

Calhoun: The NPS Institutional Archive DSpace Repository

Multivariable control system design for a submarine using active roll control.

Martin, Richard James.
https://hdl.handle.net/10945/21456

$$
492
$$

至
\qquad

8x

DUDLEY KNOX LIBE.ARY
NAVAL POSTGRADUATE SC: ${ }^{\circ}$ OL
MONTEREY, CALIFORIIA ~3ヶ43
（2）

2

\qquad
\qquad －

department of ocean engineering

 MASSACHUSETTS INSTITUTE OF TECHNOLOGY CAMBRIDGE, MASSACHUSETTS 02139MULTIVARIABL드 CONTFOL SYSTEM DESIGN FOR A SUBMAFINE USING ACTIVE ROLL CONTFDL

```
                                    by
                                    Richard James Martin
        COUFSE XIII-A
        (C) JUNE 1985
```

> by
> Fiichard James Martin
> E.S., Purdue University
> (1978)

SUBMITTED TO THE DEFAFTMENTS OF OCEAN ENGINEEFIING AND MECHANICAL ENGINEEFING IN FAFTIAL FULFILLMENT OF THE FEQUIREMENTS FOF THE DEGREE OF OCEAN ENGINEER AND MASTEF OF SCIENCE IN MECHANICAL ENGINEEFiING
at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
May 1985

$$
\text { (G) Fichard James Martin, } 1985
$$

Thes 5 M3585 $\therefore 1$
 thesi三 dorument in whale or in pert.
π

MULTIVAFIAELE CONTFOL SYSTEM DESIGN FDF A SUEMAFINE USING ACTIVE FIOLL CONTFOL
by

Fichard James Martin

Submitted to the Departments of Ocean Engineering and Mechanical Engineering in F'artial Fulfillment of the Fequirements for the Degrees of Dcean Engineer and Master of Science in Mechanical Engineering.

ABSTFACT

A Multivariable Control System is designed for a deeply submerged submarine using the Linear Quadratic Gaussian (LQG) with Loop Transfer Fiecovery (LTF) methodology. The differential stern, bow, and rudder control surfaces are dynamically coordinated to cause the submarine to follow independent and simultaneous commanded changes in roll, yaw rate, depth rate and pitch attitude. Linear models of the submarine are developed at a ship speed of $\mathbf{\sim 0}$ knots with various rudder angles and then analyaed using the method of modal analysis. The linear models are then augmented with integral control, loop shaping techniques are applied to design a Kalman Filter transfer function, and the LTFi technique is applied to recover the ǩalman Filter laop shapes. The resulting model-based compensator and plant is tested using a non-linear mathematical model of the submarine, and comparisons are made with an equivalent compensator design that lacks active roll control capability. The performance characteristics of the closed loop design with roll control capability was significantly better than the characteristics of the design without roll control.

THESIS SUFERVISOF: Dr. Michael Athans, Frofessor of Systems Science and Engineering Dr. Lena Valavani, Assistant Frofessor of Aeronautics and Astronautics
$0-2+3$

I would like to thank my thesis supervisors. Frofessors Michael Athans and Lena Valavani, for their support in shaping the ideas of this thesis and for their never-ending patience in its completeness.

I would also like to thank the Charles Stark Draper Laboratory for the use of their facilities over the last three years, including the computer resources and lise of modem upon which this thesis strongly depended.

Additionally, 1 sincerely thant: Wr. William Eonnice of Draper, for his technical and programming support for the submarine model.

This research was conducted at the MIT Laboratory for Information and Decision Systems with partial support provided by the Gffice of Naval Feseareh under contract ONF/NOOO14-82-K-05S2 (NF606-00.).
LIST OF FIGURES 7
LTST OF TAELES 8
Chapter 1 INTFODUCTION AND SUMMAFY 9
1.1 Eackaround 9
1.2 Frior Wort 10

1. E Contributions of the Thesis 11
1.4 Outiine of the Thesis 11
Chapter 2 THE SUBMAFINE MDDEL 13
2. 1 Introduction 18
2.2 Model Development 14
2.2.1 Ship Courdimates 1.5
2.2.2 Fixed Coordinates 15
$2 . z \mathrm{w}$ Definitions of Sumarine States and Control Variables 16
3. 3 Model Implementation 19
2.4 Model Limearization 20
2.5 Gutput and Control Variable Selections 区
4. 2.
2.E.z Gutput variatle Selection 0
5. 5 . Control Variable Selection 1
2.6 Summary 2
Chapter z ANALYEIS OF THE LINEAF MODEL 5
※ul Introduction \square
Z.2 Feduction of the model 4
※. Gcaling 동
उ. 4 Modal Amalysis of the System S
צ. 5 Controllability and Observability 4 .
Zus Structure of the Foles? Zeroes, and Singular values 46
E. 7 Summary 49
Chapter 4 MULTIVARIAELE CONTBOL GYETEM DESIGN 5
4.1 Introduction 5
4.2 The LGG/LTF Design Methouglogy 52
6. $\underset{3}{ }$ Gontroller Specifications 60
4.4 Controller Design 62
4.4.1 Augmentation of the Model Dynamics 6.2
4.4.2 אalman filtter Design 6
4.4 m Application of LQG/LTR 6
4.5 The Closed Loup System 70
4.6 Summary of LQG/LTR: Oesign Sequence for Model without Foll Comtrol $7 \underset{\sim}{8}$
4.7 Summary 76
Chapter E EvALUATION OF THE MODEL EASED COMGENSATOR 77
7. 1 Introduction 77
5.2 Implementation of the Compensator 77
8. S. Testing of the Compensator Design 76
9. 4 Comparison of the Linear and Nomlinear Simulations 79
5.5 Foll versus Non-roll Cantrol Model 8 ©́
5.5 .1 Mild Turning Maneuver 87
5.5.2 Moderate Turning Maneuver 9
5.5 .3 Combined Maneuver 99
10. 5. 4 Hard Turning Maneuver 105
5.6 Summary 111
Chapter 6 SUmAFBy, CONOLUSIONS, AND DIFECTIONS FOF FUTUFE FESEARCH 112
6.1 Summary 112
6.2 Conclusions $11 \pm$
G. D Directions for Future Research 115
Feferences 116
Appendix A DETAILED DEFINTTTON OF THE SUEMAFTNE FFOELEM 118
Appendi: E SUMMAFY OF THE SUBMODEL FRGGFMM 122
Appendi: C GTATE GFACE MATFICES FOF THE LINEAFIZED MODELS 127
Appendi: D MODAL ANALYSTS RESLLTS 18
Appendis E GATN MATFICES AND FROFFFTIES OF THE CLOSED LOOF SYSTEM 141
Figure 2.1 Sketch showing positive difectians of axes, angles, velocities, forces, and moments 16Figure 2.2Figure $2 . \underset{ }{3}$Fiqure 2.4Figure $\underset{\sim}{*} 1$Figure 3.2Figure $\underset{\sim}{3}$Figure $\underset{\sim}{2} 4$FigureFigure 4:1.Figure 4.2Figure $4 . \underset{\text { ar }}{ }$Figure 4.4Figure 4.5Figure 4.6Figure 4.7Figure 4.5
Comparison of Linear and Non-1inear dynamics for Model SEORO 24
Comparison of Limear and Non-linear dynamics for Model SGOFis 27
Submarine Control Surface Gonfigurations 32
Eloct: Diagram of Flant Transformed for Units, and Weightings of Inputs and Outputs 37
Modal Analysis for the Limearized Foll Control Model. 41
Controllability Analysis for the Linearized Foll Control Model. 45
Simgular Value Flot of the Scaled Linear Model 47
Singular Value Decomposition for the Scaled Limear Model at DC 50
Elock Diagram of a MmO Compenseted Flant 5
Flot of Desifed Singuler Value Shapes 55
Model Eased Compensator in a feedback configumation 59
Integrators placed in the control channel of plant 6
Comparison of Open Loop Singulat values with and without augmenting dymamics 64
Gingular Values of $\underline{G}_{\text {FOL }}$ 67
Gummary of LQG/LTR Design Sequence 69
Singulat values of the Closed Loop 71

Figure 4.9	Compensator Singular Values........... 72
Figure 4.10	Singular Values for the Transfer Function broken at the Flant Input $7 \times$
Figure 4.11	Sumnary of LGG/LTFi Design Sequence for Model without Foll Control 74
Figure 4.12	Bloc: Diagram of the Closed Laop
	Modifications of the NEC Feedbeck Design for Weightings on Inputs and Outputs"....... 78
Figure 5.2	Comparison of the Linear and Nonlinear Fiespanse of the Foll Control. Model for a commanded 1.50 pitulio
Figume ㄷ.	Comparison of the Nom-1inear Fesponse of Models with and without Fioll Contral for a Mild Turn E
Figure 5.4	Comparison of the Non-1imear Fesponse of Models with and without Fall Control for a Moderate Thrm.......
Figure 5.5	Comparison of the Non-1 inear Response of medels with and without Foll Contral for a Combined Mameuver .. 101
Figume 5.6	Comparison of the Non-1inear Fesponse of models with and without Foll Control for a Hare Turn.......n....107
	LIST OF TAELES
Table 21	Definition of Submarine states and Controi variables
Table	Input to Ouptut Coupling.............. 48

CHAFTEF ONE

INTFGDUCTIUN AND SUMMAFY

1.1 Eackground

The advent of the microprocessor is having a significant effect on ship control? as it is in many other fields of engineering. In particular, the present technology for the design and implementation of digitally based multivariable control systems has improved drastically, resulting in a very strong need for the analysis of complex, long standing design protlens. As it stands today, multi-input, multi-output (MIMO) control system design is much more difficult than either classical control system design or single input, single output (SISO) control system design. This MINO methodology, and in particular the LQG/LTF method, also appears to be relatively unknown to many researchers and engineers involved with control systems design. (This observation was extremely apparent at the Seventh Ship Control Systems Symposium in Eath, UK in September 1984). It appears that the major reason the LQG/LTF methodology is as yet untmown is because of its recent development, and limited application to actual engineering design problems. Another reason, although less significant than the first, is that a significant amount of effort is required to develop a realistic model of the system being considered, to design the controller, and them to Evaluate the design.

$-4-1+2+10$

It is therefore instructive to apply the mimb
methodology to realistic ship Examples to display the power and benefits of the methodology, to understand possible shortcomings with the procedures, and to provide results of model tests $\langle i n$ this case a computer program simulation of a full scale submarine). See Appendi: A for a description of key issues in submarine control.
1.2 Frior Work:

The majority of previous controller designs for submarimes have used the sisu design methodology or classical design techniques. There have been a limited number of examples of MIMD designs for full scale submarines. These were performed by Navy graduate students at MIT under the supervision of Frofessors Lena valavani and Michael Athans [10 through 13].

In previous designs, the use of pitch, roll, and depth control were not fully utilized. The vertical velocity (W) was generally used to represent one of the state variables considered. Since $w(t)$ is not an inertial reference variable, it represents the true vertical rate only when the submarine has zero pitch and roll angles.

Although the depth rate, $\dot{Z}(t)$, is not directly available as a state variable, it can be easily constructed from the geometric relation that

$$
\ddot{z}(t)=-u \sin \theta+v \operatorname{cosesin} \phi+w \operatorname{cosecos\phi }
$$

which consists of terms that are readily available.

 1

$=$ \qquad 14:

$$
11
$$

Additionally: active roll control for a cruciform stern has nut been used in previous theses. Active roll control is used in this thesis to demonstrate its advantages.

1. 3 Contributions of the Thesis

The major contribution of this thesis is to demonstrate the multivariable LOG/LTF feedback control system design methodolagy for a submarime. We demonstrate how to design using the LQG/LTF methodology a four input, four output MINO feedback control system in which the differential stern. bow, and rudder control surfaces are used to cause the subinarine to follow independent and simultaneous commands in roll, yaw rate, pitch, and depth rate. A second contribution of this thesis is to demonstrate the improvement in operational capabilities of full scale subibarines if active roll control is employed. The closed loop dymamic response of the sutmarine is improved considerably over a submarine without active roll control. In either case, the LGG/LTF design methodology was found to匕e robust when evaluated in mon-linear simulations, Even though there were significant changes between the dynamic characteristics of the linear and non-linear models.

1. 4 Outline of the Thesis

Chapter 2 contains a physical description of the

 submarine and the development of the model employed in this thesis. A brief description of the model implementation at

Oraper' Oc computer facility is also discussed. The latter part of the chapter describes the process used to linearize the submarine model, and a discussion of the reasoning used to select the output and control variables.

Chapter $\underset{\sim}{z}$ contains the analysis of the linear model eigenstructure using modal decompasition. The structure of the pole-zero composition and singular values are also utilized to display the open loop dynamics of the model.

Chapter 4 contains a discussion of the LQG/LTF methodology. The performance specifications of the controller are discussed, and the linear portion of the contral system design is presented.

Chapter 5 contains the evaluation of the compensator using both the linear and non-linear submarine simulations. Comparisons are also provided with a compensator which does not have the capability of active roll control, but which 15 otherwise desiqned to the same specifications.

Chapter of contains the summary, and proposals for future research.

$-1=$

CHAFTER TWO

THE SUEMAFINE MODEL

2. 1 Introduction

The non-limear submarime dynamical model used in this thesis is implemented at Draper Laboratory both as a realtine simulation facility and as an analytical model generating facility. A summary of the SUEMODEL program aan be found in Appendi\% B. A detailed discussion can be found in reference [14].

The rudder and stern plane configuration to be investigated is the so-called cruciform stern. Existing submarines use a cruciform stern with mechanically coupled upper and lower rudders, and mechanically coupled part and starboard stern planes. The advantage of this stern configuration is that the design allows intuitive actions by the operator for desired ship motion. For example, if it is desired to rise or dive, all the operator has to do is command rise or dive on the stern planes. A similar situation exists if the operator desires to turna A inajor drawback to this stern however, is that there is nu opportunity to actively control roll on existing sutmarimes. A submarime has the ratural tendency to roll in a thirn, and since the shap rall of a submarime in a turn is a function of the speed into the turn and the initial displaced rudder angle, it becomes very difficult for the operator to maintain a level trajectaryy and even more difficutt ta
command at the same time a desired pitch and/or depthrate change.

This thesis will investigate the utilization of active roll control, and implementation of a control surface feedback: control scheme that will consider the mobility characteristics of depth, course, and speed (in that order). This investigation will be pertormed usimg the LQGiLTH: methodalagy for the control इystem design.

Experience with full scale submarines has shown that roll plays a significant factor in the ability of the operator to maintain ordered depth in turns or rudder malfunctions. This experience has also been shown in computer models of submarines, including the SuESIM model at Draper laboratory. If methods are utilized to reduce the smap roll, the ability to maimtain ordered depth is greatly increased.

This chapter discusses the development? implementation, and 1 ineatiaation of the submarine model upon wicti the remainder of this thesis is based. The reasoning used to seleat the output and contral variables is alsa presented.

2. 2 Model Development

Submarine hydrodynamics is primarily concerned with the motion af a bady through the water. Consequently, there must be a means of defining the body orientatian with respect to the fluid flow, and the location of the body with respect to some fiked reference freame.

In defining the motion of a submarine, reference must be made to two sets uf coordinate axes: one fixed in the ship and one fixed with respect to the earth.

2.2.1 Ship Coordinates

The axes fixed in the ship (x, y, and z) are in a righthanded orthogonal system where the origin is taken tu be the mass center of the ship. The mass center is assumed to lie in the vertical centerplane of the ship and is usually a sinort distance below the longitudinal axis of symmetry. The mass center is assumed not to move during ship maneuvers. The center of the coordinate system $i s$ at the center of mass for motion along any of the three orthogonal axes. Additionally, the moments of inertia, including the inertia due to the water, are taken around the three orthogonal akes and are designated K, M, and N.
2.2.2 Fixed Coordinates

The second set of axes (X, Y, and Z) required to define the motion of the submarine is one which is fiked with respect to the earth. Like the ship axes, these coordinates form a right-handed orthogonal system.

Figure 2. 1 shows the reference system used in this thesis.

Fiqure 2. 1 Sketch showing positive directions of axes, angles, velocities, forces, and moments.

Z.2. Definitions of Submarine States and Control Variables

In general, for the purposes of modelling the dynamics of sutmarine motion, the equations or motion are expressed in the ship coordinate system because hydrodynamic forces and moments are readily computed in this reference frame. Gon the other hand, when interested in guidanae and control of a submarine, it may be desirable to describe the vehicle mation in terms of the fixed coordinate system.

General equations have already been developed foi the description of the dynamics of underwater vehicle motion, these equations generally contain expressions for Newtonian formes and moments on the left hand side, and the
expressions for dynamic response on the right hand side. The left hand side of the equations becomes quite involved due to the transformations of the coordinate system from the center of mass to the center of buoyancy: which is more correctly the reference point in these equations because this point is a function of the submarime geometry and is fixed whereas the center of mass may shift due to shifting of weights within the submarime. Details of these transformations can be found in Abkowitz [1b]. The right hand side of the equations represent the external forces and moments exerted on the sutmarine by hydrodynamicy contral surface, propulsion, and other effects.

The force and moment equalities of the equations of motion describe the six possible degrees of freedom of submarine motion. Motions of surge, heave, and sway are represented by the three forces in the axial, lateral, and normal directions of motion. Motions of roll, pitch, and yaw are represented by the three moment equations.

The state vector for the sulnarine must include the six degrees of freedom from the ships coardimate system, the three Euler angles which describe the relationship of the motion of the submarine with respect to the two coordinate systems, and the desired position variables to locate the submarine with fespect to the fixed coordinate system. As stated earlier, the critical effort for this thesis will be to maintain ship's depth in hard rudder maneuvers, thus $z i=$ included in the state vector, as shown in Table 2.1.

Tatule 2.1 Definition of Submarine States and Control Variables

Submarine States

$u=n_{1}(t)$	forward velocity	(ft/sec)
$v=n_{2}(t)$	lateral velocity	(ft/sec)
$w=x \leq(t)$	vertical velocity	(ft/sec)
$p=\%_{4}(t)$	roll rate	(rad/Eec)
$q=x_{5}(t)$	pitch rate	(rad/sec)
$r=x_{6}(t)$	yaw rate	(rad/sec)
$\phi=x_{7}(t)$	roll angle	(radians)
$\theta=*_{8}(t)$	pitch angle	(radians)
$\psi=*_{9}(t)$	heading angle	(radians)
$z=x_{10}(t)$	depth (+ down)	(feet)

Control Variables

$s b$	bow/fairwater plames	(rad)
δr	rudder deflection	(rad)
δs_{1}	port stern plane deflection (rad)	
δs_{2}	starboard stern plame deflection (rad)	

Further details of the derivation of the non-linear Equations of motion and a description of the hydrodynamic coefficients describing the submarine geometry and control surfaces can be found in NSFDC Fieport 2510 [6].

To reflect current operating procedures, the propeller related thrust control variable fifs will be constrained to turn at a constant specified value during maneuvering situations.

InitiaIly, the computer program was developed at the Naval Ship Fiesearch and Development Center (NSFDC), and was Provided to CSDL along with the 2510 Standard Equations of Motion. These Equations have since been improved to include the effects af crossflow drag and vortex contributions. After approximately one year of development, programining. debugging, and documentation, Draper's adapted model was implemented in the simulation laboratory, resulting iri a real time simulation environment of the submafine model. A Digital Equipment Corporation VAX 11-780 and graphics display workstation are used to provide visual display of the submarine motion for maneuvering situationsu The capability of hard-copy output is also provided.

Later, for the purposes of analytical control system design, the computer program was implemented on the IEM timesharing computer at CSDL. To aid the design engineer, the following capabilities of the system are now included:

1. A user friendly executive routine to allow the mudification of parameters and selectian of口ptions for simulation runs. The routine submits the user specified program for batch processing.
2. The option of calculating the \hat{A} and B matrices that Jescribe the linearization of the model about a specified nominal point, in the form

$$
\underline{x}(t)=\underline{A} \underline{x}(t)+\underline{B} \underline{u}(t)
$$

※. The aptions of setting control surtaces, as desired by the designer a as a function of time. The options ᄃan be specified in a data file,

Calculated using full state feedtack, or by calculation using a LGG/LTF derived compensator.
4. Hard copy print-outs, plots, of both, of the state variables over time may be provided of either the non-linear or the linear models.
5. The capability of searching for a local equilibrium point for the non-linear model that is close to the specified desired nominal point.

It is important to note the following limitations of the non-limear model as it is currently implemented:

1. Actuator dynamics, or the actual angle rate limits of the control surfaces are not modelled.
2. Vortex shedding and separation effects of the fluid are not included in the linearized model.

2. 4 Model Linearization

The controller design procedure begins with the expression of the equations of motion in linear time invariant state space form. The non-linear, multivariable system that represents the sutmarine is described by:

$$
\begin{aligned}
& \frac{d}{d t} \underline{x}(t)=\underline{f}(\underline{x}(t), \underline{u}(t)) \\
& \underline{y}(t)=\underline{g}(\underline{x}(t))
\end{aligned}
$$

where:

$$
\begin{aligned}
& \underline{x}(t) \text { is the state vector } \\
& \underline{u}(t) \text { is the control vector } \\
& \underline{y}(t) \text { is the output vector }
\end{aligned}
$$

[^0]chosen for the design by integrating the non-linear equations of motion using a specified set of initial conditions. An equilitrium point is found that corresponds to minimum accelerations for all the state variables determined from the integration of the equations of motion. The values of the state variables at the equilibrium point then specify a nominal paint, about which higher order terms may be neglected. From these results, a set of linear differential equations may then be produced, the \underline{A} and \underline{B} matrices calculated, and a state space description of the submarine model produced.

For each nominal point determined, the resulting linear model must be validated by perturbing the nominal point to form a set of initial conditions, and then comparing the results of integrating the non-linear and linear equations af motion. For small perturbations, the non-linear model should always return to the equilibrium point values. The linear model, however, will never reach equilibrium due to the forces imposed by the control surfaces. The comparisuns of the two models should, however, provide a means to compare initial derivatives, natural frequencies, and the damping effects.

The nominal point chosen for the design corresponds to a level submarime trajectory at zo knots. The ruder deflection, ©r, cam be set at arbitrary angles to cause the submarine to turn at different rates, and to roll at different angles. This attempts to determine the apen loop
sensitivity of the submarine to roll, which has a significant effect on the depth of a submarine in a turnimg maneuver.

Limear models were developed for rudder deflections from o\% to 250. The models are designated S.OFO, SOOFI, S.OFS, etc., reflecting the speed and rudder deflection.

To adequately validate the limear models, it is necessary to perturb the nominal point of the 1 inear and mon-linear models, and compare the time histories of the state parameters. Frovided the perturbations are not excessive, the mom-linear model will return to the equilibrium point. The limear model, however, will mot return to it's equilibrium point resulting from the non-e ero forces imposed by the control forces, and the absence af non-1 inear hydrodynamic effects.

Ferturbations were applied to the models differently.

For the SSOFO model, the perturbations were as listed belaw.
state variable

4	5 f ¢/5Ec
v	0. 5 ft/sec
W	O. 5 ft/sec
P	-0.005 deg/sec
q	+0.001 deg/sec
r	-0.005 deg/sec
ϕ	-2.0 deg
θ	-4.6 deg
\nvdash	O. deg

The remaining models were perturbed 10% above the mominal values obtained from the intergration of the mom-1 imear dynamics. Femember, these perturbations were not selected
analytically, but were arbitrarily selected to validate the linear models.

The comparisons of selected non-linear and linear models and state variables show excellent correlation, thus, serve to validate the 1 inearized models. Figures 2.2 and 2.3 show the initial derivatives, natural frequency response, and damping factors are almost identical. Similar results were obtained for the other models.
2.5 Output and Control Variable Selections
2.5. 1 Constraints of the Methodology

Selection of the output variables requires a careful study of the \underline{A} and \underline{B} matrices and determination of the㕷jectives of the controller design. Four control variathes exist if FiFS is fixed, and differential stern planes are utilized.

The Loop Transfer Fecovery method for the class of Model Based Compensators places a natural constraint on the design process at an early stage. Common sense mathematics of the singular values requires the number of independent control imputs to equal the number of independent output controlled variables. In other words if

$$
\begin{aligned}
& \underline{y}(t) \varepsilon F^{m} \\
& \underline{\mathbf{u}}(t) \varepsilon F^{P}
\end{aligned}
$$

VELOCITIES
LIMEAR DYMAmics

Figure 2.2(a) Comparison of Linear and Non-linear Dynamics for Model S30RO

Figure 2.2(b) Comparison of Linear and Non-linear Dynamics for Model S30RO
ATTITUDE AND DEPTH
noml iliéar imiegratiou

B

ATTITUDE AND DEPTH
louetra orifilics

(120 10 lo

Figure 2.3(a) Comparison of Linear and Non-linear Dynamics for Model S30R15

attitude and Depth
linear otnamics

ATtitude and Depth
nonlinear integration

$80 \quad 120 \quad 140 \quad 160 \quad 180 \quad 200$

where Fi indicates the dimension space of the system. Thus, the requirement is

$$
P=m
$$

and with four independent control surfaces available

$$
p=4
$$

玉.E. E Output Variable Selection:

An autopilot (position cantroller) is one optiang where the position variables Ψ and z are used, or arate Gontroller \quad culd be designed, where the rate variables u, \forall, W, P, q g and f are used. The attitude variables a arid \quad aar be utilized in Either design, depending on their impartance. Additionally, a controller can be designed which $i=$ concerned with vertical or horizontal plane motion. a more challenging design, however, is one which controls the dynamics of the submarine simultaneausly in both plaries. Eince it is desired to contral the submarine dirlng maneuvering situations, arate controller will ロe irvestigated. The four output variables selected are depth
 Fiemember that depth rate can be constructed from the non-1 inear expression

```
z(t) = -u sing+vcosesin\phi + w cosecosф
```

and that yaw rate - an be constructed from the nom -1 1 near Expression

$$
\begin{equation*}
\psi(t)=\langle r \cos \phi+q \sin \theta / \cos \theta \tag{2,5}
\end{equation*}
$$

Using small angle approximations we obtain the expressions that

$$
\pm(t)=-\omega
$$

and

$$
\ddot{\psi}(t)=r
$$

With the output variables determined, and the \underline{A} and \underline{E} matrices calculated, the state space description of the छubmaririe model is now complete arid tate the farm

$$
\begin{align*}
& \underline{x}(t)=\underline{A} \underline{x}(t)+\underline{B} \underline{u}(t) \\
& \underline{y}(t)=\underline{C} \underline{x}(t) \tag{2}
\end{align*}
$$

where the output vector $y(t)$ is given by

$$
\begin{equation*}
y(t)=[\phi(t) \quad \theta(t) \quad \dot{\psi}(t) \quad \dot{z}(t) \quad]^{T} \tag{Q}
\end{equation*}
$$

2. S. Control Variable Selection

As mentioned previously, there are four possible control variables if propeller FFG i. F held constant. These
 control surface configurations used in this thesis.

View From Stern Showing Rudder und Differential Sterns

Figure 2.4 Submarine Control Surface Configurations

2.6 Summary

This chapter has introduced the submarine model used for this thesis. Additionally, the coordimete systems, definitions of the submarime states and control variables. and the process of developing a linear model were briefly described. Finally, the reasonimg for selection of the output variables was presented.

Chapter Three will amalyae the limearized models Lisima the method of modal decomposition. The eigenstructure of the limearized models will also be presented.

CHAFTEF THFEE

ANALYEIS OF THE LINEAF MODEL

Z. 1 Introduction

In this chapter, the structure of the various models will be investigated.

In the previous chapter, a state space description of the submarine model was developed in the form of

$$
\begin{aligned}
& \underline{x}(t)=\underline{A} \underline{x}(t)+\underline{B} \underline{u}(t) \\
& \underline{y}(t)=\underline{C} \underline{x}(t) .
\end{aligned}
$$

The state space description described results in a tenth order system. It will be shown that the order of the system can be reduced to an eighth order system becalse of the zero entries in the \underline{A} and \underline{B} matrices. This is desirable only if these states are not utilized in the control of the submarine.
The eigenstructure of the various models is analyzed using the method of modal analysis [17]. This method starts with a state equation in a mondiagonal form and uses matrix similarity transformations to arrive at the diagonalized form of the \underline{A} matrix. The entries of the diagonalized \underline{A} matri\% are the poles of the open loop system. The advantage to using similarity transformations is that the linearized system is described in state space form as separately decoupled modes, thus yielding information as to the controllability and otservability of the system.

This information，along with the pole－zero structure， will provide the basis and validity for the LoG／LTF design in the following chapters．

玉． 2 Fieduction of the Model

Inspection of the A matrix for the linearized model （Appendi：C1）show that the present value of the states＇ 4 and z Can have no influence on any other state because the last two columns of the A matrix contains all zeros．This means the dymamic response of the submarine is not affected by either the heading angle or depth of the submarine．figaing note that this is for a deeply submerged submarine．For a subinarine near the surface，heading and depth can have a significant impact on the dynamic response of the sutmarine due to wave action and hull suction forces．

Inspection of the B matrix（Appendix C1）for the model reveal zeros in the last four rows．This indicates that the control surfaces exert no direct influence on the derivatives of $\Psi, ~ 日, ~ ゅ, ~ o r ~ z . ~$

Since the controller design is not concerned whth any of these states，then they may be removed from the linear model．This is accomplished by deleting the rows and columns associated with those states，resulting in a redured order system．

Scaling is a method of weighting the physical units of a system so the numerical values or the variables mate sense and become equally important. Scaling and its effects have recently been discussed by f゙appos [20] and Eoettcher [21]. Note that scaling does change the magnitude oi the singular values, and as such, it impacts the design

In this thesis, scaling is performed in two distinct steps. The first step requires transformations of the linearized $\boldsymbol{A}_{\mathrm{A}} \mathrm{B}$, and \underline{C} matrices such that angular components of the matrices are expressed in units of degrees feet. degrees/sec, and feet/second. If the unscaled system $i \equiv$ defined by
$\underline{A}, \underline{E}, \underline{\mathrm{C}}, \underline{\mathrm{Y}}, \underline{\underline{\mathrm{u}}}$, and $\underline{\mathrm{x}}$,
and we define the sEaled system as

$$
\underline{A}^{\prime}, \underline{E}^{\prime}, \underline{\mathrm{C}}^{\prime}, \underline{Y}^{\prime}, \underline{\underline{u}^{\prime}}, \text { and } \underline{\mathrm{x}}^{\prime},
$$

then the tranformations can be described by

$$
\begin{aligned}
& \underline{A}^{\prime}=\underline{S}_{X} \underline{A} \underline{S}_{X}^{-1} \\
& \underline{E}^{\prime}=\underline{S}_{X} \underline{\underline{E}} \underline{S}_{u}^{-1} \\
& \underline{C}^{\prime}=\underline{S}_{y} \underline{\underline{S}} \underline{S}_{x}^{-1},
\end{aligned}
$$

where $\underline{S}_{x}, \underline{S}_{y}$, and \underline{S}_{u} are matrices chosen to provide the desired scaling. Details of the matrices used for the transformation from radians to degrees can be found in Appendix cz.

Now that the state space description of the model is in units that make physical sense, scaling is required tu include weighting on the inputs and outputs. The weightings on the outputs are chosen to reflect the importance of the maximum allowable output state error. It is assumed that an error of one degree in pitch or roll is as significant as 0.1 degree/sec yaw rate or 0. $1 \mathrm{ft} /$ sec depth rate. This then determines the scaling matrix which will be applied at the output of the plant, \tilde{S}_{y}, as

$$
\underline{\underline{S}}_{y}=\left[\begin{array}{llll}
1 & & & \\
& \cdot 1 & & \\
& & 1 & \\
& & & 1
\end{array}\right]
$$

Eecause the control Surfaces have physical position
limits, consideration must be given to weighting the inputs to the plant. The limitations on the control surfaces are shown below:

control	rete limit	position limit
$\delta 0$	$70 /$ sec	± 200
$8 r$	$40 / 5 e c$	$\pm 0^{\circ}$
$8 s_{1}, \delta s_{2}$	$70 / 5 e c$	± 20

Since the actuator dynamics are above the anticipated bandwidth of the compensator and plant, they will be considered as high frequency modelling errors, and will be neglected $[10,11,12,1 \mathrm{~B}]$. The position limits cannot be neglected however. because they are based on physical interference constraints, and on saturation of the control

-

身

\qquad
surfaces. To model the control surface position limits, the input vector to the plant must be scaled by an appropriate $\operatorname{matri} x, \tilde{\underline{S}}_{\mathbf{u}}$, as

$$
\tilde{S}_{u}=\left[\begin{array}{llll}
1 & & & \\
& 0.067 & & \\
& & 0.8 & \\
& & & 0.8
\end{array}\right]
$$

Appendix $[$ Lists the matrices used for weighting the inputs and outputs, and the final state space matrices for the linearized model are listed in Appendix $\mathrm{C} 4 . \mathrm{Fighrex}^{\mathrm{Z}} 1$ represents the block diagram of the plant transformed for units, and weightings on the inputs and outputs. This will hereafter be referred to as the linearized model.

Figure Z. 1 Eluck Diagram of Fiant Transtormed for Units, and Weightings of Inputs and Gutputs.

The natural modes of the 1 ineariaEd model are determined by diagonalizing the state space description of the system. For a 1 ineariaed dynamic system which does not have direct coupling of the output and input,

$$
\begin{align*}
& \underline{x}(t)=\underline{A} \underline{x}(t)+\underline{B} \underline{u}(t) \tag{x}\\
& \underline{y}(t)=\underline{C} \underline{x}(t) \tag{Z}
\end{align*}
$$

Performing a linear transformation from the state vector $\underline{x}(t)$ to a new state vector $z(t)$ by means of an as yet unspecified constant, square, and invertible matrix I yield

$$
\begin{equation*}
\underline{x}(t)=\underline{z}(t) \tag{-3}
\end{equation*}
$$

Then we have

$$
\begin{align*}
& \underline{z}(t)=\underline{A} \underline{z}(t)+\underline{B} \underline{u}(t) \tag{x.4}\\
& y(t)=\underline{C} \underline{z}(t) \tag{x,5}
\end{align*}
$$

Multiplying (3.4) by I^{-1}, we have

$$
\begin{align*}
& \underline{z}(t)=\underline{I}^{-1} \underline{A} \underline{z}(t)+\underline{T}^{-1} \underline{B} \underline{u}(t) \\
& y(t)=\underline{C} \underline{\underline{E}}(t) \tag{S}
\end{align*}
$$

$1+\mathrm{I}$ is such that the resulting I^{-1} A I matrix is diagonal. then the vector $\underline{z}(t)$ defines a new state space in which the eigenvalues of the diagonal. matrix are equal to the diagonal elements. Now, define

$$
\underline{A}=\underline{T}^{-1} \quad \underline{A}
$$

The I matri\% is called the modal. matrix because of the decouplimg of the modes that is accomplished when the state space vector is transformed. To find out the nature of the modal matris, we premultiply both sides of (S. S) by T which yields

$$
\underline{A} \underline{I}=\underline{I} \underline{\Lambda} .
$$

If we now designate each column of the modal matrix by v_{i} a where i represents the number of columni vectors, then
(7) Gan be expressed as

$$
\underline{A} v_{i}=\underline{A}\left[\begin{array}{c}
T_{1 i} \\
T_{2 i} \\
\vdots \\
T_{n i}
\end{array}\right] \text {. }
$$

Thus we see that the columns of I are the eigenvectors of A. Each column of the modal matri\% desaribes the submarine motion along the coordinate anes of the state vector
 Since the dynamic response of the submarine consists of 1 inear combinations of the decoupled modes, analyaing the ᄃロlumns of I can provide userul iriformation regardirg the dynamic response of the submarine.

[^1]the response，with the eigemvalue of the mode comsidered being displayed difectly beneath the chart．

Additionally，although the bar charts provide a convenient means to display the modes of the linearized system，the physical interpretation is fairly obscure．As such． interpretation of the modes is limited to the followimg observivaions：

1．All open loop poles are in the left tand plane．

Z．Modes 1,2 and $\underset{\sim}{3}$ for the various models are dominated by the fesporise of variables w，Φ ， and 日゙。

ㅍ．Modes 4 through 8 exhibit reductions in the response of the variables $w, ~ t$ ，arid g．，with ธorresponding increase in the other vari ables．

4．Modes 5 and 6 represent an oscillatory mode dominated by the roll response．

The eigenvalues and modal matrices for the 1 inearized model are presented in Appendix D1．

To form a complete analysis，the specifications for ーローtrollability and observability will be discussed in the fulluwing section．

ssuodena jo epmifuobou

esuodses to enntubiou

The eigenvalues and eigenvectors that were determined in the previous steps will be studied, and the conditions for controllability and observability of the linearized systems will be investigated. This step is vital in Establishing the validity of the linearized model. .

First, the linearized system must have no unstable modes which are not contrallable. Second, the system must have mo unstable modes which are not observable. If these conditions of controll ability and observability are established, then the weaker conditions of stabilizability and detectability are assured.

The modal transformation leading to a diagonalized \underline{A} matris provides a fairly straightforward technique to determine satisfaction of controllability and observability requirements. Additionally, if the system does not meet those conditions, the weaker conditions of stabilizability and detectability can be determined.
Since the new state space representation of the
 natural modes of the system are decoupled, the elgenvalues give the response characteristics of the system's modes. The eigenvectors are the link that relate these response characteristics to particular changes in the state of the system as measured by the state variables $x_{1}, x_{2}, \ldots, x B_{0}$ Thus, a particular row of the \underline{T}^{-1} E matrix links the input vector \underline{u} to a particular mode of z^{*} Each element in the row
will then link a specific input to a mode. Consequently, a zero entry in the $\left(i, j\right.$) position of the \mathbf{T}^{-1} B matri\% would indicate the $i^{\text {th }}$ mode cannot be controlled by the $j^{\text {th }}$ input. In a similar manner, the \underline{C} I matrio (J.7) indicates whether a particular mode is observable in the output.

In the previous section it was observed that, for the linearized model, the system response was dominated by the variables w, ϕ, and θ in the first two or three modes. In the remaining modes, it was evident that all the state variables are affected to some extent. Duestions generally arise in Modal Analysis on the significance of the responses when the physical units are not the same. Eecause the scaling in section $\underset{\sim}{Z}$ accounted for the differences in units, and weightings on the magnitude of the system responses, the ability to compare the relative magnitudes of the system responses is valid.

Combined with the analysis of \underline{T}^{-1} B. it is observed in Figure 3.3 , that modes 4,7, and 8 appear to be least affected by the control inputs. For the other modes. it appears the control inputs exhibut strong influemae on the submarine's response.

It appears then, that the modes which should be considered in the controllability $i s s u e$ are Modes $1,2, \mathcal{Z}, 5,5 n d$ 6. Fieferring back to the modal response charts for each model, the variables which show the most promise of controling are $w, ~ \Theta, p, q, r$, and $\phi_{\text {. }}$

\section*{1 = =
 $4+=$

-

-

2

$+$

It is desirable to select the output var゙iables which Can be referenced in the imertial reference frame instead of the body reference frame. Eased on this desire, and the fact that it is also desirable to control heading rate in Migh speed maneuvers with a minimum excursion in depth, this analysis shows that the selection of z, , θ, and ψ, are reasonable output variables.

Fiqure $\underset{\sim}{\text { Fig Controllability Aralysis for the Limearized }}$ Fiall Control model.

In section $\underset{\sim}{*} 1$ it was observed timat the poles af the open loop plant are the eigenvalues of the \underline{A} matrix. The models investigated are all open loop stable because they all have left half plane poles.

The multivariable transmission zeros are listed im the Fodal Ahalysis results in Appendis D1. The model presented is for a reduced ar der state space systen in which the states 2 and ψ were removed as described in sectamm $\underset{\sim}{2}$ an The output variables, a and "' for the C matrix are derived usimg the appropriate rows of the \underline{A} matris. $1 f$ a transmission zero is in the right half planeg and if it is in the bandwidth of the system, it will impose severe I imitations on the pertormance of the system $44,18,19]$. 4 the nor-ininimum phase zero is atove the system bardwidth. then its adverse effect should be greatly attenuated. Nome of the limear models studied heve low frequency nonmminimum

> Tn the multivariable case, a plot of the transter matrix sinqular values is analogous to the Bode plots for Single Input single Output (SISO) systems [1SJ. The simgulat values of a matrix M, $\underline{M}_{\text {g (M) are defined as: }}$

$$
\begin{equation*}
\sigma_{i}(\underline{M})=\left[\quad \lambda_{i}\left(M^{H} \underline{M}\right)\right]^{1 / 2} \tag{3.9}
\end{equation*}
$$

Where: $\sigma_{i}=t^{\text {th }}$ Eingular value

$$
\lambda_{i}=i^{\text {th }} \text { eigenvalue of } M
$$

$$
\underline{M}^{H}=\text { complex comjugate transpose of }
$$

In the MIMO case, substituting the plant transfer matrix, G(s), for M, yields

$$
\begin{equation*}
\underline{G}(s)={\underset{C}{p}}^{[s I}-{\underset{\sim}{A}}^{]^{-1}} \underline{E}_{p} . \tag{3.10}
\end{equation*}
$$

Solution for $\underline{\mathbf{G}}(5)$, with $s=j w$, on a computer yields the singular values of $\underline{\mathrm{G}}(5)$ as afunction of frequency. The singular value plot of the scaled open loop model is shown in Figure z. 4 . The larger singular values of figure zu are dominated by \ddot{z} and $\ddot{\psi}$. The smaller sinqular values are dominated by Θ and $\$$.

Figure z. 4 Singular Value Flot of the Scaled Linear Model

As an indication of the effect of the control surfaces on the outputs, the de gains of the open loop transfer function
matrix are listed in Table B. By reading across for each output variable, the relative effect of the control surfaces can be determined. The rudder angle is shown to strongly influence the roll angle, which is as expected. Fitch angle is most affected by the stern planes, and the rudder strongly influences yaw rate. Depth rate is strongly influenced by the stern planes, and slightly affected by the bow planes. The rudder strongly influences depth fate due to the roll angles, which influence the depth rate.

Table $\underset{\sim}{*} 1$ Input to Output Coupling

ϕ	-5.3	-5.1	-14.5	-16.9
4	-1.5 .2	0.2	5.4	5.3
4	-45.1	-5.3	-50.5	-27.8
$\#$	4.1	18.6	21.8	23.7

Figure s. F represents singular value decomposition of the linearized model at dc. The bar charts represent the normalized left and right singular vectors where

$$
\underline{G}(5)=\underline{C}[s \underline{I}-\underline{A}]^{-1} \underline{B} .
$$

For $s=0$.

$$
\begin{aligned}
& \underline{G}(0)=-\underline{C} \underline{A}^{-1} \underline{E}, \text { where } \\
& \underline{G}=\underline{U} \underline{E} \underline{V}, \text { and } y(t)=\underline{G} \underline{u}(t) .
\end{aligned}
$$

Then $\underline{y}(t)=\underline{\underline{U}} \underline{\underline{v}} \underline{\underline{u}}(t)$, and we can define $\underline{y}^{\prime}(t)=\underline{\Sigma} \underline{u}^{\prime}(t)$, where

$$
\underline{y}^{\prime}(t)=\underline{U}^{-1} \underline{y}(t) \text { and } \underline{u}^{\prime}(t)=\underline{v} \underline{u}(t)
$$

Since $\underline{\Sigma}$ is a diagonal, square matri\%, each element of $\underline{\Sigma}$ allows us to compare the left and right singular vectors to display the response of the output variables with respect to the imput variatules.

Feferring to Figure zns(a), for or 11 we observe the Etern planes contribute to both roll and yaw rate, and for ser, the bow planes contribute to pitch angle and depth rate. In Figure Gu (b), for org" we observe the stern planes and rudder contribute to depth rate and pitch angle, while, for 44 , the rudder contributes primarily to roll angle and yaw rate.

3.7 Summary

This chapter concentrated on describing the technique of modal analysis and its ability to determine the eigenstructure and modal decomposition of the state space description of a linear model.

The use of modal analysis has allowed the formulation of the prerequisites mecessary to pursue the LQG/LTF design methodology which will be discussed in the following chapter. These prerequisites are that the open lop linear model $i s$ detectable and stabilizableg and that the locetion -f non-inimimum phase zeros be known.

Figure 3.5(a) Singular Value Decomposition for the Scaled Linear Model at DC

Flgure 3.5(b) Singular Value Decomposition for the Scaled Linear Model at DC

mul Tivariaele control system design

4.1 Introduction

In this chapter, a controller is designed using the LGG/LTF design methodology. The singular value loup shaping approach is used to obtain desirable singular values of the systen transfer function matrix to meet the specifications of performance and robustness to plant uncertainties and modelling errors.

The chapter begins with a description of the LQG/LTFi design methodolagy, and specifications to which the controller will be designed.

Section 4 of the chapter is involved with the design of the controller, and its application with LGG/LTF. The last section of the chapter describes the closed loop system, which will be tested and analyaed in Chapter Five.

4.2 The LGG/LTF Design Methodology

The multivariable LQG/LTF design methodology consists of four major steps [18].

The first step is the development of a low frequency model of the nominal plamt ant determination of modelling uncertainties. For purposes of good command following and disturbance rejection, the frequency range of interest is at 10w frequencies (\& 10 rad/sec).

The modelling uncertainty in the nominal model due to sensor noise, ummodelled dynamicsy and actuator dynamics, $i=$ assumed to be concentrated at high frequencies. Fixing the crossover frequency of the singular values of the loop transfer function matrix will determine the significance of the unmodelled dynamics, and the ability of the plant to meet command following specifications.

The actual linear time invariant plant and the nominal model at low frequencies are assumed to be identicalg and determination of the modelling uncertainty will not be performed in this thesis. As a result, step one is limited to development of the linear model and determination of the maximum allowable crossover frequency.

The second step of the design process establishes the low frequency performance requirements. The state space bloc: diagram of the compensated plant is shown in Figure 4.t.

Figure 4.1 Elock: Diagram of a MIMO Compensated Flant
$=$

willeten

```
r(s) = reference signal or command input vector
e(s) = error signal vector
u(s) = control vector to the plant
Y(s) = output vector of the plant
d(s) = disturbance vector at the plant output
K゙(s) = compensator transfer fummtion matri%
G(s) = augmented plant transfer matrix
```

The transfer matri $\underline{\underline{G}(s) ~ c o n t a i n s ~ t h e ~ m o m i n a l ~ l o w ~}$ frequency model $\underline{G}_{\mathbf{p}}(s)$ and any alumenting dynamics $\underline{G}^{(s)}$, and is defined the nominal design model. Thus

$$
\begin{equation*}
\underline{G}(5)=\underline{G}_{p}(5) \underline{G}_{a}(5) \tag{4.1}
\end{equation*}
$$

To determine the requirements of $K(s)$, the overall loop transter function of the closed loup system is analyzed. where

$$
\underline{Y}(5)=[\underline{I}+\underline{G}(5) \underline{k}(5)]^{-1} \underline{d}(s)+[\underline{I}+\underline{G}(s) \underline{k}(s)]^{-1} \underline{G}(s) \underline{k}(s) \underline{r}(s)
$$

For good command following, $y(s)$ w $\underset{(s) \text {, and for disturbance }}{ }$ rejection, the effect of d(s) must be hept small. If the minimum singular value of $\underline{G}(s) \underline{Z}(s)$ is 1 arge with respect to unity at frequencies belaw crossover, both of these requirements can be met. Litewiseg for frequencies above Grossuver, the response of the outputs with respect to sensor moise aan be minimized and stability-robustness enhanced if the maximum singular value bf $\underline{G}(s) k$ (s) is small. with respect to urity. high and low frequency barriers on the simgular value plate of $\underline{G}(5) \underline{K}(5)$, as shown in Fiqume 4.2 .

Figure 4.2 Flot of Desired Singular value Shapes

The high frequency barrier imposes a robustness constraint on the compensator and the low frequency barrier imposes the cominand following and disturbance rejection requirements. The third step of the design process is determining the compensator transfer function matrio, $\underline{K}(s)$, that will
provide the singular values ar $\underline{G}(s) k$ (s) shown above. This step of the process is appropriately termed "loop shaping".

The k゙alman Filter methodology is first applied to the nominal design model. This produces a transfer matrix $\underline{G}_{10}(s)$ that has the desired singular value lopp shapes. A distinction is noted in this proaedure however, because the fre theory is applied in a specific manner whioh is mot ta be contused with optimal state estimation.

$$
\text { Fiecall from Chapter } 2 \text {, the nominal state space }
$$ description .

$$
\begin{align*}
& \underline{x}(t)=\underline{A} \underline{x}(t)+\underline{B} \underline{u}(t) \tag{4.2}\\
& \underline{y}(t)=\underline{C} \underline{x}(t) \tag{4.3}
\end{align*}
$$

 measurement noise

$$
\begin{align*}
& \underline{x}(t)=\underline{A} \underline{x}(t)+\underline{L} \underline{\xi}(t) \tag{4.4}\\
& \underline{y}(t)=\underline{C} \underline{x}(t)+\underline{\underline{g}}(t) \tag{4.5}
\end{align*}
$$

WhEre:
$\underline{\xi}(t)=$ process white moise with I intensity matrix
$\underline{\theta}(t)=$ measurement white moise with $\mu \mathrm{I}$ intensity matri\%.

The design parameters μ and L are used to produce the Jesired loqp shapes af the tramsfar matrix Graf (s) where

$$
\begin{align*}
& \underline{G}_{\underline{K} F}(5)=\underline{C}[S \underline{I}-\underline{A}]^{-1} \underline{H} \tag{4,6}\\
& \underline{H}=(1 / \sqrt{ } \mu) \underline{E} \underline{C}^{\prime}, \tag{4.7}
\end{align*}
$$

Con
and $\underline{\Sigma}$ i三 the solution to the Filter Algebraic Riccatti Equation (FAFE)

For a specific value of μ, the transfer matris $\mathrm{G}_{\mathrm{k}}(\mathrm{s})$ cam be approximated quite readily. Since at high and low frequencies $\equiv=\mathrm{jw}$

$$
\begin{align*}
& \underline{G}_{F O L}(5)=\underline{C}[5 \underline{I}-\underline{A}]^{-1} \underline{L} \text {, and } \tag{4.9}\\
& v_{i}\left[\underline{G}_{K F}(5)\right] \approx(1 / \sqrt{\mu}) \sigma_{i}\left[\underline{G}_{F O L}(5)\right]
\end{align*}
$$

then the L matrix can be chosen in a way to produce the desired loop shapes and μ can then be used to adjust the simgular values up or down to meet the fequired crossover frequency specifications.

$$
\text { As long } a \equiv[\underline{A}, \underline{L}] \text { is stabilizable and }[\underline{A}, \underline{\underline{C}}] \text { is }
$$

detertable, then any choice of μ and L will provide the following guaranteed properties for $\underline{G}_{\mathbb{K}}(5):$

1. closed loop stable
2. Fobust

$$
\begin{aligned}
& \sigma_{\min }\left[I+\underline{G}_{K F}(s)\right] \doteq 1 \\
& \sigma_{\min }\left[\underline{I}+\underline{G}_{K F}-1(5)\right] \doteq 1 / 2
\end{aligned}
$$

Zu infinite upward gain margin
4. 6 dE downward gain margin
5. 士 6° phase margins

The fourth and final step of the design process involves the "recovery" of the loop shapes of $\underline{G}_{k F}$ (s) by the

compensated plant transfer matrix $\underline{G}(5) \underline{k}(s)$. This is done by solving the Control Algebraic Ficcatti Equation (CARE)

$$
\begin{equation*}
0=-\underline{K} \underline{A}-\underline{A} \underline{K}-q \underline{C} \underline{C}+\underline{K} \underline{B} \underline{B} \underline{K}, \text { for } q>0, \tag{4.10}
\end{equation*}
$$

Using the design parameter q, and defining the control gain matris

$$
\begin{equation*}
\underline{G}=\underline{\underline{B}} \underline{x}^{\prime} \underline{\underline{K}} \tag{4.11}
\end{equation*}
$$

For a valid solution of the CAFE, three conditions are necessary:

1. [$\underline{A}, \underline{B}]$ must be stabilizable,
2. [$\mathrm{A}, \underline{\mathrm{C}}]$ must be detectable, and

区. The nominal design plant must not have nonminimum phase zeros.

When calculated using the above procedure, the filter gain matrix \underline{H} and the Control gain matrix \underline{G} define a speciad. type of compensator known as a "Model Eased Compensator" (MEC), designated as $K_{\text {MBC }}{ }^{(s)}$) This compensator differs from other LGG/LTF compensators only in the manner in which \underline{G} and \underline{H} are calculated. The state space description of the MEC is

$$
\begin{align*}
& \underline{\underline{z}}(t)=(\underline{A}-\underline{B} \underline{G}-\underline{H} \underline{C}) \underline{z}(t)-\underline{H} \underline{\underline{e}}(t) \tag{4.12}\\
& \underline{\mathbf{u}}(t)=-\underline{G} \underline{\underline{z}}(t) . \tag{4.13}
\end{align*}
$$

and is shown pictorially in Figure 4. .

Figure 4.3 Model-Based Compensator in a feedback configuration.

Froviding the plant is minimum phase [2], the singular values of $\underline{G}(5) K_{M E C}(5)$ converge to the singular values of $\underline{G}_{k F}{ }^{(5)}$ as the design parameter $q \rightarrow \omega_{0}$ Above crossover frequencies, additional rolloff is produced by the recovery phase, which further enhances the high frequency robusthess characteristics. As a result, the loop shape of $\underline{G}_{k F}(s)$ is recovered, and the resulting controller will have the desired performance characteristics.

4. 3 Controller Specifications

Ferformance specifications outlined in this thesis are not all encompassing and do not necessarily reflect established Navy specifications for submarine control systems. The performance requirements are mainly driven by the intuitive engineering approach to obtain good command following, good system response, robustness, and disturbance reiection. These performance requirements will be met through loop shaping techniques.

Two performance requirements are imposed on the controller design. First, the steady state error to step commands and step disturbances is to be zero. Second, the maximum crossover frequency is limited by the ability of the submarine to respond and by the rate at which the compensator deflects the control surfaces.

The zero steady state requirement is met by placing integrators in each of the four input channels. Since the error signal appears at the input to the plant. this $i=$
where the integrators will be placed. In this manner. the integrators will then become part of the compensator which is before the plant in the feedback loop. Note that the use of integral control in the input channels will not prevent the specification for maximum crossover frequency from being met.

The maximum crossover frequency of the compensator determines the rapidity of the control surface deflections based on the error signals which are generated by the difference between the feference commands and the measured outputs. Various models were analyaed during this research to determine the effects of the maximuin frossover frequency. As the maximum crossover frequency was varied from on 1 rad/sec to 1.0 fad/sec, two major observations were made. The first observation was that for high arossover frequencies the dynamic response of the submarine reacted more quickly and improved. The second observation was that the control surface deflections occurred more rapidly, whicti contributed to the improved dymamic response of the submarine. Since actuator dymamics are not directiy modelled in this thesis the maximum crossover frequency was selected based on control sufface deflections which approximate actuator dynamics as listed in section zu. Although not explicitly stated as a performance specifiration, from the performance aspect, jt is desirable to have all singular values aross over at about the same frequency. Alse, on the high frequency side, the contraller
must be capable af rejectimg moise and be robust to high frequency modelling errors. Naise sources qenerally origjnate from the enviromment, or fram the sensar itself. Semsor naise typically accurs at a higher frequency than the system bandwidth and should not affect the dynamics of the ship since ship eigenvalues will typically lie in the lower frequency band.

4.4 Controller Design

4.4.1 Augmentation of the Model Dynamics

Augmenting the dynamics of the submarine contral system mormally serves a dual purpose. One is to model the actuator dynamics to make the model as accurate as possible and ta achieve desirable rallaff at arossover for robustnessn The other is to include integrators to aduse the compensator to permit the submarine ta aahieve zero steady state error to step inputs and disturbances (i.enq good Cominand following). The attuator dynamias are above the maximum expected erossaver frequencyy and thus are Meglected $[11,12,1 \leq$. This isperfectly valid as lang as the rollatf above crossover $i=f a s t$ enough amd satisfies the robustness criteria.

A black diagram or the augmented model appears im Figure 4.4. It is geen that whe integrators are placed in the control chamnels. The mathematics of the auqmented states will be manipulated iri Euch a way as to provide a means to achieve the desired loop shapes of GFOL (s).

Figure 4.4 Integrators placed in the control channel of plant.

We define the augmentation dymamic: by $\underline{G}_{a}(5)$, whose state space description is

$$
\underline{\underline{u}}_{p}(t)=\underline{u}_{c}(t) \quad \underline{\underline{G}}_{a}(5)=\underline{I} / 5
$$

where each matris $i=[4 x$ 4]. The abomenting dymamics are introduced to the $8^{t h}$ order system using state space multiplication, produeing a $1^{\text {th }}$ order system. Note that the physical imput to the plant $i=1$ abelled $u_{p}(s)$ to distinguish it from the output of the compensatior $u_{c}(s)$. Although the augmentation dynamics $G_{a}(5)$ will eventually be lumped with the compensator. they are kept separate until the LoG/LTF procedure is complete. Fiqure 4.5 shows a comparison of the unaugmented and augmented model. As shown, the integrators at the input produce a high de gain increase at 0.001 radsean

(a) Unaugmented Flant

(b) Filant augmented with integral control

Figure 4.5 Comparison of Open Loop Singular Values with and without augmenting dynamics

4.4.2 Salman filter Loop Design

In section 4.2, it was stated that at high and low frequencies the singular values of the kalman filter transfer function matrix are approwimated by the singular values of $(1 / \sqrt{\mu}) \underline{G}_{\text {FOL }}(5)$. For each choice of $\underline{L} \underline{G}_{\text {FOL }}(5)$ is easily calculated using available software.

To meet the loop shaping requirements displayed in Figure 4.2 , the maximum and minimum singulat values af $\mathrm{G}_{\mathrm{KF}}(5)$ should be identical at high and low frequencies. and as close as possible at crossover. The choice of the design parameter \leq will thus be based on this philosophy.

Fiecall from section 4.2 that $\underline{G}(5)=\underline{G}_{p}(5) \underline{G}_{a}(5)$, and define $\underline{G}(s)=\underline{C}[s \underline{I}-\underline{A}]^{-1} \underline{E}$. where

$$
\underline{A}=\left[\begin{array}{ll}
\underline{\underline{Q}} & \underline{o} \\
\underline{E}_{p} & \underline{A}_{p}
\end{array}\right] \quad \underline{C} \quad\left[\begin{array}{ll}
\underline{Q} & \left.\underline{C}_{p}\right]
\end{array}\right.
$$

and

At low frequencies, $s I-A_{p} \approx-A_{p}$ and $\left[s I-A_{p}\right]^{-1} \approx-A_{p}{ }^{-1}$. Since A_{p} has distinct and nommero eigenvalues. $A_{p}{ }^{-1}$ exists. We now partition the L matrix into \underline{L}_{1} mon \underline{L}_{2}, where L_{1} will be selected for low frequency matching, and b_{2} with wes selected for high frequency matehing.

Forming $\underline{G}_{\text {FOL }}(5)$ for low frequemciene:

$$
\begin{align*}
& \underline{G}_{F O L}(5)=\underline{C}[s \underline{I}-\underline{A}]^{-1} \underline{L} \\
& \underline{G}_{F Q L}(S) \approx\left[\underline{Q} \quad \underline{C}_{p}\right]\left[\begin{array}{cc}
\underline{Q} / 5 & \underline{o} \\
-\underline{A}_{p}^{-1} \underline{B}_{p} / 5 & -\underline{A}_{p}^{-1}
\end{array}\right]\left[\begin{array}{l}
\underline{L}_{1} \\
\underline{L}_{2}
\end{array}\right] \\
& \approx-\underline{C}_{p} \hat{A}_{p}{ }^{-1} \underline{E}_{p} L_{1} / 5-\underline{E}_{p} \hat{A}_{p}{ }^{-1} \underline{L}_{2} \tag{4.14}
\end{align*}
$$

It $i=$ now seen that the singular values can be matched at low frequencies if we select the matrix \underline{L}_{1} as follows:

$$
\begin{equation*}
\underline{L}_{1}=-\left[\underline{C}_{p} \underline{A}_{p}^{-1} \underline{B}_{p}\right]^{-1} \tag{4.15}
\end{equation*}
$$

At high frequencies, $\overline{\underline{I}} \underline{-}_{p} \approx \leq \underline{I}$, and $\left[s \underline{I}-\underline{A}_{p}\right]^{-1} \approx \underline{I}$.
Forming $\underline{G}_{\mathrm{FOL}}(\mathrm{s})$ for high frequencies,

$$
\begin{aligned}
& \underline{G}_{F O L}(5)=\left[\begin{array}{ll}
\underline{\underline{O}} & \underline{C}_{p}
\end{array}\right]\left[\begin{array}{cc}
\underline{\underline{I}} / 5 & \underline{o} \\
\underline{B}_{p} / s^{2} & \underline{\underline{I}} / 5
\end{array}\right]\left[\begin{array}{l}
\underline{L}_{1} \\
\underline{\underline{L}}_{2}
\end{array}\right] \\
& \therefore \quad C_{p} B_{p} L_{1} / s^{2}+C_{p} L_{2} / s .
\end{aligned}
$$

The singular values can now be matched at high frequencies if we select L_{2} as follows:

$$
\begin{equation*}
\underline{L}_{2}=\underline{C}_{p} \cdot\left(\underline{C}_{p} \underline{C}_{p} \cdot\right)^{-1} \tag{4.16}
\end{equation*}
$$

since as $s+\infty, 1 / 5 y 1 / s^{2}$, and the second term dominates the maximums singular values.

The above method for constructing the \leq matrix provides the designer with a guarantee of identical behavior of the Kalian filter log singular values at both high and low
frequencies. However, this method does not provide an opportunity to directly control the shape of the singular values at crossover.

Once the L matrix is determined, the parameter μ is used to move the singular value plots up or down to obtain the desired erossover frequency. Then we can solve the FAFE and calculate $\mathrm{G}_{\mathrm{KF}}(5)$. The final value of μ used for the model during the ralman filter design process is 4 . The Kalman filter gain matrices are included in Appendis E.

Figure 4.0 is a plot of the singular values of the Kalman filter transfer matri\% $\underline{G}_{F O L}(5)$ for the \leq matri\% as defined in equations 4.15 and 4.16, and for $\mu=4.0$. Although the simgular values match at high and low frequencies, some differences exist at crossover.

Figure 4.6 Eingular values of $\underline{G}_{F O L}(5)$

If the dynamic response of the model is not

Satistactory，it is Mecessary to investigate the elements of the transfer fumction matwix $\underline{G}_{\text {FOL }}$（s）in an attempt to contral the separation of the singular values at crossover．
 result in a tight crossuver pattern of the singular values．

4．4．Application of LOG／LTF

As stated in the overview of the LQG／LTFi design procedure，once the k゙alman filter design is complete，the remainder of the design process is quitestraightrormard．

It is now necessary to choose the design parameter q． and salve the CAFE to obtain the k゙ matrix．Thenn we determime the Contral gain matris

$$
\underline{\underline{G}}=\underline{\underline{E}} \underline{\prime}^{\prime} \underline{\underline{R}}
$$

Fiecall that for this recovery method to work well，the Submarime model must not have low frequency transmission エergs．A value of $q=1000$ was used for the modely producing the Control gain matrices in Appendix E1．

The entire design sequence is summarized in Fiqure 4.7, which are the singular value plots or $\underline{G}_{F O L}(s)$ g $\underline{G}_{\mathcal{F} F}(s)$ arid G（s）E゙（s）．The minimum and meximum crossaver frequenties are 6．2rad／sec and Ongrad／sec，respectively．

(b) Kalman Filter Loop, G्F F

(c) Recovered Open Loop Transfer Functionn $\underline{G}(5) \underline{E}(5)$

Figure 4.7 Summary of the Logilifi Design Sequence

```
The closed loop system can be written in state space
``` form as
\[
\begin{aligned}
& {\left[\begin{array}{l}
\underline{\dot{x}}(t) \\
\dot{z}(t)
\end{array}\right]=\left[\begin{array}{cc}
\underline{A} & -\underline{B} \underline{G} \\
\underline{H} \underline{E} & \underline{A}-\underline{B} \underline{G}-\underline{H C}
\end{array}\right]\left[\begin{array}{l}
\underline{x}(t) \\
\underline{z}(t)
\end{array}\right]+\left[\begin{array}{c}
\underline{o} \\
-\underline{H} \underline{C}
\end{array}\right]} \\
& \underline{y}(t)=\left[\begin{array}{ll}
\underline{C} & \underline{O}
\end{array}\right]\left[\begin{array}{l}
\underline{x}(t) \\
\underline{z}(t)
\end{array}\right],
\end{aligned}
\]
\(r(t)\)
where:
\[
\begin{aligned}
& \underline{x}(t)=\text { the state of the nominal design model } \eta \text { and } \\
& \underline{z}(t)=\text { the state of the compensator. }
\end{aligned}
\]

The poles and zeros for the closed loop systen ame contained in Appendix El. Since all the poles are in the left half plane, the system is in fact stable.

Feferring to the overall loop transfer function of the closed loop system (section 4.2), from command input to output, then the sinquiar values of the closed loop plamt should be approximately o dE from dc up to the orossover frequency, and then rolloff at frequencies above orossover. This is shown in Figure \(4 . \mathrm{E}_{\mathrm{n}}\) which \(\mathrm{i}=\mathrm{a}\) singular value plot of the closed loop system.

Figure 4.8 Singular Values of the Closed Loop
The simgular values of the compensator are shown in

Figure 4.9. Here we otserve the lead-lag characteristics of the coimpensator over the frequency range of interesta Mote the large amplifications at frequencies below crossover. The large spread in the singular values indiaates certain directions are being amplified more than others.

Figure 4.9 Compensator Singular Values
\({ }^{\circ}\) Figure 4.10 represents the singular values for the loop transfer function broken at the plant input instead of the plant output. Fieferring back to Figure 4.1, we see that the plots represent the net amplification from reference commands \(E(s)\) to the controls \(\underline{u}_{p}(s)\), where
\[
\underline{u}_{p}(5)=[\underline{I}+\underline{K}(5) \underline{G}(5)]^{-1} \underline{K}(5) \underline{E}(5) \text {. }
\]

The figure shows that there are certain directions where amplification is required more than in others.

Figure 4.10 Sinqular values for the Transfer Furiction brofen at the Flant Input

\section*{4. 6 Summary of LQG/LTF Design Sequence for Model without Fioll Control}

Figure 4.11 displays a summary of the LoG/LTF design sequence for a model which does not have active roll control. The entire design sequence is illustrated from the singular values or the original s-input s-output planta through the 1 ロロp transfer fecgvery Frowess. For completenesss the singular value plot of the closed loup is al 1.0 presented.

 2
 +isurn

(b) Augmented Open Loup Filant

(a) Kalman Filter Gpen Loop. \(\underline{G}_{\text {Fol }}\)

Figure 4.11 Summary of the LGG/LTR Design Sequence for Model without Foll Control

(e) Fecovered Open Loop Transter Function, \(\underline{G}(5) \underline{E}(5)\)

(f) Singular Values of the Closed Loop

Figure 4.11 Summary of the LQG/LTE Design Sequence for Model without Fioll Contral

This chapter demonstrated the application of the LQG/LTF control system design methodology. Specifications for the controller design were also presented, and then the methodology was applied to the design of a submarine control system.

Compensator designs were studied for various crossover frequencies, and then a compensator was selected which provided system response characteristics which were desirable, and which deflected the control surfaces in a reasonable manner.

Additionally, summary plots of the design sequence for a control system design without active roll control Capability was also provided.

Figure 4.12 represents the final closed loop design on which Chapter Five is based.

Figure 4.12 Block Diagram of the Closed Loop System

\section*{S. 1 Introduction}

In this chapter, the performance of the controller design is Evaluated. The contraller is tested using both the linear and non-linear submarine simulations to determine how closely the performance specifications are met, and to test for instabilities in the design.

The 4-imput, 4-output design is also compared to a imput, s-output design that does not have the capability of active roll control. The comparisons provide a measure of performance improvements for the submarine when active roll control using the differential stern planes are employed.

\section*{S. 2 Implementation of the Compensator}

To implement the compensator on the computer facility at Draper, programming Changes were mecessary in two subroutines which are needed by the submarime simulation prograin. Subroutines OUTFTS and MEDCMF were modified to rerlect scaling for consistent units from radians to degrees. Additionally, to maintain a properly scaled error vector to the compensator, it was mecessary to apply appropriate scaling matrices to the \(\underline{B}\) and \(\underline{C}\) matrices of the MEC. These matrices reflect the weightings which were applied to the input and output vectors of the open lopp model during the compensator designs of Chapter Four.

\section*{\(-\)}

\section*{}
\(\qquad\)
-
\(\qquad\)
1
\(\qquad\)

Once complete, the linear plant dynamics, upon which the compensator was designed, were repiaced with the submarine simulation program to evaluate the performance of the compensator. This implies then, that the error vertor, \(e^{(t)}\), at the input to tine Model Based Compensator is always the true difference between the commanded input and the output variables.

Fiqure 5. 1 displays how the MBC feedbact configuration for this design is modified by scaling. The block identified as COMF is now the MEC with the augmenting dynamics as discussed in the previous chapter. Describing the MBC with \(A\), \(B\), and \(\underline{E}\) matrices (as shown in section 4.5) we now include the scaling matrices \({\underset{S}{S}}^{-1}\) and \(\tilde{S}_{y}\) into the compensator, and define the resulting compensator as the compensator provided to the computer simulation at Draper.

\[
\begin{aligned}
& \text { Figure 5.1 Modifications of the MBC FeEdbact: Design } \\
& \text { for Weightings on Inouts and Dutputs }
\end{aligned}
\]

\section*{5. \(\mathcal{Z}\) Testing of the Compensator Design}

The LQG/LTF compensator design was tested by providing the computer simulation at Draper with a Jata file
the computer simulation at Draper with a data file containing time sequenced command inputs and then integrating either the linear or nom-linear equations of motion. Transient and steady state maneuvers were performed to validate the resulting designs. To provide comparisans for the various models, however, only the steady state maneuvers will be displayed in this thesis.

The evaluations of the Model Eased Compensators are performed by first comparing the linear and non-1inear simulations of the roll contral model. The evaluations are completed by comparing a second MEC. designed without roll control Eapability, to the NEC designed with roll control Capability.
5. 4 Comparisom of the Limear and Nom-1inear simulations

Use of the LGG/LTF design methodology allows hs to analyze the limear and non-linear applications of the design tu ascertain whether the design is valid. Discountimg effects due to non-linearities, the resulting linear simulation provides a prediction of initial derivatives. natural frequencies, and damping effects which aan be expected in the nom-linear simulation.

Figure 5.2 represents a comparison of the linear (LOG/LTR) and mon-linear responses of the sutmarine simulation for a commanded \(1 . \mathrm{g}_{\mathrm{o}}\) pitch angle. In the linear model, we observe that the forward velocity is essentially constant, while in the nom-limear model we observe a
dectease of approximately os krots in the ship a fombrd velocity Beceuse the lireer model meglects the non-linear dynamics of the submarine, we see a roll angle develop for the linear model which causes a heading change and depth excursion which is much more significant than in the mon1inear response.

Comparing the contral. Eurtace deflertions, we see that the limear model requires slightly more deflectiori to obtair the desired fesporse, which indicates that, irithe linear cese, the \(\quad\) oontrol surfaces are less effective. The fact that the linear model indjcates 1 ess contral surface authority explains the fact that the controller error signal does not disappear uritil much later than in the mori-limear simulation.

For completeness, the outputs are also provided. Note that the outputs essentially exhitit the mirfor image of the controller error, but additionally provide indicatiori af the t.r"e autput in the variable commanded for the maneuver, in this cateq pitch angle \(\boldsymbol{\theta}_{\mathrm{s}}\)

The purpose of this comparisoon was to estatiost the validity of both the Eampensator design, and the computer Software used for the simulations. This was particulawly important because of the modifications made to the computer छulb"Gutines far scaling and selection of output variables. The simulations performed in the hext section use only the nom-1 inear computer models.

\(\begin{array}{lllllllllll}0 & 20 & 40 & 80 & 80 & 120 & 120 & 140 & 160 & 180 & 200\end{array}\)

Figure 5.2(a) Comparison of the Linear and Non-linear Response of the Roll Control Model for a 1.5 degree pitch angle

\(1100 \quad 120 \quad 160 \quad 180 \quad 200\)

0
0
0
0
-9
-0

Figure 5.2(b) Comparison of the Linear and Non-linear Response of the Roll Control Model for a 1.5 degree pitch angle
응
\(\rightarrow-\)
20

ATtitude and Depth
linear simulation. model with roll control

homlinegr simulation. design hath roll control
ATtItude And Depth

\(60 \quad 80\) THE
CONTROL INPUTS
limear simulation. hooel hith roll conirol

Figure 5.2(c) Comparison of the Linear and Non-linear Response of the Roll Control Model for a 1.5 degree pitch angle

\section*{CONTROL INPUTS}
homlinear sifiulation. design hith roll conirol

time
CONTROLLER ERROR
nonlinear simulation. design hilh roll control

 Figure \(5.2(\mathrm{~d})\) Comparison of the Linear and Non-linear Response of the

\section*{CONTROLLER ERROR}

 Roll Control Model for a 1.5 degree pitch angle
OUTPUTS
LIMEAR SIMULAIION. MOOEL HITH roll control
OUTPUTS
coccer

Figure 5.2(e) Comparison of the Linear and Non-linear Response of the Roll Control Model for a 1.5 degree pitch angle

Having established the validity of the compensator
design and the compensator software, it is now necessary to demonstrate the performance characteristics of the roll
control model as compared to a comparably designed
compensator without roll control capability.
Using the criteria presented in Chapter Four, a Model
Eased Compensator was designed which does hot have rall
control capability. The elimination of roll angle, \(\%\), as a state of the output vector resulted in an input vector us), where
\[
\underline{u}(t)=\left[\begin{array}{l}
\delta b \\
\delta r \\
\delta s
\end{array}\right] \quad \text { and } \quad \delta==\delta E_{1}+\delta_{2}
\]

Information regarding the state space descriptions of the model without roll control capability is provided in Appendix ct. Modal analysis results are provided in fippendix De, and properties of the closed loup system are provided in Appendix Ez.

To allow comparisons between the two models that provide useful information, the same design parameters were used for both models. The output vector for this model is \(y(t)\), where
\[
y(t)=\left[\begin{array}{lll}
\underline{\theta}(t) & \underline{\psi}(t) & \dot{\underline{z}}(t)
\end{array}\right]^{\top} .
\]

Comparisons are made for four simulations. The first two simulations are for heading changes by commanding a step

\section*{}

크를
input of 1 deg/second, and 2 deg/second, fespectively. The intent of these two simulatians is to display the summarime trajectory when a steady turning rate is commanded. A larger commanded heading rate should accelerate the nonlinear characteristics of the system. The third comparison is for a combined maneuver in which step commands of 1 degree of pitch, 0.5 feet/second of depth rater, and 1 degree/second of heading change are provided to the compensators. The fourth simulation is less detailed than the three preceding ones, however, the commanded turning rate is B degrees/second, and provides additional insight into the differences in the two compensators.

In all four simulations the commands are applied as step imputs at \(t=5\) seconds. Additionally, im the simulations for the design without rall control, the stern Plane deflections \(\delta s_{1}\) and \(\delta S_{2}\) are shown separately to further illustrate the stern plane deflections in the design with rall eantrol.
5.5. 1 Mild Turning Mameuver

Figure s. B diEplays the results of commanding a mild turning maneuver of 1 deg/sec. For this turning raten the ship experiences a decrease in formard velocity of 6\%u

Looking first at the design with roll comtrol, we otserve that the sumarine initially folls outwards then snap rolls into the turn at \(t=12\) geconds. Themasimum imward roll angle \(i=2\) at \(t=2 \sum^{2}\) seconds. The ship has a
maximum dewnward pitch angle of - º \(^{\circ}\). The ship loses e feet in depth during the entire maneuver a It is observed the stern planes deflect differentially to compensate for the rol moment, with a steady state difference of bo. Note the use of bow planes to minimize the depth rate. Once aepti rate erfor has been eliminated, the bow plames retimn to Wheir חeutral positignn

To obtain the commanded turning rateq the rudder initially deflects 5o. As the error in yaw rate decreases, the rudder steadies at slightly less than zo deflection. Looking now at the model without roll controly it is immediately observed that the ship experiemaes a ghep foll of 10\% with toll angle steadying out at go Due to the roll angle, and the effect of the rudder, the ship experiences a downward pitch angle of approsimately zo which causes the ship to experience a depth luss of almosto 6s reet. Eecause the roll angle is contributing to the depth reteq the buw planes are detlected \(\%\) owith stern Plane deflections of - \(1^{\circ}\). The combination ot stern planes and buw plames are minimizing the depth extursion. Note, However, that since rall angle strongly intluences pitah and depth rate, that these two terms are mot being damped as readily as they were in the roll control model.
velocities
NOMLINEAR SIMULAIION. DESIGN WITH ROLL CONIROL

Figure 5.3(a) Comparison of the Non-linear Response of Models
with and without Roll Control for a Mild Turn
ATT ITUDE AND DEPTH
nonlinerr simulation. design with roll control

NONLINEAR SIMULAIION. DESIGN HITHOUI ROLL CONIROL
ATtITUDE AND DEPTH
IIME

\(\begin{array}{llllll}1 / M E & 120 & 140 & 160 & 180 & 200 \\ & & & & & \end{array}\)

Figure 5.3(b) Comparison of the Nol:--linear Response of Models with and without Roll Control for a Mild Turn

\section*{CONTROL INPUTS}
nonlinear simulation. design without roll control

\(\begin{array}{r}\circ \\ \sim \\ -8 \\ \hline-\end{array}\)
\({ }^{80} \operatorname{IJME}^{100} \quad 120 \quad 140\)

Figure 5.3(c) Comparison of the Non-linear Response of Models
with and without Roll Control for a Mild Turn
CONTROL INPUTS
NONLINEAR SIMULAIION. OESIGN WITH ROLL CONIROL

OUTPUTS
(1)

OUTPUTS

\(\begin{array}{lllllllllll}0 & 20 & 40 & 60 & 80 & 100 & 120 & 140 & 160 & 180 & 200\end{array}\)
Figure 5.3(d) Comparison of the Non-linear Response of Models with and without Roll Control for a Mild Turn
nonl inear simulation. design hith roll conirol.

This simulation \(i \leq f o r\) a commended yaw rate of 2
deg/sec. Fieferring to Figure 5.4, we observe a \(2 \mathrm{~S} / \mathrm{y}\) decrease in forward velocity. The model with roll Eantral experiences an outward roll of \(\sigma^{\circ}\) then snap rolls inward to
 The ship imitially pitches upward due to the outward poll and rudder derlection. Whem the smap roll occurs, the piter
 \(t=55^{5}\) seconds. This negative pitch arigle contributes to the constant depth rate of 0.4 ft/sec. The significant loss of Эpeed contributes to the lack of ability of the contral. surfaces to minimize vertical plane errors. For this simblation, the stern planes a deflecting a difference af 12. to compensate for the roll moment in the turn. To minimize depth rate, we see the bow planes are detlectirg "o and to maintain the turn? the rudder is deflecting almost \(0^{\circ}\)

Comparirig the model without roll control a we otserve the ship shap rolls inwatd \(15 \%\) then comes to a beeady roll amgle of \(12^{\circ}\). Eecause of the 1 arge foll angleg the ship pitches down 6 imitially, with pitch angle coming to - go at \(t=\) 玉O seconds. The depth loss in the thrn is 2am ieet. The bow plames almost saturate imitially, derlectimg to \(1 \mathrm{~B}^{\circ}\) to counteract the depth raten At \(t=20\) = seconas. the bow planes are detlected gr (or three times the deflection in the roll contral model . The mudder is deflected
approkimately \(8^{\circ}\), which \(i=\) similar in the roll aontral modeln Additionally, the stern flames are deflected to minimize the depth rate, whereas, in the roll control model, they were deflected only to minimize roll angle because the bow planes were better able to minimize depth rate.

VELOCITJES
nonlinear simulailion. design hithout roll conirdl.

 IIME

vELOCITIES
nonlinefr simulbiton. design hith roll control

Figure 5.4(a) Comparison of the Non-linear Response of Models with and without Roll Control for a Moderate Turn
Attitude and Depth
NONL INEAR SIMULAIION. DESIGN WIIH ROLL CONTROL

ATTITUDE AND DEPTH
NONLINEAR SIMULAIION. OESIGN WIIHOUT ROLL CONIROL

Figure 5.4(b) Comparison of the Non-linear Response of Models with and without Roll Control for a Moderate Turn

\(002091 \quad 091 \quad 001 \quad 021 \quad 001^{3 W 1} \quad 08 \quad 09 \quad 00 \quad 02\)

CONTROL INPUTS

(

CONTROL INPUTS
nonlinear simulation. design hithout roll control

Figure 5.4(c) Comparison of the Non-linear Response of Models
OUTPUTS
nonlimear simulaiton. design with roll control
(100

outputs
nonlinear simulation. design hithoul roll conirol

200

Figure 5.4(d) Comparison of the Non-linear Response of Models with and without Roll Control for a Moderate Turn
\[
1
\]

This maneuver is ror step input commands of - ob. ft/set in depth rate, 1 deg/sec in yaw rate, and 1 degree in pitch. Fieferring to Figure 5. 5, we observe a \(6 \%\) decrease in the forward velocity.

Louking first at the model with roll controly it is observed that the errors in roll arale and yaw rate are damped by \(t=40\) seconds. The errors in pitch and depth rate, however, are not damped until t \(=140\) seconds. Ey \(t=20\) seconds, the ship has experienced a depth rise of go feet. Again, the stern planes are deflected differentially to counteract the roll moment, with a steady differential deflection of \(6^{\circ}\). The bow planes are deflected at -1. 50 to maintain the commanded depth rateg and the rudder is deflected -20 to maintain the commanded yaw rate.

Comparing the design without roll control, it is -bserved that the ship experiences a smap roll af \(10 . \quad\) This roll angle causes a pitch angle of -2u which results in a large pitch error. In fact, at \(t=200\) seconds, there is still an error in pitch of 0. 50 , or \(50 \%\) of the commanded pitch angle. This also causes a -0. G fotsec depth rate instead of the commanded \(-\ldots f+/ s e=. \quad\) The net result of these errors is displayed in the depth of the ship. The depth rise in this design is 2ら feet, instead of bQ feet, as in the model with roll control. Note here, that a depth rise is commanued.

The steady state stern planes angle is \(-0.75^{\circ}\). which indicates the stern planes are teing used to obtain the ordered pitch angle. Because the depth rate is aresult of the combination of pitch angle and ship's speed, we observe the bow planes are being used to obtain the ordered depth rate. In the roll control model, the ship obtained the ordered pitch angle rather quickly, thus, the bow planes are deflected in the opposite direction to limit the depth fate to -0. \(5 \mathrm{ft} / \mathrm{sec}\).

 +. +6.8.

\[
\text { -thew }-20
\]
vELOCITIES
nontinear simulation. design hithout roll contal

\(\begin{array}{llllllll} & 20 & 40 & 60 & 80 & 100 & 120 & 140 \\ 0 & 160 & 180 & 200\end{array}\)

Figure 5.5(a) Comparisor of the Mon \(\cdots\) linear Response of Models
with and wiwuit lall Control for a Combined Maneuver
ATTITUDE AND DEPTH
ATTITUDE AND DEPTH

O
N
-
-
-8
-8

\(\stackrel{8}{\circ}\)
Comparison of the Non-linear Response of Models
with and without Roll Control for a Combined Maneuver
CONTROL INPUTS
nonlinear simulaiton. design hithout roll conirol

180200

CONTROL INPUTS

OUTPUTS
honlinear simulbition. design hith roll conirol

Figure 5.5(d) Comparison of the Non-linear Response of Models with and without Roll Control for a Combined Maneuver

\section*{OUTPUTS}
nonlinear simulailon. oesign hithoul roll conirol

\begin{tabular}{llllllllll}
-1.0 & 20 & 40 & 60 & 80 & 100 & 120 & 140 & 160 & 180 \\
\hline
\end{tabular}

This maneuver is for a commanded yaw rate of \(\underset{\sim}{\text { ategfser. }}\) and is provided to display the effects of control surface saturation. Fieferring to Figure \(5 . \dot{\sigma}_{\text {g }}\) we observe a drop in ship's speed of almost 45\%. Louring at the model with roll control: it is observed that the ship initially ralls outward approkimetely \(\mathrm{B}^{\circ}\), then जnaps inward at \(=14\) secands. The maximum downward pitch amgle reaches 40 at \(t=1 \Delta 0\) seconds, and starts to reduce by the end of the run. The depth loss in this case is 184 ft. The stern planes again deflect differentially to counteract the roll moment. but now, we observe the port stern planes are deflected et - . \(9^{\circ}\) at \(t=200\) seconds whereas the starboard stern planes are deflected at \(7.0^{\circ}\). This indicates that the stern planes, although deflectimg differentially for roll control. are also being detlected for control of pitat angle. The bow planes are deflected at \(6.25^{\circ}\) in an attempt to mimimize depth rate. To maintain the ordered yawrate, the rudder is deflected \(-27^{\circ}\) at the end of the run.

Comparimg the model without roll control, we observe that the ship snap rolls imboard \(19^{\circ}\), and pitah angle approaches \(-1^{\circ}\). The stern planes deflect to limit the pitch angle, and the bow planes deflect to limit depth ratea The bow planes, however, saturate in this rum at \(t=2\) seconds. Up to this point. the ship's depth was mairtaimed fairly well. As soon as the bow planes saturateq the depth rate inareases, causing the ship to lose depth. This causes
the stern planes to deflect in the opposite direction in an attempt to minimize pitch angle and depth rate. At \(t=25\) seconds, the pitch angle steadies, and starts to come off. At \(t=108\) seconds, the depth rate goes negative, and it is observed the bow planes come out of saturation. Ey \(t=200\) seconds, we observe that the roll angle has been reduced to \(8^{\circ}\), maximum negative pitch angle is \(7^{\circ}\), depth rate is significantly reduced, and mone of the control surfaces are saturated. Depth at the end of the run is 8eO feet, which equates to a depth loss of \(\underset{\sim}{2} 0\) feet, as compared to the roll contral model's depth lass of 184 feet.

The purpose of this run was to demonstrate how different the submarine's trajectory is when the control surfaces saturate.

Figure 5.6(a) Comparisot. Ci the Non-linear Response of Models
with and with Jut Roll Control for a Hard Turn
ATTITUDE AND DEPTH
homlinear simulation. design with roll control

\section*{ATTITUDE AND DEPTH}
nonlinefr simulaijon. design hithout roll conirol

CONTROL INPUTS
homlinear simulailon. design hith roll conirol

Figure 5.6(c) Comparison of the Non-linear Response of Models

\section*{CONTROL INPUTS}
NONL INEAR SIMULRIION. DESIGN HIIHOUT ROLL CONIROL

 with and without Roll Control for a Hard Turn.
OUTPUTS

Figure 5.6(d) Comparison of the Non-linear Response of Models with and without Roll Control for a Hard Turn

This chapter has presented the implementation of the MEC designed in Chapter Four, and evaluation of the closed loop madel. The linear and non-linear simulations were performed to demonstrate how the predictions for the kialman filter loop of the linear can be used to validate the compensator s use on the nom-1inear model.

A second compensator, designed without roll control capability was presented, and then used to display the advantages of employing differential stern planes control on full scale submarines.

\section*{CHAFTEF SIX}

SUMMARY, CONCLUSIONS, AND DIFECTIONS FOR FUTURE FESEARCH

\section*{6. 1 Summary}

This thesis has presented a multivariable control design example for a submarine using active roll control ᄃapability.

The vehicle model was based on the NSFDC 2510 Equations including vortex shedding and crossflow drag terms. These equations were linearized to generate linear models of the sutmarine which were then analyzed and verified.

The resulting mudels were reduced to eight order systems, scaled, and then subjected to modal analysis, which allowed the formulation of the prerequisites necessary to pursue the LEG/LTF design methodology.

Model Eased Compensators with and without roll control capability were designed for the time and frequency dumains. Specifications for the contraller designs were presenteds then, the methodology was applied to the design of sutmarime control systems: Compensators were designed and studied for various crossaver frequencies, and a compensator was selected which provided desirable closed loup system response characteristics.

The selected compensatur was evaluated by comparing the linear and mun-linear dynamic simulations and determining huw closely the performance specifications were met, and alsu, whether instatilities Existed in the design. The MEC
wa三 then compared with an equivalent compensator which did not have roll control capability.

\subsection*{6.2 Conclusions}

Multivariable control system design using the LQG/LTR methodology has been successfully utilized to design a submarine control system with roll control capability.

It has been demonstrated that modal analysis and decomposition of the singular values of the plant can be used effectively in control system design. fodal analysis all lows us to investigate the structure or the linear model and consider the ability to control and observe selected state variables. Singular value decomposition, once understood, Ean be used in a similar manner as Eode plotsy and provides a convenient way to describe and ensure the performance requirements for the design.

The purpose of, and techniques used to scale the open loop plant were discussed in rigorous detail beceuse the scaling strongly affects the simgular value decomposition of the open loop plant, and the resulting compensator designu The purpose of this thesis was to demonstrate the advantages of foll. Control on a full scale sutmarine. A limited number of simulations were perforined, and the performance of the submarine with roll control is muin improved over the design without roll control. The control System was desigmed for a submarime at SO knots, and we observed the control systen did farly welly even for a

45\% decrease in forward velocity of the ship. Additionally, the control system was designed using the inertial reterence frame fether than the body reference frame of the ship. Use of the fixed inertial coordinate system provided better control of the submarine in maneuvering situations than for previous designs which lised the body reference frame.

At this point jt is important to stress the following otservations:
- The performance characteristics of the submarine with active roll control are enhanced considerebly over the design without rall control. The simulations demonstrated considerable depth improvement, and less control surface deflections and saturation in severe maneuvers, as demonstrated in Figure 5.6.
- This thesis demonstrates a technique to simulate performance characteristics of "paper" control Systems for trade-orf studies for specified performance criteria.
* One model Ganmot be used to globally control a submarine. Although the compensator performed well with large variations from the nominal operating point, reduced effectiveness of the contral surfaces was observed.
- The fact that only small perturbations an be applied in validation of the design is mot a limitation of the control design methodalogy. lt is, however, a limitation of the linear model.
* Fiesults of this thesis could be improved upon by including actuator dynamics, then selecting the compensator bandwidth and contral geins to provide the best desirable ship response characteristics.

To demonstrate the flexibility a controls engineer has when using multivariable control, the bow frafwater planes were included in this thesis. Use of the bow/fairwater planes at so knots may mot De considered practical due to flow noise and disturbances, and structural limitations.

This thesis provides many of the building blocks necessary to refine the use of differential stern planes. Including actuator dynamics is an extension thet needs to be completed. Additionally, limited designs were conducted which investigated the effects of compensator bandwidth and control gains. Much more work heeds to be performed in this area.

Another area which needs additional research i玉 in the use of propulsion as a dynamic control variable. If propeller rpmis allowed to vary, the control system design could effect maneuvers while minimizing speed loss in a turn (within propulsion constraints).

Finally, an area which is rather significant, and in Which serious efforts have to be directed is in the area of Casualty situations. This thesis has only looked at controlled maneuversy in which the control Eystem perrorms it's function completely. Failures of the control system during submerged aperations must be fully investigated, understood, and designed into the compensator.
1. Athans, M. "The Fole and Use of the Stoichastic Linear-Guadratic-Gaussian Froblem in Control System Design", IEEE Transactions on Automatic Control, Vol. \(\mathrm{AC}-16\), Na . 6 (December, 1971): PP 529-552.
2. Athans, M. Multivariable Control Systems, Course Lecture Notes, MIT, Spring 1984.
B. Erogan, w. L. Modern Control Theory, New York, Guantuin Fublishers, Inc., 19\%4。
4. Doyle, J. C. and Stein, G. "Multivariable Feedback Design: Concepts for a CiassicalModern Synthesis", IEEE Transactions on Automatic Control, Vol. AC--zb, No. 1 (February, 19S1): pp 4-16.
5. Gertler, M. and Hagan, G. F. "Standard Equations of Notion for Submarime Simulation", Naval Ship Fiesearch and Development Feport zG10, Jume 1967.
S. Fuo, B.C. Automatic Control Systems, Englewood Cuiffs, N.J., Frentice Hall, Inc., 1982.
7. Wwakernaack, \(H\). and Sivang Fi Linear Optimal Control Systeme, New rork, Wiley, 1972.
B. Ggata, K. Modern Control Engineerimg, Englewood Cliffs, N.J., Frentice Hall, ImC: 1972.
9. Triantafyllou, M. S., Eodsong M. and Athans, M. "Real Time Estimation of Ships Motion Using Kalman Filtering Techniques", IEEE Joumal of Degan Engineeringy vol. GE-S, No. 1 (Jamuary, 198母), pP \(9-20\).
10. Livelyn K. A. MMltivariable Control System Design for a Submarine". Engineers Thesisy MIT, 19 G .
11. Dreher", L. J. "Fobust Fate Control System Designs for a Subinersible", Engineers Thesis, MIT, 1984.

12n Milliken, L. G. MMitivariable Control of an Underwater Vehicle", Engineers Thesis, Mit, 1904.

1B. Harris, Kn A. "Automatic Control of a Eutmersible", Masters Thesis. MIT, 19G4.
14. Eonnice, B. and Valavani, L. "Submarime Configuration and Contral". CSDL Memo SuE 1-108s, 198S.
15. Eonnto. E. CONSTFFS Fortran and Executive Command Computer Frograms, CSDL. May. 1964.
16. Abkowitz, M. Stability and Motion Control of Geean Vehicles, MIT Fress, Cambridge, MA., 1969 .
17. Takahashi, Fobins, and Auslander Control, AddisomWesley, 1970, pp o5-80.
18. Athans, M. Multivariable Control System Design using the LOG/LTF Methodalogy, 6. 2x2 Lecture Notes, MIT, Spring 1984.
19. Stein, G. "LoG-Eased Multivariable Designa Frequency Domain Interpretation", AGAFD, NATO, 19E1.
20. Kappos. E. "Fobust Mutivarable Control for the F-100 Engine", Engineer's Thesis, MIT, 19GS.
21. Boettchery Kn "Analysis of Multivarable Control Systems with Structural Uncertainty", Internal Feport, MIT, 198.
```

AFF-ENDIXA

```

Any submarime must meet certain minimum standards ot controllatulity. Its course keeping and depth keeping statility must be adequate for transportation at the maximum speed and at a low but useful speed. While many surface ships and many submarines are directionally unstatle to a small degree, requiring constant attention to steer an acceptable straight course, the consequences of a mistare or a temparary interruption of rudder or diving plane aicivity in a high speed submarine make it imprudent to accept even slight instability. For this reason! definite control-rixed stability \(i=\) required.

Slow speed operation of a combatant Eubmemine is oftan required. Eecause of the pendulum-like hydrostatic stability of the submarime, as the submarime moves very slowly through the water, the hydrodynamic effects of stern plane deflection are too smell to change the sumarine hull anglemof-attack by an amount large enough to develop rise or dive forces on the hull. The net vertical force on the submarime that results is due mastly to the force of the stern plane itself, which is always in the direction opposite to the conventional rise or dive command. This phenamenon \(i s\) often reterred to as "stern plane reversal". This particular effect can be controlled by proper design and building of the ship sum that the vertical distance between the location of the center of buayancy and the center of gravity of the ship are within prescrited mak/min limits.

At or mear zero ship speed, control of the ship's attitude and depth using forces generated by flow over the hull and control shritaces is not possible. Control of depth Gan be obtained by changing the wejght of the submaine using the trim system.

In the absence of externad forge oisturbances, sum as are encountered hear the surface under a seaway, hovering by application of simall wejght and/or buoyancy changes has become a common experience for submarimers. Quiet seas, still, experience, and an opportumity to improve the trim while slowing to hovering speeds are all necessary. Larkimg any of these factors, and given a heed to hovery one immediately recognizes a need for some form of properly engineered hoverimg system.

Each submarine must operate a portion of its service life on the surface, which generates a different set of steering parameters and requirements. Adequate surfaced steerimg with slight directional unstability is feasible, so that gpecific values of directional stability on the surfage are mot mecessary or even useful. Some degree of steerimg
comtrol while wacking is also recessary when dactimg or for

The attributes of combatant service that affect controllability and performance requirements range from those associated with stealth to those associated with maximum speed violent maneuvers. Violent maneuvers, involving full acceleration, possible colmsereversals, and severe depth changes could be necessary. The preseribed Submerged Operating Envelope (SOE) shauld be the same far peacetime and wartime qperations. The maximum exploitation of speed, depthy and maneuvering capabilities will be a necessity ta prepare for patential engagements or casualty environments that mey be experiemced over the 1 ifetione of the submarine.

Underlying all combatant subinarine attritutes. and ari many ᄃases, dominatirg them, are the requirements to operate quietly mandatory hoise requirements and even more stringent desirable goals are generally imposed on all systems: one of the mast significant contributams to the overall rioise characteristics are operations of the aontrol surfaces, thus, the ship control system must now be optimized to minimize this noise source.

The fact that the submarime is a "dirigible" in spaceq Within the bounis of the surface, the bottoing amd collapse depthy mandates that its handling properties be descibbed as a इet of horizomtal and vertical plane propertics. The ธonsequences of errar in the vertical plane that abin be imaqined are dramatically different from those in the Forisontal plane. Groundings and aallisions due ta horizontal plane error, no matter how distressing to the ship (s) imvalved, do mot have the sense of fimality that sinkings have, For this reason, the highest priarity attention is given to vertical plane maneuvering propertiea and vertical plane aonsequences ar horlagntal plame mameuvers. The remaining motility characteristics, Gourse and speed, ate rambed in priority in that order.

With depth rattors as the first prioritys the mriteria for iudgirig the quality or vertjcal plane maneuvers will be based upon reliabllity and precision of control at constant graered depthy and upom the ease of making ardered depth Changes.

In the horizontal olaneg it: isfarethat a speaific пīnimum value of turning diameter would be oritical for a三ubmarinen A much more useful turnirig quelity to impose is the time to change headimg by a given amount ifor example
 maximum =peed remajning when the turn is completed. This is a property whith wan be perceived ty the aperators. Evesive maneuver= are very likely to involve large changes in
speed, woumse, and depth. The performance of the Eubmamine duming large changes should provide the most freedon to the operator. It must be poseitue, with confidence in the sefety of the maneuver, to order simultaneous Epeed, course, and depth changes in any combination. This requirement leads to the addition of a parameter describing the required control authority in the vertical plane to the time to meach the heading change requirement within a specified time period. The depth change limitation associated with turns must be met using only a portion of the available depth control authority. The remaining depth control authority that \(i s\) not used in a flat turn could be used to enforge a simultameous depth change.

AF•F•ENDIXE

122

The SUBMODEL program was written to perform any of the following tasks:
1) Integrate the nonlimear equations of motion of a submarine.
2) Search for a local equilibrium point in the nonlinear equations of motion. (A local equilibrium point is the point where the derivatives of the state variables chosen are zero.)

ت) Calculate the linearized dynamics about a particular mominal point.
4) Integrate the linearized equations of motion.

This description of the SUEMODEL program consists of three sections. Section 2 describes briefly the equations of motion that are implemented in the program. Section \(\mathbb{Z}\) describes the program.

Section Two: Nonlinear and Limear Equations of Motion
This section describes the equations of motion which have been implemented in the SUBMODEL program.

The nonlinear equations are in the form
\[
\underline{\underline{E}} \underline{\underline{x}}=\underline{f}(\underline{\underline{x}}, \underline{\underline{u}})
\]
where
\[
\begin{aligned}
& \underline{\underline{x}}=10 \times 1 \text { state vector } \\
& \underline{\underline{u}}=n \times 1 \text { control vector (n=user specified) } \\
& \underline{\underline{f}}=10 \% \text { vector that is a nonlinear function of } \\
& \underline{E}=10 \% \text { states and the controls } \\
& \underline{E}=10 \text { matri }
\end{aligned}
\]

The first nine differential equations are the same as the 68 nonlinear equations documented in CSDL Memo SUE z108s except for three propulsion and drag terms. These changes are documented in the memo on propulsion and drag models. The nine states are ordered as stated in the mairi body of this thesis (Chapter Two). The tenth differential equation and state is used to describe the propulsion dynamics.

There are two propulsion models -- an rps propulsion model and an etei propulsion model. The rps propulsion model contains a first order differential equation in terms of rps

4in
(revolutions per second) and is the more accurate model of the two models. The eta propulsion model contains a first order differential equation in terms of eta (in is defined to be w/U, where \(U\) is the actual speed of the submarine and \(u\) is the commanded forward velocity) and is a slighty simplified version of the rps model. The importance of the eta model lies in the fact that it was the propulsion model that was linearized and included in the linear equations of motion. These propulsion models are documented in another Draper memo.

The controls that may be specified are bowffarwater Planes, rudder, stern planes (which may be segmented), and WSTEAM (डteain flow).

Section Three: Frogram Description
This section describes how the four main tasks listed in the introduction are accomplished.

Eefore linearized dynamics can be calculated, equations of motion integrated, and/or local equilibrium points searched for, the program must be read in and can print out upon request the mass properties, the hydrodynamia coefficients, and the propulsion and drag constants. These constants and coefficients describe the dynamics of a specified submarine, and with two exceptions, are assumed to be valid for any dymamic condition. The exceptions are the propulsion variables "thrded" and "wate". The rpe propulsion model calculates these variables and therefore, values that are read in are ignored. However. in reformulating the rps propulsion model into the eta propulsion model, these two propulsion variatles were assumed to be constant. A method of determining appropriate values of these constants is to integrate the nonlinear equations with the rps propulsion model using the same initial conditions that will be used to integrate the equations with the eta model. Then, use the values of "thr"ded" and "wake" after the initial transients of the states have "died out". The program prints out the final values of "thrded" and "wake" at the end of integrating the nonlinear equations with the rps model.

The program then proceeds to calculate the \(E\) and \(E^{-1}\) matrices as the \(E^{-1}\) matrix is needed for any of the four main tasks. An indication of the accuracy of the \(E^{-1}\) matrix \(i s\) obtained by multiplying the \(E\) and \(E^{-1}\) matrices. The program prints each one of these matrices (i.e.. \(E\). \(E^{-1}\), and \(E E^{-1}\)).

If the option to integrate the monlinear equations of motion was selected, the initial conditions mecessary to integrate the equations are read in. There is an option that can be set in the imput data file containing the

\(+\)
initial conditions on \(p, q\), and \(r\) from initial conditions on psidot, phidat, and thetadot. Also, the input data \(\frac{r}{i} i l e\) contains initial conditions for both the variables rps and eta. As mentioned in section 2 , there are both an rps and an eta propulsion model. If the rps model was choseny the initial condition on rps is used and eta is calculated. If the eta model was chosen, the initial condition on eta is used and the rps initial condition is ignored.

The program proceeds to integrate the nonlinear equations of motion using a fourth order Funge Futta routine. The values of the controls can be set in two ways. They can be either initialized and kept constant at that value throughout the run or be read from a data filen Another possibility, if the rps model is being used, is to calculate the controls using full state feedtacto For this condition, the gain matrix is read by the programo Therefore, it is necessary for the program to read in the nominal point which corresponds to the linearized model used to design the gain matrix. For the purposes of calculating the controls using full state feedback only eta is calculated from rps and u. It is subsequently used as the tenth state.

When integrating the nonlinear equations of motion, the initial time, the fimel time, and the integration time =tep must be chosen. In addition, there are options to print the states and to store the values of the states and the controls for plotting. The program writes the plotting data using an unformatted write. A plotting programg such as XFILOTAE, must be run to actually plot the data. The frequency of printing and storing data for plotting can be individually specified in terms of time steps.

Also, the program has the option to search for a local equilibriumpaint. If this option is selected, the program needs an initial quess of the local equilibrium point to begin the search. This initial guess can be provided in either of two ways. One way is to integrate the nonlinear equations of motion using the eta propulsion model. The program will use the final condition from integrating the nonlinear equations as the guess for the search routines. The other way is to read in an initial guess in the same manner as reading in the initial conditions to integrate the nonlinear equations of motion.

When searching for a local equilibrium point, the program uses the set of nonlinear equations with the eta propulsion model. The reason for using the eta propulsion model is that the linearized propulsion model was derived from it. Fresumably, the reason for searching for a local Equilibrium point is to use that point as a point about which to linearize the nonlinear equations of motion. If the vehicle is in a turn, psidot will be nomaero amu
therefore the search routines will be mable to find a local equilibrium point for this case. As psi has no effect on the other differential equations, deleting the differential equation in psi allows a local equilibrium point (except in psi) to be found when the vehicle is in a turn.

To search for a local equilibrium point, the program uses two IMSL search routines - ZSFOW and ZSCNT. These routines take a supplied initial quess of the point and iterate for a specified number of times before returning a point. The number of iterations per call to a routine must be specified by the user. The program iterates by perturbing the number of variables specified by the user (maximbim of eight are allowed). The paint returned may ar may not be closer to a local equilibrium point than the initial guess. The closeness of a point to being a locel equilibrium point is determined by the sum of the squares of the derivatives.

Finally, when searching for a local equilibrium point, there is one additional option that must be specified - the number of times to call each one of the search routines. The program calls the routines in the following manner. Using the initial guess supplied by either input data or by integrating the monlinear equations with the eta propulsion model, the program calls the ZSFOW routine. After zEFOW returns a point, the program will a ause the zSFOW routine again using the point returned as the initial quess. The program repeatedly calls the ZSFOW moutime unless: (1) the point returned is not closer than the initial guess, or (2) the specified number of times to call the search routine is exceeded. Then the program follows the same procedure with the zSCNT routime with the first quess being the closest to a local equilibrium point available.

If the option to calculate the linearized dymamics was selected, the program would read in the nominal point about which the nonlinear equations are linearized.

If the option to integrate the linearized dynamics was chosen, the program will read in the nominal point and calculate the linearized dynamics if the option to calculate the linearized dynamics was not already chosen before. The progran will then read in the initial conditions on the states and on the controls, calculate the perturbatiosn from the nominal point, and integrate the linearized equations. As with integrating the monlinear equations of motiong the user must specify the initial time, final time, and integration time step. Also, the options to store data for plotting, to print, as well as the frequency of Earrying out each step are the same as in integrating the nonlinear Ease.

\section*{AF-F•ENDIXC}

STATE SFACE MATFICES FOF THE LINEAFIZED MODELS

The elements of the \(\underline{A}_{9} \underline{B}\). and \(\underline{C}\) matrices are ptesented in the standard row and column format.

 Lanc wo whathongye vrad

\section*{original matrices prior to scaling}
\[
\underline{x}^{\top}=[u \vee w p q r \phi \theta \psi z]
\]

A MATRIX
\begin{tabular}{lllllllllll}
\(-3.8245 E-02\) & \(-2.1911 E-02\) & \(-2.7720 E-03\) & \(-1.8964 E-02\) & \(-2.9363 E-01\) & \(3.1674 E+00\) & \(0.0000 E+00\) & \(2.9326 E-04\) & \(0.0000 E+00\) & \(0.0000 E+00\) \\
\(1.1461 E-03\) & \(-1.5919 E-01\) & \(-1.9338 E-03\) & \(-1.1464 E+00\) & \(1.1276 E-01\) & \(-1.5397 E+01\) & \(1.3004 E-01\) & \(-1.7564 E-03\) & \(0.0000 E+00\) & \(0.0000 E+00\) \\
\(2.4225 E-05\) & \(4.6499 E-04\) & \(-1.0631 E-01\) & \(-1.5984 E+00\) & \(1.2070 E+01\) & \(8.0194 E-02\) & \(0.0000 E+00\) & \(7.5597 E-03\) & \(0.0000 E+00\) & \(0.0000 E+00\) \\
\(2.4614 E-04\) & \(-1.1680 E-02\) & \(-1.3226 E-03\) & \(-4.3445 E-01\) & \(-2.3879 E-01\) & \(-7.1773 E-03\) & \(-1.5995 E-01\) & \(2.1603 E-03\) & \(0.0000 E+00\) & \(0.0000 E+00\) \\
\(-5.3732 E-06\) & \(-1.8585 E-05\) & \(1.3207 E-03\) & \(-1.1380 E-02\) & \(-4.0755 E-01\) & \(1.0074 E-04\) & \(0.0000 E+00\) & \(-2.4934 E-03\) & \(0.0000 E+00\) & \(0.0000 E+00\) \\
\(-2.7564 E-05\) & \(-2.0277 E-03\) & \(2.4063 E-05\) & \(-8.1034 E-03\) & \(3.6042 E-03\) & \(-3.8180 E-01\) & \(2.5836 E-04\) & \(-3.4895 E-06\) & \(0.0000 E+00\) & \(0.0000 E+00\) \\
\(0.0000 E+00\) & \(0.0000 E+00\) & \(0.0000 E+00\) & \(1.0000 E+00\) & \(1.3427 E-02\) & \(-1.2348 E-01\) & \(-2.0244 E-10\) & \(-1.2660 E-02\) & \(0.0000 E+00\) & \(0.0000 E+00\) \\
\(0.0000 E+00\) & \(0.0000 E+00\) & \(0.0000 E+00\) & \(0.0000 E+00\) & \(9.9414 E-01\) & \(1.0810 E-01\) & \(1.2467 E-02\) & \(0.0000 E+00\) & \(0.0000 E+00\) & \(0.0000 E+00\) \\
\(0.0000 E+00\) & \(0.0000 E+00\) & \(0.0000 E+00\) & \(0.0000 E+00\) & \(-1.0893 E-01\) & \(1.0018 E+00\) & \(1.6423 E-09\) & \(1.5605 E-03\) & \(0.0000 E+00\) & \(0.0000 E+00\) \\
\(1.2326 E-01\) & \(-1.0728 E-01\) & \(9.8656 E-01\) & \(0.0000 E+00\) & \(0.0000 E+00\) & \(0.0000 E+00\) & \(1.5702 E+00\) & \(-4.8493 E+01\) & \(0.0000 E+00\) & \(0.0000 E+00\)
\end{tabular}
\begin{tabular}{cccc}
\(-1.6315 E-03\) & \(-5.8396 E-02\) & \(2.8022 E-03\) & \(2.8022 E-03\) \\
\(0.0000 E+00\) & \(2.3119 E+00\) & \(-1.6950 E-01\) & \(1.6950 E-01\) \\
\(-1.4442 E+00\) & \(-1.4815 E-06\) & \(-9.8476 E-01\) & \(-9.8476 E-01\) \\
\(0.0000 E+00\) & \(4.2586 E-02\) & \(2.0848 E-01\) & \(-2.0848 E-01\) \\
\(1.3872 E-02\) & \(4.8862 E-07\) & \(-2.3825 E-02\) & \(-2.3825 E-02\) \\
\(0.0000 E+00\) & \(-5.8593 E-02\) & \(-3.3676 E-04\) & \(3.3676 E-04\) \\
\(0.0000 E+00\) & \(0.0000 E+00\) & \(0.0000 E+00\) & \(0.0000 E+00\) \\
\(0.0000 E+00\) & \(0.0000 E+00\) & \(0.0000 E+00\) & \(0.0000 E+00\) \\
\(0.0000 E+00\) & \(0.0000 E+00\) & \(0.0000 E+00\) & \(0.0000 E+00\) \\
\(0.0000 E+00\) & \(0.0000 E+00\) & \(0.0000 E+00\) & \(0.0000 E+00\)
\end{tabular}

\section*{MATRICES TO PERFORM UNIT TRANSFORMATIONS}

\section*{Matrix used to premultiply the \(A\) and \(B\) matrices:}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline 1.0000E+00 & 0.0000E+00 & 0.0000E+00 & \(0.0000 E+00\) & \(0.0000 E+00\) & 0.0000E+00 & \(0.0000 \mathrm{E}+00\) & \(0.0000 \mathrm{E}+00\) & 0.0000E+00 & \(0.0000 E+00\) \\
\hline 0.0000E+00 & \(1.0000 \mathrm{E}+00\) & 0.0000E+00 & \(0.0000 E+00\) & \(0.0000 E+00\) & 0.0000E+00 & \(0.00005+00\) & \(0.0000 E+00\) & \(0.0000 E+00\) & 0.0000E+00 \\
\hline 0.0000E+00 & \(0.0000 E+00\) & 1.0000E+00 & \(0.0000 \mathrm{E}+00\) & \(0.0000 E+00\) & 0.0000E+00 & \(0.0000 E+00\) & \(0.0000 \mathrm{E}+00\) & \(0.0000 E+00\) & 0.0000E+00 \\
\hline 0.0000E+00 & 0.0000E+00 & 0.0000E+00 & \(5.7300 E+01\) & \(0.0000 \mathrm{E}+00\) & 0.0000E+00 & \(0.0000 \mathrm{E}+00\) & \(0.0000 \mathrm{E}+00\) & 0.0000E+00 & \(0.0000 E+00\) \\
\hline 0.0000E+00 & 0.0000E+00 & 0.0000E+00 & \(0.0000 E+00\) & 5.7300E+01 & \(0.0000 E+00\) & 0.0000E+00 & \(0.0000 \mathrm{E}+00\) & \(0.0000 \mathrm{E}+00\) & 0.0000E+00 \\
\hline 0.0000E+00 & 0.0000E+00 & 0.0000E+00 & \(0.0000 \mathrm{E}+00\) & \(0.0000 E+00\) & 5.7300E+01 & \(0.0000 E+00\) & \(0.00005+00\) & \(0.0000 \mathrm{E}+00\) & \(0.0000 E+00\) \\
\hline 0.0000E+00 & 0.0000E+00 & \(0.0000 E+00\) & 0.0000E+00 & 0.0000E+00 & 0.0000E+00 & 5.7300E+01 & \(0.0000 \mathrm{E}+00\) & \(0.0000 \mathrm{E}+00\) & 0.0000E+00 \\
\hline 0.0000E+00 & 0.0000E+00 & 0.0000E+00 & 0.0000E+00 & \(0.0000 E+00\) & 0.0000E+00 & 0.0000E+00 & 5.7300E+01 & 0.0000E+00 & 0.0000E+00 \\
\hline \(0.0000 \mathrm{E}+00\) & 0.0000E+00 & 0.0000E+00 & \(0.0000 E+00\) & 0.0000E+00 & 0.0000E+00 & \(0.0000 \mathrm{E}+00\) & \(0.0000 E+00\) & 5.7300E+01 & 0,0000E+00 \\
\hline 0,0000E+00 & 0.0000E+00 & 0.0000E+00 & 0.0000E+00 & \(0.0000 \mathrm{E}+00\) & 0.0000E +00 & 0.0000E+00 & \(0.0000 \mathrm{E}+00\) & \(0.0000 \mathrm{E}+00\) & \(1.0000 E+00\) \\
\hline \multicolumn{10}{|c|}{Matrix used to postmultiply the \(A\) matrix:} \\
\hline \(1.0000 E+00\) & 0.0000E+00 & 0.0000E+00 & 0.0000E+00 & 0.0000E+00 & 0.0000E+00 & \(0.0000 \mathrm{E}+00\) & \(0.0000 \mathrm{E}+00\) & 0.0000E+00 & \(0.0000 E+00\) \\
\hline \(0.00005+00\) & \(1.0000 \mathrm{E}+00\) & 0.0000E+00 & 0.0000E+00 & 0.0000E+00 & 0.0000E+00 & 0.0000E+00 & 0.0000E+00 & \(0.0000 \mathrm{E}+00\) & 0,0000E+00 \\
\hline 0.0000E+00 & 0.0000E+00 & 1.0000E+00 & \(0.0000 E+00\) & \(0.0000 E+00\) & 0.0000E+00 & \(0.0000 \mathrm{E}+00\) & \(0.0000 \mathrm{E}+00\) & 0.0000E+00 & 0.0000E+00 \\
\hline \(0.0000 E+00\) & 0.0000E+00 & 0.0000E+00 & 1.7452E-02 & 0.0000E+00 & 0.0000E+00 & 0.0000E+00 & 0.0000E+00 & \(0.0000 E+00\) & \(0.0000 \mathrm{E}+00\) \\
\hline 0.0000E+00 & 0.0000E+00 & 0.0000E+00 & 0.0000E+00 & 1.7452E-02 & 0.0000E+00 & 0.0000E+00 & 0.0000E+00 & 0.0000E+00 & 0.0000E+00 \\
\hline 0.0000E+00 & 0,0000E+00 & 0.0000E+00 & 0.0000E+00 & \(0.0000 \mathrm{E}+00\) & 1.7452E-02 & 0.0000E+00 & \(0.0000 E+00\) & \(0.0000 E+00\) & 0.0000E +00 \\
\hline 0.0000E+00 & 0.0000E+00 & 0.0000E+00 & 0.0000E+00 & \(0.0000 \mathrm{E}+00\) & 0.0000E+00 & 1.7452E-02 & \(0.0000 \mathrm{E}+00\) & 0.0000E+00 & 0.0000E+00 \\
\hline 0,0000E+00 & 0.0000E+00 & 0.0000E+00 & 0.0000E+00 & 0.0000E+00 & 0.0000E+00 & 0.0000E+00 & 1.7452E-02 & 0.0000E+00 & 0.0000E+00 \\
\hline 0.0000E +00 & 0,0000E+00 & 0.0000E+00 & 0.0000E+00 & \(0.0000 \mathrm{E}+00\) & 0.0000E+00 & 0.0000E+00 & \(0.0000 \mathrm{E}+00\) & \(1.7452 \mathrm{E}-02\) & 0.0000E+00 \\
\hline 0.0000E+00 & \(0.0000 E+00\) & 0.0000E+00 & 0.0000E+00 & 0.0000E+00 & 0.0000E+00 & 0.0000E+00 & \(0.0000 E+00\) & 0.0000E+00 & 1,0000E+00 \\
\hline
\end{tabular}

Matrix used to postaultiply the B matrix:
\begin{tabular}{llll}
\(1.7452 \mathrm{E}-02\) & \(0.0000 \mathrm{E}+00\) & \(0.0000 \mathrm{E}+00\) & \(0.0000 \mathrm{E}+00\) \\
\(0.0000 \mathrm{E}+00\) & \(1.7452 \mathrm{E}-02\) & \(0.0000 \mathrm{E}+00\) & \(0.0000 \mathrm{E}+00\) \\
\(0.0000 \mathrm{E}+00\) & \(0.0000 \mathrm{E}+00\) & \(1.7452 \mathrm{E}-02\) & \(0.0000 \mathrm{E}+00\) \\
\(0.0000 \mathrm{E}+00\) & \(0.0000 \mathrm{E}+00\) & \(0.0000 \mathrm{E}+00\) & \(1.7452 \mathrm{E}-02\)
\end{tabular}

\section*{Matrix used to premultiply the \(C\) matrix:}
\begin{tabular}{llll}
\(5.7300 E+01\) & \(0.0000 E+00\) & \(0.0000 E+00\) & \(0.0000 E+00\) \\
\(0.0000 E+00\) & \(5.7300 E+01\) & \(0.0000 E+00\) & \(0.0000 E+00\) \\
\(0.0000 E+00\) & \(0.0000 E+00\) & \(5.7300 E+01\) & \(0.0000 E+00\) \\
\(0.0000 E+00\) & \(0.0000 E+00\) & \(0.0000 E+00\) & \(1.0000 E+00\)
\end{tabular}

Matrix used to postmultiply the \(C\) matrjx:
\begin{tabular}{lllllllllll}
\(1.0000 E+00\) & \(0.0000 E+00\) \\
\(0.0000 E+00\) & \(1.0000 E+00\) & \(0.0000 E+00\) \\
\(0.0000 E+00\) & \(0.0000 E+00\) & \(1.0000 E+00\) & \(0.0000 E+00\) \\
\(0.0000 E+00\) & \(0.0000 E+00\) & \(0.0000 E+00\) & \(1.7452 E-02\) & \(0.0000 E+00\) \\
\(0.0000 E+00\) & \(0.0000 E+00\) & \(0.0000 E+00\) & \(0.0000 E+00\) & \(1.7452 E-02\) & \(0.0000 E+00\) \\
\(0.0000 E+00\) & \(1.7452 E-02\) & \(0.0000 E+00\) & \(0.0000 E+00\) & \(0.0000 E+00\) & \(0.0000 E+00\) \\
\(0.0000 E+00\) & \(1.7452 E-02\) & \(0.0000 E+00\) & \(0.0000 E+00\) & \(0.0000 E+00\) \\
\(0.0000 E+00\) & \(1.7452 E-02\) & \(0.0000 E+00\) & \(0.0000 E+00\) \\
\(0.0000 E+00\) & \(1.7452 E-02\) & \(0.0000 E+00\) \\
\(0.0000 E+00\) & \(1.0000 E+00\)
\end{tabular}

MATRICES USED TO PERFORM TRANSFORMATIONS FOR CONTROL SURFACE DEFLECTION AND RELATIVE WEIGHTING OF THE OUTPUTS
\(\stackrel{n}{4}_{u}\)
\begin{tabular}{llll}
\(1.0000 E+00\) & \(0.0000 E+00\) & \(0.0000 E+00\) & \(0.0000 E+00\) \\
\(0.0000 E+00\) & \(6.6700 E-01\) & \(0.0000 E+00\) & \(0.0000 E+00\) \\
\(0.0000 E+00\) & \(0.0000 E+00\) & \(8.0000 E-01\) & \(0.0000 E+00\) \\
\(0.0000 E+00\) & \(0.0000 E+00\) & \(0.0000 E+00\) & \(8.0000 E-01\)
\end{tabular}
\(1.0000 E+00 \quad 0.0000 E+00 \quad 0.0000 E+00 \quad 0.0000 E+00\)
\(0.0000 E+00 \quad 1.4993 E+00 \quad 0.0000 E+00 \quad 0.0000 E+00\)
\(0.0000 E+00 \quad 0.0000 E+00 \quad 1.2500 E+00 \quad 0.0000 E+00\)
\(0.0000 E+00 \quad 0.0000 E+00 \quad 0.0000 E+00 \quad 1.2500 E+00\)
\(\stackrel{s}{5}_{y}\)
\(1.0000 E-01 \quad 0.0000 E+00 \quad 0.0000 E+00 \quad 0.0000 E+00\)
\(0.0000 E+00 \quad 1.0000 E-01 \quad 0.0000 E+00 \quad 0.0000 E+00\)
\(0.0000 E+00 \quad 0.0000 E+00 \quad 1.0000 E+00 \quad 0.0000 E+00\)
\(0.0000 E+00 \quad 0.0000 E+00 \quad 0.0000 E+00 \quad 1.0000 E+00\)

Whater io iot
\(0-2+2\)

\(\qquad\) \(\square\)

\section*{REDUCED AND SCALED PLANT MATRICES WITH APPROPRIATE C MATRIX} MODEL WITH ROLL CONTROL
\[
\underline{x}^{\top}=[u \vee w p q r \phi \theta]
\]

A MATRIK
\begin{tabular}{llllllllll}
\(-3.8269 E-02\) & \(-2.1964 E-02\) & \(-2.7533 E-03\) & \(-3.3173 E-04\) & \(2.0734 E-03\) & \(5.5394 E-02\) & \(0.0000 E+00\) & \(5.1285 E-06\) \\
\(1.1417 E-03\) & \(-1.5939 E-01\) & \(-3.3786 E-05\) & \(-2.3578 E-02\) & \(2.8353 E-03\) & \(-2.6860 E-01\) & \(2.2745 E-03\) & \(-2.5914 E-05\) \\
\(-4.7476 E-04\) & \(1.3910 E-03\) & \(-9.6526 E-02\) & \(-2.7949 E-02\) & \(2.1163 E-01\) & \(7.6140 E-04\) & \(0.0000 E+00\) & \(1.3221 E-04\) \\
\(1.3945 E-02\) & \(-6.6430 E-01\) & \(-8.0931 E-02\) & \(-4.3452 E-01\) & \(-2.5262 E-01\) & \(-2.1920 E-02\) & \(-1.6030 E-01\) & \(1.8264 E-03\) \\
\(7.1418 E-05\) & \(-2.5929 E-04\) & \(7.8117 E-02\) & \(-1.1406 E-02\) & \(-4.0815 E-01\) & \(-7.7327 E-04\) & \(0.0000 E+00\) & \(-2.4985 E-03\) \\
\(-1.5782 E-03\) & \(-1.1622 E-01\) & \(3.4035 E-04\) & \(-8.0011 E-03\) & \(2.2809 E-03\) & \(-3.8201 E-01\) & \(2.5893 E-04\) & \(-2.9501 E-06\) \\
\(0.0000 E+00\) & \(0.0000 E+00\) & \(0.0000 E+00\) & \(1.0000 E+00\) & \(1.1328 E-02\) & \(-1.0538 E-01\) & \(-4.9352 E-10\) & \(-1.2635 E-02\) \\
\(0.0000 E+00\) & \(0.0000 E+00\) & \(0.0000 E+00\) & \(0.0000 E+00\) & \(9.9427 E-01\) & \(1.0689 E-01\) & \(1.2494 E-02\) & \(0.0000 E+00\)
\end{tabular}
 \(\underline{u}^{\top}=\left[\delta b \delta r \delta s_{1} \delta s_{2}\right]\)
 B MATRIX
 \(-1.2666 E-03-1.5279 E-03 \quad 9.8625 E-05 \quad 9.8625 E-05\)
 \(0.0000 \mathrm{E}+00 \quad 6.0491 \mathrm{E}-02-3.6976 \mathrm{E}-03 \quad 3.6976 \mathrm{E}-03\)
 \(-2.5204 E-02-3.8763 E-08-2.1483 E-02-2.1483 E-02\)
 \(0.0000 E+00 \quad 6.3847 E-02 \quad 2.6060 E-01 \quad-2.6060 E-01\)
 \(1.3873 E-02 \quad 7.3256 E-07-2.9781 E-02-2.9781 E-02\)
 \(0.0000 E+00-8.7846 E-02-4.2094 E-04 \quad 4.2094 E-04\)
 \(0.0000 E+00 \quad 0.0000 E+00 \quad 0.0000 E+00 \quad 0.0000 E+00\)
 \(0.0000 E+00 \quad 0.0000 E+00 \quad 0.0000 E+00 \quad 0.0000 E+00\)

APPENDIX C4

\section*{}
\[
\begin{aligned}
& -1-1
\end{aligned}
\]
 2

\section*{reduced and scaled plant matrices with appropkiate c matrix} MODEL WITHOUT ROLL CONTROL
\[
\begin{gathered}
\underline{x}^{\top}=[u v w p q r \phi \theta] \\
\text { A MATRIX }
\end{gathered}
\]
\begin{tabular}{llllllll}
\(-3.8269 E-02\) & \(-2.1964 E-02\) & \(-2.7533 E-03\) & \(-3.3173 E-04\) & \(2.0734 E-03\) & \(5.5394 E-02\) & \(0.0000 \mathrm{E}+00\) & \(5.1285 \mathrm{E}-06\) \\
\(1.1417 \mathrm{E}-03\) & \(-1.5939 \mathrm{E}-01\) & \(-3.3786 \mathrm{E}-05\) & \(-2.3578 \mathrm{E}-02\) & \(2.8353 \mathrm{E}-03\) & \(-2.6860 \mathrm{E}-01\) & \(2.2745 \mathrm{E}-03\) & \(-2.5914 \mathrm{E}-05\) \\
\(-4.7476 \mathrm{E}-04\) & \(1.3910 \mathrm{E}-03\) & \(-9.6526 \mathrm{E}-02\) & \(-2.7949 \mathrm{E}-02\) & \(2.1163 \mathrm{E}-01\) & \(7.6140 \mathrm{E}-04\) & \(0.0000 \mathrm{E}+00\) & \(1.3221 \mathrm{E}-04\) \\
\(1.3945 \mathrm{E}-02\) & \(-6.6430 \mathrm{E}-01\) & \(-8.0931 \mathrm{E}-02\) & \(-4.3452 \mathrm{E}-01\) & \(-2.5262 \mathrm{E}-01\) & \(-2.1920 \mathrm{E}-02\) & \(-1.6030 \mathrm{E}-01\) & \(1.8264 \mathrm{E}-03\) \\
\(7.1418 \mathrm{E}-05\) & \(-2.5929 \mathrm{E}-04\) & \(7.8117 \mathrm{E}-02\) & \(-1.1406 \mathrm{E}-02\) & \(-4.0815 \mathrm{E}-01\) & \(-7.7327 \mathrm{E}-04\) & \(0.0000 \mathrm{E}+00\) & \(-2.4985 \mathrm{E}-03\) \\
\(-1.5782 \mathrm{E}-03\) & \(-1.1622 \mathrm{E}-01\) & \(3.4035 \mathrm{E}-04\) & \(-8.0011 \mathrm{E}-03\) & \(2.2809 \mathrm{E}-03\) & \(-3.8201 \mathrm{E}-01\) & \(2.5893 \mathrm{E}-04\) & \(-2.9501 \mathrm{E}-06\) \\
\(0.0000 \mathrm{E}+00\) & \(0.0000 \mathrm{E}+00\) & \(0.0000 \mathrm{E}+00\) & \(1.0000 \mathrm{E}+00\) & \(1.1328 \mathrm{E}-02\) & \(-1.0538 \mathrm{E}-01\) & \(-4.9352 \mathrm{E}-10\) & \(-1.2635 \mathrm{E}-02\) \\
\(0.0000 \mathrm{E}+00\) & \(0.0000 \mathrm{E}+00\) & \(0.0000 \mathrm{E}+00\) & \(0.0000 \mathrm{E}+00\) & \(9.9427 \mathrm{E}-01\) & \(1.0689 \mathrm{E}-01\) & \(1.2494 \mathrm{E}-02\) & \(0.0000 \mathrm{E}+00\)
\end{tabular}
\[
\begin{aligned}
& \underline{\underline{u}}^{\top}=\left[\begin{array}{lll}
{[b} & \delta r & \delta s
\end{array}\right] \\
& \text { B MATRIX }
\end{aligned}
\]

APPENDIX C4
\[
y^{\top}=\left[\begin{array}{llll}
\theta & \psi & z
\end{array}\right]
\]

C MATRIX
\(0.0000 E+00 \quad 0.0000 E+00 \quad 1.0000 E-01\)
\(0.0000 E+00 \quad 0.0000 E+00 \quad 0.0000 E+00 \quad 0.0000 E+00-1.0749 E-01 \quad 9.9984 E-01 \quad 4.6827 E-09 \quad 1.3316 E-03\)
\(1.0539 E-01-1.0629 E-01 \quad 9.8873 E-01 \quad 0.0000 E+00 \quad 0.0000 E+00 \quad 0.0000 E+00 \quad 2.7119 E-02-8.4843 E-01\)
d9 3150.4a

\section*{- \(=1\) \\ }

\section*{71418}

\section*{AF-FFEMDIX D}

\section*{MODAL ANALYSIS FESULTS}

The matrices are presented in the standard row and column format. Additionally, the data presented consists of complex numbers. As such, the numbers are always displayed with the imagimary part difectly bel ow the real part. The eigenvectors (modal matrices) are presented as complex colum vectors.

-

MODAL ANALYSIS FOR DESIGN WITH ROLL CONTROL

\section*{PLANT EIGENVALUES}
```

-1.4176E-02 -4.0661E-02 -4.2886E-02 -7.1364E-02 -1.9689E-01 -1.9689E-01 -4.5114E-01 -5.0486E-01
0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 3.1300E-01 -3.1300E-01 0.0000E+00 0.0000E+00

```

\section*{TRANSMISSION ZEROS}
```

5.8302E+07 1.2014E+07 7.8269E+06 -3.8414E-02 -2.5097E-01 -1.3680E+01 -1.3579E+01 -2.6894E+0B
0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 1.1609E+04 -1.1609E+04 0.0000E+00

```

EIGENUECTORS (MODAL MATRIX)
\begin{tabular}{rrrrrrrr}
\(-6.8361 E-03\) & \(-2.5658 E-01\) & \(1.0505 E-01\) & \(2.5104 E-01\) & \(-1.3119 E-03\) & \(-1.3119 E-03\) & \(-1.0292 E-03\) & \(1.7639 E-02\) \\
\(0.0000 E+00\) & \(0.0000 E+00\) & \(0.0000 E+00\) & \(0.0000 E+00\) & \(-1.6355 E-03\) & \(1.6355 E-03\) & \(0.0000 E+00\) & \(0.0000 E+00\) \\
& & & & & & & \\
\(2.6727 E-03\) & \(-2.0890 E-02\) & \(2.4216 E-03\) & \(1.8514 E-01\) & \(-1.3216 E-02\) & \(-1.3216 E-02\) & \(2.9403 E-02\) & \(-2.1901 E-01\) \\
\(0.0000 E+00\) & \(0.0000 E+00\) & \(0.0000 E+00\) & \(0.0000 E+00\) & \(-1.8009 E-02\) & \(1.8009 E-02\) & \(0.0000 E+00\) & \(0.0000 E+00\) \\
& & & & & & \\
\(4.0471 E-02\) & \(1.5080 E-01\) & \(1.7237 E-01\) & \(8.5127 E-02\) & \(-2.9186 E-02\) & \(-2.9186 E-02\) & \(2.1418 E-01\) & \(-4.1687 E-03\) \\
\(0.0000 E+00\) & \(0.0000 E+00\) & \(0.0000 E+00\) & \(0.0000 E+00\) & \(-6.5275 E-03\) & \(6.5275 E-03\) & \(0.0000 E+00\) & \(0.0000 E+00\) \\
\(-1.2341 E-02\) & \(-8.9644 E-03\) & \(-6.2565 E-03\) & \(5.9660 E-02\) & \(-2.3086 E-01\) & \(-2.3086 E-01\) & \(-1.4102 E-01\) & \(-4.4041 E-01\) \\
\(0.0000 E+00\) & \(0.0000 E+00\) & \(0.0000 E+00\) & \(0.0000 E+00\) & \(2.5728 E-01\) & \(-2.5728 E-01\) & \(0.0000 E+00\) & \(0.0000 E+00\) \\
\(1.4711 E-02\) & \(3.8749 E-02\) & \(4.3690 E-02\) & \(1.7590 E-02\) & \(-6.9174 E-03\) & \(-6.9174 E-03\) & \(-3.7838 E-01\) & \(-4.7868 E-02\) \\
\(0.0000 E+00\) & \(0.0000 E+00\) & \(0.0000 E+00\) & \(0.0000 E+00\) & \(-5.9444 E-03\) & \(5.9444 E-03\) & \(0.0000 E+00\) & \(0.0000 E+00\) \\
& & & & & & & \\
\(-4.3411 E-04\) & \(8.8786 E-03\) & \(-8.1227 E-04\) & \(-7.2642 E-02\) & \(5.1850 E-03\) & \(5.1850 E-03\) & \(4.3218 E-02\) & \(-2.3648 E-01\) \\
\(0.0000 E+00\) & \(0.0000 E+00\) & \(0.0000 E+00\) & \(0.0000 E+00\) & \(-8.4312 E-03\) & \(8.4312 E-03\) & \(0.0000 E+00\) & \(0.0000 E+00\) \\
& & & & & & & \\
\(-3.4241 E-02\) & \(-6.2985 E-02\) & \(-1.5239 E-01\) & \(-9.4101 E-01\) & \(9.2397 E-01\) & \(9.2397 E-01\) & \(3.5497 E-01\) & \(8.2716 E-01\) \\
\(0.0000 E+00\) & \(0.0000 E+00\) & \(0.0000 E+00\) & \(0.0000 E+00\) & \(1.5763 E-01\) & \(-1.5763 E-01\) & \(0.0000 E+00\) & \(0.0000 E+00\) \\
\(-9.9838 E-01\) & \(-9.5150 E-01\) & \(-9.6648 E-01\) & \(2.8480 E-02\) & \(-1.8602 E-02\) & \(-1.8602 E-02\) & \(8.1384 E-01\) & \(1.2387 E-01\) \\
\(0.0000 E+00\) & \(0.0000 E+00\) & \(0.0000 E+00\) & \(0.0000 E+00\) & \(-4.9793 E-03\) & \(4.9793 E-03\) & \(0.0000 E+00\) & \(0.0000 E+00\)
\end{tabular}

\section*{APPENDIX DI}

\section*{CONTROLLABILITY MATRIX}
\begin{tabular}{rrrr}
\(5.6156 E-01\) & \(1.7840 E-01\) & \(4.1655 E-01\) & \(4.8436 E-01\) \\
\(-1.9911 E-10\) & \(1.4232 E-09\) & \(-3.7882 E-10\) & \(4.7169 E-10\) \\
& & & \\
\(-2.8596 E-01\) & \(3.5042 E-01\) & \(-1.2380 E-01\) & \(-1.5388 E-01\) \\
\(-6.2679 E-10\) & \(2.7076 E-09\) & \(7.3586 E-10\) & \(-5.1437 E-10\) \\
& & & \\
\(-6.4135 E-01\) & \(-5.2348 E-01\) & \(-2.5188 E-01\) & \(-2.6555 E-01\) \\
\(8.6262 E-10\) & \(-4.1367 E-09\) & \(-4.7910 E-10\) & \(1.4451 E-10\) \\
\(-5.1517 E-02\) & \(5.7248 E-01\) & \(1.6873 E-04\) & \(-4.3806 E-02\) \\
\(-1.0340 E-09\) & \(4.5318 E-09\) & \(7.6296 E-10\) & \(-3.8432 E-10\) \\
\(4.2000 E-02\) & \(1.5533 E-01\) & \(-1.1720 E-01\) & \(1.3250 E-02\) \\
\(1.1239 E-01\) & \(-2.9618 E-01\) & \(-5.9723 E-01\) & \(5.7354 E-01\) \\
& & & \\
\(4.2000 E-02\) & \(1.5533 E-01\) & \(-1.1720 E-01\) & \(1.3250 E-02\) \\
\(-1.1239 E-01\) & \(2.9618 E-01\) & \(5.9723 E-01\) & \(-5.7354 E-01\) \\
\(-3.9615 E-01\) & \(-2.3595 E-02\) & \(7.4600 E-02\) & \(8.4577 E-02\) \\
\(3.8132 E-12\) & \(-1.3261 E-10\) & \(-5.0678 E-10\) & \(5.0520 E-10\) \\
\(-5.6283 E-02\) & \(1.3913 E-01\) & \(-3.6203 E-02\) & \(6.2273 E-02\) \\
\(2.5680 E-10\) & \(3.5415 E-10\) & \(2.0900 E-09\) & \(-2.1848 E-09\)
\end{tabular}

OBSERVABILITY MATRIX
\begin{tabular}{rrrrrrrr}
\(-3.4241 E-03\) & \(-6.2985 E-03\) & \(-1.5239 E-02\) & \(-9.4101 E-02\) & \(9.2397 E-02\) & \(9.2397 E-02\) & \(3.5497 E-02\) & \(8.2716 E-02\) \\
\(0.0000 E+00\) & \(0.0000 E+00\) & \(0.0000 E+00\) & \(0.0000 E+00\) & \(1.5763 E-02\) & \(-1.5763 E-02\) & \(0.0000 E+00\) & \(0.0000 E+00\) \\
\(-9.9838 E-02\) & \(-9.5150 E-02\) & \(-9.6648 E-02\) & \(2.8480 E-03\) & \(-1.8602 E-03\) & \(-1.8602 E-03\) & \(8.1384 E-02\) & \(1.2387 E-02\) \\
\(0.0000 E+00\) & \(0.0000 E+00\) & \(0.0000 E+00\) & \(0.0000 E+00\) & \(-4.9793 E-04\) & \(4.9793 E-04\) & \(0.0000 E+00\) & \(0.0000 E+00\) \\
\(-3.3447 E-03\) & \(3.4451 E-03\) & \(-6.7951 E-03\) & \(-7.4483 E-02\) & \(5.9029 E-03\) & \(5.9029 E-03\) & \(8.4965 E-02\) & \(-2.3113 E-01\) \\
\(0.0000 E+00\) & \(0.0000 E+00\) & \(0.0000 E+00\) & \(0.0000 E+00\) & \(-7.7975 E-03\) & \(7.7975 E-03\) & \(0.0000 E+00\) & \(0.0000 E+00\) \\
& & & & & & & \\
\(8.8514 E-01\) & \(9.2986 E-01\) & \(9.9710 E-01\) & \(4.1263 E-02\) & \(1.3249 E-02\) & \(1.3249 E-02\) & \(-4.7233 E-01\) & \(-6.1643 E-02\) \\
\(0.0000 E+00\) & \(0.0000 E+00\) & \(0.0000 E+00\) & \(0.0000 E+00\) & \(3.7872 E-03\) & \(-3.7872 E-03\) & \(0.0000 E+00\) & \(0.0000 E+00\)
\end{tabular}
mODAL ANALYSIS FOR DESIGN WITHOUT ROLL CONTROL

\section*{PLANT EIGENVALUES}
```

-1.4176E-02 -4.0661E-02 -4.2886E-02 -7.1364E-02 -1.9689E-01 -1.9689E-01 -4.5114E-01 -5.0486E-01
0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 3.1300E-01 -3.1300E-01 0.0000E+00 0.0000E+00

```

\section*{TRANSMISSION ZEROS}
```

3.0779E+07 5.5553E+03 -3.8432E-02 -1.8029E-01 -1.8029E-01 -3.1812E-01 -5.5561E+03 -1.5282E+08
0.0000E+00 0.0000E+00 0.0000E+00 3.0164E-01 -3.0164E-01 0.0000E+00 0.0000E+00 0.0000E+00

```

EIGENUECTORS (MODAL MATRIX)
\begin{tabular}{rrrrrrrr}
\(-6.8361 E-03\) & \(-2.5658 E-01\) & \(1.0505 E-01\) & \(2.5104 E-01\) & \(-1.3119 E-03\) & \(-1.3119 E-03\) & \(-1.0292 E-03\) & \(1.7639 E-02\) \\
\(0.0000 E+00\) & \(0.0000 E+00\) & \(0.0000 E+00\) & \(0.0000 E+00\) & \(-1.6355 E-03\) & \(1.6355 E-03\) & \(0.0000 E+00\) & \(0.0000 E+00\) \\
& & & & & & & \\
\(2.6727 E-03\) & \(-2.0890 E-02\) & \(2.4216 E-03\) & \(1.8514 E-01\) & \(-1.3216 E-02\) & \(-1.3216 E-02\) & \(2.9403 E-02\) & \(-2.1901 E-01\) \\
\(0.0000 E+00\) & \(0.0000 E+00\) & \(0.0000 E+00\) & \(0.0000 E+00\) & \(-1.8009 E-02\) & \(1.8009 E-02\) & \(0.0000 E+00\) & \(0.0000 E+00\) \\
& & & & & & \\
\(4.0471 E-02\) & \(1.5080 E-01\) & \(1.7237 E-01\) & \(8.5127 E-02\) & \(-2.9186 E-02\) & \(-2.9186 E-02\) & \(2.1418 E-01\) & \(-4.1687 E-03\) \\
\(0.0000 E+00\) & \(0.0000 E+00\) & \(0.0000 E+00\) & \(0.0000 E+00\) & \(-6.5275 E-03\) & \(6.5275 E-03\) & \(0.0000 E+00\) & \(0.0000 E+00\) \\
\(-1.2341 E-02\) & \(-8.9644 E-03\) & \(-6.2565 E-03\) & \(5.9660 E-02\) & \(-2.3086 E-01\) & \(-2.3086 E-01\) & \(-1.4102 E-01\) & \(-4.4041 E-01\) \\
\(0.0000 E+00\) & \(0.0000 E+00\) & \(0.0000 E+00\) & \(0.0000 E+00\) & \(2.5728 E-01\) & \(-2.5728 E-01\) & \(0.0000 E+00\) & \(0.0000 E+00\) \\
\(1.4711 E-02\) & \(3.8749 E-02\) & \(4.7690 E-02\) & \(1.7590 E-02\) & \(-6.9174 E-03\) & \(-6.9174 E-03\) & \(-3.7838 E-01\) & \(-4.7868 E-02\) \\
\(0.0000 E+00\) & \(0.0000 E+00\) & \(0.0000 E+00\) & \(0.0000 E+00\) & \(-5.9444 E-03\) & \(5.9444 E-03\) & \(0.0000 E+00\) & \(0.0000 E+00\) \\
& & & & & & & \\
\(-4.3411 E-04\) & \(8.8786 E-03\) & \(-8.1227 E-04\) & \(-7.2642 E-02\) & \(5.1850 E-03\) & \(5.1850 E-03\) & \(4.3218 E-02\) & \(-2.3648 E-01\) \\
\(0.0000 E+00\) & \(0.0000 E+00\) & \(0.0000 E+00\) & \(0.0000 E+00\) & \(-8.4312 E-03\) & \(8.4312 E-03\) & \(0.0000 E+00\) & \(0.0000 E+00\) \\
& & & & & & & \\
\(-3.4241 E-02\) & \(-6.2985 E-02\) & \(-1.5239 E-01\) & \(-9.4101 E-01\) & \(9.2397 E-01\) & \(9.2397 E-01\) & \(3.5497 E-01\) & \(8.2716 E-01\) \\
\(0.0000 E+00\) & \(0.0000 E+00\) & \(0.0000 E+00\) & \(0.0000 E+00\) & \(1.5763 E-01\) & \(-1.5763 E-01\) & \(0.0000 E+00\) & \(0.0000 E+00\) \\
\(-9.9838 E-01\) & \(-9.5150 E-01\) & \(-9.6648 E-01\) & \(2.8480 E-02\) & \(-1.8602 E-02\) & \(-1.8602 E-02\) & \(8.1384 E-01\) & \(1.2387 E-01\) \\
\(0.0000 E+00\) & \(0.0000 E+00\) & \(0.0000 E+00\) & \(0.0000 E+00\) & \(-4.9793 E-03\) & \(4.9793 E-03\) & \(0.0000 E+00\) & \(0.0000 E+00\)
\end{tabular}

CONTROLLABILITY MATRIX
\[
\begin{array}{rrr}
5.6156 E-01 & 1.7840 \mathrm{E}-01 & 8.2094 \mathrm{E}-01 \\
-1.9911 \mathrm{E}-10 & 1.4232 \mathrm{E}-09 & 1.0434 \mathrm{E}-10 \\
& & \\
-2.8596 \mathrm{E}-01 & 3.5042 \mathrm{E}-01 & -2.5325 \mathrm{E}-01 \\
-6.2679 \mathrm{E}-10 & 2.7076 \mathrm{E}-09 & 1.7222 \mathrm{E}-10 \\
& & \\
-6.4135 \mathrm{E}-01 & -5.2348 \mathrm{E}-01 & -4.7091 \mathrm{E}-01 \\
8.6262 \mathrm{E}-10 & -4.1367 \mathrm{E}-09 & -2.8973 \mathrm{E}-10 \\
& & \\
-5.1517 \mathrm{E}-02 & 5.7248 \mathrm{E}-01 & -4.0715 \mathrm{E}-02 \\
-1.0340 \mathrm{E}-09 & 4.5318 \mathrm{E}-09 & 3.1755 \mathrm{E}-10 \\
4.2000 \mathrm{E}-02 & 1.5533 \mathrm{E}-01 & -9.1490 \mathrm{E}-02 \\
1.1239 \mathrm{E}-01 & -2.9618 \mathrm{E}-01 & 5.8204 \mathrm{E}-03 \\
4.2000 \mathrm{E}-02 & 1.5533 \mathrm{E}-01 & -9.1490 \mathrm{E}-02 \\
-1.1239 \mathrm{E}-01 & 2.9618 \mathrm{E}-01 & -5.8204 \mathrm{E}-03 \\
& & \\
-3.9615 \mathrm{E}-01 & -2.3595 \mathrm{E}-02 & 1.4500 \mathrm{E}-01 \\
3.8132 \mathrm{E}-12 & -1.3261 \mathrm{E}-10 & 2.2219 \mathrm{E}-11 \\
-5.6283 \mathrm{E}-02 & 1.3913 \mathrm{E}-01 & 2.6012 \mathrm{E}-02 \\
2.5680 \mathrm{E}-10 & 3.5415 \mathrm{E}-10 & -1.8620 \mathrm{E}-10
\end{array}
\]

\section*{OBSERUABILITY MATRIX}
\begin{tabular}{rrrrrrrr}
\(-9.9838 E-02\) & \(-9.5150 E-02\) & \(-9.6648 E-02\) & \(2.8480 E-03\) & \(-1.8602 E-03\) & \(-1.8602 E-03\) & \(8.1384 E-02\) & \(1.2387 E-02\) \\
\(0.0000 E+00\) & \(0.0000 E+00\) & \(0.0000 E+00\) & \(0.0000 E+00\) & \(-4.9793 E-04\) & \(4.9793 E-04\) & \(0.0000 \mathrm{E}+00\) & \(0.0000 \mathrm{E}+00\) \\
\(-3.3447 E-03\) & \(3.4451 E-03\) & \(-6.7951 E-03\) & \(-7.4483 E-02\) & \(5.9029 E-03\) & \(5.9029 E-03\) & \(8.4965 E-02\) & \(-2.3113 E-01\) \\
\(0.0000 E+00\) & \(0.0000 E+00\) & \(0.0000 E+00\) & \(0.0000 E+00\) & \(-7.7975 E-03\) & \(7.7975 E-03\) & \(0.0000 \mathrm{E}+00\) & \(0.0000 \mathrm{E}+00\) \\
& & & & & & & \\
\(8.8514 E-01\) & \(9.2986 E-01\) & \(9.9710 E-01\) & \(4.1263 E-02\) & \(1.3249 E-02\) & \(1.3249 E-02\) & \(-4.7233 E-01\) & \(-6.1643 E-02\) \\
\(0.0000 E+00\) & \(0.0000 E+00\) & \(0.0000 E+00\) & \(0.0000 E+00\) & \(3.7872 E-03\) & \(-3.7872 E-03\) & \(0.0000 E+00\) & \(0.0000 E+00\)
\end{tabular}

\section*{AFFFENDIXE}

GAIN MATFICES AND FFGFEFTIES OF THE CLOSED LOOF SYSTEM

For the 4-input, 4-output design the salman filter, control gain, and \(L\) matrices are real matrices displayed as 1204, \(4 \times 12\), and \(12 \times 4\) matrices, respectively. In the case of the control gain matrices, the 12 elements of each row are displayed as two rows, containing the first six elements in one row and the last six elements in the next. The eigenvalues and transmission zeros of the open and closed loop plant are \(1 \times 24\) complex matrices. The 24 elements in the row are displayed as four rows, with sio elements in each row. The imaginary part of each element is directiy below the real part. Gimilar notation is used for the input, z-output desigm.

\section*{APPENDIX EI}

PROPERTIES OF THE ROLL CONTROL MODEL

FILTER GAIN MATRIX
\[
\begin{array}{llll}
-1.0282 E+00 & -1.8198 E+01 & -8.1019 E-01 & -2.1680 E+00 \\
1.1923 E-01 & 7.9327 E-02 & -7.5141 E-01 & 2.8994 E-02 \\
1.9031 E+00 & 1.7664 E+00 & -8.6529 E-01 & 1.5857 E-01 \\
-1.4904 E+00 & 4.2619 E-01 & 1.2014 E+00 & 1.1415 E-01 \\
9.3005 E-03 & 4.4870 E-01 & 9.2495 E-02 & 5.4981 E-02 \\
6.8777 E-03 & -3.4783 E-01 & -2.6354 E-01 & -3.8983 E-02 \\
2.4814 E-02 & 4.1892 E+00 & 2.1197 E-01 & 4.9849 E-01 \\
1.8704 E-01 & 2.4765 E-01 & -3.5220 E-01 & 4.9200 E-02 \\
-3.0473 E-02 & -4.2343 E-03 & -3.1907 E-02 & 3.5337 E-04 \\
-4.2073 E-02 & 2.1331 E-02 & 3.8510 E-01 & -4.2349 E-03 \\
5.3431 E+00 & 2.1792 E-01 & -3.8501 E-01 & -1.5210 E-01 \\
2.1792 E-01 & 4.9887 E+00 & 2.8426 E-01 & -4.8414 E-03
\end{array}
\]

CONTROL GAIN MATRIK
\begin{tabular}{rrrrrr}
\(1.3487 E+00\) & \(1.4722 E-03\) & \(-1.8437 E-03\) & \(3.2330 E-03\) & \(-2.8935 E+00\) & \(2.1865 E+00\) \\
\(-2.3081 E+01\) & \(4.6679 E-02\) & \(2.3366 E+01\) & \(2.0238 E+00\) & \(-2.3789 E-01\) & \(2.5951 E+01\) \\
& & & & & \\
\(1.4722 E-03\) & \(2.0983 E+00\) & \(-1.1733 E-02\) & \(-4.2671 E-02\) & \(-4.7100 E-02\) & \(2.5212 E+00\) \\
\(-7.6947 E-01\) & \(1.9053 E-01\) & \(1.7016 E+00\) & \(-2.3196 E+01\) & \(8.8982 E-02\) & \(3.6430 E-01\) \\
\(-1.8437 E-03\) & \(-1.1733 E-02\) & \(1.3132 E+00\) & \(-3.5292 E-01\) & \(-7.9515 E-01\) & \(-1.3192 E+00\) \\
\(-8.6155 E+00\) & \(2.5982 E+00\) & \(-1.9569 E+00\) & \(1.4596 E+00\) & \(1.4934 E+00\) & \(4.8954 E+00\) \\
\(3.2330 E-03\) & \(-4.2671 E-02\) & \(-3.5292 E-01\) & \(1.2835 E+00\) & \(-9.4105 E-01\) & \(2.7612 E+00\) \\
\(-8.7112 E+00\) & \(-2.5781 E+00\) & \(-5.8551 E-01\) & \(6.8046 E-01\) & \(-1.9771 E+00\) & \(5.4309 E+00\)
\end{tabular}

\section*{APPENDIX EI}

L MATRIK
\begin{tabular}{llll}
\(-6.0839 E-01\) & \(-3.6479 E+01\) & \(5.6633 E-01\) & \(-4.3555 E+00\) \\
\(1.5610 E-02\) & \(8.7114 E-02\) & \(-1.5284 E+00\) & \(6.4870 E-03\) \\
\(3.3627 E+00\) & \(3.5527 E+00\) & \(-2.4355 E+00\) & \(4.4871 E-01\) \\
\(-2.6540 E+00\) & \(8.8502 E-01\) & \(2.7545 E+00\) & \(1.5325 E-01\) \\
\(-2.8582 E-02\) & \(8.9419 E-01\) & \(8.1547 E-14\) & \(1.0539 E-01\) \\
\(2.8826 E-02\) & \(-9.0182 E-01\) & \(-8.2242 E-14\) & \(-1.0629 E-01\) \\
\(-2.6814 E-01\) & \(8.3888 E+00\) & \(7.6502 E-13\) & \(9.8873 E-01\) \\
\(0.0000 E+00\) & \(0.0000 E+00\) & \(0.0000 E+00\) & \(0.0000 E+00\) \\
\(4.9774 E-09\) & \(1.4154 E-03\) & \(-1.0629 E-01\) & \(-4.4369 E-13\) \\
\(-4.6300 E-08\) & \(-1.3166 E-02\) & \(9.8873 E-01\) & \(4.1272 E-12\) \\
\(1.0000 E+01\) & \(-1.4691 E-09\) & \(-3.8444 E-17\) & \(1.2488 E-11\) \\
\(-1.3286 E-10\) & \(1.0000 E+01\) & \(6.9211 E-12\) & \(-5.5841 E-09\)
\end{tabular}

OPEN LOOP EIGENUALUES
```

9.5843E-09 0.0000E+00 0.0000E+00 0.0000E+00 -1.4176E-02 - 3.8412E-02
-4.4084E-01 -4.4084E-01 -4.5114E-01 -5.0486E-01 -5.8965E-01 -5.8965E-01
-4.0661E-02-4.2886E-02 -7.1364E-02 -1.9689E-01 -1.9689E-01 -2.5114E-01
-9.5148E-01 -9.5148E-01 -1.0104E+00 -1.3887E+00-1.3887E+00-1.4462E+00
0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
4.7901E-01 -4.7901E-01 0.0000E+00 0.0000E+00 1.1366E+00 -1.1366E+00
0.0000E+00 0.0000E+00 0.0000E+00 3.1300E-01 -3.1300E-01 0.0000E+00
1.0148E+00-1.0148E+00 0.0000E+00 1.3186E+00 -1.3186E+00 0.0000E+00

```

\section*{APPENDIK EI}

OPEN LOOP TRANSMISSION ZEROS
\begin{tabular}{rrrrrrr}
\(1.0000 E+30\) & \(1.0000 E+30\) & \(1.0000 E+30\) & \(1.0000 E+30\) & \(1.1625 E+08\) & \(1.0192 E+08\) \\
\(-3.9767 E-02\) & \(-3.9767 E-02\) & \(-1.9869 E-01\) & \(-2.0469 E-01\) & \(-2.0469 E-01\) & \(-2.5097 E-01\) \\
\(1.2816 E+05\) & \(1.4260 E+04\) & \(1.2133 E+00\) & \(1.2202 E+00\) & \(-1.4256 E-02\) & \(-3.8414 E-02\) \\
\(-2.8357 E-01\) & \(-4.5944 E-01\) & \(-1.4263 E+04\) & \(-1.2816 E+05\) & \(-8.6484 E+07\) & \(-5.8038 E+09\) \\
& & & & & & \\
\(0.0000 E+00\) & \(0.0000 E+00\) \\
\(1.6540 E-03\) & \(-1.6540 E-03\) & \(0.0000 E+00\) & \(2.8343 E-01\) & \(-2.8343 E-01\) & \(0.0000 E+00\) \\
& & & & & & \\
\(0.0000 E+00\) & \(0.0000 E+00\) & \(1.0851 E+04\) & \(-1.0851 E+04\) & \(0.0000 E+00\) & \(0.0000 E+00\) \\
\(0.0000 E+00\) & \(0.0000 E+00\) \\
& & & & & & \\
& & & & & & \\
\hline
\end{tabular}

CLOSED LOOP TRANSMISSION ZEROS
```

7.5203E+10 1.1350E+04 8.6830E+03 6.7422E+03 2.5300E+02 2.5300E+02
-3.9768E-02-3.9768E-02-1.9869E-01 -2.0469E-01 -2.0469E-01 -2.5097E-01
1.5900E+00 1.4499E+00 2.5446E-01 7.5507E-01 -1.4253E-02 -3.8414E-02
-2.8357E-01-4.5944E-01-5.0698E+02-6.7412E+03-8.6823E+03-1.1349E+04
0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 4.3878E+02 -4.3878E+02
1.6527E-03-1.6527E-03 0.0000E+00 2.8343E-01 -2.8343E-01 0.0000E+00
2.4470E+05-2.4470E+05 1.5450E+04 -1.5450E+04 0.0000E+00 0.0000E+00
0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

```

\section*{APPENDIX E2}

PROPERTIES OF THE MODEL HJTHOUT ROLL CONTROL

FILTER GAIN MATRIX
\begin{tabular}{rrr}
\(-1.8104 E+01\) & \(-9.9739 E-01\) & \(-1.9187 E+00\) \\
\(8.3100 E-02\) & \(-7.5396 E-01\) & \(-2.4242 E-03\) \\
\(1.0178 E+00\) & \(2.9009 E-01\) & \(1.2935 E-01\) \\
\(4.4848 E-01\) & \(9.4995 E-02\) & \(4.6515 E-02\) \\
\(-3.2777 E-01\) & \(-2.9706 E-01\) & \(-4.0709 E-02\) \\
\(4.2139 E+00\) & \(1.7960 E-01\) & \(4.3854 E-01\) \\
\(-8.2718 E-02\) & \(1.1100 E-01\) & \(-3.5626 E-03\) \\
\(8.5074 E-03\) & \(-5.1439 E-02\) & \(6.8779 E-05\) \\
\(2.0580 E-02\) & \(3.8598 E-01\) & \(5.4579 E-03\) \\
\(-1.9794 E-01\) & \(3.5426 E-01\) & \(-5.2399 E-03\) \\
\(5.0090 E+00\) & \(2.6332 E-01\) & \(-6.6166 E-02\)
\end{tabular}

CONTROL GAIN MATRJX
```

1.3399E+00 2.4951E-03-4.1531E-02 -2.8549E+00 2.1877E+00 -2.2711E+01
2.8530E-02 2.3251E+0! 1.9938E+00 -2.3664E-01 2.5708E+01
2.4951E-03 2.0950E+00 -4.4818E-02 -6.1695E-02 2.5273E+00 -9.1184E-01
8.4496E-02 1.7283E+00 -2.3191E+01 -5.5890E-02 4.6906E-01
-4.1531E-02 -4.4818E-02 1.1898E+00 -1.3346E+00 1.2073E+00 -1.3296E+01
-7.3320E-02 -2.3292E+00 1.7524E+00 -4.3088E-01 8.1221E+00

```


APPENDIX E2

L MATRIX
\begin{tabular}{rrr}
\(-3.6209 E+01\) & \(4.1533 E-02\) & \(-4.3257 E+00\) \\
\(8.0193 E-02\) & \(-1.5149 E+00\) & \(5.7204 E-03\) \\
\(2.0617 E+00\) & \(4.6520 E-01\) & \(2.8358 E-01\) \\
\(8.9353 E-01\) & \(-1.3558 E-11\) & \(1.0532 E-01\) \\
\(-9.0115 E-01\) & \(1.3674 E-11\) & \(-1.0621 E-01\) \\
\(8.3826 E+00\) & \(-1.2719 E-10\) & \(9.8801 E-01\) \\
\(0.0000 E+00\) & \(0.0000 E+00\) & \(0.0000 E+00\) \\
\(1.4154 E-03\) & \(-1.0629 E-01\) & \(1.4658 E-11\) \\
\(-1.3166 E-02\) & \(9.8873 E-01\) & \(-1.3635 E-10\) \\
\(2.2992 E-01\) & \(4.6272 E-09\) & \(2.7099 E-02\) \\
\(1.0000 E+01\) & \(1.1950 E-11\) & \(-3.4596 E-10\)
\end{tabular}

OPEN LOOP EIGENVALUES
\begin{tabular}{|c|c|c|c|c|c|}
\hline 1.4791E-08 & 0.0000E+00 & \(0.0000 E+00\) & -1.4176E-02 & -3.8430E-02 & 02 \\
\hline \(0.0000 \mathrm{E}+00\) & 0.0000E+00 & \(0.0000 E+00\) & \(0.0000 E+00\) & \(0.0000 E+00\) & 0.0000E+00 \\
\hline -4.2886E-02 & -7.1364E-02 & 1.8012E-01 & 1.8012E-01 & 1.9689E-0! & 1.9689E-01 \\
\hline \(0.0000 \mathrm{E}+00\) & 0.0000E+00 & 3.0158E-01 & -3.0158E-01 & \(3.1300 \mathrm{E}-01\) & -3.1300E-01 \\
\hline -3.1857E-01 & -4.5114E-01 & -4.5954E-01 & -4.5954E-01 & -5.0486E-01 & \(-1.0233 E+00\) \\
\hline \(0.0000 \mathrm{E}+00\) & 0.0000E+00 & 4.9673E-01 & -4,9673E-01 & 0.0000 E+00 & 1.1072E+00 \\
\hline & \(-1.0233 E+00\) & \(-1.0643 E+00\) & \(-1.3940 \mathrm{E}+00\) & 1.3940E+00 & \\
\hline & -1.1072E+00 & \(0.0000 E+00\) & \(1.31868+00\) & -1.3186E+00 & \\
\hline
\end{tabular}

\section*{APPENDIX E2}

Open loop transmission zefos
\begin{tabular}{|c|c|c|c|c|c|}
\hline 1.0000E+30 & 1.0000E+30 & 1.0000E +30 & 1.7438E+11 & \(2.5380 \mathrm{E}+10\) & 1.2540E+08 \\
\hline \(0.0000 \mathrm{E}+00\) & 0.0000E+00 & 0.0000E+00 & 0.0000E+00 & 0.0000E+00 & \(0.0000 \mathrm{E}+00\) \\
\hline \(2.4318 \mathrm{E}+04\) & 1.3204E+04 & -1.4324E-02 & \(-3.8432 E-02\) & -3.9719E-02 & -3.9719E-02 \\
\hline \(0.0000 \mathrm{E}+00\) & 0.0000E+00 & 0,0000E+00 & 0.0000E+00 & 9.8294E-04 & -9.8294E-04 \\
\hline -1.5509E-01 & -1.8029E-01 & -1.8029E-01 & -1.9034E-01 & -1.9034E-01 & -3.1812E-01 \\
\hline 0.0000E+00 & 3.0164E-01 & -3.0164E-01 & 3.1017E-01 & -3.1017E-01 & 0.0000E+00 \\
\hline & -3.5414E-01 & -4.5896E-01 & \(-1.3205 E+04\) & \(-2.4309 E+04\) & \\
\hline & \(0.0000 E+00\) & 0.0000E+00 & 0.0000E+00 & 0.0000E+00 & \\
\hline & & CLOSED LOOP & EIGENUALUES & & \\
\hline -1.4259E-02 & \(-3.8432 E-02\) & -3.8768E-02 & -4.0957E-02 & -1.3245E-01 & -1,3245E-01 \\
\hline 0.0000E+00 & 0.0000E+00 & 0.0000E+00 & 0.0000E+00 & 1.0424E-0! & -1.0424E-01 \\
\hline -1.7991E-01 & -1.7991E-01 & -1.9902E-01 & -1.9902E-0! & -2.8854E-01 & -2.8854E-01 \\
\hline \(3.0178 \mathrm{E}-01\) & -3.0178E-01 & \(3.0667 \mathrm{E}-01\) & -3.0667E-01 & \(2.9348 \mathrm{E}-01\) & -2.9348E-01 \\
\hline -3.1880E-01 & -4.5868E-01 & -4.8610E-01 & \(-5.2124 E-01\) & -6.8742E-01 & -7.5761E-01 \\
\hline \(0.0000 \mathrm{E}+00\) & 0.0000E+00 & 0.0000E+00 & 0.0000E+00 & 0.0000E+00 & 0.0000E+00 \\
\hline & -8,4879E-01 & \(-8.4879 E-01\) & \(-1.1972 E+00\) & \(-1.1972 E+00\) & \\
\hline & 9.4987E-01 & -9.4987E-01 & 1.1636E+00 & \(-1.1636 E+00\) & \\
\hline
\end{tabular}

CLOSED LOOP TRANSMISSION ZEROS
\begin{tabular}{rrrrrr}
\(1.0000 E+30\) & \(7.5842 E+08\) & \(3.0352 E+04\) & \(1.3159 E+04\) & \(5.1442 E+02\) & \(-1.4324 E-02\) \\
\(0.0000 E+00\) & \(0.0000 E+00\) \\
\(-3.8432 E-02\) & \(-3.9718 E-02\) & \(-3.9718 E-02\) & \(-1.5509 E-01\) & \(-1.8029 E-01\) & \(-1.8029 E-01\) \\
\(0.0000 E+00\) & \(9.8524 E-04\) & \(-9.8524 E-04\) & \(0.0000 E+00\) & \(3.0164 E-01\) & \(-3.0164 E-01\) \\
\(-1.9034 E-01\) & \(-1.9034 E-01\) & \(-3.1812 E-01\) & \(-3.5414 E-01\) & \(-4.5896 E-01\) & \(-2.5748 E+02\) \\
\(3.1017 E-01\) & \(-3.1017 E-01\) & \(0.0000 E+00\) & \(0.0000 E+00\) & \(0.0000 E+00\) & \(4.4566 E+02\) \\
& \(-2.5748 E+02\) & \(-1.3166 E+04\) & \(-3.0347 E+04\) & \(-8.0668 E+09\) \\
\(-4.4566 E+02\) & \(0.0000 E+00\) & \(0.0000 E+00\) & \(0.0000 E+00\)
\end{tabular}
\[
188-4+7
\]

DUDLEY KNOX LIBRARY```

[^0]: These mon-linear equations can then be linearized through a fairly straight-forward technique. A nominal point $i=$

[^1]: The modal matrix columns are graphed in bar chart form by takirig the absolute value of each element ar the Mormalized column vectors. The bar charts for the linearized model, provided in Figure $\underset{\sim}{\text { ang have a vertical }}$ scale of ota lou\% which reflect the felative magnjtude of

