

Calhoun: The NPS Institutional Archive DSpace Repository

Some stochastic-duel models of combat

Choe, Jum Soo
https://hdl.handle.net/10945/19992

Copyright is reserved by the copyright owner.

Downloaded from NPS Archive: Calhoun

appointed -- and published -- scholarly author.

NAVAL POSTGRADUATE SCHOOL Monterey, California

THESIS

SOME STOCHASTIC-DUEL MODELS OF COMBAT by

Jum Soo Choe

March 1983

Approved for public release; distribution unlimited

$$
T 207839
$$

REPORT DOCUMENTATION PAGE	READ INSTRUCTMNS 3EFORE COMPL，ETYNJ FORM
T．Wepont Mumith ${ }^{\text {a }}$［2．OOVT ACCESSIOM NO．	3 RECIPIENT：S CATALOC NUMER
Some Stochastic－Duel Models of Combat	Master＇s Thes is March 1983
	a．merforaing org arporymineza
7．Autmonion Jum Soo Choe	7．COntmact on chant humation
Naval Postgraduate School Monterey，California 93940	
11．Contmollino office name ano adoness	12．aepont oate March 1983
Naval Postgraduate School Monterey，California 93940	$\begin{aligned} & 13 \text { NUMAER OF DAGES } \\ & 43 \end{aligned}$
	15．secunity CLASS．（ot init mpart） UNCLASSIFIED
	TS．OEELASSIFICATIOMTOCWİGADOING

16．DISTRICUTIOM STATEMENT（OI Ahto ROPORI）
Approved for public release；distribution unlimited

17．DISTMIBUTION STATEMENT（OI the ebatroel miored in Block 20，If dlllormit mom Report）

10．SUPPLEMENTAMY NOTES

19．KEY MODOS（Conilnue on reveree alde II neceeeary and idently by bock number）
Stochastic－duel

This paper provides the conceptual foundation for stochastic－duels and then develops a modest extension to more realistic combat situations．Simple Stochastic models for the fundamental duel and the classical duel are reviewed． A modest extension is developed for the theory of multiple duels：when all firing times are continuous random variables，an expression for the probability of winning such a duel is derived by using the theory of continuous－time Markov chains．
电

Approved for public release; distribution unlimited

Some Stochastic-Duel Models of Combat
by
Juin Soo Choe
Lieutenant Colone?, Republic of Korea Army B.S., Republic of Korea Nilitary Academy, 1968

Submitted in partia? fulfil ment of the requirements for the degree of

MASTER OF SCIEMCE IN IJPERATIONS RESEARCH

From the
NAVAL POSTGRADUATE SCHOOL
March 1983

Theas.
1.448223

61

ABSTRACT

This paper provides the conceptual foundation for stochastic-duels and then develops a modest extension to more realistic combat situations. Simple stochastic models for the fundamental duel and the classical duel are reviewed. A modest extension is developed for the theory of multiple duels: when all firing times are continuous random variables, an expression for the probability of winning such a duel is derived by using the theory of continuous-time Markov chains.
I. INTRODUCTION 6
II. SOME BASIC STOCHASTIC-DUEL MODELS 8
A. The Fundamental Duel 8
B. The Classical Duel 14
III. AN EXTENSION TO MULTIPLE FIRES 16
A. DISCRETE FIRING TIME 16

1. Development of Results for Fundamental Duel Model 16
2. Development of Results for Multiple Duels Model 18
B. CONTINUOUS FIRING TIME 23
IV. NUMERICAL EXAMPLES 30
A. THE FUNDAMENTAL DUEL 30
B. THE CLASSICAL DUEL 32
C. AN EXTENSION TO MULTIPLE DUEL 34
V. SUGGESTED FUTURE WORK 39
VI. FINAL REMARKS 41
LIST OF REFERENCES 42
INITIAL DISTRIBUTION LIST 43

LIST OF FIGURES

1 The Situations of Duel 19
2 Combat Situations 24
3 The State of Duel 25
4 The Relationsnip of p_{A} and p_{B} when $r_{A}=r_{B}$ 31
5 The Relationship of p_{A} and p_{B} when $r_{A}=2 r_{B}$ 31
6 The Relationship of $r_{A} p_{A}$ and $r_{B} p_{B}$ 32
7 The Relationship of p_{A} and p_{B} When $a=b$ 34
8 The Relationship Between p_{A} and p_{B} When $a=2 b$ 35
9 The Relationsnio Between ρ_{A} and p_{B} When $a=\frac{1}{2} b$ 36

I. INTRODUCTION

In the nineteenth century, Von Clausewitz [Ref. 5] remarked that "war is nothing but a duel on a large scale." Subsequently, in the twentieth century, the theory of stochastic-duels was developed by C. J. Ancker [Refs. 2, 3, and 4] and others to mathematically look at such duels in order to have a mathematical basis for studying modern combat. Thus, the theory of stochastic duels considers combat at a microscopic level (individual fires opposing each other), whereas at the other extreme the Lanchester theory of warfare considers it at a macroscopic level (large groups of homogeneous fires opposing each other). This thesis will review the conceptual foundation of the theory of stochastic duels (in particular, one-on-one duels) and then develop a modest extension to more realistic combat situation (namely, two-on-one duels).

Additionally, the author hopes that his exposition about this material concerning one-on-one duels makes the concept more accessible to the professional military officers. Thus this expository material strives to be simple (but yet complete) and self-contained (and hence full details will be supplied to the reader). It also sets the stage for the extension to multiple fires (i.e., the two-on-one duel).

Let us now consider the nature of the theory of stochastic duels in more detail. It is concerned with the microscopic features of combat such as kill probabilities of individual rounds, times between rounds fired, ammunition limitations, etc. In the theory of stochastic duels, two duellists (usually denoted as A and B) fire at each other until one
or the other has been killed. The times between the firing of successive rounds by each dueilist are frequeritly taken to be random variables, pairwise independent. The simplest case is that in which there is a single duellist on each side (i.e., one-on-one duel).

There are two basic cases for stochastic duels that have been distinguished in the literature: 1) the funamental duel, and 2) the classical duel. In the fundamental duel, the two duellists have unlimited ammunition and each starts with an unloaded weapon. Specific solutions have been derived for a general firing-time distribution and also for exponentially-distributed firing times. Later in this thesis we will give a simple development of the exponertial firing time results. In the classical duel, each duellist starts with a oaded weapon, they fire simultaneously at the beginning of the due: and then they proceed as in the fundamental duel. When the firing tim! is discrete, the solution for the stochastic duel has bean derived by using a special technique [Ref. 3]. When tha firing time is continuous, the solution for the stochastic duel is derived by using the theory of continuoustime Markov chains. In Chapter IV, a mume rical example is considered and corresponding parametric results are graphically presented.

II. SOME BASIC STOCHASTIC-DUEL MODELS

In this chapter we will consider some simple (but yet basis) sto-chastic-duel models for: 1) the fundamental duel, and 2) the classical duel. In the fundamental duel, the duellists each start with an unloaded weapon, load their weapons, and then fire at each other until one of them is finally killed. In the classical duel, they both start with loaded weapons, fire their first rounds simultaneously, and then proceed as in the fundamental duel. In this chapter, specific solutions are derived for both the fundamental duel and also the classical duel for the special case of exponential firing times (which is of fundamental importance for understanding future enhancements).

A. THE FUNDAMENTAL DUEL

In the fundamental duel, two duellists, A and B, start with unloaded weapons and then fire at each other until one is killed. A's firing time (the time between rounds) is a random variable with a known probability density, $f_{A}(t)$. B's firing time is similarly characterized by the density, $f_{B}(t)$. Successive firing times are selected from $f_{A}(t)$ and $f_{B}(t)$, independently and at random. Each time A fires, he has a fixed probability P_{A} of killing B. We will denote the probability that B is not killed as q_{A}, and hence $p_{A}+q_{A}=1$. Similarly denoted as p_{B}, with its complement being similarly defined (i.e., $p_{B}+a_{B}=1$). After the starting signal, each contestant loads his weapon, aims, and then fires his first round. In other words, in the fundamental duel the duellists
start with unloaded weapons. Both (A and B) have unlimitec supp!es of ammunition that, among other things, makes a kill by one of them an uitimate certainty. A wins if he is the one to first score a kil. The probability of this will be denoted as $P(A)$, and $p(A)+p(B)=1$, wher. $p(B)$ denotes the probability that B wins.

1. Development of Results for Fundamental-Duel Model

In this section we develop an expression for the probability that Combatant A wins a "fundamental duel" against Combatant B, denoted as $p(A)$, in the case in which the firing times are exponentially distributed. Our final results for $p(A)$ is given by equation (15) below.

In order to develop an expression for the probability that A wins the duel, we consider the combatants to be decoupled, i.e., each combatant fires at a passive target (one that does not return fire). Let: $k_{A}(t)$ denote the probability density for the time for A to kill his passive target and $K_{A}(t)$ denote the corresponding cumulative distribur tion function, i.e.,

$$
K_{A}(t)=\int_{0}^{t} K_{A}(s) d s
$$

We similarly define $K_{B}(t)$ and $K_{B}(t)$, i.e.

$$
K_{B}(t)=\int_{0}^{t} K_{B}(s) d s
$$

Then in order for A to win the duel he must kill his target before B kills B's target. In other words

$$
\begin{equation*}
\operatorname{P(A)}=\operatorname{Prob}\left[T_{A}<T_{B}\right] \tag{1}
\end{equation*}
$$

Where T_{A} denotes the time [the random variable corresponding to $k_{A}(t)$] and similarly for T_{B} [Ref. 6].

$$
\begin{equation*}
p(A)=\int_{0}^{t}\left\{1-K_{A}(s)\right\} d K_{B}(s) \tag{2}
\end{equation*}
$$

or

$$
\begin{equation*}
p(A)=\int_{0}^{t}\left\{1-k_{A}(s)\right\} d k_{B}(s) d s \tag{2}
\end{equation*}
$$

The above expression holds in general, but we still must develop expression $k_{A}(t)$ and $k_{B}(t)$ based on our model. In other words, if we assume that, for example, we know the distribstions of firing times and know the corresponding single-shot kill probabilities, we must combine these into a time-to-kill distribution.

Thus, we assume that A's firing time (i.e., the times between rounds) are exponentially and iuentically distributed, with common probability density as $f_{A}(t)$. Thus

$$
f_{A}(t)=r_{A} e^{-r_{A} t}
$$

where r_{A} denotes the firing rate of A. If we assume that the probability that A kills his target with any one round is consistant for all rounds and denote this probability as p_{A}, then

$$
\operatorname{Prob}\left[\begin{array}{c}
\text { nth round kills } \tag{3}\\
\text { target }
\end{array}\right]=p_{A} a_{A}^{n-1}
$$

where $q_{A}=1-p_{A}$. Thus,
$\operatorname{Prob}\left[\begin{array}{l}\text { A takes time between } t \\ \text { and } t+\Delta t \text { to kill target }\end{array}\right]=\sum_{n=1}^{\infty} \operatorname{Prob}\left[\begin{array}{l}n t h \text { rounds } \\ \text { kills target }\end{array}\right]$

$$
\text { - Prob [A fires nth rounds } \left.\begin{array}{l}
\text { between } t \text { and } t+\Delta t
\end{array}\right]
$$

now
$\operatorname{Prob}\left[\begin{array}{l}A \text { fires nth rounds } \\ \text { between } t \text { and } t+\Delta t\end{array}\right]=\operatorname{Prob}\left[\begin{array}{c}A \text { has fired } \\ (n-1) \text { rounds by } t\end{array}\right]$

- Prob [A fires one more $\left.\begin{array}{l}\text { round from } t \text { to } t+\Delta t\end{array}\right]$
then

Prob [A fires nth rounds $\left.\begin{array}{l}\text { between } t \text { and } t+\Delta t\end{array}\right]=\frac{\left(r_{A} t\right)^{n-1}}{(n-1)!} e^{-r_{A} t} \cdot r_{A} \Delta t$
or

$$
\operatorname{Prob}\left[\begin{array}{l}
\text { A fires nth rounds } \tag{6}\\
\text { between } t \text { and } t+\Delta t
\end{array}\right]=\frac{r_{A}{ }^{n} t^{n-1}}{(n-1)!} e^{-r_{A} t} \Delta t
$$

Since [Ref. 1]
$\operatorname{Prob}\left[\begin{array}{l}A \text { has fired } \\ (n-1) \text { rounds by } t\end{array}\right]=\frac{\left(r_{A} t\right)^{n-1}}{(n-1)_{j}} e^{-r_{A} t}$
and

$$
\operatorname{Prob}\left[\begin{array}{l}
\text { A fires one round } \tag{8}\\
\text { between } t \text { and } t+\Delta t
\end{array}\right]=r_{A} \Delta t
$$

Substituting (3) and (6) into (4), we obtain
$\operatorname{Prob}\left[\begin{array}{l}A \text { takes time between } \\ t \text { and } t+\Delta t \text { to kill target }\end{array}\right]=\sum_{n-1}^{\infty} p_{A} q_{A}^{n-1} \cdot \frac{r_{A}^{n} t^{n-1}}{(n-1)_{i}} e^{-r_{A} t_{\Delta t}}$

$$
\begin{equation*}
=r_{A} p_{A} e^{-r_{A} t} \cdot \Delta t \sum_{n=1}^{\infty} \frac{\left(q_{A} r_{A} \cdot t\right)^{n-1}}{(n-1)_{!}} \tag{9}
\end{equation*}
$$

or
$\operatorname{Prob}\left[\begin{array}{l}A \text { takes time between } t \\ \text { and } t+\Delta t \text { to kill target }\end{array}\right]=p_{A} r_{A} e^{-P_{A} r_{A} t}$

Thus

$$
\begin{equation*}
k_{A}(t)=p_{A} r_{A} e^{-p_{A} r_{A} \cdot t} \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
K_{A}(t)=e^{-p_{A} r_{A} \cdot t} \tag{12}
\end{equation*}
$$

Similarly,

$$
\begin{equation*}
k_{B}(t)=p_{B} r_{B} e^{-p_{B} r_{B} \cdot t} \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
h_{B}(t)=e^{-p_{B} r_{B} \cdot t} \tag{14}
\end{equation*}
$$

Substituting (12) and (13) nto (2), we find that

$$
\begin{equation*}
P(A)=\frac{p_{A} r_{A}}{p_{A} r_{A}+p_{B} r_{B}} \tag{15}
\end{equation*}
$$

which is our fina? result.
B. THE CLASSICAL DUEL

In contrast to the fundamental duel, two duellists, A and B, start with loaded weapons, fire their first rounds simultaneously, and then proceed as in the fundamental duel. In order to develop an expression for the probability that A wins a "classical duel" against Contestant B, denoted as $P(A)$, in the case in which the firing time are exponentially distributed. The final solution $p(A)$ is given by equation (21) below.
$\operatorname{Prob}[A$ wins $]=\left[\begin{array}{l}A \text { kills } B \text { on } \\ \text { the list round }\end{array}\right] \cdot\left[\begin{array}{l}B \text { does not kill } A \\ \text { on the lst round }\end{array}\right]$
$+\operatorname{Prob}\left[\begin{array}{l}\text { Neither is killed } \\ \text { on the lst round }\end{array}\right] \cdot \operatorname{Prob}\left[\begin{array}{l}\text { A wins the } \\ \text { subsequent duel }\end{array}\right]$
now

$$
\begin{align*}
& \operatorname{Prob}\left[\begin{array}{l}
A \text { kills } B \text { on } \\
\text { the lst round }
\end{array}\right]=p_{A} \tag{17}\\
& \operatorname{Prob}\left[\begin{array}{l}
B \text { does not kill } A \\
\text { on the lst round }
\end{array}\right]=q_{B} \tag{18}\\
& \operatorname{Prob}\left[\begin{array}{l}
\text { Neither is killed } \\
\text { on the lst round }
\end{array}\right]=q_{A} \cdot q_{B} \tag{19}
\end{align*}
$$

$\operatorname{Prob}\left[\begin{array}{l}A \text { wins the } \\ \text { subsequent due } 1\end{array}\right]=P(A)_{f}=\frac{P_{A} r_{A}}{P_{A} r_{A}+P_{B} r_{B}}$
where $P(A)_{f}$: the result of the fundamental due? substituting (10), (18), (19), and (20) into (16), we find

$$
\begin{equation*}
P(A)=\frac{p_{A} q_{B}\left(p_{B} r_{B}+r_{A}\right)}{p_{A} r_{A}+p_{B} r_{B}} \tag{21}
\end{equation*}
$$

which is our final result. But in the classical duel, the following case will happen, i.e., Contestant A and Contest.ant B will be killed on the first round. Therefore

$$
P(A)+P(B) \neq 1
$$

thus

$$
P(A)+P(B)+P(A B)=1
$$

where $p(A B)$: the probability that both are kilied on the first round.

$$
\begin{equation*}
P(A B)=1-P(A)-P(P)=P_{A, P} B \tag{22}
\end{equation*}
$$

III. AN EXTENSION TO MULTIPLE FIRES

A. DISCRETE FJRING TIME

In a discrete firing time, two duellists, A and B, start with unlimited ammuni:ion, fire at each other with fixed kill probabilities p_{A} of killing B. Similarly denoted as p_{B} of killing A. They start with unloaded weapons and fire at fixed intervals a and b respectively. This is similar to a situation in which each duellist is armed with an automatic weapon.

1. Develoument of Results for Fundamental-Duel Model

Ir: order to develop an expression for the probability that A wins the fundamental-duel, we will assume that a and b (fixed firing intervai) are rational numbers if a and b can be reduced to α / β where α and β are relatively prime integers. And we define

$$
\begin{equation*}
\frac{\alpha}{3}=n \ldots r \quad \alpha=n \beta+r \tag{23}
\end{equation*}
$$

where π is an integer and r is the remainder.
The $y o t a l$ probability of A 's total success on the jth rounds [Ref. 3], i.e.
$P\left[\begin{array}{l}A^{\prime} \text { s total success } \\ \text { on the } j \text { th round }\end{array}\right]=\sum_{j=1}^{j=\infty} P\left[\begin{array}{l}\text { first } j-1 \text { th } \\ \text { round fail }\end{array}\right] \cdot P\left[\begin{array}{l}\text { Kill on the } \\ j \text { th rounds }\end{array}\right]$

$$
\cdot P\left[\begin{array}{l}
B \text { is falling on } \tag{24}\\
\text { his first } K \text { round }
\end{array}\right]
$$

where

$$
k=j \frac{\alpha}{\beta} .
$$

then

$$
P\left[\begin{array}{l}
A^{\prime} \text { s total success } \tag{25}\\
\text { on the } j \text { th round }
\end{array}\right]=\sum_{j=1}^{\infty}\left(q_{A}\right)^{j-1}\left(p_{A}\right)\left(a_{B}\right)^{k}
$$

or
$P\left[\begin{array}{l}A^{\prime} s \text { total success } \\ \text { on the } j \text { th round }\end{array}\right]=p_{A} a_{B}{ }^{n} \sum_{j=0}^{\infty} q_{A}{ }^{j} q_{B}{ }^{j n+\left[(j+1)\left(\frac{r}{\beta}\right)\right]}$
let

$$
(j+1)\left(\frac{r}{\beta}\right)=\left[x_{j}\right]
$$

where $\left[x_{j}\right]$: largest integer equal to or less than the number x_{j}

Assume

$$
\begin{equation*}
\left[x_{j}+k \beta\right]=\left[x_{j}+k_{r}\right]=\left[x_{j}\right]+k_{y} \tag{27}
\end{equation*}
$$

thus,

$$
P\left[\begin{array}{l}
A^{\prime} s \text { total success } \\
\text { on the } j \text { th round }
\end{array}\right]=\left\{\frac{p_{A} a_{B}{ }^{n}}{1-a_{A}^{\beta} a_{B}{ }^{\alpha}}\right\} \sum_{j=1}^{\beta=1} a_{A}{ }^{j} a_{B}^{j n+\left[x_{j}\right]}
$$

$$
\begin{align*}
& =\left\{\frac{p_{A}}{\left(1-q_{A}{ }^{\beta} q_{B}{ }^{\alpha}\right)}\right\} \sum_{j=0}^{\beta-1} a_{A}^{j} q_{B}\left[(j+1)\left(\frac{\alpha}{\beta}\right)\right] \\
& =\left\{\frac{p_{A} q_{B}{ }^{n}}{\left(1-q_{A}{ }^{\beta} q_{B}{ }^{\alpha}\right)}\right\} 1+q_{A} a_{B}^{n+\left[x_{I}\right]}+q_{A}{ }^{2} q_{B}{ }^{2 n+\left[x_{2}\right]}+a_{A}{ }^{\beta-1} a_{B}^{\alpha-n} \\
& =\left\{\frac{p_{A}}{\left(1-q_{A}{ }^{\beta} q_{B}{ }^{\alpha}\right)}\right\} a_{B}^{\left[\frac{\alpha}{\beta}\right]}+a_{A} q_{B}{ }^{\left[2 \frac{\alpha}{\beta}\right]}+\ldots+q_{A}^{\beta-1} \cdot q_{B}^{\alpha} \quad \text { [Ref. 3] } \tag{28}
\end{align*}
$$

where $n=\left[\frac{\alpha}{\beta}\right], \quad r=\alpha-n \beta$, and $\left.l x_{j}\right]=\left[(j+1) \frac{r}{\beta}\right]$

Similarly
$P\left[\begin{array}{l}B^{\prime} \text { s total success } \\ \text { on the fth round }\end{array}\right]=\left\{\frac{p_{B}}{\left(1-a_{A_{A}} \beta_{B}{ }^{\alpha}\right)}\right\} \sum_{K=0}^{(r-1} a_{B}{ }^{K} \cdot a_{A}{ }^{\left[(K+1)_{\alpha}^{\beta_{\alpha}}\right]}$.
which is our final results for the fundamental duel as the equation (28).
2. Development of Results for Muitiple-Duels Model

In this section we develop an expression for the probability that Contestant A wins "multiple-duels" against Contestant B. In this duel, there are two contestants on the A^{\prime} s side and one contestant on the B side as shown in Figure 1.

Figure 1. The Situations of Duel

Each time $A\left(A_{1}, . A_{2}\right)$ fires, A has a fixed probability p_{A} of killing B. We will denote the probability that B is not killed as q_{A}, and hence $P_{A}+q_{A}=1$. Similarly denoted as P_{B}, with its complement being similarly defined (i.e., $p_{B}+q_{B}=1$). Both (A and B) have unlimited ammunitions. If the B contestant kills an $A_{1}\left(o r A_{2}\right)$ he immediately shifts his fire to the remaining A. In this situation, the probability that the side "A" can win is the following:

$$
P\left[\begin{array}{l}
\text { The side } \\
\text { "A" wins }
\end{array}\right]=\left[\begin{array}{l}
\text { "A" side kills } B \text { and } \\
\text { both } A_{1} \text { and } A_{2} \text { survive }
\end{array}\right]
$$

$+\left[\begin{array}{l}\text { "A" side kills } B \text { and one "A" }\left(A_{1} \text { or } A_{2}\right) \\ \text { are to be killed and only one } A \text { survivor }\end{array}\right]$
thus
$P\left[\begin{array}{l}\text { Both } A_{1} \text { and } \\ A_{2} \text { survive }\end{array}\right]=P\left\{A_{1}\right.$ or A_{2} or both kill B\} $P\{B$ fails to kill\}
$=\sum_{j=1}^{\infty} p\{$ on $j-1$ rounds no kills $\} \cdot p\left\{A_{1}\right.$ or A_{2} or both kill B on jth round $\}$

- $p\{B$ fail to fth round $\}$
$=\sum_{j=1}^{\infty}\left(q_{A}^{2} \cdot q_{B}\right)^{j-1} \cdot\left(1-q_{A}^{2}\right) \cdot a_{B}=\frac{q_{B}\left(1-q_{A}^{2}\right)}{\left(1-q_{A}^{2} \cdot q_{B}\right)}$
and
$P\left[\right.$ one $A\left(A_{1}\right.$ or $\left.A_{2}\right)$ survive $]=\sum_{j=1}^{\infty} p$ (no kill on $j-1$ round)
- $\left\{p\right.$ (B kill A_{1} or A_{2} and A fail to $\left.B\right) P_{f}(A)$
$+p(B$ kill one A and A kill $B)\}$
thus

$$
P\left[\begin{array}{l}
\text { one } A\left(A_{1}\right. \text { or } \\
\left.A_{2}\right) \text { survive }
\end{array}\right]=\sum_{j=1}^{\infty}\left(a_{A}^{2} \cdot q_{B}\right)^{j-1} \cdot p_{B} \cdot a_{A}^{2} p_{f}(A)
$$

$$
+\sum_{j=1}^{\infty}\left(q_{A}^{2} \cdot q_{B}\right)^{j-1} \cdot p_{B}\left(1-q_{A}^{2}\right)
$$

where $P_{f}(A)$ is the results of a fundamental duel in which $a=b$ (fixed firing time).

Thus,

$$
\begin{equation*}
P_{f}(A)=\frac{P_{A} q_{B}}{\left(1-q_{A} \cdot q_{B}\right)} \quad[\text { from the equation (28) }] \tag{32}
\end{equation*}
$$

Substituting equation (32) into equation (31), we find that:

$$
P\left[\begin{array}{l}
\text { The side } \\
\text { "A" wins }
\end{array}\right]=\rho\left[\begin{array}{l}
B c t h A_{1} \text { and } \\
A_{2} \text { survive }
\end{array}\right]+P\left[\begin{array}{l}
\text { One } A\left(A_{1}\right. \text { or } \\
\left.A_{2}\right) \text { survive }
\end{array}\right]
$$

$$
\begin{equation*}
=\frac{p_{A}\left(1+q_{A} p_{B}-q_{A}^{2} \cdot q_{B}^{2}\right)}{\left(1-q_{A} q_{B}\right)\left(1-q_{A}^{2} \cdot q_{B}\right)} \tag{32}
\end{equation*}
$$

Similarly,

$$
P\left[\begin{array}{l}
\text { The side } \tag{33}\\
\text { "B" wins }
\end{array}\right]=\sum_{j=1}^{\infty}\left(q_{A}^{2} \cdot q_{B}\right)^{j-1} \cdot p_{B} \cdot q_{A}^{2} \cdot p_{f}(B)
$$

where $P_{f}(B)$ is the results of the fundamental-duel in which $a=b$.

Therefore,

$$
P\left[\begin{array}{l}
\text { The side } \tag{34}\\
" B " \text { win }
\end{array}\right]=\frac{p_{B}^{2} \cdot q_{A}^{3}}{\left(1-q_{A} q_{B}\right)\left(1-q_{A}{ }^{2} \cdot q_{B}\right)}
$$

Let us denote $P(A B)$ the probability of draw.

Then,

$$
\begin{align*}
& P(A B)= \sum_{j=1}^{\infty} p(\text { no kills on } j-1 \text { round }) \cdot p(B \text { kill one } A) \\
& \cdot p\left(A \text { does not kill B) } \cdot p\binom{\text { one } A \text { and } B \text { have }}{\text { duel of draw }}\right. \tag{35}\\
&=\sum_{j=1}^{\infty}\left(a_{A}^{2} \cdot a_{B}\right)^{j-1} \cdot\left(P_{B}\right) \cdot\left(a_{A}^{2}\right) \cdot p_{f}(A B)
\end{align*}
$$

where $P_{f}(A B)$ is the result of the fundamental due!s with $a=b$.

$$
\begin{equation*}
P_{f}(A B)=\frac{p_{A} p_{B} q_{A}^{\beta-1} q_{B}^{\alpha-1}}{1-q_{A}^{\beta} q_{B}^{\alpha}} \tag{36}
\end{equation*}
$$

But when $a=b, \quad \quad P_{f}(A B)=\frac{p_{A} p_{B}}{1-q_{A} q_{B}}$

Substituting equation (37) into equation (35)

$$
\begin{equation*}
P(A B)=\frac{p_{A} q_{A}^{2} p_{B}^{2}}{\left(1-q_{A} q_{B}\right)\left(1-q_{A}^{2} \cdot q_{B}\right)} \tag{38}
\end{equation*}
$$

which is our final solution as the equation (32) and equation (34).
B. CONTINUOUS FIRING TIME

In this duel, two duellists, A and B, start with urloaded weapons and then fire at random. But 5 's sides has two weapon systems and A's sides has only one weapon system. A's firing time is a random variable with a known probability density, $f_{A}(t)$. B's firing time is similarly characterized by the density, $f_{B}(t)$. Successive firing times are selected from each density independently. We will denote r the time between round fired (i.e., r_{A} for A system and r_{B} for B systems) and the
firing interval between rounds is independent. Both systems has unlimited ammsition and fire each other with fixed kill probability P_{A} for A system and D_{B} for B system as shown in Figure 2.

$$
\star \lambda_{A}=r_{A} P_{A}
$$

$$
x_{2}(t), p_{B}, \lambda_{B}
$$

$$
\star \lambda_{B}=r_{B} p_{B}
$$

Figure 2. Combat Situations

If we assume that $y(t)$ and $x(t)$ are the state of each weapon system at time t, then

$$
y(t)=\left\{\begin{array}{l}
1: \text { A contestant was not killed } \\
0: \text { A contestant killed }
\end{array}\right.
$$

and

$$
\begin{aligned}
& x_{1}(t) \\
& \text { or } \\
& x_{2}(t)
\end{aligned}=\left\{\begin{array}{l}
1: B\left(B_{1} \text { or } B_{2}\right) \text { contestant was not killed } \\
0: B\left(B_{1} \text { or } B_{2}\right) \text { killed. }
\end{array}\right.
$$

Let us consider the state of duel in Figure 3.

Figure 3. The State of Duel
where points (A), (B), and (C) are the point of B's winning and only point (E) is the point of A^{\prime} s winning. During the Δt, the transition rates are the following:
(1) P [y hit x_{2}, x_{1} miss y and x_{2} miss $\left.y\right]$

$$
\begin{aligned}
& =\left(\frac{1}{2} \lambda_{A} \Delta t\right) \cdot\left(1-\lambda_{B} \Delta t\right) \cdot\left(1-\lambda_{B} \Delta t\right) \\
& =\frac{1}{2} \lambda_{A} \Delta t-\lambda_{B} \Delta t^{2}+\frac{1}{2} \lambda_{A} \cdot \lambda_{B}{ }^{2} \Delta t^{3} \\
& =\frac{1}{2} \lambda_{A} \cdot \Delta t
\end{aligned}
$$

therefore

$$
\text { Transition rate } \alpha_{1}=\frac{\frac{1}{2 i t} A \cdot \Delta t}{\Delta t}=\frac{1}{2} \lambda_{A}
$$

(2) $P\left[y\right.$ hit x_{1}, x_{2} miss y and x_{1} miss $\left.y\right]=\frac{1}{2} \lambda_{A} \cdot \Delta \tau$

$$
\text { Similarly, Transition rate } \quad c_{2}=\frac{1}{2} \lambda_{A} \text {. }
$$

(3) $P\left[x_{1}\right.$ hit y, x_{2} miss y and y miss $\left.x_{1}\right]=\left(\lambda_{B} \Delta t\right)\left(1-\lambda_{B} \Delta t\right)\left(1-\lambda_{A} \Delta t\right)$

$$
\begin{aligned}
& =\lambda_{B} \Delta t \\
\text { Transition rate } \quad \alpha_{3} & =\lambda_{B}
\end{aligned}
$$

(4) $P\left[x_{2}\right.$ hit y, x_{1} miss y and y miss $\left.x_{2}\right]=\lambda_{B} \Delta t$

$$
\text { Transition rate } \quad \alpha_{4}=\lambda_{B}
$$

(5) $P\left[x_{2}\right.$ hit y, and y wis $\left.x_{2}\right]=\left(\lambda_{B} \Delta t\right) \cdot\left(1-\lambda_{A} \Delta t\right)$

$$
\text { Transition rate } \quad \alpha_{5}=\lambda_{B}
$$

(6) $P\left[y\right.$ hit x_{2} and x_{2} miss $\left.y\right]=\left({ }_{2}^{1} \lambda_{A} \Delta t\right)\left(1-\lambda_{B} \Delta t\right)$

Transition rate $\alpha_{G}=\frac{1}{2} \lambda_{A}$
(7) $P\left[y\right.$ hit x_{1} and x_{1} miss $\left.y\right]=\left({ }^{1} / \lambda_{A} \Delta t\right)\left(1-\lambda_{B} \Delta t\right)$

$$
\text { Transition rate } \quad \alpha_{7}=\frac{1}{2} \lambda_{\mathrm{A}}
$$

(8) $P\left[x_{1}\right.$ hit y and y miss $\left.x_{1}\right]=\left(\lambda_{B} \Delta t\right)\left(1-\lambda_{A} \Gamma t\right)$

$$
\text { Transition rate } \quad \alpha_{8}=\lambda_{B}
$$

If we assume that $\mathrm{Pi}(i=1,2, \ldots . .8$) are the transition proability, $P(A)$ and $P(B)$ are the following:

$$
\begin{equation*}
P(A)=P_{2} \cdot P_{6}+P_{1} P_{7} \tag{39}
\end{equation*}
$$

and

$$
\begin{equation*}
P(B)=P_{3}+P_{2} \cdot P_{5}+P_{1} \cdot P_{8} \tag{40}
\end{equation*}
$$

Where

$$
\begin{aligned}
& P_{1}=\frac{\alpha_{1}}{\left(\alpha_{1}+\alpha_{2}+\alpha_{3}+\alpha_{4}\right)}=\frac{\frac{1}{2} \lambda_{A}}{\frac{1}{2} \lambda_{A}+\frac{1}{2} \lambda_{A}+\lambda_{B}+\lambda_{B}} \\
& P_{2}=\frac{\alpha_{2}}{\left(\alpha_{1}+\alpha_{2}+\alpha_{3}+\alpha_{4}\right)}=\frac{\frac{1}{2} \lambda_{A}}{\frac{1}{2} \lambda_{A}+\frac{1}{2} \lambda_{A}+\lambda_{B}+\lambda_{B}} \\
& P_{2}=\frac{\alpha_{3}+\alpha_{4}}{\left(\alpha_{1}+\alpha_{2}+\alpha_{3}+\alpha_{4}\right)}=\frac{\lambda_{A}+\lambda_{B}}{\frac{1}{2} \lambda_{A}+\frac{1}{2} \lambda_{A}+\lambda_{B}+\lambda_{B}}
\end{aligned}
$$

therefore

$$
\begin{gathered}
P_{1}+P_{2}+P_{3}=1 \\
P_{5}=\frac{\alpha_{5}}{\left(\alpha_{5}+\alpha_{6}\right)}=\frac{\lambda_{B}}{\lambda_{B}+\frac{1}{2} \lambda_{A}} \\
P_{6}=\frac{\alpha_{5}}{\left(\alpha_{5}+\alpha_{6}\right)}=\frac{\frac{1}{2} \lambda_{A}}{\lambda_{B}+\frac{1}{2} \lambda_{A}} \\
P_{7}=\frac{\alpha_{7}}{\left(\alpha_{7}+\alpha_{8}\right)}=\frac{\frac{1}{2} \lambda_{A}}{\frac{1}{2} \lambda_{A}+\lambda_{B}} \\
P_{8}=\frac{\alpha_{8}}{\left(\alpha_{7}+\alpha_{8}\right)}=\frac{\lambda_{B}}{\frac{1}{2} \lambda_{A}+\lambda_{B}}
\end{gathered}
$$

therefore
$P(A)=P_{2} \cdot P_{6}+P_{1} \cdot P_{7}=\left(\frac{\frac{1}{2} \lambda_{A}}{\lambda_{A}+2 \lambda_{B}}\right)\left(\frac{\frac{1}{2} \lambda_{A}}{\lambda_{B}{ }^{+\frac{1}{2} \lambda_{A}}}\right)+\left(\frac{\frac{1}{2} \lambda_{A}}{\lambda_{A}+2 \lambda_{B}}\right)\left(\frac{\frac{1}{2} \lambda_{A}}{\frac{1}{2} \lambda_{A}+\lambda_{B}}\right)$

Similarly

$$
\begin{aligned}
P(B) & =P_{3}+P_{2} \cdot P_{5}+P_{1} \cdot F_{8}=1-P(A) \\
& =\left(\frac{2 \lambda_{B}}{\lambda_{A}+2 \lambda_{B}}\right)+\left(\frac{\frac{1}{2} \lambda_{A}}{\lambda_{A}+2 \lambda_{B}}\right)\left(\frac{\lambda_{B}}{\lambda_{B}+\frac{1}{2} \lambda_{A}}\right)+\left(\frac{\frac{1}{2} \lambda_{A}}{\lambda_{A}+2 \lambda_{B}}\right)\left(\frac{\lambda_{B}}{\frac{1}{2} \lambda_{A}+\lambda_{B}}\right)
\end{aligned}
$$

Which is the final resuit.s as the equation (41).

IV. NUMERICAL EXAMPLE

A. THE FUNDAMENTAL DUEL

Two duellists, A and B, start with unloaded weapons and then fire at each other until one is killed. A's firing time (the time between rounds $=r_{A}$) is 5 rounds per minute. B^{\prime} s firing time (r_{B}) is also 5 rounds per minute. Each time A fires, he has a fixed probability $P_{A}=0.6$ of killing B. We will denote the probability that B is not killed as $q_{A}=0.4$, and hence $p_{A}+p_{B}=1$. Similarly denoted as $p_{B}=$ 0.6, with its complement being similarly defined (i.e., $p_{B}+q_{B}=1$). From the above data, the probability that A^{\prime} s system will win is the following:

$$
\begin{aligned}
P(A) & =\frac{p_{A} r_{A}}{p_{A} r_{A}+p_{B} r_{B}} \\
& =\frac{0.6 \times 5}{0.6 \times 5+0.6 \times 5} \\
& =0.5
\end{aligned}
$$

But A's winning chances can be enhanced as his rate of fire and/or kill probability $\left(p_{A}\right)$ increases. From the equation (15),

$$
\begin{equation*}
r_{B} p_{B}=r_{A} p_{A}\left[\frac{1}{P(A)}-1\right] \tag{43}
\end{equation*}
$$

The following graphs represent the various cases.

CASE 1: $\quad r_{A}=r_{B}$

Figure 4. The Relationship of P_{A} and p_{B} When $r_{A}=r_{B}$

CASE 2: $\quad r_{A}=2 r_{B}$

Figure 5. The Relationship of p_{A} and p_{B} When $r_{A}=2 r_{B}$

If $\hat{A}^{\prime} s$ rite of fire $\left(r_{A}\right)$ is increased $\left(r_{A}=2 r_{B}\right)$, the contour are rotated count clockwise around the origin.

CASE 3: $\quad r_{B}{ }_{B}=r_{A}{ }_{A}\left[\frac{1}{P(A)}-1\right]$

Figure 6. The Relationship of $r_{A} p_{A}$ and $r_{B} p_{B}$

From Figure \quad,,A^{\prime} s winning chances $(p(A))$ are enhanced as his rate of fire ($r_{R_{i}}$) and/or kill probability (p_{A}) increases.

B. THE CLASSICAL DUEL

In the classical duel, two duellists, A and B, start with loaded weapons, fire their first rounds simultaneously, and then proceed as in the fundamental duel. Each time A fires, he has a fixed probability $p_{A}=0.6$ of killing B. Similarly denoted as $p_{B}=0.6$ of killing A. A's firing time is 5 rounds per minutes and B^{\prime} s firing time is also 5 rounds per minute.

Therefore, $P(A)$ can be expressed: $P(A)=p_{A} q_{B}+q_{A} q_{B}\left(P_{f}(A)\right)$ by the equation (16) where $P_{f}(A)$ is the result of the fundamental duei. By the equation (21),

$$
\begin{aligned}
P(A) & =\frac{p_{A} q_{B}\left(p_{B} r_{B}+r_{A}\right)}{p_{A} r_{A}+p_{B} r_{B}} \\
& =\frac{0.6 \times 0.4(0.6 \times 5+5)}{0.6 \times 5+0.6 \times 5} \\
& =0.32
\end{aligned}
$$

Similarly,

$$
P(B)=0.32
$$

and the probability that both are killed on the first round:

$$
\begin{aligned}
P(A B) & =1-P(A)-P(B) \text { or } P(A B)=p_{A} p_{B} \\
& =0.36
\end{aligned}
$$

where $P(A B)$ is the probability that both are killed in the first round.
C. AN EXTENSION TO MULTIPLE FIRES

First, we will consider fundamental duel case when firing time is discrete. In a discrete firing time, two duellists, A and B, start with unlimited ammunition, fire at each other with fixed kill probabilities $p_{A}=0.6$ of killing B. Similarly denoted as $p_{B}=0.6$ of killing A. They start with unloaded weapons and fire at fixed interval a and b respectively. Let's consider a various case of \bar{c}. and b.

1. $\mathrm{a}=\mathrm{b}=1$

From the equation (23) $\quad \frac{\alpha}{\beta}=1, n=1, r=0$
therefore,
$P\left[\begin{array}{c}A^{\prime} \text { 's total success } \\ \text { on the } j \text { th round }\end{array}\right]=\left\{\frac{p_{A} q_{B}^{n}}{1-q_{A}^{\beta} q_{B}^{\alpha}}\right\} \sum_{j=0}^{\beta-1} q_{A}{ }^{j} q_{B} j n+\left[x_{j}\right]$

Figure 7. The Relationship Between p_{A} and p_{B} When $a=b$
2. $a=10, b=5$

From the equation (23)

$$
\frac{\alpha}{\beta}=2, n=2, r=0
$$

similarly,

$$
P\left[\begin{array}{l}
\text { A's total success } \\
\text { on the jth round }
\end{array}\right]=0.1
$$

Figure 8. The Relationship Between p_{A} and p_{B} When $a=2 b$
3. $a=5, b=5$

Similarly,
$P\left[\begin{array}{l}A^{\prime} \text { s total success } \\ \text { on the } j \text { th rounds }\end{array}\right]=0.743$

Figure 9. The Relationship Between p_{A} and p_{B} When $a=$ 故

Secondly, we will consider multiple-duel when firing time is discrete. In this duel, there are two combatants on the A 's side and one combatant on the $B^{\prime} s$ side as in Figure 1. $A\left(A_{1}, A_{2}\right)$ has a fixed probability $p_{A}=0.6$ of killing B. Similarly denoted is $p_{B}=0.6$ of killing A. From the mentioned data, we can get the probability that A's system will win. From the equations (32 and (33),

$$
\begin{aligned}
P[\text { The side "A" win }] & =\frac{p_{A}\left(1+q_{A} p_{B}-q_{A}{ }^{2} q_{B}{ }^{2}\right)}{\left(1-q_{A} q_{B}\right)\left(1-q_{A}{ }^{2} q_{B}\right)} \\
& =0.93
\end{aligned}
$$

and

$$
\begin{aligned}
P[\text { The side "B" wins }] & =\frac{p_{B}^{2} q_{A}^{3}}{\left(L-q_{A} q_{B}\right)\left(1-q_{A}^{2} q_{B}\right)} \\
& =0.026
\end{aligned}
$$

Similarly, from the equation (38)

$$
P\left[\begin{array}{l}
\text { Draw of both } \\
\text { sides }(A B)
\end{array}\right]=0.044
$$

therefore

$$
P(A)+P(B)+P(A B)=1 .
$$

Finally we will consider multiple-duel when firing time is continuous. A's firing time is a random variable with a known probability density, $f_{A}(t)$. The time between rounds fired is random variable having exponential distribution with $r_{A}=5$ round per minute for "A", $r_{B}=5$ rounds per minute for " B ". The kill probability of " A " sides is $p_{A}=0.6$, and $p_{B}=0.6$. Therefore, from equations (41) and (42) we can get $P(A)$ and $P(B)$:

$$
P(A)=P_{2} \cdot P_{6}+P_{1} \cdot P_{7}
$$

$$
\begin{aligned}
& =\frac{\left(\frac{1}{2} \lambda_{A}\right)\left(\frac{1}{2} \lambda_{A}\right)}{\left(\lambda_{A}+2 \lambda_{B}\right) \cdot\left(\lambda_{B}+\frac{1}{2} \lambda_{A}\right)}+\frac{\left(\frac{1}{2} \lambda_{A}\right)\left(\frac{1}{2} \lambda_{A}\right)}{\left(\lambda_{A}+2 \lambda_{B}\right)\left(\frac{1}{2} \lambda_{A}+\lambda_{B}\right)} \\
& =0.11
\end{aligned}
$$

and similarly,

$$
\begin{aligned}
P(B) & =P_{3}+P_{2} \cdot P_{5}+P_{1} \cdot P_{8} \\
& =\frac{2 \lambda_{B}}{\lambda_{A}+2 \lambda_{B}}+\left(\frac{\frac{1}{2} \lambda_{A}}{\lambda_{A}+2 \lambda_{B}}\right)\left(\frac{\lambda_{B}}{\lambda_{B}+\frac{2}{2} \lambda_{A}}\right)+\left(\frac{\frac{1}{2} \lambda_{A}}{\lambda_{A}+2 \lambda_{B}}\right)\left(\frac{\lambda_{B}}{\frac{1}{2} \lambda_{A}+\lambda_{B}}\right) \\
& =0.89
\end{aligned}
$$

where

$$
\lambda_{A}=r_{A} p_{A} \quad \text { and } \quad \lambda_{B}=r_{B} p_{B}
$$

Models investigated in this paper include simple stachastic models and a multiple duel model using the theory of continuous-tine Markov chains. The standard case was unlimited time, unlimited ammunition, and a fixed kill probability. Models in which both time and ammunition are limited would be desirable. Numerous extensions and modifications of the fundamental-duel can be further studied as follows [R@f. 4]:

CASE 1: One-Versus-One

(1) Variable Kill Probability $-\rho_{A}$ and ρ_{B} are special functiors of time and round dependent kill probability.
(2) Duel with initial suprise - random initial suprise
(3) Fixed ammunition supply, etc.

CASE 2: Two-Versus-Two

(1) Several multiple:

$$
\left\{\begin{array}{ll}
A & \longleftrightarrow B \\
A \longrightarrow & \longleftrightarrow B
\end{array}\right\} \quad \text { and } \quad\left\{\begin{array}{ll}
A \rightarrow & \leftarrow B \\
A \rightarrow & \longleftrightarrow B
\end{array}\right\}
$$

where A and B are contestants.
(2) Round dependent kill probability, connection with Lanchester's models.

However, these suggested models with more than two contestants may be limited to sirmple situations because the uncoupling principle which is used to solve the fundamental-duel is no longer applicable. Consequently, we must consider each event as it occurs, as well as all the pessible interactions and conditional events that may occur subsequentiy.

VI. FINAL REMARKS

Simple stochastic models for the fundamental-duel and the classicalduel have been reviewed and analyzed by the graphical methods. For the extension to multiple-duels two situations have been considered: l) discrete firing times, and 2) continuous firing times. When the firing time is discrete, we are able to examine some duels in which strong interactions occur by limiting our consideration to those situations in which the time between rounds is constant. When the firing time is continuous random variables, an expression for the probability of winning such a duel is derived by using the theory of continuous-time Markov chains. Numerical examples for each model are presented. Still there is much work left to be done in the future.

1. Ross, Sheldon M., Introduction to Probability Model, pp. 168, 1982.
2. Ancker, C. J. and Williams, Trevor, "Stochastic: Duel", Opns. Res. II, pp. 803-817, 1963.
3. Ancker, C. J., Williams, Trevor, "Some Discrete Processes in the Theory of Stochastic Due1", Opns. Res. 13, pp. 202-216, 1965.
4. Ancker, C. J., "The Status of Development in the Theory of Stochastic Duel - II', Opns. Res. 15, pp. 3£9-405, 1967.
5. Clausewitz, Karl Von, On War Barnes ard Notile, New York, 1965.
6. Taylor, James G., Lanchester Type Models of Warfare, Vol. I, Appendix B, revised 1981.

INITIAL DISTRIBUTION LIST

No. of Copies

1. Defense Technical Information Center 2Cameron StationAlexandria, Virginia 22314
2. Library, Code 142 2
Naval Postgraduate School
Monterey, California 943940
3. Professor J. G. Taylor, Code 55TW 1
Department of Operations Research Naval Postgraduate School Monterey, California 943940
4. Professor R. A. McGonigal, Code 54MB 1
Department of Administration Science Naval Postgraduate School
Monterey, California 943940
5. Jum Soo Choe 1
163-16 Mook Dong Dong-Dae-Moon-Gu Seoul, Korea
6. LTC. Choe Jum Soo 1
Army Headquarters (ROKA)
Personnel Training Section (G1)
Seot 1, Korea
```
c. }
                                    Some stochastic-
                                duel models of combat.
```

