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ABSTRACT 

Emerging ad hoc networking environments, such as those currently being adopted 

by the defense and first response communities, call for a new generation of network 

monitoring capability. Current monitoring tools must either rely upon measurement 

protocols designed for a previous generation of systems or leverage only a subset of 

network devices that support some custom protocol. For certain kinds of networks, we 

make the case for shifting from a protocol to a language-based approach to measurement 

and for allowing a para-network facility which we call the XPLANE to reside on every 

network device, enabling system designers and administrators to craft tailored, localized 

measurements. The language we describe provides a higher-level abstraction for 

synchronous measurement while alleviating both the programmer and the interpreter 

from maintaining synchronization state for the computation. This has significant 

consequences for the complexity and resiliency of measurements. Our approach also 

separates localization and measurement from the logical network configuration, enabling 

diagnosis in the face of device misconfiguration. In this technical report we present the 

design and implementation of the XPLANE and provide several example applications to 

illustrate its use. 
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I. INTRODUCTION 

The past decade has seen an unending progression of new ad hoc networking 

technology, each generation surpassing the last in capability and complexity. At the same 

time, networks are supplanting previous modes of communication in more and more 

settings such as tactical defense and emergency response. The result is an increasing 

population of novice users needing to diagnose network problems in the midst of real-

world operations. In the middle of putting out a fire, first responders do not have time to 

run Traceroute to discover a misconfigured router. They need to understand why their 

networked application is not working and how to make it work. Hence there is a need for 

a new measurement facility that provides actionable information. 

Given the plethora of complex and heterogeneous technologies, measurement 

facilities must be flexible enough to support diverse networks and applications. Expecting 

a measurement protocol to be designed once and suffice in all circumstances is 

unrealistic, while extending protocols to support additional features makes them fragile. 

One way to ensure a suitable measurement solution is to provide a language in which 

network designers can express custom measurements tailored to the operational domain 

and a platform for executing these measurements on the network at hand. 

Such a facility must be able to make these measurements efficiently and precisely. 

Presumably these networks are used for mission-critical tasks; measurement execution 

should impose only a minimal burden on the network. The facility should also support 

measurements that can pinpoint the exact nature of a network problem. Localization of 

the measurement is key to both. By moving the computation to the source of 

measurement, voluminous raw data need not be transferred to distant parts of the 

network. Instead, only the code and computation state must be transmitted; we show that 

for non-trivial examples this can be done within a single Ethernet MTU. Placing a facility 

on every network device enables diagnostic applications to examine the network from 

any vantage point, thus supporting more granular analysis and precise results. Granted, 

not all types of networks are suited for this, but in the case of organizations that already 

mandate a standard software or firmware load it is not unreasonable to include an extra 
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piece of software for network diagnosis. Likewise, large organizations that work with 

device vendors might stipulate support for certain capabilities. 

So what is the appropriate computational model for making localized 

measurements in an ad hoc network? Remote procedure calling (RPC) is a standard 

technique for localizing procedure calls. RPC requires an implementation to marshal 

remote procedure calls and returns. This can potentially place state at every network 

device to keep track of pending calls since a remote call can generate yet another remote 

procedure call. So RPC is not well suited for low-power, battery-operated devices. The 

initial procedure call will fail if there is loss of RPC state at any other device. 

Alternatively, one could adopt a thread semantics whereby a remote procedure call 

spawns a thread for asynchronous execution at a different device in the network. The 

thread would include code to handle returning the result of the call to its origin. This 

places an additional burden on the programmer and is a source of error. Instead, we 

provide higher-level abstractions for synchronous measurement that are compiled into a 

tail form prior to execution. Synchronous operations simplify expression of 

measurements as they eliminate the need for explicit marshaling of results of function 

calls to the origins of those calls. Further, with our approach, all state remains with a 

computation and no residual state is left behind once the computation moves away from a 

device. An intermediate device that aided in the computation at some point can 

momentarily disappear, losing its state, and still perform subsequent operations for the 

same computation should it later revisit that device. For networks composed of devices 

operating in dynamic or harsh conditions, this improves the chances that an application 

will terminate successfully at its origin. 

A consequence of having a facility on every device is being able to coexist on the 

physical network but live entirely beside the logical network configuration. Moving the 

computation does not hinge on routing, for example. We accomplish this by using only 

link-layer broadcasts and placing control of how the computation navigates through the 

network in the hands of the programmer. Thus no topological state, even about 

neighboring devices, need be maintained independent of the computation. This allows 

measurements to succeed in the face of network misconfiguration, and in fact even allows 

one to make diagnoses about those misconfigurations! Nor do we burden devices with 
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maintaining a collection of attributes a la SNMP, and instead aim to observe all 

measurements directly from packet capture and, where necessary, packet injection. Hence 

all measurements reflect observed behavior “on the wire,” not the idiosyncrasies of the 

implemented network stack. 

Toward bringing this concept into reality, we propose a new language (XPL) and 

platform called the XPLANE with the following novel design aspects: 

• All computation is localized to the source of the measurement. 

• Code is written synchronously while a novel compilation process 

transforms it into code that maintains all state at the same location 

as the computation throughout execution. 

• Localization and measurement are performed beside the logical 

configuration of the network. 

The remainder of the paper is organized as follows. In Section II, we describe 

XPL the language in which measurements are expressed. There a transformation called 

CPS for Continuation-Passing Style is described. It is what frees network devices from 

having to manage synchronization state for applications during their lifetimes. Then we 

illustrate the use of the XPLANE for various measurement and diagnosis tasks in Section 

III. These tasks are only examples of what can be programmed in the XPLANE, but give 

a sense of the generality of the language. The last example, a non-trivial data rate 

measurement, is discussed in greater detail in Section III.B. It measures data rates for all 

physical paths from a resource to a client and performs measurements even when there 

are no routes along that path. Our current implementation of XPL is presented in Section 

IV, followed by discussion of future and related work. 
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II. THE XPL LANGUAGE 

We give an overview of XPL here. To understand why XPL looks the way it 

does, it is helpful to see the design rationale behind the main language features. In the 

end, our goal is to express measurement and diagnostic applications that can run 

successfully within the network with as little impact on the network as possible. We 

introduce the following language elements to address each aspect of our goal: 

• Measurement applications may need to conduct custom 

experiments across links or observe link behavior first hand. 

Hence, XPL provides primitives for packet injection and capture. 

• Computations should be localized near the source of a 

measurement to reduce the transfer of measurement data over the 

network. Thus XPL provides a facility for transferring execution of 

a computation to another device. 

• Measurements should be able to be made even in the face of an 

unknown or dynamic topology. Therefore, XPL also provides a 

flood primitive for transferring execution to all immediate 

neighbors. While flooding can lead to redundant computation at a 

single device when there are multiple distinct paths, it allows 

exploration of alternative paths when the expected path fails for 

some reason. 

• Applications should not rely on devices to maintain control state 

when localization occurs since node memory may be volatile. Thus 

XPL programs are automatically transformed using continuations 

to ensure that localization never leaves any control state behind. 

Further, XPL does not allow distinct threads to communicate via 

shared device state or otherwise. 

One can imagine a different set of operating assumptions about the network. 

These might change XPL design rationale. For instance, memory loss at devices might 

not be an issue if routers are not battery operated. Then it might make sense to maintain 

control state a la traditional remote evaluation and offering an alternative to flooding to 
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allow programmers the ability to avoid redundant computations. However, we feel our 

assumptions provide a reasonable starting point for discussion as they represent the more 

extreme end of the operating spectrum for ad hoc networks. 

The XPLANE comprises a collection of XPL interpreters distributed across 

network devices, one per device (also called a node). An interpreter exposes certain 

device attributes. Every device currently has the following attributes: identifier (node), 

type (node.type), device time (node.time) and a list of device interfaces (node.ifaces). For 

now we constrain nodes to bear a single type such as Router, Server or Client. If k ∈ 

node.ifaces then node.k.ethaddr is its hardware address and node.k.ip its IP address. An 

interpreter also exposes code attributes. There are currently three code attributes: size (sz) 

of the Ethernet frame (including the preamble, header and checksum) used to transmit the 

entire state of a computation, arrival interface (ai) and arrival time (at). The arrival time 

should be as close to wire arrival time as possible. Finally, an interpreter provides 

facilities for injecting and capturing arbitrary packets at any device interface; these are 

send and pcap, respectively, which are described in the next section. The language syntax 

is summarized in Table 1. 

 

 
Table 1. XPL Language Syntax 

 

There are two operations for transferring execution of an application to a remote 

network node: On {e} e′ and OnFlood {e} where e and e′ are expressions. Each causes e 

Arithmetic +, −, ∗, /
Logical/Relational =, <>, >, >=, <, <=,

and, or, not
List expr :: list, list++ list,

null, hd, tl, member, reverse,
max, min, average

Variable binding let id = expr in expr
Functions fun id(arg,...) = expr in expr

(lambda arg expr)
Application id arg ...
Conditional if expr then expr

if expr then expr else expr
Transfer On { expr } expr

OnFlood { expr }
Send/Capture send expr expr; expr

pcap expr

Table 1: XPL language syntax

might not be an issue if routers are not battery oper-
ated. Then it might make sense to maintain control
state a la traditional remote evaluation and offering an
alternative to flooding to allow programmers the abil-
ity to avoid redundant computations. However, we feel
our assumptions provide a reasonable starting point for
discussion as they represent the more extreme end of
the operating spectrum for ad hoc networks.

The XPLANE comprises a collection of XPL inter-
preters distributed across network devices, one per de-
vice (also called a node). An interpreter exposes cer-
tain device attributes. Every device currently has the
following attributes: identifier (node), type (node.type),
device time (node.time) and a list of device interfaces
(node.ifaces). For now we constrain nodes to bear a
single type such as Router, Server or Client. If k ∈
node.ifaces then node.k.ethaddr is its hardware address
and node.k.ip its IP address. An interpreter also ex-
poses code attributes. There are currently three code
attributes: size (sz ) of the Ethernet frame (including
the preamble, header and checksum) used to transmit
the entire state of a computation, arrival interface (ai)
and arrival time (at). The arrival time should be as
close to wire arrival time as possible. Finally, an in-
terpreter provides facilities for injecting and capturing
arbitrary packets at any device interface; these are send
and pcap, respectively, which are described in the next
section. The language syntax is summarized in Table 1.

There are two operations for transferring execution
of an application to a remote network node: On {e} e�

and OnFlood {e} where e and e� are expressions. Each
causes e to be evaluated by one or more remote nodes.
The nodes must be immediate neighbors. In the case
of On, it is the neighbor to which e� evaluates and in
the case of OnFlood, all immediate neighbors. Any free
occurrence of a device or code attribute in e is bound

fun f(path) =

if node.type = Server then path++[node]

else let n = node in

if not member n path then

OnFlood {f path++[n]}
in f [ ]

Figure 1: Server discovery in XPL

in On {e} e� and OnFlood {e}. Evaluation by a remote
node implies executing e in the context of device at-
tributes there and code attributes associated with com-
municating e. Thus OnFlood mirrors SIMD parallelism.

Primitives On and OnFlood are synchronous opera-
tions. Consequently, programmers do not have to write
code to explicitly return their values. This leads to less
code and potential for coding errors. To illustrate, con-
sider the XPL code in Figure 1. It discovers from a
given client, all physical paths to every server; some
of these may be logical paths depending on configured
routes. Here “++” denotes list append; “::” denotes list
construction. The code floods away from a client with
nodes added to a path by f if they have not already
been visited. If a node has been visited by that exe-
cution thread, the thread terminates immediately with
no value. If a node of type Server is reached then the
reverse of the path to it is returned to the client. Thus
the algorithm builds all symmetric paths to a server
from the client in that the path from the server to the
client is always the reverse of the path from the client
to the server. Note that no code is written to send a
discovered route back to the client.

Contrast this code with the code in Figure 2 which
shows how server discovery would have to be written
if OnFlood had asynchronous thread semantics. Addi-
tional code would be needed to return a route to the
origin. Function goback does this with some nontrivial
logic that reverses the path from the client to the server
[7]. Handling its boundary cases also requires care. It
is just another potential source of error and added com-
plexity that is not necessary.

Despite their synchronous semantics, the XPLANE
does not wait on the evaluation of an instance of On

or OnFlood nor does an XPL interpreter maintain any
control state in order to re-synchronize with their val-
ues. That is because every XPL program is converted
into tail form using a CPS transformation prior to be-
ing executed [4, 16], so that computation remaining at
that node is packaged with the transferred code. That
way their execution in the XPLANE is fire and forget

yet programmers can treat them as synchronous oper-
ations in their code. See Section 4 for details.

3. APPLICATIONS OF XPL

3
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to be evaluated by one or more remote nodes. The nodes must be immediate neighbors. 

In the case of On, it is the neighbor to which e′ evaluates and in the case of OnFlood, all 

immediate neighbors. Any free occurrence of a device or code attribute in e is bound in 

On {e} e′ and OnFlood {e}. Evaluation by a remote node implies executing e in the 

context of device attributes there and code attributes associated with communicating e. 

Thus OnFlood mirrors SIMD parallelism. 

 

 
Figure 1. Server discovery in XPL 

 
Primitives On and OnFlood are synchronous operations. Consequently, 

programmers do not have to write code to explicitly return their values. This leads to less 

code and potential for coding errors. To illustrate, consider the XPL code in Figure 1. It 

discovers from a given client, all physical paths to every server; some of these may be 

logical paths depending on configured routes. Here “++” denotes list append; “::” denotes 

list construction. The code floods away from a client with nodes added to a path by f if 

they have not already been visited. If a node has been visited by that execution thread, the 

thread terminates immediately with no value. If a node of type Server is reached then the 

reverse of the path to it is returned to the client. Thus the algorithm builds all symmetric 

paths to a server from the client in that the path from the server to the client is always the 

reverse of the path from the client to the server. Note that no code is written to send a 

discovered route back to the client. 

Contrast this code with the code in Figure 2, which shows how server discovery 

would have to be written if OnFlood had asynchronous thread semantics. Additional code 

would be needed to return a route to the origin. Function goback does this with some 

nontrivial logic that reverses the path from the client to the server [7]. Handling its 

boundary cases also requires care. It is just another potential source of error and added 

complexity that is not necessary. 

Arithmetic +, −, ∗, /
Logical/Relational =, <>, >, >=, <, <=,

and, or, not
List expr :: list, list++ list,

null, hd, tl, member, reverse,
max, min, average

Variable binding let id = expr in expr
Functions fun id(arg,...) = expr in expr

(lambda arg expr)
Application id arg ...
Conditional if expr then expr

if expr then expr else expr
Transfer On { expr } expr

OnFlood { expr }
Send/Capture send expr expr; expr

pcap expr

Table 1: XPL language syntax

might not be an issue if routers are not battery oper-
ated. Then it might make sense to maintain control
state a la traditional remote evaluation and offering an
alternative to flooding to allow programmers the abil-
ity to avoid redundant computations. However, we feel
our assumptions provide a reasonable starting point for
discussion as they represent the more extreme end of
the operating spectrum for ad hoc networks.

The XPLANE comprises a collection of XPL inter-
preters distributed across network devices, one per de-
vice (also called a node). An interpreter exposes cer-
tain device attributes. Every device currently has the
following attributes: identifier (node), type (node.type),
device time (node.time) and a list of device interfaces
(node.ifaces). For now we constrain nodes to bear a
single type such as Router, Server or Client. If k ∈
node.ifaces then node.k.ethaddr is its hardware address
and node.k.ip its IP address. An interpreter also ex-
poses code attributes. There are currently three code
attributes: size (sz ) of the Ethernet frame (including
the preamble, header and checksum) used to transmit
the entire state of a computation, arrival interface (ai)
and arrival time (at). The arrival time should be as
close to wire arrival time as possible. Finally, an in-
terpreter provides facilities for injecting and capturing
arbitrary packets at any device interface; these are send
and pcap, respectively, which are described in the next
section. The language syntax is summarized in Table 1.

There are two operations for transferring execution
of an application to a remote network node: On {e} e�

and OnFlood {e} where e and e� are expressions. Each
causes e to be evaluated by one or more remote nodes.
The nodes must be immediate neighbors. In the case
of On, it is the neighbor to which e� evaluates and in
the case of OnFlood, all immediate neighbors. Any free
occurrence of a device or code attribute in e is bound

fun f(path) =

if node.type = Server then path++[node]

else let n = node in

if not member n path then

OnFlood {f path++[n]}
in f [ ]

Figure 1: Server discovery in XPL

in On {e} e� and OnFlood {e}. Evaluation by a remote
node implies executing e in the context of device at-
tributes there and code attributes associated with com-
municating e. Thus OnFlood mirrors SIMD parallelism.

Primitives On and OnFlood are synchronous opera-
tions. Consequently, programmers do not have to write
code to explicitly return their values. This leads to less
code and potential for coding errors. To illustrate, con-
sider the XPL code in Figure 1. It discovers from a
given client, all physical paths to every server; some
of these may be logical paths depending on configured
routes. Here “++” denotes list append; “::” denotes list
construction. The code floods away from a client with
nodes added to a path by f if they have not already
been visited. If a node has been visited by that exe-
cution thread, the thread terminates immediately with
no value. If a node of type Server is reached then the
reverse of the path to it is returned to the client. Thus
the algorithm builds all symmetric paths to a server
from the client in that the path from the server to the
client is always the reverse of the path from the client
to the server. Note that no code is written to send a
discovered route back to the client.

Contrast this code with the code in Figure 2 which
shows how server discovery would have to be written
if OnFlood had asynchronous thread semantics. Addi-
tional code would be needed to return a route to the
origin. Function goback does this with some nontrivial
logic that reverses the path from the client to the server
[7]. Handling its boundary cases also requires care. It
is just another potential source of error and added com-
plexity that is not necessary.

Despite their synchronous semantics, the XPLANE
does not wait on the evaluation of an instance of On

or OnFlood nor does an XPL interpreter maintain any
control state in order to re-synchronize with their val-
ues. That is because every XPL program is converted
into tail form using a CPS transformation prior to be-
ing executed [4, 16], so that computation remaining at
that node is packaged with the transferred code. That
way their execution in the XPLANE is fire and forget

yet programmers can treat them as synchronous oper-
ations in their code. See Section 4 for details.

3. APPLICATIONS OF XPL

3
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Figure 2. Server discovery with asynchronous OnFlood 

 
Despite their synchronous semantics, the XPLANE does not wait on the 

evaluation of an instance of On or OnFlood nor does an XPL interpreter maintain any 

control state in order to re-synchronize with their values. That is because every XPL 

program is converted into tail form using a CPS transformation prior to being executed 

[4, 16], so that computation remaining at that node is packaged with the transferred code. 

That way their execution in the XPLANE is fire and forget yet programmers can treat 

them as synchronous operations in their code. See Section IV for details. 

fun goback(path, route) =

if null (tl path) then node::route

else On {goback (tl path)

(hd path)::route

} hd (tl path)

in fun f(path) =

if node.type = Server then

let m = node in

if null path then [m]

else On {goback path [m]} (hd path)

else let n = node in

if not member n path then

OnFlood {f n::path}
in f [ ]

Figure 2: Server discovery with asynchronous
OnFlood

We now present example applications of XPL to illus-

trate its use. Each application is tailored to a network-

ing environment operating under certain assumptions.

Because we anticipate the XPLANE being deployed in

a variety of networks, our aim is to allow programmers

to craft measurements suited to their environment.

Our first example illustrates how the XPLANE can

produce measurements without relying on the native

network stacks of devices. Since XPL relies only upon

link-layer connectivity, it can be used to get approxima-

tions to some measurements when more accurate tools

that depend on routes fail completely. For example, the

code in Figure 3 approximates data rate between a host

and server S one hop away.

Execution begins at the host. The data rate is cal-

culated as an average of 10 samples. Function datarate

recursively builds a list of c samples made between the

host and node s, which is assumed to be a neighbor.

For each sample, h is bound to the host identifier and

t to a timestamp at the host. Then the body of the

outer On is sent to s for execution. The size of the

transfer is made available there in sz , which is stored

in nbytes. Free variable t in the body remains bound

to the timestamp from h. The body of the inner On

is then sent back to h. There the sum of the size of

both transfers is divided by the difference between the

arrival time at of the inner On and the transfer time t
of the outer On, producing a data rate sample r which

is added to the list. If node.time is close to wire time

of the transfer from h to s and the link is symmetric

then the code provides a reasonable estimate of data

rate, assuming the execution time at s is insignificant.

Though perhaps a crude approach, its real value lies in

the fact that it can approximate data rate when there

may be no logical path between the host and server due

to the absence of a route or incompatible addressing.

fun datarate(s, c) =

if c = 0 then [ ]

else let h = node in

let t = node.time in

let r = On {let nbytes = sz in

On {(sz + nbytes)/(at − t)} h

} s in

r::(datarate s (c − 1))

in average(datarate S 10)

Figure 3: Data rate approximation

3.1 Duplicate address detection
The next example is an application that checks for the

presence of any non-router device (e.g., client or server)

whose IP address duplicates the address of a router in-

terface on its local subnet. One could envision a hastily-

formed network in which all routers are fixed and have

known good configurations, but non-routers are allowed

to attach to the network with arbitrary configurations.

Were such a device to duplicate the address of a gate-

way on a subnet where a server resides, the server might

ARP for the gateway and instead receive the Ethernet

address of this device. The symptom observed at de-

vices outside that subnet would only be an inability to

receive data from the server. Presuming the offending
device has support for the XPLANE, our application

allows a node to detect this condition remotely.

This application uses OnFlood to propagate through-

out the network, similar to the server discovery example

in Figure 1. For every non-router the code reaches, the

node identifier and IP address of the arrival interface

are recorded. Then that IP address is compared to the

address of the router interface facing that device; if they

match, a tuple is produced at the originating node.

The code for the application is given in Figure 4.

It begins at some node, which is assumed not to be a

router itself. The code first floods to all neighbors and

proceeds only at those that are routers. At each router,

the code first checks that the node has not already been

visited. It then floods to all neighbors of the node. If the

neighboring node is a router, the code recursively eval-

uates dupecheck . If it is a non-router, the code stores

the node identifier in ndid and the IP address of the

arrival interface in ndip, then transfers execution back

to the last router. At the router, ndip is compared to

the IP address of the router arrival interface, which is

necessarily the interface facing the non-router. If ndip

is equal to node.ai.ip then the value of the code is a tu-

ple containing the node identifiers of the router and the

offender, and the duplicated IP address. The implicit

returns for each On and OnFlood produce this value at

the originating node. If ndip does not equal node.ai.ip

the code terminates at the router with no value.
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III. APPLICATIONS OF XPL 

We now present example applications of XPL to illustrate its use. Each 

application is tailored to a networking environment operating under certain assumptions. 

Because we anticipate the XPLANE being deployed in a variety of networks, our aim is 

to allow programmers to craft measurements suited to their environment. 

Our first example illustrates how the XPLANE can produce measurements 

without relying on the native network stacks of devices. Since XPL relies only upon link-

layer connectivity, it can be used to get approximations to some measurements when 

more accurate tools that depend on routes fail completely. For example, the code in 

Figure 3 approximates data rate between a host and server S one hop away. 

 

 
Figure 3. Data rate approximation 

 

Execution begins at the host. The data rate is calculated as an average of 10 

samples. Function datarate recursively builds a list of c samples made between the host 

and node s, which is assumed to be a neighbor. For each sample, h is bound to the host 

identifier and t to a timestamp at the host. Then the body of the outer On is sent to s for 

execution. The size of the transfer is made available there in sz, which is stored in nbytes. 

Free variable t in the body remains bound to the timestamp from h. The body of the inner 

On is then sent back to h. There the sum of the size of both transfers is divided by the 

difference between the arrival time at of the inner On and the transfer time t of the outer 

On, producing a data rate sample r which is added to the list. If node.time is close to wire 

time of the transfer from h to s and the link is symmetric then the code provides a 

reasonable estimate of data rate, assuming the execution time at s is insignificant. Though 

fun goback(path, route) =

if null (tl path) then node::route

else On {goback (tl path)

(hd path)::route

} hd (tl path)

in fun f(path) =

if node.type = Server then

let m = node in

if null path then [m]

else On {goback path [m]} (hd path)

else let n = node in

if not member n path then

OnFlood {f n::path}
in f [ ]

Figure 2: Server discovery with asynchronous
OnFlood

We now present example applications of XPL to illus-

trate its use. Each application is tailored to a network-

ing environment operating under certain assumptions.

Because we anticipate the XPLANE being deployed in

a variety of networks, our aim is to allow programmers

to craft measurements suited to their environment.

Our first example illustrates how the XPLANE can

produce measurements without relying on the native

network stacks of devices. Since XPL relies only upon

link-layer connectivity, it can be used to get approxima-

tions to some measurements when more accurate tools

that depend on routes fail completely. For example, the

code in Figure 3 approximates data rate between a host

and server S one hop away.

Execution begins at the host. The data rate is cal-

culated as an average of 10 samples. Function datarate

recursively builds a list of c samples made between the

host and node s, which is assumed to be a neighbor.

For each sample, h is bound to the host identifier and

t to a timestamp at the host. Then the body of the

outer On is sent to s for execution. The size of the

transfer is made available there in sz , which is stored

in nbytes. Free variable t in the body remains bound

to the timestamp from h. The body of the inner On

is then sent back to h. There the sum of the size of

both transfers is divided by the difference between the

arrival time at of the inner On and the transfer time t
of the outer On, producing a data rate sample r which

is added to the list. If node.time is close to wire time

of the transfer from h to s and the link is symmetric

then the code provides a reasonable estimate of data

rate, assuming the execution time at s is insignificant.

Though perhaps a crude approach, its real value lies in

the fact that it can approximate data rate when there

may be no logical path between the host and server due

to the absence of a route or incompatible addressing.

fun datarate(s, c) =

if c = 0 then [ ]

else let h = node in

let t = node.time in

let r = On {let nbytes = sz in

On {(sz + nbytes)/(at − t)} h

} s in

r::(datarate s (c − 1))

in average(datarate S 10)

Figure 3: Data rate approximation

3.1 Duplicate address detection
The next example is an application that checks for the

presence of any non-router device (e.g., client or server)

whose IP address duplicates the address of a router in-

terface on its local subnet. One could envision a hastily-

formed network in which all routers are fixed and have

known good configurations, but non-routers are allowed

to attach to the network with arbitrary configurations.

Were such a device to duplicate the address of a gate-

way on a subnet where a server resides, the server might

ARP for the gateway and instead receive the Ethernet

address of this device. The symptom observed at de-

vices outside that subnet would only be an inability to

receive data from the server. Presuming the offending
device has support for the XPLANE, our application

allows a node to detect this condition remotely.

This application uses OnFlood to propagate through-

out the network, similar to the server discovery example

in Figure 1. For every non-router the code reaches, the

node identifier and IP address of the arrival interface

are recorded. Then that IP address is compared to the

address of the router interface facing that device; if they

match, a tuple is produced at the originating node.

The code for the application is given in Figure 4.

It begins at some node, which is assumed not to be a

router itself. The code first floods to all neighbors and

proceeds only at those that are routers. At each router,

the code first checks that the node has not already been

visited. It then floods to all neighbors of the node. If the

neighboring node is a router, the code recursively eval-

uates dupecheck . If it is a non-router, the code stores

the node identifier in ndid and the IP address of the

arrival interface in ndip, then transfers execution back

to the last router. At the router, ndip is compared to

the IP address of the router arrival interface, which is

necessarily the interface facing the non-router. If ndip

is equal to node.ai.ip then the value of the code is a tu-

ple containing the node identifiers of the router and the

offender, and the duplicated IP address. The implicit

returns for each On and OnFlood produce this value at

the originating node. If ndip does not equal node.ai.ip

the code terminates at the router with no value.

4
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perhaps a crude approach, its real value lies in the fact that it can approximate data rate 

when there may be no logical path between the host and server due to the absence of a 

route or incompatible addressing. 

 

A. DUPLICATE IP ADDRESS DETECTION 
The next example is an application that checks for the presence of any non-router 

device (e.g., client or server) whose IP address duplicates the address of a router interface 

on its local subnet. One could envision a hastily-formed network in which all routers are 

fixed and have known good configurations, but non-routers are allowed to attach to the 

network with arbitrary configurations. Were such a device to duplicate the address of a 

gateway on a subnet where a server resides, the server might ARP for the gateway and 

instead receive the Ethernet address of this device. The symptom observed at devices 

outside that subnet would only be an inability to receive data from the server. Presuming 

the offending device has support for the XPLANE, our application allows a node to 

detect this condition remotely. 

This application uses OnFlood to propagate throughout the network, similar to the 

server discovery example in Figure 1. For every non-router the code reaches, the node 

identifier and IP address of the arrival interface are recorded. Then that IP address is 

compared to the address of the router interface facing that device; if they match, a tuple is 

produced at the originating node. 

The code for the application is given in Figure 4. It begins at some node, which is 

assumed not to be a router itself. The code first floods to all neighbors and proceeds only 

at those that are routers. At each router, the code first checks that the node has not already 

been visited. It then floods to all neighbors of the node. If the neighboring node is a 

router, the code recursively evaluates dupecheck. If it is a non-router, the code stores the 

node identifier in ndid and the IP address of the arrival interface in ndip, then transfers 

execution back to the last router. At the router, ndip is compared to the IP address of the 

router arrival interface, which is necessarily the interface facing the non-router. If ndip is 

equal to node.ai.ip then the value of the code is a tuple containing the node identifiers of 

the router and the offender, and the duplicated IP address. The implicit returns for each 
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On and OnFlood produce this value at the originating node. If ndip does not equal 

node.ai.ip the code terminates at the router with no value. 

 

 
Figure 4. Duplicate IP check 

 

This algorithm detects all instances of duplicate addresses per the above definition 

in a single execution. Since the code visits all reachable nodes in the network via every 

distinct routed path, every non-router is checked against every neighboring router. 

Through the use of OnFlood each thread of computation executes independently of every 

other thread; the value of each thread that detects a duplicate address is a tuple that is 

produced at the originating node. Hence the value of the overall computation will be zero 

or more tuples, one per duplicate address detected. 

Now suppose a network in which all routers have support for the XPLANE but all 

non-routers do not. Rather than visiting each non-router to gather information, we instead 

use the packet capture facility to examine packets received at each router interface for 

possible duplicate addresses. Captured packets are retrieved using pcap e1 where e1 is 

expected to be an interface at the current node. It produces a set of records corresponding 

to packets that were captured at that interface. Records contain both the contents of each 

packet and metadata such as time received or sent. Packet capture is managed at each 

node and the details of storing records are specific to the implementation. It is possible 

fun dupecheck(path) =

if not member node path then

let path = node::path in

OnFlood {
if node.type = Router then

dupecheck path

else let ndid = node in

let ndip = node.ai.ip in

On {
if ndip = node.ai.ip then

(node, ndid, ndip)

} hd path

}
in OnFlood {if node.type = Router then

dupecheck [ ]}

Figure 4: Duplicate IP check

This algorithm detects all instances of duplicate ad-
dresses per the above definition in a single execution.
Since the code visits all reachable nodes in the net-
work via every distinct routed path, every non-router
is checked against every neighboring router. Through
the use of OnFlood each thread of computation executes
independently of every other thread; the value of each
thread that detects a duplicate address is a tuple that
is produced at the originating node. Hence the value
of the overall computation will be zero or more tuples,
one per duplicate address detected.

Now suppose a network in which all routers have
support for the XPLANE but all non-routers do not.
Rather than visiting each non-router to gather informa-
tion, we instead use the packet capture facility to exam-
ine packets received at each router interface for possible
duplicate addresses. Captured packets are retrieved us-
ing pcap e1 where e1 is expected to be an interface at the
current node. It produces a set of records corresponding
to packets that were captured at that interface. Records
contain both the contents of each packet and metadata
such as time received or sent. Packet capture is man-
aged at each node and the details of storing records is
specific to the implementation. It is possible that no
packets were captured or that when pcap is evaluated
the records of interest have been overwritten. More de-
tails on our current and future packet capture design
are provided in Sections 4 and 5, respectively.

The new version of the application is given in Fig-
ure 5. It is presumed to begin at any router. If the
current node has not been visited already, the code
proceeds to check each interface using function ckifaces.
This function evaluates pcap at the interface, producing
the resulting packet records which are given as list ar-
gument plist to function ckpcap. Each packet is checked
for a source IP address (pkt.srcip) matching that of the

fun dupecheck(path) =

fun ckpcap(ifc, plist) =

if null plist then [ ]

else let pkt = hd plist in

if (pkt.srcip = node.ifc.ip) and

(pkt.srceth <> node.ifc.ethaddr)

then [node.ifc.ip]

else ckpcap ifc (tl plist)

in fun ckifaces(ilist) =

if null ilist then [ ]

else let iface = hd ilist in

(ckpcap iface (pcap iface))

++(ckifaces (tl ilist))

in let n = node in

if not member n path then

let d = ckifaces node.ifaces

in if null d then

OnFlood {dupecheck n::path}
else (n, d)

in dupecheck [ ]

Figure 5: Duplicate IP check using pcap

interface and a source Ethernet address (pkt.srceth) dif-
ferent than that of the interface. Upon encountering
any packet matching both criteria, ckpcap immediately
evaluates to a list containing the IP address of the in-
terface. If no such packets are found, the function pro-
duces the empty list. Function ckifaces concatenates
these lists ultimately producing a list of IP addresses,
one for each interface where a duplicate IP is detected.
If this list is nonempty, dupecheck evaluates to a tuple
containing the node identifier and the list, which is pro-
duced at the originating node by executing the contin-
uations. Otherwise, the code floods to all neighboring
routers and repeats the process.

Unlike the code in Figure 4, this version may not
detect all duplicate addresses in a single execution. A
thread that reaches a router reporting a duplicate will
not continue to flood to neighbors. This version demon-
strates how, while the XPLANE affords the most capa-
bility when all devices participate, useful observations
can still be made when only deployed in the infrastruc-
ture, say all routers. But what if the XPLANE is not
situated on all routers? Then the XPLANE would re-
quire an external mechanism to support discovery of
the plane and an alternative means for localization. It
would also be limited in its ability to diagnose problems
within that mechanism, just as operating within the
logical network would limit its ability to reason about
aspects of the network. Yet there would remain useful
applications even in such a limited deployment.

3.2 Resource delivery rate

5
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that no packets were captured or that when pcap is evaluated the records of interest have 

been overwritten. More details on our current and future packet capture design are 

provided in Sections IV and V, respectively. 

 

 
Figure 5. Duplicate IP check using pcap 

 

The new version of the application is given in Figure 5. It is presumed to begin at 

any router. If the current node has not been visited already, the code proceeds to check 

each interface using function ckifaces. This function evaluates pcap at the interface, 

producing the resulting packet records which are given as list argument plist to function 

ckpcap. Each packet is checked for a source IP address (pkt.srcip) matching that of the 

interface and a source Ethernet address (pkt.srceth) different than that of the interface. 

Upon encountering any packet matching both criteria, ckpcap immediately evaluates to a 

list containing the IP address of the interface. If no such packets are found, the function 

produces the empty list. Function ckifaces concatenates these lists ultimately producing a 

list of IP addresses, one for each interface where a duplicate IP is detected. If this list is 

nonempty, dupecheck evaluates to a tuple containing the node identifier and the list, 

fun dupecheck(path) =

if not member node path then

let path = node::path in

OnFlood {
if node.type = Router then

dupecheck path

else let ndid = node in

let ndip = node.ai.ip in

On {
if ndip = node.ai.ip then

(node, ndid, ndip)

} hd path

}
in OnFlood {if node.type = Router then

dupecheck [ ]}

Figure 4: Duplicate IP check

This algorithm detects all instances of duplicate ad-
dresses per the above definition in a single execution.
Since the code visits all reachable nodes in the net-
work via every distinct routed path, every non-router
is checked against every neighboring router. Through
the use of OnFlood each thread of computation executes
independently of every other thread; the value of each
thread that detects a duplicate address is a tuple that
is produced at the originating node. Hence the value
of the overall computation will be zero or more tuples,
one per duplicate address detected.

Now suppose a network in which all routers have
support for the XPLANE but all non-routers do not.
Rather than visiting each non-router to gather informa-
tion, we instead use the packet capture facility to exam-
ine packets received at each router interface for possible
duplicate addresses. Captured packets are retrieved us-
ing pcap e1 where e1 is expected to be an interface at the
current node. It produces a set of records corresponding
to packets that were captured at that interface. Records
contain both the contents of each packet and metadata
such as time received or sent. Packet capture is man-
aged at each node and the details of storing records is
specific to the implementation. It is possible that no
packets were captured or that when pcap is evaluated
the records of interest have been overwritten. More de-
tails on our current and future packet capture design
are provided in Sections 4 and 5, respectively.

The new version of the application is given in Fig-
ure 5. It is presumed to begin at any router. If the
current node has not been visited already, the code
proceeds to check each interface using function ckifaces.
This function evaluates pcap at the interface, producing
the resulting packet records which are given as list ar-
gument plist to function ckpcap. Each packet is checked
for a source IP address (pkt.srcip) matching that of the

fun dupecheck(path) =

fun ckpcap(ifc, plist) =

if null plist then [ ]

else let pkt = hd plist in

if (pkt.srcip = node.ifc.ip) and

(pkt.srceth <> node.ifc.ethaddr)

then [node.ifc.ip]

else ckpcap ifc (tl plist)

in fun ckifaces(ilist) =

if null ilist then [ ]

else let iface = hd ilist in

(ckpcap iface (pcap iface))

++(ckifaces (tl ilist))

in let n = node in

if not member n path then

let d = ckifaces node.ifaces

in if null d then

OnFlood {dupecheck n::path}
else (n, d)

in dupecheck [ ]

Figure 5: Duplicate IP check using pcap

interface and a source Ethernet address (pkt.srceth) dif-
ferent than that of the interface. Upon encountering
any packet matching both criteria, ckpcap immediately
evaluates to a list containing the IP address of the in-
terface. If no such packets are found, the function pro-
duces the empty list. Function ckifaces concatenates
these lists ultimately producing a list of IP addresses,
one for each interface where a duplicate IP is detected.
If this list is nonempty, dupecheck evaluates to a tuple
containing the node identifier and the list, which is pro-
duced at the originating node by executing the contin-
uations. Otherwise, the code floods to all neighboring
routers and repeats the process.

Unlike the code in Figure 4, this version may not
detect all duplicate addresses in a single execution. A
thread that reaches a router reporting a duplicate will
not continue to flood to neighbors. This version demon-
strates how, while the XPLANE affords the most capa-
bility when all devices participate, useful observations
can still be made when only deployed in the infrastruc-
ture, say all routers. But what if the XPLANE is not
situated on all routers? Then the XPLANE would re-
quire an external mechanism to support discovery of
the plane and an alternative means for localization. It
would also be limited in its ability to diagnose problems
within that mechanism, just as operating within the
logical network would limit its ability to reason about
aspects of the network. Yet there would remain useful
applications even in such a limited deployment.

3.2 Resource delivery rate
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which is produced at the originating node by executing the continuations. Otherwise, the 

code floods to all neighboring routers and repeats the process. 

Unlike the code in Figure 4, this version may not detect all duplicate addresses in 

a single execution. A thread that reaches a router reporting a duplicate will not continue 

to flood to neighbors. This version demonstrates how, while the XPLANE affords the 

most capability when all devices participate, useful observations can still be made when 

only deployed in the infrastructure, say all routers. But what if the XPLANE is not 

situated on all routers? Then the XPLANE would require an external mechanism to 

support discovery of the plane and an alternative means for localization. It would also be 

limited in its ability to diagnose problems within that mechanism, just as operating within 

the logical network would limit its ability to reason about aspects of the network. Yet 

there would remain useful applications even in such a limited deployment. 

 

B. RESOURCE DELIVERY RATE 
Now we turn our attention to a more complex application utilizing both send and 

pcap. The idea is to write an XPL application that provides unique content perspectives 

for clients on a network. Content is stored as files on servers and clients wish to 

download them using a simple UDP protocol. Clients have different means of connecting 

to the network with different media and bandwidths. They may also have different points 

of attachment. So each client’s path to a file may be different. The application must 

produce for a file, the expected data rate at which it can be delivered along all paths to a 

given client. The rate must be a function of path bandwidths, file size and packet size. 

The inspiration for our approach comes from [13, 14], in which the total delay for 

a transfer is divided into the delay for the first packet and the delay for all remaining 

packets, assuming every packet follows the last across each link, as in a pipeline. 

Recognizing the cumulative nature of network delays, we illustrate how to compute total 

delay incrementally using XPL by accruing link latency and router forwarding delay 

along a path. 

To measure link latency without requiring links be symmetric or clocks be 

synchronized, we measure inter-packet delay (IPD). IPD is defined to be the time from 

one packet to the next packet (first bit to first bit, or last bit to last bit for same-sized 
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packets) as observed at the receiving interface [17]. See Figure 6. Assuming little or no 

sending delay between successive packets, IPD represents precisely the time it takes to 

move one packet across a link, subsuming delays caused by serialization, link latency and 

media contention (overhead). It is straightforward to determine empirically by capturing 

packets at the receiver interface and calculating the difference between timestamps of 

successive packets. We are interested in the average IPD over a sample stream of packets 

of the same size sent from a node u to a node v in one hop which we denote ipdu,v.  

 

 
Figure 6. Measuring IPD 

 
Figure 7. Measuring RFD 

 

Router forwarding delay (RFD) is measured by capturing packets and subtracting 

the inbound timestamp from the outbound timestamp. See Figure 7. Packet capture must 

be possible at both the receiving and sending interfaces, and packets must be uniquely 

identifiable so their timestamps can be correlated. Ideally, packet timestamps must be 

made when the last bit is received and when the first bit is sent. We are interested in the 

average RFD over a sample stream of packets of the same size that transit a router u 

which we denote rfdu. We define first-packet delay df and remainder delay dr in terms of 

ipd and rfd. First-packet delay for a path of length k with k − 1 routers becomes 

 
Since each link in the path exhibits a different IPD, the total delay for the 

remainder of the packets must use the maximum delay across the path. This is analogous 

Figure 6: Measuring IPD

Now we turn our attention to a more complex ap-
plication utilizing both send and pcap. The idea is to
write an XPL application that provides unique content
perspectives for clients on a network. Content is stored
as files on servers and clients wish to download them
using a simple UDP protocol. Clients have different
means of connecting to the network with different media
and bandwidths. They may also have different points
of attachment. So each client’s path to a file may be
different. The application must produce for a file, the
expected data rate at which it can be delivered along
all paths to a given client. The rate must be a function
of path bandwidths, file size and packet size.

The inspiration for our approach comes from [13, 14],
in which the total delay for a transfer is divided into the
delay for the first packet and the delay for all remaining
packets, assuming every packet follows the last across
each link, as in a pipeline. Recognizing the cumulative
nature of network delays, we illustrate how to compute
total delay incrementally using XPL by accruing link
latency and router forwarding delay along a path.

To measure link latency without requiring links be
symmetric or clocks be synchronized, we measure inter-
packet delay (IPD). IPD is defined to be the time from
one packet to the next packet (first bit to first bit, or
last bit to last bit for same-sized packets) as observed
at the receiving interface [17]. See Figure 6. Assuming
little or no sending delay between successive packets,
IPD represents precisely the time it takes to move one
packet across a link, subsuming delays caused by serial-
ization, link latency and media contention (overhead).
It is straightforward to determine empirically by cap-
turing packets at the receiver interface and calculating
the difference between timestamps of successive pack-
ets. We are interested in the average IPD over a sample
stream of packets of the same size sent from a node u

Figure 7: Measuring RFD

to a node v in one hop which we denote ipdu,v.
Router forwarding delay (RFD) is measured by cap-

turing packets and subtracting the inbound timestamp
from the outbound timestamp. See Figure 7. Packet
capture must be possible at both the receiving and send-
ing interfaces, and packets must be uniquely identifiable
so their timestamps can be correlated. Ideally, packet
timestamps must be made when the last bit is received
and when the first bit is sent. We are interested in the
average RFD over a sample stream of packets of the
same size that transit a router u which we denote rfdu.

We define first-packet delay df and remainder delay
dr in terms of ipd and rfd . First-packet delay for a path
of length k with k − 1 routers becomes

df =
k�

i=1

ipd i,i+1 +
k�

i=2

rfd i

Since each link in the path exhibits a different IPD,
the total delay for the remainder of the packets must use
the maximum delay across the path. This is analogous
to calculating path capacity using the minimum link
capacity. So for file size b in bytes and packet size ps,
the remainder delay dr for the transfer is

dr = (
b

ps
− 1) ·max j∈1...k ipd j,j+1

Figure 8 depicts df and dr for three packets sent two
hops from A to B to C. The average IPD from B to C
dominates the transfer and therefore defines dr. Total
delay for the transfer becomes df + dr [14]. So the
overall file transfer rate r in bits per second is

r =
8 · b

df + dr

3.2.1 A localized path data rate algorithm in XPL

6
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to calculating path capacity using the minimum link capacity. So for file size b in bytes 

and packet size ps, the remainder delay dr for the transfer is 

 
Figure 8 depicts df and dr for three packets sent two hops from A to B to C. The 

average IPD from B to C dominates the transfer and therefore defines dr. Total delay for 

the transfer becomes df + dr [14]. So the overall file transfer rate r in bits per second is 

 
 

 
Figure 8. Total transfer delay for 3 packets across 2 hops 

 

1. A localized path data rate algorithm in XPL 
The algorithm is designed to compute a data rate for each physical path from a 

single server to every client on the network for a given resource size. Paths are uniquely 

identified by a sequence of router interface IP addresses ordered from client gateway to 

server. The server initiates a data rate measurement for each path in parallel that 

terminates at a client. Rates for a given resource are then returned to the server where 
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Now we turn our attention to a more complex ap-
plication utilizing both send and pcap. The idea is to
write an XPL application that provides unique content
perspectives for clients on a network. Content is stored
as files on servers and clients wish to download them
using a simple UDP protocol. Clients have different
means of connecting to the network with different media
and bandwidths. They may also have different points
of attachment. So each client’s path to a file may be
different. The application must produce for a file, the
expected data rate at which it can be delivered along
all paths to a given client. The rate must be a function
of path bandwidths, file size and packet size.

The inspiration for our approach comes from [13, 14],
in which the total delay for a transfer is divided into the
delay for the first packet and the delay for all remaining
packets, assuming every packet follows the last across
each link, as in a pipeline. Recognizing the cumulative
nature of network delays, we illustrate how to compute
total delay incrementally using XPL by accruing link
latency and router forwarding delay along a path.

To measure link latency without requiring links be
symmetric or clocks be synchronized, we measure inter-
packet delay (IPD). IPD is defined to be the time from
one packet to the next packet (first bit to first bit, or
last bit to last bit for same-sized packets) as observed
at the receiving interface [17]. See Figure 6. Assuming
little or no sending delay between successive packets,
IPD represents precisely the time it takes to move one
packet across a link, subsuming delays caused by serial-
ization, link latency and media contention (overhead).
It is straightforward to determine empirically by cap-
turing packets at the receiver interface and calculating
the difference between timestamps of successive pack-
ets. We are interested in the average IPD over a sample
stream of packets of the same size sent from a node u
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to a node v in one hop which we denote ipdu,v.
Router forwarding delay (RFD) is measured by cap-

turing packets and subtracting the inbound timestamp
from the outbound timestamp. See Figure 7. Packet
capture must be possible at both the receiving and send-
ing interfaces, and packets must be uniquely identifiable
so their timestamps can be correlated. Ideally, packet
timestamps must be made when the last bit is received
and when the first bit is sent. We are interested in the
average RFD over a sample stream of packets of the
same size that transit a router u which we denote rfdu.

We define first-packet delay df and remainder delay
dr in terms of ipd and rfd . First-packet delay for a path
of length k with k − 1 routers becomes
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Since each link in the path exhibits a different IPD,
the total delay for the remainder of the packets must use
the maximum delay across the path. This is analogous
to calculating path capacity using the minimum link
capacity. So for file size b in bytes and packet size ps,
the remainder delay dr for the transfer is

dr = (
b

ps
− 1) ·max j∈1...k ipd j,j+1

Figure 8 depicts df and dr for three packets sent two
hops from A to B to C. The average IPD from B to C
dominates the transfer and therefore defines dr. Total
delay for the transfer becomes df + dr [14]. So the
overall file transfer rate r in bits per second is

r =
8 · b

df + dr
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they are stored and may be subsequently discovered by clients using another XPL 

application that queries all servers for a specific resource identified by a uniform resource 

name. The discovery application constructs a path to the server which the server uses to 

look up the expected data rate for the given resource name. This application is similar to 

server discovery given in Figure 1. 

 

 
Figure 9. All-paths data rate algorithm in XPL 

 

Figure 8: Total transfer delay for 3 packets
across 2 hops

The algorithm is designed to compute a data rate for

each physical path from a single server to every client

on the network for a given resource size. Paths are

uniquely identified by a sequence of router interface IP

addresses ordered from client gateway to server. The

server initiates a data rate measurement for each path in

parallel which terminates at a client. Rates for a given

resource are then returned to the server where they are

stored and may be subsequently discovered by clients

using another XPL application that queries all servers

for a specific resource identified by a uniform resource

name. The discovery application constructs a path to

the server which the server uses to look up the expected

data rate for the given resource name. This application

is similar to server discovery given in Figure 1.

Figure 9 shows the code for path rate (prate), which
takes as arguments the packet size (rps) and packet

count (rpc) for the file, the latter being derived from the

size of the file and rps . One can envision a version of the

code that determines rps from the path MTU along the

way and calculates rpc at the client. These arguments

are used not only for the final data rate calculation but

also for local measurements; the rate for each path is

indeed customized to both the path and the file.

Any algorithm that involves sending probes should

limit probing to immediate neighbors if possible to min-

imize network traffic. Prate is designed never to need

to send probes to nodes more than two hops away. It

achieves this by moving the computation close to where

fun prate(pa, ip, rai, df, mi, rps, rpc) =

if not member node pa then

let pa = node::pa in

let aip = node.ai.ip in

let ipdip = On {
let iprb =

[EchoReply, rps, node.ai.ip, aip]

in fun s(c) =

if c > 0 then send node.ai iprb;

s (c − 1)

else let sip = node.ai.ip in

(On { P (pcap ai) (sip, aip)

} hd pa, sip)

in s 100 } hd (tl pa) in

let ip = (hd (tl ipdip))::ip in

let rfd = if null (tl (tl pa)) then 0

else let rprb = [EchoReply, rps,

aip, hd ip, hd (tl ip)]

in fun t(c) =

if c > 0 then send node.ai rprb;

t (c − 1)

else On {
R (pcap node.ai) (pcap rai)

(aip, hd (tl ip))

} hd (tl pa) in t 100 in

let df = df + (hd ipdip) + rfd in

let mi = max(i, mi) in

if node.type = Router then

let rai = node.ai in

OnFlood {prate pa ip rai df mi

rps rpc}
else let rate = (rps ∗ rpc ∗ 8)

/ (df + mi ∗ (rpc − 1))

in [pa, aip::ip, rate]

in let pa = [node] in

OnFlood {prate pa [ ] NIL 0 0 1450 724}

Figure 9: All-paths data rate algorithm in XPL
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Figure 9 shows the code for path rate (prate), which takes as arguments the 

resource packet size (rps) and packet count (rpc) for the file, the latter being derived from 

the size of the file and rps. One can envision a version of the code that determines rps 

from the path MTU along the way and calculates rpc at the client. These arguments are 

used not only for the final data rate calculation but also for local measurements; the rate 

for each path is indeed customized to both the path and the file. 

Any algorithm that involves sending probes should limit probing to immediate 

neighbors if possible to minimize network traffic. Prate is designed never to need to send 

probes to nodes more than two hops away. It achieves this by moving the computation 

close to where measurements are made. We refer to the location of the prate computation 

along the path as the “current” node; “previous” means closer to the server and “next” 

means closer to a client. Upon visiting a node, prate first checks whether it has visited 

this node already. If not, the node becomes the current node and prate prepends the 

node’s identifier to list pa and IP address of the interface on which it arrived in aip. Then 

all code within the first On is executed on the previous node in the path. What actually 

gets transmitted over the link to the previous node is more than just the code within On. It 

includes a continuation for prate that when executed by the previous node, sends prate 

and the state of its execution back to the current node telling it how to resume execution 

of prate there. 

While at the previous node, code within On performs an IPD measurement across 

the link by continuously sending 100 ICMP Echo Reply packets to the current node, 

since Echo Reply packets have the same header overhead as UDP packets and they do 

not elicit a response from the receiver. Each packet is sent using the send primitive. The 

primitive is an XPL construct of general form send e1 e2; e3 where e1 is expected to 

evaluate to an interface, e2 to a packet descriptor, and e3 to an arbitrary value. The value 

of send e1 e2; e3 is the value of e3. A packet descriptor is a list containing a packet type, 

payload size, source IP address, optional source-routed intermediate IP addresses, and the 

final destination IP address. For descriptor iprb the packet type is set to EchoReply and 

the payload size is set to rps so that measurements reflect actual resource packet sizes. 

The source address is that of the arrival interface node.ai.ip, and the final destination 

address is aip. The full sequence of packets is sent by evaluating expression  
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Its value is the value of recursive call s (c − 1), which is ultimately the value of 

the surrounding else clause. 

Upon sending all packets, the code records the IP address of the interface of the 

previous node that faces the current node. Next, the code constructs a list containing this 

IP address along with the computed IPD. Since IPD is computed from the receiving end, 

the code transfers again to the current node and looks for captured IPD packets. Captured 

packets are retrieved using pcap as described in Section III.A. Since pcap does not filter 

packet records we introduce function P to filter records of interest and extract necessary 

information. For brevity, we do not provide an XPL definition of P here; it filters records 

by source and destination address and calculates the average IPD from packet 

timestamps. Once computed, the code returns to the previous node via the continuation, 

assembles the list containing IPD and interface IP address, and returns to the current node 

to continue evaluation. 

The observant reader may wonder why IPD computation cannot simply occur 

outside the On that localized the code at the previous node. In order to correlate sent and 

captured packets, the capture must occur within the scope of the send; that is, within the 

expression following the semicolon. We also note that once code is transformed into tail 

form certain transfers can be optimized away during evaluation. The transfer back to the 

previous node after computing the IPD is one instance. 

Next, the average RFD is computed if the path constructed thus far has at least 

two nodes, that is, there is at least one intermediate router in the path. This entails a 

second transfer of prate’s execution state to the previous node to collect RFD probe 

results. Because we may want to measure RFD for a router other than the one specified in 

the routing table, packet descriptor rprb includes an intermediate address for the router, 

which comes from the first element of list ip. Once the probing duration elapses, a new 

packet record processing function R is evaluated at the router. Like P discussed above, R 

filters on source and destination addresses. However, it does so on packets captured at 

both the receiving interface and on the forwarding interface (rai). It then calculates the 

average difference between send and receive timestamps. While IPD is measured in the 

forward direction or toward the client, RFD is measured in the reverse direction. 

measurements are made. We refer to the location of
the prate computation along the path as the “current”
node; “previous” means closer to the server and “next”
means closer to a client. Upon visiting a node, prate
first checks whether it has visited this node already.
If not, the node becomes the current node and prate

prepends the node’s identifier to list pa and IP address
of the interface on which it arrived in aip. Then all code
within the first On is executed on the previous node in
the path. What actually gets transmitted over the link
to the previous node is more than just the code within
On. It includes a continuation for prate that when ex-
ecuted by the previous node, sends prate and the state
of its execution back to the current node telling it how
to resume execution of prate there.

While at the previous node, code within On performs
an IPD measurement across the link by continuously
sending 100 ICMP Echo Reply packets to the current
node, since Echo Reply packets have the same header
overhead as UDP packets and they do not elicit a re-
sponse from the receiver. Each packet is sent using
the send primitive. The primitive is an XPL construct
of general form send e1 e2; e3 where e1 is expected to
evaluate to an interface, e2 to a packet descriptor, and
e3 to an arbitrary value. The value of send e1 e2; e3 is
the value of e3. A packet descriptor is a list containing
a packet type, payload size, source IP address, optional
source-routed intermediate IP addresses, and the final
destination IP address. For descriptor iprb the packet
type is set to EchoReply and the payload size is set to
rps so that measurements reflect actual resource packet
sizes. The source address is that of the arrival interface
node.ai.ip, and the final destination address is aip. The
full sequence of packets is sent by evaluating expression

send node.ai iprb; s (c − 1)

Its value is the value of recursive call s (c− 1), which
is ultimately the value of the surrounding else clause.

Upon sending all packets, the code records the IP
address of the interface of the previous node that faces
the current node. Next, the code constructs a list con-
taining this IP address along with the computed IPD.
Since IPD is computed from the receiving end, the code
transfers again to the current node and looks for cap-
tured IPD packets. Captured packets are retrieved us-
ing pcap as described in Section 3.1. Since pcap does not
filter packet records we introduce function P to filter
records of interest and extract necessary information.
For brevity, we do not provide an XPL definition of P
here; it filters records by source and destination address
and calculates the average IPD from packet timestamps.
Once computed, the code returns to the previous node
via the continuation, assembles the list containing IPD
and interface IP address, and returns to the current
node to continue evaluation.

The observant reader may wonder why IPD computa-
tion cannot simply occur outside the On that localized
the code at the previous node. In order to correlate sent
and captured packets, the capture must occur within
the scope of the send; that is, within the expression fol-
lowing the semicolon. We also note that once code is
transformed into tail form certain transfers can be opti-
mized away during evaluation. The transfer back to the
previous node after computing the IPD is one instance.

Next, the average RFD is computed if the path con-
structed thus far has at least two nodes, that is, there
is at least one intermediate router in the path. This
entails a second transfer of prate’s execution state to
the previous node to collect RFD probe results. Be-
cause we may want to measure RFD for a router other
than the one specified in the routing table, packet de-
scriptor rprb includes an intermediate address for the
router, which comes from the first element of list ip.
Once the probing duration elapses, a new packet record
processing function R is evaluated at the router. Like P
discussed above, R filters on source and destination ad-
dresses. However, it does so on packets captured at both
the receiving interface and on the forwarding interface
(rai). It then calculates the average difference between
send and receive timestamps. While IPD is measured in
the forward direction or toward the client, RFD is mea-
sured in the reverse direction. Assuming that RFD is
independent of input and output interfaces, this results
in fewer transfers of execution and thus is both more
efficient in terms of communication and more reliable
in the face of transient node failures.

Once the state of execution returns to the current
node, cumulative measurement variables are updated;
mi is the maximum path IPD in dr. Finally, if the cur-
rent node is a router then a new instance of prate is
flooded from its interfaces to all adjacent nodes; other-
wise, the final path data rate calculation is made and
returned in a list along with node identifiers and IP
addresses for the path taken.

Figure 11 shows a summary of the flow of prate and
its probes over a path with two intermediate routers,
omitting transfers back and forth between nodes during
measurement. Notice that each IPD and RFD measure-
ment is localized in the network, involving at most three
adjacent nodes. The data rate of a path is calculated
incrementally, requiring a small, constant set of values
to be maintained. Moreover, common path prefixes can
be measured once and used in multiple path calcula-
tions. Hence XPL is a natural fit for expressing this
measurement from a single server to multiple clients.
The OnFlood primitive enables us to take advantage of
common prefixes. It also allows us to explore alterna-
tive physical paths from server to client. Since prate

relies only on adjacent nodes for IPD measurement and
uses source routing for RFD measurement, the routing

8



 24 

Assuming that RFD is independent of input and output interfaces, this results in fewer 

transfers of execution and thus is both more efficient in terms of communication and 

more reliable in the face of transient node failures. 

Once the state of execution returns to the current node, cumulative measurement 

variables are updated; mi is the maximum path IPD in dr. Finally, if the current node is a 

router then a new instance of prate is flooded from its interfaces to all adjacent nodes; 

otherwise, the final path data rate calculation is made and returned in a list along with 

node identifiers and IP addresses for the path taken. 

 

 
Figure 10. Flow and probes of prate across 2 routers 

 

Figure 10 shows a summary of the flow of prate and its probes over a path with 

two intermediate routers, omitting transfers back and forth between nodes during 

measurement. Notice that each IPD and RFD measurement is localized in the network, 

involving at most three adjacent nodes. The data rate of a path is calculated 

incrementally, requiring a small, constant set of values to be maintained. Moreover, 

common path prefixes can be measured once and used in multiple path calculations. 

Hence XPL is a natural fit for expressing this measurement from a single server to 

multiple clients. The OnFlood primitive enables us to take advantage of common 

prefixes. It also allows us to explore alternative physical paths from server to client. Since 

prate relies only on adjacent nodes for IPD measurement and uses source routing for 
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RFD measurement, the routing configuration on nodes is unimportant. All routes to 

remote subnets can be omitted and prate still succeeds! 

 

C. TRAFFIC IMPACT OF PRATE ON NETWORK 
As with any active measurement approach, there is a cost to probing and querying 

a network. On a network such as the one depicted in Figure 10, prate causes the 

XPLANE to send a total of 27 packets containing computation (considering that some 

transfers are optimized away). Of these, 9 are considered overhead or “extra” since all 

XPLANE messages are broadcast, meaning an On message is still transmitted out all 

device interfaces. The XPLANE filters these messages by destination ID before they are 

interpreted. Another 5 of these are “return” messages resulting from the evaluation of 

continuations built up during execution. Table 2 breaks down the number of packets by 

type and link. 

 

 
Table 2. XPLANE messages and probe packets by link 

 

Messages vary in size depending upon the execution state carried inside, but for 

our implementation and this particular application, the average size Ethernet frame is 

roughly 1330 bytes. Thus the total traffic generated for XPLANE computation is about 

36 KB on this network. This assumes we pre-seed all nodes with functions P and R; 

under our current implementation of packet processing their expression requires an 

additional 650+ bytes of marshaled code. However, we anticipate achieving a dramatic 

reduction in marshaled code size; see Section V for further discussion. 

In addition, prate causes a total of 500 ICMP Echo Reply messages for IDP and 

RFD probes, resulting in 700 frames being emitted since RFD probes traverse two links. 

Assuming probes are sized to fit exactly within a single MTU, that constitutes just over 

1.5 MB of probes emitted to execute prate. This is a small fraction of the 

communications cost of Iperf with default settings, which consumed between 12 MB and 

Figure 11: Flow and probes of prate across 2
routers

Finally, we address the overhead associated with exe-
cuting the algorithm. As with any active measurement
approach, there is a cost to probing and querying a net-
work. We can quantify for the test network both the
XPLANE traffic and the probe traffic generated. The
prate code required a total of 25 XPLANE packets to be
sent just to conduct the query. However, as we discuss
in the next section, our implementation uses Ethernet
broadcasts to send all XPLANE messages; therefore a
total of 50 messages were put on the wire. Messages
vary in size depending upon the evaluation state car-
ried inside, but for our implementation and this par-
ticular execution, the average size Ethernet frame was
1331 bytes, counting preamble and CRC. The total wire
bytes needed for XPLANE messaging was just over 66.5
KB. In addition, prate required a total of 700 ICMP
Echo Reply messages for IDP and RFD probes, result-
ing in 1000 frames being emitted since RFD probes tra-
verse two links. Assuming probes are sized to fit exactly
within an MTU, that constitutes a little more than 1.5
MB of probes emitted for a grand total of approximately
1.6 MB consumed across all links to execute this code.
Table 4 breaks down the number of packets by type and
by link. We separate On and OnFlood messages from
the implicit return or “goback” messages.

This is a small fraction of the communications cost
of Iperf with default settings, which consumed between
12 - 112 MB per run, depending upon the rate param-
eter given. Part of this savings is provided by using an
incremental measurement approach. Since both paths
share the first link, the first IPD measurement is reused
for each path measurement. The probing cost can be
further reduced as well, by decreasing the number of
IPD and RFD probes and by modifying the algorithm

On Flood Return Extra IPD RFD
S-R1 2 2 1 2 100 100
R1-R2 3 2 2 4 100 200
R2-C 3 1 2 3 100 100
Total 8 5 5 9 300 400

Table 4: XPLANE messages and probe packets
by link

to eliminate redundant RFD measurements. Since the
measurement strategy is entirely specified by the XPL
code and not the XPLANE platform, the user has full
control to modify the algorithms behavior.

—
As with any active measurement approach, there is a

cost to probing and querying a network. On a network
such as the one depicted in Figure 11, prate causes the
XPLANE to send a total of 27 packets containing com-
putation (considering that some transfers are optimized
away). Of these, 9 are considered overhead or “extra”
since all XPLANE messages are broadcast, meaning an
On message is still transmitted out all device interfaces.
The XPLANE filters these messages by destination ID
before they are interpreted. Another 5 of these are “re-
turn” messages resulting from the evaluation of contin-
uations built up during execution. Table 4 breaks down
the number of packets by type and link.

Messages vary in size depending upon the execution
state carried inside, but for our implementation and
this particular application, the average size Ethernet
frame is roughly 1330 bytes. Thus the total traffic gen-
erated for XPLANE computation is about 36 KB on
this network. This assumes we pre-seed all nodes with
functions P and R; under our current implementation
of packet processing their expression requires an ad-
ditional 650+ bytes of marshaled code. However, we
anticipate achieving a dramatic reduction in marshaled
code size; see Section 5 for further discussion.

In addition, prate causes a total of 500 ICMP Echo
Reply messages for IDP and RFD probes, resulting in
700 frames being emitted since RFD probes traverse two
links. Assuming probes are sized to fit exactly within a
single MTU, that constitutes just over 1.5 MB of probes
emitted to execute prate. Observe that this algorithm
reduces necessary probe traffic by being incremental.
Wherever multiple paths spur off from an intermediate
node, IPD measurements for the common path prefix
are reused for each path. The choice to implement RFD
in reverse comes with an added traffic cost; a measure-
ment designer might choose either to implement RFD
in the forward direction (requiring additional XPLANE
messaging) or to omit RFD entirely if forwarding delays
are considered inconsequential since they only apply to
the first packet sent.
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112 MB per run, depending upon the rate parameter given. Part of this savings is 

provided by using an incremental measurement approach. Observe that this algorithm 

reduces necessary probe traffic by being incremental. Wherever multiple paths spur off 

from an intermediate node, IPD measurements for the common path prefix are reused for 

each path. The choice to implement RFD in reverse comes with an added traffic cost; a 

measurement designer might choose either to implement RFD in the forward direction 

(requiring additional XPLANE messaging) or to omit RFD entirely if forwarding delays 

are considered inconsequential since they only apply to the first packet sent. 

 

D. TESTING ENVIRONMENT AND RESULTS 
Details of our prototype implementation are provided in Section IV; here we 

discuss in some detail the execution of the code on a small bench-top test network and 

provide performance results comparing it to an off-the-shelf measurement tool. 

 

 
Figure 11. Test network 

 

The test network is depicted in Figure 11. It is comprised of four Linux machines 

connected directly to one another via wired Ethernet. All links are operating in full-

duplex; the link from Curly to Larry is operating at 10 Mbps while all others are 

operating at 100 Mbps. Machine processors range from 3 GHz in the server and client 

down to 433 MHz in the routers, though the prototype implementation has been run on 

233 MHz processors with acceptable performance. For all tests, prate was initiated from 
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Hardy and traversed two paths to Larry, one directly via Curly (path A) and the other via 

Curly and then Moe (path B). 

Our first test to validate the utility and performance of both the XPLANE and our 

algorithm was discovering all paths from server to client, approximating the expected 

data rate for each path. We chose Iperf as a benchmark for path data rate, since it 

determines data rate through actual data transfer vice incremental calculations. Because 

prate does not account for packet acknowledgement, we chose to operate in UDP mode. 

The sending rate was set to match the speed of the slowest link on each path (10 Mbps on 

path A and 100 Mbps on path B). As a side-note, when running Iperf with sending rates 

exceeding the speed of the path, we observed a decrease in reported data rates ranging 

between 0.1% and 2.3%; we suspect this is due to queuing at the sender. 

We first ran prate on the network, originating from Hardy. Then we ran Iperf on 

each path separately, adjust routes as necessary. Since prate relies only on adjacent nodes 

for IPD measurement and uses source routing for RFD measurement, the routing 

configuration on nodes was unimportant; in fact, all routes could be omitted and the 

algorithm would still succeed! 

 

 
Table 3. Iperf versus XPL prate, values in Mbps 

 

Table 3 shows the path data rate estimates for both Iperf and prate. We see that 

prate provides estimates within 1% of Iperf for both paths, and unlike Iperf there was no 

need to tune sending rate parameters for the prate code; the IPD and RFD measurements 

“sense” the rate of each link by virtue of sending at the links maximum rate. 

As pointed out above, prate enables customization of two resource parameters, 

packet size and number of packets. Due to the effects of pipelining across a path, data 

transfers consisting of many packets amortize the delay of transferring the first packet; 

likewise, the choice of packet size affects the efficiency of the pipeline and hence overall 

delay. An interesting property of this algorithm is that all measurements are made 

independently of the number of resource packets; hence with a single set of 

Figure 10: Test network

configuration on nodes is unimportant. All routes to
remote subnets can be omitted and prate still succeeds!

3.3 Testing environment and results
Details of our prototype implementation are provided

in Section 4; here we discuss in some detail the execu-
tion of the code on a small benchtop test network and
provide performance results comparing it to an off-the-
shelf measurement tool.

The test network is depicted in Figure 10. It is com-
prised of four Linux machines connected directly to one
another via wired Ethernet. All links are operating in
full-duplex; the link from Curly to Larry is operating
at 10 Mbps while all others are operating at 100 Mbps.
Machine processors range from 3 GHz in the server and
client down to 433 MHz in the routers, though the pro-
totype implementation has been run on 233 MHz pro-
cessors with acceptable performance. For all tests, prate
was initiated from Hardy and traversed two paths to
Larry, one directly via Curly (path A) and the other
via Curly and then Moe (path B).

Our first test to validate the utility and performance
of both the XPLANE and our algorithm was discover-
ing all paths from server to client, approximating the
expected data rate for each path. We chose Iperf as a
benchmark for path data rate, since it determines data
rate through actual data transfer vice incremental cal-
culations. Because prate does not account for packet
acknowledgement, we chose to operate in UDP mode.
The sending rate was set to match the speed of the
slowest link on each path (10 Mbps on path A and 100
Mbps on path B). As a side-note, when running Iperf
with sending rates exceeding the speed of the path, we
observed a decrease in reported data rates ranging be-
tween 0.1% to 2.3%; we suspect this is due to queueing
at the sender.

We first ran prate on the network, originating from
Hardy. Then we ran Iperf on each path separately,
adjust routes as necessary. Since prate relies only on

Path A Path B
Iperf 9.544 94.55
XPL prate 9.522 93.72

Table 2: Iperf versus XPL prate, values in Mbps

Bytes Packets Path A Path B
4096 3 9.07 50.16
16384 12 9.40 77.21
65536 45 9.48 89.23

262144 179 9.50 92.85
1048576 713 9.51 93.80

Table 3: Transfer size versus expected data rate,
in Mbps

adjacent nodes for IPD measurement and uses source
routing for RFD measurement, the routing configura-
tion on nodes was unimportant; in fact, all routes could
be omitted and the algorithm would still succeed!

Table 2 shows the path data rate estimates for both
Iperf and prate. We see that prate provides estimates
within 1% of Iperf for both paths, and unlike Iperf there
was no need to tune sending rate parameters for the
prate code; the IPD and RFD measurements “sense”
the rate of each link by virtue of sending at the links
maximum rate.

As pointed out above, prate enables customization
of two resource parameters, packet size and number of
packets. Due to the effects of pipelining across a path,
data transfers consisting of many packets amortize the
delay of transferring the first packet; likewise, the choice
of packet size affects the efficiency of the pipeline and
hence overall delay. An interesting property of this algo-
rithm is that all measurements are made independently
of the number of resource packets; hence with a single
set of measurements we can calculate the expected av-
erage data rate for a resource of any size, as long as
it uses constant-sized packets matching those used for
probing.

Given the amortizing behavior of larger transfers, re-
sources with a small packet count should appear to have
lower data rates than those with higher packet counts.
Therefore, we expect to see the data rate asymptotically
approach its maximum as rpc increases. Table 3 shows
this behavior for total transfer sizes ranging from 4 KB
up to 1 MB. All calculations are for the maximum size
payload that kept packets to within a single MTU; in
this case, 1472 payload bytes per simulated UDP packet
(the payload size was decreased in RFD measurement
to allow room for the IP source routing option). Note
that while the algorithm assumes the last packet is full-
sized, the presented calculations allow for a partial-sized
final packet.

3.4 Traffic impact of prate on network
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measurements we can calculate the expected average data rate for a resource of any size, 

as long as it uses constant-sized packets matching those used for probing. 
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IV. XPLANE IMPLEMENTATION 

We have developed a prototype implementation of the XPL interpreter by 

extending the TinyScheme interpreter [12]. This has also entailed building a custom link-

layer communications library on top of the Linux packet socket interface, and developing 

software on top of libpcap [19] to handle packet capture. The entire interpreter runs 

inside userspace on an unmodified Linux 2.6 series kernel; the compiled code is under 

300 KB. 

All XPL primitives are implemented as C functions inside the interpreter, except 

On and OnFlood which required the addition of new language syntax to control 

evaluation of the body. Implementing On and OnFlood involves marshaling code for 

transmission by the link-layer communications library. The first step in marshaling is to 

create a code closure. A snapshot of the running code is extracted from the interpreter 

including all bound variables. TinyScheme provides a mechanism for producing code 

closures, which uses the same internal representation as Scheme lists. The contents of the 

closure are then written in Scheme syntax to a C string. Though inefficient, every closure 

computed for prate fit inside one Ethernet frame! The pcap function added to 

TinyScheme performs a query against a separate process that runs continuously in the 

background, capturing packets into a database. Rather than storing a full capture of all 

packets, the process uses a BPF [9] filter to limit which packets it admits and selectively 

stores packet attributes according to the algorithms we intend to run on a network. The 

implementation of a general pcap facility is a subject of ongoing work. 

 

A. LINK-LAYER COMMUNICATION 
The XPLANE uses a custom link-layer communications library. This allows the 

XPLANE to operate outside of logical paths determined by higher-layer addressing, 

routing, packet filters, address translation, and so on. XPLANE packets are implemented 

as Ethernet frames with their own IEEE-assigned Ethertype. The library is built using the 

Linux packet sockets API so no kernel modification is needed. 

The XPLANE packet format is shown in Figure 12. Currently, only the Marker, 

Version, Packet Length, Receiver ID, and Checksum fields in the header are utilized. 
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Notice that no additional node attributes are included in the header; this reinforces the 

design decision that the code itself is responsible for accessing and carrying all network 

information, while the XPLANE only provides the means to move code from a node to 

its neighbors. Sender ID, Sequence Number, and Fragmentation are provided to support 

larger code sizes if necessary. A 160-bit message authentication field is also provided as 

a placeholder for future security extensions. 

 

 
Figure 12. XPLANE packet format 
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when On or OnFlood is executed. This has the advantage of not requiring an ARP-like 
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running code is extracted from the interpreter including
all bound variables. TinyScheme provides a mechanism
for producing code closures which uses the same inter-
nal representation as Scheme lists. The contents of the
closure are then written in Scheme syntax to a C string.
Though inefficient, every closure computed for prate fit
inside one Ethernet frame! The pcap function added to
TinyScheme performs a query against a separate pro-
cess which runs continuously in the background, cap-
turing packets into a database. Rather than storing a
full capture of all packets, the process uses a BPF [9]
filter to limit which packets it admits and selectively
stores packet attributes according to the algorithms we
intend to run on a network. The implementation of a
general pcap facility is a subject of ongoing work.

4.1 Link-layer communication

The XPLANE uses a custom link-layer communica-
tions library. This allows the XPLANE to operate out-
side of logical paths determined by higher-layer address-
ing, routing, packet filters, address translation, and so
on. XPLANE packets are implemented as Ethernet
frames with their own IEEE-assigned Ethertype. The
library is built using the Linux packet sockets API so
no kernel modification is needed.

The XPLANE packet format is shown in Figure 12.
Currently, only theMarker, Version, Packet Length, Re-
ceiver ID, and Checksum fields in the header are uti-
lized. Notice that no additional node attributes are
included in the header; this reinforces the design deci-
sion that the code itself is responsible for accessing and
carrying all network information, while the XPLANE
only provides the means to move code from a node to
its neighbors. Sender ID, Sequence Number, and Frag-

mentation are provided to support larger code sizes if
necessary. A 160-bit message authentication field is also
provided as a placeholder for future security extensions.

All XPLANE packets are sent as Ethernet broadcasts
out all device interfaces when On or OnFlood is exe-

Marker Version Packet Length
Sender ID Receiver ID

Sequence Number
Fragmentation Checksum

Authentication (20 bytes)

Marshaled Code
...

Figure 12: XPLANE packet format

cuted. This has the advantage of not requiring an ARP-
like facility but it can lead to unnecessary XPLANE
packet handling at nodes that would not occur if packets
were unicast. This cost should not be ignored as the in-
terpreter is running in userspace. An alternative would
be to implement an ARP-like service in the XPLANE
mapping neighbor node identifiers to (interface, MAC

address) pairs. Then On would produce unicast frames
except in very fluid topologies where broadcast would
be used instead.

4.2 CPS transformation

Before an application can be interpreted, it is trans-
formed into tail form using a continuation-passing style
(CPS) transformation [4, 16]. Traditionally tail form
has been exploited by functional programmers to ex-
ploit properly tail-recursive implementations. It allows
a constant-space, tail-recursive function to in fact ex-
ecute in constant space. The transformation provides
the same property here; however, it provides yet an-
other valuable property. It allows us to preserve the
synchronous semantics of On and OnFlood without re-
quiring an interpreter to wait for them.

For instance, consider XPL code for a variant of ARP:

fun whohas(a) = OnFlood {
if node.ai.ip = a then node.ai.ethaddr

}
in print whohas 10.0.0.1

It is not in tail form.
The contents of the OnFlood subexpression execute

at neighboring nodes; the final value of whohas 10.0.0.1
is the hardware address for the neighboring node with
IP address 10.0.0.1. Although this value must ulti-
mately reside at the requesting node where print is eval-
uated, there is no code given to send the address back
to the requester. We could write code by hand to send
it back as in

fun whohas(a) =

let m = node in OnFlood {
if node.ai.ip = a then

let ea = node.ai.ethaddr in
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valuable property. It allows us to preserve the synchronous semantics of On and OnFlood 

without requiring an interpreter to wait for them. 

For instance, consider XPL code for a variant of ARP: 
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terpreter is running in userspace. An alternative would
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mapping neighbor node identifiers to (interface, MAC
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be used instead.

4.2 CPS transformation

Before an application can be interpreted, it is trans-
formed into tail form using a continuation-passing style
(CPS) transformation [4, 16]. Traditionally tail form
has been exploited by functional programmers to ex-
ploit properly tail-recursive implementations. It allows
a constant-space, tail-recursive function to in fact ex-
ecute in constant space. The transformation provides
the same property here; however, it provides yet an-
other valuable property. It allows us to preserve the
synchronous semantics of On and OnFlood without re-
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The contents of the OnFlood subexpression execute

at neighboring nodes; the final value of whohas 10.0.0.1
is the hardware address for the neighboring node with
IP address 10.0.0.1. Although this value must ulti-
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fun whohas(a) =

let m = node in OnFlood {
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fun whohas(a) =

let m = node in OnFlood {
if node.ai.ip = a then

let ea = node.ai.ethaddr in

On {print ea} m

}
in whohas 10.0.0.1

The instance of On shifts printing of the discovered

hardware address back to the requester. In this case the

programmer must write code to explicitly send the ad-

dress back to the requesting node, as well as to compute

the requesting node and bind it to m. Taking this ap-

proach leads to tedious and error-prone code as shown

in Figure 2. The other way to proceed is to transform

the original ARP code into tail form automatically us-

ing continuations. This yields

fun whohas(a, k) =

let m = node in OnFlood {
if node.ai.ip = a then

(lambda v On {k v} m)

node.ai.ethaddr

}
in whohas 10.0.0.1 (lambda u print u)

where k is a continuation parameter and lambda de-

notes an anonymous function. The hardware address

is sent to the requester by applying the continuation

(lambda vOn {k v} m) to node.ai .ethaddr . This code is
synthesized automatically from the original version by

the CPS transformation, allowing algorithms to be ex-

pressed more concisely by the programmer while main-

taining the advantages of tail form code in execution.

As another example, applying the CPS transforma-

tion to the server discovery code in Figure 1 yields the

code in tail form in Figure 13.

To see how it works, suppose the code starts on node

A and gets flooded to node C via another flood from

intermediate router B. Then the sequence of continua-

tions formed on the way to C becomes

(lambda u u)

(lambda v On {
(lambda u u) v} A)

(lambda w On {
(lambda v On {

(lambda u u) v} A) w} B)

with the last continuation, which β reduces to

(lambda w On {On {w} A} B)

reaching node C where it’s applied to path [A,B,C].

fun f(path, k) =

if node.type = Server then

k (path++[node])

else let n = node in

if not member n path then

OnFlood {
f (path++[n])

(lambda v On {k v} n)

}
in f [ ] (lambda u u)

Figure 13: Server discovery in tail form

5. FUTURE WORK

A more efficient packet capture and processing capa-

bility needs to be designed and implemented for XPL.

Supplying a filter to pcap would help reduce the amount

of packets that must be captured. Filter specification

could leverage an existing language such as BPF [9] or

NetPFL [2]. However, the amount of captured data

could still be overwhelming. Hence we are exploring

partial evaluation techniques that can minimize or avoid

altogether the need to send packet captures between

nodes. Ideally, only conclusions drawn from captures

or some distillation of them would ever be transmitted.

The XPL interpreter is currently single threaded. In-

coming XPLANE packets are queued and processed se-

quentially. This implies any waiting the interpreter does

on behalf of an application prevents it from executing

other XPL code during this time. Although our expe-

rience so far has not revealed this to be an issue, more

testing is needed. Multi-threading may be necessary.

More work is also needed to improve communication

and interpreter performance. Currently the entire inter-

preter lives in userspace, so the timing of certain oper-

ations is subject to the multiprocessing behavior of the

underlying operating system. This can adversely im-

pact the quality of measurements that rely on attribute

node.time or successive sends. Communication cost can

be reduced by shrinking marshaled code size, which can

be done by partially evaluating continuations.

An area that has received little attention in XPL so

far is security. Security was a major consideration in

the active networks research. There is the threat of

runaway code wreaking havoc on network performance

and code that alters the behavior of devices in some ma-

licious way. Even though a router may not forward a

broadcast, the fact that XPL provides a flooding prim-

itive in the context of unbounded recursion still seems

like an invitation for trouble. Yet there are applications

where it is useful, especially discovery. While we recog-

nize that these security concerns constitute a technical

challenge on their own, any solution to them will be rel-

ative to a particular threat model. So we have chosen
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version by the CPS transformation, allowing algorithms to be expressed more concisely 

by the programmer while maintaining the advantages of tail form code in execution. 

As another example, applying the CPS transformation to the server discovery 

code in Figure 1 yields the code in tail form in Figure 13. 
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V. FUTURE WORK 

A more efficient packet capture and processing capability needs to be designed 

and implemented for XPL. Supplying a filter to pcap would help reduce the amount of 

packets that must be captured. Filter specification could leverage an existing language 

such as BPF [9] or NetPFL [2]. However, the amount of captured data could still be 

overwhelming. Hence we are exploring partial evaluation techniques that can minimize 

or avoid altogether the need to send packet captures between nodes. Ideally, only 

conclusions drawn from captures or some distillation of them would ever be transmitted. 

The XPL interpreter is currently single threaded. Incoming XPLANE packets are 

queued and processed sequentially. This implies any waiting the interpreter does on 

behalf of an application prevents it from executing other XPL code during this time. 

Although our experience so far has not revealed this to be an issue, more testing is 

needed. Multi-threading may be necessary. 

More work is also needed to improve communication and interpreter 

performance. Currently the entire interpreter lives in userspace, so the timing of certain 

operations is subject to the multiprocessing behavior of the underlying operating system. 

This can adversely impact the quality of measurements that rely on attribute node.time or 

successive send’s. Communication cost can be reduced by shrinking marshaled code size, 

which can be done by partially evaluating continuations. 

An area that has received little attention in XPL so far is security. Security was a 

major consideration in the active networks research. There is the threat of runaway code 

wreaking havoc on network performance and code that alters the behavior of devices in 

some malicious way. Even though a router may not forward a broadcast, the fact that 

XPL provides a flooding primitive in the context of unbounded recursion still seems like 

an invitation for trouble. Yet there are applications where it is useful, especially 

discovery. While we recognize that these security concerns constitute a technical 

challenge on their own, any solution to them will be relative to a particular threat model. 

So we have chosen instead to focus primarily on the functionality of XPL that if not done 

properly would limit its utility long before security concerns would. Transmitted code 

frames do have a header that currently includes room for a 160-bit authentication code if 
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desired. We imagine using it and perhaps the resource-bound technique of PLAN [5] to 

address security concerns when the need arises. 
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VI. RELATED WORK 

There has been extensive research in the design of information planes for 

networks. See [8, 18, 20] for examples. While this work shares some of our goals, it is 

focused on aggregating data about network state from a predefined set of measurements 

already situated at observer nodes, limiting users to observe only what information the 

devices expose. These approaches also presume a reliable and known network upon 

which their information bus operates. Although they may tolerate temporary network 

faults and infer network properties from measurements made at reachable portions of the 

network, none can execute measurements at remote nodes in the face of misconfiguration 

or operate without a priori knowledge of the network topology. 

Significant work has also been done in programming open networks from higher-

level specifications describing desired behavior or properties [3, 6, 10, 11] and encoding 

protocols as programs to be executed within the network [1, 15]. This work is primarily 

aimed at defining network behavior top-down rather than observing it in order to enhance 

network awareness. 

The closest work to ours is PLAN (Programming Language for Active Networks), 

which provides a programmatic interface that can be used both to construct new 

measurements as well as to recreate protocols such as datagram delivery [5, 7]. XPL’s 

support for localization was inspired by PLAN. PLAN however lacks the semantics and 

features that we believe are essential in a language targeted for network measurement. It 

does not provide a flood primitive, relies on service routines at devices to provide data for 

applications rather than an intrinsic observation capability, and imposes an asynchronous 

distributed computing model on programmers that makes coding measurement and 

diagnostic applications more burdensome than it needs to be in many practical cases. 
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VII. CONCLUSION 

The XPLANE is a new platform where one can execute tailored measurements on 

ad hoc networks, with minimal impact on, and support from, the network. We present the 

design of both the platform and a new language, called XPL, in which one can express a 

wide variety of measurement and diagnostic applications. We also discuss our prototype 

implementation and provide a number of example applications. Performance analysis of 

the implementation is actively underway. 

Our design reflects a specific set of operating assumptions about the network. The 

incorporation of a flood primitive reflects the assumption that the network topology may 

not be known at a node at the time when code is executed, for example. There are 

tradeoffs between efficiency in communication and the level of support required from the 

network. We are continuing to evolve the language to provide support for efficiently and 

successfully executing applications in different kinds of ad hoc networks. 
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