
Calhoun: The NPS Institutional Archive
DSpace Repository

Theses and Dissertations 1. Thesis and Dissertation Collection, all items

1989

Evaluation of system identification algorithms
for aspect-independent radar target classification.

Larison, Peter David.
Monterey, California. Naval Postgraduate School

https://hdl.handle.net/10945/25910

Downloaded from NPS Archive: Calhoun





*0L











NAVAL POSTGRADUATE SCHOOL

Monterey , California

THESIS

EVALUATION OF SYSTEM IDENTIFICATION
ALGORITHMS FOR ASPECT-INDEPENDENT

RADAR TARGET CLASSIFICATION

by

Peter David Larison
9 t /

December 1989

Thesis Advisor: Michael Morgan

Approved for public release; distribution is unlimited





UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

1a REPORT SECURITY CLASSIFICATION

UNCLASSIFIED

Form Approved
OMB No 07040188

1b RESTRICTIVE MARKINGS

2a SECURITY CLASSIFICATION AUTHORITY

2b DECLASSIFICATION /DOWNGRADING SCHEDULE

3 DISTRIBUTION /AVAILABILITY OF REPORT

Approved for public release;
distribution is unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5 MONITORING ORGANIZATION REPORT NUMBER(S)

6a NAME OF PERFORMING ORGANIZATION

Naval Postgraduate School

6b OFFICE SYMBOL
(If applicable)

62

7a NAME OF MONITORING ORGANIZATION

Naval Postgraduate School
6c. ADDRESS {City, State, and ZIP Code)

Monterey, California 93943-5000

7b ADDRESS(Gty. State, and ZIP Code)

Monterey, California 93943-5000

8a NAME OF FUNDING /SPONSORING
ORGANIZATION

8b OFFICE SYMBOL
(If applicable)

9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

8c ADDRESS (City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS

PROGRAM
ELEMENT NO

PROJECT
NO

TASK
NO

WORK UNIT
ACCESSION NO

11 title (include Secunty Classification) EVALUATION OF SYSTEM IDENTIFICATION ALGORITHMS FOR ASPECT-
INDEPENDENT RADAR TARGET CLASSIFICATION

12 PERSONAL AUTHOR(S)

LARISON, Peter David
13a TYPE OF REPORT

Master's Thesis

13b TIME COVERED
FROM TO

14 DATE OF REPORT (Year, Month, Day)

1989 Dp.rPTnhpr

15 PAGE COUN1

159

16 supplementary notation The views expressed in this thesis are those of the author and
do not reflec the official policy or position of the Department of Defense or the
US Government.
17 COSATi CODES

FIELD GROUP SUB-GROUP

18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

Prony's Method; Kumaresan-Tuf ts Algorithm; Cadzow-Solomon
Algorithm

19 ABSTRACT (Continue on reverse if necessary and identify by block number)

A radar target, acting as a scatterer of an incident electromagnetic wave, can be con-
sidered as a linear time-invariant system. Previous work has shown that the target's
pole locations are independent of the incident electromagnetic excitation, including
incident wave shape, aspect and polarization. This thesis develops the Kumaresan-Tuf ts
and Cadzow-Solomon signal processing algorithms into computer routines and evaluates
their pole extraction performance. Data used to evaluate the extraction algorithms in-
cludes synthetic and integral equation generated signals with additive noise, in addition
to measurements of scattering by scale models made in an anechoic chamber.

20 DISTRIBUTION /AVAILABILITY OF ABSTRACT

L~?'JNCLASSIFIED<'UNLIMITED SAME AS RPT DTIC USERS

22a NAME OF RESPONSIBLE INDIVIDUAL

MORGAN, Michael

2 1 ABSTRACT SECURITY CLASSIFICATION

UNCLASSIFIED
22b TELEPHONE (Include Area Code)

408-646-2677
22c OFFICE SYMBOL

)DForm 1473, JUN 86 Previous editions are obsolete

S/N 0102-LF-014-6603

SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED



Approved for public release; distribution is unlimited

EVALUATION OF SYSTEM IDENTIFICATION ALGORITHMS FOR ASPECT-
INDEPENDENT RADAR TARGET CLASSIFICATION

by

Peter David Larison
Captain, United States Marine Corps

B.S., Xavier University, 1981

Submitted in partial fulfillment of requirements
for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
December 1989



ABSTRACT

A radar target, acting as a scatterer of an incident

electromagnetic wave, can be considered as a linear time-

invariant system. Previous work has shown that the target's

pole locations are independent of the incident electromagnetic

excitation, including incident wave shape, aspect and

polarization. This thesis develops the Kumaresan-Tuf ts and

Cadzow-Solomon signal processing algorithms into computer

routines and evaluates their pole extraction performance.

Data used to evaluate the extraction algorithms includes

synthetic and integral equation generated signals with

additive noise, in addition to measurements of scattering by

scale models made in an anechoic chamber.
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I. INTRODUCTION

A radar target, acting as a scatterer of a specified

incident electromagnetic wave, can be considered as a single

input, single output, linear time-invariant (LTD system for

a fixed field observation point. The target can thus be

considered as a transfer function with poles and zeros. Baum

demonstrated at the Air Force Weapons Laboratory that a

target's induced current response to an incident electro-

magnetic wave has identifiable poles determined by the

composition and structural geometry of the target [1] . In

1974, Moffatt and Mains proposed that the target's scattered

field pole locations are independent of the incident

electromagnetic excitation, including aspect and polarization

[2]. Morgan has proven theoretically that, for the case of

a conducting target, the scattering response contains complex

natural resonances which are independent of the incident

electromagnetic excitation [3] . By determining the poles of

a target's response, aspect independent target identification

can be accomplished through the use of electromagnetic natural

resonances

.

Although the concept of radar target identification

through the use of natural resonances was first proposed in

1974 by Mains and Moffatt [2] , only recently have signal



processing techniques been applied to locate the poles in a

radar target's response in the presence of noise. Kumaresan-

Tufts [4] and Cadzow-Solomon [5] have each developed

algorithms which have proven successful in the presence of

noise. This thesis develops computer routines based upon

these two algorithms and examines their respective performance

and appropriateness using a variety of scattering data.

A. THE PROBLEM

Since the performance of signal processing methods varies

under different conditions, a system employed to identify

targets would possibly reach a decision based on the combined

output of several signal processing methods. For example, the

Kumaresan-Tuf ts and Cadzow-Solomon methods could be used to

extract poles from the response of scale model targets. The

information so gathered could be used to build a data base for

comparison with data similarly obtained in actual field use.

The results of this system would serve as one input to a

larger system. Other methods would provide input to the

system, such as the K-pulse method of Kennaugh [6] and the

annihilation filter used by Dunavin [7] , Morgan and Dunavin

[8] and Chen [9], As the name suggests, an annihilation

filter annihilates the target's poles. A system using the

annihilation filter concept would contain many such filters,

each previously designed to cancel the poles of a specific



known target. In actual field use, a radar target's response

would be input into each of the filters, and the target

selected would be that matching the filter whose output

exhibits the lowest signal energy.

A system used to identify radar targets would require the

following concept of employment. First, information required

by each of the sub-systems would be obtained for every target

class of concern. In actual field use, this information would

be compared against actual radar target responses. The system

would then determine the identity of the target based on the

input from each of its sub-systems.

B. BACKGROUND

Consider a perfectly conducting target illuminated by an

electromagnetic field. The current induced on the surface of

this target at a given point must satisfy the magnetic field

integral equation (MFIE) , [10]

J(r,0=2nxH'(r,0+JJ K(r,r ,t) J(r /~1 ?
c

"r
l )dS (1)

where n is an outward unit vector normal to the surface of

the object, J is the surface current density, .H .
is the

incident magnetic field, and K is a Green's function dyadic.

The entire equation is most easily understood as the sum of

driven currents and "feedback" currents corresponding to the



cross-product term and surface integral term respectively.

The term driven by the magnetic f ield, 2n*H
i forms the physical

optics portion of the total current. Physical optics

describes the cross-product term as the induced current

without interaction with the rest of the body. The Green's

function kernel describes the current at a point on the object

due to the feedback of currents from every other point on the

object, as previously illuminated by the incident field. The

current at each point is then summed over the surface of the

object. Note that the surface integral term is of principal-

value type; the integral excludes the point r=r .

Once the incident magnetic field is no longer present,

the solutions of (1) are considered the natural modes of the

object. These natural modes are of the form, J
n
exp(s

n ) . The

natural resonance frequencies s
n are of the form,

s
n
=(V:K (2)

where o
n

is the damping rate in Nepers/sec and w n is the

frequency in radians/sec. The natural resonances of (2) are

functions of the structural geometry of the object and are

independent of the incident magnetic field. To understand

how these natural resonances are unique to the geometry and

composition of the object, consider a set of points on the

object previously illuminated by the incident field, so that

H =0 . The current at a given point in the set is due to the



infinite number of feedback currents from every other point

in the set. Recall that these feedbacks are described by the

Green's function kernel in the integral term of (1). Since

the set of points previously illuminated is physically located

on the same object, the infinite number of paths that connect

a point with all other points in the set is the same for all

points in the set. The infinite number of paths are unique

to the structural geometry of the object and correspond

exactly to the infinite number of paths taken by currents

which feedback to a given point via the Green's function

kernel. Finally, the composition of the target determines the

surface current density on the object. Although an infinite

number of resonances exists in any object, only a limited

number of these will be measurably excited by an incident

field of finite bandwidth. These resonances described in (2)

appear as complex conjugate pairs in the left-half portion of

the s-plane.

In the far-field, the back-scattered response of a target

to an incident plane wave is of the form

S^-rP' t)=4^F a|jJjP*J(r,t-f-r7c)dS' (3)

where c is the speed of light and p is the unit vector whose

direction matches that of the plane wave's propagation.



Equation (3) is the result of integrating the current at

each point on the target surface for a fixed point in the far-

field. Recall that the current at each point on the target

is defined by (1). Thus, the back-scattered far-field can

be obtained by substituting (1) into (3)

:

H(-rp,t)=u(t-r/C)fH
pJ-rp,t)+J_Jln

(-rp,t)exp(s
n
t) \

(4)

The currents in (1) produce the field in (4). In fact, each

term in (4) corresponds to the term in (1) which produced it.

Specifically, the first term in (4) describes the physical

optics scattered field generated by the 2nxH current which,

of course, is the first term in (1). Similarly, the second

term in (4) is produced by the source-free currents defined

by the second term in (1) . Like the current described in (1)

,

the field in (4) is the sum of two terms, a driven term and

a term containing feedbacks.

The results of (4) can also be seen as two forms of the

Singularity Expansion Method (SEM) developed by Baum [1] . As

shown by Morgan [10] , during the early-time portion of the

target's response, the scattered field is composed of the

physical optics scattered field and a "Class 2" form of the

SEM expansion. The class 2 SEM expansion corresponds to the

second term of (4), wherein the coefficients Hn
are time-

varying as the wave passes over the target, since the currents



producing this portion of the field are integrated over a

time-varying surface area. At the instant the wave passes the

last point of the target, the physical optics field vanishes

and the remaining term in (4) is produced by constant

coefficients H . The coefficients H are constant at this11

.

n

instant since the surface area in the integral in (3) is now

constant. This instant also marks the transition of (4) from

a "class 2" SEM expansion of time-varying coefficients to a

"class 1" SEM expansion of constant coefficients. The

scattered field due to a plane wave is therefore composed of

a physical optics term and a class 2 SEM expansion in the

early-time, and a simple class 1 expansion in the late-time.

Actual measurement of the scattered far-zone field would

be greatly aided by knowledge of the transition time of the

field from early time to late time. From [10] , this

transition for a monostatic radar would occur at At=T+2 (D+d)/c

seconds after radar turn-on. Here, T is the pulse duration,

D is the target's dimension along the direction of wave

propagation, d is the distance between the target and the

measurement point and c is the speed of light.

The discussion presented in this section was extracted

from work done by Morgan in [10] . The reader is referred to

this work for a more detailed treatment of the material in

this section.



C. HISTORY

The results of the previous section form the basis for the

hypothesis that the natural resonances found in the scattering

response of a target to an incident electromagnetic wave are

unique to that target. Additionally, only a finite set of

these natural resonances are measurably excited by a wave of

finite bandwidth. In 1974, Moffatt and Mains proposed that

the extraction of resonances from a target's response to

electromagnetic excitation could be used for target

identification. This work related to earlier work in 1965,

when Kennaugh and Moffatt first developed the concept of a

radar target as a linear time invariant system. Poles in the

z-plane are directly related to the natural resonances of a

target

z =e
(5)

where s
n
is given by (2) and At is the sampling interval in

seconds. Hence, pole extraction involves resonance

identification. The use of pole extraction algorithms is

discussed in the next chapter.



II. POLE EXTRACTION ALGORITHMS

The use of pole extraction algorithms to identify radar

targets is discussed in this chapter. A brief discussion of

two methods precedes the in-depth evaluation of the Kumaresan-

Tufts and Cadzow-Solomon algorithms. The evaluation of the

latter two algorithms occurs in two stages. First, each

algorithm will be evaluated in its ability to extract poles

from data with known poles. Some of the data processed was

generated at various signal to noise ratios by a computer

program written by Morgan [11] . Additional data was produced

by Morgan's time-domain thin wire integral equation computer

program [12]. In the second stage, a side by side comparison

is made of poles extracted by each method using transient

scattering measurements for a thin wire and for various model

aircraft. Comparisons between the two methods are made as the

aspect of the aircraft is varied.

A. PREVIOUS WORK

1. Direct Minimization

The most direct way to determine the natural

resonances in a target's response is to minimize the mean-

square error between the modeled signal and the received

signal. In [10], Morgan determined that the late-time target



response to a radar could be represented as a sum of damped

sinusoids given by

00 o t

y(t) = lA
1

e ' cos(oj,t+e,) (6)
i = i

The frequency, o^ , and damping rate, , are the same

parameters found in the natural resonance defined in (2)

.

Phase, , and amplitude, A,, are the remaining parameters.

The representation in (6) is the sum of an infinite number of

resonances. The sampled response to an incident wave of

finite bandwidth can be modeled as

y(nat) = y = £ A,e l " cos (o^nat+G,) (7)
n

1 = 1

where At is the sampling interval in seconds. The four

parameters of (7) must be adjusted to minimize the sampled

mean-square error signal

eHyn
-y

n
>

2

( 8 )

between the actual discrete sampled received signal y and the
n

modeled signal y . The processing required in this

minimization problem is both inefficient and highly non-

linear. Nevertheless, Chong used this method to process

mathematically-generated data down to 15.0 dB signal-to-noise

(SNR) ratio [13] .

10



2. Prony's Method

As in direct minimization, Prony's approach to

resonance classification focuses on the late-time portion of

a radar target's response. However, linear processing and

root solving are used. The late-time response is modeled as

the output of an LTI system of order K
D
.« Each signal received

at some discrete sample, n, is considered to be the weighted

sum of K
D

previous signals. Thus, the finite term

approximation of the received late-time signal, y , is defined
n

by

y =l h iY
i=i

(9)

The z-transform of (9) is

K„-i .

2^-b
1

Z
K^ 1

-b
2
Z
K^ 1

...-b
KD
=0 (10)

The roots of this polynomial in z are the poles of the system

model. Therefore, the key to extracting the poles in the

system's response lies in solving for the coefficients b, of

(9) .

A set of K
D
+M received signals in M equations (9) can

be arranged in matrix form as

K
D
-1

v.--- y
KD+M-2

rb v y„ n

_
* K

D
+M-1

(11)

11



In Prony's original method, the data matrix d is

exactly determined, and the coefficient vector, b, is solved

using linear computations. In the presence of noise, Prony

overdetermines the data matrix by setting M>K
D and solves for

the coefficient vector by obtaining the least-squares solution

to the system of equations.

The Prony method has two major problems. First, the

poles obtained by the least squares solution to the

overdetermined matrix may be strongly perturbed by noise [14] ,

since noise does not satisfy the causal model of the system.

Second, the order of the system is generally not known a

priori. When the estimated order is greater than the actual

order, poles due to noise are generated. Prony's method

offers no technique for distinguishing between the signal

poles and the extra poles caused by overestimation of the

system's order. If the estimated system order is less than

the actual order, actual poles are lost and the remaining

poles are perturbed from their true positions.

B. KUMARESAN-TUFTS ALGORITHM

The Kumaresan and Tufts pole extraction algorithm was

developed by adapting Prony's method to reduce the problems

addressed in the preceding section. The Kumaresan-Tuf ts

algorithm modifies the least-squares Prony method in three

ways

:

12



1. Processed signals are arranged in a data matrix
based on a non-casual model of the system.

2. The model of the system is deliberately
overestimated.

3. The system of equations determined by the above
two criteria is solved by using singular value
decomposition (SVD)

.

Kumaresan demonstrates in [15] that the use of singular

value decomposition tends to force the extra poles of the

excess-order system inside the unit circle, while the non-

causal arrangement of the signals tends to force the signal

poles outside the unit circle. The excess order of the system

model reduces the effects of noise on the actual poles. Since

the noise is stationary and stable, it looks the same in

forward and backward time.

1 . Equations

Recall that in (9), Prony ' s technique defines the

received late-time signal as the weighted sum of k
d
previous

signals, where K
D

is presumed to be the order of the system.

Kumaresan models the same late-time signal as the weighted sum

of K
D future signals, where K

D is greater than the estimated

order of the system. This non-casual model is given by

K
D

y=Ib',y (12)

13



A system of M such prediction equations can be written in

matrix form as

r y

K
D
+M-1

Or, in matrix notation,

\a\ -[l] (13)

D
y
-b=y (14)

As in Prony ' s method, the coefficients b', are coefficients of

a polynomial in z that models the system's late-time response.

Two simple manipulations of either data matrix leads to the

relationship between the coefficients of the Prony model and

the prediction coefficients of the Kumaresan-Tuf ts model.

With b =-l , a prediction coefficient is related to an

autoregressive coefficient by

w - i-i
(15.

From the above relationship, it can be shown that the complex

pole pairs of the causal model are merely conjugate

reflections across the unit circle of the pole pairs in the

non-causal model.

2. Singular Value Decomposition

The non-causal arrangement of late-time signals in a

set of system equations, and subsequent processing through

singular value decomposition, combine to separate the signal

14



and noise into orthogonal spaces. As discussed in the

preceding paragraph, poles of the non-causal model are

reflected outside the unit circle. Kumaresan demonstrates in

[15] that the extra poles of the excess-order system can be

forced inside the unit circle through the use of SVD

.

Singular value decomposition factors the i MXK
D

data

matrix D into the product of the matrices:

D =USVT

(16)

The columns of U (MXM) are eigenvectors of D
y
D
y

an<^ tne

columns of V (K
D
XK

D ) are eigenvectors of y
D
y • If r is the

rank of the data matrix, D , the diagonal matrix I (MXK
D )

contains r singular values which are the square roots of the

nonzero eigenvalues of both D^D and D
y
Dy.- Bv rearranging

the three matrices in the product, the pseudoinverse of D
y can

be obtained as

D!=VI
+
UT

y (17)

where i
+ is a (K

D
XM) matrix whose singular values on the

diagonal are the reciprocals of those in the I matrix.

Finally, the coefficient vector b
+

, of minimum Euclidian norm,

is given by

b-=D
;y

< 18 >

15



The coefficient vector fc>

+ so obtained is the minimum length

least-squares solution to (14). In other words, b
+

is the

best possible solution to (14) . In the case of noiseless

data, the extraneous poles generated by the excess-order model

will always be inside the unit circle when b + is used. This

result is generally true for noisy data.

3. Bias Compensation

Kumaresan and Tufts [4] observed that the addition of

noise perturbed the singular values of the z matrix of (16).

If the perturbation of these singular values is not

compensated, both the signal poles and extraneous poles are

biased towards the unit circle. Kumaresan and Tufts used a

compensation method which reduced the bias in their work, but

did not derive an analytical justification. In [16], Norton

derived a more valid bias compensation method based on the

eigenvalue shifting theorem.

4. Kumaresan and Tufts Compensation

If the actual order of the system is K^ _, then the

first Kp singular values of the I matrix in (16) are non-

zero. The remaining K
D -Kp singular values are considered

noise singular values and are zero in the case of noiseless

data. The addition of noise perturbs the first K
D
signal

singular values and increases the noise to some non-zero

value. Kumaresan and Tufts compensated for this increase in

the singular values due to the noise by subtracting the

16



average of the noise singular values from the signal singular

values. The noise singular values were then set to zero.

5. Compensation Based on Eigenvalue Shifting Theorem

As described in the previous section, the singular

values of the matrix D
y

are the square roots of the

eigenvalues of D„Dy, and dtD • Assume the noisy data matrix
y y- y y

'

can be represented by d =s+N'» where N is composed of the wide-

sense stationary white noise process v., given by

N
y

=

Vv . . . v
'

M+K
D _l

(19)

The expected value of D D^ can be obtained by
y y

D
y
Dy=E [ (S+N) (S+N) T ]=E[SS T ]+E[SNT ]+E[NS T ]+E[NNT

] (20)

Since S is deterministic, E[SS T ]=SS T
. Assuming the noise is

zero mean, the two cross products are zero. Because we assume

the noise is wide-sense stationary and white, E[NNT ]=a^I,

where a
2 is the noise variance and I is the identity matrix.

The expected value of ] D DT thus becomes
y y-

E[D
y
DT

y
]=SS T+o2

v
I

(21)

17



Similarly, the expected value of DTD , the other source of
y y

singular values, is

E[DT

y
D
y
]=ST S+o2

v
I (22)

The assumption in the results of (21) and (22) is that the

diagonals of E[N N]=E[NN ] equals the noise variance <j
2

.•

Equations (21) and (22) show that in the mean, the squares of

the singular values of D are increased by the noise variance.

The results lead to the method of eigenvalue

compensation recommended by Norton in [16]. Recall from (16)

that the eigenvalues of D are on the diagonal of the I

matrix returned by the singular value decomposition of D •

If K
D

' is the actual order of the system, and k
d

is the

estimated order of the system then the remaining K
D
-K

D

'

singular values of the I matrix can be squared and averaged

2
to obtain an estimate of the noise variance, °

v . These noise

singular values can then be set to zero. The first K
D

singular values of the I matrix are then squared and reduced

by subtracting the estimate of the noise variance. The square

root of the difference becomes the new first K
D

singular

values of the compensated Z matrix. Calculations according

to (17) and (18) can then be carried out in a normal manner

to obtain poles in the presence of the noise. Eigenvalue

compensation requires an estimate of the actual order of the

system. Methods to obtain this estimate are discussed in

Chapter III.



6. Performance

The Kumaresan-Tufts algorithm was programmed in

Fortran and tested on various types of data. The program

appears in Appendix A.

a. Synthetically Generated Data

The starting point for evaluating the performance

of the Kumaresan-Tufts algorithm was with synthetically

generated data of the form given by (8) and shown here again

for convenience

y=XA,e ' cosfw.nAt+G,) (8>
n

1=1

Again, A^o^w,^ , are the amplitude, damping rate, frequency

and phase of a set of N damped sinusoids. Noisy data was

created by adding stationary white noise.

1. Noise Performance

The algorithm was evaluated at various SNR's,

ranging from 90.0 dB to 7.0 dB . These SNR's are ratios of

signal energy to noise energy rather than the ratio of signal-

to-noise power. Synthetic data so generated more closely

resembles the exponential decay of signal power typical in

actual radar measurements.

19



Figure 1 shows the signal produced by two s-

plane poles at 90.0 dB. Figures 2 through 6 depict the poles

extracted from this signal at SNR ' s ranging from 90.0 dB to

7.0 dB . Obtained poles are shown at their positions within

the upper right hand quadrant of the unit circle in the z-

plane. Not shown are conjugates of each pole which are

located below the real axis outside the figure boundaries.

Figures 2 through 6 demonstrate outstanding

performance on noisy data, even at SNR ' s of 7.0 dB . The

scaling needed to show a discernible difference between

results obtained at 30.0 dB and 7.0 dB would necessarily

exclude one of the poles from the enlarged figure. The

average distance of the trial poles obtained in the 7.0 dB

SNR signal from the true poles is on the order of 10" 3
- This

magnitude corresponds to that of the average estimate of the

noise variance obtained in successive trials with this signal.

The correlation between the distance of trial poles from true

poles and the noise variance estimate was consistently

observed with each of the different signal-to-noise ratios

used. Figure 7 depicts the signal of Figure 1 severely

corrupted by noise having 7.0 dB SNR.

As discussed previously, the signal-to-noise

ratio used in the synthetically generated data is the ratio

of energy. Figure 8 depicts the results of pole extraction

from the signal shown in Figure 7, but with a late-time
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beginning ten nanoseconds later. Since the SNR is calculated

over twenty nanoseconds for both signals, the signal power at

some later time will clearly be less than the power ten

nanoseconds earlier. The results in Figure 8 show complete

breakdown of the algorithm's ability to extract poles. The

trial poles shown are the poles closest to the true poles, and

yet they are located at positions whose reflections are inside

the unit circle where noise poles are typically located.

The preceding results show outstanding

accuracy for full-length noisy data but a complete breakdown

of the algorithm for the same signal with a later transition

to late-time. These initial observations are supported by

similar findings presented in this thesis.

b. Thin Wire Integral Equation Generated Data

For simple objects such as a thin wire, the radar

response of that object can be computed by establishing

boundary conditions on the object and numerically solving the

integral equations that describe the surface current. Recall

the magnetic field integral equation given by (1).

Simulations produced by Morgan's time-domain thin wire

integral equation computer program [12] were used to evaluate

the pole extraction algorithm. The excitation waveform used

is the double Gaussian pulse depicted in Figure 9. This pulse

is a wide Gaussian pulse with a ten percent width of 0.3

nanoseconds subtracted from a narrow Gaussian pulse with a ten
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nanoseconds subtracted from a narrow Gaussian pulse with a ten

percent width of 0.15 nanoseconds.

Figures 10 through 13 depict back scattering

response of a 0.1 meter length thin-wire, having a radius of

0.00118 meter, computed at various incident aspects, ranging

from thirty degrees to ninety degrees. The laboratory

arrangement for actual measurements simulated by Morgan's

program is described in [17] . Ninety degrees represents a

broadside aspect, while thirty degrees represents the incident

plane wave having nearly grazing incidence on the wire. The

poles extracted at each of the four aspect angles are plotted

in Figure 14. In this figure, and those that follow which

depict extracted poles, the signal poles lie in or on the unit

circle, and the noise poles lie outside.

The results obtained with this rigorous numerical

computation demonstrate the aspect independence of the

extracted poles using the Kumaresan-Tuf ts method. Note that

only half of the poles were obtained for broadside

illumination; two even-numbered poles can easily be seen

outside the unit circle. This results because of the physical

symmetry of both the wire and the incident field, thus

precluding excitation of odd-symmetric modal currents and

their associated natural resonances.

Figure 15 exemplifies the computed back-scattering

response of the 0.1 meter thin wire corrupted artificially
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with noise at a 20.0 dB SNR. Figure 16 shows the poles

extracted at each of the four angles of incidence used

previously in Figure 14. Poles of Figure 14 at 90° are now

missing in Figure 16, and only the first three low frequency

poles are tightly grouped. The loss of high frequency poles

is expected because these have the highest damping and thus

lose their energy at the fastest rate. Further comparison

between results computed at 20.0 dB SNR and infinite SNR are

offered, angle by angle, in Figures 17 through 20.

One additional test of the computed thin wire

scattering was conducted at a 7.0 dB SNR. The corrupted

waveforms are exemplified by Figure 21; the extracted poles

are shown in Figure 22. The number of poles obtained has

decreased with respect to the number obtained at 20.0 dB SNR.

The grouping of the clusters has also expanded. Angle by

angle comparisons are again offered in Figures 23 through 26.

c. Scale Model Measurements

The transient scattering measurements of scale

models used for evaluation in this section were made by Walsh

using the anechoic chamber of the Transient Electromagnetic

Scattering Laboratory at the Naval Postgraduate School. The

entire measurement process and laboratory setup are described

in detail in [17]

.

38



Extracted poles

c
'5b

Real z

Figure 16. Kumaresan-Tufts Poles, 20.0 dB SNR

39



Extracted poles

1
-

0.5
-

&
a
c
'Eb
a
E

0-

-0.5
-

-1

1 1 1 1 !

+ o °

+

+ o

+ /
+ o /

if o /

^-^~~~^^—' +

+

i

o

o

e

+

/

+ noiseless

*\

\

o 20 dB SNR

*/

9./.

f o \

+ o \

+ \
+ o

+ O Tr- ...

1

+ o

-0.5 0.5

Real z

Figure 17. Integral Eguation Thin Wire Comparison, Noiseless

vs. 20.0 dB SNR, 30 Degree Aspect

40



Extracted poles

1
-

0.5
-

CO

e
'Ed
TO

E

-0.5 -

-1 -

1 1 1

o*- o o

1

+ o

+ /

+
°/

* /

~^~^ +

—
'

+

+

O

+ N.

+ /

i

+ ? \

+ noiseless

&\

o—

o 20 dB SNR

* \

+ °\

ON.
+ N.

+ o ^-^--^^ +

+

" + r,

+ /

o

. 1. .

O). O o

! 1

-1 -0.5 0.5

Real z

Figure 18. Integral Equation Thin Wire Comparison, Noiseless

vs. 2 0.0 dB SNR, 4 5 Degree Aspect

41



Extracted poles

1
-

0.5 -

.s
CO
CO

E

-0.5 -

-1 -

1 1 —1
1

1

o #

+

o

o

+

+ o

+ /
+ /

+ /
a/

r +
-^^\

»

+ \

/

+.. noiseless

*\

+o-

o \

o 20 dB SNR
*/

*/

°\
+ \

+ ° \^

+ Q

v. +
*

V
+ /
/

1 1 1
. . i ..

-0.5 0.5

Real z

Figure 19. Integral Eguation Thin Wire Comparison, Noiseless
vs. 20.0 dB SNR, 60 Degree Aspect

42



Extracted poles

1
-

0.5
-

TO
C
'5b
a
E

-0.5 -

-1 -

T 1 +

+

1

+
o

+ y/
+ /
° /

+ /

+^\ o

+ /

o /

+ /

/

+ ;/

o j

+ noiseless

o 20 dB SNR

•V

\ *

*/

/*

I

+ A

\

+ \

°\

i+ \

+ \

o \
+ \

O X.
+ \

+
' __

1>^o

1

°+ o i o °
1

+
1 1

-1 -0.5 0.5

Real z

Figure 20. Integral Equation Thin Wire Comparison, Noiseless

vs. 2 0.0 dB SNR, 9 Degree Aspect

43



Figure 21. Integral Eguation Thin Wire Scattering, 7.0 dB
SNR, 4 5 Degree Aspect
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1. Wire Targets

The thin wire measurements were obtained from

the scattering response of a 0.1 meter length thin wire having

radius 0.00118 meter. Recall that these are the same

dimensions as the wire whose computed response was processed

in the previous section. The measurements at each of four

incident aspects are shown in Figures 27 through 30.

The poles extracted from the four measurements

are depicted in Figure 31. As before in the computed noisy

data, tight clusters occur only at the lowest frequencies.

The poles in these tight clusters are those which are

measurably present at various aspects. The poles extracted

at higher frequencies are those which possessed sufficient

measurable energy at the given aspect. Figure 32 depicts the

comparison between poles extracted from the measured and

computed signals. Again, the closest agreement between the

two sets of poles occurs at the lowest frequences.

2. Aircraft Models

Plastic 1/72 scale aircraft models, coated with

silver, were used for transient scattering measurements.

Representative scattering signatures of two aircraft targets,

measured at six different aspects, are shown in Figures 33

through 36.

The results of pole extraction in target 1 are

shown for a total of six different aspects in Figures 37 and
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38. The poles extracted at all six aspects are shown in

Figure 39. Only one clearly discernible cluster is present

in each of the three figures. At higher frequencies, no

useful information is imparted by the data. Results of

similar, though slightly improved quality, were obtained from

target 2. These results are presented in Figures 40 through

42 in the format of Figures 37 through 39 respectively.

Although the Kumaresan-Tuf ts algorithm is

capable of extracting low frequency poles acceptably, the

inconsistent results at higher frequences reveals the inherent

weakness in an algorithm capable of processing only the late-

time portion of a target's radar response.

A side-by-side comparison of poles obtained from

both aircraft by both the Kumaresan-Tuf ts method and the

Cadzow-Solomon method is presented at the end of the chapter

to illustrate the gains afforded by processing the early—time.

C. CADZOW-SOLOMON ALGORITHM

Recall from the results depicted in Figure 8 that a late

transition to late-time, and the consequent reduction of

signal power, caused complete breakdown of the Kumerasan-Tuf ts

algorithm. The Cadzow-Solomon algorithm addresses this

shortcoming by processing the signal at the instantaneous

onset of early-time. Thus, the Cadzow-Solomon algorithm is

capable of processing the earliest response of a target to
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electromagnetic excitation where the response has the greatest

magnitude

.

1. Applicability

The early-time portion of a target's scattered field

occurs as long as there is a driven portion of the total

field. Once the field no longer contains a scattered response

due, in part, to the incident excitation at points on the

object, early-time ceases and late—time begins. Hence, the

Cadzow-Solomon models both the system's input and output, and

equivalently , the poles and zeros of the system transfer

function.

2. Equations

The Cadzow-Solomon algorithm extends the auto-

regressive equation (9), used in Prony's method, to the more

general autoregressive moving average (ARMA) equation

y =S b iy„.,
+ Sa

1

x
n

1 = 1

n-1
(23)

1=0

where the second summation term models the excitation to the

system.

A set of M such equations in matrix form is given by

Y
K
D
-1

X
•

K-r- Y
*'+H-2

x"->- '**»+"->
.

L a
*

|_
a

K
D
+M -' _1

_I

(24)
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As in the Kumaresan-Tuf ts method, M is selected to be greater

than the column dimension of the data matrix which is

KD
+KN+1 .

3. Excess Poles and Noise Removal

The Cadzow-Solomon method used in this thesis is a

modification which incorporates the non-causal arrangement of

the system equations used by Kumaresan-Tuf ts . This

modification was first discussed by Norton in [16] . The

Kumaresan approach of overestimating the system order can be

used as before in a non-causal model to constrain the noise

poles inside the unit circle, while SVD forces the signal

poles outside the unit circle.

Since the input waveform is known, its order can be

almost exactly determined. In all the work of this thesis,

the input waveform used is the double Gaussian depicted in

Figure 14. Approximately 25 samples defining this pulse of

0.5 nanoseconds duration makes KN
equal 25 in equation (23).

Since the input is causal, the signal zeros fall inside the

unit circle where they cannot be easily segregated from

similarly located noise poles. However, the signal zeros

impart no information about the target and need not be

extracted. The inclusion of the input in the data matrix is

nevertheless vital to the model of the system and the accurate

determination of the signal poles.
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The ARMA equation of (23) can be modified to obtain

y = Y b'.y +7 a,xn
n 1=1

K
D

n
'

l 1=0
(25)

The recursive portion of (25) is now in a non-causal form

similar to expression (12) . A set of M such equations in

matrix form is given by

KN
+

1 KN
+ K

D

Ar. § • «v

y • • • y xm-

Or, in matrix notation

. . x
KN +M-1

_ *
:

o J
. ^V""'

(26)

[
Dy*][-5-] =y «>ere [Dyx] = [

D
y
:D

x ]
(27)

4. Singular Value Decomposition

Like the system equations of the Kumaresan-Tuf ts

model, the system equations in (26) are processed using

singular value decomposition. The coefficient vector is again

the minimum-norm solution, which constrains the extraneous

poles and extraneous zeros to be inside the unit circle.

5. Bias Compensation in the Cadzow-Solomon Formulation

By compensating the eigenvalues of the i matrix in

(16), the performance of the Kumaresan-Tuf ts algorithm is

significantly improved in the presence of noise. Cadzow-

Solomon have shown [5] that if the actual orders K^ and KN
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are overestimated to be k
d

and kn , min ( kd~kd > kn~kn) singular

values are zero in noiseless data. Since the input data is

known, the eigenvalues of the data matrix may be compensated

in the same manner as in the Kumaresan-Tuf ts algorithm for

noiseless data.

To understand the compensation required in noisy data,

an analysis of additive noise is required. As given by Norton

[16] , if the input data noise is W( and the output data noise

is v, r the data matrix may be modeled as

where

and

[Dyx ]
= [D

y
:Dx ]=S yx+Ny>

[
Nyx] = [Ny

:N
x ]

(28)

(29)

N
x
=

WM • * * WM +M + K r

N
y
=

.VM + K
D _l

(30)

The expected value of D DT is thenF yx yx

E[Dvx
DT

yx ]=S yx S
T +E[N yxN

T

yx ] (31)

If the input and output noise variances are not equal, the

eigenvalue shifting theorem used in Kumaresan-Tuf ts cannot be

used to analytically predict the requisite eigenvalue

compensation of D„ Y Dlr .- Nevertheless, when the input and
yx yx

output variances were assumed equal, and eigenvalue

compensation similar to that used in Kumaresan-Tuf ts was
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performed, the results were consistently superior to those

obtained without compensation. Therefore, the results of

Cadzow-Solomon signal processing presented in this thesis were

obtained using eigenvalue compensation and the assumption of

equal noise variance.

6. Performance

The Cadzow-Solomon algorithm was programmed in Fortran

and tested on the same data used for evaluating the Kumaresan-

Tufts algorithm. Note that the Cadzow-Solomon algorithm

can use the early-time portion of the data that the Kumaresan-

Tufts algorithm can not use. The program appears in

Appendix B.

a. Synthetically Generated Data

The starting point for evaluating the performance

of the Cadzow-Solomon algorithm was with synthetically

generated data of the form given by (8) plus the addition of

input data required to model early time data.

1. Noise Performance

The algorithm was evaluated at various signal-

to-noise ratios, ranging from 90.0 dB to 7.0 dB. Figure 43

shows the signal produced by two s-plane poles at 90.0 dB

,

with a late-time beginning at 10.0 nanoseconds. Figures 44

through 48 depict the poles extracted from this signal at the

different signal-to-noise ratios.
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The figures chart the steady degradation of

the algorithm's performance with the increase of noise. At

30.0 dB , the location of the low frequency pole is already

slightly displaced. More significant is the location of one

of the extracted poles in the noise signal space. At 20.0 dB

,

the low frequency pole is located in some trials on the real

axis. At 10.0 dB , all the extractions are located on the real

axis and at 7.0 dB their locations there are dispersed. The

extraction of the higher frequency pole is

uncharacteristically more accurate than that of the low

frequency pole. Even at 7.0 dB , the high frequency pole is

located with excellent accuracy. The location of the low

frequency pole near the real axis was chosen deliberately to

illustrate the difficulty in resolving the slight frequency

difference between the true pole and a noise pole located on

the real axis. Also, fewer points were processed using the

Cadzow-Solomon method than were processed using the Kumaresan-

Tufts method, since the largest data matrix allowed by the

programs in Appendices A and B contain fewer data points in

the Cadzow-Solomon data matrix than in the Kumaresan-Tuf ts

data matrix. The results demonstrate the need to process a

substantial number of points in order to accurately extract

low frequency poles.
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b. Thin Wire Integral Equation Generated Data

The performance of the Cadzow-Solomon algorithm

was evaluated using the same set of data tested by the

Kumaresan-Tuf ts algorithm. The results are presented in

Figure 49. Tight clusters appear at frequencies higher than

those obtained with the Kumaresan-Tuf ts algorithm. Figure 50

depicts the poles extracted from the same signal at a 20.0 dB

SNR. The clustering at this SNR is comparable to the results

obtained by the Kumaresan-Tuf ts method with the noiseless

data. Further angle-by-angle comparisons of the poles

extracted from the noiseless data and the 20.0 dB data are

depicted in Figures 51 through 54. Note the small number of

poles in Figure 54 due to the unexcited odd-symmetric poles

at 90° aspect.

One further test was conducted on computed data

at a 7.0 dB SNR. The results are depicted in Figure 55. Even

at 7.0 dB , discernible clusters are present. Angle-by-angle

comparisons of the poles obtained in 7.0 dB data and those

obtained in noiseless data are presented in Figures 56 through

59.

c. Scale Models

The same scale models used to evaluate the

Kumaresan-Tuf ts algorithm were used to evaluate the Cadzow-

Solomon algorithm.
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1. Wire Targets

Figure 60 depicts the poles extracted from

measurements of a 0.1 meter wire. Three tight clusters appear

at the lowest frequencies and at the highest frequencies. The

poles in between can not be easily discriminated. The

dispersion of these poles is apparently due to the aspect

dependence of their measurable power. In other words, these

poles are excited more at some aspects then at others.

Figure 61 depicts the comparison between poles

extracted from computed data and measured data. As in Figure

60, close agreement exists at the highest and lowest

frequencies. The results are much more favorable than those

similarly obtained by the Kumaresan-Tuf ts algorithm.

2. Model Aircraft

Figures 62 through 64 depict poles extracted

from aircraft target 1. As in the Kumaresan-Tuf ts testing,

the Cadzow-Solomon testing was conducted at six different

aspects. Results for target 2 are depicted in Figures 65

through 67. The results of both targets show clearly defined

clusters. The first two clusters of target 2 are

exceptionally tight. However, the mid-frequency clusters of

target 2 are not as clearly formed as those of target 1.

Comparisons of poles obtained with each method

for target 1 and 2 are depicted in Figure 68 and 69

respectively. These two figures graphically depict the clear
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superiority of the Cadzow-Solomon algorithm over the

Kumaresan-Tuf ts algorithm.

In order to obtain an initial indication of

the possibility for target classification through pole

extraction, nose-on measurements of two additional aircraft

models were made, processed and compared with the results of

targets 1 and 2. The nose-on measurements of targets 3 and

4 appear in Figures 70 and 71 respectively. A comparison plot

of poles extracted from each of the four targets is depicted

in Figure 72. Each of the four aircraft measured are fighters

of similar size and shape (see Table 1). The poles for each

target are sufficiently different in this single measurement

to identify each aircraft individually. However, some of the

poles are arranged in clusters which appear with a harmonic

pattern similar to that obtained for either of the first two

aircraft at various aspects. In order to more fully assess

the target classification capability of pole extraction,

several measurements should be made of a given aircraft model.

A plot of the poles extracted from each of these measurements

would form clusters at the locations of the true poles. The

centroid of each of these clusters would then be compared

against the centroid poles similarly obtained from other

aircraft. Although several poles of different aircraft might

be similar, the set of poles belonging to an aircraft could

form the basis for classification if that set was unique among

103



MO 3

2.5

Nose on

2 -

1.5

1
-

0.5

-0.5

-1 -

-1.5

1 i i T l 1 I 1 1 "

;

[ill

vAJ

1

L fl/^4/v^fyvA'^^

*

i i
1

i i i i

6 8 10 12 14

Time (nanoseconds)

16 18 20

Figure 70. Target 3 Scattering, Nose-on

104



xiO-3 Nose-on

2-

1
-

-1 -

-2-

-3

] 1 i ! 1 1 i i

Jl

1
:

^A^*AA.AWJ^*\/*^k/*~iL^V^J^*^mViAvA

i i
I i

2 4 6 8 10 12 14 16 18 20

Time (nanoseconds)

Figure 71. Target 4 Scattering, Nose-on

105



Extracted poles

2T

c

E

Real z

Figure 72. Cadzow- Solomon Pole Comparisons, 4 Targets, Nose-on

106



the sets belonging to all other measured aircraft. The results

in Figure 72 demonstrate the possibility of using the Cadzow-

Solomon pole extraction algorithm to aid in the classification

of aircraft, perhaps by use of the extracted poles in

constructing annihilation filters.

TABLE 1. FULL SIZE DIMENSIONS OF TARGETS RECORDED

Target number L 2 3 i4

Overall length 12 .20 15 .03 16 .94 16 .00
(meters

)

Overall height 3 .35 5 .09 4 .51 4 .80
(meters

)

Wingspan 10 .96 10 .00 11 .43 13 .95
(meters

)

Tailplane span Unknown 5.58 6.92 5.75
(meters

)

107



III. SUMMARIES AND CONCLUSIONS

In this chapter, a step-by-step guide through each

algorithm is presented. At each step, techniques and lessons

learned are discussed together with general observations.

Conclusions are presented at the end of the chapter.

A. KUMARESAN-TUFTS

The first step in processing a signal with the Kumaresan-

Tufts algorithm is to determine the beginning of early-time.

The objective is to pick the earliest possible starting point

without entering into the latter part of early-time. If the

starting point for processing is improperly chosen to include

the early-time, the results will be completely unreliable

since the signal no longer satisfies the late time model. If

the starting point is chosen too late, the signal may not be

sufficiently strong in the presence of measurement noise.

Since the signal is the sum of exponentially damped sinusoids,

the optimum starting point is at the precise instant of

transaction into late-time. The key to determining the

beginning of late-time is in determining the beginning of

early time. Determining the first response of the target to

excitation cannot usually be done by a simple visual

inspection of measurement data. Unless the exact distance to
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the target is known, the most accurate method attempted by the

author for determining the beginning of early— time is to

process the signal using the Cadzow-Solomon algorithm. This

is discussed in the next section. However, the reliance of

the Kumaresan-Tuf ts algorithm on information provided by the

Cadzow-Solomon algorithm is an obvious disadvantage of the

former method.

Once the starting point for processing has been selected,

the next step is to determine the dimensions of the data

matrix and, consequently, the number of points in the signal

to be processed. In trials conducted on noiseless synthetic

data, the accuracy of pole extraction increased steadily with

the increase in the data matrix dimensions. These trials were

conducted up to the limit of the array dimensions defined in

the computer program of Appendix A. The number of points

processed in measurement data should be as large as possible,

while still meeting the following two constraints. First,

incorporate as many cycles of the data as possible. Usually,

visual inspection of the data reveals a repeating pattern

which should be entirely incorporated into the window of

points to be processed. When only portions of these patterns

are selected, a disproportionate weighting tends to be placed

on certain poles. Second, signal portions late in the

response which are no longer distinguishable in the presence

of measurement noise should not be selected.
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The final step involves determining the number of true

poles in the system. The following approach has proven to be

the most successful. First, process the signal without any

eigenvalue compensation to establish an upper bound on the

order of the system. In most cases, the number of poles

outside the unit circle will be less than the overestimated

order of the system. If not, increase the row dimension of

the data matrix in order to increase the estimated order of

the system, and repeat. When the number of poles is less than

the estimated order of the system, then one should gradually

increase the number of eigenvalues compensated in successive

trials, while closely observing the effects induced on the

poles outside the unit circle. As the number of eigenvalues

compensated is steadily increased, noise poles and weak signal

poles will move inside the unit circle. The programs in

Appendix A and B allow the user to compare the results of

successive trials, by generating overlays for each plot. If

N poles are in the signal space, at least the first N

eigenvalues must not be compensated, or true poles may be

lost. As the actual order of the system is approached by

compensation, the user will notice an orderly, even

arrangement assumed by the noise poles. If certain poles

still remain suspect after compensation, vary slightly the

other parameters, such as the starting point and the
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dimensions of the data matrix. Generally, only true signal

poles will repeatedly assert themselves under varying

parameters

.

B. CADZOW-SOLOMON

The techniques and general observations offered in the

preceding section apply equally to the Cadzow-Solomon

algorithm. An important consideration in this method, not

discussed above, is the selection of the beginning of early-

time. Candidates for a starting point are usually at or near

zero crossings within approximately thirty points of the

object's first definite response to electromagnetic

excitation. Begin processing at the chosen point while

varying parameters in successive trials. Select the point

whose successive results are the most consistent under varying

parameters

.

The selection of the starting point for beginning of

early-time can be very critical. For example, not a single

pole could be extracted in one trial wherein the starting

point occurred only ten points after the actual starting

point. Additionally, in most cases observed, the late-time

start given by the selected early-time occurred within less

than two points from a zero crossing. If this observation

proves to be generally true in later research, it may serve
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as a way to check the starting point selected for one

algorithm in terms of the other.

C. CONCLUSIONS

Both the Kumaresan-Tuf ts and the Cadzow-Solomon algorithms

can effectively extract poles from the scattering response of

a radar target. Because both algorithms obtain a least-

squares solution to the system model, both perform acceptably

in the presence of noise. Although eigenvalue compensation

is not analytically justified in the Cadzow-Solomon algorithm,

the results obtained through eigenvalue compensation in this

method were generally superior to those similarly obtained in

the Kumaresan-Tuf ts method. The results demonstrated the

inherent advantages of an algorithm capable of processing a

target's strongest response in the early time. The Kumaresan-

Tufts method compared favorably with the Cadzow-Solomon only

in responses with a long late—time.
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APPENDIX A. THE KUMARESAN-TUFTS POLE EXTRACTION ALGORTITHM

The following program implements the Kumaresan-Tuf ts

algorithm as described in Chapter 2 of this thesis. The

program is written in Fortran 77. The SVD and root-finding

subroutines called by this program are found in the EISPACK

library [18] . The SVD subroutine is a translation from ALGOL

as given in [19] . The matrix multiplication and graphics

subroutines, also called by this program, are found in

Appendix C and D respectively.

INTEGER IERR,Kd,M,MN,MAGPCL,NSTRTPT,DELTAY

INTEGER IER,NCAUS,NMENU,L/1/

Dm3GER*2 KdPLT

REAL*8 A(70,70) ,W(70) ,U(70,70) ,V(70,70) ,RV1(70)

REAL*8 VS (70,70) ,UT(70,70) ,AINV(70,70) ,X(70)

REAL*8 XP(70) ,B(70) ,SIGMA(70,70) ,SIG(70,70)

REAL*8 COF(70),RCCTR(70),ROOTI(70)

REAL*8 D(1024) ,AVG,MACHEP/1.0E-16/,Dy(140)

C0MPLEX*16 S(70)

LOGICAL MATU/.TRUE. /,MATV/.TRUE./, CAUSAL/.TRUE./, LONG/. TRUE./

LOGICAL DSET/. FALSE. /,NUFILE/.TRUE./

CHARACTER TITLE*16,HEAI^*64,YI^l,DC*l,TITTJRn6,TITLEI*16

CHARACTER TrTL*16

C Enter parameters for processing

11 IF (DSET) CLOSE (10)

N0VERLAY=0

CFEN(10,FILE=
,

PLC'r)

IF (DSET

WRITE (*

WRITE (*

WRITE (*

WRITE (*

WRITE (*

WRITE (*

WRITE (*

WRITE (*

GO TO 85

Welcome to signal processing using the'

Kumaresan-Tufts method'

Do you want '

1. The long version for beginners'

2. The short version for pros'
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15 WRITE (*,*) 'Please enter 1 or 2
'

READ (*,*) N

IF (N .EQ. 1) THEN

LO¥G=.TRUE.

ELSEIF (N .EQ. 2) THEN

I£NG=.FALSE.

ELSE

GOTO 15

ENDIF

WRITE (*,*) 'Session will begin with entry of parameters needed fo+r processing'

WRITE (*,*)

16

10

WRITE (*,*) Do you want to enter parameters from'

WRITE (*,*)
i i

WRITE (*,*) 1. The keyboard'

WRITE (*,*) 2. A previously created file of parameters

WRITE (*,*) i

WRITE (*,*) Please enter 1 or 2
'

READ (*,*) N

IF (N .EQ. 1) THEN

GO TO 1

ELSEIF (N .3). 2) THEN

WRITE (*,*) ' Enter title of file containing parameters'

READ (M05) TTTL

OPEN(l,FILE^lTTL)

READ(1,105) TITLE

READ(1,110) NPTS

READ(1,110) NRT

READ(1,110) Kd

READ (1,110) *[

READ (1,110) DELTAY

READ (1,110) NSTRTPT

READ (1,110) NCAUS

CLOSE(l)

GO TO 85

ELSE

GO TO 16

ENDIF

WRITE (*,*)
* •

NUFILE=.TRUE.

IF (.NOT. DSET) NSTRTPT=1

WRITE (*,*) 'Enter title of data file to be read'

READ (*,105) TITLE

OPEN (1 ,FILE=nTLE)

READ(1,105) HEADER

READ (1,110) NPTS

IF (NPTS .GT. 1024) THEN

WRITE (*,*) 'Nianber of points in data file exceeds the dimension'

WRITE (*,*) 'of the array used in the program to store the file'
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STOP

ENDIF

CLOSE(l)

U (DSET) THEN

IF (NSTRTPT+(Rd+M-l)*DELTAY .LE. NPTS) GO TO 85

ENDIF

3 IF (nufile) THEN

WRITE (*,*) 'Enter Rd, >= the estimated order of the system '

READ (*,*) Kd

IF (Rd .GT. 69) THEN

WRITE (*,*) 'Rd must be less than 70, or dimension statements'

WRITE (*,*) 'in this program must changed by the user'

GO TO 3

ELSFJF (Rd .LT. 2) THEN

WRITE (*,*) 'Rd must be at least 2'

GO TO 3

ENDIF

IF (2*Rd .GT. NPTS) THEN

WRITE (*,*) 'Rd must be less than or equal to \NPTS/2

GOTO 3

ELSEIF (2*Rd .EQ. NPTS) THEN

WRITE (*,*) 'Rd equals' fRd

WRITE (*,*) 'M must be',Rd

M=Rd

WRITE (*,*) 'since there are a total of, NPTS

WRITE (*,*) 'points in ',TITLE

GO TO 45

ENDIF

GOTO 4

ELSEIF (DSET) THEN

N=M

20 IF (NSTRTPT+(N+M-1)*DELTAY .LE. NPTS) THEN

WRITE (*,*) 'Given the other parameters chosen thus far,'

25 WRITE (*,*) 'Rd may range from \NRT
WRITE (*,*)

'

to',N

WRITE (*,*) 'Enter Rd'

READ (*,*) Rd

IF (Rd .GE. NRT .AND. Rd .LE. N) GO TO 85

GOTO 25

ELSE

N=N-1

GOTO 20

ENDIF

ENDIF

4 IF (NUFILE) THEN

WRITE (*,*) 'Enter M, the row dimension of the data matrix'

IF (.NOT. DSET .AND. LONG) THEN
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WRITE (*,*) '
'

WRITE (*,*) 'Note: Kd+M points in ', title

WRITE (*,*) ' will be processed '

WRITE (*,*) '
*

ENDIF

30 WRITE (*,*) *M may range from',Kd

IF (NPTS-Kd .GT. 69) THEN

WRITE (*,*)
'

to 69'

ELSE

WRITE (*,*) '

to* ,NPTS-Kd

ENDIF

READ (*,*) M

IF (M .GT. 69) THEN

WRITE (*,*) 'M must also be less than 70'

GO TO 30

ELSEIF (M .LT. Kd) THEN

WRITE (*,*) 'M must be greater than or equal to Kd, Kd= \Kd
GOTO 30

ELSEIF (Kd+tt .GT. NPTS) THEN

WRITE (*,*) 'Kd4M must be less than or equal to* ,NPTS f
'

,

'

WRITE (*,*) 'the number of data points in*,TITLE

WRITE (*,*) '
'

GO TO 30

ENDIF

ELSE

N=Kd

35 IF (NSTRTPT+(Kd4N-l)*DELTAY .LE. NPTS) THEN

N=N+1

GOTO 35

ELSE

N=N-1

ENDIF

IF (N .EQ. Kd) THEN

WRITE (*,*) 'M must equal',Kd

M=Kd

GOTO 85

ENDIF

IF (N .GT. 69) N=69

40 WRITE (*,*) 'M may range from',Kd

WRITE (*,*)
' to\N

WRITE (*,*) 'Enter M'

READ (*,*) M

IF (M .GE. Kd .AND. M .LE. N) GO TO 85

GO TO 40

ENDIF

45 IF (.NOT. NUFILE) GO TO 85

5 N=l

50 IF (NSTRTPT4N*(Kd-ftf-l) .LE. NPTS) THEN
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55

N=N+1
\

GOTO 50

ELSE

N=N-1

ENDIF

IF (N .EQ. 1) THEN

WRITE (*,*) 'Given the other parameters chosen thus far,

'

WRITE (*,*) 'Spacing can only be 1'

DELTAY=1

IF (NUFILE) THEN

GOTO 60

ELSE

GO TO 85

ENDIF

ENDIF

IF (.NOT. DSET .AND. LONG) THEN

WRITE (*,*) 'Enter spacing between the ' ,Kd+tf

WRITE (*,*) 'data points of ', TITLE

WRITE (*,*) 'to be processed
'

WRITE (*,*)
i

WRITE (*,*) 'If, for example, one is chosen, then \Kd4M

WRITE (*,*) 'consecutive points in
'

,TITLE

WRITE (*,*) 'will be processed
'

WRITE (*,*)
i i

ENDIF

WRITE (*,*) 'Spacing may range from 1
'

WRITE (*,*) to' ,N

READ (*,*) DELTAY

IF (DELTAY . GE. 1 .AND. DELTAY .LE. N) THEN

IF (NUFILE) THEN

GOTO 60

ELSE

GOTO 85

ENDIF

ELSE

GO TO 55

ENDIF

60 WRITE (*,*) 'Do you wish to adjust eigenvalues? (y/n)

'

READ (*,120) YN

IF (YN .EQ. 'N' .OR. YN .EQ. V) THEN

IF (NUFILE) GO TO 6

GOTO 85

ENDIF

IF (YN .NE.

2 WRITE (*,*)

READ (M20) DC

IF (DC .EQ. 'D' .OR. DC .EQ. 'd') GO TO 65

IF (DC .NE. 'C .AND. DC .NE. 'c') GO TO 2

WRITE (*,*) 'Enter estimate of the actual order of the system'

'Y' .AND. YN .NE. 'y') GO TO 60

'Discard or compensate eigenvalues? (d/c)

'
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WRITE (*,*) '

IF (LONG) THEN

WRITE (*,*) 'This estimate will be used to determine the
'

WRITE (*,*) 'number of eigenvalues compensated or discarded
'

ENDIF

65 WRITE (*,*) 'the estimate may range from 2'

WRITE (*,*)
'

to',Kd-l

READ (*,*) NRT

IF (NRT .GT. Kd .OR. NRT .LT. 2) THEN

GOTO 65

ELSEIF (.NOT. NUFILE) THEN

GOTO 85

ENDIF

.US. NPTS) THEN

6 NSTRTPT=1

70 IF (NSTRTPT+(Kd-ftf-l)*DELTAY

NSTRTPWISTRTPT+1

GO TO 70

ELSE

NSTRTPMISTRTPT-1

ENDIF

IF (NSTRTPT .EQ. 1) THEN

WRITE (*,*) 'Given the other parameters chosen thus far,'

WRITE (*,*) 'the starting point for processing the data'

WRITE (*,*) 'must be the first point in the data file'

GO TO 85

ENDIF

WRITE (*,*) 'Enter desired starting point in data file*

IF (.NOT. DSET .AND. LONG) THEN

WRITE (*,*) '1 indicates the first point in the data file

ENDIF

WRITE (*,*) '
'

WRITE (*,*)

75 WRITE (*,*)

WRITE (*,*)
'

READ (*,*) N
IF (N .GE. 1 .AND

NSTRTPT=*J

ELSE

WRITE (*,*) 'Enter starting point again'

WRITE (*,*) '
'

GOTO 75

ENDIF

IF (.NOT. NUFILE) GO TO 85

'Given the other parameters chosen thus far,

'

'the starting point may range from 1'

to',NSTRTPT

N .LE. NSTRTPT) THEN

WRITE (* ,*)
'

WRITE (* *)
'

WRITE (* *)
'

WRITE (* *)
'

WRITE (* *)
'

Do you want the data matrix arrangement to be'

1. Causal'

2. Non-causal'
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80 WRITE (*,*) 'Please enter 1 or 2
'

READ (*,*) NCAUS

IF (NCAUS .EQ. 1) THEN

CAUSAL=.TRUE.

ELSEIF (NCAUS .EQ. 2) THEN

CAUSAL=.FALSE.

ELSE

GOTO 80

ENDIF

GOTO 85

9 WRITE (*,*) 'Enter title of file to contain parameters'

READ (*,105) TETL

OPEN(l,FILE==TnL)

WRITE(1,105) TITLE

WRITE (1,110) NPTS

WRITE (1,110) NRT

WRITE(1,110) Kd

WRITE (1,110) M

WRITE (1,110) DELTAY

WRITE (1,110) NSTRTPT

WRITE (1,110) NCAUS

CLOSE(l)

IF (DSET) GO TO 85

12 IF (DSET) THEN

CLOSE (2)

CLOSEO)

CALL SUBPLT(NOVERLAY)

ENDIF

85 DSET=.TRUE.

NUFILE=. FALSE.

WRITE(*,*) '
'

WRITE(*,*) '1. Data file to be processed ',T

+ITLE

WRTTE(*,*)
'

Number of data points in data file \NPTS
WRTTE(*,*) '2. Estimated order of the system ' ,NRT

WRITE(*,*) '3. Kd, the number of columns in the data matrix', Kd

WRTTE(*,*) '4. M, the number of rows in the data matrix',

M

WRITE (*,*) '5. Spacing between data points being processed ', DELTA

+Y

WRITE(*,*) '6. First point in the data file to be processed',NSTRT

+PT

WRITE (*,*) ' Last point in the data file to be processed',NSTRT IF

+PT+Kd+M-1

IF (NCAUS .BQ. 1) THEN

WRITE (*,*) '7. Data matrix arrangement for processing

KISAL '

ELSE

CA
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WRITE(*,*) '7. Data matrix arrangement for processing NON-CA

-KJSAL '

ENDIF

WRITE(*,*) "
'

WRITE(*,*) '8. Begin processing using above settings'

WRTTE(*,*) '9. Store parameters 1-7 in a file'

WRITE (*,*) '10. Retrieve parameters 1-7 from a previously created

+file'

WRITE(*,*) '11. Reset overlays'

WRTTE(*,*) '12. Re-plot overlays'

WRTTE(*,*) '13. End this session of Kumaresan-Tufts signal process

+ing'

WRITE(*,*) '
'

WRITE (*,*) 'Enter an integer from 1 to 12 to make changes as often

+ as you desire'

90 READ (*,*) NMENU

IF (NMENU .LT. 1 .OR. NMENU .GT. 13) THEN

WRITE(*,*) 'Enter an integer from 1 to 13'

GO TO 90

ENDIF

GO TO (1,2,3,4,5,6,7,8,9,10,11,12,13),NMENU

8 OPEN(l,FILE=nni:)

READ (1,105) HEADER

READ (1,110) NPTS

READ (1,115) XQ

READ (1,115) XQ

DO 95 1=1,NPTS

READ(1,115) D(I)

95 CONTINUE

CLOSE(l)

KdPLT=Kd

WRITE (*,*) 'Enter title of file to contain real part of poles'

READ (*, 105) TnUR
OPEN (2 , file=TTTLER)

WRITE(*,*) 'Enter title of file to contain imaginary part of poles'

READ(*,105) Trnn
0PEN(3,file=TnTJEI)

WRITE (10, 100) (KdPLT)

WRTTE(10,105) TTTLER

WRITE(10,105) TTTLEI

100 FORMAT (12)

MN=MAX(M,Kd)

105 FORMAT (A)

110 FORMAT (15)

115 FORMAT (FJ.2. 6)
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120 FORMAT (Al)

C Form data matrix

DO 125 I=l,Kd+M

dy(i)=d( (1-1) *deltay*nstrtpt)

125 continue

130 DO 140 1=1,

M

DO 135 J=l,Kd

A(I,J)=Dy(I+J)

135 CONTINUE

140 CONTINUE

B(l)=Dy(l)

DO 145 1=2,

M

B(I)=A(I-1,1)

145 CONTINUE

C Begin singular value decomposition

CALL SVD(MACHEP,M,Kd,MN,A,W,MATU,U,MATV,V,IERR,RVl)

C Errors in SVD?

IF (IERR .GT. 0.0) THEN

WRITE (*,*) 'Error in singular value number ', IERR, STOP

ENDIF

IF (YN .EQ. 'N') GO TO 190

DO 150 1=1, Kd

XP(I)=0.0

150 CONTINUE

C Discard or compensate eigenvalues

C Order singular values

XP(1)=W(1)

DO 165 1=2, Kd

DO 160 J=1,I

IF (W(I) .GT. XP(J)) THEN

DO 155 K=I+1,J,-1

155 XP(K)=XP(K-1)

XP(J)=W(I)

GO TO 165

ENDIF

160 CONTINUE

XP(I+1)=W(I)

165 CONTINUE

C XP{ ) now contains ordered singular values-XP(l) is the largest
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c Discard eigenvalues

IF (DC .ECj. 'D') THEN

DO 170 J=NRT+l,Kd

170 W(J)=(0.0)

ELSE

C Compensate eigenvalues

AVG=0.0

DO 175 J=NRT+l,Kd

AVG=AVG+XP(J)**2

175 CONTINUE

IF (Rd .GT. NRT) AVG=AVG/DBLE (FLOAT (Kd-NRT)

DO 185 J=l,Kd

DO 180 K=l,Kd

IF ( W(J) .ECj. XP(K) ) THEN

IF ( K .GT. NRT ) THEN

W(J)=0.0

ELSE

V(J)=DSOj*T(DABS( W(J)*W(J)-AVG))

ENDIF

GOTO 185

ENDIF

180 CONTINUE

185 CONTINUE

ENDIF

190 DO 200 1=1,

M

DO 195 J=1,M

UT(I,J)=(U(J,I))

195 CONTINUE

200 CONTINUE

c Form SIGMA+ (KflxM)

DO 210 1=1 ,Kd

DO 205 J=1,M

SIGMA (I, J) =0.0

IF (I .EQ. J .AND. W(J) .NE. 0.0) THEN

SIGMA(I,J)=1.0D0/V(J)

ELSE

SIGMA(I,J)=O.0d0

ENDIF

205 CONTINUE

210 CONTINUE

Form SIGMA (MxKd)

DO 220 I=1,M

DO 215 J=l,Kd

SIG(I,J)=0.0

IF (I .EQ. J) SIG(I,J)=W(J)
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215 camMJE
220 CONTINUE

C V=KdxKd,SI<m+=KdxM,VS=KdxM

CAIL MXMUL(V,SIGMA,Kd,Kd,M,VS)

C TO=KdxM,trT=MxM,AINV=KdxM

CALL MJMJL(VS,UT,Kd,M,M,AINV)

C Calculate matrix multiplication of AINV x B, where

C AINV=KdxM,B=Mxl,XP=Kdxl

CALL MXMUL(AINV,B,Kd,M,L,XP)

C Calculate autoregressive coefficients from prediction coefficients

IF (XP(Kd) .ECj. 0.0) THEN

WRITE (*,*) 'ERROR, avoiding division by zero'

STOP

ELSE

B(Kd)=1.0d0/XP(Kd)

ENDIF

DO 225 1=2,Kd

B (1-1 ) =-B (Kd) *XP (Kd-I+1

)

225 CONTINUE

DO 230 1=1, Kd

X (I) =-B (Kd-I+1)

IF (NCAUS .BQ. 1) X (I) =-XP (Kd-I+1)

230 CONTINUE

X(Kd+l)=1.0

C Compute the roots of the polynomial in z

CALL P0LRT(X / C0F,KD,RCOTR,RCOTI,IER)

IF (IER .NE. 0) WRITE (*,*) 'ERROR with POLRT, IER=' ,IER,STOP

DO 235 1=1, Kd

WRTTE(2,115) ROOTR(I)

WRTTE(3,115) RCOn(I)

S (I)=DCMPLX(RCCTR(I) ,RCOTI (I)

)

235 CONTINUE

MAGPOL=0

DO 240 1=1,Kd

IF (CDABS(S(D) .GE. l.OdO) MAGP0L=MAGP0L+1

240 CONTINUE

WRTTE(*,*) '# of poles with magnitude <= l',Kd-MAGPOL

WRITE (*,*) 'HIT ANY KEY TO CONTINUE'

READ (*,105) HEADER
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C Plot poles

N0VERIAY=NOVERLAY+1

CLOSE (2)

CLOSED)
CALL SUBPLT(NOVERLAY)

J=0

K=0

DO 245 1=1,Kd

IF (CDABS(S(I)) .LT. 1.0) THEN

J=J+1

K=K+1

WRITE (*,*) S(I),CDABS(S(I))

ENDIF

IF (J .BQ. 20) THEN

WRITE (*,*) 'Enter any key to continue'

READ (*,105) HEADER

J=0

ENDIF

245 continue

WRTTE(* f
*) 'Poles with magnitude less than one: \K

GO TO 85

13 STOP

END
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APPENDIX B: THE CADZOW-SOLOMON POLE EXTRACTION ALGORITHM

The following program implements the Cadzow-Solomon

algorithm as described in Chapter 2 of this thesis. The

program is written in Fortran 77. The SVD and root-finding

subroutines called by this program are found in the EISPACK

library [18] . The SVD subroutine is a translation from ALGOL

as given in [19] . The matrix multiplication and graphics

subroutines, also called by this program, are found in

Appendix C and D respectively.

SLARGE

INTEGER IERR,Kd,Kn,M,m,MAGPOL,NSTRTPT,DELTAY

INFECT* IER,NCAUS,NMBNU,INSTRTPT

HfTEGER*2 KdPLT

REAL*8 A(70,70) ,W(70) ,U(70,70) ,V(70,70) ,RV1(70)

REAL*8 VS (70,70) ,UT(70,70) ,AINV(70,70) ,X(70)

REAL*8 XP(70) ,B(70) ,SIGMA(70,70) ,SIG(70,70)

REAL*8 OCF(70),ROOTR(70),ROOTI(70)

REAL MAG

REAL*8 D(1024) ,AVG,MACHEP/1.0E-16/,Dy(14O) ,Dx(1024)

00MPLEX*16 S(70)

LOGICAL MATU/.TOUE7,MATV/.TRUE./,CAUSAL/.TOUE./, LONG/. TRUE./

LOGICAL DSET/.FALSE. /,NUFILE/.TRUE./

CHARACTER TITIJE*16,HEADER*64,YNn,DC*l,TITLERn6,TITLEI*16

CHARACTER TITL*16,TrrLD*16

C Enter parameters for processing

14 IF (DSET) CLOSE (10)

NOVERLAY=0

OPEN(10,FILE=
,

PLOT')

IF (DSET) GO TO 215

WRITE (*,*) 'Welcome to signal processing using the'

WRITE (*,*) 'Cadzow-Solomon method'

WRITE (*,*) ' '

WRITE (*,*) 'Do you want
'
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WRITE (*,*)

WRITE (*,*)

WRITE (*,*)

WRITE (*,*)

25 WRITE (*,*)

READ (*,*) N
IF (N .EQ. 1) THEN

LCNG=.TRUE.

ELSEIF (N .BQ. 2) THEN

LONG=. FALSE.

ELSE

GOTO 25

ENDIF

1. The long version for beginners'

2. The short version for pros'

Please enter 1 or 2
'

35

13

WRITE (*,*)

+r processing

WRITE (*,*)

(*

{*

WRITE

WRITE

WRITE (*

WRITE (*

WRITE (*

.*)

.*)

*)

,*)

*)

Session will begin with entry of parameters needed fo

Do you want to enter parameters from'

1. The keyboard'

2. A previously created file of parameters'
i

Please enter 1 or 2
'WRITE (*,*)

READ (*,*) N

IF (N .EQ. 1) THEN

GO TO 8

ELSEIF (N .EQ. 2) THEN

WRITE (*,*) 'Enter title of file containing parameters'

READ (MOO) TTTL

OPEN(l,FILE=nTL)

READ(1,100) TITLE

READ (1,110) NPTS

READ(1,110) NRT

READ (1,110) Kd

READ (1,110) M

READ (1,110) DELTAY

READ (1,110) NSTRTPT

READ (1,110) NCAUS

READ(1,100) TITLD

READ(1,110) NDPTS

READ (1,110) Kn

READ (1,110) INSTRTPT

CLOSE(l)

GO TO 215

ELSE

GO TO 35

ENDIF

WRITE (*,*) '
'

8 WRITE (*,*) 'Enter title of file containing excitation waveform'
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READ (\100) TTTLD

OPEN (8 , FILE=nTLiD)

READ(8,100) HEADER

READ(8,110) N
IF (N .GT. 1024) THEN

WRITE (*,*) 'Number of points in data file exceeds the dimension'

WRITE (*,*) "of the array used in the program to store the file'

STOP

ENDIF

CLOSE(8)

IF ((N .GE. NDPTS) .AND. DSET) THEN

NDPTS=N

GOTO 215

ENDIF

NDPTS=N

9 WRITE (*,*) 'Enter estimated order of waveform'

IF (DSET) THEN

MAXIMUM=NDPTS-M

IF (MAXIMUM .GT. M-Kd-1) MAXIMUM=M-Kd-1

IF (MAXIMUM .GT. NDPTS-INSTRTPT-Kn-M+1) THEN

MAXIMUhH©PTS-INSTRTPT-Kn-M+l

ENDIF

ELSE

MAXIMUM=66

ENDIF

IF (MAXIMUM .EQ. 1) THEN

WRITE (*,*) 'The estimated order of the waveform can only be 1'

IF (DSET) GO TO 215

GO TO 10

ELSE

IF (DSET) THEN

WRITE (*,*) 'Given the other parameters chosen thus far,'

ENDIF

45 WRITE (*,*) 'the order may range from 1'

WRITE (*,*)
'

to',MAXIMUM

READ (*,*) Kn

IF (Kn .GE. 1 .AND. Kn .IE. MAXIMUM) THEN

IF (DSET) GO TO 215

GO TO 10

ENDIF

WRITE (*,*) 'Enter estimated order again*

WRITE (*,*) '
'

GO TO 45

ENDIF

IF (DSET) GO TO 215

10 INSTRTPT=1

55 IF (mSTRTPT+Kn+M-l .GT. NDPTS) THEN

INSTRTFI-INSTRTPT-1
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ELSE

INSTRTPT=INSTRTPT+1

GO TO 55

ENDIF

MSTRT=INSTRTPT

IF (INSTRTPT .EQ. 1) THEN

WRITE (*,*) 'The first point can only be 1'

GOTO 215

ELSE

WRITE (*,*) 'Enter first point in waveform file to be processed'

65 WRITE (*,*) 'Given the other parameters chosen thus far,'

WRITE (*,*) 'the starting point may range from 1'

WRITE (*,*)
' to\MSTRT

READ (*,*) INSTRTPT

IF (INSTRTPT .GE. 1 .AND. INSTRTPT .LE. MSTRT) THEN

IF (DSET) GO TO 215

GO TO 1

ENDIF

WRITE (*,*) 'Enter starting point again'

WRITE (*,*) '
'

GOTO 65

ENDIF

IF (DSET) GO TO 215

1 IF (.NOT. DSET) NUFILE=.TRUE.

IF (.NOT. DSET) NSTRTPT=1

WRITE (*,*) 'Enter title of data file to be read'

READ (MOO) TITLE

OPEN (12 , FTLE=TrTLE)

READ (12, 100) HEADER

READ (12, 110) NPTS

IF (NPTS .GT. 1024) THEN

WRITE (*,*) 'Number of points in data file exceeds the dimension'

WRITE (*,*) 'of the array used in the program to store the file'

STOP

ENDIF

CL0SE(12)

IF (NUFILE) THEN

GOTO 3

ELSEU (NSTRTPT+(Kd4M-l)*DELTAY .LE. NPTS) THEN

GO TO 215

ELSE

GO TO 6

ENDIF

IF (NUFILE) THEN

MAXMJM=69-Kn-1
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IF (MAXIMUM .GT. NPTS-69) MAXIMUM=NPTS-69

MD*=2

IF (MIN .EQ. MAXIMUM) THEN

Kd=MIN

WRITE (*,*) 'Given the other parameters chosen thus far,'

WRITE (*,*) 'Kd must be \MIN
GOTO 4

ENDIF

WRITE (*,*) 'Enter Kd, >= the estimated order of the system
'

WRITE (*,*) 'Given the other parameters chosen thus far,'

75 WRITE (*,*) 'Kd may range franMDN
WRITE (*,*)

'

to',MAXIMUM

READ (*,*) Kd

IF (Kd .GE. MIN .AND. Kd .LE. MAXIMUM) GO TO 4

GO TO 75

ELSFJF (DSET) THEN

MAXIMUM=M-Kn-1

IF (MAXIMUM .GT. NPTS-M) MAXIMUM=NPTS-M

MIN=2

N=MAXIMUM

85 IF (NSTRTPT+(N+M-1)*DELTAY .LE. NPTS) THEN

MAXIMUMS

IF (MIN .EQ. MAXIMUM) THEN

Kd=MIN

GOTO 215

ELSFJF (MAXIMUM .LT. MIN) THEN

DELTAY=1

IF (1+(24M-1)*DELTAY .LE. NPTS) THEN

Kd=2

GO TO 135

ENDIF

WRITE (*,*) 'Error. Kd must be less than 2'

Kd=2

GO TO 215

ENDIF

WRITE (*,*) 'Given the other parameters chosen thus far,'

95 WRITE (*,*) 'Kd may range from \MIN
WRITE (*,*)

'

to',MAXIMUM

WRITE (*,*) 'Enter Kd'

READ (*,*) Kd

IF (Kd .GE. MIN .AND. Kd .LE. MAXIMUM) GO TO 215

GO TO 95

ELSE

N=N-1

GOTO 85

ENDIF

ENDIF

129



C Determine M

4 IF (NUFILE) THEN

WRITE (*,*) 'Enter M, the row dimension of the data matrix 1

IF (.NOT. DSET .AND. LONG) THEN

WRITE (*,*) '
'

WRITE (*,*) 'Note: Kd+M points in ', title

WRITE (*,*) ' will be processed
'

WRITE (*,*) '
'

ENDIF

105 WRITE (*,*) 'M may range fran',Kd

IF (NPTS-Kd .GT. 69) THEN

WRITE (*,*)
' to 69'

ELSE

WRITE (*,*) '

to',NPTS-Kd

ENDU
READ (*,*) M

IF (M .(7T. 69) THEN

WRITE (*,*) 'M must also be less than 70'

GOTO 105

ELSEIF (M .LT. Kd) THEN

WRITE (*,*) 'M must be greater than or equal to Kd, Kd= ',Kd

GOTO 105

ELSEIF (Kd+M .GT. NPTS) THEN

WRITE (*,*) 'Kd-tfl must be less than or equal to' ,NPTS, '

,

'

WRITE (*,*) 'the number of data points in',TTTLE

WRITE (*,*) ' '

GOTO 105

ENDIF

C Begin part for data already set

ELSE

N=Kd

115 IF (NSTRTPT+(Kd-fN-l)*DELTAY .LE. NPTS) THEN

N=«+l

GO TO 115

ELSE

N=N-1

ENDIF

IF (N .EQ. Kd) THEN

WRITE (*,*) 'M must equal',Kd

M=Kd

GOTO 215

ENDIF

MAXDUHt
IF (MAXIMUM .GT. 69) MAXHHJM=69

IF (Kd+Kn+1 .EQ. MAXIMUM) THEN

M=Kd4Kn+l

GO TO 215

ELSEIF (Kd+Kn+1 .GT. MAXIMUM) THEN

WRITE (*,*) 'Kd must be reduced'
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00 TO 3

ELSE

MDJ=Kd+Kn+l

ENDIF

IF (MIN .LT. Kn+Kd+1) MIN=Kn+Kd+l

125 WRITE (*,*) 'M may range from',MIN

WRITE (*,*)
'

to',MAXIMUM

WRITE (*,*) 'Enter M*

READ (*,*) M
IF (M .GE. MIN .AND. M .LE. MAXIMUM) GO TO 215

GO TO 125

ENDIF

c Determine DELTAY

135 IF (.NOT. NUFTLE) GO TO 215

5 N=l

145 IF (NSTRTPT+NMftMKL) .LE. NPTS) THEN

N=N+1

GO TO 145

ELSE

N=fl-1

ENDIF

IF (N .EQ. 1) THEN

WRITE (*,*) 'Given the other parameters chosen thus far,

WRITE (*,*) 'Spacing can only be 1'

DELTAY=1

IF (NUFILE) THEN

GO TO 165

ELSE

GO TO 215

ENDIF

ENDIF

IF (.NOT

WRITE (*

WRITE (*

WRITE (*

WRITE (*

WRITE (*

WRITE (*

WRITE (*

WRITE

ELSE

WRITE

WRITE (*

ENDIF

155 WRITE (*,*) 'Spacing may range from

WRITE (*,*)
'

to',N

READ (*,*) DELTAY

IF (DELTAY .GE. 1 .AND. DELTAY .LE. N) THEN

IF (NUFILE) THEN

[*

DSET .AND. LONG) THEN

Enter spacing between the ',Kd+M

data points of '
, TITLE

to be processed
'

i

If, for example, one is chosen, then ',Kd+M

consecutive points in '
,TITLE

will be processed
'

Enter spacing
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GOTO 165

ELSE

GOTO 215

ENDIF
T1.SE

GOTO 155

ENDIF

165 WRITE (*,*) 'Do you wish to adjust eigenvalues? (y/n)

'

READ (M50) YN

IF (YN .EQ. 'N' .OR. YN .EQ. 'n') THEN

IF (NUFILE) GO TO 6

GO TO 215

ENDIF

IF (YN .NE. 'Y' .AND. YN .NE. 'y') GO TO 165

2 WRITE (*,*) 'Discard or compensate eigenvalues? (d/c)

'

READ (\150) DC

IF (DC .EQ. 'D' .OR. DC .EQ. 'd') THEN

NRT=Kd

GOTO 175

ENDIF

IF (DC .NE. 'C .AND. DC .NE. 'c') GO TO 2

WRITE (*,*) 'Enter estimate of the actual order of the system'

WRITE (*,*) '
'

IF (LONG) THEN

WRITE (*,*) 'This estimate will be used to determine the
'

WRITE (*,*) 'number of eigenvalues compensated or discarded
'

ENDIF

175 WRITE (*,*) 'the estimate may range from 2'

WRITE (*,*)
' to\Kd+Kn+l

READ (*,*) NRT

IF (NRT .GT. Kd+Kn+1 .OR. NRT .LT. 2) THEN

GO TO 175

ELSEEF (.NOT. NUFILE) THEN

GO TO 215

ENDIF

6 NSTRTPT=1

185 IF (NSTRTPT+(KcWI-l)*DELTAY .LE. NPTS) THEN

NSTRTPT=fKTRTPT+l

GO TO 185

ELSE

NSTRTPWJSTRTPT-1

ENDIF

IF (NSTRTPT .EQ. 1) THEN

WRITE (*,*) 'Given the other parameters chosen thus far,'

WRITE (*,*) 'the starting point for processing the data'

WRITE (*,*) 'must be the first point in the data file*

GO TO 215

ENDIF

132



WRITE (*,*) 'Enter desired starting point in data file'

IF (.NOT. DSET .AND. LONG) THEN

WRITE (*,*) '1 indicates the first point in the data file

ENDIF

WRITE (*,*) '
'

WRITE (*,*) 'Given the other parameters chosen thus far,'

195 WRITE (*,*) 'the starting point may range from 1'

WRITE (*,*)
'

to',NSTRTPT

READ (*,*) N

IF (N .GE. 1 .AND. N .LE. NSTRTPT) THEN

NSTRTPT=N

ELSE

WRITE (*,*) 'Enter starting point again'

WRITE (*,*) '
'

GOTO 195

ENDIF

IF (.NOT. NUFILE) GO TO 215

205

IF (DSET) THEN

IF (NCAUS .EQ. 1) THEN

NCAUS=2

GOTO 215

ELSE

NCAUS=1

GOTO 215

ENDIF

ENDIF

WRITE (*

WRITE (*

WRITE (*

WRITE (*

WRITE (*

WRITE (*

READ

Do you want the data matrix arrangement to be'

1. Causal'

2. Non-causal'

Please enter 1 or 2

*,*) NCAUS

IF (NCAUS .EQ.

CAUSAL=.TRUE.

ELSETF (NCAUS

CAUSALf. FALSE.

ELSE

GOTO 205

ENDIF

GOTO 215

1) THEN

.EQ. 2) THEN

12 WRITE (*,*) 'Enter title of file to contain parameters'

READ (MOO) TTTL

OPEN ( 1 , FTLE==TTrL)

WRITE(1,100) TITLE

WRTrE(l,110) NPTS

WRITE (1,110) NRT
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WRITE (1,110)

write(i,iio)

VRrre(i,iio)

WRITE (1,110)

WRITE (1,110)

WRrre(i,ioo)

write (i,no)

WRITE (1,110)

WRITE (1,110)

CLOSE(l)

IF (DSET) GO

Kd

M
DELTAY

NSTRTPT

NCAUS

TTTLD

NDPTS

Kn

BISTRTPT

TO 215

15 IF (DSET) THEN

CL0SE(2)

CL0SE(3)

CALL SUBPLT(NOVERLAY)

ENDIF

215 DSET=.TRUE.

NUFILE=.FALSE.

WRTTE(*,*) '
'

WRITE(*,*)

+ITLE

WRITER,*)

WRITE(*,*)

WRTIE(*,*)

WRTTE(*,*) '4

WRITE**,*) '5

+Y

WRTIE(\*)

+PT

WRTTE(*,*)

+PT+Kd+M-1

IF (NCAUS

WRITER,*)

KJSAL '

ELSE

WRTTE(*,*) '7

-KJSAL '

ENDIF

WRITE(*,*)

'1. Data file to be processed ',T

'2.

•3.

•6.

.EQ.

'7.

WRTTE(*,*)

+ITLD

WRTTE(*,*)

WRITE(*,*)

WRnE(*,*)

WRTTE(*,*)

+TPT

Number of data points in data file ' ,NPTS

Estimated order of the system ' ,NRT

Rd, the number of columns in the data matrix',Kd

M, the number of rows in the data matrix' ,M

Spacing between data points being processed '
,DELTA

First point in the data file to be processed',NSTRT

Last point in the data file to be processed',NSTRT

1) THEN

Data matrix arrangement for processing

Data matrix arrangement for processing

CA

NON-CA

8. File containing excitation waveform

Number of data points in above file

9. Estimated order of the waveform

10. First point in the file to be '

input into the data matrix

',T

',NDPTS

',Kn

MNSTR
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WRTTE(*,*) '
'

WRITE(*,*) '11. Begin processing using above settings'

WRTTE(*,*) '12. Store parameters 1-10 in a file'

WRITE (*,*) '13. Retrieve parameters 1-10 from a previously created

+ file'

WRITE(*,*) '14. Reset overlays'

WRITE (*,*) '15. Re-plot overlays'

WRITE (*,*) '16. End this session of Cadzow-Solomon signal processi

+ng'

WRTTE(*,*) '
'

WRITE (*,*) 'Enter an integer from 1 to 16 to make changes as often

+ as you desire'

225 READ (*,*) NMENU

IF (NMENU .LT. 1 .OR. NMENU .GT. 16) THEN

WRITE (*,*) 'Enter an integer from 1 to 16'

GO TO 225

ENDIF

GO TO (1,2, 3, 4, 5, 6, 7, 8, 9,10, 11, 12, 13, 14, 15, 16), NMENU

11 0PEN(12,FILE=TrTI£)

READ(12,100) HEADER

READ(12,110) NPTS

READ (12, 120) XQ

READ (12, 120) XQ

DO 235 1=1,NPTS

READ(12,120) D(I)

235 CONTINUE

CljOSE(12)

0PEN(8,FILE=TTTLD)

READ (8, 100) HEADER

READ(8,110) NDPTS

READ (8, 120) XQ

READ (8, 120) XQ

DO 245 1=1,NDPTS

READ(8,120) Dx(I)

245 CONTINUE

CL0SE(8)

KdPLT=Kd

WRITE (*,*) 'enter title of file to contain real part of poles'

READ(MOO) TITLER

OPEN(2,FTLE=nTLER)

WRTTE(*,*) 'enter title of file to contain imaginary part of poles'

READ(MOO) TITLEI

0PEN(3,nLE=TTTLEI)
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WRITE (10, 130) (KdPLT)

WRITE (10, 100) TTTLER

write do, ioo) tttlei

130 FORMAT (12)

MN=MAX(M,Kd+Kn+l)

100 FORMAT (A)

110 FORMAT (15)

120 FORMAT (E12. 6)

150 FORMAT (A)

DO 255 I=l,Kd4M

Dy (I) =D ( (1-1 ) *DELTAY4flSTRTPT)

255 CONTINUE

265 DO 285 1=1,

M

DO 275 J=l,Kd+Kn+l

A(I,J)=Dy(I+J)

IF (J .GE. Kd+1) A(I,J)=Dx(I-KJ+INSTRTPT-2-Kd)

275 CONTINUE

285 CONTINUE

B(l)=Dy(l)

DO 295 I=2,M

B(I)=A(I-1,1)

295 OCNTINUE

N=Kd+Kn+l

C Begin singular value decomposition

CALL SVD(MACHEP,M,N,MN,A,W,MATU,U,MATV,V,IERR,RV1)

C Errors in SVD?

IF (IERR .GT. 0.0) THEN

WRITE (*,*) 'Error in singular value number ', IERR, STOP

ENDIF

IF (YN .EQ. 'N') GOTO 385

DO 305 I=l,Kd+Kn+l

XP(I)=0.0

305 CONTINUE

C Discard or compensate eigenvalues

c Order singular values

XP(1)=W(1)
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DO 335 I=2,Kd+Kn+l

DO 325 J=1,I

if (W(I) .GT. XP(J)) THEN

DO 315 K=I+1,J,-1

315 XP(K)=XP(K-1)

XP(j)=W(i)

GOTO 335

ENDIF

325 CONTINUE

XP(I+1)=V(I)

335 CONTINUE

C XP( ) now contains ordered singular values: XP(1) is the largest

C Discard eigenvalues

IF (DC .EC;. 'D') THEN

DO 345 J=NRT+1, Kd+Kn+1

345 W(J)=(0.0)

ELSE

C Compensate eigenvalues

AVG=0.0

DO 355 J=NRT+1, Kd+Kn+1

AVG=AVG+XP(J)**2

355 CONTINUE

IF (Kd+Kn+1 .GT. NRT) AVG=AVG/DBLE (FLOAT (Kd+Kn+1-NRT)

)

DO 375 J=l, Kd+Kn+1

DO 365 K=l, Kd+Kn+1

IF ( W(J) .EQ. XP(K) ) THEN

IF ( K .GT. NRT ) THEN

V(J)=0.0

ELSE

V(J)=DSQRT(DABS( V(J)*W(J)-AVG))

ENDIF

GOTO 375

ENDIF

365 CONTINUE

375 CONTINUE

ENDIF

385 DO 405 1=1,

M

DO 395 J=1,M

UT(I,J)=(U(J,I))

395 CONTINUE

405 CONTINUE

C Form SIGMA+ (Kd+Kn+1 x M)

DO 425 1=1, Kd+Kn+1

DO 415 J=1,M
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SIGMA(I,J)=0.0

IF (I .EQ. J .AND. W(J) .NE. 0.0) THEN

SIGMA(I,J)=1.0d0/W(J)

ELSE

SIGMA(I,J)=O.0D0

ENDIF

415 CONTINUE

425 CONTINUE

C Form SIGMA (M x Kd-tfCn+1)

DO 445 1=1,

M

DO 435 J=l,Kd+Kh+l

SIG(I,J)=0.0

IF (I .EQ. J) SIG(I,J)=V(J)

435 CONTINUE

445 CONTINUE

C V=Kd4Kn+lxKd+KiHl,SIGto^

CALL MXMUL(V,SIGMA,K(Mn+l,Kd-H(n+l,M,VS)

C VS=Kd+Kn+lxM,UT=MxM,AINVN(d-H(n+lxM

CALL MXMUL(VS,UT,Kd4Kn+l,M,M,AINV)

C Calculate matrix multiplication of AINV x B, where

C AINV=Kd+KrH-lxM,B=Mxl,XP=Kd+Kn+lxl

CALL MXMUL(AINV,B,Kd-H<n+l,M,L,XP)

C Compute autoregressive coefficients from prediction coefficients

IF (XP(Kd) .EQ. 0.0) THEN

WRITE (*,*) 'ERROR, avoiding division by zero'

STOP

ELSE

B(Kd)=1.0d0/XP(Kd)

ENDIF

DO 455 1=2, Kd

B (1-1) =-B (Kd) *XP (Kd-i+1)

455 CONTINUE

DO 465 i=l,Kd

X(I)=-B(Kd-I+l)

IF (NCAUS .EQ. 1) X(I)=-XP(Kd-I+l)

465 CONTINUE

X(Kd+l)=1.0

C Compute the roots of the polynomial in z

CALL POLRT(X,COF,KD,ROOTR,ROOTI,IER)

IF (IER .NE. 0) WRITE (*,*) 'ERROR with POLRT, IER=',IER,STOP
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DO 475 1=1,Kd

write (2, 120) Roared)

WRITE(3,120) Roond)
S(I)=DCMPLX(RO0TR(I),ROOTI(I))

475 CONTINUE

MAGPOL=0

DO 485 1=1,Kd

IF (CDABS(S(D) .GE. l.ODO) MA(POL=«AGPOL+1

485 CONTINUE

WRTTE(*,*) 'I of poles with magnitude <= l',Kd-MAGPOL

WRITE (*,*) 'HIT ANY KEY TO CONTINUE'

READ (MOO) HEADER

C Plot poles

NOVERLAY=NOVERLAY+l

CLOSE(2)

CLOSED)

CALL SUBPLT(NOVERLAY)

J=0

K=0

DO 495 1=1, Kd

IF (CDABS(S(D) .LT. 1.0) THEN

WRITE (*,*) S(I),CDABS(S(I))

J=J+1

K=K+1

ENDIF

IF (J .EQ. 20) THEN

WRITE (*,*) 'HIT ANY KEY TO CONnNUE*

READ (*,100) HEADER

J=0

ENDIF

495 CONTINUE

WRITE (*,*) 'Poles with magnitude less than one ' ,K

WRITE (*,*) 'HIT ANY KEY TO CONTINUE'

READ (MOO) HEADER

GOTO 215

16 STOP

END
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APPENDIX C. MATRIX MULTIPLICATION

SUBROUTINE MXMUL(A,B,RA,CA,CB,AB)

INTEGER RA,CA,CB

REAL*8 A(70,70),B(70,70),AB(70,70)

C Calculates matrix multiplication of A x B=AB, where

C A=RAxCA,B=CAxCB,AB=RAxCB

DO 30 1=1,RA

DO 20 J=1,CB

AB(I,J)=0.0

DO 10 K=1,CA

AB(I,J)=AB(I,J)+A(I,K)*B(K,J)

10 CONTINUE

20 CONTINUE

30 CONTINUE

RETURN

END

140



APPENDIX D. GRAPHICS ROUTINE

SUBROUTINE SUBPLT(NOVERIAY)

C

C MS-FORTRAN Program using "Grafmatic" Library Subroutines.

C Plots a Solid Line and Optional Overlay Plot for Comparison.

C Written by M.A. Morgan with Latest Update August 1989.

C

C Default Printer is "IBM Graphics" (e.g. Epson, OkLdata, IBM)

C With Plot Rotated 90 degrees From the Vertical. "GrafPlus.Com"

C May be Run to Rotate Plot Upright on Paper and to Use a Variety

C of Impact Printers. "GrafLaser.Com" May be Run to Use a Laser

C Printer. See GrafPlus/Laser Manual From Jewell Technology.

C

C

CHARACTER*1 YN,YN1,DUM,YN2, SYMBOL, BELL, FEED, FFYN

CHARACTERM LINE

CHARACTER*7 SYMB

CHARACTER*16 LTIT,CTIT,FNAME,TITIfR,TrrLEI

CHARACTER*64 TITLE, HCOPY

REAL Cm (70) ,CRTI (70) ,NRTR (70) ,NRTI (70)

INTEGER*2 N,JROW,JCOL,ISYMl,ISYM2,ITYPEl,rrYPE2,NSCRN

INTEGER*2 CYAN, GREEN, WHITE, YELLOW, RED, BLACK, BLUE,NTWO

INTEGER*2 JROWl,JROW2,JOXl,JCOL2,CROSS,KdPLT,I

INTEGER*2 PURPLE, RUST

EXTERNAL XFUN,YFUNP,YFUNN

LINF^'— '

WHTTE=7

GREEN=10

CYAN=11

YELLOW=14

RED=12

BLACK=0

BLUE=1

NTWO=2

PURPLE=5

RUST=6

BELL=CHAR(7)

FEED=CHAR(12)

C Qear Screen and Put Up Introduction - on Blue Backgound for EGA

C Only; Another Background Color is Possible by Changing "BLUE"

C in the Calls to QPREG and QOVSCN.

CALL QSMODE(NTWO)

CALL OPREG(0,BLUE)
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CALL COVSCN(BLUE)

VRTTE(*,*) BELL

NS=1

NSCRN =16

nYPE2=0

C Calling GRAFMATIC Routines and Plotting Fl Solid Line Graph

ITYPE1=0

ISYM1=-1

NDCTS1=0

JR0W1=1

JROV2=350

JC0L1= 75

J00L2= 565

XKIN=-1.2

XMAX=1.2

YMD*=-1.2

YMAX=1.20

YCVERX=1.115

XDRG=0.0

YORG=0.0

XST=-1.1

XFIN=1.1

YST=-1.1

YFIN=1.1

25 CALL QSMODE (NSCRN)

CALL OJ>LOT(JCOIJ,JCOL2,JRCW,JROW2,X^

+l,YOVERX,1.5)

CALL QSETUP(ND0TS1, CYAN, ISYM1, RED)

IF(XFIN-XST .LE. 9.0) XMAJOR=0.6

IF(XFIN-XST .LE. 6.0) XMAJOR=0.4

IF(XFIN-XST .LE. 3.3) XMAJOR=0.2

IF(XFIN-XST .GE. 9.0) XMAJOR=(XFIN-XST)/10.0

MINOR=0

LABEL=1

NDEC=2

CALL QXAnS(XST,XnN,XMAJOR,MINDR f LABEL,NDEC)

YMAJOR=XMAJOR

CALL QYAnS(YST,YFIN,YMAJCR,MINOR,LABEL,NDEC)

c Plot unit circle

A=-1.0

B=1.0

CALL QCURV(XFTJN,YFUNP,A,B)

CALL QCURV(XFUN,YFUNN,A,B)

IF (NOVERLAY-1 .LT. 1) THEN

IF (NOVERLAY-1 .EQ. 0) THEN
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WRITE (*,3) N3VERLAY-1

ELSE

NZERO=0

WRITE (*,3) NZERO

ENDIF

ELSEIF (NDVERLAY-1 .GT. 1) THEN

WRITE (*,3) NOVERLAY-1

ELSE

WRITE (\4) NOVERLAY-l

ENDIF

3 FORMAT (13/ OVERLAYS')

4 FORMAT (13/ OVERLAY *)

REWIND (10)

DO 20 I=1,N0VERLAY

READ (10,110) KdPLT

READ (10,100) TTTLER

READ (10,100) TTTLEI

OPEN (2 , FILE=nTLER)

OPEN ( 3 , FILE^nTLEI

)

NKd=KdPLT

DO 27 J=l,KdPLT

READ (2,120) NRTR(J)

READ (3,120) NRTI(J)

IF (DSQRT(NRTR(J)**24NRTI(J)**2) .GT. 1.1) THEN

NKd=NKd-l

NRTR(J)=0.0

NRTKJ)=0.0

ENDIF

27 CONTINUE

PURPLE=5

RUST=6

WHTTE=7

GREEN=10

CYAN=11

YELLOW=14

RED=12

BLUE=1

IF (I .EQ. 1) THEN

CALL OSETUP(NDOTSl, CYAN, ISYM1, RED)

ELSEIF (I .EQ. 2) THEN

CALL QSETUP(ND0TS1, CYAN, ISYM1, GREEN)

ELSEIF (I .EQ. 3) THEN

CALL QSErUP(NDOTSl,CYAN,ISYMl, YELLOW)

ELSEIF (I .EQ. 4) THEN

CALL 0SETUP(ND0TS1,CYAN,ISYM1,BLUE)

ELSEIF (I .EQ. 5) THEN

CALL OSETUP(NDOTSl, CYAN, ISYM1,WHITE)

ELSEIF (I .EQ. 6) THEN

CALL QSETUP(ND0TS1, CYAN, ISYM1, PURPLE)
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ELSEIF (I .EQ. 7) THEN

CALL O^ETUP (ND0TS1, CYAN, ISYtfL, RUST)

ELSE

CALL QSETUP (NDOTS1, CYAN, ISYM1, RED)

ENDTJ

CALL (7rABL(ITYPEl,KdPLT fNRTR,NRTI)

20 CONTINUE

READ (*,100) DUM

GO TO 40

HCOPY='HARDOOPY— > ENTER P OR p'

CALL QPTXT(30,HCOPY,RED,25,l)

CALL QCM0V(55,1)

HCOPY='

CALL OJTXT(40,HCOPY,BLACK,25,1)

IF (DUM .NE. 'P* .AND. DUM ,NE. 'p') GO TO 40

CALL PJ>SCRN

OPEN (l,nLE= ,

PRN')

WRITE (1,160) FEED

100 FORMAT (A)

110 FORMAT (12)

120 FORMAT (E12. 6)

160 FORMAT (' \A,\)

40 CONTINUE

CALL QSMODE(NIVO)

CALL QPREG(0,BLUE)

CALL QOVSCN(BLUE)

WRTTE(*,*) NKd, 'points were plotted'

RETURN

END

REAL FUNCTION XFUN(T)

XFUN=T

RETURN

END

REAL FUNCTION YFUNP(T)

YFUNP=SCRT(1.0-T*T)

RETURN

END

REAL FUNCTION YFUNN(T)

YFUNN=-SORT(1.0-T*T)

RETURN

END
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