

Calhoun: The NPS Institutional Archive DSpace Repository

Evaluation of system identification algorithms for aspect-independent radar target classification.

Larison, Peter David.
Monterey, California. Naval Postgraduate School
https://hdl.handle.net/10945/25910

```
~-m,Mom -m-.-=-
```

$$
\begin{aligned}
& 1 \ldots 30 \% \\
& \text { 1. ジと 2c-3992 }
\end{aligned}
$$

NAVAL POSTGRADUATE SCHOOL Monterey, California

THESIS

EVALUATION OF SYSTEM IDENTIFICATION ALGORITHMS FOR ASPECT-INDEPENDENT RADAR TARGET CLASSIFICATION

by

Peter David Larison
ob。

December 1989

Thesis Advisor:
Michael Morgan
Approved for public release; distribution is unlimited

REPORT DOCUMENTATION PAGE				Form Approved OMB NO 0704.0188
1a REPORT SECURITY CLASSIFICATION UNCLASSIFIED	1b Restrictive Markings			
2a SECURITY CLASSIFICATION AUTHORITY	3 DISTRIBUTION/AVAILABILITY OF REPORTApproved for public release; distribution is unlimited			
4. PERFORMING ORGANIZATION REPORT NUMBER(S)	5 MONITORING ORGANIZATION REPORT NUMBER(S)			
6a NAME OF PERFORMING ORGANIZATION bb OFFICE SYMBOL (If applicable) Nava1 Postgraduate School	7a NAME OF MONITORING ORGANIZATION Naval Postgraduate School			
$6 c$. ADDRESS (City, State, and ZIP Code) Monterey, California 93943-5000	7b ADDRESS (City, State, and ZIP Code) Monterey, California 93943-5000			
8a. NAME OF FUNDING/SPONSORINGORGANIZATION8b OFFICE SYMBOL (If applicable)	9 Procurement instrument identification number			
8c. ADDRESS (City, State, and ZIP Code)	10 SOURCE OF FUNDING NUMBERS			
	$\begin{aligned} & \hline \text { PROGRAM } \\ & \text { ELEMENT NO } \end{aligned}$	$\begin{aligned} & \text { PROJECT } \\ & \text { NO } \end{aligned}$	$\begin{aligned} & \hline \text { TASK } \\ & \text { NO } \end{aligned}$	$\begin{aligned} & \text { WORK UNIT } \\ & \text { ACCESSION NO } \end{aligned}$

11 TITLE (Include Security Classification) EVALUATION OF SYSTEM IDENTIFICATION ALGORITHMS FOR ASPECTINDEPENDENT RADAR TARGET CLASSIFICATION

12 PERSONAL AUTHOR(S)

LARISON, Peter David
13a TYPE OF REPORT
Master's Thesis
$\left[\begin{array}{l}\text { 13D TIME COVERED } \\ \text { FROM }\end{array}\right.$
14 DATE OF REPORT (Year, MOnth, Day)
1989 December 15 PAGE COUNT
159
16 SUPPLEMENTARY NOTATION The views expressed in this thesis are those of the author and do not reflec the official policy or position of the Department of Defense or the US Government

17	COSATI CODES	
FIELD	GROUP	SUB-GROUP

18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number) Prony's Method; Kumaresan-Tufts Algorithm; Cadzow-Solomon Algorithm

19 ABSTRACT (Continue on reverse if necessary and identify by block number)
A radar target, acting as a scatterer of an incident electromagnetic wave, can be considered as a linear time-invariant system. Previous work has shown that the target's pole locations are independent of the incident electromagnetic excitation, including incident wave shape, aspect and polarization. This thesis develops the Kumaresan-Tufts and Cadzow-Solomon signal processing algorithms into computer routines and evaluates their pole extraction performance. Data used to evaluate the extraction algorithms includes synthetic and integral equation generated signals with additive noise, in addition to measurements of scattering by scale models made in an anechoic chamber.

20 DISTRIBUTION/AVAILABILITY OF ABSTRACT unclassifiedunlimited SAME AS RPT DTIC USERS	21 ABSTRACT SECURITY CLASSIFICATION UNCLASSIFIED	
22a NAME OF RESPONSIBLE INDIVIDUAL MORGAN, Michael	22b TELEPHONE (Include Area Code) $408-646-2677$	$\begin{gathered} 22 \mathrm{C} \text { OFFICE } 5 \times \mathrm{MBOL} \\ 62 \mathrm{Mw} \end{gathered}$

Approved for public release; distribution is unlimited

EVALUATION OF SYSTEM IDENTIFICATION ALGORITHMS FOR ASPECTINDEPENDENT RADAR TARGET CLASSIFICATION

by

Peter David Larison
Captain, United States Marine Corps
B.S., Xavier University, 1981

Submitted in partial fulfillment of requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING
from the

NAVAL POSTGRADUATE SCHOOL December 1989

ABSTRACT

A radar target, acting as a scatterer of an incident electromagnetic wave, can be considered as a linear timeinvariant system. Previous work has shown that the target's pole locations are independent of the incident electromagnetic excitation, including incident wave shape, aspect and polarization. This thesis develops the Kumaresan-Tufts and Cadzow-Solomon signal processing algorithms into computer routines and evaluates their pole extraction performance. Data used to evaluate the extraction algorithms includes synthetic and integral equation generated signals with additive noise, in addition to measurements of scattering by scale models made in an anechoic chamber.
I. INTRODUCTION 1
A. THE PROBLEM 2
B. BACKGROUND 3
C. HISTORY 8
II. POLE EXTRACTION ALGORITHMS 9
A. PREVIOUS WORK 9

1. Direct Minimization 9
2. Prony's Method 11
B. KUMARESAN-TUFTS ALGORITHM 12
3. Equations 13
4. Singular Value Decomposition 14
5. Bias Compensation 16
6. Kumaresan and Tufts Compensation 16
7. Compensation Based on Eigenvalue Shifting Theorem 17
8. Performance 19
a. Synthetically Generated Data 19
9. Noise Performance 19
b. Thin Wire Integral Equation Generated 29
c. Scale Model Measurements 38
10. Wire Targets 50
11. Aircraft Models 50
C. CADZOW-SOLOMON ALGORITHM 63
12. Applicability 68
13. Equations 68
14. Excess Poles and Noise Removal 69
15. Singular Value Decomposition 70
16. Bias Compensation in the Cadzow-Solomon Formulation 70
17. Performance 72
a. Synthetically Generated Data 72
18. Noise Performance 72
b. Thin Wire Integral Equation Generated Data 80
c. Scale Models 80
19. Wire Targets 92
20. Model Aircraft 92
III. SUMMARIES AND CONCLUSIONS 108
A. KUMARESAN-TUFTS 108
B. CADZOW-SOLOMON 111
C. CONCLUSIONS 112
APPENDIX A. THE KUMARESAN-TUFTS POLE EXTRACTION ALGORITHM 113
APPENDIX B. THE CADZOW-SOLOMON POLE EXTRACTION ALGORITHM 125
APPENDIX C. MATRIX MULTIPLICATION 140
APPENDIX D. GRAPHICS ROUTINE 141
LIST OF REFERENCES 145
INITIAL DISTRIBUTION LIST 147

LIST OF FIGURES

Figure 1. Signal Containing two S-Plane Poles,
90.0 dB SNR 21
Figure 2. Kumaresan-Tufts Poles, Synthetic Data, 90.0 dB SNR 22
Figure 3. Kumaresan-Tufts Poles, Synthetic Data, 30.0 dB SNR 23
Figure 4. Kumaresan-Tufts Poles, Synthetic Data, 20.0 dB SNR 24
Figure 5. Kumaresan-Tufts Poles, Synthetic Data, 10.0 dB SNR 25
Figure 6. Kumaresan-Tufts Poles, Synthetic Data, 7.0 dB SNR 26
Figure 7. Signal Containing Two S-Plane Poles, 7.0 dB SNR 27
Figure 8. Kumaresan-Tufts Pole Extraction, 7.0 dB SNR 28
Figure 9. Double Gaussian Pulse 30
Figure 10. Integral Equation Thin Wire Scattering, 30 Degree Aspect 32
Figure 11. Integral Equation Thin Wire Scattering, 45 Degree Aspect 33
Figure 12. Integral Equation Thin Wire Scattering, 60 Degree Aspect 34
Figure 13. Integral Equation Thin Wire Scattering, 90 Degree Aspect 35
Figure 14. Kumaresan-Tufts Poles, Noiseless Thin Wire Data 36
Figure 15. Integral Equation Thin Wire Scattering, 20.0 dB SNR, 45 Degree Aspect 37
Figure 16. Kumaresan-Tufts Poles, 20.0 dB SNR 39
Figure 17. Integral Equation Thin Wire Comparison, Noiseless vs. 20.0 dB SNR, 30 Degree Aspect 40
Figure 18. Integral Equation Thin Wire Comparison, Noiseless vs. 20.0 dB SNR, 45 Degree Aspect 41
Figure 19. Integral Equation Thin Wire Comparison, Noiseless vs. 20.0 dB SNR, 60 Degree Aspect 42
Figure 20. Integral Equation Thin Wire Comparison, Noiseless vs. 20.0 dB SNR, 90 Degree Aspect 43
Figure 21. Integral Equation Thin wire Scattering, 7.0 dB SNR, 45 Degree Aspect 44
Figure 22. Kumaresan-Tufts Poles, 7.0 dB SNR 45
Figure 23. Integral Equation Thin Wire Comparison, Noiseless vs. 7.0 dB SNR, 30 Degree Aspect 46
Figure 24. Integral Equation Thin Wire Comparison, Noiseless vs. 7.0 dB SNR, 45 Degree Aspect 47
Figure 25. Integral Equation Thin Wire Comparison, Noiseless vs. 7.0 dB SNR, 60 Degree Aspect 48
Figure 26. Integral Equation Thin Wire Comparison, Noiseless vs. 7.0 dB SNR, 90 Degree Aspect 49
Figure 27. Measured Thin Wire Scattering, 30 Degree Aspect 51
Figure 28. Measured Thin Wire Scattering, 45 Degree Aspect 52
Figure 29. Measured Thin Wire Scattering, 60 Degree Aspect 53
Figure 30. Measured Thin Wire Scattering, 90 Degree Aspect 54
Figure 31. Kumaresan-Tufts Poles, Measured Thin Wire 55
Figure 32. Thin Wire Comparison, Measured vs. Integral Equation 56
Figure 33. Target 1 Scattering, 30 Degrees from Nose on 57
Figure 34. Target 1 Scattering, Nose on 58
Figure 35. Target 2 Scattering, 30 Degrees from Nose on 59
Figure 36. Target 2 Scattering, Nose on 60
Figure 37. Kumaresan-Tufts Poles, Target 1 61
Figure 38. Kumaresan-Tufts Poles, Target 1. 63
Figure 39. Kumaresan-Tufts Roles, Target 1 64
Figure 40. Kumaresan-Tufts Poles, Target 2 65
Figure 41. Kumaresan-Tufts Poles, Target 2 66
Figure 42. Kumaresan-Tufts Poles, Target 2 67
Figure 43. Signal Contajning Two S-Plane Poles, 90.0 dB SNR 73
Figure 44. Cadzow-Solomon Poles, Synthetic Data, 90.0 dB SNR 74
Figure 45. Cadzow-Solomon Poles, Synthetic Data, 30.0 dB SNR 75
Figure 46. Cadzow-Solomon Poles, Synthetic Data, 20.0 dB SNR 76
Figure 47. Cadzow-Solomon Poles, Synthetic Data, 10.0 dB SNR 77
Figure 48. Cadzow-Solomon Poles, Synthetic Data, 7.0 dB SNR 78
Figure 49. Cadzow-Solomon Poles, Noiseless Thin Wire Data 81
Figure 50. Cadzow-Solomon Poles, 20.0 dB SNR 82
Figure 51. Integral Equation Thin Wire Comparison, Noiseless vs. 20.0 dB SNR, 30 Degree Aspect 83
Figure 52. Integral Equation Thin Wire Comparison, Noiseless vs. 20.0 dB SNR, 45 Degree Aspect 84
Figure 53. Integral Equation Thin Wire Comparison, Noiseless vs. 20.0 dB SNR, 60 Degree Aspect 85
Figure 54. Integral Equation Thin Wire Comparison, Noiseless vs. 20.0 dB SNR, 90 Degree Aspect 86
Figure 55. Cadzow-Solomon Poles, 7.0 dB SNR 87
Figure 56. Integral Equation Thin Wire Comparison, Noiseless vs. 7.0 dB SNR, 30 Degree Aspect 88
Figure 57. Integral Equation Thin Wire Comparison, Noiseless vs. 7.0 dB SNR, 45 Degree Aspect 89
Figure 58. Integral Equation Thin Wire Comparison, Noiseless vs. 7.0 dB SNR, 60 Degree Aspect 90
Figure 59. Integral Equation Thin Wire Comparison, Noiseless vs. 7.0 dB SNR, 90 Degree Aspect 91
Figure 60. Cadzow-Solomon Poles, Measured Thin Wire 93
Figure 61. Thin Wire Comparison, Measured vs. Integral Equation 94
Figure 62. Cadzow-Solomon Poles Target 1, Three Aspects 95
Figure 63. Cadzow-Solomon Poles Target 1, Three Aspects 96
Figure 64. Cadzow-Solomon Poles Target 1, All Six Aspects 97
Figure 65. Cadzow-Solomon Poles Target 2, Three Aspects 98
Figure 66. Cadzow-Solomon Poles Target 2, Three Aspects 99
Figure 67. Cadzow-Solomon Poles Target 2, All Six Aspects 100
Figure 68. Pole Comparisons, Target 1, All Six Aspects 101
Figure 69. Pole Comparisons, Target 2,All Six Aspects102
Figure 70. Target 3 Scattering, Nose-on 104
Figure 71. Target 4 Scattering, Nose-on 105
Figure 72. Cadzow-Solomon Pole Comparisons, 4 Targets, Nose on 106

I. INTRODUCTION

A radar target, acting as a scatterer of a specified incident electromagnetic wave, can be considered as a single input, single output, linear time-invariant (LTI) system for a fixed field observation point. The target can thus be considered as a transfer function with poles and zeros. Baum demonstrated at the Air Force Weapons Laboratory that a target's induced current response to an incident electromagnetic wave has identifiable poles determined by the composition and structural geometry of the target [1]. In 1974, Moffatt and Mains proposed that the target's scattered field pole locations are independent of the incident electromagnetic excitation, including aspect and polarization [2]. Morgan has proven theoretically that, for the case of a conducting target, the scattering response contains complex natural resonances which are independent of the incident electromagnetic excitation [3]. By determining the poles of a target's response, aspect independent target identification can be accomplished through the use of electromagnetic natural resonances.

Although the concept of radar target identification through the use of natural resonances was first proposed in 1974 by Mains and Moffatt [2], only recently have signal
processing techniques been applied to locate the poles in a radar target's response in the presence of noise. KumaresanTufts [4] and Cadzow-Solomon [5] have each developed algorithms which have proven successful in the presence of noise. This thesis develops computer routines based upon these two algorithms and examines their respective performance and appropriateness using a variety of scattering data.

A. THE PROBLEM

Since the performance of signal processing methods varies under different conditions, a system employed to identify targets would possibly reach a decision based on the combined output of several signal processing methods. For example, the Kumaresan-Tufts and Cadzow-Solomon methods could be used to extract poles from the response of scale model targets. The information so gathered could be used to build a data base for comparison with data similarly obtained in actual field use. The results of this system would serve as one input to a larger system. Other methods would provide input to the system, such as the K-pulse method of Kennaugh [6] and the annihilation filter used by Dunavin [7], Morgan and Dunavin [8] and Chen [9]. As the name suggests, an annihilation filter annihilates the target's poles. A system using the annihilation filter concept would contain many such filters, each previously designed to cancel the poles of a specific
known target. In actual field use, a radar target's response would be input into each of the filters, and the target selected would be that matching the filter whose output exhibits the lowest signal energy.

A system used to identify radar targets would require the following concept of employment. First, information required by each of the sub-systems would be obtained for every target class of concern. In actual field use, this information would be compared against actual radar target responses. The system would then determine the identity of the target based on the input from each of its sub-systems.

B. BACKGROUND

Consider a perfectly conducting target illuminated by an electromagnetic field. The current induced on the surface of this target at a given point must satisfy the magnetic field integral equation (MFIE),[10]

$$
\begin{equation*}
\left.\bar{J}(r, t)=2 \hat{n} \times \bar{H}^{\prime}(\bar{r}, t)+\int_{S_{p V}} \int_{\mathrm{K}} \tilde{r}, \bar{r}^{\prime}, t\right) \bar{J}\left(r, \frac{t-\left|\bar{r}-\bar{r}^{\prime}\right|}{c}\right) d S \tag{1}
\end{equation*}
$$

where \hat{n} is an outward unit vector normal to the surface of the object, \bar{J} is the surface current density, \bar{H}^{\prime}. is the incident magnetic field, and \tilde{K} is a Green's function dyadic. The entire equation is most easily understood as the sum of driven currents and "feedback" currents corresponding to the
cross-product term and surface integral term respectively. The term driven by the magnetic field, $2 \hat{n} \times \bar{H}^{\prime}$, forms the physical optics portion of the total current. Physical optics describes the cross-product term as the induced current without interaction with the rest of the body. The Green's function kernel describes the current at a point on the object due to the feedback of currents from every other point on the object, as previously illuminated by the incident field. The current at each point is then summed over the surface of the object. Note that the surface integral term is of principalvalue type; the integral excludes the point $\bar{r}=\bar{r}$.

Once the incident magnetic field is no longer present. the solutions of (1) are considered the natural modes of the object. These natural modes are of the form, $J_{n} \exp \left(s_{n}\right)$. The natural resonance frequencies s_{n} are of the form,

$$
\begin{equation*}
s_{n}=\sigma_{n}+j \omega_{n} \tag{2}
\end{equation*}
$$

where σ_{n} is the damping rate in Nepers/sec and ω_{n} is the frequency in radians/sec. The natural resonances of (2) are functions of the structural geometry of the object and are independent of the incident magnetic field. To understand how these natural resonances are unique to the geometry and composition of the object, consider a set of points on the object previously illuminated by the incident field, so that $\bar{H}^{1}=0$. The current at a given point in the set is due to the
infinite number of feedback currents from every other point in the set. Recall that these feedbacks are described by the Green's function kernel in the integral term of (1). Since the set of points previously illuminated is physically located on the same object, the infinite number of paths that connect a point with all other points in the set is the same for all points in the set. The infinite number of paths are unique to the structural geometry of the object and correspond exactly to the infinite number of paths taken by currents which feedback to a given point via the Green's function kernel. Finally, the composition of the target determines the surface current density on the object. Although an infinite number of resonances exists in any object, only a limited number of these will be measurably excited by an incident field of finite bandwidth. These resonances described in (2) appear as complex conjugate pairs in the left-half portion of the $s-p l a n e$.

In the far-field, the back-scattered response of a target to an incident plane wave is of the form

$$
\begin{equation*}
\bar{H}^{S}(-r \hat{p}, t)=\frac{1}{4 \pi c r} \frac{\partial}{\partial t} \iint_{S} \hat{p} \times \bar{J}\left(\bar{r}^{\prime}, t-\left|\bar{r}-\bar{r}^{\prime}\right| / c\right) d S^{\prime} \tag{3}
\end{equation*}
$$

where c is the speed of light and \hat{p} is the unit vector whose direction matches that of the plane wave's propagation.

Equation (3) is the result of integrating the current at each point on the target surface for a fixed point in the farfield. Recall that the current at each point on the target is defined by (1). Thus, the back-scattered far-field can be obtained by substituting (1) into (3):

$$
\begin{equation*}
\bar{H}^{S}(-r \hat{p}, t)=u(t-r / c)\left\{H_{p o}(-r \hat{p}, t)+\sum_{\substack{n=-\infty \\ n \neq 0}}^{\infty} H_{n}(-r \hat{p}, t) \exp \left(s_{n} t\right)\right\} \tag{4}
\end{equation*}
$$

The currents in (1) produce the field in (4). In fact, each term in (4) corresponds to the term in (1) which produced it. Specifically, the first term in (4) describes the physical optics scattered field generated by the $2 \hat{n} \times \bar{H}^{1}$ current which, of course, is the first term in (1). Similarly, the second term in (4) is produced by the source-free currents defined by the second term in (1). Like the current described in (1), the field in (4) is the sum of two terms, a driven term and a term containing feedbacks.

The results of (4) can also be seen as two forms of the Singularity Expansion Method (SEM) developed by Baum [1]. As shown by Morgan [10], during the early-time portion of the target's response, the scattered field is composed of the physical optics scattered field and a "Class 2" form of the SEM expansion. The class 2 SEM expansion corresponds to the second term of (4), wherein the coefficients H_{n} are timevarying as the wave passes over the target, since the currents
producing this portion of the field are integrated over a time-varying surface area. At the instant the wave passes the last point of the target, the physical optics field vanishes and the remaining term in (4) is produced by constant coefficients H_{n}. The coefficients H_{n} are constant at this instant since the surface area in the integral in (3) is now constant. This instant also marss the transition of (4) from a "class 2" SEM expansion of time-varying coefficients to a "class 1 " SEM expansion of constant coefficients. The scattered field due to a plane wave is therefore composed of a physical optics term and a class 2 SEM expansion in the early-time, and a simple class 1 expansion in the late-time.

Actual measurement of the scattered far-zone field would be greatly aided by knowledge of the transition time of the field from early time to late time. From [10], this transition for a monostatic radar would occur at $\Delta t=T+2(D+d) / C$ seconds after radar turn-on. Here, T is the pulse duration, D is the target's dimension along the direction of wave propagation, d is the distance between the target and the measurement point and c is the speed of light.

The discussion presented in this section was extracted from work done by Morgan in [10]. The reader is referred to this work for a more detailed treatment of the material in this section.

C. HISTORY

The results of the previous section form the basis for the hypothesis that the natural resonances found in the scattering response of a target to an incident electromagnetic wave are unique to that target. Additionally, only a finite set of these natural resonances are measurably excited by a wave of finite bandwidth. In 1974, Moffatt and Mains proposed that the extraction of resonances from a target's response to electromagnetic excitation could be used for target identification. This work related to earlier work in 1965, when Kennaugh and Moffatt first developed the concept of a radar target as a linear time invariant system. Poles in the $z-p l a n e$ are directly related to the natural resonances of a target

$$
\begin{equation*}
z_{n}=e^{s_{n} \Delta t} \tag{5}
\end{equation*}
$$

where s_{n} is given by (2) and Δt is the sampling interval in seconds. Hence, pole extraction involves resonance identification. The use of pole extraction algorithms is discussed in the next chapter.

II. POLE EXTRACTION ALGORITHMS

The use of pole extraction algorithms to identify radar targets is discussed in this chapter. A brief discussion of two methods precedes the in-depth evaluation of the RumaresanTufts and Cadzow-Solomon algorithms. The evaluation of the latter two algorithms occurs in two stages. First, each algorithm will be evaluated in its ability to extract poles from data with known poles. Some of the data processed was generated at various signal to noise ratios by a computer program written by Morgan [11]. Additional data was produced by Morgan's time-domain thin wire integral equation computer program [12]. In the second stage, a side by side comparison is made of poles extracted by each method using transient scattering measurements for a thin wire and for various model aircraft. Comparisons between the two methods are made as the aspect of the aircraft is varied.

A. PREVIOUS WORK

1. Direct Minimization

The most direct way to determine the natural resonances in a target's response is to minimize the meansquare error between the modeled signal and the received signal. In [10], Morgan determined that the late-time target
response to a radar could be represented as a sum of damped sinusoids given by

$$
\begin{equation*}
\hat{Y}(t)=\sum_{i=1}^{\infty} A_{1} e^{\sigma_{1} t} \cos \left(\omega_{1} t+\theta_{1}\right) \tag{6}
\end{equation*}
$$

The frequency, ω_{1}, and damping rate, σ_{i}, are the same parameters found in the natural resonance defined in (2). Phase, θ_{1}, and amplitude, A_{1}, are the remaining parameters. The representation in (6) is the sum of an infinite number of resonances. The sampled response to an incident wave of finite bandwidth can be modeled as

$$
\begin{equation*}
\hat{Y}(n \Delta t)=\hat{Y}_{n}=\sum_{1=1}^{N} A_{1} e^{\sigma_{1} n \Delta 1} \cos \left(\omega_{1} n \Delta t+\theta_{1}\right) \tag{7}
\end{equation*}
$$

where Δt is the sampling interval in seconds. The four parameters of (7) must be adjusted to minimize the sampled mean-square error signal

$$
\begin{equation*}
e_{n}^{2}=\left(y_{n}-\hat{y}_{n}\right)^{2} \tag{8}
\end{equation*}
$$

between the actual discrete sampled received signal Y_{n} and the modeled signal \hat{Y}_{n}. The processing required in this minimization problem is both inefficient and highly nonlinear. Nevertheless, Chong used this method to process mathematically-generated data down to 15.0 dB signal-to-noise (SNR) ratio [13].
2. Prony's Method

As in direct minimization, Prony's approach to resonance classification focuses on the late-time portion of a radar target's response. However, linear processing and root solving are used. The late-time response is modeled as the output of an LTI system of order K_{D}. Each signal received at some discrete sample, n, is considered to be the weighted sum of K_{D}. previous signals. Thus, the finite term approximation of the received late-time signal, \hat{Y}_{n}, is defined by

$$
\begin{equation*}
y_{n}=\sum_{i=1}^{K_{D}} b_{1} y_{n-1} \tag{9}
\end{equation*}
$$

The z-transform of (9) is

$$
\begin{equation*}
z^{K_{D}}-b_{1} z^{K_{D}-1}-b_{2} z^{K_{D}-1} \ldots-b_{K_{D}}=0 \tag{10}
\end{equation*}
$$

The roots of this polynomial in z are the poles of the system model. Therefore, the key to extracting the poles in the system's response lies in solving for the coefficients b_{i} of (9).

A set of $K_{D}+M$ received signals in M equations (9) can be arranged in matrix form as

$$
\left[\begin{array}{ccc}
y_{0} \cdots y_{K_{D}-1} \tag{11}\\
\vdots & & \vdots \\
y_{M-1} \cdots & y_{K_{D}+M-2}
\end{array}\right] \quad\left[\begin{array}{c}
b_{K_{D}} \\
\vdots \\
b_{1}
\end{array}\right]=\left[\begin{array}{c}
y_{K_{D}} \\
\vdots \\
y_{K_{D}+M-1}
\end{array}\right]
$$

In Prony's original method, the data matrix D_{y} is exactly determined, and the coefficient vector, b, is solved using linear computations. In the presence of noise, Prony overdetermines the data matrix by setting $M>K_{D}$ and solves for the coefficient vector by obtaining the least-squares solution to the system of equations.

The Prony method has two major problems. First, the poles obtained by the least squares solution to the overdetermined matrix may be strongly perturbed by noise [14], since noise does not satisfy the causal model of the system. Second, the order of the system is generally not known a priori. When the estimated order is greater than the actual order, poles due to noise are generated. Prony's method offers no technique for distinguishing between the signal poles and the extra poles caused by overestimation of the system's order. If the estimated system order is less than the actual order, actual poles are lost and the remaining poles are perturbed from their true positions.

B. KUMARESAN-TUFTS ALGORITHM

The Kumaresan and Tufts pole extraction algorithm was developed by adapting Prony's method to reduce the problems addressed in the preceding section. The Kumaresan-Tufts algorithm modifies the least-squares Prony method in three ways:

1. Processed signals are arranged in a data matrix based on a non-casual model of the system.
2. The model of the system is deliberately overestimated.
3. The system of equations determined by the above two criteria is solved by using singular value decomposition (SVD).

Kumaresan demonstrates in [15] that the use of singular value decomposition tends to force the extra poles of the excess-order system inside the unit circle, while the noncausal arrangement of the signals tends to force the signal poles outside the unit circle. The excess order of the system model reduces the effects of noise on the actual poles. Since the noise is stationary and stable, it looks the same in forward and backward time.

1. Equations

Recall that in (9), Prony's technique defines the received late-time signal as the weighted sum of K_{D} previous signals, where K_{D} is presumed to be the order of the system. Kumaresan models the same late-time signal as the weighted sum of K_{D} future signals, where K_{D} is greater than the estimated order of the system. This non-casual model is given by

$$
\begin{equation*}
y_{M}=\sum_{1=1}^{K_{D}} b_{1}^{\prime} y_{M+K_{D}+1-1} \tag{12}
\end{equation*}
$$

A system of M such prediction equations can be written in matrix form as

$$
\left[\begin{array}{ccc}
y_{1} \cdots & y_{K_{D}} \tag{13}\\
\vdots & & \vdots \\
y_{M} \cdots & y_{K_{D}+M-1}
\end{array}\right] \quad\left[\begin{array}{c}
b_{K_{D}}^{\prime} \\
\vdots \\
b_{1}^{\prime}
\end{array}\right]=\left[\begin{array}{c}
y_{0} \\
\vdots \\
y_{M-1}
\end{array}\right]
$$

Or, in matrix notation,

$$
\begin{equation*}
D_{y} \cdot b=y \tag{14}
\end{equation*}
$$

As in Prony's method, the coefficients 'b' are coefficients of a polynomial in z that models the system's late-time response. Two simple manipulations of either data matrix leads to the relationship between the coefficients of the Prony model and the prediction coefficients of the Kumaresan-Tufts model. With $b_{0}=-1$, a prediction coefficient is related to an autoregressive coefficient by

$$
\begin{equation*}
b_{1}^{\prime}=-\frac{b_{1-1}}{b_{K_{D}}} \tag{15}
\end{equation*}
$$

From the above relationship, it can be shown that the complex pole pairs of the causal model are merely conjugate reflections across the unit circle of the pole pairs in the non-causal model.
2. Singular Value Decomposition

The non-causal arrangement of late-time signals in a set of system equations, and subsequent processing through singular value decomposition, combine to separate the signal
and noise into orthogonal spaces. As discussed in the preceding paragraph, poles of the non-causal model are reflected outside the unit circle. Kumaresan demonstrates in [15] that the extra poles of the excess-order system can be forced inside the unit circle through the use of SVD.

Singular value decomposition factors the $\mathrm{MXK}_{\mathrm{D}}$ data matrix D_{y} into the product of the matrices:

$$
\begin{equation*}
\mathrm{D}_{\mathrm{y}}=\mathrm{UE} \mathrm{~V}^{\top} \tag{16}
\end{equation*}
$$

The columns of U (MXM) are eigenvectors of $D_{y} D_{y}^{\top}$ and the columns of $V\left(K_{D} X K_{D}\right)$ are eigenvectors of $D_{y}^{T} D_{y}$. If r is the rank of the data matrix, D_{y}, the diagonal matrix $\Sigma\left(M_{D}\right)$ contains r singular values which are the square roots of the nonzero eigenvalues of both $D_{y}^{\top} D_{y}$, and $D_{y} D_{y}^{\top}$. By rearranging the three matrices in the product, the pseudoinverse of D_{y}. can be obtained as

$$
\begin{equation*}
D_{y}^{+}=V \Sigma^{+} U^{\top} \tag{17}
\end{equation*}
$$

where Σ^{+}is a ($\mathrm{K}_{\mathrm{D}} \mathrm{XM}$) matrix whose singular values on the diagonal are the reciprocals of those in the Σ matrix. Finally, the coefficient vector b^{+}, of minimum Euclidian norm, is given by

$$
\begin{equation*}
b^{+}=D_{y}^{+} y \tag{18}
\end{equation*}
$$

The coefficient vector b^{+}so obtained is the minimum length least-squares solution to (14). In other words, b^{+}is the best possible solution to (14). In the case of noiseless data, the extraneous poles generated by the excess-order model will always be inside the unit circle when b^{+}. is used. This result is generally true for noisy data.
3. Bias Compensation

Kumaresan and Tufts [4] observed that the addition of noise perturbed the singular values of the Σ matrix of (16). If the perturbation of these singular values is not compensated, both the signal poles and extraneous poles are biased towards the unit circle. Kumaresan and Tufts used a compensation method which reduced the bias in their work, but did not derive an analytical justification. In [16], Norton derived a more valid bias compensation method based on the eigenvalue shifting theorem.
4. Kumaresan and Tufts Compensation

If the actual order of the system is K_{D}^{\prime}, then the first K_{D}^{\prime} singular values of the Σ matrix in (16) are nonzero. The remaining $K_{D}-K_{D}^{\prime}$ singular values are considered noise singular values and are zero in the case of noiseless data. The addition of noise perturbs the first K_{D} signal singular values and increases the noise to some non-zero value. Kumaresan and Tufts compensated for this increase in the singular values due to the noise by subtracting the
average of the noise singular values from the signal singular values. The noise singular values were then set to zero.
5. Compensation Based on Eigenvalue Shifting Theorem As described in the previous section, the singular values of the matrix D_{y} are the square roots of the eigenvalues of $D_{y} D_{y}^{\top}$, and $D_{y}^{\top} D_{y}$. Assume the noisy data matrix can be represented by $D_{y}=S+N$, where N is composed of the widesense stationary white noise process v_{l}, given by

$$
N_{y}=\left[\begin{array}{ccc}
1 & k_{D} \tag{19}\\
\vdots & \vdots \\
v_{M} & \ldots & v_{M+K_{D}}
\end{array}\right]
$$

The expected value of $D_{y} D_{y}^{T}$ can be obtained by

$$
\begin{equation*}
D_{y} D_{y}^{\top}=E\left[(S+N)(S+N)^{T}\right]=E\left[S S^{T}\right]+E\left[S N^{T}\right]+E\left[N S^{T}\right]+E\left[N N^{T}\right] \tag{20}
\end{equation*}
$$

Since S is deterministic, $E\left[S S^{T}\right]=S S^{T}$. Assuming the noise is zero mean, the two cross products are zero. Because we assume the noise is wide-sense stationary and white, $E\left[N N^{\top}\right]=\sigma_{v}^{2} I$, where σ_{v}^{2} is the noise variance and I is the identity matrix. The expected value of $1 D_{y} D_{y}^{T}$ thus becomes

$$
\begin{equation*}
E\left[D_{y} D_{y}^{T}\right]=S S^{T}+\sigma_{v}^{2} I \tag{21}
\end{equation*}
$$

Similarly, the expected value of $D_{y}^{T} D_{y}$, the other source of singular values, is

$$
\begin{equation*}
E\left[D_{y}^{T} D_{y}\right]=S^{T} S+\sigma_{v}^{2} I \tag{22}
\end{equation*}
$$

The assumption in the results of (21) and (22) is that the diagonals of $E\left[N^{T} N\right]=E\left[N N^{T}\right]$ equals the noise variance σ_{v}^{2}. Equations (21) and (22) show that in the mean, the squares of the singular values of D_{y} are increased by the noise variance. The results lead to the method of eigenvalue compensation recommended by Norton in [16]. Recall from (16) that the eigenvalues of D_{y} are on the diagonal of the Σ matrix returned by the singular value decomposition of D_{y}. If K_{D} is the actual order of the system, and K_{D} is the estimated order of the system then the remaining $K_{D}-K_{D}$. singular values of the Σ matrix can be squared and averaged to obtain an estimate of the noise variance, σ_{v}^{2}. These noise singular values can then be set to zero. The first K_{D} singular values of the Σ matrix are then squared and reduced by subtracting the estimate of the noise variance. The square root of the difference becomes the new first K_{D} singular values of the compensated. Σ matrix. Calculations according to (17) and (18) can then be carried out in a normal manner to obtain poles in the presence of the noise. Eigenvalue compensation requires an estimate of the actual order of the system. Methods to obtain this estimate are discussed in Chapter III.
6. Performance

The Kumaresan-Tufts algorithm was programmed in Fortran and tested on various types of data. The program appears in Appendix A.
a. Synthetically Generated Data

The starting point for evaluating the performance of the Kumaresan-Tufts algorithm was with synthetically generated data of the form given by (8) and shown here again for convenience

$$
\begin{equation*}
\hat{Y}_{n}=\sum_{1=1}^{N} A_{1} e^{\sigma_{1} n \Delta t} \cos \left(\omega_{1} n \Delta t+\theta_{1}\right) \tag{8}
\end{equation*}
$$

Again, $A_{1}, \sigma_{1}, \omega_{1}, \theta_{1}$, are the amplitude, damping rate, frequency and phase of a set of N damped sinusoids. Noisy data was created by adding stationary white noise.

1. Noise Performance

The algorithm was evaluated at various SNR's. ranging from 90.0 dB to 7.0 dB . These $S N R$'s are ratios of signal energy to noise energy rather than the ratio of signal-to-noise power. Synthetic data so generated more closely resembles the exponential decay of signal power typical in actual radar measurements.

Figure 1 shows the signal produced by two splane poles at 90.0 dB . Figures 2 through 6 depict the poles extracted from this signal at SNR's ranging from 90.0 dB to 7.0 dB . Obtained poles are shown at their positions within the upper right hand quadrant of the unit circle in the z plane. Not shown are conjugates of each pole which are located below the real axis outside the figure boundaries.

Figures 2 through 6 demonstrate outstanding performance on noisy data, even at SNR's of 7.0 dB . The scaling needed to show a discernible difference between results obtained at 30.0 dB and 7.0 dB would necessarily exclude one of the poles from the enlarged figure. The average distance of the trial poles obtained in the 7.0 dB SNR signal from the true poles is on the order of 10^{-3}. This magnitude corresponds to that of the average estimate of the noise variance obtained in successive trials with this signal. The correlation between the distance of trial poles from true poles and the noise variance estimate was consistently observed with each of the different signal-to-noise ratios used. Figure 7 depicts the signal of Figure 1 severely corrupted by noise having 7.0 dB SNR.

As discussed previously, the signal-to-noise ratio used in the synthetically generated data is the ratio of energy. Figure 8 depicts the results of pole extraction from the signal shown in Figure 7, but with a late-time

Figure 1. Signal Containing two S-Plane Poles, 90.0 dB SNR

Figure 2. Kumaresan-Tufts Poles, synthetic Data, 90.0 dB SNR

Figure 3. Kumaresan-Tufts Poles, Synthetic Data, 30.0 dB SNR

Figure 4. Kumaresan-Tufts Poles, Synthetic Data, 20.0 dB SNR
Kumaresan-Tufts 10.0 dB

Figure 5. Kumaresan-Tufts Poles, Synthetic Data, 10.0 dB SNR

Figure 6. Kumaresan-Tufts Poles, Synthetic Data, 7.0 dB SNR
Damped Cosine: 4 s-plane poles; (-.1,+-1.0),(-.4,+-13.0) 7.0dB

Real z

Figure 8. Kumaresan-Tufts Pole Extraction, 7.0 dB SNR
beginning ten nanoseconds later. Since the SNR is calculated over twenty nanoseconds for both signals, the signal power at some later time will clearly be less than the power ten nanoseconds earlier. The results in Figure 8 show complete breakdown of the algorithm's ability to extract poles. The trial poles shown are the poles closest to the true poles, and yet they are located at positions whose reflections are inside the unit circle where noise poles are typically located.

The preceding results show outstanding accuracy for full-length noisy data but a complete breakdown of the algorithm for the same signal with a later transition to late-time. These initial observations are supported by similar findings presented in this thesis.
b. Thin Wire Integral Equation Generated Data

For simple objects such as a thin wire, the radar response of that object can be computed by establishing boundary conditions on the object and numerically solving the integral equations that describe the surface current. Recall the magnetic field integral equation given by (1). Simulations produced by Morgan's time-domain thin wire integral equation computer program [12] were used to evaluate the pole extraction algorithm. The excitation waveform used is the double Gaussian pulse depicted in Figure 9. This pulse is a wide Gaussian pulse with a ten percent width of 0.3 nanoseconds subtracted from a narrow Gaussian pulse with a ten

Double Gaussian Curve

Figure 9. Double Gaussian Pulse
nanoseconds subtracted from a narrow Gaussian pulse with a ten percent width of 0.15 nanoseconds.

Figures 10 through 13 depict back scattering response of a 0.1 meter length thin-wire, having a radius of 0.00118 meter, computed at various incident aspects, ranging from thirty degrees to ninety degrees. The laboratory arrangement for actual measurements simulated by Morgan's program is described in [17]. Ninety degrees represents a broadside aspect, while thirty degrees represents the incident plane wave having nearly grazing incidence on the wire. The poles extracted at each of the four aspect angles are plotted in Figure 14. In this figure, and those that follow which depict extracted poles, the signal poles lie in or on the unit circle, and the noise poles lie outside.

The results obtained with this rigorous numerical computation demonstrate the aspect independence of the extracted poles using the Kumaresan-Tufts method. Note that only half of the poles were obtained for broadside illumination; two even-numbered poles can easily be seen outside the unit circle. This results because of the physical symmetry of both the wire and the incident field, thus precluding excitation of odd-symmetric modal currents and their associated natural resonances.

Figure 15 exemplifies the computed back-scattering response of the 0.1 meter thin wire corrupted artificially

Figure 10. Integral Equation Thin Wire Scattering, 30 Degree Aspect

Figure 11. Integral Equation Thin Wire Scattering, 45 Degree Aspect

Figure 12. $\begin{aligned} & \text { Integral Equation Thin Wire Scattering, } 60 \text { Degree } \\ & \text { Aspect }\end{aligned}$

Figure 13. Integral Equation Thin Wire Scattering, 90 Degree Aspect

Extracted poles

Figure 14. Kumaresan-Tufts Poles, Noiseless Thin Wire Data

45 degree backscattering

Figure 15. Integral Equation Thin Wire Scattering, 20.0 dB SNR, 45 Degree Aspect
with noise at a 20.0 dB SNR. Figure 16 shows the poles extracted at each of the four angles of incidence used previously in Figure 14. Poles of Figure 14 at 90° are now missing in Figure 16, and only the first three low frequency poles are tightly grouped. The loss of high frequency poles is expected because these have the highest damping and thus lose their energy at the fastest rate. Further comparison between results computed at 20.0 dB SNR and infinite SNR are offered, angle by angle, in Figures 17 through 20.

One additional test of the computed thin wire scattering was conducted at a 7.0 dB SNR. The corrupted waveforms are exemplified by Figure 21 ; the extracted poles are shown in Figure 22. The number of poles obtained has decreased with respect to the number obtained at 20.0 dB SNR. The grouping of the clusters has also expanded. Angle by angle comparisons are again offered in Figures 23 through 26. c. Scale Model Measurements

The transient scattering measurements of scale models used for evaluation in this section were made by Walsh using the anechoic chamber of the Transient Electromagnetic Scattering Laboratory at the Naval Postgraduate School. The entire measurement process and laboratory setup are described in detail in [17].

Figure 16. Kumaresan-Tufts Poles, 20.0 dB SNR

Extracted poles

Figure 17. Integral Equation Thin Wire Comparison, Noiseless vs. 20.0 dB SNR, 30 Degree Aspect

Extracted poles

Figure 18. Integral Equation Thin Wire Comparison, Noiseless vs. 20.0 dB SNR, 45 Degree Aspect

Extracted poles

Figure 19. Integral Equation Thin Wire Comparison, Noiseless vs. 20.0 dB SNR, 60 Degree Aspect

Extracted poles

Figure 20. Integral Equation Thin Wire Comparison, Noiseless vs. 20.0 dB SNR, 90 Degree Aspect

Figure 21. Integral Equation Thin Wire Scattering, 7.0 dB SNR, 45 Degree Aspect

Extracted poles

Figure 22. Kumaresan-Tufts Poles, 7.0 dB SNR

Extracted poles

Figure 23. Integral Equation Thin Wire Comparison, Noiseless vs. 7.0 dB SNR, 30 Degree Aspect

Extracted poles

Figure 24. Integral Equation Thin Wire Comparison, Noiseless vs. 7.0 dB SNR, 45 Degree Aspect

Extracted poles

Figure 25. Integral Equation Thin Wire Comparison, Noiseless vs. 7.0 dB SNR, 60 Degree Aspect

Extracted poies

Figure 26. Integral Equation Thin Wire Comparison, Noiseless vs. 7.0 dB SNR, 90 Degree Aspect

The thin wire measurements were obtained from the scattering response of a 0.1 meter length thin wire having radius 0.00118 meter. Recall that these are the same dimensions as the wire whose computed response was processed in the previous section. The measurements at each of four incident aspects are shown in Figures 27 through 30.

The poles extracted from the four measurements are depicted in Figure 31. As before in the computed noisy data, tight clusters occur only at the lowest frequencies. The poles in these tight clusters are those which are measurably present at various aspects. The poles extracted at higher frequencies are those which possessed sufficient measurable energy at the given aspect. Figure 32 depicts the comparison between poles extracted from the measured and computed signals. Again, the closest agreement between the two sets of poles occurs at the lowest frequences.
2. Aircraft Models

Plastic $1 / 72$ scale aircraft models, coated with silver, were used for transient scattering measurements. Representative scattering signatures of two aircraft targets, measured at six different aspects, are shown in Figures 33 through 36.

The results of pole extraction in target 1 are shown for a total of six different aspects in Figures 37 and

Figure 27. Measured Thin Wire Scattering, 30 Degree Aspect

Figure 28. Measured Thin Wire Scattering, 45 Degree Aspect

Figure 29. Measured Thin Wire Scattering, 60 Degree Aspect

Figure 30. Measured Thin Wire Scattering, 90 Degree Aspect

Extracted poles

Figure 31. Kumaresan-Tufts Poles, Measured Thin Wire

Extracted poles

Figure 32. Thin Wire Comparison, Measured vs. Integral Equation

Figure 33. Target 1 Scattering, 30 Degrees from Nose on

Figure 34. Target 1 Scattering, Nose on

Figure 35. Target 2 Scattering, 30 Degrees from Nose on

Figure 36. Target 2 Scattering, Nose on

Figure 37. Kumaresan-Tufts Poles, Target 1
38. The poles extracted at all six aspects are shown in Figure 39. Only one clearly discernible cluster is present in each of the three figures. At higher frequencies, no useful information is imparted by the data. Results of similar, though slightly improved quality, were obtained from target 2. These results are presented in Figures 40 through 42 in the format of Figures 37 through 39 respectively.

Although the Kumaresan-Tufts algorithm is capable of extracting low frequency poles acceptably, the inconsistent results at higher frequences reveals the inherent weakness in an algorithm capable of processing only the latetime portion of a target's radar response.

A side-by-side comparison of poles obtained from both aircraft by both the Kumaresan-Tufts method and the Cadzow-Solomon method is presented at the end of the chapter to illustrate the gains afforded by processing the early-time.

C. CADZOW-SOLOMON ALGORITHM

Recall from the results depicted in Figure 8 that a late transition to late-time, and the consequent reduction of signal power, caused complete breakdown of the Kumerasan-Tufts algorithm. The Cadzow-Solomon algorithm addresses this shortcoming by processing the signal at the instantaneous onset of early-time. Thus, the Cadzow-Solomon algorithm is capable of processing the earliest response of a target to

Extracted poles

Real z

Figure 38. Kumaresan-Tufts Poles, Target 1

Figure 39. Kumaresan-Tufts Poles, Target 1

Extracted poles

Figure 40. Kumaresan-Tufts Poles, Target 2

Extracted poles

Figure 41. Kumaresan-Tufts Poles, Target 2

Extracted poles

Figure 42. Kumaresan-Tufts Poles, Target 2
electromagnetic excitation where the response has the greatest magnitude.

1. Applicability

The early-time portion of a target's scattered field occurs as long as there is a driven portion of the total field. Once the field no longer contains a scattered response due, in part, to the incident excitation at points on the object, early-time ceases and late-time begins. Hence, the Cadzow-Solomon models both the system's input and output, and equivalently, the poles and zeros of the system transfer function.
2. Equations

The Cadzow-Solomon algorithm extends the autoregressive equation (9), used in Prony's method, to the more general autoregressive moving average (ARMA) equation

$$
\begin{equation*}
Y_{n}=\sum_{i=1}^{K_{D}} b_{1} Y_{n-1}+\sum_{i=0}^{K_{N}} a_{1} x_{n-1} \tag{23}
\end{equation*}
$$

where the second summation term models the excitation to the system.

A set of M such equations in matrix form is given by

$$
\left.\left[\begin{array}{ccccc}
y_{0} & \cdots & Y_{K_{D}-1} & x_{0} & \cdots \tag{24}\\
x_{K_{N}} \\
\vdots & \vdots & \vdots & \vdots \\
Y_{M-1} & \cdots & y_{K_{D}+M-2} & x_{M-1} & \cdots
\end{array}\right] x_{K_{N}+M-1}\right]\left[\begin{array}{c}
b_{K_{D}}^{\prime} \\
\vdots \\
-\frac{1}{a_{K_{N}}} \\
\vdots \\
a_{0}
\end{array}\right]=\left[\begin{array}{c}
y_{K_{D}} \\
\vdots \\
y_{K_{D}+M-1}
\end{array}\right]
$$

As in the Kumaresan-Tufts method, M is selected to be greater than the column dimension of the data matrix which is $K_{D}+K_{N}+1$.
3. Excess Poles and Noise Removal

The Cadzow-Solomon method used in this thesis is a modification which incorporates the non-causal arrangement of the system equations used by Kumaresan-Tufts. This modification was first discussed by Norton in [16]. The Kumaresan approach of overestimating the system order can be used as before in a non-causal model to constrain the noise poles inside the unit circle, while SVD forces the signal poles outside the unit circle.

Since the input waveform is known, its order can be almost exactly determined. In all the work of this thesis, the input waveform used is the double Gaussian depicted in Figure 14. Approximately 25 samples defining this pulse of 0.5 nanoseconds duration makes K_{N} equal 25 in equation (23). Since the input is causal, the signal zeros fall inside the unit circle where they cannot be easily segregated from similarly located noise poles. However, the signal zeros impart no information about the target and need not be extracted. The inclusion of the input in the data matrix is nevertheless vital to the model of the system and the accurate determination of the signal poles.

The ARMA equation of (23) can be modified to obtain

$$
\begin{equation*}
y_{n}=\sum_{i=1}^{K_{D}} b_{i}^{\prime} y_{K_{D}+n-1+1}+\sum_{i=0}^{K_{N}} a_{1} x_{n-1} \tag{25}
\end{equation*}
$$

The recursive portion of (25) is now in a non-causal form similar to expression (12). A set of M such equations in matrix form is given by

Or, in matrix notation

$$
\begin{equation*}
\left[D_{y x}\right]\left[-\frac{\dot{b}}{a}-\right]=y \text { where } \quad\left[D_{y x}\right]=\left[D_{y}: D_{x}\right] \tag{27}
\end{equation*}
$$

4. Singular Value Decomposition

Like the system equations of the Kumaresan-Tufts model, the system equations in (26) are processed using singular value decomposition. The coefficient vector is again the minimum-norm solution, which constrains the extraneous poles and extraneous zeros to be inside the unit circle.
5. Bias Compensation in the Cadzow-Solomon Formulation By compensating the eigenvalues of the Σ matrix in (16), the performance of the Kumaresan-Tufts algorithm is significantly improved in the presence of noise. CadzowSolomon have shown [5] that if the actual orders K_{D}^{\prime} and K_{N}^{\prime}
are overestimated to be K_{D} and K_{N}, min $\left(K_{D}-K_{D}^{\prime}, K_{N}-K_{N}^{\prime}\right)$ singular values are zero in noiseless data. Since the input data is known, the eigenvalues of the data matrix may be compensated in the same manner as in the Kumaresan-Tufts algorithm for noiseless data.

To understand the compensation required in noisy data, an analysis of additive noise is required. As given by Norton [16], if the input data noise is w_{1} and the output data noise is v_{1}, the data matrix may be modeled as

$$
\begin{equation*}
\left[D_{y x}\right]=\left[D_{y}: D_{x}\right]=S_{y x}+N_{y x} \tag{28}
\end{equation*}
$$

where

$$
\begin{equation*}
\left[N_{y x}\right]=\left[N_{y}: N_{x}\right] \tag{29}
\end{equation*}
$$

and

$$
\mathrm{N}_{\mathrm{x}}=\left[\begin{array}{cc}
1 & \mathrm{~K}_{\mathrm{D}} \tag{30}\\
\vdots & \vdots \\
\mathrm{w}_{\mathrm{M}} \ldots . \mathrm{w}_{\mathrm{M}+\mathrm{K}_{\mathrm{D}}}
\end{array}\right] \quad \mathrm{N}_{\mathrm{y}}=\left[\begin{array}{ccc}
\mathrm{v}_{1} \ldots & \mathrm{v}_{\mathrm{K}_{\mathrm{D}}} \\
\vdots & \vdots \\
\mathrm{v}_{\mathrm{M}} \ldots & \mathrm{v}_{\mathrm{M}+\mathrm{K}_{\mathrm{D}}}
\end{array}\right]
$$

The expected value of $D_{y x} D_{y x}^{T}$ is then

$$
\begin{equation*}
E\left[D_{y x} D_{y x}^{\top}\right]=S_{y x} S_{y x}^{\top}+E\left[N_{y x} N_{y x}^{\top}\right] \tag{31}
\end{equation*}
$$

If the input and output noise variances are not equal, the eigenvalue shifting theorem used in Kumaresan-Tufts cannot be used to analytically predict the requisite eigenvalue compensation of $D_{y x} D_{y x}^{\top}$. Nevertheless, when the input and output variances were assumed equal, and eigenvalue compensation similar to that used in Kumaresan-Tufts was
performed, the results were consistently superior to those obtained without compensation. Therefore, the results of Cadzow-Solomon signal processing presented in this thesis were obtained using eigenvalue compensation and the assumption of equal noise variance.
6. Performance

The Cadzow-Solomon algorithm was programmed in Fortran and tested on the same data used for evaluating the KumaresanTufts algorithm. Note that the Cadzow-Solomon algorithm can use the early-time portion of the data that the KumaresanTufts algorithm can not use. The program appears in Appendix B.
a. Synthetically Generated Data

The starting point for evaluating the performance of the Cadzow-Solomon algorithm was with synthetically generated data of the form given by (8) plus the addition of input data required to model early time data.

1. Noise Performance

The algorithm was evaluated at various signal-to-noise ratios, ranging from 90.0 dB to 7.0 dB . Figure 43 shows the signal produced by two s-plane poles at 90.0 dB , with a late-time beginning at 10.0 nanoseconds. Figures 44 through 48 depict the poles extracted from this signal at the different signal-to-noise ratios.

Figure 43. Signal Containing Two S-Plane Poles, 90.0 dB SNR

Figure 44. Cadzow-Solomon Poles, Synthetic Data, 90.0 dB SNR

Figure 45. Cadzow-Solomon Poles, Synthetic Data, 30.0 dB SNR

Figure 46. Cadzow-Solomon Poles, Synthetic Data, 20.0 dB SNR

Figure 47. Cadzow-Solomon Poles, Synthetic Data, 10.0 dB SNR

Figure 48. Cadzow-Solomon Poles, Synthetic Data, 7.0 dB SNR

The figures chart the steady degradation of the algorithm's performance with the increase of noise. At 30.0 dB , the location of the low frequency pole is already slightly displaced. More significant is the location of one of the extracted poles in the noise signal space. At 20.0 dB , the low frequency pole is located in some trials on the real axis. At 10.0 dB , all the extractions are located on the real axis and at 7.0 dB their locations there are dispersed. The extraction of the higher frequency pole is uncharacteristically more accurate than that of the low frequency pole. Even at 7.0 dB , the high frequency pole is located with excellent accuracy. The location of the low frequency pole near the real axis was chosen deliberately to illustrate the difficulty in resolving the slight frequency difference between the true pole and a noise pole located on the real axis. Also, fewer points were processed using the Cadzow-Solomon method than were processed using the KumaresanTufts method, since the largest data matrix allowed by the programs in Appendices A and B contain fewer data points in the Cadzow-Solomon data matrix than in the Kumaresan-Tufts data matrix. The results demonstrate the need to process a substantial number of points in order to accurately extract low frequency poles.
b. Thin Wire Integral Equation Generated Data

The performance of the Cadzow-Solomon algorithm was evaluated using the same set of data tested by the Kumaresan-Tufts algorithm. The results are presented in Figure 49. Tight clusters appear at frequencies higher than those obtained with the Kumaresan-Tufts algorithm. Figure 50 depicts the poles extracted from the same signal at a 20.0 dB SNR. The clustering at this SNR is comparable to the results obtained by the Kumaresan-Tufts method with the noiseless data. Further angle-by-angle comparisons of the poles extracted from the noiseless data and the 20.0 dB data are depicted in Figures 51 through 54. Note the small number of poles in Figure 54 due to the unexcited odd-symmetric poles at 90° aspect.

One further test was conducted on computed data at a 7.0 dB SNR. The results are depicted in Figure 55. Even at 7.0 dB , discernible clusters are present. Angle-by-angle comparisons of the poles obtained in 7.0 dB data and those obtained in noiseless data are presented in Figures 56 through 59.
C. Scale Models

The same scale models used to evaluate the Kumaresan-Tufts algorithm were used to evaluate the CadzowSolomon algorithm.

Extracted poles

Figure 49. Cadzow-Solomon Poles, Noiseless Thin Wire Data

Extracted poles

Figure 50. Cadzow-Solomon Poles, 20.0 dB SNR

Extracted poles

Figure 51. Integral Equation Thin Wire Comparison, Noiseless vs. 20.0 dB SNR, 30 Degree Aspect

Figure 52. Integral Equation Thin Wire Comparison, Noiseless vs. 20.0 dB SNR, 45 Degree Aspect

Extracted poles

Figure 53. Integral Equation Thin Wire Comparison, Noiseless. vs. 20.0 dB SNR, 60 Degree Aspect

Extracted poles

Figure 54. Integral Equation Thin Wire Comparison, Noiseless vs. 20.0 dB SNR, 90 Degree Aspect

Extracted poles

Figure 55. Cadzow-Solomon Poles, 7.0 dB SNR

Figure 56. Integral Equation Thin Wire Comparison, Noiseless vs. 7.0 dB SNR, 30 Degree Aspect

Figure 57. Integral Equation Thin Wire Comparison, Noiseless vs. 7.0 dB SNR, 45 Degree Aspect

Extracted poles

Figure 58. Integral Equation Thin Wire Comparison, Noiseless vs. 7.0 dB SNR, 60 Degree Aspect

Extracted poles

Figure 59. Integral Equation Thin Wire Comparison, Noiseless vs. 7.0 dB SNR, 90 Degree Aspect

1. Wire Targets

Figure 60 depicts the poles extracted from measurements of a 0.1 meter wire. Three tight clusters appear at the lowest frequencies and at the highest frequencies. The poles in between can not be easily discriminated. The dispersion of these poles is apparently due to the aspect dependence of their measurable power. In other words, these poles are excited more at some aspects then at others.

Figure 61 depicts the comparison between poles extracted from computed data and measured data. As in Figure 60. close agreement exists at the highest and lowest frequencies. The results are much more favorable than those similarly obtained by the Kumaresan-Tufts algorithm.
2. Model Aircraft

Figures 62 through 64 depict poles extracted from aircraft target 1. As in the Kumaresan-Tufts testing, the Cadzow-Solomon testing was conducted at six different aspects. Results for target 2 are depicted in Figures 65 through 67. The results of both targets show clearly defined clusters. The first two clusters of target 2 are exceptionally tight. However, the mid-frequency clusters of target 2 are not as clearly formed as those of target 1. Comparisons of poles obtained with each method for target 1 and 2 are depicted in Figure 68 and 69 respectively. These two figures graphically depict the clear

Extracted poles

Figure 60. Cadzow-Solomon Poles, Measured Thin Wire

Extracted poles

Figure 61. Thin Wire Comparison, Measured vs. Integral Equation

Extracted poles

Figure 62. Cadzow-Solomon Poles Target 1, Three Aspects

Extracted poles

Figure 63. Cadzow-Solomon Poles Target 1, Three Aspects

Extracted poles

Figure 64. Cadzow-Solomon Poles Target 1, All Six Aspects

Extracted poles

Figure 65. Cadzow-Solomon Poles Target 2, Three Aspects

Extracted poles

Figure 66. Cadzow-Solomon Poles Target 2. Three Aspects

Figure 67. Cadzow-Solomon Poles Target 2, All Six Targets

Extracted poles

Figure 68. Pole Comparisons, Target 1, All Six Targets

Extracted poles

Figure 69. Pole Comparisons, Target 2, All Six Aspects
superiority of the Cadzow-Solomon algorithm over the Kumaresan-Tufts algorithm.

In order to obtain an initial indication of the possibility for target classification through pole extraction, nose-on measurements of two additional aircraft models were made, processed and compared with the results of targets 1 and 2. The nose-on measurements of targets 3 and 4 appear in Figures 70 and 71 respectively. A comparison plot of poles extracted from each of the four targets is depicted in Figure 72. Each of the four aircraft measured are fighters of similar size and shape (see Table 1). The poles for each target are sufficiently different in this single measurement to identify each aircraft individually. However, some of the poles are arranged in clusters which appear with a harmonic pattern similar to that obtained for either of the first two aircraft at various aspects. In order to more fully assess the target classification capability of pole extraction, several measurements should be made of a given aircraft model. A plot of the poles extracted from each of these measurements would form clusters at the locations of the true poles. The centroid of each of these clusters would then be compared against the centroid poles similarly obtained from other aircraft. Although several poles of different aircraft might be similar, the set of poles belonging to an aircraft could form the basis for classification if that set was unique among

Figure 70. Target 3 Scattering, Nose-on

Figure 71. Target 4 Scattering, Nose-on

Extracted poles

Figure 72. Cadzow- Solomon Pole Comparisons, 4 Targets, Nose-on
the sets belonging to all other measured aircraft. The results in Figure 72 demonstrate the possibility of using the CadzowSolomon pole extraction algorithm to aid in the classification of aircraft, perhaps by use of the extracted poles in constructing annihilation filters.

TABLE 1. FULL SIZE DIMENSIONS OF TARGETS RECORDED

Target number	1	2	3	4
Overall length (meters)	12.20	15.03	16.94	16.00
Overall height (meters)	3.35	5.09	4.51	4.80
Wingspan (meters)	10.96	10.00	11.43	13.95
Tailplane span (meters)	Unknown	5.58	6.92	5.75

III. SUMMARIES AND CONCLUSIONS

In this chapter, a step-by-step guide through each algorithm is presented. At each step, techniques and lessons learned are discussed together with general observations. Conclusions are presented at the end of the chapter.
A. KUMARESAN-TUFTS

The first step in processing a signal with the KumaresanTufts algorithm is to determine the beginning of early-time. The objective is to pick the earliest possible starting point without entering into the latter part of early-time. If the starting point for processing is improperly chosen to include the early-time, the results will be completely unreliable since the signal no longer satisfies the late time model. If the starting point is chosen too late, the signal may not be sufficiently strong in the presence of measurement noise. Since the signal is the sum of exponentially damped sinusoids, the optimum starting point is at the precise instant of transaction into late-time. The key to determining the beginning of late-time is in determining the beginning of early time. Determining the first response of the target to excitation cannot usually be done by a simple visual inspection of measurement data. Unless the exact distance to
the target is known, the most accurate method attempted by the author for determining the beginning of early-time is to process the signal using the Cadzow-Solomon algorithm. This is discussed in the next section. However, the reliance of the Kumaresan-Tufts algorithm on information provided by the Cadzow-Solomon algorithm is an obvious disadvantage of the former method.

Once the starting point for processing has been selected, the next step is to determine the dimensions of the data matrix and, consequently, the number of points in the signal to be processed. In trials conducted on noiseless synthetic data, the accuracy of pole extraction increased steadily with the increase in the data matrix dimensions. These trials were conducted up to the limit of the array dimensions defined in the computer program of Appendix A. The number of points processed in measurement data should be as large as possible, while still meeting the following two constraints. First, incorporate as many cycles of the data as possible. Usually, visual inspection of the data reveals a repeating pattern which should be entirely incorporated into the window of points to be processed. When only portions of these patterns are selected, a disproportionate weighting tends to be placed on certain poles. Second, signal portions late in the response which are no longer distinguishable in the presence of measurement noise should not be selected.

The final step involves determining the number of true poles in the system. The following approach has proven to be the most successful. First, process the signal without any eigenvalue compensation to establish an upper bound on the order of the system. In most cases, the number of poles outside the unit circle will be less than the overestimated order of the system. If not, increase the row dimension of the data matrix in order to increase the estimated order of the system, and repeat. When the number of poles is less than the estimated order of the system, then one should gradually increase the number of eigenvalues compensated in successive trials, while closely observing the effects induced on the poles outside the unit circle. As the number of eigenvalues compensated is steadily increased, noise poles and weak signal poles will move inside the unit circle. The programs in Appendix A and B allow the user to compare the results of successive trials, by generating overlays for each plot. If N poles are in the signal space, at least the first N eigenvalues must not be compensated, or true poles may be lost. As the actual order of the system is approached by compensation, the user will notice an orderly, even arrangement assumed by the noise poles. If certain poles still remain suspect after compensation, vary slightly the other parameters, such as the starting point and the
dimensions of the data matrix. Generally, only true signal poles will repeatedly assert themselves under varying parameters.

B. CADZOW-SOLOMON

The techniques and general observations offered in the preceding section apply equally to the Cadzow-Solomon algorithm. An important consideration in this method, not discussed above, is the selection of the beginning of earlytime. Candidates for a starting point are usually at or near zero crossings within approximately thirty points of the object's first definite response to electromagnetic excitation. Begin processing at the chosen point while varying parameters in successive trials. Select the point whose successive results are the most consistent under varying parameters.

The selection of the starting point for beginning of early-time can be very critical. For example, not a single pole could be extracted in one trial wherein the starting point occurred only ten points after the actual starting point. Additionally, in most cases observed, the late-time start given by the selected early-time occurred within less than two points from a zero crossing. If this observation proves to be generally true in later research, it may serve
as a way to check the starting point selected for one algorithm in terms of the other.

C. CONCLUSIONS

Both the Kumaresan-Tufts and the Cadzow-Solomon algorithms can effectively extract poles from the scattering response of a radar target. Because both algorithms obtain a leastsquares solution to the system model, both perform acceptably in the presence of noise. Although eigenvalue compensation is not analytically justified in the Cadzow-Solomon algorithm, the results obtained through eigenvalue compensation in this method were generally superior to those similarly obtained in the Kumaresan-Tufts method. The results demonstrated the inherent advantages of an algorithm capable of processing a target's strongest response in the early time. The KumaresanTufts method compared favorably with the Cadzow-Solomon only in responses with a long late-time.

APPENDIX A. THE KUMARESAN-TUFTS POLE EXTRACTION ALGORTITHM

The following program implements the Kumaresan-Tufts algorithm as described in Chapter 2 of this thesis. The program is written in Fortran 77. The SVD and root-finding subroutines called by this program are found in the EISPACR library [18]. The SVD subroutine is a translation from ALGOL as given in [19]. The matrix multiplication and graphics subroutines, also called by this program, are found in Appendix C and D respectively.

```
INIEGER IERR,Kd,M,MN,MAGPOL,NSTRTPT,DELTAY
INTEGER IER,NCAUS,NMENU,L/1/
INIEGRR*2 KdPLT
REAL*8 A (70,70),W(70),U(70,70),V(70,70) ,RV1(70)
REAL*8 VS (70,70) ,UT (70,70) , AINV (70,70),X(70)
REAL*8 XP (70),B(70),SIGM (70,70),SIG(70,70)
REAL*8 COF (70) ,ROOIR (70) ,ROOTI (70)
REAL*8 D(1024),AVG,MACHEP/1.0E-16/,DY(140)
COMPLEX*16 S(70)
LOGICAL MATV/.TRUE./,MATV/.TRUE./ CAUSAL/.TRUE./,LONG/.TRUE./
LOGICAL DSET/.FALSE./,NUFTE/.TRUE./
CHARACTER TTTLE*16,HEADER*64,YN*1,DC*1,TTTLER*16,TITLET*16
CHARACTER TTTL^*16
```

C Enter parameters for processing
11 IF (DSET) CLOSE (10)
NOVERLAY=0
OPEN (10,FTLE=' PLOT')
IF (DSET) GO TO 85
WRITE (*,*) 'Welcome to signal processing using the'
WRITE (*,*) 'Kumaresan-Tufts method'
WRITE (${ }^{*}, \star$) ' '
WRITE ($*, \star$) 'Do you want '
WRITE (*, *) ' '
WRITE (${ }^{*}, \star$) '1. The lang version for beginners'
WRITE ($*, \star$) ' 2 . The short version for pros'
WRITE ($\left.{ }^{*}, \star\right)$ '

WRITE (*, *) 'Please enter 1 or 2 '
READ (*, $)^{\prime}$ N
IF (N.EQ. 1) THIT
LONG-.TRUE.
ELSETF (N .EQ. 2) THIN
LONG=.FALSE.

ELSE

GO TO 15
ENDIF

VRITE (*,*) 'Session will begin with entry of parameters needed fotr processing'
WRITE (*,*)
WRITE (*,*) 'DD you want to enter parameters from'
WRITE (*,*) ' '
WRITE (\star, \star) '1. The keyboard'
WRITE (*,*) '2. A previously created file of parameters'
WRITE (*,*) ' '
WRITE (*,*) 'Please enter 1 or 2^{\prime}
READ (*, *) N
IF (N . EQ. 1) THEN
GO TO 1
ELSETF (N . EQ .2 2) THEN
WRITE (*,*) 'Enter title of file containing parameters'
READ (*,105) TTTL
$\operatorname{OPRN}(1, F T R E=T T H)$
READ $(1,105)$ TTTLE
READ $(1,110)$ NPTS
$\operatorname{READ}(1,110)$ NRT
READ $(1,110) \mathrm{Kd}$
$\operatorname{REPAD}(1,110) \mathrm{M}$
READ $(1,110)$ DELTAY
READ $(1,110)$ NSTRTPT
READ $(1,110)$ NCAUS
CLOSE (1)
GO TO 85
ELSE
GO TO 16
ENDIF
WRITE (*,*) ' ’
1 NUFIIP=.TRUE.
IF (.NOT. DSET) NSTRTPT=1
WRITE (*, $)$ 'Enter title of data file to be read'
READ (*,105) TTTLE
OPEN(1,FIR $=$ TITLE)
$\operatorname{READ}(1,105)$ HEADER
READ $(1,110)$ NPTS
IF (NPTS .GT. 1024) THIEN
WRITE (*,*) 'Number of points in data file exceeds the dimension'
WRITE (${ }^{*}, \star$) 'of the array used in the program to store the file'

STOP
ENDIF
CLOSE (1)
IF (DSET) THEN
IF (NSTRTPT+(Kd+M-1)*DELTAY .LE. NPTS) GO TO 85
ENDIF

IF (MFILE) THEN
URITE (\star, \star) 'Enter Kd , $)=$ the estimated order of the system ' READ (*, *) Kd
IF (Kd .GT. 69) THEN
WRITE (*,) 'Kd must be less than 70, or dimension statements'
URITE (*,) 'in this program must changed by the user'
GOTO 3
ELSETF (Kd .LT. 2) THEN
URITE (*, *) 'Kd must be at least 2'
GOTO 3
ENDIF
IF ($2 \star$ Kd . GT. NPTS) THIN
KRITE (*,*) 'Kd must be less than or equal to ',NPTS/2
GO TO 3
ELSEIF ($2 \star$ Kd .EQ. NPTS) THEN
WRTTE (*, $)$ 'Kd equals',Kd
WRITE (*,) 'M must be',Kd
$\mathrm{M}=\mathrm{Kd}$
WRITE (*,*) 'since there are a total of',NPTS
WRITE (*,*) 'points in ',TITLE
60 TO 45
ENDIF
GOTO 4
ELSEIF (DSET) THEN
$\mathrm{N}=\mathrm{M}$
IF (NSTRTPT+ (N+M-1)*DELTAY .LE. NPTS) THEN
WRITE ($*, \star$) 'Given the other parameters chosen thus far,'
WRITE (*, *) 'Kd may range from
', NRT
WRITE (*, *) '
to ${ }^{\prime}, N$
KRITE (\star, \star) 'Enter Kd'
READ (*, *) Kd
IF (Rd .GE. NRT .AND. Kd .LE. N) GO TO 85
GO TO 25
ELSE
$\mathrm{N}=\mathrm{N}-1$
60 TO 20
ENDIF

ENDIF

4 IF (NUFILE) THIN
URITE (\star, *) 'Enter M, the row dimension of the data matrix' IF (.NOT. DSET .AND. LONG) THIN

```
WRITE (*,*) ' '
MRIEE (*,*) 'Note: Kd+M points in ',title
WRITE (*,*) ' will be processed '
WRITE (*,*) ' '
ENDIF
30 WRTTE (*,*) 'M may range fram',Kd
IF (NPTS-Rd .GT. 69) THIN
URTTE (*,*) ' to 69'
ELSE
WRITE (*,*) ' to',NPTS-Kd
ENDIF
READ (*,*) M
IF (M .GT. 69) THEN
WRITE (*,*) 'M must also be less than 70'
OOTO 30
ELSEIF (M .LT. Kd) THIN
WRITE (*,*) 'M must be greater than or equal to Kd, Kd= ',Kd
GO TO 30
ELSEIF (Kd+M .GT. NPTS) THEN
WRITE (*,*) 'Kd+M must be less than or equal to',NPTS,','
WRITE (*,*) 'the number of data points in',TTTLE
WRITE (*,*) ' '
GO TO 30
ENDIF
ELSE
N=Kd
35 IF (NSTRTPT+ (Kd+N-1)*DELTTAY .LE. NPTS)THEN
        N=N+1
        GO TO 35
        ELSE
        N-N-1
        ENDIF
        IF (N .EQ. Kd) THEN
        URITE (*,*) 'M must equal',Kd
        M=Rd
        GO TO }8
        ENDIF
        IF (N .GT. 69) N=69
    WRITE (*,*) 'M may range fron',Rd
    WRITE (*,*) ' to',N
    WRITE (*,\star) 'Enter M'
    READ (*,*) M
    IF (M .GE. Kd .AND. M .LE.N) GO TO }8
    GO TO 40
    ENDIF
    45 IF (.NOT. NUFILE) CO TO 85
    5 N=1
    50 IF (NSTRTPT+N*(Kd+M-1) .LE. NPTS) THEN
```


$\mathrm{N}=\mathrm{N}+1$

GO TO 50

EUSE

$\mathrm{N}=\mathrm{N}-1$

EDIF

IF (N.EQ. 1) THPN
KRITE (*,*) 'Given the other parameters chosen thus far,'
WRITE (*,*) 'Spacing can only be 1'
DELTAY=1
IF (NUFILE) THEN
GO TO 60

ELSE

GO TO 85
EDIF

EDDIF

IF (.NOT. DSET .AND. LONG) THEN
WRITE (*,*) 'Enter spacing between the ', Kd +M
WRITE (*,*) 'data points of ',TITLE
WRITE (*,*) 'to be processed
WRITE (*,*) ' '
WRITE (*,*) 'If, for example, one is chosen, then ', Kd+M
WRITE (${ }^{*},{ }^{*}$) 'consecutive points in ',TITLE
WRITE (*, *) 'will be processed '
KRITE (*,*) ' '

ENDIF

55 WRITE (*,*) 'Spacing may range from 1^{\prime}
WRITE ($*$, *) ' to', N
READ (*,*) DELTAY
IF (DEITAY .GE. 1 .AND. DELTAY .LE. N) THEN
IF (NUFILE) THEN
60 TO 60
ELSE
60 TO 85
ENDIF

ELSE

GO TO 55
ENDIF
60 WRITE (*,*) 'Do you wish to adjust eigenvalues? (y / n)'
READ (*,120) YN
IF (YN .ED. ' N ' .OR. YN .EQ. ' n ') THIN
IF (NUFILE) GO TO 6
GO TO 85
EDIF
IF (YN .NE. 'Y' .AND. YN .NE. 'Y') GO TO 60
2 WRITE ($*, \star$) 'Discard or compensate eigenvalues? (d / c)'
READ (*,120) DC
IF ($D C . E Q . \quad$ ' D ' .OR. $D C$. $\mathrm{ED} . ~ ' d ') ~ G O T O 65$
IF (DC .NE. 'C' .AND. DC .NE. 'c') GO TO 2
WRITE (*,*) 'Enter estimate of the actual order of the system'

WRITE (*, *) ' '
IF (LONG) THEN
WRTTE (*, ${ }^{\star}$) 'This estimate will be used to determine the '
WRITE (*,*) 'number of eigenvalues compensated or discarded ' ENDIF
65 URITE (*,) 'the estimate may range from 2'

WRITE (*, *) '
to', Kd-1
READ (*, *) NRT
IF (NRT .GT. Kd .OR. NRT .LT. 2) THRN
GOTO 65
ELSEIF (.NOT. NIFTIE) THIN
GO TO 85
ENDIF
6 NSTRTPT=1
70 IF (NSTRTPT+ (Kd+M-1)*DELTAY .LE. NPTS) THRN
NSTRTPT=NSTRTPT+1
GOTO 70
EUSE
NSTRTPT-NSTRTPT-1
ENDF
IF (NSTRTPT .DD. 1) THIN
WRITE ($*, \star$) 'Given the other parameters chosen thus far,'
WRITE (${ }^{(, *)}$) the starting point for processing the data'
WRITE (*,*) 'must be the first point in the data file'
GO TO 85
ENDIF
WRITE (*,*) 'Enter desired starting point in data file'
IF (.NOT. DSET .AND. LONG) THEN
URITE ($*, \star$) ' 1 indicates the first point in the data file '
ENDIF
URTTE (${ }_{2}{ }^{\star}$) ' '
WRITE (*,*) 'Given the other parameters chosen thus far,'
75
WRITE ($*, \star$) 'the starting point may range from 1'
URTTE (*,) ' to',NSTRTPT
READ (${ }^{*}, \star$) N
IF (N .GE. 1 .AND. N .LE. NSTRTPT) THEN
NSTRTPT-N

ESE

WRTTE (*, *) 'Enter starting point again'
VRITE (*,*) ' '
GO TO 75
ENDIF
IF (.NOT. NUFILE) GO TO 85
7 WRITE (*,*) 'Do you want the data matrix arrangement to be'
WRITE (*, *) ' '
WRITE (*,*) '1. Causal'
WRITE (*,*) '2. Non-causal'
KRITE (*,*) ' '

WRITE (*, *) 'Please enter 1 or 2 ' READ (*,*) NCAUS
IF (NCAUS .EQ. 1) THEN
CAUSAL=.TRUE.
EUSEIF (NCAUS .EQ. 2) THEN
CAUSAL=.FALSE.
ELSE
COTO 80
ENIF
GO TO 85
9 VRITE ($*, \star$) 'Enter title of file to contain parameters'
READ (*,105) TTH
$\operatorname{OPEN}(1, F I T F=T I T L)$
WRITE $(1,105)$ TTTLE
$\operatorname{WRTTE}(1,110)$ NPTS
WRTTE $(1,110)$ NRT
$\operatorname{KRITE}(1,110) \mathrm{Kd}$
WRITE $(1,110)$ M
MRITE $(1,110)$ DEUTAY
URITE $(1,110)$ NSTRTPT
VRITE $(1,110)$ NCAUS
CLOSE (1)
IF (DSET) GO TO 85
12 IF (DSET) THEN
CLOSE (2)
CLOSE (3)
CALL SUBPLT (NOVERLAY)
ENDIF
85 DSET=.TRUE.
NUFITE=.FALSE.
$\operatorname{MRTTE}(\star, \star)$
WRITE (*, *) '1. Data file to be processed ',T
+TTLE
WRITE(*, $)^{*}$ ' Number of data points in data file ,NPTS
URITE (*, $)^{\prime}$ '2. Estimated order of the system ,NRT
WRITE (${ }^{*}, \star$) '3. Kd, the number of columns in the data matrix', Kd
WRTTE (*,*) '4. M, the number of rows in the data matrix', M
URITE(*,*) '5. Spacing between data points being processed ',DELTA $+Y$
$\operatorname{URITE}(\star, \star)$ '6. First point in the data file to be processed',NSTRT +PT
$\operatorname{WRITE}(\star, *)$ Last point in the data file to be processed', NSTRT
$+\mathrm{PT}+\mathrm{Kd}+\mathrm{M}-1$
IF (NCAUS .EQ. 1) THEN
WRITE(*,*) '7. Data matrix arrangement for processing CA +USAL
ELSE

```
            WRTTE(*,*) '7. Data matrix arrangement for processing
                    NON-CA
    HUSAL
    ENDIF
    WRTTE(*,*) ' '
    WRTTE(*,*) '8. Begin processing using above settings'
    WRTTE(*,*) '9. Store parameters 1-7 in a file'
    WRIIE(*,*) '10. Retrieve parameters 1-7 from a previously created
    +file'
    WRITE(*,\star) '11. Reset overlays'
    MRITE(*,*) '12. Re-plot overlays'
    WRITE(*,*) '13. End this session of Kumaresan-Tufts signal process
    +ing'
    URITE(*,*) ' '
    MRITE(*,*) 'Enter an integer from 1 to 12 to make changes as often
    + as you desire'
90 READ (*,*) NMPNU
    IF (NMRNU .LT. 1 .OR. NMENU .GT. 13) THIN
    MRITE(*,*) 'Enter an integer from 1 to 13'
    G0 TO 90
    ENDIF
    GO TO (1,2,3,4,5,6,7,8,9,10,11,12,13),NMENU
    8 OPEN(1,FILE=TITLE)
    READ (1,105) HEADER
    READ (1,110) NPTS
    READ (1,115) XQ
    READ (1,115) XQ
    DO }95\textrm{I}=1,\textrm{NPTS
    READ (1,115) D(I)
    CONTINUE
    CLOSE (1)
    KdPLT=Kd
    WRITE(*,*) 'Enter title of file to contain real part of poles'
    READ(*,105) TITLER
    OPRN(2,file-TTTIER)
    WRITE(*,*) 'Enter title of file to contain imaginary part of poles'
    READ(*,105) TTTLET
    OPEN(3,file-TIMLET)
    WRITE (10,100) (KAPLT)
    WRITE (10,105) TTTLER
```



```
FORMAT(I2)
M_MAX(M,Kd)
105 FORMAT (A)
110 FORMAT (I5)
115 FORMAT (E12.6)
```

FORMAT (A1)
C Form data matrix
DO $125 \mathrm{I}=1$, $\mathrm{Rd}+\mathrm{H}$
Dy $(\mathrm{I})=\mathrm{D}((\mathrm{I}-1) \times$ DELTAY +NSTRTPT$)$

DO 140 I=1,M
DO $135 \mathrm{~J}=1, \mathrm{Kd}$
$A(I, J)=D_{y}(I+J)$
135 CONTINE
140 cantinue
$B(1)=D y(1)$
DO $145 \mathrm{I}=2, \mathrm{M}$
$B(I)=A(I-1,1)$
145 CONTINE
C Begin singular value decomposition
CALL SVD (MACHEP,M,Kd,MN,A,W,MATU,U,MATV,V,IERR,RV1)
C Errors in SVD?
IF (ITRR .GT. 0.0) THEN
WRITE ($*$, *) 'Error in singular value number ', IERR,STOP
ENDF
IF (YN . WQ. 'N') $C 0$ TO 190
DO $150 \mathrm{I}=1$, Kd
$\mathrm{XP}(\mathrm{I})=0.0$
150 CONTINE
C Discard or compensate eigenvalues
C Order singular values
$\mathrm{XP}(1)=\mathrm{K}(1)$
DO $165 \mathrm{I}=2, \mathrm{Kd}$
Do $160 \mathrm{~J}=1$, I
IF (W(I).GT. XP(J)) THEN
Do $155 \mathrm{~K}=\mathrm{I}+1, \mathrm{~J},-1$
$155 \quad \mathrm{XP}(\mathrm{K})=\mathrm{XP}(\mathrm{K}-1)$
$\mathrm{XP}(\mathrm{J})=\mathrm{K}(\mathrm{I})$
GO TO 165
ENDIF
160 CONTINUE
$\mathrm{XP}(\mathrm{I}+1)=\mathrm{K}(\mathrm{I})$
165 cantinue
C $\mathrm{XP}($) now contains ordered singular values- $\mathrm{XP}(1)$ is the largest

C Discard eigenvalues
IF ($D C$. DQ. ' D ') THEN
DO $170 \mathrm{~J}=\mathrm{NRT}+1$, Kd
$W(J)=(0.0)$

ELSE

C Compensate eigenvalues
AVG=0.0
DO $175 \mathrm{~J}=\mathrm{ART}+1$, Kd
AVG=AVG+XP (J) **2
175 CONTINUE
IF (Kd .GT. NRT) AVG=AVG/DBLE(FLOAT (Kd-NRT))
DO $185 \mathrm{~J}=1$, Kd
DO $180 \mathrm{~K}=1$, Kd
IF (W(J) .DQ. XP (K)) THEN
IF (K .GT. NRT) THEN
$W(J)=0.0$
ELSE
$W(J)=\operatorname{DSQRT}(D A B S(W(J) * W(J)-A V G))$
ENDIF
GOTO 185
ENDIF
180 CONTTNE
185 CONITNUE
ENDIF
190 DO $200 \mathrm{I}=1, \mathrm{M}$
DO $195 \mathrm{~J}=1, \mathrm{M}$
$\mathrm{UT}(\mathrm{I}, \mathrm{J})=(\mathrm{U}(\mathrm{J}, \mathrm{I}))$
195 CONITNUE
200 CONITNUE
c Form SIGMA (KdxM)
DO $210 \mathrm{I}=1, \mathrm{Kd}$
DO $205 \mathrm{~J}=1$, M
$\operatorname{SIGMA}(I, J)=0.0$
IF (I .EQ. J .AND. W(J) .NE. O.0) THEN
SIGMA (I, J) $=1.000 / \mathrm{W}(\mathrm{J})$
ELSE
SIGA (I, J) $=0.0 \mathrm{~d} 0$
ENDIF
205 CONTINE
210 CONITINE
C Form SIGMA (MxKd)
DO $220 \mathrm{I}=1, \mathrm{M}$
DO $215 \mathrm{~J}=1$, Kd
SIG (I,J) $=0.0$
IF (I . DQ. J) $\operatorname{SIG}(I, J)=N(J)$

CONIINUE

C $\quad V=K d x K d, S I G M A+=K d x M, V S=K d x M$
CALL MXMU(V,SIGMA,Kd,Kd,M,VS)
C VS=KdXM,UT=AXM, ADNV=KdxM
CALL MEMUL(VS,UT,Kd,M,M,ADNV)
C Calculate matrix multiplication of AINV x B, where
C $\quad A D N=K d x M, B=2 \times 1, K P=K d \times 1$
CALL KXML (AINV,B,Kd,M,L,XP)
C Calculate autoregressive coefficients from prediction coefficients
IF (XP (Kd) .EQ. O.0) THEN
WRITE (*, *) 'ERROR, avoiding division by zero'
STOP
ELSE
$B(\mathrm{Kd})=1.0 \mathrm{~d} 0 / \mathrm{XP}(\mathrm{Kd})$
ENDIF
DO $225 I=2$, Kd
$B(I-1)=-B(K d) \star X P(K d-I+1)$
225 CONITNUE
DO $230 \mathrm{I}=1$, Kd
$X(I)=-B(K d-I+1)$
IF (NCAUS .EQ. 1) $\mathrm{X}(\mathrm{I})=-\mathrm{XP}(\mathrm{Kd}-\mathrm{I}+1)$
230 CONTINUE
$X(K d+1)=1.0$
C Compute the roots of the polynomial in z
CALU POLRT (X,COF,KD, ROOTR,ROOTI, IER)
IF (IER .NE. O) WRITE (*,*) 'ERROR with POLRT, IER=',IER,STOP
DO $235 \mathrm{I}=1$, Kd
$\operatorname{WRITE}(2,115)$ ROOTR (I)
WRITE $(3,115)$ ROOTI (I)
$\mathrm{S}(\mathrm{I})=\mathrm{DCMPLX}$ (ROOTR (I) ,ROOTI (I))
CONTINE
MAGPOL=0
DO $240 \mathrm{I}=1$, Kd
IF (CDABS (S (I)) .GE. 1.0d0) MAGPOL=MAGPOL+1
CONTINEE
WRITE (*,*) '\# of poles with magnitude $\langle=1$ ', Kd-MAGPOL
WRITE (*, 夫) 'HIT ANY KEY TO CONTINUE'
READ (*,105) HEADER

C Plot poles

NOVERLAY=NOVERLAY+1

CLOSE (2)
CLOSE (3)
CALL SUBPLT (NOVERLAY)
$J=0$
$\mathrm{K}=0$

DO $245 \mathrm{I}=1$, Kd
IF (CDABS (S (I)) .LT. 1.0) THID
$J=J+1$
$\mathrm{K}=\mathrm{K}+1$
WRTTE (*, $)^{\text {) }} \mathrm{S}(\mathrm{I}), \mathrm{CDABS}(\mathrm{S}(\mathrm{I}))$
ENDIF
IF (J . EQ. 20) THEN
WRTTE (*,*) 'Enter any key to continue'
READ (*,105) HEADER
$J=0$
ENDIF
245 CONTINUE
WRITE(*,*) 'Poles with magnitude less than one: ',K
GO TO 85
13 STOP
ERD

APPENDIX B: THE CADZOW-SOLOMON POLE EXTRACTION ALGORITHM

The following program implements the Cadzow-Solomon algorithm as described in Chapter 2 of this thesis. The program is written in Fortran 77. The SVD and root-finding subroutines called by this program are found in the EISPACK library [18]. The SVD subroutine is a translation from ALGOL as given in [19]. The matrix multiplication and graphics subroutines, also called by this program, are found in Appendix C and D respectively.

\$LARGE

INTEGER IERR,Kd,Kn,M,MN,MAGPOL,NSTRTPT,DELTAY
INIEGER IER,NCAUS,NMENU, INSTRTPT
INTEGPR*2 KdPLT
REAL*8 A 70,70$), \mathrm{V}(70), \mathrm{U}(70,70), \mathrm{V}(70,70), \mathrm{RV1}(70)$
REAL*\& VS $(70,70), \operatorname{UT}(70,70), \operatorname{ADNV}(70,70), X(70)$
REAL*8 XP $(70), B(70), \operatorname{SIGMA}(70,70), \operatorname{SIG}(70,70)$
REAL*8 COF (70) ,ROOTR (70) ,ROOTI (70)
REAL MAG
REAL*8 D(1024),AVG,MACHEP/1.0E-16/,Dy(140) ,Dx(1024)
COMPLEX*16 S(70)
LOGICAL MATV/.TRUE. /,MATV/.TRUE. / ,CAUSAL/ .TRUE. /, LONG/.TRUE./
LOGICAL DSET/.FALSE. /,NUFTLE/.TRUE./
CHARACTER TTTLE*16, HEADER*64,YN*1,DC*1,TTTURR*16,TTTLEI*16
CHARACTER TTTI*16,TITLD*16
C Enter parameters for processing
14 IF (DSET) CLOSE (10)
NOVERLAY=0
OPEN(10,FTHE='PLOT')
IF (DSET) GO TO 215
WRITE (*,*) 'Helcone to signal processing using the'
WRTTE (*,*) 'Cadzow-Solamon method'
WRITE (*,*) ' '
WRITE (*, *) 'Do you want '

```
    WRTTE (*,*) ' '
    WRTTE (*,*) '1. The long version for beginners'
    WRITE (*,*) '2. The short version for pros'
    WRTTE (*,*) ' '
    25 WRTIE (*,*) 'Please enter 1 or 2 '
    READ (*,*) N
    IF (N .EQ. 1) THEN
    LONE=.TRUE.
    ELSEEF (N .EQ. 2) THIEN
    LONG=.FALSE.
    ELSE
    60 TO 25
    ENDIF
    WRITE (*,*) 'Session will begin with entry of parameters needed fo
+r processing'
    WRITE (*,*)
    WRITE (*,*) 'Do you want to enter parameters from'
    WRITE (*,*) ' '
    WRITE (*,*) '1. The keyboard'
    WRTTE (*,*) '2. A previously created file of parameters'
    WRITE (*,*) ' '
35 WRITE (*,*) 'Please enter 1 or 2'
    READ (*,*) N
    IF (N .EQ. 1) THIN
    GO TO }
    ELSEIF (N .EQ. 2) THEN
13 WRITE (*,*) 'Enter title of file containing parameters'
    READ (*,100) TITL
    OPEN(1,FILE=TITL)
    READ (1,100) TTTLE
    READ (1,110) NPTS
    READ (1,110) NRT
    READ (1,110) Kd
    READ (1,110) M
    READ (1,110) DENTTAY
    READ (1,110) NSTRTPT
    READ}(1,110) NCAU
    READ (1,100) TTTLD
    READ (1,110) NDPTS
    READ (1,110) Kn
    READ (1,110) INSTRTPT
    CLOSE(1)
    GO TO 215
    ELSE
    GO TO 35
    ENDIF
    WRITE (*,*) ' '
&WTTE (*,*) 'Enter title of file containing excitation waveform'
```

```
        READ (*,100) TTTHD
        OPEN (8,FПF=TITMD)
        READ (8,100) HEADER
        READ (8,110) N
        IF (N .GT. 1024) THEN
        WRITE (*,*) 'Nmmer of points in data file exceeds the dimension'
        WRITE (*,*) 'of the array used in the program to store the file'
        STOP
        BNDIF
        CLOSE (8)
        IF ((N .GE. NDPTS) .AND. DSET) THEN
        NDPTS=N
        GO TO }21
        BNDIF
        NDPTS=N
    WRIIE (*,*) 'Enter estimated order of waveform'
    IF (DSET) THEN
    MAXIMLM=NDPTS-M
    IF (MAXIMMM .GT. M-Kd-1) MAXIMMM=KM-Kd-1
    IF (MAXIMMM .GT. NDPTS-DNSTRTPPT-Kn-M+1) THEN
    MAXIMM=NDPTS-DNSTRTPT-Kn-M+1
    ENDIF
    ELSE
    MAXIMUM=66
    BNDIF
    IF (MAXIMMM .EQ. 1) THEN
    WRIIE (*,*) 'The estimated order of the waveform can only be 1'
    IF (DSET) GO TO 215
GO TO 10
ELSE
IF (DSET) THEN
WRITE (*,*) 'Given the other parameters chosen thus far,'
BNDIF
45 WRITE (*,*) 'the order may range from
                                    1'
WRTME (*,*) ' to',MAXIMMM
READ (*,*) Kn
IF (Kn .GE. 1 .AND. Kn .IE. MAXIMMM) THEN
IF (DSET) GO TO 215
GO TO 10
BNDIF
WRTTE (*,*) 'Enter estimated order again'
WRIIE (*,*) ' '
GO TO 45
BNDIF
IF (DSET) GO TO 215
10 DNSTRTPT=1
55 IF (INSTTRTPT+Kn+M-1 .GT. NDPTS) THDN
DNSTRTPT=DNSTRTPT-1
```

```
    ELSE
    INSTRTPT=INSTRTPT+1
    60 TO 55
    ENDIF
    MSTRT=INSTRTPT
    IF (INSTRTPT .EQ. 1) THPN
    WRITE (*,*) 'The first point can only be 1'
    GO TO 215
    ELSE
    WRITE (*,*) 'Enter first point in waveform file to be processed'
    65 WRITE (*,*) 'Given the other parameters chosen thus far,'
    WRTTE (*,*) 'the starting point may range from 1'
    WRITE (*,*) ' to',MSIRT
    READ (*,*) INSTRTPT
    IF (INSTRTPT .GE. 1 .AND. INSIRTPT .LE. MSTRT) THEN
    IF (DSET) GO TO }21
    GO TO 1
    ENDIF
    WRITE (*,*) 'Enter starting point again'
    WRITE (*,*) ' '
    GOTO 65
    ENDIF
    IF (DSET) CO TO 215
    1 IF (.NOT. DSET) NUFTEE=.TRUE.
    IF (.NOT. DSET) NSTRTPT=1
    WRITE (*,*) 'Enter title of data file to be read'
    READ (*,100) TTTLE
    OPEN(12,FILP=TTMLE)
    READ (12,100) HEADER
    READ (12,110) NPTS
    IF (NPTS .GT. 1024) THPN
    WRITE (*,*) 'Number of points in data file exceeds the dimension'
    WRITE (*,*) 'of the array used in the program to store the file'
    SIOP
    ENDIF
    CLOSE(12)
    IF (NUFTLE) THEN
    GO TO 3
    ELSEIF(NSTRTPT+(Kd+M-1)*DELTAY .LE. NPTS) THEN
    OO TO 215
    ELSE
    GO TO }
    ENDIF
    3 IF (NUFILE) THEN
    MAXIMOM=69-Kn-1
```

```
IF (MAXIMMM .GT. NPTS-69) MAXIMMM-NPTS-69
```

MロK2
IF (MIDN .EQ. MAXDMMM) THEN
Kd=MIN
WRITE (*,*) 'Given the other parameters chosen thus far,'
WRIIE (*,*) 'Kd must be ',MMN
GO TO 4
ENDIF

WRITE (*, *) 'Enter Kd, >= the estimated order of the system'

WRITE $(*, *)$ 'Given the other parameters chosen thus far,'

AXDMM
IF (NSTRTPT+ (N+M-1) *DELTAY .LE. NPTS) THEN
MAXIMMM $=$ N
IF (MIN .DD. MAXIMUM) THEN
$\mathrm{Kd}=\mathrm{MIN}$
GO TO 215
ELSEIF (MAXIMMM .LT. MTN) THEN
DTUTAY=1
IF ($1+(2+M-1)$ *DENTAY .LE. NPTS $)$ THEN
$\mathrm{Kd}=2$
GO TO 135
ENDIF
WRITE ($*, *$) 'Error. Kd must be less than 2'
$K d=2$
GO TO 215
ENDIF
WRITE (*,*) 'Given the other parameters chosen thus far,'
WRITE ($*, \star$) 'Kd may range from ',MIN
WRITE (\star, \star) ' to' MAXIMMM
WRITE (*,*) 'Enter Kd'
READ (*,*) Kd
IF (Kd .GE. MIN .AND. Kd .LE. MAXIMIM) GO TO 215
GO TO 95

ESE

$\mathrm{NH}-1$
GO TO 85
ENDIF
ENDIF

C Determine M
4 IF (NFTLE) THEN
WRITE (\star, *) 'Enter M, the row dimension of the data matrix'
IF (.NOT. DSET .AND. LONG) THEN
WRITE (*,*) ' '
WRITE (*,*) 'Note: Kd+M points in ',title
WRITE (*,*) ' will be processed '
WRITE (*,*) ' '
ENDIF
105 WRITE (${ }^{*}, \star$) 'M may range from', Kd
IF (NPTS-Kd .GT. 69) THEN
WRITE ($*$, *) ' to 69'
ELSE
WRITE ($*$, *) ' to ${ }^{\circ}$,NPTS-Kd

ENDIF

READ (*,*) M
IF (M.GT. 69) THIN
WRITE ($*$, *) ' M must also be less than 70 '
GOTO 105
ELSEIF (M .LT. Kd) THIN
WRITE (\star, \star) ' M must be greater than or equal to $\mathrm{Kd}, \mathrm{Kd}=$ ', Kd GO TO 105
E SSEIF (KA+M .GT. NPTS) THEN
WRITE (*,*) 'Kd+M must be less than or equal to',NPTS,','
WRITE (*,*) 'the number of data points in', TTTIE
WRITE (*,*) ' '
GO TO 105
ENDIF
C Begin part for data already set
ELSE
$N=K d$
115 IF (NSTRTPT+ (Kd+N-1) *DELTAY .LE. NPTS) THEN
$\mathrm{N}=\mathrm{N}+1$
GO TO 115
ELSE
$\mathrm{N}=\mathrm{N}-1$
ENDIF
IF ($\mathrm{N} . \mathrm{ED} . \mathrm{Kd}$) THLN
WRITE (*,*) 'M must equal', Kd
MEKd
GO TO 215
ENDIF
MAXIMDF=N
IF (MAXDMM .GT. 69) MAXPMA=69
IF (Kd+Kn+1 . EQ. MAXDMMM) THEN
$M=K d+K n+1$
GO TO 215
ELSEIF (Kd+Kn+1 .GT. MAXIMUM) THEN
WRITE (*,*) 'Kd must be reduced'

```
        GOTO 3
        ELSE
        MDN=Kd+Kn+1
        MNIF
    IF (MIN .LT. Kn+Kd+1) MINEKn+Kd+1
    125 WRITE (*,*) 'M may range from',MDN
    WRITE (*,*) ' to',MAKDMM
    WRITE (*,\star) 'Enter M'
    READ (*,*) M
    IF (M .GE. MTN .AND. M .LE. MAXIMMM) GO TO 215
    GO TO 125
    MNIF
    c Determine DELTAY
    135 IF (.NOT. NJFIES) GO TO 215
    5 N=1
    145 IF (NSTRTPT+N*(Kd+M-1) .LE. NPTS) THIEN
        N=N+1
        GO TO 145
        ELSE
        N-N-1
        ENDIF
        IF (N .EQ. 1) THTN
        WRITE (*,*) 'Given the other parameters chosen thus far,'
        WRITE (*,*) 'Spacing can only be 1'
        DELTAY=1
            IF (NUFIEE) THTN
            GO TO 165
            ELSE
            GO TO 215
            ENDIF
        ENDIF
        IF (.NOT. DSET .AND. LONG) THEN
        WRITE (*,*) 'Enter spacing between the ',Kd+M
        WRITE (*,*) 'data points of ',TTMLE
        WRITE (*,\star) 'to be processed
        WRITE (*,*) ' '
        WRITE (*,*) 'If, for example, one is chosen, then ',Kd+M
        WRITE (*,*) 'consecutive points in ',TTTLE
        WRITE (*,*) 'will be processed '
        WRITE (*,*) ' '
        ELSE
        WRITE (*,*) 'Enter spacing '
        WRITE (*,*) ' '
        ENDF
    155 WRITE (*,*) 'Spacing may range from 1 '
    WRITE (*,*) ' to',N
    READ (*,*) DELTAY
    IF (DELTAY .GE. 1 .AND. DELTAY .LE. N) THEN
    IF (NUFTLE) THEN
```

```
        GO TO 165
        FLSE
    GO TO 215
    ENDIF
    ELSE
    GO TO 155
    ENDIF
165 WRITE (*,*) 'Do you wish to adjust eigenvalues? (y/n)'
        READ (*,150) YN
        IF (YN .EQ. 'N' .OR. YN .EQ. ' n') THIN
        FF (NUFILE) GO TO 6
        GO TO 215
        ENDIF
        IF (YN .NE. 'Y' .AND. YN .NE. 'Y') GO TO 165
WRITE (*,*) 'Discard or compensate eigenvalues? (d/c)'
        READ (*,150) DC
        IF (DC .EQ. 'D' .OR. DC .EQ. 'd') THPN
        NRT=Kd
        GO TO 175
        ENDIF
        IF (DC .NE. 'C' .AND. DC .NE. 'c') GO TO 2
        WRITE (*,*) 'Enter estimate of the actual order of the system'
        WRITE (*,*) '
        IF (LONG) THEN
        WRIIE (*,*) 'This estimate will be used to determine the '
        WRITE (*,*) 'number of eigenvalues compensated or discarded '
        ENDIF
    175 WRITE (*,*) 'the estimate may range from 2'
        WRITE (*,*)
        to', Kd+Kn+1
        READ (*,*) NRT
        IF (NRT .GT. Kd+Kn+1 .OR. NRT .LT. 2) THEN
        GO TO 175
        ELSEIF (.NOT. NUFILE) THEN
        GO TO 215
        ENDIF
    N NSTRTPT=1
    185 IF (NSTRTPT+ (Kd+M-1)*DELTAY .LE. NPTS) THRN
        NSTRTPT=NSTRTPT+1
        GO TO 185
        ELSE
        NSTRTPT=NSTRTPT-1
        ENDIF
        IF (NSTRTPT .EQ. 1) THRN
        WRITE (*,*) 'Given the other parameters chosen thus far,'
        WRITE (*,*) 'the starting point for processing the data'
        WRITE (*,*) 'must be the first point in the data file'
        GO TO 215
        ENDIF
```

WRITE (*,*) 'Enter desired starting point in data file' IF (.NOT. DSET .AND. LONG) THEN
WRITE ($*, *$) ' 1 indicates the first point in the data file ' ENDIF
WRITE (*,*) ' '
WRITE (*,*) 'Given the other parameters chosen thus far,'
WRITE (*,*) 'the starting point may range from 1'
WRITE (*, $)^{\prime}$ ' to ${ }^{\prime}$,NSTRTPT
READ (*, *) N
IF (N .GE. 1 .AND. N .LE. NSTRTPT) THEN
NSTRTPT=N
ETSE
WRITE (*,) 'Enter starting point again'
WRITE (*,*) ' '
GO TO 195
ENDIF
IF (.NOT. NUFTLE) GO TO 215
7 IF (DSET) THEN
IF (NCAUS .EQ. 1) THEN
NCAUS=2
GOTO 215
ELSE
NCAUS=1
GO TO 215
ENDIF
ENDIF
WRITE (*,*) 'Do you want the data matrix arrangement to be'
WRITE (*, ${ }^{\star}$) ' '
WRITE (*,*) '1. Causal'
WRITE (*,*) '2. Non-causal'
WRITE (*, *) ' '
205 WRITE (*,*) 'Please enter 1 or 2 '
READ (*, *) NCAUS
IF (NCAUS .DO. 1) THEN
CAUSAL=.TRUE.
ELSEIF (MCAUS .DQ. 2) THEN
CAUSAL=.FALSE.
ETSE
GO TO 205
ENDIF
GOTO 215

12 WRITE (*, *) 'Enter title of file to contain parameters'
READ (${ }^{*}, 100$) TTTL
$\operatorname{OPEN}(1, F T B E=T T M)$
$\operatorname{WRITE}(1,100)$ TTTLE
WRITE $(1,110)$ NPTS
WRTTE $(1,110)$ NRT
URITE $(1,110) \mathrm{Kd}$
$\operatorname{WRTIE}(1,110) \mathrm{M}$
KRITE $(1,110)$ DELTAY
WRITE $(1,110)$ NSTRTPT
WRITE $(1,110)$ NCAUS
WRITE $(1,100)$ TTTLD
WRITE $(1,110)$ NDPTS
URITE $(1,110) \mathrm{Kn}$
URITE $(1,110)$ INSTRTPT
CLOSE(1)
IF (DSET) GO TO 215
15

```
DSET=.TRUE.
```

NUFTLE=.FALSE.
$\operatorname{WRITE}(*, \star)$
KRITE(*,*) '1. Data file to be processed ',T

+ ITLE
URITE(*,*) ' Number of data points in data file ',NPTS
WRITE (*, *) '2. Estimated order of the system ',NRT
URITE(*,*) '3. Kd, the number of columns in the data matrix',Kd
URIIE (*,*) '4. M, the number of rows in the data matrix', M
VRITE(*,*) '5. Spacing between data points being processed ',DELTA
$+Y$
URITE(*,*) '6. First point in the data file to be processed',NSTRT
+ PT
MRITE(*,*) , Last point in the data file to be processed',NSTRT
+PT+Kd+Y-1
IF (NCAUS .EQ. 1) THEN
URITE (*,*) '7. Data matrix arrangement for processing CA
+USAL
ESE
URITE(*,*) '7. Data matrix arrangement for processing NON-CA
HUSAL
ENDIF
WRITE (*, *) • ’
WRITE(*,*) '8. File containing excitation waveform ',T
+ITLD
WRITE(*,*) ' Mumber of data points in above file ',NDPTS
$\operatorname{VRITE}(\star, \star)$ '9. Estimated order of the waveform ',Kn
WRITE(*,*) '10. First point in the file to be
WRITE (*,*) ' input into the data matrix ', INSTR
+TPT

WRITE (*, *)

WRITE(*,*) '11. Begin processing using above settings'
WRITE(*,*) '12. Store parameters 1-10 in a file'
WRITE(*,*) '13. Retrieve parameters 1-10 from a previously created $+f i l e '$
WRITE(*, *) '14. Reset overlays'
WRITE(*,*) '15. Re-plot overlays'
WRITE(*,*) '16. Fnd this session of Cadzow-Solamon signal processi tng'
WRITE(*, *) ' '
WRITE(*,*) 'Enter an integer from 1 to 16 to make changes as often + as you desire'
225 READ (*, *) NMENU
IF (NMENU .LT. 1 .OR. NMENU .GT. 16) THBN
WRITE (*,*) 'Enter an integer fram 1 to 16'
GO TO 225
ENDIF

GO TO ($1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)$, NMENU
$11 \operatorname{OPEN}(12, F I W=T I T L E)$
READ $(12,100)$ HEADER
READ $(12,110)$ NPTS
READ $(12,120)$ XQ
$\operatorname{READ}(12,120) \mathrm{XQ}$
DO $235 \mathrm{I}=1, \mathrm{NPPS}$
READ $(12,120)$ D(I)
235 CONTINUE
CLOSE (12)
$\operatorname{OPEN}(8, F \Pi E=T T T L D)$
READ $(8,100)$ HEADER
RFAD $(8,110)$ NDPTS
$\operatorname{READ}(8,120) \times \mathrm{X}$
$\operatorname{READ}(8,120) \times \mathrm{XQ}$
DO $245 \mathrm{I}=1, \mathrm{NDPTS}$
$\operatorname{READ}(8,120) \operatorname{Dx}(I)$
CONITNUE
CLOSE (8)

KdPLT=Kd
WRITE (*,*) 'enter title of file to contain real part of poles'
READ (*, 100) TTTLLER
OPPN (2,FTHE=TIITLER)

WRITE (*,*) 'enter title of file to contain imaginary part of poles'
READ (*, 100) TTTLEI
$\operatorname{OPEN}(3, F \Pi \omega=T T T L I)$

```
    WRITE (10,130) (KdPLT)
    WRTTE (10,100) TTITER
    WRITE (10,100) TITLET
    FORMAT(I2)
MN=NAX(M,Kd+Kn+1)
100 FORMAT (A)
110 FORMAT (I5)
120 FORMAT(E12.6)
150 FORMAT (A)
    DO 255 I=1,Kd+M
    DY(I) =D((I-1)*DELTAY+NSTRTPT)
255 CONTINUE
265 DO 285 I=1,M
DO 275 J=1,Kd+Kn+1
A(I,J)=Dy(I+J)
IF (J .GE. Kd+1) A(I,J)=Dx(I+J+INSIRTPT-2-Kd)
275 CONTINUE
285 CONTTNE
B(1)=Dy(1)
DO 295 I=2,M
B(I)=A(I-1,1)
295 CONTINJE
N=Kd+Kn+1
C Begin singular value decomposition
CALU SVD (MACHEP ,M,N,MN,A,W,MRTU,U,MATV,V,IERR,RVI)
C Errors in SVD?
IF (IERR .GT. O.0) THEN
WRTTE (*,*) 'Error in singular value number ',IRRR,STOP
ENDIF
IF (YN .EQ. 'N') GO TO 385
DO \(305 \mathrm{I}=1, \mathrm{Kd}+\mathrm{Kn}+1\)
\(\mathrm{XP}(\mathrm{I})=0.0\)
305 CONTINUE
C Discard or compensate eigenvalues
c Order singular values
\(X P(1)=W(1)\)
```

```
        DO 335 I=2,Kd+Kn+1
        DO }325\textrm{J}=1,
        if (W(I) .GT. XP(J)) THEN
        DO 315 R=I+1,J,-1
    315 XP(K)=XP(K-1)
        XP(j)=W(i)
        COTO 335
        ENDIF
    325 CONITNUE
        XP(I+1)=\ (I)
    335 CONTINUE
    C XP( ) now contains ordered singular values: XP(1) is the largest
    C Discard eigenvalues
        IF (DC .DQ. 'D') THEN
        DO 345 J=NRT+1,Kd+Kn+1
    345 W(J)=(0.0)
        ELSE
    C Compensate eigenvalues
        AVG=0.0
        DO 355 J={RT+1,Kd+Kn+1
        AVG=AVG+XP(J)**2
    355 CONTMNE
        IF (Kd+Kn+1 .GT. NRT) AVG=AVG/DBLE(FLOAT(Kd+Kn+1-NRT))
        DO 375 J=1,Kd+Kn+1
        DO 365 K=1,Kd+Kn+1
        IF (W(J).EQ. XP(K) ) THEN
        IF (K .GT. NRT ) THEN
        W(J)=0.0
        ELSE
        W(J)=DSQRT(DABS(W(J)*W(J)-AVG))
        ENDIF
        GO TO }37
        ENDIF
    365 CONITNUE
    375 CONTINUE
        ENDIF
    385 DO 405 I=1,M
        DO 395 J=1,M
        UT(I,J)=(U(J,I))
        CONTINUE
        CONTINE
    C Form SIGMA + (Kd+Kn+1 x M)
        DO 425 I=1,Kd+Kn+1
        DO 415 J=1,M
```

```
    SIGMA (I,J) =0.0
    IF (I .EQ. J .AND. W(J) .NE. O.0) THIPN
    SIGMA(I,J)=1.0d0/W(J)
    EISE
    SIGMA (I,J) =0.ODO
    ENDIF
    415 CONTINUE
    425 CONTINUE
    C Form SIGMA (M x Kd+Kn+1)
        DO 445 I=1,M
        DO 435 J=1,Kd+Kn+1
        SIG(I,J)=0.0
        IF (I .EQ. J) SIG(I,J)=W(J)
    435 CONTINUE
    445 CONTINUE
    C V=Kd+Kn+1xKd+Kn+1,SIGMA = Kd+Kn+1xM,VS=Kd+Kn+1xM
    CALL MXIUL(V,SIGMA,Kd+Kn+1,Kd+Kn+1,M,VS)
C \(\quad V S=K d+K n+1 x M, U T-Y \times M, A I N V=K d+K n+1 x M\) CALL MXMUL (VS,UT,Kd+Kn+1,M,M,ADNV)
C Calculate matrix multiplication of ADN \(\times B\), where
C \(\quad A D N=K d+K n+1 \times M, B=1 \times 1, X P=K d+K n+1 \times 1\)
CALL MXML (ADN, B,Kd+Kn+1,M,L,XP)
C Compute autoregressive coefficients from prediction coefficients
IF (XP (Kd) .EQ. O.0) THEN
WRITE (*, ) 'ERROR, avoiding division by zero'
STOP
ELSE
\(B(K d)=1.0 \mathrm{~d} 0 / \mathrm{XP}\) ( Kd )
ENDIF
DO \(455 \mathrm{I}=2\), Kd
\(B(I-1)=-B(K d) \star X P(K d-i+1)\)
455 CONTINUE
DO \(465 \mathrm{i}=1, \mathrm{Kd}\)
\(X(I)=-B(K d-I+1)\)
IF (NCAUS .EQ. 1) \(X(I)=-X P(K d-I+1)\)
465 CONTINUE
\(X(K d+1)=1.0\)
C Compute the roots of the polynamial in \(z\)
CALL POLRT (X,COF,KD,ROOTR,ROOTI,IER)
IF (IRR .NE. O) WRITE (*,*) 'ERROR with POLRT, InR=',IER,STOP
```

```
    DO 475 I=1,Kd
    WRITE (2,120) ROOTR(I)
    WRITE}(3,120) ROOII(I
    S (I)=DCMPLX(ROOTR (I) ,ROOTI (I))
```

C Plot poles
NOVERLAY=MOVERLAY+1
CLOSE (2)
CLOSE (3)
CALL SUBPLT (NOVERLAY)
$J=0$
$K=0$
DO $495 \mathrm{I}=1$, Kd
IF (CDABS (S (I)) .LT. 1.0) THEN
WRITE (*, *) S(I),CDABS(S(I))
$J=J+1$
$k=k+1$
ENDIF
IF (J .ED. 20) THEN
WRITE (*,*) 'HIT ANY KEY TO CONTINUE'
READ (*,100) HEADER
$J=0$
ENDIF
CONTINUE
WRITE (*,*) 'Poles with magnitude less than one ', K
WRITE (*,*) 'HIT ANY KEY TO CONTINUE'
READ (*, 100) HEADER
GO TO 215
16 STOP
END

APPENDIX C. MATRIX MULTIPLICATION

SUBROUTINE MXMU (A, B, RA, CA,CB , AB)
INTEGRR RA,CA,CB
REAL*8 A $(70,70), \mathrm{B}(70,70), \mathrm{AB}(70,70)$
C Calculates matrix multiplication of $\AA \times \mathrm{B}=\mathrm{AB}$, where
C $\quad A=R A x C A, B=C A x C B, A B=R A x C B$
DO $30 \mathrm{I}=1, \mathrm{RA}$
DO $20 \mathrm{~J}=1, \mathrm{CB}$
$\mathrm{AB}(\mathrm{I}, \mathrm{J})=0.0$
DO $10 \mathrm{~K}=1, \mathrm{CA}$
$A B(I, J)=A B(I, J)+A(I, K) * B(K, J)$
CONTINUE
20 CONTINUE
30 CONTINUE
RETURN

END

APPENDIX D. GRAPHICS ROUTINE

SUBROUTINE SUBPLT (NOVERLAY)

C
C MS-FORTRAN Program using "Grafmatic" Library Subroutines.
C Plots a Solid Line and Optional Overlay Plot for Comparison.

CHARACTER*1 YN, YN1, DUM, YN2, SYMBOL, BEJL, FEED, FFYN CHARACTER*4 LINE
CHARACTER*7 SYMB
CHARACTER*16 LTIT,CTIT, FNAME,TTTLER,TTTLET
CHARACTER*64 TTTLE,HCOPY
REAL CRTR (70) ,CRTI (70),NRTR (70) ,NRTI (70)
INTEGER*2 N, JROW, JCOL, ISYM1, ISYM2, ITYPE1, TTYPE2,NSCRN
INTEGER*2 CYRN, GRERN, WHITE, YELLON,RED,BLACK, BLLE,NTWO
INTEGER*2 JROW1, JROW2, JCOL1, JCOL2, CROSS, KdPLT I I
INTEGER*2 PURPLE,RUST
EXTERNAL XFUN,YFUNP,YFURN
LTNE='—
WHITE=7
GREBN $=10$
CYAN=11
YELLOW=14
$\mathrm{RED}=12$
BLACK=0
BLUE=1
NTWO $=2$
PURPLE $=5$
RUST $=6$
BEL $=$ CHAR (7)
FEFRD $=$ CHAR (12)
C Clear Screen and Put Up Introduction - on Blue Backgound for EGA
C Only; Another Background Color is Possible by Changing "BLUE"
C in the Calls to QPREG and QOVSCN.
CALL QSMODE (NTWO)
CALL QPREG ($0, B L L E$)

```
CALL QOVSCN(BLUE)
WRITE(*,*) BEIL
        NS=1
        NSCRN =16
ITYPE2=0
```

C Calling GRAFMATIC Routines and Plotting F1 Solid Line Graph ITYPE1 $=0$
ISYMI=-1
NDOTS1 $=0$
JROM1=1
JROW2 $=350$
$\mathrm{JCOL}=75$
JCOL2 $=565$
$X M O N=-1.2$
$X M A X=1.2$
$Y M D N=-1.2$
YMAX=1.20
YOVERX=1.115
$X O R G=0.0$
YORG $=0.0$
XST=-1.1
$\mathrm{XFIN}=1.1$
YST=-1.1
$\mathrm{YFIN}=1.1$
25 CALL QSYODE (NSCRN)
CALL QPLOT (JCOL1, JCOL2, JROW1, JROW2, XMON, XMAX, YMIN, YMAX, XORG, YORG,
+1, YOVERX,1.5)
CALL QSETUP (NDOTS1, CYAN, ISYMI, RED)
IF (XFIN-XST .LE. 9.0) XMAJOR=0.6
IF (XFIN-XST .LE. 6.0) XMAJOR=0.4
IF (XFIN-XST .LE. 3.3) XMAJOR=0.2
IF (XFIN-XST .GE. 9.0) XMAJOR= $(X F I K-X S T) / 10.0$
MINOR=0
$\angle A B E L=1$
$\mathrm{NDDC}=2$
CALL QXAXIS (XST, XFIN, XMAJOR,MIMOR,LABEL,NDEC)
YMAJOR=XMAJOR
CALL QYAXIS (YST, YFTN, YMAJOR, MONOR, LABEI, NDEC)
c Plot unit circle
$A=-1.0$
$B=1.0$
CALU QCURV (XFUN, YFUNP,A,B)
CALL QCURV (XIUN,YFUNN,A,B)
IF (NOVERLAY-1 .LT. 1) THEN
IF (NOVERLAY-1 .EQ. 0) THEN

```
            WRITE (*,3) NOVERLAY-1
            MLSE
            NZERO=0
            WRITE (*,3) NLERO
            ENDIF
            ELSEIF (NOVERLAY-1 .GT. 1) THRN
            WRITE (*,3) NOVERLAY-1
            ELSE
            WRITE (*,4) NOVERLAY-1
            ENDIF
3 FORMAT (I3,' OVERLAYS')
4 FORMAT (I3,' ONERLAY ')
REWIND (10)
DO 20 I=1,NOVERLAY
READ (10,110) KdPLT
READ (10,100) TTTLER
READ (10,100) TTTMET
OPEN(2,FILE=TITLER)
OPEN (3,FILE=TITMEI)
NKd=KdPLT
DO 27 J=1,KdPLT
READ (2,120) NRTR(J)
READ (3,120) NRTI(J)
IF (DSQRT(NRTR (J)**2+NRTI (J)**2) .GT. 1.1) THIN
NKd=:NKd-1
NRTR (J) =0.0
NRTI (J)=0.0
ENDIF
27 CONTINUE
PURPLE=5
RUST=6
    WHTTE=7
    GRETN=10
    CYAN=11
    YETLON=14
    RED=12
    BLUE=1
IF (I .EQ. 1) THEN
    CALL QSEIUP (NDOTS1,CYNN,ISYMM,RED)
EHSEIF (I .EQ. 2) THEN
    CALL QSETUP (NDOTS1,CYAN,ISYMI GRPEN)
EWSEIF (I .DQ. 3) THEN
    CALL QSETUP (NDOTS1,CYAN, ISYM1,YELLOW)
ELSETF (I .EQ. 4) THEN
    CALL QSETUP(NDOTS1,CYAN,ISYM1,BLUE)
EHSEIF (I .EQ. 5) THTN
    CALL QSETUP (NDOTS1, CYAN, ISYMI, WHITE)
ELSEIF (I .EQ. 6) THEN
    CALL QSETUP(NDOTS1,CYAN, ISYMI,PURPLE)
```

ETSELF (I .EQ. 7) THEN
CALL QSETUP (NDOTS1,CYAN, ISYM1,RUST)

ELSE

CALL QSETUP (NDOTS1,CYAN, ISYM1, RED)
ENDIF
CALL QTABL (ITYPE1,KdPLT,NRTR,NRTI)
CONTINUE
READ (*,100) DUM
GO TO 40
HCOPY=' HARDCOPY \rightarrow ENIER P OR p'
CALU QPTXT $(30, H C O P Y, R E D, 25,1)$
CALL QCMOV $(55,1)$
HCOPY='
CALL QPTXT (40, HCOPY,BLACK, 25,1)
IF (DUM .NE. 'P' .AND. DUM .NE. ' p ') 00 TO 40
CALL QPSCRN
OPEN ($1, \mathrm{FII}=\mathrm{E}^{\prime}$ PRN')
WRITE $(1,160)$ FEED
FORMAT (A)
110 FORMAT (I2)
120 FORMAT (E12.6)
160 FORMAT(' ', A,
)
40 CONITNUE
CALL QSMODE (NTWO)
CALL QPREG(0,BLLE)
CALL @OVSCN(BLLE)
WRITE(*,*) NKd,'points were plotted'
RETURN
END
REAL FUNCTION XFUN(T)
XFUN-T
RETURN
END
REAL FUNCTION YFURP (T)
YFUNP=SQRT (1.0-T*T)
RETURN
END
REAL FURCTICN YFUNN(T)
YFURNE-SQRT (1.0-T*T)
RETURN
END

1. C. E. Baum, on the Sinqularity Expansion Method for the Solution of Electromagnetic Interaction Problems, Air Force Weapons Laboratory Interaction Note 88, December 1971.
2. D. L. Moffatt and R. K. Mains, "Detection and discrimination of radar targets," IEEE Trans. on Antennas and Propagation, AP-23, May 1975, pp 358-367.
3. Michael A. Morgan, "Singularity expansion representations of fields and currents in transient scattering," IEEE Trans. on Antennas and Propagation, AP-23, May 1984, pp 466-473.
4. Ramdas Kumaresan, and D.W. Tufts, "Estimating the parameters of exponentially damped sinusoids, and polezero modeling in noise," IEEE Trans. Acoustics, Speech, and Sig. Proc., December 1982, pp 833-840.
5. James A. Cadzow and Otis M. Solomon Jr., "Algebraic approach to system identification," IEEE Trans. Acoustics, Speech and Sig. Proc., ASSP-34, 3, June 1986, pp 462-469.
6. E.M. Kennaugh, "The K-pulse concept," IEEE Trans. on Antennas and Propagation, AP-29, March 1981.
7. James B. Dunavin, Identification of Scatterers Based Upon Annihilation of Complex Natural Resonances, Master's Thesis, Naval Postgraduate School, Monterey, CA, September 1985.
8. Michael A. Morgan and James B. Dunavin, "Discrimination of scatterers using natural resonance annihilation," Abstracts of 1986 National Radio Science Meeting, Philadelphia, PA, June 1986.
9. K. M. Chen, D. P. Nyquist, E.J. Rothwell, L.L. Webb, and B. Drachman, "Radar target discrimination by convolution of radar returns with extinction-pulses and single-mode extraction signals." IEEE Trans. on Antennas and Propagation, AP-34, July 1986, pp 896-904.
10. Michael A. Morgan, "Scatterer discrimination based upon natural resonance annihilation," Journal of Electromagnetic Waves and Applications, 2, 2, 1987, pp 155-176.
11. Michael A. Morgan, Signal Generator Program, Naval Postgraduate School, Monterey, CA, 1989.
12. Michael A. Morgan, Time-Domain Thin-Wire Integral Equation Program, Naval Postgraduate School, Monterey, CA, 1989.
13. Choong Y. Chong, Investigation of Non-linear Estimation of Natural Resonances in Target Identification, Master's Thesis, Naval Postgraduate School, Monterey, CA, December 1983.
14. S. Lawrence Marple, Jr., Digital Spectral Analysis with Applications, (Englewood Cliffs, NJ: Prentice-Hall, Inc.) 1987.
15. Ramdas Kumaresan, Estimation the Parameters of Exponentially Damped or Undamped Sinusoidal Signals in Noise, Ph.D. Thesis, University of Rhode Island, Kingston, RI, October 1982.
16. S. A. Norton, "Radar target classification by natural resonances: signal processing algorithms," Engineer's Thesis, Naval Postgraduate School, Monterey, CA, Mar 1988.
17. Norman J. Walsh, "Bandwidth and Signal to Noise Ratio Enhancement of the NPS Transient Scattering Laboratory," Master's Thesis, Naval Postgraduate School, Monterey, CA, Dec 1989.
18. J.M. Boyle, EISPACK Subroutine Library, Argonne National Laboratory, 1973.
19. G. H. Golub and C. Reinsch, "Singular value decomposition and least squares solutions," Numer. Math., 14, 1970, pp 403-420.

INTIAL DISTRIBUTION LIST

No. Copies

1. Defense Technical Information Center2Cameron StationAlexandria, Virginia 22304-6145
2. Library, Code 0412 2
Naval Postgraduate School
Monterey, California 93943-5002
3. Defense Logistic Studies Information Exchange 1
U.S. Army Logistics Management College Fort Lee, Virginia 23801-6043
4. Department Chairman, Code 62 1
Department of Electrical and Computer Engineering Naval Postgraduate School
Monterey, California 93943-5002
5. Professor Michael A. Morgan, Code 62Mw 10
Department of Electrical and Computer Engineering Naval Postgraduate School Monterey, California 93943-5002
6. Professor Ralph Hippenstiel, Code 62Hi 1
Department of Electrical and Computer Engineering Naval Postgraduate School
Monterey, California 93943-5002
7. Commandant of the Marine Corps 1
Code TE 06
Headquarters, U.S. Marine Corps
Washington, D.C. 20380-0001
8. Electronic Material Officer 2
USS Blue Ridge (LCC-19)
FPO San Francisco, California 96628-3300
9. Dr. John N. Entzminger 2
Director, Tactical Technology Office Defense Advanced Research Projects Agency 1400 Wilson Blvd. Arlington, Virginia 22209
10. Mr. D. Jiglio 1Tactical Technology OfficeDefense Advanced Research Projects Agency1400 Wilson Blvd.
Arlington, Virginia 22209
11. Dr. Arthur Jordan 1
Code 1114SE
Office of Naval Research
800 N . Quincy St.
Arlington, Virginia 22209
12. Dr. Rabiner Madan 1
Code 1114SE
Office of Naval Research 800 N . Quincy St.
Arlington, Virginia 22209
13. Professor K. M. Chen 1
Department of Electrical Engineering and Systems Science
Michigan State University East Lansing, Michigan 48824
14. Dr. M. L. VanBlaricum 1
Toyon Research Corporation
75 Aero Camino, Suite A
Goleta, California 93160
15. Capt. Peter D. Larison 1
1145 Lenox Court
Cape Coral, Florida 33904
16. Dr. Carl Baum 1
Air Force Weapons Laboratory Kirtland Air Force Base, New Mexico 87117
17. Mr. Daniel Carpenter 1
TRW Military Electronics Division
One Rancho Carmel
San Diego, California 92128
18. Dr. C. Ray Smith 1
AMSMI-RD-AS-RA
Redstone Arsenal, Alabama 35898
19. Professor Herbert Uberall 1
Physics Department
Catholic University of America Washington, D.C. 20064

Thesis
L2676 Larison
c. 1 Evaluation $\cap f$ svotem identification algorithms for aspect-independent radar target classification.

