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ABSTRACT

This paper provides the conceptual foundation for stochastic-duels

and then develops a modest extension to more realistic combat situations.

Simple stochastic models for the fundamental duel and the classical duel

are reviewed. A modest extension is developed for the theory of multi-

ple duels: when all firing times are continuous random variables, an

expression for the prooability of winning such a duel is derived by

using the theory of continuous- time Markov chains.
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I. INTRODUCTION

In the nineteenth century, Von Clausewitz [Ref. 5] remarked that

"war is nothing but a duel on a large scale." Subsequently, in the

twentieth century, the theory of stochastic-duels was developed by C. J.

Ancker [Refs. 2, 3, and 4] and others to mathematically look at such

duels in order to have a mathematical basis for studying modern combat.

Thus, the theory of stochastic duels considers combat at a microscopic

level (individual fires opposing each other), whereas at the other

extreme the Lanchester theory of warfare considers it at a macroscopic

level (large groups of homogeneous fires opposing each other). This

thesis will review the conceptual foundation of the theory of stochastic

duels (in particular, one-on-one duels) and then develop a modest

extension to more realistic combat situation (namely, two-on-one duels).

Additionally, the author hopes that his exposition about this

material concerning one-on-one duels makes the concept more accessible

to the professional military officers. Thus this expository material

strives to be simple (but yet complete) and self-contained (and hence

full details will be supplied to the reader). It also sets the stage

for the extension to multiple fires (i.e., the two-on-one duel).

Let us now consider the nature of the theory of stochastic duels in

more detail. It is concerned with the microscopic features of combat

such as kill probabilities of individual rounds, times between rounds

fired, ammunition limitations, etc. In the theory of stochastic duels,

two duellists (usually denoted as A and B) fire at each other until one





or the other has been killed. The times between the firing of suc-

cessive rounds by each duellist are frequently taken to be random

variables, pairwise independent. The simplest case is that in which

there is a single duellist on each side (i.e., one-on-one duel).

There are two basic cases for stochastic duels that have been dis-

tinguished in the literature: 1) the fundamental duel, and 2) the

classical duel. In the fundamental duel, the two duellists have un-

limited ammunition and each starts with an unloaded weapon. Specific

solutions have been derived for a general firing-tine distribution and

also for exponentially-distributed firing times. Later in this thesis

we will give a simple development of the exponential firing time results.

In the classical duel, each duellist starts with a oaded weapon, they

fire simultaneously at the beginning of the due , anJ then they proceed

as in the fundamental duel. When the firing tirrm is discrete, the

solution for the stochastic duel has bean derived by using a special

technique [Ref. 3]. When the firing time is continuous , the solution

for the stochastic duel is derived by using the theory of continuous-

time Markov chains. In ChaDter IV, a numerical example is considered

and corresponding parametric results are graphically presented.





II. SOME BASIC STOCHASTIC-DUEL MODELS

In this chapter we will consider some simple (but yet basis) sto-

chastic-duel models for: 1) the fundamental duel, and 2) the classical

duel. In the fundamental duel, the duellists each start with an un-

loaded weapon, load their weapons, and then fire at each other until one

of them is finally killed. In the classical duel, they both start with

loaded weapois, fire their first rounds simultaneously, and then proceed

as in the fundamental duel. In this chapter, specific solutions are

derived for both the fundamental duel and also the classical duel for

the special case of exponential firing times (which is of fundamental

importance for understanding future enhancements).

A. THF FUNDAMENTAL DUEL

In the fundamental duel, two duellists, A and B, start with unloaded

weapons and then fire at each other until one is killed. A's firing

time (the t
: me between rounds) is a random variable with a known prob-

ability density, f
A
(t)- B's firing time is similarly characterized by

the density, f
R
(t). Successive firing times are selected from f

A
(t) ar|d

fo(t)> independently and at random. Each time A fires, he has a fixed

probability p. of killing B. We will denote the probability that B is

not killed as q., and hence p. + q. = 1. Similarly denoted as pR , with

its complement being similarly defined (i.e., p R
+ q R

= 1). After the

starting signal, each contestant loads his weapon, aims, and then fires

his first round. In other words, in the fundamental duel the duellists





start with unloaded weapons. Both (A and B) have unlimited supplies of

ammunition that, among other things, makes a kill by one of them an

ultimate certainty. A wins if he is the one to first score a kill. The

probability of this will be denoted as P(A), and p(A) + p(B) = 1, whe v, e

p(B) denotes the probability that B wins.

1. Development of Results for Fundamental-Duel Model

In this section we develop an expression for the probability

that Combatant A wins a "fundamental duel" against Combatant B, denoted

as p(A), in the case in which the firing times are exponentially distri-

buted. Our final results for p(A) is given by equation (15) below.

In order to develop an expression for the probability that A wins

the duel, we consider the combatants to be decoupled, i.e., each com-

batant fires at a passive target (one that does not return fire). Let

k»(t) denote the probability density for the time for A to kill his

passive target and K.(t) denote the corresponding cumulative distribu-

tion function, i.e.,

r t

K
A
(t) = J k

A
(s) ds

o

We similarly define k
R
(t) and K

R
(t), i.e.

K
B
(t) = / k

R
(s) ds

o

Then in order for A to win the duel he must kill his target before B

kills B's target. In other words





P(A) = Prob [T
A

< Tg], (1)

Where T. denotes the time [the random variable corresponding to k.(t)]

and similarly for Tn [Ref. 6].
B

or

p(A) =
J (1 - K

A
(s)} d K

B
(s) (2)

p(A) = / {1 - K
A
(s)} d k

B
(s) ds (2)

The above expression holds in general, but we still must develop expres-

sion k.(t) and k
R
(t) based on our inodel. In other words, if we assume

that, for example, we know the distrib jtions of firing times and know

the corresponding single-shot kill probabilities, we must combine these

into a time-to-kill distribution.

Thus, we assume that A's firing time (i.e., the times between

rounds) are exponentially and identically distributed, with' common

probability density as f .(t) . Thus

f
A
(t) - r

A
.- r

A
l

where r. denotes the firing rate of A. If we assume that the probabil-

ity that A kills his target with any one round is consistant for all

rounds and denote this probability as p., then

n r nth round kills n n-1 , ^Prob C target ]
=

Pa^A (3)

10





wfiere q. = l~p a . Thus,

p .

r
A takes time between t ,

L and t+At to kill target J -I n . r nth rounds -,

Prob . .,, . .L kills target J

n=l

p , j- A fires nth rounds -,

L between t and t+At J (4)

now

n u r A fires nth rounds n n . r A has fired -,

P^ob , .... = Prob / -,x . 4.L between t and t+At J L (n-1) rounds by t
J

p
,

r
A fires one more -,

L round from t to t+At J

then

O t)
p

,

r
A fires nth rounds -. _ A

L between t and t+At J " (n-1),

n-1

e A r
A
At (5)

or

Prob [
A fires nth rounds
between t and t+At ]

=

n, n-1
r
A

Z
-r A t ..

e A At
(n-1),

(6)

11





Since [Ref. 1]

A has fired -, ..
KT

fK
}

-r,
L (n-1) rounds by t

J (n-1).

and

n r A fires one round -, .. /0 .

Prob . . . . . ... = r AAt (8L between t and t+At J A

Substituting (3) and (6) into (4), we obtain

oo n.n-1
r t

n , r A takes time between -, \ n-1 A "r A t..Prob [
t and t+At to kill target ]

= Z PA qA " (n^l)T
e A At

n-1

00
i

( •-M
n

va e
"At

•
At 2 tMt (9)

n=l

or

n . r A takes time between t -,

HA A
u

/nn >

Prob [ and t+At to kill target ]
=

pA
r
A

e (10)

12





Thus

k
A
(t) = PA

r
A

e
"¥A #t

(11)

and

K
A
(t) = e

"PaV*
(12)

Similarly,

k
B
(t) = p

B
r
B

e
"Pb^' 1

(13)

and

K
B
(t) = e

p
B
r
B
#t

(14)

Substituting (12) and (13) nto (2), we find that

P(A) =
pA

r
A

PA
r
A

+ P B
r
B

(15)

which is our fina 1 result.

13





B. THE CLASSICAL DUEL

In contrast to the fundamental duel, two duellists, A and B, start

with loaded weapons, fire their first rounds simultaneously, and then

proceed as in the fundamental duel. In order to develop an expression

for the probability that A wins a "classical duel" against Contestant B,

denoted as P(A), in the case in which the firing time are exponentially

distributed. The final solution p(A) is given by equation (21) below.

Prob r A wins 1 = [
A k111s B on

1 • T
B does not k111 A

1L J L the 1st round L on the 1st round J

n r Neither is killed -, n r A wins the , ,-~^+ Prob .. , . • Prob . , (16)
on the 1st round J u subsequent duel

now

n , r A kills B on , ,....»
Prob ., , . = Pa (17)L the 1st round J KA v J

n . r B does not Kill A , ,, 0>.

Prob [ .. - . , = q D (18)
on the 1st round ^B

n , P Neither is killed -, ,-, .
Prob .. - . = q. • qD (19)L on the 1st round J HA MB

Prob [
A " 1ns th«

. ] = P(A)
f
= ^^ (20>

subsequent duel f P/\ r A
+ Po rD

14





where P(A)
f

: the result of the fundamental due 1
, substituting (10), (18),

(19), and (20) into (16), we find

PaQr (P R
r
R + i%)

P( A ) = -AJ BJ A_ (n)
?A

r
A

+ Vb

which is our final result. But in the classical duel, the following

case will happen, i.e., Contestant A and Contestant B tfi 1 1 be killed on

the first round. Therefore

P(A) + P(B) * 1

thus

P(A) + P(B) + P(AB) = 1

where p(AB): the probability that both are killed on the first round.

P(AB) = 1 - P(A) - P(B) = pA
D
B

(22)

15





III. AN EXTENSION TO MULTIPLE FIRES

A. DISCRETE FIRING TIME

In a discrete firing time, two duellists, A and B, start with un-

limited ammunition, fire at each other with fixed kill probabilities p.

of killing B. Similarly denoted as p R
of killing A. They start with

unloaded weapons and fire at fixed intervals a and b respectively. This

is similar to a situation in which each duellist is armed with an auto-

matic weapon.

1. Development of Results for Fundamental-Duel Model

Jr: order to develop an expression for the probability that A

wins the fundamental -duel , we will assume that a and b (fixed firing

interval) are rational numbers if a and b can be reduced to a/p where a

and p are relatively prime integers. And we define

| = n r a = np + r (23)

where n ; s an integer and r is the remainder.

The total probability of A's total success on the jth rounds

[Ref. 3], i.e.

p r A's total success
-i . V" p r "first j-lth -.

p r
Kill on the -,

on the jth round z_,
L round fail L jth rounds

, p r
B is falling on , (9 .,

1 his first K round J K J

16





i/ • Of

where K = j ~
P

then

n r A's total success , V , ,j-l , . , .k /oc .

P [ on the jth round ]
= Z (qA } (pA } <V (25)

or

p r A's total success , . n V j jn+[(j+l)(^)]
(?6)r L on the jth round J pAq B Z qA q

B
p ^o;

3=0

let

(j+D (£) = [Xj]

where [x.]: largest integer equal to or less than the number x.

Assume

[Xj + m = [Xj + K
p
] = [x.] + K^ (27)

thus

,

s
-,

;

)
pAq £

F

on the jth round
p - A's total success

-, = )
pAqB / %T „ j„ jn+[x

n
.]t

KAMB I V j jn+[x.
]

=
" p—« Z VV J

qA qB
j=l

17





PA ( V „ J „ t(j-D(s)]

A B
' 3=0

P'

Pa q

d-q/q
B
")

A qB ( , n+[x,] 2 2n+[x ] „ p-1 „ a-n
-p-^ * QA qB

X + qA qB
2 + V q

B

d-qA
P
qB

)
J

q R
C
p
] + q

fl q
l2

p
] + ... + q/' 1

• q" [Ref. 3]

(28)

where n = [|] , r = a - n0 , and [x.] = [(j+1) |]

Similarly

*-l

p r
B's total success , )

P
B ( V K C(K+1)^] r?q x

L on the ith round J "., B «. {
q B qA

(l-qA
K
q„ )

'A ^B

which is our final results for ln& fundamental duel as the equation

(28).

2. Development of Results for Multiple-Duels Model

In this section we develop an expression for the probability

that Contestant A wins "multiple-duels" against Contestant B. In this

duel, there are two contestants on the A's side and one contestant on the

B side as shown in Figure 1.

18





Figure 1. The Situations of Duel

Each time A (A 1 ,.A2 ) fires, A has a fixed probability p. of killing

B. We will denote the probability that B is not killed as q., and hence

p. + q. = 1. Similarly denoted as pR , with its complement being simi-

larly defined (i.e., p D + qD = 1). Both (A and B) have unlimited ammu-
D D

nitions. If the B contestant kills an A t (or A2 ) he immediately shifts

his fire to the remaining A. In this situation, the probability that

the side "A" can win is the following:

p r
The side ,

Y L "A" wins J f
"A" side kills B and ,

both A x and A2 survive

+ r
"A" side kills B and one "A" (A x or A2 ) ,

are to be killed and only one A survivor

19





thus

p r
Both A x and -.

L A2 survive
= P {Aj or A2 or both kill B> • p{B fails to kill}

^> p {on j-1 rounds no kills} • p {A t or A 2 or both kill B on jth round}

j=l

• p {B fail to jth round}

I ( <A

3=1

2
• qD )

j_1
• (1 - q fl

2, _
MB

A } * qB
"

qD (i - q fl )

130)

(1 - qA
-q

B
)

and

oo

P [ one A (A t or A2 ) survive ] = /> p (no kill on j-1 round}

j=l

{p (B kill A x or A2 and A fail to 3) P
f
(A)

+ p (B kill one A and A kill B)}

20





thus

r
one A (Aj or

-, = V , 2
. J-l

. p
2

p (A)K L A2 ) survive J Z. vqA V r
B qA

rr rtJ

«* ' V^ " P
B

(1 " qA
2) (31)

7-1

where P
f
(A) is the results of a fundamental duel in which a=b (fixed

firing time).

Thus,

pA qB
P (A) - n _ " -r [from the equation (28)] (32)

- ^ ft
* ^D '

Substituting equation (32) into equation (31), we find that:

p
j-

The side -, _ n r
Beth A x and -,

+ p r
One A (Aj^ or -.

L "A" wins J L A2 survive J
A2 ) survive J

PA (1 + qA PB ' qA

2

;

q
B
2)

(32)
(1 - qA q B

) (1 - qA

2
• qB

)

21





Similarly,

n r The side -, _• V" , 2 \j~l 2 n ra ^. r^t\
P [ "B" wins ]

= Z (qA ' V * pB
* qA ' P

f
(B) (33)

j=l

where P
f
(B) is the results of the fundamental -duel in which a=b.

Therefore,

2
m

3

p r
The side , _

P B
' qA , ..

V L "B" win J "' w , 2 ,
U4J

(1 - qA qB
) (1 - qA

• q Q
)

Let us denote P(AB) the probability of draw.

Then,

oo

P(AB) = p (no kills on j-1 round) • p (B kill one A)

,. , . , .,, DN ..one A and B have,
p (A does not kill B) • p ( , x )K J v K duel of draw J

00

£ (qA

2
• qB

)

j_1
• (P

B
) • (qA

2
) • P

f
(AB) (35)

j=l

22





where P
f
(AB) is the result of the fundamental duels with a=b.

{3-1 orl
Pa Pr qA %

P
f
(AB) =

M B A

§
(36)

1 • V %

PA P B
But when a=b, P*(AB) = =—-

—

-— ,„.
f
K

1 - q
ft

q
B

(37)

Substituting equation (37) into equation (35)

2 2
PA qA PB

P(AB) = — ^—

2

(38)
(1 - qAq B

) (1 - qA
• q Q

)

which is our final solution as the equation (32) and equation (34)

B. CONTINUOUS FIRING TIME

In this duel, two duellists, A and 3, start with unloaded weapons

and then fire at random. But B's sides has two weapon systems and A's

sides has only one weapon system. A's firing time is a random variable

with a known probability density, f
A
(t). B's firing time is similarly

characterized by the density, ^oCt). Successive firing times are

selected from each density independently. We will denote r the time

between round fired (i.e., r. for A system and r
R

for B systems) and the

23





firing interval between rounds is independent. Both systems has un-

limited ammunition and fire each other with fixed kill probability p.

for A. system and pR
for B system as shown in Figure 2.

x^t), p
B

, x
B ^

y(t), pA
, x

A

x
2 ' ^B ' ^B

X
A

* VA
X
B

= r
B
P B

Figure 2. Combat Situations

If we assume tha -

: y(t) and x(t) are the state of each weapon system at

time t, then

y(t) = {

1 : A contestant was not killed
: A contestant killed

and

x x (t)

or

x2 (t)

= i

1 : B (B t or B 2 ) contestant was not killed
: B (Bi or B 2 ) killed.

24





Let us consider the state of duel in Figure 3.

B (1,1,0)

F (1,0,1)

&—,>x
x
(t)

(1,0,0)

Starting Point.

at t =

Transition Rate

(where i = l,2,. . .

)

Figure 3. The State of Duel

where points (A), (B), and (C) are the point of B's winning and only

point (E) is the point of A's winning. During the At, the transition

rates are the following:

25





(1) P [y hit x 2 , x x miss y and x2 miss y]

= ih A A At) • (l-ADAt) - (l-\DAt)

H A
A
At - AgAt

2
+ h A

A
• A

B

2
At

3

h a. • At

therefore

<,,V
A

• At
Transition rate a

1
= rr = h a«

(2) P [y hit x t , x2 miss y and x x miss y] = ^ a. • At

Similarly, Transition r&'cs c 2 = h A..

(3) P [x x hit y, x2 miss y and y miss x
?
] = (ARAt) (l-ARAt) (1-A.At)

B" J v
B'

= AgAt

Transition rate a* =
A.,

(4) P [x2 hit y, x x miss y and y miss x2 ] = A
R
At

Transition rate a 4 = An

26





(5) P [x2 hit y, and y mis x2 ] = (AgAt) • (1-X.At)

Transition rate a 5 = A
g

(6) P [y hit x2 and x2 miss y] = (VuAt) (1-AgAt)

Transition rate a6 = h\«

(7) P [y hit Xj and x x miss y] = (^At) (1-AgAt)

Transition rate a 7 = ^A.

(8) P [x t hit y and y miss x x ] = (\
g
At) (1-A.rt)

Transition rate a 8 = Ap

If we assume that Pi (i = 1, 2, 8) are the transition pro-

bability, P(A) and P(B) are the following:

P(A) = P 2 • P 6 + P t P 7 (39)

and

P(B) = P 3 + P 2 • P 5
+ P

x
• P 8 (40)
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Where
a, A

p = iiJ = 2__-
1 (oj + a2 + a 3 + a 4 ) %A. + *s\T + Ap + \

A ^A ,V
B "3

p, =
(O! H2 * i, * ct4 ) s«A

A
+ ^ i- Ag + \

E

p _ a* + QU
(a! + a 2 + a 3 + a 4 ) HK^ + V^ + \g + \g

therefore ? 1 + P 2 + P 3 = 1

P 5 =
ofc B

P 6 =

(a 5 + of6 ) = \
B

+ hk^

^A

P 7 =

(Of 5 + 0f6 ) = \g + ^

*A

P« =

(a 7 + or 8 ) = hk
k

+ A
B

A
B

(a 7 + a 8 ) = H\
A

+ A
B

therefore

P <A >
-'.•'.'*•* =(x^)(^) * (x^)(^) <«>
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Similarly

P(B) = P3 + P 2 ' Ps + Pi * Fs = 1 " P(A)

2h, h\, H\,
+ —

,

A
A

+ 2'V V
X
A

+ 2V\A
B

+
*a/ \

A
A

+ 2Xb/V^A
+ A

B,

(42)

Which is the final results as the equation (41).

29





IV. NUMERICAL EXAMPLE

A. THE FUNDAMENTAL DUEL

Two duellists, A and B, start with unloaded weapons and then fire at

each other until one is killed. A's firing time (the time between

rounds = r.) is 5 rounds per minute. B's firing time (r
R ) is also 5

rounds per minute. Each time A fires, he has a fixed probability

p. = 0.6 of killing B. We will denote the probability that B is not

killed as q. = 0.4, and hence p. + p R
= 1. Similarly denoted as p R

=

0.6, with its complement being similarly defined (i.e., Pd +c1d = !)•

From the above data, the probability that A's system will win is the

following:

P(A) =
PA

r
A

PA
r
A

+ PB
r
B

0.6X5
0.6X5 + 0.6X5

= 0.5

But A's winning chances can be enhanced as his rate of fire and/or kill

probability (p.) increases. From the equation (15),

r
B
p
B

= r
ApA [

PTA)
"
1] (43)
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The following graphs represent the various cases

CASE 1: r
A

= r
g

.P(A)=0.2
P(A)=0.5

P(A)=0.7

Figure 4. The Relationship of pA
and p g

When r
A

= r
Q

CASE 2: r
A

= 2r
g

P(A)=0.2 P(A)=0.3

'p(A)=0.5

P(A)=0.7

P(A) = 0.9

Figure 5. The Relationship of pA
and pg

When r
A

= 2r
g

31





If A's rate of fire (r.) is increased (r. = 2r
B
), the contour are

rotated count clockwise around the origin.

CASE 3: r
3
p
B

=: r
APA [ P(A) " 1]

r
B
p
B

P(A)=0.3

1.0

0.5

P(A)=0.7

P(A)=0.9

f-igure 6. The Relationship of r.p. and r
R p R

From Figure 6, A's winning chances (p(A)) are enhanced as his rate of

fire (r.) and/or kill probability (p A
) increases.

b. the Classical duel

In the classical duel, two duellists, A and B, start with loaded

weapons, fire their first rounds simultaneously, and then proceed as in

the fundamental duel. Each time A fires, he has a fixed probability

p. = 0.6 of killing B. Similarly denoted as p R
= 0.6 of killing A. A's

firing time is 5 rounds per minutes and B's firing time is also 5 rounds

per minute.
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Therefore, P(A) can be expressed: P(A) = pAqg
+ qAqg

(P
f
(A)) by the

equation (16) where P
f
(A) is the result of the fundamental duel 3y the

equation (21),

P(A). ^ (P

f
B

+ ^
PA rA

+ P B
r
B

0.6X0.4 (0.6X5 + 5)

0.6X5 + 0.6X5

0.32

Simi larly,

P(B) = 0.32

and the probability that both are killed on the first round:

P(AB) = 1 - P(A) - P(B) or P(AB) = pAp B

= 0.36

where P(AB) is the probability that both are killed in the first round.
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C. AN EXTENSION TO MULTIPLE FIRES

First, we will consider fundamental duel case when firing time is

discrete. In a discrete firing time, two duellists, A and B, start with

unlimited ammunition, fire at each other with fixed kill probabilities

p» = 0.6 of killing B. Similarly denoted as pB
= 0.6 of killing A.

They start with unloaded weapons and fire at fixed interval a and b

respectively. Let's consider a various case of a and b.

1. a = b = 1

From the equation (23)
B
= 1, n = 1, r =

therefore,

A's total success
on the jth round

pAqB

(
i - q

A

p
q

B-l

a 2Z qA

j=0

J*
jn+[x.]

^5 J

;

B

1.0

0.8

0.6

0.4

0.2

= 0.285

0.2 0.4 0.6 0.8 1.0

Figure 7. The Relationship Between p. and pR
When a = b
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2. a = 10, b = 5

From the equation (23) |=2, n=2, r=0

similarly,

p r
A's total success

-i = n i
*• on the jth round

1.0

0.8 .

O.6..

0.4-

0.2.

P(A)=0.1

P(A)=0.3

P(A)=0.5

P(A)=0.7

P(A)=0.9

0.2 0.4 0.6 0.8 1.0

Figure 8. The Relationship Between p. and p„ When a = 2b
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3. a = 5, b = 5

Similarly, p
|- A's total success -, .. Q

-,.,

L on the jth rounds

Pr P(A)=0.1

0.2 0.4 0.6 0.8 1.0

Figure 9. The Relationship Between p. and p R
When a = ^b

Secondly, we will consider multiple-duel when firing time is dis-

crete. In this duel, there are two combatants on the A's side and ar.e

combatant on the B's side as in Figure 1. A (A lf A2 ) has a fixed

probability p. = 0.6 of killing B. Similarly denoted is p R
= 5 of

killing A. From the mentioned data, we can get the probability that A's

system will win. From the equations (32 and (33),
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PA (1 + VB " qA qB }

P [ The side "A" win ] = -^ 2-2 ^-
(1 - qAqB ) (1 - qA q

fl
)

= 0.93

and

2 3
p B

qA
P [ The side "B" wins ]

= - *

' qA qB
} (1 " qA qB

}

= 0.026

Similarly, from the equation (38)

P [
Dr*W °^° th

] = 0.044L sides (AB) J

therefore P(A) + P(B) + P(AB) = 1 .

Finally we will consider multiple-duel when firing time is continu-

ous. A's firing time is 3 random variable with a known probability

density, f ,,(t). The time between rounds fired is random variable having

exponential distribution with r
A

= 5 round per minute for "A", r
R

= 5

rounds per minute for "B". The kill probability of "A" sides is p. = 0.6,

and p R
= 0.6. Therefore, from equations (41) and (42) we can get P(A)

and P(B):
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P(A) = P2 • P6 + Pi • P 7

(5s\
A ) (%\

A ) G*A) Cs\
A )

(A
A

2A
B

) = (Xg %A
A ) (X

A
+ 2A

B
) (^

A
+ A

B
)

= 0.11

and similarly,

P(B) = P 3 + P 2 ' Ps + Pi • P|

2X r %*, A r **i K

h + 2A
B \

A
A

+ 2V V
X
B

+ ^a/ W + 2V Y*A
+ V

= 0.89

where ^ = r
ApA

and Ag = r
B
pB
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V. SUGGESTED FUTURE WORK

Models investigated in this paper include simple stochastic models

and a multiple duel model using the theory of continuous-time Markov

chains. The standard case was unlimited time, unlimited ammunition, and

a fixed kill probability. Models in which both time and ammunition are

limited would be desirable. Numerous extensions and modifications of

the fundamental-duel can be further studied as follows [R^f. 4]:

CASE 1: One-Versus-One

(1) Variable Kill Probability - pA
and p~ are special functiors of time

and round dependent kill probability.

(2) Duel with initial suprise - random initial suprise

(3) Fixed ammunition supply, etc.

CASE 2: Two-Versus-Two

(1) Several multiple:

<—B
J

> and

<—B 1

where A and B are contestants.

(2) Round dependent kill probability, connection with Lanchester's
models.
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However, these suggested models with more than two contestants may be

limited to simple situations because the uncoupling principle which is

used to solve the fundamental -duel is no longer applicable.

Consequently, we must consider each event as it occurs, as well as

all the possible interactions and conditional events that may occur

subsequently.
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VI. FINAL REMARKS

Simple stochastic models for the fundamental -duel and the classical-

duel have been reviewed and analyzed by the graphical methods. For the

extension to multiple-duels two situations have been considered: 1)

discrete firing times, and 2) continuous firing times. When the firing

time is discrete, we are able to examine some duels in which strong

interactions occur by limiting our consideration to those situations in

which the time between rounds is constant. When the firing time is

continuous random variables, an expression for the probability of

winning such a duel is derived by using the theory of continuous- time

Markov chains. Numerical examples for each model are presented. Still

there is much work 15ft to be done in the future.
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