The thermal capacity of the shield for this design will have a

thermal capacity indicated by an I
2
t of 20 seconds for a 361° C temper-

2

ature rise of the shield. This is considerably more than the available

I
2
t for conventional gnerators of similar rating.

2

Maintenance of superconductivity through the short-term fault de-

pends upon the shield attenuation factor and the thermal capacity of the

liquid helium region. The attenuation resulting from the electrical

shield for this design is .0016; the temperature rise in the helium region
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for a short circuit cleared in five cycles less than .1° K, and for one

cleared in 15 cycles is less than .3° K. The induced alternating field

current is .0048 per unit, and the dc rise is .24 per unit. Proper place-

ment of the superconducting winding operating point relative to short

sample characteristics should guarantee maintenance of superconductivity

through these conditions. The secondary, or thermal, shield can be de-

signed to decrease the problem of field current surge. Since this shield

is subjected to almost no electromechanical stresses, it can be designed

with the proper time constant necessary to limit the field current surge

consistent with the ability of the exciter to control the field current

change

.

The damping coefficient of the present design has been optimized for

the estimated swing frequency of the turbine-generator system. The amount

of damping will depend on the shield temperature during the period of

machine swinging. However, the power dissipated in swinging will be dis-

tributed throughout both the shield and its stainless steel support tube.

Considerable thermal capacity is therefore available, and the temperature

rise should be rather small. Therefore the effective time constant and

damping coefficient should not change radically throughout the period

of machine oscillations.

Mechanical natural frequencies of the rotor relative to lateral

vibrations, torsional oscillation, and ring vibrations are all high

enough that they should cause no problems. The field winding supports

have been minimized, making the lateral natural frequency of the field

winding the lowest expected natural frequency. This calculation has

neglected any stiffening due to the winding itself;
t

the true lateral
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natural frequency will therefore be somewhat higher. Steady-state

dissipation due to 10% negative sequence is 141 KW. The windage will be

comparable to a conventional machine. However, the shield dissipation is

2
less than 5.2% of the field winding i R losses for a conventional generator

of this size. Therefore, cooling of the shield by conventional techniques

should not be difficult; the rotor could operate in a partial vacuum to

eliminate windage, but shaft seals must then be provided.

The heat load in the 4.2° K region under stady-state conditions is

primarily conduction through the supports and radiation from the secondary

shield. These losses can be intercepted at a slightly higher temperature,

such as 20° K, reducing the 4.2° K heat load to a few watts. The second-

ary shield will act primarily as a radiation shield, and will not be

subjected to the subtransient mechanical stresses and heating during

faults which is taken by the primary, room-temperature shield. The cryo-

genic secondary shield can be made quite thin, of high-conductivity mater-

ial, and cooled by conduction from the ends.

Figure II-6 shows a drawing of the proposed design, and Fig. II-7

shows more detail of the rotor. Table II-3 lists machine parameters and

characteristics

.
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FIGURE I1-7

1000 MVA Design Rotor Cross Section

Axis

+
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Table II-3

1000 MVA Superconducting Generator

Stator Dimensions:

Inner Radius of Conductors

Outer Radius of Conductors

Inner Radius of Iron Magnetic Shield

Outer Radius of Iron Magnetic Shield

Length Straight Section

Length Each End-turn Region

Rotor Dimensions:

Inner Field Support Radius

Outer Field Support Radius

Inner Superconductor Radius

Outer Superconductor Radius

Helium Containment Vessel Radius

Secondary Shield Radius

Inner Primary Shield Support

Outer Primary Shield Support

Inner Primary Shield Radius

Outer Primary Shield Radius

Reactances:

Synchronous Reactance x

Transient Reactance x'

Sub transient Reactance x"

19 .5 in.

25 .0 in.

29 .0 in.

41 .7 in.

121 .3 in.

22 .5 in.

8 .95 in

10 .0 in.

10 .0 in.

12 .0 in.

12,.0 in.

12,,1 in.

12 .2 in.

16,.0 in.

16,.0 in.

17,

t

4

1

.6

.55

,3>

.15

in.

I

r
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Primary Shield and Support

Shield Material :

Phosphor Bronze A

95% Cu, 5% Sn

Hardness: Rockwell B-91

a % 80,000 psi ; Fatigue Strength for 10
8 cycles 33,000 psi

p (300° K) - .107 ; 6(w
o

) « .835", 6(2u>
o

) - .59"

Shield Support Material :

Stainless Steel a £ 60,000 psi

p(300° K) = .725 ; 5<u> ) = 2.17" , 6(2w ) « 1.54"

Thickness Time Constant (ms)

Shield Primary 1.6"

Support Material 3.8"

T optimum damping = 212 ms for w 10 ;, i.e., f = 1.6 hz,
SI S 5

Power Dissipation in Phosphor Bronze:

I
2

» .1 141 KW

K
att

(a)
o^ - .0207 K (u ) = .076
bronze att o ss

159

55.5
214.5 ms.
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Stresses in Shield

ayield stainless steel - 60,000 psi

ayield phosphor bronze = 80,000 psi

Max. Transient Torque 10 - 240 x 10
6

in. lb f.

rv 2 T R
shear due to transient torque o _ ~

6
,, Q .

*K - RPO J-

a (centrifugal hoop stress) = 18,340 psi

Max. shear from Mohr's circle

a - 37,500 psi - .47 o .. . .,
s max v tensile yield

Overspeed centrifugal stress (5,400 rpm)

a (5400 rpm) = 41,100 psi
t

a . - 20,600 psi
shear max r

Maximum Radial Deflection for 3<J> Short Circuit .037 in,

Mechanical Natural Frequencies

Lateral Vibration of Shield f - 176 hz.

Lateral vibration of Field Winding f = 50 hz.

Torsional Natural Frequency Shield f
fc

442 hz.

Torsional Natural Frequency Field

Winding f
t

* 256 hz.

Ring Frequency at Standstill Shield = 655 hz.

Ring Frequency at Standstill Field

Winding = 177 hz.
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h t

10 sec.

20 sec.

Thermal Capacity

Shield Initial Temperature 27° C

T Phosphor Bronze
max

193° C

361° C

25 sec. 446° C

Max Shield Temp, for three-phase short circuit

at terminals - 251° C

Max Shield Temp, for line-to-line short circuit at terminals

assuming field winding discharged in 5 sec. 273° C

Heat Loads in Cryogenic Region

Secondary Shield at 20° K

Thermal distance piece length 16 in.

thickness 1.05 in.

Conduction 523 watts

Radiation 103 watts

Negative sequence ( < 1 watt)

626 watts @ 20° K

Field Winding Region 4.2° K

Thermal distance piece length = 8 in.

thickness * 1.05 in.

Conduction 2 watts

Radiation neg.

Refrigerator Compressor Power 33.3 KW ( < 10"** of machine
rating)
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Estimated Weights

Rotor:

Field winding support

Field winding

Shield Support

Shield

Shaft (20 inches each end)

Stator:

Armature

Iron Shield

320

5070

14680

9190

8060

37,320 lbs. rotor

24970

136700

161^70 lbs. stator

198£90 lbs. total

Rating 985 MVA .202 lbs/KVA
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The proposed design has a synchronous reactance of .59 com-

pared to nearly 2.0 for a conventional machine of similar size. The .202

lbs/KVA weight is nearly an order of magnitude less than that for a con-

2
ventional machine. The thermal capacity, as indicated by I t, is at

least 20 seconds compared to 8 to 10 seconds of present iron rotor design,

The efficiency is about 99.8% compared to 98.7%, and the rotor natural

frequencies are all high compared to conventional machines. Thus, the

advantages associated with superconducting generators have been main-

tained while satisfying the criteria for survival of fault conditions.
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CHAPTER III

Steady-State Effects Upon the Electrical and Thermal Shields

1) Heating of the Rotor

A heat load is imposed upon the rotor of the generator by eddy currents,

conduction through structure, and radiation. The heat load will be distri-

buted anong the electrical shield, the cryogenic thermal shield, the stain-

less steel can and supports, and the superconducting winding, depending on

the design of the electrical and thermal shields. In chapters III and IV,

the word "electrothermal shield" is sometimes used. This refers, in gen-

eral, to the electrical and thermal shield combination. When considering

mechanical stresses, attenuation, and eddy current heating, it refers to

the electrical shield; for thermal radiation, it refers to the thermal

(cryogenic) shield.

a) Sources of Heating

1. Radiation

The heat flux due to radiation between two coaxial cylinders

assuming diffuse reflection, is

a
= G

I. 2T1 (T
,

%
" V > (III"1)

b
l

A
2

b
2

where e ,£ are the emissivities of surfaces having areas A + A12 6
1 2

and temperatures T + T . The areas A + A are nearly equal, and

T * » T \
2 l

Aoe.e, u
Q - . ,

-' ' —-— T
H

; A - area of thermal shield
e + e - e e 22112

T - stator temperature ; a = 5.33 x 10 watts/ft z °K8 .._..„ tc*Z o.
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(2) Stator Phase Imbalance

The load supplied by most power system generators is not perfectly

symmetric with respect to the three phases resulting in unbalanced cur-

rent between the three phases. The imbalance of currents results in

a negative sequence component of armature current, that is, one producing

a magnetic field which rotates in the reverse direction to the rotor

rotation. Formulae for determining the magnitude of the negative sequence

current component are well known, and given in any power systems text-

book. The newest standards for power system generators require that

they be able to withstand 10% negative sequence, steady state.

The power dissipation in the shield due to a per-unit negative

sequence current I
2
is obtained from Eq. (A-50) and Eq. (A-52), where

03 2u) and n » 1.
o

Negative Sequence Power Dissipation :

"at *' i /
(2 "°V

2

V . Ba A<s
U
o [l±(f)]

2I
s, V

1+<2uoVV* Bl
«

td
- J (III-2)

^7 jTT^f V A s

V.

\ o o

u s . ,S
2 IS? J.I

b
I2

. UUL {1 . , ± 1
(1.x3)

(_o)
,
_jw

J
A

rated armature current density amp/m2
rms
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(3) Stator Harmonics

If all three phases of the generator are perfectly sinusoidally

wound, a uniform magnetic field will be produced rotating at synchronous

angular frequency by balanced phase currents. Spatial harmonics of

order higher than the fundamental produce magnetic fields which rotate

at different angular frequencies, some of which will induce currents in

the shield and produce losses.

Harmonics which are multiples of three produce no rotating component;

harmonics 5, 11, 17 6m+i produce negative sequence fields rotating

at angular frequency oo /n, or at to (1 + —) relative to the rotor; har-

monics 7, 13, 19, ... 6m + 1 produce positive sequence fields at angular

frequency w (1 ) relative to the rotor; since the windings are sym-

metric odd distributions about their axes, there are no even harmonics.

The harmonics for a distributed winding between radii S. and S
Q

with 60° phase winding angle are

6/Tj
A 2nn

J » cos ____
n nir 3

n

T\
i T~,

SU

t x* f
B
°n A < 6n

(III" 3>
r 1 ± (—) 1 Sn \r 1 + (U) T )V n

rn sn J

A >6n

The relative angular velocity of the ntn harmonic to is given by
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0)
rn

n « 3, 6, 9 3m

U (1 + -) n = 5 , 11, 17 , .... 6m -1

u(l - b
l o n

n = 7, 13, 19, 6m+ 1

on 2

"r.n-1 - „ r.n-1 S

I— S
2 "n (l-x

2 -n
) 1

R
2 - n o

n+2

,, n+2 s _
_ • (1 - x ) J

zn n+ Z n
(III-4)

The armature is usually made up of discrete bars which yield large

amplitude spatial harmonics for n near the number of bars per row.

Some concern that losses due to these bar harmonics might be considerable

led to the following analysis.

Each row of armature bars can be modeled

as impulses of current at a constant radius.

The magnitude of the ntn harmonic current

sheet representing the row of bars shown

is calculated from the formula

6 /2I
TT S I sin nQ

±
(III-5)

i-i

on

current in each bar rms

one half the number of bars on one

side of the machine in the row at r

^n R n_1 «; 2

= s.

(III-6)

The power dissipation due to each harmonic for each row of bars can be

evaluated by Eq.s. (III-6) and (III-3) using the appropriate value of n
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and S for each harmonic and row. The total time average power is the

sum of the contributions of all harmonics for all rows, because the har-

monics are orthogonal and the same harmonic for different rows are in

phase.

b) Distribution of the Rotor Heat Load

The rotor of a superconducting generator will be arranged with the

superconductor mounted upon a center spool, probably of stainless steel,

a stainless steel containment vessel around the field winding to contain

the liquid helium, with a thermal shield at approximately 20° K and an

electrical shield at room temperature. If no electrical or thermal shield

were included, the steady-state negative sequence component would induce

currents in the stainless steel containment vessel and impose a heat load

in the 4° K region. Since the stainless steel shell is a poor shield,

due to its poor electrical conductivity, alternating currents would also

be induced in the superconducting winding, producing loss there. The

amount of dissipation within the superconducting wire and its consequences

can be determined only with some operating experience with the experimen-

tal machine being built. However, the magnitude of the losses in the

containment shell can be predicted, based on the electrical shield para-

meters, and the magnitude of the induced field current can be predicted.

1) Electrical Shield Heat Load

The total electrical shield heat load will be composed of

the sum of negative sequence heating and stator harmonic heating. The

calculation of these components is made using Eq. (III-2) for negative

sequence and (III-3) for armature harmonics. The calculation of the

resultant steady-state shield temperature must involve the cooling
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mechanism for the shield. For example, the M.I.T. 2 MVA machine has a

cryogenic shield cooled by conduction at the ends. Some heat will be

lost by radiation to the colder region inside. This component of cooling

is really more important in predicting the heat load on the radiation

shield inside; it can be calculated from Eq. (III-l) after the approxi-

mate operating temperature of the electrical shield has been determined.

2) Stainless Steel Containment Vessel Heat Load

Radiant energy from the thermal shield and asynchronous mag-

netic fields which penetrate the electrical shield impose the heat load

on the stainless steel vessel. If the shield is effective, none of these

loads should be significant. The negative sequence heating will be the

largest. The negative sequence magnetic field seen at the stainless

steel vessel will be the negative sequence field seen by the electrical

shield reduced by the attenuation factors presented in Appendix I.

B
I2S ' B

I
K
att

B » flux density at stainless steel shell (assuming

the shell is resistance-limited)

B
I2

- from Eq. (III-2)

K . - from Eq. (A-53) or Eq. (A-54)

The time-average power dissipated in the stainless steel shell is

summarized as
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P,, - 4ttX 3
(o

2
h a £ B* _

d , , , o ss I2S
stainless steel

B
I2S . !ofo U - x ± i(l-x') £)"> *£. JA

I
2

K
att

(III-7)

1

K
att

= /I + (2VSl
)" A < 6

2* | e-
A/6

K
A > 6

x radius of stainless steel shell

h » thickness of " " "

a - electrical conductivity of stainless steel shell
SS

T time constant of electrothermal shield
si

A K thickness of electrothermal shield

6 = skin depth in electrothermal shield at frequency 2u)

2 ^

o o

a = conductivity of electrothermal shield

Equation (III-7) appears to neglect the fact that the radial field at

the stainless steel shell is reduced by the currents induced in the

field winding. The flux produced by the ac field currents is oscillat-

ing, and can be resolved into two counter-rotating components relative

to the stainless steel containment vessel. One of these components

reduces the imposed negative sequence field, and hence reduces the

losses; the other, of equal magnitude, rotates in the opposite direction

relative to the shell, producing additional losses which are equal to

the amount by which the losses due to the imposed field were reduced.
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Hence, the total stainless steel vessel losses are as given by Eq. (III-7)

even when the effect of the field winding is included.

III-(2) Alternating Currents in the Field Winding Due to

Negative Sequence

The magnitude of the ac induced-field current depends on the ac

direct-axis armature current, according to Eq. (A-18)

*f
ac

(I, )
"d

T
do

r
f£ Z1 + <Td>x>

where w is the frequency of the direct-axis ac current. For a steady-

state negative sequence current, the direct-axis ac current equals

the magnitude of the negative sequence current. This equation was

derived for a single-time constant damper winding. The field current

expression can be written in terms of the shell attenuation in order

to generalize for thick as well as thin shells. The attenuation factor

is evaluated at frequency 2co .

For resistance-limited shells, (2oo I" « 1),
o do

li
|

= (x
d " x

d>
K
att h

' ac

For reactance-limited shells (2co I" » 1) (III-8)
o do

(x, - xl)(x. - x")
i . I d d d d „ T

l

li
= -^— *.« «.

The expressions for K are given in Eq. (III-7) ; all quantities in

Eq. (III-8) are in per unit.
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III-(3) Steady-State Mechanical Excitation of the Electrical Shield

The magnetic field produced by steady-state negative sequence cur-

rents will be excluded from the region inside the E.T. shield. The

interaction of the imposed field and the induced shield currents will pro-

duce a traveling wave of normal force moving relative to the shield.

The shield should be designed so that its ring frequencies as derived

in Sec. A-3 are not near the driving frequency of these normal forces.

The normal electrical force per unit area is given in section A-2:

7 , Tu „ 1 [

H
9outside

+ H
6 inside ]

a
r " *r y

o
H
6 , . .

" \ .. 2 (III-9)
[_ outside inside)

- i ~ H
ft

- H
fir 2 L °outside b
insideJ

If the shield is effective in intercepting the negative sequence magnetic

field, H
fl

will be much less than H
fl

. This is equivalent to

inside outside
requiring that to T .. » 1 where to is the angular frequency of the travel-

X SI X

ing field with respect to the rotor. For negative sequence fields,

to 2 to .

x o

If Hq is neglected, the force can be written
inside

a - i i u IhJ cos 2
(to t - 6)

r r 2 o 1 o

'

x

(111-10)
2

He " 7T^- {1 - It± i (1-xi)
(^)

}

;
/rj

A
I
a

At a fixed point on the shield in the rotor frame, the alternating com-

ponent of force will vary with angular frequency 2 to . For negative
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sequence to * 2co and the force will vary at frequency 4 to . Therefore,

the lowest ring natural frequency should be above 4 to .

The maximum deflection of the shell for a constant load of the form

F cos 2 8 is calculated in Eq. (A-66) . The steady-state deflection for a

mechanical system with natural frequency to and no damping, driven at

frequency to, by a force P sin io,t will be

1 .

x * x sin to,t
o . / toj \2 d

1
-W

where x is the deflection for a constant force P . An upper bound on
o o rr

the steady-state deflection of the shell, due to imbalance, is obtained

by assuming no damping of the ring vibrational motion. The radial deflec-

tion of the shell for negative sequence current I
2

is given by Eqs.

(III-l 1):

a
ro

=
2 Ve

e 1±(r)2 3 \T) 2

4 R
2

/ 1 \/l-V 2
\/

a
ro \ (III-ll)

Ar

°

= WWFW [I

x 3(V + l-vva)
1 \

KRJ
4 V I I2 / E Wl N

R' 4 \l t . 2

^T^Pjirj rP +2 -4w
o

Ar » Ar , 4^ xg sin 4u> t

ton /

Since the negative sequence magnetic field for a per-unit negative se-

quence of I
g

= .1 is quite small, the maximum steady-state deflection Ar
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should be negligible unless the ring natural frequency is very near

4 a) .

o
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Chapter IV

Electromechanical and Thermal Effects of Faults

The fault behavior of a superconducting generator as seen at its ter-

minals (both electrical and mechanical) is essentially the same as for

a conventional generator. The superconducting generator has the advantage

of lower synchronous reactance, resulting in superior system stability.

However, the effects internal to the machine produced by the large fault

currents and forces may be more severe in the superconducting generator

for the following reasons:

(1) Alternating currents induced in the field winding could drive

it normal.

(2) Heating produced by induced currents in rotor parts can raise

their temperature considerably, because of low thermal

capacity at cryogenic temperatures.

(3) Magnetic radial stresses upon the electrothermal shield can

produce large deflections because of the lack of radial sup-

port between shield and inner rotor structure.

(4) The thermal isolations of the rotor make it structurally more

vulnerable to large transient torques.

None of these effects represents a fatal flaw of the superconducting

generator concept. All can be overcome with proper design consideration

of the effects. However, because of the critical competition between

thermal isolation to minimize heat leak and structural integrity during

faults, it is necessary to predict as well as possible the rotor stresses

and heat loads during faults. Expressions for these stresses and heat

loads are derived in Appendix III. In this chapter, the mechanical and
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thermal model of the shell will be used to estimate the resulting motion

of the shield, the temperature rise of the shield, and other determinantal

effects upon the field winding.

1) The Effects of Fault Torques

The existence of large oscillating torques within a generator fol-

lowing a fault has been known for many years and studied in numerous papers,

The most complete analysis including initial loading of the generator for

three-phase short, line-to-line short, and synchronizing out of phase is

included in Ref. [7], Woodson's Report to Consolidated Edison. Appendix

I presents a derivation showing the applicability of the results to

superconducting generators taking into account the constraint on the

various mutual inductances imposed by the presence of the conducting elec-

trothermal shield. The cases considered are appropriate for the super-

conducting machine, because the present armature configuration is a delta

connection which precludes the possibility of line-neutral machine faults.

Even when a machine is Y- connected, a large impedance is placed between

neutral and ground to limit fault currents; the line-neutral fault can

thereby be made less severe than the other faults in which such a simple

current limitation is not possible.

The calculation of fault torques for conventional machines usually

results in a total torque acting on the stator (or rotor) . Since both

the field windings and damper bars or windings are set in the rotor iron,

tne distribution of actual forces between field windings, damper bars,

and rotor iron is not so important. However, in the superconducting gen-

erator, the damper winding is the electrical shield, which is a thin-

walled tube supported only at the ends. The torque exerted upon this
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tube can produce the following failure modes: shear off the shield if

the yield stress of the material is exceeded; cause torsional buckling of

the shield; produce large torsional oscillations of the shield if the

natural torsional frequency is near the driving frequency of the torques

.

Oscillating torques are exerted upon the field winding also, to a lesser

extent. The field winding must be mounted with sufficient rigidity to

prevent excessive motion of the superconducting wire. There has been

some concern as to the possibility of driving the superconductor normal

because of motion during faults. The analysis shows, however, that most

of the torque is taken by the shield. This fact lessens concern about

the superconductor, but makes prediction of shield stresses more critical.

2) Torque Upon the Field Winding

The field winding is subjected to an oscillating torque, as

given by Eq. (A-42):

T
f
( ... )[ .. nr l ^r- U, Hl_ (iv-D

x
d - x

d\
t

l
\

rr.ll

do
trill

d

•3

\ ac'
1 **!,„t

U, - <)x
d 1

/l + (T" 0) )

2

do

<U

Inspection of Eqs. [A- 32 (a) thru (e) ] shows that ip equals zero for

faults from open circuit. Therefore, the alternating torque on the field

winding is essentially zero for all shorts from open circuit. The second

2 _ 1/

point to be observed from Eq. (IV-1) is that the factor [1 + (T" U)) ]do J

represents an attenuation factor due to the presence of the damper wind-

ing. For an electrical shield whose thickness is greater than a

skin depth, the attenuation factor given by Eq. (A-53) must be used.

The result is that, even for a loaded machine where di is not zero, the

torque upon the field winding is considerably less than the total rotor
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torque. Another way to state this is to say that a shield which is effec-

tive in intercepting the asynchronous magnetic field seen on the rotor

also intercepts the alternating torque which is exerted on the rotor.

Equation (IV-1) is evaluated for the cases of three-phase fault,

line-line fault, and synchronizing out of phase, and the results are

listed on the following pages. Inspection of these results indicates

that the per-unit torque on the field winding is not large for reasonable

values of attenuation factor.

Alternating Fault Torque Exerted Upon the Field Winding

1) Three-Phase Fault from Load
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For a resistance-limited shield (T" oj )
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2) Llne-to-Line Fault from Load

The line-line fault produces two oscillating torque components

,

one at line frequency and one at double line frequency. The attenuation

factor must be evaluated separately for each.
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Resistance-Limited Shield (IV-U)

x + x'

Tf= (i^'X^K^-T^ ^ ac

b) Torque Upon the Electrical Shield

For an effective shield, the field winding torque has been shown

to be small. For calculation of the effects of torques on the elec-

trical shield, it is then slightly conservative to assume that the

total resultant oscillating torques, as given for various faults in Eqs.

(A-33) through (A-37) , are applied to the shield.

If the shield is supported in torsion at both ends, the maximum

torque along the shield, tending to shear it off azimuthally, is one-half

the applied torque. If the natural frequency of the shell in torsion as

given by Eq . (IV-3) is much higher than the oscillating torque frequency,

the shield will yield in shear if the yield stress in shear of the mater-

ial is exceeded. The frequency of the oscillating torques from Eq. (A-l-b)

are fundamental line and second harmonic frequencies. The lowest tor-

sional natural frequency is

t
t

- jg/f (IV-5)

The quantity / G/P is roughly constant for most metals; evaluation of

the equation shows that a shield nearly 10 meters long would be required

to have a natural torsional frequency as low as 120 Hz. Even for the

example 1000 MVA machine in section II-A, the shield length is only

about 4.2 meters. The torsional natural frequency will almost always

be well above the driving frequency of the oscillating torques. The
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resultant state of stress in the shield must then be found by combining

the shear stress due to torques with the centrifugal hoop stresses due

to rotation of the shield.

The maximum shear stress due to torque of magnitude t for a shield

of inner and outer radii R. and R is given by the following equation:

2 R t
o

a =
s

ttcr* - R; >
(IV"6a)

O 1

The tensile stress due to rotation of the shield is given by the follow-

ing equation:

p <D
2R 2

a
T

=
m

2
° °

(IV-6b)

where p is the mass density of the shield material. These stresses

must be combined using Mohr's circle. For the ductile materials of

which the shield will be composed, the most logical failure criterion

is probably the maximum shear theory. The maximum shear stress result-

ing from a and a_ above must be less than the yield stress in shear.

The yield stress in shear is about one-half the yield stress in tension.

The maximum torque x to be used in Eq. (IV-6a) depends on the fault

condition considered. Expressions for these torques are given by Eqs.

(A-33) through (A-37) . The most severe which is of practical interest

is the line-to-line fault at the terminals, while operating loaded

at rated power factor. The case of over-excited operation at zero power

factor at rated reactive power is slightly worse, but is a more unusual

condition of loading.
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A second possible mode of failure is buckling of the shell due

to torsion. The situation in which this mode of failure can occur before

simple failure in shear is that for a very thin cylinder. Most calcula-

tions have shown that the critical torque for buckling is well above that

for shearing off the shield; however, the criterion is reproduced here

from Ref. [9] for completeness.

Buckling of a Shell in Torsion

27.58 R2A 2
E

Tcrit
(i-v 2

) e I

1 + .0257(1-

V

2
) (-£—\ (IV-7)

£
2A

for -=-=_ < 7.8
/l-v 2

(2R)
3

crit
3(1 -v 2)'*

, 1 ft
2 A . _ .

for > 7.8

A - V2
(2R) 3

Unidirectional Shield Torques

Unidirectional torques or induction motor type torques are exerted

upon the electrical shield during transients. In general, they are

small compared to the peak values of the alternating torques. They

can be evaluated from the power dissipation in the shield, due to the

asynchronously rotating magnetic fields. The heating in the shield is

itself a more important effect than the unidirectional torques, and is

treated in section IV-3. The unidirectional torque can be evaluated

from tue value of P , the power dissipated due to alternating currents
oC
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induced in the shield. Values of P for the various fault conditions
ac

are derived in IV-3.

Torque unidirectional — P^
0) ac
o
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IV-2 The Effects of Normal Mechanical Stresses of Electrical Origin

In Appendix I it is pointed out that, during an electrical transient,

when a magnetic field is established external to a conducting shield in a

time short compared to the shield time constant, a normal stress is exerted

upon the shield. Inside the superconducting generator, this field is dis-

tributed sinusoidally in azimuth, producing a normal stress distribution

which tends to flatten the shield. The magnitude of this stress is deter-

mined primarily by the machine reactances as shown in Appendix I. However,

the duration of this transient is dependent on the time constant of cur-

rent decay in the shield, and the maximum deflection of the shield will

depend upon its ring natural frequencies as derived in Appendix I.

In this section will be presented expressions for the maximum radial

deflection of the electrical shield under various fault conditions.

Three-Phase Fault

The normal stress resulting from a three-phase fault from open cir-

cuit is given by Eq. (A-61) . In order to determine the flattening of the

shield, the transient radial motion of a point on it can be solved as for

a lumped-spring mass system subjected to a driving force whose time depen-

dence is given by the normal stress equation. Equation (A-66) gives the

radial deflection of a shell subjected to normal stress given by Eq. (A-65)

.

The natural frequency of the shell is given by Eq. (A-65); with these ex-

pressions an equivalent spring constant and mass can be defined for

radial motion of the shell at angle y 0. Evaluation of the second spa-

tial harmonic terms of Eq. (A-61) gives the following stress distribution:
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If we consider the deflection at y = as a function of time, the terms

containing sin 2y will produce no contribution; the cos 2y will produce

a deflection as given by Eq. (A-66) . To solve for the transient shell

deflection, the solution to the equation is given by

mx + kx - f(t')

where f(t') is the time dependence of the cos 2y terms in Eq.(iv-8).

Stress producing deflection at y = is expressed as

a (tO
2
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From Eqs. (A-65) and (A-66), we obtain the following:

f
For a load q = y cos 2$

Produce deflection x
4 r

1 - v 2
,irR

*

1 1-v' f

A E 2
cos 2<j>— (ir)+ 3(£)
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The complete solution of the differential equation with the driving func-

tion (tV-9) requires much algebra. However, the result being sought is the

maximum deflection of the shield during the transient. To obtain that re-

sult, we can make use of the fact that both the armature time constant and

the subtransient time constants are at least several cycles of line fre-

quency, and for most machines, even longer. Using this assumption, the

differential equation can be written

*o o o
mx + Kx = -.— + 7— cos 2w t - -z— cos CO t

4 4 o 2 o

f y AH2
.

o Ho li

The solution for x depends on the relationship of the shell's natural
max r

frequency u) = / K/m , as given by Eq. (A-67) , and the driving frequen-

cies w and 2oo . Damping of these radial motions has been neglected;
o o

therefore, the deflection for co = w or u 2co will become infinite.
1 n o n o

However, the limits for co < co and co > 2co can be estimated by the
' n o n o '

undamped case. The results are as follows:

For co > 2co , T , TV » —
n o * a* d co

x 2 x
max o

x
o K 2 (IV-11)

For co < co
n o

X X
max o
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From Eq. (IV-11), it appears that the deflection is less for a shield

with natural frequency below co ; however, this corresponds to a shield

with a low value of K producing a larger x . The stiffer high frequency

shield produces the smaller deflection.

3) Rotor Heating During Faults

The effects of rotor heating during faults was studied extensively

in the past [22] and criteria of I t for a generator was developed. The
2

2
I t is essentially a measure of the amount of rotor heating due to trans-
2

ient negative sequence currents which can be tolerated without permanent

damage to the machine. In a superconducting machine, this rotor heating

effect must be accurately predicted for the following reasons:

1) Small specific heat of metals at cryogenic temperatures;

2) Relatively small thermal mass subjected to heating;

3) Possibility of driving the superconductor normal.

One of the most important functions of the electrical shield is to inter-

cept the large negative sequence magnetic fields during faults. Since

it is a relatively small thermal mass, considerable temperature rise can

be experienced in the shield. Attempts to add thermal mass to the shield

are difficult; materials such as stainless steel with low electrical con-

ductivity also have low thermal conductivity; during the period of the

transient, very little heat is conducted into them. A thicker shield of

high electrical and thermal conductivity adds effective thermal mass, but

increases the shield time constant and reduces the shield's effectiveness

as a damper winding, as shown in Ref. [5].

The calculation of fault heating employs the results of Appendix I

to obtain the armature fault currents, the magnetic field model to obtain
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the heating, and the thermal model to calculate temperature rise of the

shield, due to the nonlinear temperature dependence of the shield's

electrical conductivity and specific heat.

Heating produced in the shield during faults results from the fol-

lowing sources:

1) The dc currents induced in the shell to maintain its flux

linkage constant during the subtransient period;

2) Alternating currents induced by the trapped flux linkages

in the armature which appear to rotate backward relative to

the rotor at angular frequency w ;

3) Alternating currents induced by negative sequence fault cur-

rents resulting from unsymmetrical faults.

The most severe case is the line-line fault, which results in unbalanced

currents even after the transient period. The results for this case can

be used to determine the temperature rise occurring before the system cir-

cuit breakers interrupt the fault for a short-term fault, or the ultimate

temperature rise for a sustained fault.

Three-Phase Fault Shield Heating

The magnitude of the increase in positive sequence armature cur-

rent is given in Table IV-1. The resulting current induced in the shield

to maintain constant flux linkage at the shield is derived from the mag-

netic field solution given in Appendix I. The resulting expression for

power dissipation due to dc shell currents is
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dc
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(IV-13)

Ai", , Ai", from Table IV-1.
dl ql

The three-phase fault is symmetrical and no negative sequence armature

currents are produced. The ac power loss in the shield results entirely

from the trapped armature flux.
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(IV-14)

The total dissipated power is the sum of P and P. .

In calculating the shield temperature rise due to the fault, a

step-by-step calculation is performed, taking account of the integrated

power dissipated and the dependence of conductivity and specific heat on

temperature. It can be shown that the power dissipated in a three-phase

fault is independent of initial current; i.e., it depends only upon

terminal voltage before the fault.
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Line-to-Line Fault Shield Heating

The dc power for the line-line fault is given in Eq. (IV-13) if

the appropriate time constants are used.

AlJi e ^̂) +
(
AC •" T

J] (IV-15)

T
dil '

T
qi

fron Eq
*

(A"16)

Ai" , Ai" from Table IV-1
di ' qi

The ac power is computed using Eq. (IV-14), using the appropriate

value of magnetic flux density and angular frequency.
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Equation (IV-16) must be evaluated for both trapped armature flux and neg-

ative sequence armature currents:

3/2J^
B
x

= %~27-
R 2

s {i-,±|<i-x')(5a)}j
x





89

Trapped Flux:

X
B0

o x"

Negative Sequence (2 components)
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The total ac power Is evaluated as the sum of the result of letting J be

equal to i„ , i„ , and i • The total dissipation is then the sum of P
dc

and P .

ac

IV-4 The Field Current During Faults

During the period immediately following a fault , the field current

level rises due to the demagnetizing effect of the armature currents, and

an alternating component of current is induced due to trapped armature

flux and unbalanced conditions of the fault.

The rise in the direct current level is not affected by the presence

of the electrical shield; the rate of rise will, however, depend on the

electrical shield time constant. The peak direct current level depends

only on the increase in the direct-axis current during the transient

period, that is, when the shield currents have decayed, but the field

winding is still linking a constant flux. In per-unit notation,

Ai, - (x - x') Ai,'
f
dc

dl
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The expressions for Ai! are summarized for three-phase and line-to-

line fault in Table IV-1. The largest rise occurs for a line-to-line fault

on a generator operating at zero power factor over-excited.

The alternating current induced in the field winding depends upon

the attenuation of asynchronous magnetic field provided by the electrical

shield. The equations are given as Eqs. (A-19) relating alternating field

current and alternating direct-axis current. They are repeated below in

per-unit notation, giving peak values.
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x do

1
£
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att
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The expressions for i« are given in Table IV-2 for three-phase short
ac

and line-to-line short circuit where i, is given by i for a three-
ac °

phase short circuit, and i and i for a line-to-line short circuit.r o 2

Table IV-1

Increase in Positive Sequence Direct-Axis Armature Current

Following Fault

1) Three-Phase Short Circuit (same for loaded or unloaded)
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Table IV-2

Magnitude of Direct-Axis Alternating Current Following Fault
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CHAPTER V

Experiments

Several experiments were performed during the course of this study

to confirm intermediate results of the analysis. Some experiments were

also performed upon the existing superconducting generator. These were to

confirm prediction of performance, and to observe whether or not any unex-

pected developments should occur.

The first experiments were done to confirm predictions of armature-

produced flux density, time constants of conducting shields, attenuation

factors of shields, and power dissipation in shields. The experiments on

the existing machine were to record performance for a sudden three-

phase and line-to-line short circuit. Also, the generator was run as an

induction motor with the shield acting as the rotor winding, to measure

shield dissipation and to observe the effect on the field winding. The

results of these experiments with explanations of the setup and comments

on the results are given in the sections of this chapter.

V-l Armature-Produced Magnetic Field

The magnetic flux density produced by the armature of the 80 KVA gen-

erator was measured while the rotor had been removed for repairs. The

armature currents were produced by a bank of three-phase transformers con-

nected through an autotrans former to the line. The rms flux density was

measured on the axis of the machine in the active region, and through the

end-turn region. The results are plotted in Fig. V-l.

From Eq. (A-48) , the predicted rms flux density using the distri-

buted armature current model was 140.5 gauss for armature current of 200

amps. Using the discrete bar model with the Fourier analysis from Eqs.
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(III-5) and (III-6) plus Eq. (A-48) , the predicted value was 141 gauss.

The measured value at the center of the active region was 139 gauss.
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FIGURE V-l
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V-2 Shield Time Constants

A number of experiments were performed to confirm the expressions

for shield time constants which are developed in section A-2-C. Conduct-

ing shields were used, whose thicknesses were about 30% of their outer

radius, so that the diffusion time constants, as well as the lowest shield

time constant, could be observed. The shield conductivities were first

measured with dc, and the time constants predicted from the conductivity

and dimensions, using Eqs. (A-60,60'). The experiments were performed by

placing the shield inside a motor stator and suspending a flux probe

inside.

Resistance was placed in series with the motor armature, to make the

armature time constant short compared to the shield time constants to be

measured. A step of voltage was applied to the armature and the result-

ing voltage upon the flux probe was recorded. The recorded probe voltage

was plotted on semilog paper, to determine the time constants. The

shield time constant T , and the first diffusion time constant T could
si s2

be determined from the plots. The predicted and measured results are

given in Table V-l. The measured values are all slightly smaller than the

predicted values for the thicker shields. There are three reasons for

this: first, the shield was slightly shorter than the overall length of

the motor armature, therefore the two-dimensional analysis does not

take into account the resistance contributed by the path of the currents

around the ends of the shield. Second, the iron outer boundary of the

motor had teeth for the armature windings; the inner radius of the teeth

was used for the iron boundary in the equations, but the effective bound-

ary is slightly larger, and would predict a slightly lower time constant.
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Third, it was difficult to make the armature time constant too much less

than T
2

» because the resulting flux inside the shield became very small.

Although the armature time constant is too small to separate by the plot-

ting technique, it provides an additional delay in the rise of the flux

inside the shell, and appears to make observed time constants slightly

larger.

Table V-l

Shield Vin) A(in)

T
Pred.

S1
(ms)

Meas.
TS2

Pred.
(ms)

Meas.

Al 1.75 .5 2.28 xlO 7 7.0 6,8 .47 .58

A1(N
temp)

1.75 .5 5.67* 10
7

7

17.7 17.4 1.19 1.45

Bronze 1.75 .5 .65x10 2.0 1.92 .134 .139

Al 2.25
7

.116 2.11x 10 3.3 3.0 not measured

motor
stator

ww^

flux
probe

Figure V-2

Shield Time Constant Experimental Setup

storage
oscilloscope

conducting
"shield
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V-3 Attenuation Factor of Thick and Thin Shields

An aluminum shield with dimensions 3.5 inches OD and 2.5 inches ID

was placed inside a motor stator while the stator windings were excited

with variable-frequency currents. The flux density inside the stator was

first recorded as a function of frequency and current without the shield.

The shield was placed inside the stator and the flux density measured in-

side the stield at the same frequencies and currents as without the shield

The range of frequencies was such that the magnetic skin depth ran from

much greater to much less than the shield thickness.

The attenuation factor reciprocals predicted by Eq. (A-54) for a

thin shield, Eq. (A-53) for a thick shield, Eq. (A-52 1

) using the Bessel

functions, and the measured values, are recorded in Table V-2. For skin

depths greater than the physical thickness, the thin shield attentuaion

factor is fairly accurate. For thickness greater than about two skin

depths, the approximate expression given by Eq. (A-53) is quite accurate.

1.25" = 31. 75

Table

mm, R 44,
o

V-2

.45 mm, / ,- 37 ' , 6 mm,R
i

= R
i
R

<

A = 12.7 n

6 (mm)

1/K
att

f

^Bessel
Function
Eq. A-52'

Thick Shell
Approx.
Eq. A-53

Thin Shell
Approx.

Eq. A-54

Exper.

40 16.67 2.46 1.71 1.99 1.75

80 11.78 4.52 4.68 3.58 3.8

100 10.54 5.65 5.72 4.42 4.5

200 7.45 12.20 12.14 8.66 8.7

500 4.72 47.2 47.6 21.42 47.0

1000 3.33 196.7 197.6 43.0 200.0
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Figure V-2A

Shield Attenuation Factor
Experimental Setup

ac
ammeter

variable frequency
voltage source

oscilloscope

conducting
shield

V-A Power Dissipation in a Shield

The power dissipated in a conducting, stationary shield inside a

three-phase induction motor stator excited by balanced, three-phase cur-

rents was measured. The flux density as a function of stator current was

measured without the shield and armature i
2
r losses were recorded. The

shield was placed inside the stator and the increase in power at the

stator terminals recorded for the same armature current as without the

shield. The time constant of the shield had been determined independently

by the experiment of section V-2, but was also checked by recording the

attenuation factor of flux inside the shield.

The flux density without the shield was recorded as a function of

axial position through the end-turn region in order to determine the ef-

fective length of the stator. The power dissipation was predicted from

Eq. (A-50), using the flux density without the shield, the shield time
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constant, and the geometric factors to be 191 watts. The measured dissi-

pation was 196 watts.

V-5 Sudden Short Circuits of MIT Experimental Generator

The MIT first-generation superconducting machine (nominal rating,

86.5 KVA) was subjected to sudden three-phase and line-to-line short cir-

cuits from open circuit. Oscillograms of the resulting currents were

recorded in order to check the expressions for transient and sub transient

reactance, and for sub transient time constant.

Several runs were made of the three-phase short circuit test. All

gave about the same value for reactances, but the later values of sub-

transient time constant were longer. This, probably, is because the shield

was below nitrogen temperature for the later runs, since nitrogen was not

used after the initial cool down. Tests made in September, 1969, were

done at about 3% of what was then considered rated field current; results

of the three-phase tests are stated below. The impedance bases results

from the nominal machine rating of 64 volts, line to neutral, phase cur-

rent of 450 amps, and power rating of 86.5 KVA. The theoretical impedances

are predicted from reference [6], and the time constants for equations in

Appendix I.

Quantity

d

Ai,

Table V-3

Theory Measured (per unit)

.0133 ft .0865

.0188 Q .0104 ft .0675

.0054 ft .0070 ft .0455

.0116 sec. .015 sec.

.061 amp. .063 amp.
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FIGURE V-3

Oscillograms of Sudden Short Circuits upon 80 KVA Generator

Three Phase Short Circuit

Line to Line Short Circuit





The field current rise was measured for the three-phase short cir-

cuit and was found to be consistent with the measured reactances and the

equation for field current surge in Chapter II.

Later experiments have shown that a more realistic voltage rating

for the machine is 45 volts, line to neutral, at a field current of 56

amps. Another set of sudden short circuit tests was run with the field

current at 6 amps or 10.7% of rated voltage. These tests were run with

similar results. No adverse effect upon the machine was observed, and

superconductivity was maintained. A line-to-line short circuit from tie

same open circuit voltage was also performed, with no adverse effects.

V-6 Induction Motor Loss Experiment

The 80 KVA superconducting generator was run as an induction motor

by driving the armature through a three-phase autotrans former and a set

of specially built step-down transformers. The electrothermal shield

served as the induction motor rotor. The power into the armature termi-

nals was measured. From knowledge of the armature losses and the bearing

and windage losses, the power dissipation in the shield can be calculated.

The shield time constant was measured before the run was started, and

after the last point was taken, by imposing a voltage step on the armature

and recording the open-circuit field winding voltage. The shield time

constant had changed from beginning of the run to the end, because of

the dissipation, but at least the conditions for the first and last point

of the run were determined. From knowledge of the shield time constant,

armature currents, and rotor speed, the power dissipation in the shield

could be predicted from Eq. (A-50) . The experimental and predicted re-

sults are given below.
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RPM T I (amp)
P
totmeas. losses shield

P
shield (A-50)

SI 3.

2400 .012 160 53 22 31 32.1

600 .0062 160 115 15 100 90.0

The machine was run to 3,550 rpm as an induction motor, voltage was

applied to the field winding, and the machine was synchronized with the

60 Hz. system. Armature current as a function of field current was then

recorded with the machine running as a synchronous condensor. The result-

ing V curve of armature current vs field current is shown below.





540 -

450

360

270
"

180
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FIGURE V-4

'V" Curve for 80 KVA Generator

90

-* r —i

—

124 8 12 16

Field Current (amps)

Terminal Voltage =9.7 volts line-line

Rated Armature Current = 450 amps
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V-7 Slotted Electrical Shield

The shield time constant of a

conducting shield can be decreased by

cutting circumferential slots as shown

in the figure at the right. The resis-

tance to axial current flow is increased

without affecting the inductance, thus

the L/R time constant is decreased.

This technique permits a shield designer

to use a thick shield for thermal capacity

while keeping the time constant to a low

enough value to achieve optimum damping,

as explained in Chapter II.

The cross section of one side of the shield is shown below, giving

definitions of the parameters of the slots as follows:

Slotted Electrical

Shield

w shield thickness

s = slot spacing

h = slot width

d slot depth

t = w - d

w A
I

The effective thickness A of the shield for use in calculating the

shield time constant is given by

A =
e

h + s

h/w + 2 £n(l +~)
for s < d

The time constant of the slotted shield can then be calculated using Eq.

(A-56) with A substituted for A.
e
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Experiments were performed using conducting paper with different

numbers of slots and spacing. The resistance increase in the paper from

one end to the other was measured as the slots were made. The results of

the experiment are given below, comparing the resistance predicted by

the formulae and the measured values.

Predicted Resistance Measured Resistance

Number of slots Kft/inch Kft/inch

1 8.69 8.65

2 10.80 10.60

3 12.60 12.50

5 14.55 14.70

9 16.33 16.50

17 17.68 17.90
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CHAPTER VI

Conclusions and Suggestions for Further Study

The purpose of this study is to identify the critical considera-

tions in the design of a superconducting generator rotor, to insure that

it can survive fault conditions. The classes of fault conditions and

criteria for survival are as follows:

1) A short-term fault of from five to 15 cycles which is

cleared by the system circuit breaker.

Criterion: Superconductivity must be maintained.

2) A sustained fault inside the system circuit breaker which

cannot be cleared.

Criterion: Structural integrity of the rotor must be

maintained such that permanent damage does

not result.

Chapter II has presented a discussion of the critical effects with a pro-

posed design for a 1000 MVA machine which satisfies the above criteria,

while maintaining satisfactory steady-state performance with the inherent

advantages of a superconducting generator. Chapter III, IV and V have

presented the analytical tools and experimental verification used to

develop the design in a form which can be used to evaluate fault effects

upon future designs. The conclusions which can be drawn from this study

concerning the critical considerations in design of a superconducting

generator to survive fault conditions are presented in the following

section.
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VI-1 Conclusions

1) To insure the maintenance of superconductivity through a short-

term fault, the following design considerations will be critical:

(a) An attenuation factor no greater than .01 at line frequency

must be provided to limit temperature rise in the 4.2° K

region.

(b) The superconductor operating point must be established with

anticipation of the field current rise which results during

the period prior to breaker interruption of the fault.

(c) It is possible to provide a shield which will produce nearly

optimum damping consistent with the attenuation requirement

of (a) . The dynamic stability should therefore be superior

to that of a conventional machine, where it is more difficult

to tailor the damping coefficient.

2) To maintain structural integrity of the rotor, the following

design considerations are established:

(a) For a shield with an adequate attenuation factor, most of

the transient torques are taken by the shield. To provide

adequate support for the shield, it should be run at room

temperature. A cryogenic shield with adequate structural

support will have an intolerable heat leak.

(b) The thermal capacity of the shield can be made large com-

pared to the thermal capacity of conventional machines of

comparable rating. Values of I t up to 20 seconds are

possible without excessive shield temperature rise.
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(c) Provision for shield structure to support torques will also

provide sufficient support for transient normal mechanical

stresses upon the shield.

(d) Mechanical natural frequencies of the rotor will be high

enough not to cause problems for a shield with sufficient

structure to withstand the transient mechanical stresses.

In summary, it is possible to design a rotor for a 1000 MVA super-

conducting generator which can survive short-term faults without loss of

superconductivity and sustain faults without damage. This can be done

while retaining the advantages of lower weight, lower synchronous reac-

2
tance, improved efficiency, better damping characteristics, larger I

2
t,

and higher rotor natural frequencies than for a comparable conventional

machine.

VI-2 Suggestions for Further Study

1) The most important question which is yet to be answered is

exactly how to relate short sample characteristics of supercon-

ducting wire to the transient conditions in the field winding.

Just how much alternating current, what rate of current rise, and

how much of a temperature increase will drive the winding normal,

must be determined experimentally. With this kind of information,

tne analytical tools developed in this study can be used to arrive

at a shield design which will permit best use of the superconduct-

ing winding.

2) A restudy of weight optimization should be done, taking into

account the rotor structure necessary to support the transient

electromechanical stresses.
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3) A complete study of the refrigeration and shield cooling re-

quirements should be done. It may turn out that the optimum shield

temperature is somewhat below room temperature, if the rotor exit

gas is used to cool the shield. Otherwise, conventional gas cool-

ing of the shield at room temperature would probably be best.

A) The specifications for the secondary or thermal shield should

be more exactly determined, once its optimum operating tempera-

ture is determined.
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A-l The Lumped-Parameter Machine Model

Generators are conventionally mod-

eled as shown in Fig. A-l, where each

winding has a lumped inductance and

resistance plus mutual inductance to

M

the other windings. Three identi-

cal windings 120® apart in space rep-

I

resent the stationary armature, two

orthogonal moving windings represent

the damper windings, and a moving

winding represents the field winding.

Use of such a model whith appropriate

engineering approximations and mathe-

matical transformations yields

expressions for transient reactances and time constants describing the

behavior of a machine following a fault.

A superconducting generator can likewise be modeled as in Fig. A-l.

However, the damper windings for the superconducting machine consist of the

electrothermal shield. During transients, the process of magnetic diffu-

sion through the E.T. shield (and the stainless steel dewar shells and

metal structure), as well as the decay of currents in the shield's equi-

valent L-R circuit, affects the observed behavior. The adequancy of rep-

resenting the electrothermal shield as a lumped L-R circuit, i.e., as one

time constant, is investigated in section A-2-c. The result of that anal-

ysis shows that the first diffusion time constant is less than the decay

time constant by a factor of approximately A/R, i.e., the thickness-to-

Figure A-l
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radius ratio of the E.T. shield. For the thickness-to-radius ratios

being used, the determination of stator currents and torques following

faults will be sufficiently modeled by neglecting the diffusion time

constants.

The ultimate aim of this investigation is to determine the electrome-

chanical and thermal effects within the rotor of a superconducting gen-

erator following a fault. The purpose for using the lumped-parameter

model is to determine the magnitudes of armature currents following vari-

ous types of faults based upon the values of reactances analogous to those

for conventional machines, but defined appropriately for superconducting

machines. Out of this same analysis comes magnitudes of total fault torques

exerted upon the armature. The total rotor torques must, of course, be

equal and opposite, but their distribution between electrothermal shield

and field winding must also be determined. The resulting armature fault

currents are used in the magnetic field model, as developed in A-2, to

determine the electrical forces and electrical heat loads to which the

electrothermal shield and the field winding are subjected during fault

conditions.

A-l(a) The Lumped-Parameter Model Including Resistances

A lumped-parameter model as shown in Fig. A-l can be used in

two ways. If the resistances are included in each winding, the differen-

tial equations describing the circuit behavior, even after appropriate

transformations, can be solved correctly only by using a step-by-step

numerical integration with a digital computer. Such investigations are

necessary for system performances and stability studies, and have been

carried out in reference [5]. However, for determination of internal
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effects within the machine itself, it is felt that more insight into the

important aspects of fault behavior can be obtained by use of approximate

analytical solutions.

The approximate solution of a six-winding model of a generator for

fault currents and torques is by no means unique. In fact, the Park's

transformation idea which led to many papers on the subject was published

over 40 years ago. The one unique aspect of applying such analyses to

superconducting generators results from the absence of iron in the rotor;

that is, the fact that the generator is an air-core machine. Convention-

al analyses have normally assumed that all windings of a common axis are

coupled by a common mutual flux. In an air-core machine, this is obvious-

ly not true. However, the physical placement of the E.T. shield and its

continuum nature lead to another simplifying assumption. This is that all

flux which links the armature phases and the field winding must also link

the E.T. shield (or the damper winding representing the E.T. shield for

the lumped-parameter model) . This assumption leads directly to a rela-

tionship between the mutual and self-inductances of the model shown in

Fig. A-l, and is stated algebraically in Eq. (A-10)

.

The assumption produces a simplification similar to the common

mutual flux assumption for conventional machines, and makes an approximate

solution of the machine equations possible. This assumption was used by

Einstein [5] in preparation of his computer model, and is demonstrated

algebraically by Kirtley [6] from a magnetic fields model to determine

mutual and self-inductance.

The effect of resistances in the lumped-parameter model is to cause a

decay of fault currents; the magnitudes of the fault currents are
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practically independent of the resistances. Therefore, once the appro-

priate time constants for decay of currents are determined, the model

excluding resistances can be used. This provides considerable simplifi-

cation, especially for non-symmetrical faults which are in some ways most

severe upon the machine.

In the present section, the resistances are included to determine the

appropriate definitions of the transient reactances, time constants, and

attenuation of asynchronous fluxes.

The lumped-parameter

model for the superconducting

generator is shown in Fig.

A-2. The E.T. shield is

modeled as two R-L cir-

cuits, one in the d

axis and one in the q

axis. A general rela-

tionship between the

fluxes linked by the

windings and the cur-

rents is given by Eq. (A-l)

.

Figure A-2
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X
a

\
X
c

x
f

—

\d

\q

L
aa '"ab

- M
ac

M
af

M UJakd
M Uakq

"ba -h>b ""be \f M
"bkd "bkq

M
ca

- M
cb

- L
cc

M
cf ckd ckq

M
fa

" M
fb

" M
fc

L
f

M
fkd

"kda ""kdb ""kdc \df L
kd

Hcqa -%b Kqc %

i
a

h
i
c

*f

^d

**,

(A-i)

Most of the inductance coefficients are functions of the angular po-

sition of the rotor <J>. Use of the Park's transformation will yield a

considerable simplification of the matrix. However, first the number of

coefficients can be reduced by reciprocity and symmetry. Reciprocity

implies that the matrix must be symmetric about the diagonal; for example,

M
ab

M
akq 1

etc.

The stator self- and mutual inductances will be a constant because of no

rotor saliency. By symmetry, the magnitudes of these inductances must be

equal. The rotor-to-stator mutuals must be dependent on the rotor angular

position. As in conventional machine analysis, only the first spatial

harmonic of flux will be considered in the lumped-parameter representation.

All angular dependences must be sinusoidal. By physical symmetry, the

magnitudes of the sinusoidal dependences must be equal for similar sets

of windings. Mutual and self-inductances within the rotor are constant.

By symmetry
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Stator

L - L. . - L = L
aa dd cc i

ab "ac dc "" ab
M . » M
ab i

Stator-to-Rotor

M
akd 1

M
akql -l"Wl etc. =- \<

Haf K |M
c£ l

= M

Rotor

M
fkd fk

H:q " L
kd

5 \
Park's transformation from a,b,c variables to dqo variables is defined

below for the dummy variable, u:

1— —
u
d

u
q

»

uo— —J

2/3 cos 2/3 cos(e-y-) 2/3 cos(9 + ~)

2/3 sin - 2/3 sin(0-^) - 2/3 sin(0 + ~)

1/3 1/3 1/3

u

°b

When applied to Eq. (A-l) , the result is as follows:

kd

kq

- L

-L

3/2 M
fd

•3/2 M^

-3/2 M^

M

M

fd

fk

M
fk

\

*«

"kd
i
q

i

*f

*kd

Lk_ _sj

L - L - - L .da ab *
L = L + 2L .

o o ab
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The inductances L , L , , L_, L, , M, , M
fj*

an^ M-. are defined in terms

of the geometric parameters of the superconducting generator in Ref. [13].

The voltage equations associated with the dqo transformed flux equa-

tions are well known, and are given below.

direct axis

v, - r ii + pX ,
- uj X

d a d r d m q

v
kd " ° " ^kd + p X

kd

e
f

- r
f
i
f
+ p X

f

quadrature axis

v -ri +pX +ojX,
q a q q m d

v, » = r, i. + p X,
kq k kq r kq

f

p - d/dt

The next step in any machine analysis of this type is to convert to a

dimensionless set of parameters called the "per unit system". Base

values of current and voltage are chosen, usually the rated machine values

in the armature, and the corresponding base values for the other windings

are derived. In determining base currents for rotor circuits, account

must be taken of the fact that the direct and quadrature axis armature cir-

cuits are 3/2 times as effective in producing armature flux as the rotor

circuits, even when the turns ratio has been accounted for. This is tecause

a three-winding armature is now being represented by two windings in the

d and q axes. The derivation is carried out in most machine theory texts

and is also given in Ref. [5]. The exact expressions for the base values

of flux and inductance are not important to the results here. However,
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after the appropriate normalization has been done, the per unit flux and

voltage equations can be written as follows:

Per Unit Machine Equations

flux_

'~-
L,

dk
- M

dk

- M
df

voltage

V
d

V
dk

- L

- M
dk

- r 1 . + *- X, - ^ Xad oj« d 0)
A
qo o n

Vdk w Adk
U

o

M
dk

»
'df *d

\ \t *dk

\t Lf_ }t_

M
dk

i
q

\ l
qk

e a r i + ^— Xe
f

r
f
X
f 0)

o
f

w

(A-2)

(A-3)

(A-4)

v = - r i + 2- x + rB X

q a q ^q q o

v. - r, i, + %r \ =
kq k kq to kq

All voltage, current, and flux quantities in Eqs. (A-2, 3, A) are per unit,

(0 is the angular line frequency, and a) is the machine mechanical angu-
o m

lar frequency. For example, a value of i
f

-1.0 would produce rated

open-circuit armature voltage.

At this point, it would be useful to derive the constraint upon the

mutual and self-inductances imposed by the presence of the E.T. shield.

This result was referred to as the "shell constraint" in Reg. [5]. It

will be derived differently here, but will yield the same result.
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In Fig. A-2, we have placed three windings

on a common axis. We assume that all flux

linking windings f and d must also link

winding k. An alternating current i, is

imposed in winding d and the flux linked by

d, i.e, the alternating open-circuit voltage

upon d is measured.

1TV- RRP-

Figure A-2*

The amplitudes of the alternating quantities are given by X, and I,. At

the same time, we measure the flux linked by k, with k open circuit and f

open circuit:

dk d

The fraction of flux produced by d which is linked by k is

^k

Xd

M
dk

Since all flux produced in d and linking f must also link k, we can

express the ratio of X f to X, similarly to the above equation,

\ ' \
In other words, since no flux produced external to k can link f without

linking k, the effect is just as if the flux in k were produced by a current

in k. We can solve the above equation for X, in terms of i,
i d

.

M
fk
M
dk ,

1 ' "^u
-

d
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But, by definition, A, * M
^f

i
H

Therefore, M.

Mf, M,,
fk dk

df h
The relationship can also be expressed as

C - MdfLk - M M
fk

n
dk

(A-5)

The expression for C appears in later derivations and can be set equal to

zero by the above assumption.

Machine transients are conventionally studied in terms of subtransient

and transient reactances. These are the reactances of the armature dur-

ing the period during which the damper windings and the field windings main-

tain constant flux linkages after a short in the armature. To determine

the definitions of these quantities and definitions for the decay time

constants of currents during these periods, Eqs. (A-2,4) will be solved

for a symmetrical three-phase short circuit upon the armature.

Using (A-2,3,4) we can write the following matrix of equations:

- L M
df

M £— r + L 2—
"df u>

r
f ^f u>_

o °

dk u> "kf u
o o

M
dk h h

o

l
f - e

£

r
k

L
k 0)

o
idk

-

We can solve for i, using Cramer's Rule:
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L x ofk / x o f k /J e-M, _ I
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U) r. M,_ /
f df V o k df /

d D f d
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.
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We define the time constants as follows:

T

T
_^k_

'

2 ' Vk
T . A_ u .^

3 Vk Vf
T

Lf M Mdf
1

6 to r. L L,ok d £, 2

*kf„, M
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T i_
[1 ' W" 1 '^ 1

' ""'* ii-SE-i
f d

Equation (A-6) can be solved for A. and rewritten, using (A-7) and C » 0:
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Inspection of Eq. (A-7) shows that

T , T < T
6* 7 5

and

since T , T are related to the field winding time constant, and T , T ,15 °
6 7

T . and T are all related to the E.T. shield time constant;

.'. 1 + (T
s
+T

6
)p + T

5
T
?
p
2 % (1 + T

5
p)(l + T

?p)

and 1 + (T
x

+ T
2
)p + T^p 2

ffc (1 + T^pXl + T
3
p) .
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5
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7
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" "
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iP )(l + T
3
p) Vd " (l+T

iP
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3
p) 7f
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f

(A"9)

From (A-9), the open-circuit and short-circuit time constants are ob-

tained and listed below.

L
f

T t „ T
do I U r£o f

Lk "kf
T" - T - —=- [1 - -2=-

]
do 3 Vk Vf

Lf ML (A-10)

d 5 Vf LdLf
J

n *4f 1M
Mdk

l
d 7 u r, W7.ok [1- ~f-]LfLd

The general operational inductance can be written as follows:

(1+T^p)(l+T^ p)
L
d (P> + L

d (1 + T« p)(l-HT''p)
(A"n)

do do
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For times short compared to T , i.e., 1/T < p < «>, the inductances
• 3

reduce to L" , the subtransient inductance.
d

T' T"

L
d

= L
d

d

dc

d
mil

> do

T." s T. . (1
^d

d d V-d
(A-12)

For times T < t < T . i.e. , =— < p < =— , the operational inductance
5 l

i
L
3

becomes the transient inductance, L'

L', = L, ^r?

T
d

d d T
do

L
d " V1 -^' (A"13)

In per-unit notation, inductances and reactances are numerically

equal because the machine is operating at rated frequency, that is, for

0)«(0, oj .,_ =1. The more conventional notation is to use per-
o* per unit

unit reactances rather than inductances.

Per-Unit Reactances

xa " lj

x
d

" x
d

CI - igj) (A"")

2

x
d

- V 1 -T^q)

More useful forms for the time constant expressions are in terms of the

reactances as follows:
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T' = T,
do f

i • 1

do 31
\
x
d

x
d

• x
d

T' =

i

*a

d f X
d

it

T" = rpll Q
d do x'

Symmetrical fault

time constants (A-15)

where T, is the field time constant, and T is the E.T.
f si

shield decay time constant.

For non-symmetrical (line-line) fault, one phase of the machine remains

connected to the system through a system reactance, x_. Transformation of

flux equations for this case shows that the effective direct axis armature

inductance is increased by one-half the system inductance. Therefore, the

same definitions of time constants can be used if, in Eqs.(A-15), the value

xs
of xj is replaced by x, + j— • Tne resulting time constants for line-

line short circuit written in form similar to Eqs. (A-15)are as follows:

L

d£

mil

dJl

r*d - *d i

*d

d ' 2

s + x'

2 * x
d

Line-Line

Fault
(A-16)

T" -
si

1 -

For transient following synchronizing of the machine to a system through

a reactance x , the effective value of x, must be replaced by x . + x

with the resulting time constants:
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T'

rplt
x
dcA

qcl

T (

= T

= T

L x
d
+ x

s J

r
xd- xdi rxs + v

L x
d - x

d J Lxs
+ x

d-

ri- iisi
L x

d
+ xsJ

Synchronizing;

at arbitrary

phase angle

(A-17)

Field Current During Transient

The determination of distribution of transient torques between field

winding and electrothermal shield as developed in section A-l-b requires

that field current during transient be determined. This obviously can be

determined only from the model including winding resistance, because of

the shielding effect of the damper windings. This shielding effect is

a function of only the damper winding time constant in the lumped-

parameter model. For an electrothermal shield thick compared to an

appropriate skin depth, the shielding expression must be determined from

the magnetic fields model in section A-2-b. The lumped-parameter deter-

mination of field current will indicate how the thick shield attenuation

should be used for shields for which the thin shield, or single time

constant attenuation, is no longer adequate.

To determine the induced alternating field currents , we write the

direct axis voltage and flux equations.

v, - - r i + E_x. - — X
d a d 0) d a) q

o o M

k dk u) dk
o





r.i r + 2- X rf f to f
o

V
dk

-

X
g_

- L M

- M
dk

- M
df
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M
dk "df

\f L
f

"dk

We can reduce the above six equations to one equation in i
f , i,, e

using the same time constant approximations as in deriving the direct-

axis operational impedance:

1 + T
2 P

(l+T^Hl+T^p) \
r
f

To find the induced ac field current due to an alternating i,, we let

i, = - I, cos 0) t and e. constant, and solve for i, with the
d d x f f

assumption that T, U) >> 1.
do x

M.. I, , 0) T"
. df d ,,,

, x M -1 x do
± = -——.--—^^ cos (to t_x) f a m tan

N2 X
/l + (T" u> )

2:- T
do

r
f * ^dW do x

(A-18)

The square root factor in the denominator represents the damper attenua-

tion. Further simplification results for the assumptions of resistance-

and reactance-limited E.T. shields (equations in per-unit).

Resistance-Limited E.T. Shield

li,

ac
< x

d ' x
d>

(A-19a)

ac
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ac

(»
d
-»y(x

d
-xy

<x
d " x

d
> W 1

*
(A- 19b)

ac

A-l(b) The Lumped-Parameter Model Neglecting Resistance

The magnitudes of transient torques and currents are ffected

very little by the resistance of the windings. By solving for these mag-

nitudes in a model neglecting resistances, and applying appropriate decre-

ment factors using time constants developed in the last section, the

electromechanical effects on the rotor can be determined. In order to

include the possibility of an unsymmetrical fault, an a -3 transformation

will be used instead of the dq transformation. The a- 3 stator windings

are the two windings equivalent to the three armature windings fixed in

space, rather than the d-q windings which rotate with the rotor.

The per-unit d-q inductance matrix given by Eqs. (A-2,3) can be trans-

formed directly to the a, 3 notation. Equations (A-2,3) are rewritten

below within one matrix.

~-V
X
q

x
f at

\d

Lvl

L
d °

M
fd "led

- L

,

a "kd

M
df °

L
f

M
fd

\a ° M
fk V

""kd h,

-

kd

L

kq

The a, 3 to dq and the dq to a, 3 transformations are as follows:

"id' cos 9 sin 9" "i
"

a
~i "

a
"sin 9 cos 9~ "V» s

i
q

j-sin 9 cos 9. w »
Li

g
J _cos 9 -sin 9_ _i -

q
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The dq inductance matrix in a, 3 notation is as follows

X
a

h
x
f

-

\c

\

"
L
d

M-.cos 9
id \dCOS 9 \dsin 9 i

a

" L
d Mr ,sin 9

ta
M^sin 9 \dC0S 9 l

B
M,,cos
id

-M-.sin 9
ta

L
f H

fd l
t

"kd"8 9 -\dsln 9 M
fd \ »kd

M^sln 9 -\dcos 9 K ikq

Assume a short on phase 3 at t = 0, X, X, (t»*0) and solve for i,
kqo kq kq

5 KC

kq \d \d
"
q

= 43o + -^

We define the quantity lb as follows:
qi

*
\c

We

qi L
kd

kqo

i , 13JL + !!kl i
kq \d \d q

solve in Eq. (A-20) for M..!.. + ^eAf with
*f * *

f
(t-°)» K d

(A-21)

X
kd

(t=0) '

"kAd "( M|
k \Lf )

[M
kd
M
fk

X
fo " \dL

f
X
kdo

+ M
kd

0f
fd
M
fk-

L
f
M
kd

)1
d

1

M, ,i, ~Uvwfd f ^f\- \lflfrtfl* to"
M
fd
M
fk

X
kdo

+ "kd^fdV M
kd
M
fd

)1
d

1

Since the electrothermal shield completely surrounds the field wind-

ing and is a continuum of conducting material which permits currents to
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flow such that its total flux linked must remain constant, a sudden change

in direct axis current will produce no suddent change in i_. Therefore,

the coefficient of i, must be zero. This is equivalent to the assumption

expressed in Eq. (A-5).

"fdhc - "kAk - c '°

The assumption that C leads to a more simple result for the sum of

direct-axis rotor currents:

M , XM <
WAT "kdVl + \d (M

fd
M
fk-

L
f\d> .

Vkd* M
fd

A
f
'[-

2

—
fkdo

+ -
2

—
*d

\ Mfk " Vf / M
fk " Vf

We define the quantity \p, as follows:

"kd
*j ° r^ ^ (A~22 >r
di L, kdo

Use of the constraint C = and the definitions of i and i lead to the
a 3

solution for X and A„ :

a 3

\l
Vkd + Vf * *d,

+ L^ *d

X
a ' " L

d
(1 " L^> \ +

*di
COS 9 - *„ Sin 9

, (A-23)
M
kd

Xfl
- - L . (1 - ~=- ) iQ + ty . sin + \\> cos 9

3 d
v L^ ' 3

r
di

r
qi

Equations (A-23) are now in a form which can be used to calculate the

effects of unbalanced (or balanced) transients from loaded (or unloaded)

conditions.
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The machine configuration is as shown below with the a and 3 phase con-

nected to an infinite bus v , v
ft

through a system reactance x .

"*»,*!

Figure A-

3

The steady state of the system before the fault is represented by the

phasor diagram below:

e - wt

^f * M
fd

X
f

COS Wt

v - v sin(oot-6)
a a

v*« " " V
<,A sin(wt-6s)

sa sd

i - - I sin(wt- 5- 6p)
ot a

i = I
a

cos (cot- 6- 6p)

i « I sin(6 + 6p)da
i - I cos( 6+ 6p)
q a
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Equations (A-23) can also be written using (A-12,13) and reactance notation,

as (in per-unit)

:

X - x"i + ib, cos Q - ib sin 9
a da di qi

X = - x"iD + ib, sin 9 + ib cos 9
3 d 3 di

r
qi

(A-24)

and in dq components as

d rsd d s d d di

ib * \b + i L - - x" i + il>r
q

rsq q S d q
Y
qi

(A-25)

The torque acting on the stator is given by Eq. (A-26):

T - V, " *q
i
d

- WkdHm +
"fd

1^ 1
,

" oWw^d (a-26)

From the equations for i, and M. ,i. , + M,,i. . . . .« ,n kq led kd fd f, we obtain in the quadrature

axis the following equations:

M. ,i, * \b + 7^. i
Ted kq r

q! L
kd q

- \b + (L . - L")i
^qi d d q

In the direct axis, similar results are obtained.

Vkd +
"fd^ a, + 17- l

i

- d, + (L
d - L? 1

d

The torque equation can then be reduced to the following simple result:

T - *d,S " Vd (A-27)
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The following equations relate torque angles, terminal voltage, system

voltage, and voltage behind synchronous reactance.

I x cos 6p
6 = tan" 1

V + I x sin ept a v

-l xs Ia cos eP

2 _ („ t \2/i j„2q_n2i 4

6 6 + tan
s V - x I sin 0p

t s a v

V
t

- x
s
I

fl

sin 9p + [V
ga

- (x
8
I
a
)*(l

E
f " ^V

t
+ xI

a
sin 9p^ + (xI C0S 9p ^

X
a ' X

sa
+ Vs ° "a +

*d,
cos 8p "*q, sin 9p

\ ' X
s8

+ Vs " " *B +
*d,

S±n ep +
*qi

C°S 6P

Eliminating X , X
ft

, we obtain the following expressions for X and X
R

:

X - - (x" + x ) + \b, cos tot - $ sin cot
sa s r

di
T
qi

X „ - (x
M + x ) + rb , sin cot + \p cos cot

sB s r
di

r
qi

We solve for the currents in (A-28) with the following results:

i rr~— + -rr-r cos cot rAr sin cot
a x + x x +x x + x

s s s

i« " tt . — + -ITT— sin cot + n .

H cos cot
ft X +X X +X x +x„p s s s

(A-28)

(A-29)
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Line-Line Short Circuit from Load

At t 0, the 3 winding is shorted, trapping flux ij; . Equations
pO

(A-29) become:

T » —m (i]>, sin cot + \b cos cot)
x + xe

r
di qi

sa

7r (i|>, cos cot - ip sin cot)
x" vr

di

(A-30)

i -77-— + „ ,

*
cos cot frr— sin cot

a x +x x + x x' + x
s s s

1
B

|w- + -pr- sin cot + -^ cos cot

The currents can also be expressed as i, and i :

sa , *6o , , , *d,
(2*"+ V

i, a xrr— cos wt n~ sin cot + n f n ,—r-
d x +x x 2x (x +x )

s s

*s
- o it/ n^, xC'I'j cos 2cot - \\) sin 2 cot) (A-31)

2x (x + x )
r
di qi

s

\\> \\}Q \\> (2x" + x )sa . 80 qi s
i = —rrr— sin cot n- cos cot + ^,, ««. r
q x +x x 2x (x + x )^ s s

*s
+ o m h . r (^j sin 2cot + ^ cos 2 cot)

2x (x +x )
rdi

r
qi

We substitute the above into the torque equation:

4>

s_

s

+
2x"(x tj+x )

[2Vqi
COS 2wt + (% " V )Sin 2Wtl (A"32)

liquations for ty. , ty as functions of t following various faults were

derived in Ref. [7] by Woodson; these expressions are reproduced on the

following pages.
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Line-to-Line Short From Load

x" +x „

*d, " TTir "VWdA, + 7TT V
sa

COS 6
s

F
dl2

CA-32-1)
s s

\l>
= -

X " X
V sin 6 F .

qi x + x sa s qZ

2xM (x' + x
g
) - t/T^

?
dli " 1 " x"(x'+x ) + x'(x" + x )

e

s s

2x"(x f + x ) 2x"(x + xe ) - t/T'
S S QX,

x"(x'+x ) + x'(x" + x ) " x"(x + x ) + x(x" + x )
e

s s s s

2x"(x + x )
,

3

x"(x + x ) + x(x" + x )
s s

2x"(x" + x
g
) x_x , (x+x

s
)(x'-xM

) -t/T^
T
dl 2

" 1 - x"(x"+x )+x'(x" + x ) x^x"*"
+

2(x"+x )(x - x")
e

s s s

2x"(x" + xj , (x+x )(x'-x") x"(x + x ) -t
. ___; sj x-x' s

/ '
s =r

x
M
(x+x ) + x'Cx^x,,) x-x" 2(x"+x )(x-xM

) x"(x+x )+x(x"+x )

l
dSL

S B s s s

x"(x + x
s
)

+
x"(x+x ) + x(x"+x )

s s

x"(x + x
g
) - p- x"(x + x

g
)

F
q *

1 ~ x"(x+x ) + x(xM + x )
e qZ +

x"(x+x ) +x(x"+ x )
s s s s

\b - V (wt - 5 )rsa sa s

*3o " V
a

Sin (wt
o " 6)A

3

A
3 "

e
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Line-Line Short from Open Circuit

In the preceding, let x -*• °°. Equation (A-32) for torque becomes:

tyr> Ag \p

t = rjr~ tyA cos wt + j~4r sin 2o)t (A-32-2)x" Y
di ™ ww

2x'

\b = V sin cotr3o a o

A. - e a £
3

di df fo d£o

r^ 2x" " t/Td£ , 2xn 2x" x
~t/T dil . 2x"

(1 " xT +xir e + V + x" ' T+!F)e + T+T7F
dio "

'

u -
x

1

' + x"
C

i

s - - *3o
x"

+ sin OJt

Three-Phase Short Circuit from Load

The three-phase short circuit is independent of time of application

of the short; therefore we apply it when flux linking a is zero - i.e.,

when a) t =6 +

Let *sa

ho" V
a

X -
s

From Equations (26),

i - —ft cos wt ^tt sin tot (A-32-3)
a x x

VL 1 \p
a p di qi

± — + —
tt- sin ojt + —rr- cos cot.

3 x x x
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From Eq. (A-28)

,

V
a
A
S

T = ^rr- (^j cos dit - \b sin tot)
x r

di
r
qi

From Ref . [7]

,

*j = M r ,I. F, - (x - x")I sin (6 + 0)FJr
di fd fo di a dz

lli = - (x - x")I cos (6 + 9)F
qi a q

t-t t-t

F. - (1 - ^r) e T" + (^r - —)e T5 + *-
d x d x x a x

i
x"(x-x') " t_t

o
/T

d x"(x-x') " t_t
o
/T

d
F
d " X " x'(x-x")

e +
x'(x-x")

e

t-tjT
a

- o' a
A
3

= e

Three-Phase Short Circuit from Open Circuit at at 3 tt/ 2

I - before fault (A-32-4)
a

i
a

= *dl
/x" cos tot

V
a ^d

H = ^ + IF sin Wt

V A
T = n— ip, cos tot

x di

iK - M.,1. F. where M.,1, - Vr
di fd fo di fd fo a
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Closing at Arbitrary Phase from Open Circuit

We assume the generator is out of phase with system by angle G
<

v
a

= " M
fd

X
fo

Sin Wt
'

V
3

= M
fd

X
fo

COS Wt (A-32-5)

*a
= M

fd
I
fo

COS Wt
' % = M

fd
X
fo

Sln Wt
before

v - V sin (tot - ), v V cos (tot - 6 ) , .

sa sa 3 ' s3 sa s closing

\b = V cos(u)t - 9 ) , \I> - V sin (tot- 6 )rsa sa s rs$ sa s

i = i Q = i, , = i, =0
a 3 kd kq

f fo

Closure occurs at t 0.

1

i = -n-T ty. - V cos 6 - [Mr .I_ cos tot-V cos(tot+0 )]A }
d x + x„ di sa s fd fo sa s c

s

i = -n-r—C* + V sin + [Mr ,I. sin tot - V sin (tot +0 ) ]A }
q x+x r

qi sa s fd fo sa s' c
5

T * —rrr— ip. V sin + \p V cos + M_.I_ A [ip, sin tot+i^ cos tot]x+x di sa s
r
qi sa s fd fo c

r
di qi

5

- V A [U» , sin(tot+0 ) + ip cos (tot + )]}sa c r
di s qi s

" t/T x + x"

A = e T
c ac (r + r )

s a

\p, - M.,I r F. + V cos F

,

di fd fo dci sa s dC2

III - - V sin F
qi sa s qc

,

X"+X
* "^7, X"+X

s
X
" +X

s "
t/T

dc *"
+

*s
Fj~. 1 - „t ... e dc + i ... - .. . .. e +
dci x+x x+x x + x x+x

s s s s

t t

*' - «" "rurr . x' - x" x - x
n tl x - x'

e dc + —y— — e dc +. _ _ __ c „,_ -,- — _ c »*_ -r _

dC2 x+x x + x x+x x+x„
s s s s
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t

x - x' . " T"
F - —: 1 - e qc
qc x + x^ s

The preceding equations give the time dependence of trapped fluxes and

torques following faults; they will be used later in developing calcula-

tions of rotor heating following faults. However, the peak torque occurs

during the subtransient period, and is the critical value for predicting

failure of the mechanical structure. Simplified expressions for the sub-

transient torques are given on the following pages.

Torques During Subtransient Period

Three-Phase Short Circuit from Open Circuit at t = it/2

a fd fo
T = n— cos tot

V2 V2

a=
" x"

cos tot t rr- at tot tt
max x

Three-Phase Short Circuit from Load at tot = tt/2 + 6

(A-33)

T ni [M.,1. - (x-x")I sin(6+9)]cos tot + [(x-x")I cos(6+0)]sin cot}
x rd ro a a

(A-34)

Line-Line Short Circuit from Open Circuit at t totr o

V sin tot (M.,I r )

2

a o ., _ at to . .

T n MJ r I r cos wt + x—

n

sin 2cot
x df fo 2x

V - M,,I r ; t for tot » tt/2
a df fo max o

T = - V 2
/x" cos tot + V 2 /2x" sin 2tot (A- 35)

a a

-/«- 1.3 V2

max a A x
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Torques during Sub transient Period , (cont'd)

Line-Line Short Circuit from Load at tot

V cos (to - 6 )sa s
T = —

; [ty, sin cot + \b cos tot]x+x r
di

r
qx

V sin(oot - 6)
a o

n l^j cos ait — ill sin tot]
x Lr

di r
qi

(A-36)

2 .i. 2+ o >/ *».j.—\[ 2 ^j cos 2 tot + (\bf - lp
z

) sin 2<ot]
2x (x +x ) di rqi

vr
di

r
qi

J

x"+x
i[>, - ,

S
M.-I- +

X
7
X

V cos 6
d\ x+x df to x+x sa s

s s

*
x ~ x

V sin 6x+x sa s

Closing Out of Phase by Angle Q at t
5

x « -n-r ty. V sin 9 + \b V cos + MrJ I r [ip, sintot+i/> cos tot]x+x di sa s
T
qi sa s fd fo Lr

di
T
qi

- V [\b. sin(tot+G ) + \p cos (tot + 9 )]
sa di s qi s

Voltages matched V M-,I.
sa fd fo

'di
V , lp =
sa' r

qi
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V 2

T - -rrr— t sin e (1 - cos wt) + sin wt(l - cos 6 )] (A-37)
X » X s s

s

Rotor Torques

The total torque acting upon the stator is given by the following

equations.

T = iK i - *, i, (A-38)r
dl q

r
qi d

To determine the distribution of the reaction rotor torque between the

shield and field winding, the shield torque may be written as follows:

T
s

" *kd
i
kq " ^kq^-kd (A-39)

If we use the constraint upon inductances and the definitions of the pre-

vious section, Eq. (A-39) can be resolved into the difference of total

torque and a component depending only on field current.

T . t - (Sua i $ >

\d f qi

The field winding torque is given by the second term above:

Vfd
t - - -4-^" i Jj> (A-AO)

The alternating field winding torques can then be found by solving for

the induced field winding ac currents since \\) has no ac component.

For all short circuits from open circuit, ^ =0; therefore, T- " 0.

The largest component of field winding fault torque will be alter-

nating, since unidirectional torques are associated with resistance

losses which are extremely small for a superconducting winding.
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In Eq. (A-18) , the alternating component of field current as a function

of alternating direct-axis current was derived:

ac

df aC
(A-41)

do ff A + (T" U))
2

do
w

The alternating field winding torque is given by the following equation:

*l - XA 1 TA X
!i

f x
d

x
d " X

d
T
d [l+CTjk*)*^ ac qi

Use of the Lumped-Parameter Model Results

The lumped-parameter models have yielded expressions for the per-

unit currents, total torques, and field winding torques following short

circuits. However, for use in calculating the heating and normal forces

to which the shield is subjected, it is more convenient to write the

armature currents in forms which identify the traveling waves of current

which move forward, backward, and are stationary with respect to the

stator. This can be done by assuming first harmonic spatial distribution

of the current.

i(0,t) = i
a
(t) cos 9 + ig(t) sin 6 (A-43)

When the fault currents are written in this manner, the currents can

be resolved into component waves which move relative to the stator.

Current components with cos (u) t + 9) move backward, relative to the

stator, at rrequency u) and backward relative to the rotor at angular fre-

quency 2u) ; they will be designated i« and referred to as "negative





sequence". Components stationary with respect to the stator move back-

ward relative to the rotor at angular frequency w ; they will be desig-

nated i and referred to as a "zero sequence",
o ^

Current components with dependence cos (w - 8) will exist before the

short circuit if the machine is initially loaded, but will increase in

value following the short circuit; these current components are station-

ary with respect to the rotor, and create the magnetic field which is

initially excluded from the electrothermal shield. The increase in these

currents over the value before the short circuit will be designated Ai ;

this corresponds to increase in positive sequence currents.

Three-Phase Short Circuit

From load at w t = it/2 + 6
o o

If; if; V A
R

i(6,t) = -^rr cos (<D
o
t - 6) - ~^rr sin (u)

Q
t - 9) - -^ sin 9

v
aAi

d, * ~x^
F
d (A-44)

X
o

=
x^

A

Line-to-Line Short Circuit

From open circuit at t = t

i(9,t) = ~k cos(u)t-9) - -^ sin 6 -A cos (u>t + 9)

v
t-tp t-t

Ai = _* (i -
2x",) c

Td* + ( -^-- -i^-)e Tir-+ -J^-ai
d, 2x" U x"+x i)e + (

x"+x' x"+x)e T* Z +
x"+ x

V sin(oj t - 6) - •=^-
* a o o T,
i = n e dx,
o x

V

i
2 2x"
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From load at t « t
o

2x"+x
1 s

i(G ' t) =
2(x"4-xg )

—^—
*di

" V
sa

COS 6
s
> cos <wt " 9 >

2x"+x
- ( n-^ ip + V sin 6 )sin(wt - 6)

x r
qi sa s

- J^ sin e

1 x
1 , s

- 2(x"+x
s
)

( x^ *d,
+ V

sa
cos V COs(a)t + e >

x
- -S- \i> - V sin 6 )sin(wt + 6)

x r
qi sa s

2x" + x
Aij TT-rrr ( n

—- <J>. ~ V cos 5 - I sin(6 + 6 )
di 2(x +x x r

di sa s a p

t - V
o x"

i
x

i a
" i, nl n ( "4 $a + v cos 5 )2A 2(x"+x.) x r

di sa s'
s

l
x

( ^rr lb, - V sin 6„)
"2B 2(x" +x )

v x" Y
di sa

*

s





1 1»6

A-2 The Quasistatic Magnetic Field Model

The armature currents which result when a generator is subjected to

various fault conditions have been derived in section A-l-b. They were re-

solved into traveling waves of current moving relative to the electrother-

mal shield and a positive sequence component which appears to remain

stationary. In order to determine the electromechanical effects upon the

shield, a two-dimensional magnetic field model of the armature-electro-

thermal shield will be developed with traveling waves of armature current

as the source of magnetic field.

Two types of effects are of interest in this model. One is a quasi-

steady-state effect produced by a traveling wave of armature current which

decays slowly relative to its angular frequency, producing induced currents

in the moving conducting shield. Heating of the shield results, and normal

forces due to the interaction of the induced current with the armature

field tend to produce ring vibration of the shell. The second effect re-

sults from the sudden increase in the positive sequence component of arma-

ture current. Currents are induced in the shield to keep its total flux

linked constant, and exclude the demagnetizing effect of the armature

currents. The currents induced in the shield decay with a time constant

which depends upon shield parameters, but a large magnetic pressure is

exerted upon the shield during this transient.

In section A-2-a, the steady-state magnetic fields model will be

derived for E.T. shields both thin and thick compared to skin depth.

The results of these models will be used to predict heating and attenua-

tion of the magnetic fields inside the shield. Experimental results are

presented in Chapter V to verify the analytical results. In section
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A-2-b, the transient-induced currents are investigated. Expressions for

shield time constants are developed, and experimental verification is

included. The magnitudes of the transient normal forces are also

derived.

A-2-a . Thin Shell Steady-State Magnetic Field Model

Figure A-5 rep-

resents the cross-

sectional view of the

distributed armature

current between radii

S. and S with the
i o

conducting E.T. shield

at radius R. The

boundary condition at

radius T represents

either infinite per-

meability of infinite

conductivities. The Figure A-5

armature current is in the y- direction and has a sinusoidal spatial dis-

tribution of n cycles and moving with angular frequency co . The conduct-

ing E.T. shield is rotating with angular velocity U) . The shield is assumed

thin compared to the skin depth of the material at the frequency of the

induced currents. The problem is to find: (1) the magnetic field outside

the shield, (2) the induced currents and power dissipated in the shield,





me

(w-t-mfi)

and (3) the magnetic field inside the E.T. shield as a function of

shield parameters.

The problem is solved by replacing the distributed armature current

by a current sheet. The effect of the distributed current is obtained by

integrating the current sheet solution.

Definitions for an annular region ^— —^^^ K r ^} k* e

with outer radius a and inner

radius 3 are as follows:

B^ = uH
r
(r=a)

B^ = MH
r
(r=3)

K
a

= - H
e
(r»a)

K
e

= H
Q
(r=6)

The a and 3 notation are

replaced by a-b, c-d, e-f

for the three annular regions

in Fig. A6.

Figure A-6

The solutions for Laplace's equation for each of the annular regions

a-b, c-d, e-f are combined according to the following boundary conditions:

Boundary Conditions

B
a

- for ]l • r > T

»r Ka » for a * » r > T

(wherever a double sign appears in the solution (±),

the top sign applies for the iron (u * °°) outer shield,
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and the bottom sign for the image (a * ») shield.

r - S B
b

= B
C

r r

V c n

d e
r - R B = B

r r

K + K = AaR(w - -) B
d

e d m n r

r » K -

OJThe solution is as follows, with u) = co .

x m n

The tangential magnetic field outside E.T. shield (r - R
+

) is"

- A. + (AauRw )
2 j(tan T to - tan AauRw )

u _j x / JV sn x H x „H - , ,— e H .

6° /l + (T a) )

2 w/o n
sn x

The tangential magnetic field inside shell (r R~) is:

HA » - 1
e" j tan

"
lT
snwx »

,ei A + ( tt T )

2 w/o n

x sn

H . is the magnitude of the magnetic field intensity which would exist

at the shell surface if the shell were removed and the stator currents

held constant.

i (f) [1 ± (f)
2n

]K current sheet as (A-48)

in Fig. A-6.

w/o n . _n-i . _n-i S
n+2

T o S (1-x )±
,

(1-x )J ,, ,. .

2 2-n o _2n n+2 n distri-

buted stator

current, as in Fip. A-5.





ISO

Current induced in shield

AauPa
v = x

j(tt + tan
|^ =3 e
5

/ 1 + (a> T )x sn

-l
1

TsnU>x H
(A-A9)

w/o n

The time-average power dissipated in the shell is calculated from

IkJ
2

P -x—T2— • The attenuation factor is the ratio of magnetic field
av 2 aA e

inside the E.T. shield to magnetic field intensity without a field, but

with the same armature current.

Time-Average Power Dissipation (Thin E.T. Shield)

P . u 27T Si-j— -i S—5 sn
Jt H

*
(A-50)

dn °
[l±<f> ]

T
sn 1+ [(^-^)T

sn ]

2 w/° n

Where
T
sn - I ^o*'1 * **"]

a -a + a . .

ac+ end t urn

Attenuation (Thin E.T. Shield

|H '

H
w/o J U + [<£- 0)JT ]

2 }^

- —§1- = i (A-51)
att

l1

M/o n 1 (1 + Kn m sn
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A-2-b The Thick Shield, Steady-State Model

The electrothermal shield can be considered thick if the skin depth

of the induced currents is small compared to the shell thickness. This

definition applied only for one frequency and the meaning of a thick shield

is less apparent for transients. For steady-state power dissipation, the

problem can be solved by simply replacing the electrothermal shield in

Fig. A-5 by a solid cylinder of conductivity a -* °° and radius R. The

boundary conditions are changed such that now B = at r R. The result

is familiar, and shows that the induced surface current is twice the mag-

nitude of H . . The total power dissipation is then the same as would be
w/o n v v

dissipated by the surface current distributed uniformly over one skin

depth. The result is:

Power Dissipation (Thick E.T. Shield )

4-rrC R 2

P, - 22"L- £l_ H (A-52)
dn 06 ,. + /R\ 2n -.2 w/o n

where 6

The attenuation factor for a thick shield is much harder to obtain. It

involves solution of the diffusion equation in cylindrical coordinates,

which results in Bessel functions. The result can be simplified to the

following equation:

Attenution (Thick Shield)
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The complete solution for the thick E.T. shield is presented in the

following section.

Solution of the Diffusion Equation for an Annular Region

In section A-2-a, the solution for the induced currents in a thin

conducting shield produced by armature currents was developed by combin-

ing solutions to Laplace's equation for an annular region. For a thick

conducting shield, the appropriate equation is the diffusion equation

which can be derived from the Maxwell's equation neglecting displacement

current and assuming that current density and electric field intensity

are related by a constant conductivity. The resulting form of the

diffusion equation is

— V 2 H » ( 4r + vV)H
ay 3t

The problem is to solve the diffusion equation for an annular region as

in Fig. A-7, and find a relationship among B , B
r , K , K which are

defined below, to represent the radial and tangential components of the

magnetic field intensity at the outer and inner radii of the annular

region.

B° = uH (r=R )
r r o'

B - pll (r»R.)
r r i

K° " " H
e
(r-R

o>

K
1

» HgCr-R^

Bl

Fig. A-7
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In two-dimensional cylindrical coordinates, the diffusion equation can

be written for the radial component

3H . 3
ZH

. r 1__ r

\ia V r 3r
{T

3r ; r2 Jp~
1/19

3t
+

r 36 j
H
r

where v = i
e
v
e

= i^r.

Assume H H (r)e^ solve for H (r) and obtain H
fl

from

V«uH - 0.

3H3*H

r
2 3-5- + r— - (n

2 + jq
2
r
2 )H -

3r z 3r J1 r

q = ua(a) - nw )m

The solution can be written as follows:

H = C j
n

I ( /fq ) + C j"nK ( /f qr)
r 1 n J n r 2 n J M

Since we are interested primarily in the attenuation of the first spatial

harmonic, we will let n = 1.

-1

and

H = Cjl(^"qr)+Cj" K ( /fqr)
r 1 1

J ^ 2 1

_3

H
Q

- C /Tqr I
o

( /fqr) - ^ j

2
rq K

q
( /J qr)

The boundary conditions are given in the definitions of B , B , ... etc.

above. After much manipulation, a relationship among the field compon-

ents at the edges of the annular region is obtained.

-B -

L r J

~6'
Y
1

-K°-

w
6' a 1

A
i

K





15H

a' =

3' -

Y" -

6' =

w =

(AF - BE)

(CF - DE)

(AH - BG)

(CH - DB)

AD - CB

" J

~
.1

-1
j" K^/Jq R

±
)

A = /fqR I
Q

( /fqR ) . E= jl^/JqP^)

b = /TqR K ( *TqV » *

C = SJq\ ^(/fqR^ , G- jJ^/JqR^

D - ^"q^ K^/fqR^ > H = j"
1

K^/fqR^

The above expressions can be simplified by making assumptions about the

magnitude of the skin depth of currents in the conducting annulus.

6 .( 2 t- /T
\|o) -

m lap/
q

For 6 < V R
o

w =

/rTR . 7T

i ° J t
ST6

R \fc

- - - murA

r A A A , A"

e e - e e

Al

e e + e e

i / R

2 Ui

kr.A
7 -17
e e + e

7 "%

R - R.,
o i

To find the attenuation of an alternating magnetic field by a thick

shield, i.e., one for which A > 6, we assume a uniform magnetic field far
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front the thick shield alternating in magnitude at frequency w. This,

of course, is equivalent to two counter-rotating magnetic fields rotating

at frequency w. The solution for the ratio of field inside to outside is

given by

h ,
- 2

B
= K

att " (jw- 6
f

)(j(o- a')+ 1

Further assumptions lead to increased

simplification of u), a', and 6'.

Thick Shield A > 6

w — e e e

/2 6

o' - 6' - - jo)

- J
7T

/2R.R
i o

K
att

/R,R A
1 i o t
T7T —5— e 5 l +

(A-52')

/rTr \/r7r
i o i i

.2 i 4 + 7>

i o ^

The attenuation magnitude is given by

A

|K I - 2 /2~

'

att '

>*?o

Thin Shield V < 6

5- e 5 (A-53)

In the thin shield case, the solution must reduce to that obtained

in the previous section.

/rTr
* 1 o

w * 2j
5 6A

" j^v/R
i
R ^x Wx " m
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a* - 6" - - j

K = ( i + Ix. + w _ *
2
+ y

2
)"

att * 03 2 2w ;

A „ _A_ , A 2

X
2 R 2 R y

'

K
6

'

K
att Aay / R . R a)

1+.1
/ \° x

.. Aou/ R R
K
attl

= ST T
s,

= 2^ (A"54)
att

" [1 + (MxTsi
)

2

]

/2 Sl 2

Equation (A-54) is identical with Eq. (A-51) obtained from the thin shell

model. Experimental verification of Eqs. (A-53) and (A-54) is given in

Chapter V.

A-2-c Transient Magnetic Fields Model

Thin Shield

The time constant associated with decay of a sinusoidally distri-

buted current sheet in a cylindrical shell of surface conductivity a

can be calculated as follows:

K =
z

K
n

cos n0 at t -

E =
z

K
X

a
s

a
K
n

cos n8

a
s

V x E s -

'»C
dn

at

We assume time dependence of E, H to be

-at
e and substitute into the curl equation.

1
3E

z

7 9T " y
o
aH

r
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at r = R,

K
z

H =
r

~2~

1
y a R

T
o s— ss

sn a 2

The value of a in terms of the bulk conductivity of a thin shell of

thickness A is a
s

= Aa

T
sn 2

AR
(A-55)

If the conducting shell is placed inside a boundary of y * °° of a + °°

at r = T, the result will be

T - i p aAR
sn 2 po

[i * (|)

2

"]

It should be emphasized that the n refers to the harmonic of the initial

current distribution. The longest time constant is for n » 1. The time

constants associated with higher harmonics should not be confused with

time constants associated with diffusion of the current through the thick

ness of the material when a magnetic field is suddenly established out-

side the shield. The diffusion time constants are derived in the next

section. The result is that the first diffusion time constant is smaller

than the decay time constant by a factor of the thickness-to-radius ratio.

Thick Shield

The terms "thick" and "thin" as applied to an electrothermal shield

have significance only in terms of some steady-state frequency of induced

eddy currents. However, it is clear that, for a shield whose thickness

is larger than a small fraction of its radius, magnetic diffusion will

result in time lags of the establishment of a magnetic field inside the
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shield after a field has been extablished outside. This transient problem

has been investigated [8, 18] and the solution for the time constants has

been shown to reduce to the solution of the transcendental equation of

Bessel functions

Y (a R.. Y (a R )
2 n i) _ o n o

J (a R.) J (oR )
(A~> /}

2 n i o n o

where R. and R„ are the inner and outer radii of the shield, and a
i o ' n

are related to the time constants of the field inside by

T = ^r (A-58)
n a z

n

The magnetic field outside is uniform a long distance from the shield,

and is established in a time short compared to the shield time constants.

The resulting magnetic field intensity inside is then

H (t) • H -
I H
n=l

T

T.

To determine the solutions for the T approximations for the Bessel

functions from Ref. [19] are used.

1/

J (x) =
( ™ }

2

( cos <x - f>
+ ~h sin (x - J )i

, 2 ,H r , 5tt n 15 . , 5tk,
J - (— )'z [cos(x - -r) - -Q- sin(x - -r-)]
2 7DC A 8x 4

~ / 2 N^2 r a ( *\ l t *\i < x < 2tt
Y
o

" (
lfx

) f sin (x "
T? - 8^

C0S(X "
4
)]

L
_l nKt_,_ ,„ _ ITT N _,_ 15 _,„ _ 5tt,

2

- (-~-)'*tsin (x - ~) + g^ cos(x - j-)]

Using the above approximations, Eq. (A-57) reduces to

sin (a A +tt) - —Nr~ cos (a A +tt) - =-—- cos (a A + tt) » (A-59)
n yot K. n o0L.ko n





159

The maximum value of c^A is related to the longest shield time constant

and the shield thickness. If we assume a « 1, and solve for T . the
n n'

assumption can then be checked for typical dimensions of electrothermal

shields. This has been done, and the value of a, A is usually less than

.34. Using the assumption a A < 1, we can expand the sines and cosines

and obtain

15 R + JL

a 2 = 2__J,
i 8AR.R

i o

which gives the result for the time constant

Aay R
T

x

= -—L (1 + £- ) (A-60)

For A « R , this reduces to the result of the thin shield assumption ob-

tained in the previous section.

The higher order time constants are obtained from Eq . (A-59) by

observing that, for larger n, the magnitudes of a become smaller; i.e.,

a are larger and the second and third terms can be neglected in Eq. (A-59)

This gives

7T (n- 1) ^ „
a = -r

—

s—=— n > 2
n R - R.

o i

and
(A-60)'

T «
<

L
\j?i n > 2

n (n-l)2TT 2

Therefore, the first diffusion time constant (n= 2) is smaller than the

L/R shield time constant (n = 1) by a factor less than the thickness-to-

radius ratio. Experimental verification of these results is presented

in Chapter V.
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A-2-d Transient Normal Forces on a Conducting Shield

When a magnetic field is established external to a conducting shield

in a time short compared to the eddy current decay time of the shield, nor-

mal forces are exerted upon the surface. These forces result from the

interaction of the external tangential magnetic field and the surface cur-

rents which are induced to prevent

instantaneous change in the flux

linked by the shield. In Fig. A-8,

the external field which is uni-

form far from the conducting shield

has been established in a time short

compared to the shield time const-

ant. The currents in the shield are

uniformly distributed across the

thickness ot a time long compared to

the diffusion time constant. That Figure A-8

is, if the field were established at t 0, the observation is made at

where -
O

t = t„ where \ < t < = AayR. It is clear from the figure that an
7T

inward radial force is being exerted upon the surface, the spatial de-

pendence of which is cos 9.

During transients in a generator, an increase in the positive

sequence component of armature current will produce a demagnetizing field

which will initially be excluded from the electrothermal shield. As the

induced currents in the shield decay, the armature produced field will

penetrate the shield. During this transient, radially-directed forces are

exerted which are stationary with respect to the shield. The trapped dc
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flux in the armature produces a traveling wave of normal stress upon the

shield. Unbalanced faults such as line-to-line result in negative sequence

magnetic field, which also produces traveling waves of normal stress.

The magnitude and distribution of the normal stress is derived by

calculating the distribution of magnetic field inside and outside the shell

during the transient. The magnitude of the normal stress for a three-

phase short circuit is independent of loading condition. The line-to-

line fault is dependent upon loading, but the maximum normal stress which

occurs one-half cycle after the fault is calculated for the open-circuit

fault case.

Normal Stress

Three-Phase Fault from Open Circuit

The stresses are independent of time

of application of the fault. For simplifi- v

cation, let tQ tt/2 where t is time of

application of fault, and t' equals time of

the fault

,

t'

a
r
(t',r)

t - t

AH
t'AL^.e "^d

- 2t'

AH

2

2t'

cos 2y +
'i "d

e cos 2y

AH
C
4^ V— e

T
a cos 2(u)t' + y) T^~ e cos(o)t'+2Y)

t'
AH .AH , - t' /—lt lX

e T^[l-e a 1 C os(u)t
f + 2y) (A-61)
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AH AH / - X\ - |i AH * - |£l AH 2
. - 2^1

AH 2
, 1 1

1

f i '
C

T*;
+
T
a AH

f
AH JL/ * \

2 e cos ut i + if ll
e

Ta K T
d

l

os m|
. i

AV = ^ 7T^ {1 - x±^- x3>t
2} ^

3/2 J
n

S 2J r 9 r
AH, - -,-As { l-x±±(l-x 3

) -£}+ --i sin^- •
2-rr <T 3

X ~ ' T *" 3rr

F 3
2

R{(^) (l-y
3

)[l±(f) ] }(x
d

- x
d
) AJ

d

AJ" increase in direct-axis, positive sequence current following

fault

AJ' increase in direct-axis, positive sequence current for time t

such that T" « t' « T'
d d

The normal stress given by Eq. (A-61) is made up of a component indepen-

dent of angular position, and one having a cos 2y dependence. Since the

shell is much less resistant to the cos 2y stress, its maximum value is

important. This occurs for co t' tt , i.e., one-half cvcle after the
o

fault. The second spatial harmonic normal stress is given by

,, AH rAH / - t'\ - t' AH J
-2t/Td

'

a (t' - —
,Y ) - V

lf
9

l±
( 1-e fj) e fj + -rii e

r2max v u *> 2 V a
J

a 4

AH. - |tl AH - kr +~ AH AH - ~ / - ^r \

+ _JA e
f
a + —Si e

Td T
a +

l

\
xl

e
T
* f 1-e

Td 1 cos 2Y

V
AJ" - -2g-

dl X
(A-62)

AJ' - -2f
di x





16 3

A-3 The Thin Shell Mechanical Model

During transients following machine faults , large normal forces are

exerted upon the electrothermal shield. These forces consist of a dc

or stationary force relative to the shield distributed with a cos
2

6

angular dependence, and a traveling wave or alternating normal force. The

magnitudes of these forces were derived in the previous sections. In order

to predict the mechanical motion of the shell when subjected to these nor-

mal forces, the thin shell elasticity equations are solved for the given

loading. Steady-state deflections are calculated as a function of load-

ing, and ring natural frequencies are derived by the energy method.

The Thin Shell with Hinged Ends Radially Supported

The shell is loaded as shown in Fig.

A-9.

00 CO

O 5" / cos nd> sin —r— (A-64)
r L L rmn X,

m=0 n»0

The loading due to the armature-produced

magnetic flux occurs primarily for n 1

and n = 0,1 which can be written as

a cos & sin -z—
o l

The distribution of loading was shown in

section A-2-c to have the cos 2
<J)

depen-

dence. The loading distribution along the

axial length of the shield depends upon p. .
g

the armature active length add end turns

relative to the end supports of the E.T. shield. Fourier analysis of the
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flux distributions for armatures of the machines being built, and the

geometries of larger machines, has shown that the sin ttx/& term very

closely represents the axial flux distribution. Higher harmonics in the

axial distribution are very small relative to the fundamental.

The partial differential equations which govern the deflection of a

thin shell, when loaded by a normal stress on the surface, are given in

Ref. [15] and reproduced here:

1 + v 9
2v v 3u> 9^u ^ 1 - v 9

2 u n
2 R 8x84-

" R 9x 9x2 2R2 9<p~

1+v 9
z
u

9x9$

1-v 9
2 v

, i 3 v 1 3u nR
2 9x R 9^~ R 9<j>

9u
V

9x R 3<J>

" R " 12
QK

9 * R 9z 2
9<f>' R3" 9^^ " Eh r

where u, v, u) are the axial, azimuthal, and radial deflections, res-

pectively, and a is the radial load which is a function of x and <j> .

The primary loading due to magnetic pressure has a cos
(J)

dependence, as

shown in the previous section. The loading is then assumed

o = o cos <J)
sin -T- - O ( t + T cos <P)sin -r-ro T £o22 x,

Assume solutions of the form

(A-65)

TTX
u =* cos -s- E A cos n(J)

£ n

TTX
v sin -T- £ B sin nd)

£ n

TTX
w sin -r- E C cos n<{>

x. n

axial deflection

azimuthal deflection ,

radial deflection
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The shell is assumed to be hinged, with radial support at the ends x - 0,

but is free to move axially.

After substitution of the assumed solutions into the equations, ap-

plication of approximations concerning relative dimensions, and solution

for the coefficients, the resulting radial deflection is

4 ra r2 g° * R ,lwl-v 2
N
a
o „ ,. ,, %v = sin - + 1-vi ^^ —

,

(-) (__) _ cos 2 ^ (A-66)

i> *

4
v £' " V

R'

R shield radius

£ = length between shield and support

A = shield thickness

E = Young's modulus

V Poisson's ratio

The ratio of C to C gives the relative magnitude of the uniform radial

deflection to the second harmonic deflection.

C
2

=
4(1 - v*)

which is clearly less than 1. Even for the limiting case of % = ttR,

the uniform deflection is only about 1/16 the second harmonic amplitude.

Shell Mechanical Natural Frequencies

The natural frequency of ring vibrations having radial deflections

of the lowest mode

TTX
w(r,<j>,x) » w cos wt cos 2$ sin -r-

max x,

can be determined by equating the maximum kinetic energy of the motion

to the maximum energy of bending.
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To calculate the potential energy stored in a ring mode deflection,

we use Castigliano's theorem [16] which states that U = -x- P 6 + tt P <$ +
2 1 1 2 2 2

where P is the load in the 1 direction and 6 is the deflection in
l l

the 1 direction, etc.

TTX
6 - go = dr cos 2(f) sin
r £

P » y~ cos 2<f>

U

f2TT f 0),max f I

R sin -T- dx cos
<f)

dr j— d<J>

The kinetic energy maximum is calculated by assuming deflection time

dependence as

TTX
6 w cos 2d) sin -r- sin 0) t
r max x. i

<$r w a) cos 2<t> sin -r-
max max i I

0)
max TTX

max

—^ sin 2d> sin ~= sin w t

ax . , . TTX
t— 0) sin 2<p sin -y-

radial deflection

azimuthal deflections

The contribution of the axial deflections to kinetic energy is neglected,

since for a long shield, they are much smaller than radial deflections:

K.E.
max

2TT

2 ,.2 2 TTX
R I 0)

z
o)
z cos 2

2f D A sin* -*~ dd> dx
l max Mm it

5 9 9
- tt R A 0) 0)

z
p A

16 i max Km

The energy change due to motion in centrifugal force field of a shield

rotating at frequency U) [17] is:
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U - 4? p A R2 U)
2

U)
2

£
c 2 m m max

If the sum of the maximum potential and kinetic energies are equated, the

natural frequency of the shield is obtained for the assumed mode of vi-

bration:

u)
2 « 2.4 w 2 + 0)

2

c mi
2 E /1\ V A 4 ;

,. ,..V r^vlF ne (A-67)*-(«

a) natural frequency of rotating shield

a) angular frequency of rotation
m

p * density of shield material (kg/in ).
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