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Abstract

This Paper explores the use of an extended Kalman filter to provide real-time esti-

mates of underwater vehicle position and attitude. The types of previously available sen-

sors are detailed including strapdovvn accelerometers, roll and pitch sensors, gyro and

magnetic compasses, depth sensor, and various types of acoustic positioning systems. A
doppler velocimeter is added to this sensor suite to improve the perfonnance of the filter.

As an integral part of the filter, magnetic compass and gyrocompass biases are estimated

to improve vehicle heading accuracy. The filter is designed to account for numerous real-

life complications. These include varying rates of sensor output, lengthy gaps in reception

of position information, presence of non-Gaussian position fix eiTors (flyers), and varying

probability density functions for sensor errors. Simulated data are used to test the filter

with varying availability of data and accuracy of initial conditions, along with actual data

from a deployment of the towed DSL- 120 vehicle. The increased accuracy obtained by

using the doppler velocimeter is emphasized.
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Chapter 1

Introduction

1.1 Motivation

This thesis has two major goals. The first is to provide accurate estimates of

underwater vehicle position and attitude and thereby improve the quality of sonar and

video information collected. The second is to provide these estimates in real-time.

1.1.1 Improving Vehicle Position and Attitude Information

More than two thirds of the Earth is covered by water. Until very recently in

history, the ocean depths were mysterious and inaccessible. However, in the past few

decades new technologies have dramatically expanded man's abilities to explore the ocean

bottom. Discoveries range from the remnants of human incursions, epitomized by the

Titanic, to new life on the ocean floor gaining its sustenance from the earth's interior

rather than the sun.

One of the primary tools for conducting underwater searches and surveys from

unmanned vehicles is the sidescan sonar. The sonar emits a beam of relatively high-

frequency sound on either side of the vehicle. When this sound beam hits the bottom or

any objects within range, it is reflected and the return is received by transducers mounted

on the vehicle. The characteristics of the received .sound, primarily magnitude and phase,

can then be analyzed to determine the characteristics and contours of the bottom as well as

the location and general shape of any objects.

For this system to work at an optimum level, it is vital that the location and attitude

of the vehicle be known as accurately as possible. Any position errors lead directly and

obviously to an error in the assumed position of all objects mapped by the sonar. Equally

important, however, is knowledge of the vehicle's roll, pitch, and heading. Due to the

nature of sound propagation in water, a significant time lag occurs between the

transmission of a sonar ping and the receipt of any returns. During this time, the vehicle

will not only have changed position but may have changed its attitude as well. For proper
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interpretation of the sonar returns, the attitude of the vehicle at the time of sonar

transmission must be known, because that determines the precise direction of the beam.

This same information is also needed at the time of the sonar return, so the location of any

objects found can be accurately determined.

1.1.2 Previous Work on Underwater Vehicle Navigation

The invention of feasible inertial navigation produced a great interest in combining

inertial measurements with other fix sources to improve navigational accuracy. These

early inertial navigation units required gimbal-stabilized platforms to achieve the desired

accuracy, which added size and weight. Due to these restrictions, early work was confined

to aircraft and ships, including submarines. In the early 1970s, the U.S. Air Force was one

of the first to evaluate the use of the Kalman filter to integrate inertial measurements with

external fix sources (D'Appolito, 1971).

Later, strapdown inertial systems permitted much smaller and lighter equipment,

though at a cost in accuracy. Once again, the military provided a major impetus to

developing these .systems to their fullest potential. For example, the North Atlantic Treaty

Organization's (NATO) Advisory Group for Aerospace Research and Development

(AGARD) included much work on the.se strapdown .systems, although still for use

primarily in aircraft and spacecraft {VanBronkhorst, 1978; Catford, 1978).

Ever since remotely operated vehicles (ROVs) became feasible, there has been

interest in improving their navigational accuracy as well. Early ROVs had only a few

sensors available to provide navigational infonnation, since inertial navigational systems

were still too heavy and power-intensive to be usable. The.se included a magnetic compass

to provide heading and inclinometers to measure pitch and roll. Additionally, an acoustic

transponder network was often used to provide position information for operations in a

small area. A later improvement was the gyrocompass, which provides a more consistent

output than the magnetic compass but adds new errors caused by drift.

Improvements in the information provided by these acoustic transponder nets has

been marked. In her 1992 thesis, Diane Di Massa provided one example with her

exploration of the possibilities of hyperbolic navigation to permit long-range acoustic

navigation by an Autonomous Underwater Vehicle (AUV) {Di Massa, 1992). Brian
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Tracey contributed another with his improvements to a newer technique for ROV

navigation, ultrashort-baseline navigation, in his 1992 thesis (Tracey, 1992).

In the past few years, a number of new devices have been developed to assist in

solving this navigational problem. In his 1988 thesis, Gregory Vaughn discussed the use of

a lightweight, strapdown inertial motion unit in conjunction with an external acoustic

positioning net to improve closed-loop vehicle conu-ol (Vaughn, 1988). He concluded that

by incorporating this new data into a Kalman filter to provide real-time optimal estimates

of vehicle parameters, closed-loop control of ROVs, such as the Woods Hole

Oceanogi'aphic Institution's /a^o/j, could be improved. However, for his application

vehicle attitude was unimportant and therefore was not incorporated into his simulations.

A fairly recent addition to the repertoire of instruments available to the

oceanographic engineer is the doppler velocimeter, also known as the acoustic doppler

current profiler (ADCP). For the first time, accurate real-time velocity measurements of a

ROV could be made relatively cheaply and without exceeding the restrictive power and

weight limits inherent in ROV operations. RD Instruments, a doppler velocimeter

manufacturer, has been funded by the Office of Naval Research to explore the use of the

instrument to provide an independent and accurate measurement of vehicle velocity

within the context of a Kalman filter. Their initial work verifies the utility of the

velocimeter, although so far their research has been confined to inertial navigation systems

too large for ROV u.se (Rowc and Brumlcy, 1992).

These ai'e but a few examples of the extensive work that has been published on

improving underwater vehicle navigation. A search of the literature reveals diverse

techniques for improving sensor infomiation and integration, including several variations

on Kalman filtering techniques.

1.1.3 Cost and Processing Time Reduction

In the real world, cost considerations are almost always important. Cruises are

expensive and usually result in computer disks full of unproce.ssed, raw data, which are

essentially worthless until processed. This processing can take many man hours, which

translates into a considerable cost. Unfortunately, this sometimes means that processing is

never completed, since either the time or the money runs out. Therefore, the more real-
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time processing that can be performed the better. Real-time processing means that the

important data are immediately available. Also, since it is accomplished at sea while the

cruise is in progress (and already paid for), additional expenses are minimized.

Another important application for this capability pertains to autonomous

underwater vehicles (AUVs). Much research is being conducted currently on these

vehicles, which should be capable of operating independently for days or even weeks.

Real-time processing is essential to permit the vehicle to navigate successfully and is also

vital in reducing the on-board data storage requirements of AUV deployments.

1.1.4 Resources Available

This thesis investigates how tiie navigational sensors currently available at the

Deep Submergence Laboratory (DSL) can be used to improve the real-time position and

attitude information available for the operation of a ROV. This summer, DSL personnel

pai'ticipatcd in a cruise aboard the RA^ Kiiorr. A major purpose of the cruise was to obtain

detailed sidescan sonai" data from an area of the Mid- Atlantic Ridge where seafloor

spreading is occuriing. The DSL- 120, a lowed vehicle cairying a 120-kHz sidescan sonai"

system and multiple navigational sensors, was used for this sui"vey. Data from these DSL-

120 deployments are used to demonstrate the perfonnance of the Kalman filter developed

in this thesis. By integrating the velocity data provided by the doppler velocimeter into a

Kalman filter algorithm, the vehicle's navigational accuracy can be gready enhanced. This

substantially improves the usefulness of the sonar data collected and demonstrates the

feasibility of performing real-time navigation sensor processing.

1.2 Advantages and Limitations of the Kalman Filter

Sonar data collected by underwater vehicles has often been rendered nearly u.seless

due to inaccurate navigation information and an overly simplistic approach to tracking

vehicle parameters. For example, relying solely on a magnetic compa.ss for heading

information nearly guarantees that the measured heading will be inaccurate.

The Kalman filter uses a state space model to provide a well defined method for

integrating the information obtained from different sensors into a coherent whole. Taking
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advantage of the a priori knowledge of the relative accuracies of these sensors as well as

the dynamics of the system, the Kalman filter can provide real-time output without

overstressing computer memory or computational limits.

The addition of the doppler velocimeter provides a marked improvement in the

ability of a Kalman filter to provide valid position and attitude information. By providing

accurate ineasurements of the magnitude of vehicle velocities in all three dimensions, a

more precise, condnuous esdmate of vehicle position and attitude can be provided than

would be available by the other sensors alone.

In this application, there are several obstacles to overcome in creating a usable

Kalman filter. Fir.st, the system is nonlinear and cannot therefore use the simplest and most

mathematically precise version of Kalman filter theoi^. Instead, an extended Kalman filter

is required. Second, a method for ignoring obviously faulty measurements must be

included. Finally, there ai-e several practical problems involved in using the output of such

a wide variety of sen.sors. These problems and their proposed solutions are di.scussed in

detail later in this thesis.

1.3 Thesis Outline

Chapter Two de.scribes the sensors used to provide infonnation for the Kalman

filter. Principles of operation for each sensor are discussed, as well as limitations and

considerarions for each when integrated into the overall system.

Chapter Three explains the development of the Kalman filter and its state space

model for this application. A basic review of Kalman filter theory is included, with

emphasis on the specifics of the extended Kalman filter required for nonlinear problems.

This chapter also discusses the specific problems that were addres.sed for proper filter

operadon and how the filter was implemented.

Chapter Four shows the results of filter operation by using both simulated and

actual data. The improvement in performance obtained by using the doppler velocimeter

measurements of vehicle velocities is emphasized.
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The results are summarized in Chapter Five, along with suggestions for further

refinements to the filter. Finally, some possibilities for additional experiments are

discussed.
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Chapter 2

Sensor Information

2.1 Overview of Sensors

Like any mathematical abstraction of a real-world system, the Kalman filter is a

simplified model of reality. For the filter to function optimally, the model must be as

complete and as accurate as possible. For this application there are two major aspects of

the filter tliat must be considered. The first concerns prediction: based on knowledge of

present system parameters, what will happen to these parameters in the future? The second

is more basic: how can knowledge of these system parameters be obtained?

In this chapter, the latter issue is addressed. Each sensor providing input to the

filter is described in detail. Using our knowledge of the available sensors, the Kalman

filter model can then be developed. Before proceeding further, however, a clarification of

the coordinate systems used is required.

2.2 Coordinate Systems

Within the filter algorithm, two different coordinate systems are used. The first is

earth-referenced, with positions measured relative to fixed reference points on the earth.

The second is vehicle-referenced, also referred to as body-referenced. In this case, all

measurements are made relative to a specific point on the ROV, usually the center of

rotation of the vehicle. Table 2-1 and Figure 2-1 explain the differences in more detail.

An additional coordinate system is .sensor-referenced, which depends on the

location of the individual sensor. For linear acceleration and velocity measurements, a

difference in measurement magnitudes between sensor-referenced and vehicle-referenced

measurements exi.sts due to the effects of angular velocities when the sensor is mounted

away from the vehicle's center of rotation. The orientation of the axes is the same as

vehicle-referenced coordinates since the instruments are mounted colinear with the

vehicle axes. Compensation for this difference is di.scus.sed in Section 3.5.3.
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Figure 2-1. Vehicle-referenced coordinate system.

Table 2-1: Comparison of Coordinate Systems

Direction Earth-Referenced Vehicle-Referenced

X Longitude (-i-X = east) Peipendicuiar to side of

vehicle (+X = to starboard)

Y Latitude (+Y = noilh) In direction of vehicle bow
or stern (+Y = forward)

Z Deptii/Altitude (+Z = up) Pei"pendicular to top or bot-

tom of vehicle (+Z = up)

2.3 Doppler Velocimeter

The proper name for this instrument, used to provide vehicle velocities, is the

Direct-Reading Broadband Acoustic Doppler Current Profiler (DR-BBADCP).

Manufactured by RD Instruments (RDI), the DR-BBADCP is designed to measure current

velocities at di.screte points through the water column (see Fig. 2-2). Its alternate mode,

which is the mode used to gather data for this application, is the bottom-track profiling

mode. With the DR-BBADCP mounted on the vehicle looking downward, vehicle
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Figure 2-2. Broadband ADCP setup for current profiling {RDI, 1993).

instrument in this application, the more descriptive name of "doppler velocimeter" is used

in the remainder of this thesis.

2.3.1 Principles of Operation

The doppler velocimeter uses four downward-looking acoustic beams operating at

high frequency, figure 2-3 shows the beam pattern of two of these beams in an upward-

looking mode. RDI manufactures these instruments with six different transmit

frequencies: 75, 150, 300, 600, 1200, and 2400 kHz. As with any sonar, increasing

frequency improves the accuracy but reduces the effective range. Therefore, the frequency

18





Fig. 2-3. ADCP beam geometry {RDI, 1993).

for a given operation is chosen to be as high as possible while still providing sufficient

range to ensonify the bottom based on the expected altitude of the vehicle.

As evidenced by its name, the instrument operates on the doppler principle.

Vehicle velocity in the direction of a beam increases the frequency of the returned signal,

while velocity away from the beam decreases it. Specifically, the vehicle velocity in the

direction of the beam is calculated by {RDI, 1993).

c
Relative Flow Velocity (m/s) = /V) x —— ,

where

Fr-j is the measured doppler frequency shift in kHz,

c is the speed of sound in water at the transducer face in m/s,

Ff. is the transmitted acoustic frequency in kHz.
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Figure 2-4 shows this effect with a fixed transducer and moving material in the

water. The effect is the same with the iran.sducer mounted on a moving vehicle over the

fixed bottom. The four beams transmit at different angles so the velocities in each

direction can be resolved. Three are needed to solve for velocities in all three directions

and the fourth provides redundancy to ensure accuracy.

To interpret the received sonar data, the doppler velocimeter uses an

autocorrelation processor. A series of shon pulses is transmitted, each with a pulse length

of Tp, with a known lag Tl between pulses. When the returns are received, the processor

compares the phase change between two distinct pulses, accounting for the difference in

time between their respective transmissions. As shown in Fig. 2-5, a zero phase change

implies zero velocity. Likewi.se, a phase change equates to a velocity with magnitude

determined by the amount of phase change. Phase changes with a magnitude greater than

27t are resolved using a proprietary RDI algorithm using different subsets of the *•
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transmitted pulses. If any datum is below the operator-selector minimum for correlation

magnitude, that clatum is rejected by the doppler velocimeter's processor.

The output of the velocimeter can be referenced four different ways. The most

basic provides measurements of the velocities relative to each of the four beams.

Alternatively, the velocimeter's internal proces.sor can re.solve the components of the four

beams to provide velocity fore or aft, velocity left or right, and velocity up or down
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relative to the instrument. Third, if the instrument is not mounted on a ship or ROV with

the same orientation as the platform's reference axes, the velocities can be converted to

any desired direction relative to the platform using knowledge of the difference between

the instrument axes and platfonn axes. Finally, the doppler velocimeter can use its internal

flux-gate sensor, which uses heading and pendulum sensors to provide pitch and roll. The

internal processor can use this roll, pitch, and heading information or similar data from

external sensors to convert from vehicle-referenced to earth-referenced velocities.

For this Kalman filter the velocimeter is mounted with axes oriented the same as

the vehicle axes described in Section 2.2. Therefore, a coordinate transformation to the

platform axes is unnecessary except for any coiTection due to angular velocities. Instead of

allowing the velocimeter's internal processor to convert velocities to earth-referenced

coordinates, which would use the cuiTent output of the appropriate sensor for attitude

measurements, the filter uses the vehicle-referenced values. Using vehicle-referenced

velocities allows the filtered estimates of roll, pitch, and heading to be u.sed to make the

conversion to earth-referenced coordinates. This improves overall filter perfonnance since

the filtered estimates are less noisy than the instantaneous sensor outputs.

2.3.2 Inputs to Velocimeter

To provide the desired output, the doppler velocimeter uses the speed of sound in

its calculations of vehicle velocity. As is the case for data used in this thesis, this speed of

sound is typically entered manually by the operator to pennit easier post-processing of the

data. However, for more accurate calculations the doppler velocimeter can calculate the

current speed of sound using three inputs: salinity, depth, and temperature.

For most open-ocean operations salinity is constant. Therefore, salinity can be

manually inserted prior to operations. If operations are to be conducted in an area of

varying salinity, such as near a river mouth, then an external conductivity sensor can be

used to provide salinity information to the velocimeter.

Since the majority of vehicle operations occur within a relatively narrow depth

band, making speed of sound changes due to depth change negligible, depth is also

normally manually inserted. If operations involving large depth changes are expected.
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consideration should be given to providing deptii estimates to the velocimeter to calculate

a variable speed of sound.

Finally, the doppler velocimeter has an internal temperature sensor. Manual input

can be used in this case as well. For operations near the bottom in deep water, where

thermal gradients are negligible, manually inputting temperature pennits more precise

post-processing of the data without introducing significant errors. In areas with larger

gradients, using the installed temperature sensor is necessary.

2.3.3 Doppler Velocimeter Outputs

Obviously, the primary output desired from the doppler velocimeter is vehicle-

referenced velocity. However, there are several operator-selected options that affect the

accuracy and the frequency of these measurements.

Frequency of output is determined by three factors: the speed of sound in the

water, the range to the bottom (vehicle altitude), and the number of pings per ensemble.

The doppler velocimeter averages the results from the pings in each ensemble to improve

accuracy. The technical manual recommends four pings per ensemble. A larger number of

pings per ensemble results in better quality measurements but at the cost of a lower update

rate. Using the recommended four pings per ensemble, an average altitude of 100m, and

the nominal speed of sound in seawater of 1500 m/s, the time between velocity

measurements can be calculated as

4 pings X 200 in/ping x 1 s/1500 m = 0.53 s/ensemble.

The standard deviation for velocity measurements is computed by the

velocimeter's processor ba.sed on the BBADCP frequency (for the model in use), the

range to the bottom, the number of pings per en.semble, and the size of the depth cells

selected prior to operation. The size of the depth cell is imponant for precision when

operating in the water column profiling mode. For bottom tracking, however, the largest

depth cell should always be used since this gives the lowest standard deviation for vehicle

velocity measurements. For vehicle operations treated in this thesis, the standard deviation

is on the order of 1-2 cm/s. Figure 2-6 shows how accuracy varies with range for a single

ping using the 150-kHz model. This high accuracy enables precise measurement of
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Fig. 2-6. Standard deviation for a single ping using the 150-kHz system (with ADCP
velocity, from top to bottom, of 20 knots, 10 knots, and knots) (/?D/, 1993).

velocity magnitude. However, overall system accuracy is limited by how well heading,

pitch, and roll can be estimated. Since standard deviation is constantly updated by the

doppler velocimeter's software, that information can be included in the Kalman filter

algorithm. Specifics of this implementation are discussed in Chapter 3.

2.4 Depth Sensor

The depth sensor used for this work is manufactured by Paroscientific, Inc. and

consists of a quartz-crystal resonator whose frequency of oscillation varies with pressure-

induced stress. The sensor also includes thennal compensation using a quanz-crystal

temperature signal. Nominal accuracy of the sensor is 0.02%, and a reading can be

obtained approximately every 0.25s. {Paroscientific, 1987).

For the piirpo.ses of achieving the best overall estimates of vehicle position and

velocity, the ab.solute eiTor of this .sensor is less important than its stability. Previous

experience indicates that the depth sensor should be very consistent in its outputs.

Therefore, the output of the .sensor is a vital element in increasing the accuracy of the
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Kalman filter used to detemiine state space estimates for depth-dependent vehicle

parameters.

The only time the sensor should exhibit less stability than desired is if the sensor is

not in thennal equilibrium with the surrounding water. This could occur soon after initial

deployment. However, in this case the problem would be foreseen, and thermal

equilibrium could be achieved prior to commencing actual search operations. Of more

concern is operation in water with strong thermal gradients. This problem could be

particularly acute in shallow-water operations, especially at certain times of the day.

During such operations, the pressure sensor can be expected to give less accurate results,

resulting in greater Kalman filter en-ors.

2.5 External Positioning System

There ai'e several possible systems that can be used to provide external position

infonnation. Historically, nearly all underwater vehicle positioning information has been

obtained from some type of acoustic net. These acoustic systems generally fall into three

different categories, with the type used for a specific operation dependent on the type of

mission and the topography of the bottom.

2.5.1 Long-Baseline Systems

In a long-baseline system, an array of acoustic transponders is deployed on the

bottom in the vicinity of projected vehicle operations. A transponder is also attached to the

vehicle. Vehicle position is detemiined by measuring the travel times of sound waves

between the vehicle and the transponders in the net. For two-way systems, the vehicle

sends out a ping, and each transponder re.sponds with a coded return signal when it

receives the initial ping from the vehicle. The travel times are then translated into range.

One-way systems use the same principle, but travel time is measured only from the

vehicle to each transponder in the net. With either system, since the positions of the

transponders on the bottom have already been determined when calibrating the acoustic

net, the position of the vehicle can be determined {Mon^an, 1978).
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An example of such a system is the Sonic High Accuracy Ranging and Positioning

System (SHARPS). This commercial system uses three transceivers near the ocean

bottom, which are connected to a surface ship by coaxial cables. Another transceiver is

mounted on the ROV, which is also connected to the ship. Because the cable connections

allow the surface ship to know the exact transmission time of each ping, only one-way

travel times are needed, which allows twice the frequency of updates as a two-way

system. Operating at 300 kHz, SHARPS is limited to a range of 100 m in seawater but can

provide accuracies on the order of 2 cm {Somers, 1991).

A disadvantage of SHARPS is the need for multiple cables from the surface ship to

the transponder field, which can cause difficulties when maneuvering a ROV in the area.

Another system, EXACT, was used by Yoerger and Mindell to control the ROV Jason in

the vicinity of an active hydrothermal plume at a depth of 2200 meters. The EXACT

system operates similarly to SHARPS and provides comparable accuracies but uses no

cable connections to the surface. Instead, the master unit on the ROV communicates with

the surface through a low-bandwidth serial link. Because there are no cable connections,

two-way travel times are used {Yoerger and Mindell, 1992).

The major advantages of a long-baseline system are its stability and its accuracy

when conducting vehicle operations in deep water close to the bottom. Because the

ti-ansponder array is on the seafloor, it is fixed once placed and calibrated. Therefore, its

accuracy is improved over a less stable system. Since the an-ay of transponders is

deployed on the bottom near the area of operations, the difference in acoustic travel times

between each pinger and the vehicle will be greater than if all pingers were located close

to the surface, which also enhances accuracy. Finally, the acoustic net can be made as

large as desired. By using lower frequency systems, the maximum range to the ROV can

be greatly increased at the cost of reduced accuracy and decreased update frequency.

There are two major disadvantages of this method. First, because a transponder

net must be deployed on the bottom and calibrated, significant preparation time is required

before ROV operations can begin. Second, vehicle operations are restricted to the vicinity

of the acoustic transponders. Therefore, for large-area surveys, this method is impractical.

In this case, a short-baseline system may be used (Morgan, 1978).
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2.5.2 Short-Baseline Systems

The principles of operation of the short-baseline systems are similar to those

having a long baseline. In fact, a system such as SHARPS can be used in either

configuration. The obvious difference is that instead of the acoustic net transponders being

placed on the ocean floor, they are attached to the surface ship. This method eliminates

some disadvantages of the long-baseline system. Since the transponders are mounted on

the surface vessel in known locations, no initial surveying is required. Also, the ship can

be moved wherever operations are desired, so the range limitations of a bottom-fixed net

are negated.

Like the long-baseline system, the short-baseline system measures the difference

in arrival time from the acoustic pinger on the ROV to each transponder on the ship.

However, becau.se the geometry of the ship-mounted aiTay is precisely known, this

difference in amval times can be converted into an angular direction from the plane of the

array to the ROV. Since the ROV is tethered to the ship, the time of each ping is also

known precisely. Therefore, both bearing and range information are available, yielding the

location of the ROV {Morgan, 1978).

However, the short-baseline system tends to increase position errors because of the

more sensitive geometry. Also, because the transponder array is now mounted on a

moving platform, surface positioning errors can become the dominant factor in

determining vehicle location. The importance of accurately measuring the surface ship's

heading, pitch, and roll also become vital, especially when the range to the ROV

increases, since eiTors in these measurements result in an enoneous measurement of

bearing to the ROV {Sonwrs, 1991).

2.5.3 Ultrashort-Baseline Systems

The ultrashort-baseline system uses a hydrophone an-ay mounted either on the

ROV or the surface ship, with only a single pinger on the other platfonn. Normally, the

hydrophone an-ay is on the surface ship. Phase comparisons rather than travel-time

measurements are used to detennine the position of the vehicle. The acoustic pinger sends

out a pulse, and the processor connected to tlie hydrophone array measures the phase
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difference in the signals received at each hydrophone. This phase difference is converted

into a bearing to the pinger. For tethered vehicles, the time of travel can also be computed

as in the short-baseline case to obtain range. Therefore, ROV position can be determined.

To measure phase difference accurately, the receiving hydrophones are mounted within

one wavelength of each other (typically, only cenumeters apart), making the array small

enough for use on ROVs.

This system has two major disadvantages. First, the installation must be extremely

precise, which can be difficult. Second, multipath arrivals of the sound waves via bottom-

bounce or surface-reflection can cause false phase measurements resulting in large

inaccuracies. In his 1992 thesis, Brian Tracey explores techniques to minimize the effects

of this multipath interference (Tracery, 1992).

2.5.4 Other Positioning Systems

Besides traditional acoustic positioning systems, other possibilities for

determining vehicle position exist. For example, research is being performed at DSL and

other laboratories in making teiTain-relative mapping feasible. This method entails

matching bottom features seen by the vehicle with known features from an existing

database, or with features already found and mapped by the vehicle. Depending on the

features present in the vicinity, the quality of the databa.se, and such system characteristics

as sonar frequency, position fixes with accuracies on the order of meters are foreseeable.

2.5.5 Position Information Required for Use in the Kalman Filter

For the pui-poses of constructing the filter, any of these system configurations can

be used, but allowances must be made to account for the differences between them. A

longer range system, using lower frequencies, is typically less accurate. Additionally,

since the frequency of fixes is limited by the speed of sound in the water, the longer range

system will obtain fixes less frequently. The filter must be adjusted accordingly.
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2.6 Gyro

The gyro used at DSL is manufactured by Humphrey, Inc. It is a standard

uncompensated model that provides continuous heading infonnation. It maintains

excellent short-term precision with little "jitter," or high-frequency fluctuation. However,

because it is uncompensated, it has a high drift rate that tends to fluctuate from three to six

degrees per hour. This drift introduces a significant and variable bias that can have a

debilitating effect on the Kalman filter, which assumes only zero-mean Gaussian errors.

To correct for this bias, it is included in the filter state space so that it can be condnuously

adjusted as necessary based on other heading measurements.

2.7 Flux-Gate Magnetic Compass

The magnetic compass used at the DSL is the C-lOO, manufactured by KVH

Industries, Inc. It consists of a toroidal fiux-gaie sensing element with an associated

electronics board. The sensor element is a saturable ring core, which floats in an inert fluid

so the sensing element remains horizontal. Windings suiTOund the lexan housing of the

sensor element, electrically driving the coil into saturation. Secondary windings then

sense pulses generated by the horizontal component of the earth's magnetic field (KVH,

1992).

The compass provides heading information at 10 Hz. The manufacturer's

specifications list the accuracy as 0.5°, with a 0.1° resolution. However, there are three

major obstacles to achieving this accuracy when the compass is mounted on a vehicle.

First, the magnetic compass is referenced to magnetic north rather than true north.

Therefore, the difference between true and magnetic noith, or variation, must be

compensated for prior to using the heading infonnation for the filter. This variation is

dependent on the location of the vehicle. While the average variation in an area can easily

be obtained from the pertinent navigational chart, the actual compass reading can be

affected by local concentrations of iron beneath the bottom of the sea. Since the vehicle is

usually operating within 200 m of the ocean bottom, where local magnetic disturbances
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can be present, performance of the magnetic compass must be monitored to ensure that

any magnetic disturbances ai-e recognized.

The second en^or is deviation, or the difference between a perfect magnetic

compass and the compass in use. This is influenced by the construction of the compass as

well as the presence of feiTous metals on the vehicle in the vicinity of the compass.

The third source of en'or is more problematic. Whenever the vehicle's thrusters are

used, the resulting magnetic field from the energized motors affects the output of the

compass, resulting in output instability until the thruster-induced magnetic transients

decay. For large-area mapping operations, the vehicle operates mosdy on long, straight

legs, so the effects of thruster-induced en^ors are minimized. Operations requiring more

frequent maneuvering degrade compass accuracy accordingly.

The characteristics of the magnetic compass are the opposite of the gyro: it does

not drift with time but does exhibit significant shori-tenn fluctuations. Becau.se of its lack

of drift, it can be used as a reference to reset the gyro when required. However, care must

be taken to ensure that the magnetic compass is settled out when performing the reset.

Most importantly, the vehicle thrusters should not be in operation during this procedure to

avoid the subsequent error in compass heading output. As for the gyro, magnetic compass

bias is included in the state .space to provide a continuously updated estimate of its value.

2.8 Inclinometer

At DSL, the single-axis Wat.son inclinometer with angular rate sensor is u.sed to

provide pitch and roll information. This unit combines accuracy and reliability with small

size and low power requirements, making it ideal for vehicle operations.

The inclinometer uses a rate sensor and an integral vertical reference. A position

output is obtained by integrating the angular rate output. By comparing this signal with the

vertical reference, an eiTor signal is generated. This error signal is filtered and sent back to

the rate sensor as a bias. The system is also damped. With the overall sy.stem, the effects of

inertia, damping, and short-term accelerations are reduced.

The angular rate sensor uses two piezoelectric bender elements, which are

resonantly driven in opposite directions. Rotation causes a bending force, which is
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Fig. 2-7. Accelerometer sensor exploded view (Cady, 1984).

demodulated to produce the rotation rate. The veitical reference uses a liquid-capacitive

element. With these components, the system has no moving parts, which increases

reliability. Overall, the system weighs less than eight ounces, making it easy to mount on a

ROV (Watson, 1990). To obtain the necessary data, two of these units are used on the

vehicle, mounted orthogonally. One provides pitch, the other roll.

2.9 Systron Donner MotionPak (Inertial Motion Unit)

The Systi'on Donner MotionPak provides the final sensor measurements required

for the Kalman filter. It consists of two pans: the linear accelerometers and the angular

velocimeters.

2.9.1 Accelerometer Operation

The linear accelerometer used for vehicle navigation in this application is the

Sundstrand Data Control Q-Flex® accelerometer (see Fig. 2-7). Acceleration produces a

torque on the sensor's proof mass. A detector measures the displacement of the mass and

produces a proportional output voltage. The resultant signal is amplified and fed to a

torquer coil fixed to the proof mass. This current in the coil provides a restoring torque to

balance the applied acceleration. The current also goes through a load resistor, generating

31





Iinwwiiimm

TorqiM

Motor

C=

JC^" DvlKlor
OKUhtor

C^McWv*
Oatodor

S«<vo
Amp

S«ryo Loop

Comp*nutlon

^4•twori(

Output
-O (Vo(t»/B)

Fig. 2-8. Accelerometer system functional diagram {Cady, 1984).

the output voltage for the detector {Cody, 1984). See Fig. 2-8 for an overall system

schematic.

2.9.2 Angular Velocity Measurements

Angular measurements are provided within the IMU using the Systron Donner

GyroChip''''''^ This device uses a vibrating quartz tuning fork to sense angular rate by

acting as a CorioHs sensor. The vibrating fork drives a similar pickup fork that produces

the output signal. These two forks, along with their support flexures and frame, are made

from a wafer of single-crystal piezoelecUMC quartz. The drive tines are driven by an

oscillator that causes the tines to move toward and away from each other at high

frequency. Each tine has a coriolis force acting on it given by

F = 2mcox V/-,

where

m is the tine mass,

CO is the input rate,

Vy is the instantaneous linear radial velocity.

The forces generated are perpendicular to the plane of the fork assembly at each of

the tines and in opposite directions, yielding a torque proportional to the input angular

velocity. The pickup tines respond to the oscillating torque by moving in and out of the

plane, causing output signals to be produced by the pickup amplifier (Systron Donner,
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1993). A separate unit is provided for each axis, resulting in independent measurements

for pitch rate, roll rate, and yaw rate.
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Chapter 3

Development Of The Kalman Filter

Model

3.1 Characteristics of the Linear Kalman Filter

The purpose of the Kahnan filter is to produce an unbiased, minimum variance,

consistent estimate of a quantity.r based on a set of measurements, z, where the

relationship between these variables can be represented by

Z = Hx + V

.

Therefore, z is a linear combination of the elements of the vector .v, plus random noise

represented asv {Gelb, 1974). The desired properties of such an estimate, as delineated

above, are:

Unbiased: the expected value of the estimate is the same as that of the actual quantity

being esdmated.

Minimum Variance: the error distribution of the estimate is less than or equal to that of

any other unbiased estimator.

Consistent: as the number of measurements increases, the estimate converges to the

true value of the quantity being estimated.

If the noise is Gaussian and the relationship is linear, the Kalman filter has been proved to

meet these criteria (Gelb, 1974).

An additional characteristic of the Kalman Filter is that it is recursive, which

means that new esfimates can be computed without storing past measurements. Instead, all

previous information is summarized in the current estimate and associated error

covariance matrix. This recursiveness allows real-time processing of data without

excessive memory storage requirements or computational burden.

34





3.1.1 System Model

For a given real system to be represented using a Kalman filter, it must be put into

a standard form. The two governing equations of the system model are:

X = A.X + Gw + Lu

and

z = C.x + Dij + V,

where?/ is a deterministic control input, m' is a random forcing function with error

covariance Q , and v is the measurement noise with enor covariance matrix R . A,G, L, C,

and D are matrices describing the relationship between the different vectors.

The first equation states that the rate of change of the system parameters can be

predicted using a linear combination of the present pai'ameters and a linear combination of

control inputs. The second states that the measurement vector, z , is a linear combination

of the system parameters plus a linear combination of the present control inputs. Both

equations include the effects of noise by virtue of then' andv terms.

3.1.2 System Model Dynamics

To produce an appropriate Kalman filter model, the stale variables that make up

the vectors.!' andz must be defined. The vector.v includes all parameters necessary to

model vehicle behavior. The vectorz includes all measurements that can be obtained from

the sensors as described in Chapter 2. Both must be determined using knowledge of the

system dynamics and the available sensors. In this case, there are two different types of

model propagation, one for vehicle motion and one for attitude.

The primary control forces are those induced on the vehicle by the tow cable.

However, these are virtually impossible to predict due to the realities of the towing

operation. First, although the surface ship is proceeding predominantly on a known

course, wave action produces continuous variations in pitch, roll, and heading. These

variations are all propagated down the tow line to some degree, despite various techniques

used to isolate vehicle motion from ship motion. Even if these forces on the tow cable at

35





X-Acceleration

fxi

X-Velocily

fx4
X-Position

XI X4 X7

Fig. 3-1. System model for X-posilion propagation.

the surface could be measured precisely, the cable forces at the vehicle, several thousand

meters away, are difficult to model.

The vehicle model is also ill-defined. Changes in equipment configuration on the

vehicle, which affect drag and added mass, can have significant effects on the vehicle

dynamics. Also, when cable forces induce a change in vehicle attitude, the force of the

water acting on the moving vehicle coupled with the designed self-righting characteristics

of the vehicle combine to restore the vehicle to its mean velocity and attitude. Thus, the

vehicle frequently follows a damped sinusoidal path in both vertical and horizontal

directions. Therefore, the predominant characteristics of vehicle motion are:

1. It is extremely unpredictable due to the inability to measure cable forces and to

properly model vehicle dynamics.

2. The vehicle tends to return to its mean attitude after a cable disturbance has sub-

sided.

As a result, the vehicle accelerations are be considered to be influenced by a white-

noise disturbance and control inputs are not modelled. To help compensate for any errors

in these assumptions, linear accelerations are measured by the strapdown inertial motion

unit (IMU) to provide cun-ent, though noisy, actual accelerations to the filter algorithm.

For thruster-controlled vehicles, control input is often better defined. In these

circumstances, operator-controlled inputs can be added as a deterministic vector u , with

an associated matrix L to mathematically relate the inputs to their effect on the state

vector.

To estimate vehicle position, the system model is as shown in Figure 3-1. X-

position (latitude) is shown; Y-position (longitude) and Z-position (depth) follow the same

principles.
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The system model for the angular positions is similar but requires only one

integrator. Again, the system is modelled as disturbed by white noise. The angular

velocity output of the IMU is used as the measurement for angular velocities (roll, pitch,

and heading), shown in Figure 3-2.

3.2 Sensor Outputs and Their Relationship to the

State Space

Before proceeding to the specifics of the state space model for this application,

some details of the sensor data output must be described. To produce a useful Kalman

filter for this application, it is essential to identify exactly what information is available.

Additionally, an expected frequency for receipt of data by the filter is necessary.

During vehicle operations conducted by DSL, four different data packages are

collected as the appropriate data are available. These four data streams must be translated

into a format usable by the Kalman filter, and any potential gaps in receiving data must be

anticipated and accounted for in the filter algorithm.

3.2.1 IMU Package

The IMU package consists of the linear accelerometers and angular velocimeters.

As is the case for the other three data packages, the raw data stream is translated into a

usable form for tjhe filter using a relatively simple program written in C language. The

IMU package provides data at a rate of approximately 10 Hz. The IMU's outputs are all in

sensor coordinates, which must be converted to body coordinates for use in the filter.
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3.2.2 Attitude Package

The attitude package combines the outputs of the depth detector, inclinometers,

gyro, and compass to provide depth, roll, pitch, and heading. While individual sensors

providing data operate at various frequencies, the overall package operates at

approximately 5 Hz.

3.2.3 Doppler Velocimeter Package

Included in each data stream from the doppler velocimeter is considerable detail

about the operator-selected parameters being used by the velocimeter. However, only the

body-referenced velocities in each onhogonal direction and the velocity error

measurement are used by the Kalman filter. Again, a C program is used to translate the

Hex-ASCII output into usable data, and the sensor-referenced outputs must be converted

to body coordinates.

As discus.sed in Chapter 2, the output frequency of the doppler velocimeter

depends primarily on the number of pings per ensemble and the altitude of the vehicle

above the bottom. For the sidescan-sonar mapping configuration employed during the

DSL- 120 deployment used for this thesis, the doppler velocimeter usually provided data

approximately every 2-3 s. However, this time period was occasionally shortened or

lengthened due to changing altitude and varying bottom conditions.

3.2.4 Positioning System Package

The positioning system has the most irregular of the four data streams received for

vehicle navigation. Frequency of data reception depends on the type of positioning system

in use. For systems using an acoustic transponder array, such as the long-baseline or shon-

baseline systems, this depends primarily on the distance from the vehicle to the acoustic

transponder aiTay. However, whenever data acquisition is secured (usually when a given

track line is completed until the towing ship has maneuvered to get into position for the

next track line), the positioning system is frequently secured as well, since precise

knowledge of vehicle location is unnecessary except when obtaining sonar data. Of more

concern is a loss of position information during sonar operations. There are several
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different possibilities tiiat can cause such a problem. A large bottom feature, such as a

ridge, can physically block the path from the acoustic array to the vehicle. Another

significant factor is the sound-velocity profile (SVP), which dictates the path sound waves

will travel in the water. With an unfavorable SVP, acoustic position information can be

lost only a short distance away from the transponder array.

For systems not tied to an array, such as a terrain-relative positioning system, the

frequency of obtaining information will be highly unpredictable since it depends on the

available terrain and the quality of the database. It is likely that there will be frequent long

gaps between fixes and that these gaps will exist whether or not sonar operations are in

progress.

This irregularity of position information is an imponani rea.son for developing a

Kalman filter using the doppler velocimeter infonnation. By filling in the gaps in posiuon

fixes with an accurate estimate of vehicle position, the .sonar data quality can be gready

enhanced.

Like the attitude data stream, the position data stream is typically easy to decipher.

The components used for this Kalman filter are the X and Y positions (in meters from a

reference point) and the time the datuin was obtained.

3.3 Defining the State Space

Now that the system dynamics and available measurements are clearly idenfified,

the state space can be defined. Once the.v vector is labeled, the Kalman filter model can be

mathemancally developed. Using the coordinate system axes specified in Secfion 2.2, the

components of the state vector.v are defined as:

XI: X-acceleration (All accelerations are in body, or vehicle-referenced, coordinates)

X2: Y-accelej-ation

X3: Z-acceleration

X4: X-velocity (All velocities are in body, or vehicle-referenced, coordinates)

X5: Y-velocity

X6: Z-velocity
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X7: X-position (All positions are in earth-referenced coordinates)

X8: Y-position

X9: Z-position

XIO: Roll rate (Defined as rotation about the vehicle's Y-axis; positive roll is defined

as port side up)

XU: Pitch rate (Defined as rotation about the vehicle's X-axis; positive pitch is

defined as bow up)

X12: Yaw rate (Defined as rotation about the vehicle's Z-axis; heading is measured

with normal compass orientation. To maintain the right-handedness of the system, this

is converted within the Kalman filter algorithm to measure positive heading rate,

usually called yaw rate, as counterclockwise, rather than the nonnal compass direction

of clockwise)

X13:Roll

XI 4: Pitch

X15: Heading

X16: Gyro bias (Difference between gyro heading and tiiie heading)

X17: Magnetic compass bias (Difference between compass heading and true heading.

It includes both vaiiation and deviation)

Also, there is the measurement vector, r. When all four data streams are available to the

filter, the components ofz coiTespond exactly to the components of the state vector x,

with the addition of two heading measurements from the gyro and compass. As discussed

later, however, this is seldom the case due to the variations in data stream frequency.

3.4 Nonlinearity and the Extended Kalman Filter

Unfortunately, the differences in coordinate systems between the various sensors

means that the model cannot be treated as linear. With vehicle accelerations and velocities

provided in body coordinates and positions provided in earth-referenced coordinates, a

coordinate transformation must be made between the two references to allow the data to

be used. This coordinate transformation is accomplished using standard trigonometric

equations that use vehicle roll, pitch, and heading to relate body coordinates to eaiih
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coordinates. This transfonnation is peifonned within the extended Kahnan filter algorithm

by altering the /\ matrix at each filter iteration as explained in Section 3.7.2.2

3.4.1 Choosing the Extended Kalman Filter

As stated in Section 3.1, the linear Kalman filter has been proved to provide an

unbiased, minimum-variance, consistent estimate of the state vectorx as long as the noise

is Gaussian. Noise considerations are addressed in Section 3.5.

To compen.sate for the nonlinearity of the system, several techniques are available.

Unfortunately, none of these can be proved to meet the same standards as the linear

Kalman filter. In order of complexity, three possible solutions are the extended Kalman

filter, the iterated extended Kalman filter, and the second-order filter (Gelb, 1974).

Because it is the simplest and incurs the least computational burden, the extended Kalman

filter is used to provide the state estimates for this application. As Gelb states.

There is no guarantee that the actual estimate obtained will be close to the truly

optimal estimate. Fortunately, the extended Kalman filter has been found to yield accurate

estimates in a number of important practical applications {Gelb, 1974).

3.4.2 Filter Propagation

The basic method of producing a slate estimate with the extended Kalman filter is

the same as for the linear version. First, some definitions must be provided:

.r {t\t) is the estimate of the .state vector using all data up to and including the present

time.

x{t + \\t) is the predicted e.stimate of the state vector at the time of the next filter

update step using all data up to and including the present time.

x{t\t-l) is the predicted estimate of the state vector at the present time using data

up to and including tiie time of the last filter step. It is the same as the.v {t + \\t)

calculated after the previous filter update step.

P {t\t) is the eiTor covariance matrix of the state vector using all data up to and

including the present time.

P {t + \\t) is the predicted covariance matrix of the state vector at the time of the next

filter update .step.

P (t\t-\) is the predicted estimate of the error covariance matrix at the present time
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using data up to and including the time of the last filter step. It is the same as

theP (r + \\t) calculated after the previous filter update step.

For the linear Kalman filter, the error covariance matrices are deterministic and

exact based on the assumptions used for input and measurement noise in the filter model.

Therefore, they provide the current uncertainty of each variable in the state vector,

assuming the model is correct. For the extended Kalman filter, the error covariance is only

an approximation since the actual eiTor covariance matrix cannot be calculated due to the

nonlinearity of the system, a condition that can theoretically cause filter divergence.

However, the extended Kalman filter has been found to work in numerous practical

applications, with the only test being whether the filter works in actual use (Gelb, 1974).

As demonstrated in Chapter 4, the good results using simulated and actual data support the

assumption that the extended Kalman filter is an appropriate choice for this applicadon.

Forfilter propagation, current estimates of.v(r|/- 1) D.ndP {t\t- 1) are available

from the previous filter iteration. As explained in Section 3.1.1, the governing equations

for the system model are:

-V = A-X + G\v

and

z = Cx + Dij.

ThQDu term is called the feed-forward tenn and represents the immediate effect of

control inputs on output. As discussed earlier, control inputs are not modeled.

3.4.2.1 Update Step

The first step in the filter propagation is to detennine the innovation term /, which

is defined by the equation:

/ = .-- (Cx.v(r|r-1)).

This is the difference between the expected measurement vector obtained from the state

esdmate.r (f + \\t) calculated during the previous filter update step and the actual
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measurement vector derived from the vehicle's sensors. Next, the covariance matrix of

innovation, v , is calculated:

V = CxP{t\t- 1) xC' + /?,

where/? is the error covariance matrix of the measurement vector, z . The Kalman gainA:

is then calculated:

K = P(t\t-\) xCxinviv) .

The next step is to calculate the new state vector estimate using the value of.v (r + l\t)

determined during the previous filter update step:

x{t\t) = .\it\t-\) +KxI.

Finally, the new eiTor covariance is computed:

P{t\t) = (Iclent-KxC) xP{t\t-\) X (fcfent-KxC)' + KxRxK'
,

where Ident in this case is the identity matrix with the same dimensions as KxC

.

3.4,2.2 Prediction Step

For the standard Kalman filter, the predicted values of the state vector and the error

covariance matrix for the next time step using data up to the present time are now

calculated. Since the Kalman filter is implemented as a discrete instead of continuous

filter, a conversion of the propagation equations from their continuous fomis given in

Section 3.1.1 to their discrete counteipans is perfonned. This transfonnation uses the

MATLAB function "c2d", which takes the A and G matrices and the filter time step as

inputs and provides the discrete matrices(j) (translation of the A matrix) andf (translation

of the G matrix) as outputs. Once the conversion to discrete matrices is made, the

predictions are computed:

x{t+\\t) = ([) x.v(/|r) + Fx u'.
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P{t+[\t) = (^xP{t\r) x(^' + rxQxr'

,

whereQ is the error covariance matrix for the white noise, vv

.

3.4.3 Implications of the Extended Kalman Filter

To obtain a new state estimate, the extended Kalman filter uses a first-order Taylor

series expansion about the current state estimate to linearize the problem at each update

step. In the steady-state version of a linear Kalman filter, the Kalman gain A!" is a constant.

For the extended Kalman filter, it must be recomputed at each update step {Gelb, 1974).

3.5 Modeling System Noise

Prior to using the Kalman filter, predictions must be made concerning the

estimated errors in the sensors used. All data used by the filter are weighted based on these

predicted en-ors. A measurement considered very accurate has a strong effect on the state

estimate. For example, if position information is considered very accurate relafive to

heading and velocity, the estimates of the latter two are altered from their measured values

as necessary to ensure that the estimate of position is close to the measured value. Poor

position information places more reliance on heading and velocity measurements. To

ensure optimum filter performance, it is essential that the errors be modelled as accurately

as possible.

Another important assumption in the Kalman filler is that any eiTors in the control

input vector and the measurement vector are unbiased and follow a Gaussian distribution.

For nearly all cases, the assumption of Gaussian errors is valid considering the

characterisfics of the sensors employed. The prominent exception is the positioning

system. While normally the errors can be treated as Gaussian, occasionally the system

produces anomalously large en^ors in position. If these position fixes are treated by the

filter as valid, improper changes in the elements of the slate vector are made, resulting in

rapid filter degradation. Identifying and ignoring these bad data is an integral part of the

modified filter algorithm.
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3.5.1 Eliminating Non-Gaussian Position System Errors

The grossly inaccurate position measurements occasionally produced by acoustic

positioning systems are frequently refeiTed to as "flyers". Removing them from the

database is vital, but care must be taken. If the allowable tolerance between estimated

position and measured position is too tight, valid position fixes can be rejected by the

filter. Once this divergence between estimated and actual position occurs, the likelihood of

ever accepting another position fix is greatly reduced. This problem is most acute when a

long intei*val exists between fixes. If vehicle heading or velocity is estimated inaccurately

during this interval, the difference between estimated and actual vehicle posifion grows. If

the discrepancy becomes large enough, when position information is once again obtained

it is considered to be a llyer and rejected. With no further position information, the state

estimate of position becomes increasingly inaccurate.

To provide a window that is likely to reject fiyers while accepting all valid fixes,

the standard allowable enxir is established at ten times the standard deviation of the

position system. To provide for time-dependent system errors, an addition is made to the

allowable error based on the time since the last posifion system fix, given by

Addiuonal allowable error = O.lm x Ar,

where

At = Time since last posifion fix in seconds.

Fixes that yield a difference between the cuirent estimated position and the position

system fix of greater than this total allowable error are rejected. The method for

determining the standard deviation is discussed in Section 3.5.3.2.

The decision to use a cutoff point of ten times the standard deviafion is noi based

on any formula. It is large enough to admit reasonable data, but still should reject any

flyers. To help prevent filter divergence between esUmated posifion and valid fix

informafion, a count is maintained within the program of the number of rejected fixes. By

monitoring this count during vehicle operations, (ilter divergence can be recognized by

confinuous fix rejection. The window of acceptance can then be adjusted as necessary to
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allow the filter to accept new fixes and thus change the state esumates as appropriate to

reflect the valid position information.

3.5.2 Random Forcing Function Noise

The random forcing function noise is expressed by the error covariance matrix Q

.

It is a 6x6 matrix since there are six terms that drive the system, three linear accelerations

and three angular velocities. It is all zeros except on the main diagonal since each of these

parameters is considered to be independent of the others, making the cross correlation

terms zero.

The magnitude of the en-or covariance terms must be estimated from knowledge of

the vehicle dynamics accounting for tow ship mofion, tow line motion, and vehicle

dynamics. For this filter, the standard deviation of the linear accelerations is set at 0.2 m/

s , and that of the angular velocimeters at 2 "As. These constants are incorporated into the

KFSetup program.

3.5.3 Measurement Uncertainty

The measurement uncertainty is incoiporated into the 17x17 error covariance

matrix R . The portions of this matrix applicable to each sensor are addressed separately

below.

3.5.3.1 Linear Accelerometer Uncertainty

The uncertainties in the linear accelerometer measurements have two sources. One

is the noise and bias inherent in any instrument, which can be determined by test or by

using the manufacturer's specifications. The other is caused by the displacement of the

sensor from the vehicle's reference point for the body-referenced coordinate system.

As shown in Figure 3-3, the vehicle's center of rotation and therefore its most

convenient body-coordinate reference point is the point of attachment to the tow line.

Assuming the vehicle is not experiencing an actual linear acceleration to the left (-X

direction), the X-acceleromeler would still sense acceleration if angular velocity in the

yaw direction (change in heading) were non-zero. This phenomenon is governed'by the

following coupled equations {Catford, 197X):
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Fig. 3-3. Linear accelerometer output caused by angular velocity.

a^ = u + qw -vr + Uj^i-q^-r'^) + ay{-r + pq) + a^{q+ pr) +^'sine

a-y = V - pw + iir + a T(ir + qp) + (iy{- p^ - r^) +a~{-p + qr) -^'sin(t)cos0

a, = w + pv -qii + a ^{- q + rp) + (iy{p + rq) + a ^ {- p^ - q'^) -^t,'cos0cos({)

where a^ , ay , and a- are the outputs of the accelerometers; (ij^-, (i^„ and a-, are actual

linear accelerations; //, \\ and vv are velocities; (() = roll; 6 = pitch; p, q, r are the angular

velocities; g is the gravity vector.

To simplify the filter algorithm, this addition to linear acceleration measurements

due to angular velocities is ignored. The justification is twofold: first, for a towed vehicle

the magnitude of the linear acceleration caused by the angular velocities is small

compared to actual linear accelerations; second, over a relatively small time interval, the

angular velocities have a mean of zero due to the damped sinusoidal mofion of the vehicle.

Therefore, any errors induced by this simplification are cancelled out when the angular

velocity reverses direction. As a result, the standard deviation for the linear acceleration

measurements are set at 0. 1 m/s~.

3.5.3.2 Doppler Velocimeter Uncertainty

As part of its data stream, the doppler velocimeter provides an error velocity. This

error velocity is calculated by the velocimeter using a proprietary RDI Instalments

program. Factored into this calculation are the depth cell size, the altitude of the vehicle

above the bottom, the vehicle velocity, and the number of pings per ensemble {RDI, 1993).
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This en-or velocity is used by the Kalman filler program as the standard deviation for

velocity measurements. Therefore, these elements of the/? matrix vary with each filter

update step.

3.5.3.3 Position System Uncertainty

The standard deviation for acoustic positioning systems is determined based on

operator knowledge of the system and takes into account such parameters as system

frequency and distance from the transponder airay. It is established prior to filter operation

as part of the KFSetup program but can be changed during operations if desired. For other

systems, such as terrain-relative position fixes, the standard deviation can be made part of

the data stream based on the estimated accuracy of the fix and can therefore be vaiied from

fix to fix.

Of all the measurement uncertainties, this requires the greatest attention. If it is

assigned to be too large, the Kalman filter does not weight position fixes enough, resulting

in potentially significant eirors in the estimated position. This can adversely affect the

quality of any sidescan-sonar or video data obtained during vehicle operations.

Conversely, if it is set too small there is an increased danger of creating sufficient

divergence between the estimated and actual positions to cause invalid position fix

rejections.

3.5.3.4 Depth Sensor Uncertainty

When operating in deep water, the depth sensor has one important drawback:

because of the limitations of its computer bit capacity, it can only resolve depth to the

nearest 0. Im. Coupled with the normal fluctuations of the instrument, this tends to make

the output vary frequently within a ().4-m band. Therefore, the standard deviation for

deep-water operations is set at O.lm, which places nearly all fiuctuations within two

standard deviations of the actual value. This standard deviation can be reduced

appropriately for shallow-water operations when the resolution is higher.
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3.5.3.5 Angular Velocimeter Uncertainty

Estimation of the angular velocimeter uncertainty is fairly straightforward. Prior

testing or manufacturer's speciiicalions are used to determine the expected standard

deviation. For the instruments in use, this is set at ().5"/s.

3.5.3.6 Pitch and Roll Uncertainty

Like the depth sensor, the pitch and roll sensors are digital and therefore have a

noticeable minimum resolution. For these sensors this resolution is 0.1", and normal

fluctuations in a 0.2" band are observed. To account for unmeasurable biases and to

prevent the filter from weighting these measurements too heavily, a standard deviation of

0.5" is assigned.

3.5.3.7 Heading Uncertainty

Heading is measured directly by the magnetic compass and the gyro. For each, the

applicable fonnula is

True Heading = Indicated Heading - Sensor Bias .

Since the bias for each sensor is modeled within the Kalman filter as a state variable,

additional measurements improve the estimate of bias and thereby make the estimate of

true heading more accurate.

The standard deviation of the magnetic compass is constant and is set at 0.5" to

account for nornial (luctuations. If frequent thruster operations are envisioned, this

standard deviation may have to be increased due to the effects of the magnetic fields

induced during thruster operations. Due to its greater stability, the gyro has a constant

standard deviation set at 0.1".

To provide an independent measurement of true heading, which is necessary to

correct sensor biases, two different techniques are possible. For a highly maneuverable

vehicle operating in a small area, an acoustic transponder can be mounted both at the front

and at the back of the vehicle. By comparing the positions of each transponder, true

heading can be derived. The standard deviation for this technique depends on the accuracy

of the positioning system used.
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Calculated heading

based on least-

squares fit

Fig. 3-4. Calculation of true heading and standard deviation.

For a towed vehicle, vehicle motion can be assumed to be nearly entirely in the

direction of the vehicle's front. Therefore, a measurement of true heading is obtained by

calculating a least-squares fit to the last four position fixes. Although the standard

deviation of this heading measurement is diflicult to calculate precisely, an approximation

is derived as follows (see Fig. 3-4).

After obtaining the least-squares solution, a separate heading measurement is

made between each adjacent pair of fixes (1 and 2, 2 and 3, 3 and 4). The difference

between each of these heading measurements and the overall least-squares measurement

is averaged. This average difference in heading measurements is considered to be the

standard deviation of the measurement. Although this is not precise, it has the desired

property of providing less standard deviation as the fix measurements become less

scattered from the best-fit track.

3.6 Establishing Reference Points and Initial Conditions

3.6.1Reference Points

To ensure correct matrix manipulations while avoiding round-off errors, MATLAB

works better with well-condiUoned matrices, which means that the elements of the

matrices are as close together as possible in terms of order of magnitude. To achieve this

conditioning, reference points for position and time must be established. These reference

values are subtracted from the actual values pv'wv to use in the filter. The filter uses only
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the difference between the reference values and the cuneni values, resulting in numbers

smaller by several orders of magnitude.

For X- and Y-positions, the Universal Transverse Mercator (UTM) system is used.

This system divides the oceans into rectangular grids with scales in meters. A suitable

reference point is chosen in the area of vehicle operations and included in the KFSetup

program.

The Z-position reference point is dependent on expected vehicle operating depth.

To achieve a right-handed coordinate system, the filter actually uses vehicle altitude above

or below the reference point rather than depth, but this coordinate system change is

imbedded within the filter algorithm. A reference depth near the expected operating depth

is chosen by the operator in the KFSetup program prior to commencing operations.

The final reference point is time. Each sensor package data stream contains a time

stamp with units of Julian days. The reference time for each day is the beginning of the

Julian day. Therefore, the time value used in the filter is always a fraction of a day.

3.6.2 Initial State Vector and Error Covariance Matrix

Prior to the first filter update step, the initial slate vector.t and error covariance

matrixP must be provided. Nonnally, the inifial sensor data obtained are used for the state

vector, and the predetermined/? matrix is augmented with the initial calculated variable

elements of/? (for velocimeter and heading measurements) to provide P . However, if

some other more accurate method is available for determining any of these variables, the

better value can be substituted instead.

3.6.3 Removing Known Biases

Of crucial importance in optimizing Kalman filter performance is the removal of

bias. Uncorrected bias provides a consistent source of enor in the state estimate vector and

must be eliminated as much as possible.

Because of its use of doppler to measure velocity, whereby zero frequency change

equates to zero velocity in that direction, the doppler velocimeter is relatively immune to

bias. Therefore, no attempt is made to compensate for it.
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The position information is also insensitive to bias, since the use of a reference

point automatically removes bias from the system. Once again, no bias correction is

needed.

The bias of the pitch and roll sensors is directly related to the precision of their

placement on the vehicle. Normally, the final installation of the sensors on the vehicle is

performed in the lab, which allows the sensors to be checked to ensure they are unbiased.

Therefore, no bias adjustment is made in the filter. If the sensors must be replaced at sea,

accurate measurement of pitch and roll on a moving ship is virtually impossible, so there

is no way to measure bias accurately. In this case, the sensor is mounted as precisely as

possible and the filter assumes unbiased measurements. Since pitch and roll are usually

rather small, the effects of undetermined bias on the coordinate transformations is

negligible.

Compensation for gyro bias and magnetic compass bias is discussed in Section

3.5.3.5. Additionally, any known initial bias is included as the initial condiuon of the state

variable for each heading sensor bias. Short-term effects on magnetic compass bias caused

by thruster operation cannot be calculated and are therefore ignored.

As discussed in Section 3.5.2, the biases inherent to the linear accelerometers and

angular velocimeters must be determined by laboratory testing. With the vehicle

motionless and with zero pitch and roll, the output voltage of each instrument can be

measured. The voltage caused by the gravity vector is calculated so as not to be removed

from the instmment measuring vertical acceleration, but the other measured voltages are

subtracted from the data. These biases are also included in the KFSetup program.

3.7 Changes Required to the Standard Kalman Fiher

In this application, there are three major changes that must be made to the standard

Kalman filter described in Section 3.4. First, due to the variability of the data update rate,

a constant filter update frequency is impractical. Second, the difference in coordinate

systems among the various sensors must be addressed. Finally, there are gaps in certain

data streams, especially for X- and Y-pt)sition fixes. The (ilter must be able to function

despite these gaps to provide continuous state estimates.
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3.7.1 Adjustments Required Due to Varying Filter Update Rate

3.7.1.1 Determining the Desired Time Step

To determine the desired time step, competing objectives must be considered. In

support of a longer time step, there are two major arguments. First, adequate time must be

given to obtain the data necessaiy for the propagation of the filter. Second, the interval

must be long enough to permit real-time processing of the data.

There is only one counterpoint in support of a shorter time step, but it is a vital one.

If the time step is too long, the true vehicle dynamics will be lost, especially if significant

maneuvering is occuiring. Although a long time step may provide a reasonable

approximation of average vehicle position and attitude, the lack of precise, continuous

information will degrade any sidescan-sonar or video imaging accuracy. A compromise is

necessary.

Of the four data packages described in Section ."^.2, only two have update rates that

are both consistent and rapid. The IMU package produces data at approximately 10 Hz,

while the attitude package operates at about 5 Hz. Therefore, the Kalman filter is designed

with a minimum requirement of having data from these two packages prior to performing

a filter update step. As an overall compromise, a time step of 0.5 s is used. This is short

enough to capture the system dynamics, but long enough to allow real-lime processing of

data and to ensure both IMU and attitude package information is normally available.

To prevent filter processing error in the event of an inteiTuption in data flow, the

filter algorithm checks to ensure that at least one sample of each data package is available

within the 0.5 s of data to be processed. If either is missing, the filter continues to accept

new data unul both are present. As soon as this condition is met, the data obtained from

each sensor during that time step are averaged and the next filter update step is performed.

3.7.1.2 Predicting the Next State Vector and Error Covariance Matrix

In the standard Kalman filter, the last step of filter propagation produces the

predicted values ot'x{t + \\r) and P {r + [\r) .As described in Section 3.4.2.2, one of the

inputs required for the conversion ['vom a continuous to a discrete matrix is the magnitude

of the time step. For this filter, that magnitude is unknown. First, it will probably not be

exactly 0.5 s, since the actual time step is the difference in time between the first and the
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last data received prior to 0.5 s elapsing. Second, if either IMU package or attitude

package data is not received during that first ().5-s interval, the filter algorithm waiLs until

the missing data are provided. Thus, the time interval could be considerably longer.

To con^ect for these varying time steps, a small change in filter mechanics is

required. Instead of computing the predicted values at the end of a given filter update step,

the filter algorithm waits undl the beginning of the next filter update cycle. Therefore, the

filter time step is known since the algorithm has already allowed 0.5 s to elapse and has

then checked for the two data streams, waiUng as necessary to obtain them. By allowing

the predicted values to lag until the next time step is confirmed, the continuous-to-discrete

conversion can be made accurately.

3.7.2 Coordinate System Transformations

Due to the difference in coordinate systems among the various sensors, two

separate calculations are required. Both use the current estimates of roll, pitch, and

heading as input. The first removes the effect of the gravity vector on the linear

accelerometer measurements. The second computes the currentA matrix used in the

prediction of the next state estimate and eiTor covariance matrix.

3.7.2.1 Removing the Effect of the Gravity Vector

To provide an accurate rellecUon of vehicle linear acceleration, the output of the

IMU package must be modified to remove the gravity vector bias. This vector^t,' is

assumed constant with a value of 9.8 m/s" poinUng in the -z direction in earth-referenced

coordinates. The filter algorithm uses the current state estimates of roll and pitch to

calculate the component of the gravity vector included in the output of each of the three

linear accelerometers. The effect of the gravity vector on x-acceleration is shown in Fig.

3-5 as an example. The calculations are as follows (({) = roll,a) = pitch, i^ = -9..S ):

Actual x-accelerafion = (Measured x-acceleration) -t-^'sincj).

Actual y-acceleration = (Measured y-acceleration) -j,'sinco.

Actual z-acceleralion = (Measured z-acceleration) -,t,'COS(j)cos(I3.
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Fig. 3-5. Effect of gravity vector on measured x-acceleration.

These calculations are actually approximations because the effect of one attitude

on the measurement of another is ignored. For example, as pitch increases the sensitivity

of the roll sensor is decreased due to the lessened gravity vector component on the

inclinometer's sensitive axis. In the worst case, a pitch of 90 degrees results in no

sensitivity to roll. For typical vehicle operations, during which pilch and roll are nomially

less than 10 degrees, the errors introduced by these approximations are negligible.

3.7.2.2 Calculating the A Matrix

As explained in Section 3.4.2.2, part of the prediction step of the filter update cycle

converts the continuous time A and G matrices into their discrete time counterparts.

Unlike the linear filter case, in this nonlinear filter the A matrix must be recalculated

during each prediction step.

To be more specific, the detailed version of the system propagation equation is as

follows. The A matrix is constant with the exception of the 3x3 portion identified with

"a ," because this portion of the A matrix propagates the change in vehicle position due to

the previously estimated vehicle velocities. Since vehicle velocities are body-referenced

and positions are earth-referenced, a coordinate transformation is necessary.

The current heading estimate, which is maintained in the traditional clockwise-

positive system used by the compass and gyro, is altered to a counterclockwise-positive

yaw angle to maintain a right-handed coordinate system. With units of radians, this yaw

angle is calculated by:
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The 3x3 nonzero matrix within the A matrix is computed as lollows. Required inputs are

'the cuirent state estimates ol' roll (0), pitch (co), and heading (k).

Element (1,1) = cos(t)cosK

Element (1,2) = sin O) sin (j) cos k- coswsinK

Element (1,3) = cosa)sin(j)C()SK + sincosinK

Element (2,1) = sinKcosc])

Element (2,2) = sino)sin(|)sinK + cos O) cos k

Element (2,3) = cosO)sin(j)sinK- sinwcosK

Element (3,1) = -sincf)

Element (3,2) = sinocosc])

Element (3,3) = coscocoscj)
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3.7.3 Varying the C Matrix with the Available Data

Section 3.7.1.1 describes the process by which the filter ensures it has both IMU

and attitude infomiation available prior to performing an update step. During this period

of accepting new data, doppler velocimeter and/or X-Y position information may also be

obtained. To perform the update step correctly in light of the available data, the filter

algorithm keeps track of which data are available prior to performing the update operation.

After averaging all data from each sensor, the C matrix must be computed for use by the

filter. As part of this computation, the measurement vector^; is also determined based on

which sets of data have been obtained.

After the first four position fixes have been obtained (and therefore true heading

infomiation is available with each subsequent fix), there are four possibilities for the C

matrix and measurement vector:

1. Only IMU package and attitude package data are available. The measurement vec-

tor is:

x-accelerafion

y-acceleration

z-acceleration

z-position

roll rate

pitch rate

yaw rate

roll

pilch

heading by gyro

heading by compas.s

and the corresponding C matrix is:
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reflecting the position in the stale estimate vector.^ of x-acceleration (xl), y-accel-

eration (x2), z-acceleration (x3), z-position (x9), roll rate (xlO), pitch rate (xll),

yaw rate (xl2), roll (xl3), pitch (xl4), heading (xl5), gyro bias (xl6), and com-

pass bias (xl7).

2. Both attitude package and XY position information are available but no doppler

velocimeter data. The measurement vector is:

x-acceleration

y-acceleration

z-acceleration

x-position

y-position

z-position

roll rate

pitch rate

yaw rate

roll

pitch

heading by gyro

heading by compass

true heading

and the corresponding C matnx is:
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3. Both attitude package and doppler velocimeter data are available but no XY posi-

tion infoiTnation. The measurement vector is:

x-acceleration

y-acceleration

z-acceleration

x-velocity

y-velocily

z-velocity

z-posilion

roll rate

pilch rate

yaw rate

roll

pitch

heading by gyro

heading by compass

and the corresponding C matrix is:

50





c =

1 {) (

()!()(

()()!(

(

(

(

(

(

(

(

(

(

{

) (

) (

) (

) (

1 (

) 1 (

) (

) (

) (

) (

) (

) (

) (

) (

)

)

)

)

)

)

)!()()

)()!() {)

)()()!

) 1

) 1

) {) 1 {)

) 1

) 1

4. The final case is when data are available from all senso

uses the same construction as the state vector.

•s. The measurement vector

x-acceleration

y-acceleration

z-acceleration

x-velocity

y-velocity

z-velocity

x-position

y-position

z-posilion

roll rate

pitch rate

yaw rate

roll

pitch

heading by gyro

heading by compass

true heading

while the C matrix is:
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By using this varying C matiix, the Kahnan (ilter mechanics remain the same for

each update step regardless of the available data. Additionally, the error covariance matrix

automatically reflects the data available. For each filter update step, each state variable's

error covariance is increased due to elapsed time, and then decreased if a measurement of

that state variable is available. If a given measurement is not available, the corresponding

state estimate has a greater error covariance than before. Similarly, available data reduces

the error covariance appropriately based on the assigned standard deviation oi' that

particular sensor output.

3.7.4 Incorporating Fading Memory

One problem with the standard Kalman implementation is filter "laziness". In a

completely observable system, the Kalman gain approaches zero as time goes to infinity.

Therefore, the filter ignores new data since it believes that it has essentially perfect

knowledge of all state variables. Changes in those variables caused by vehicle operations,

such as a change in course or velocity, are not reflected in the filter.
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Gelb provides a simple solution to this problem using recursive fading memory

filtering. To force the filter to continue using new data, the enor covariance of the

predicted state vector is artificially increased {Gelh, 1974). This is accomplished with a

simple addition to the algorithm for calculating P (t + l\t) . Now, the equation is:

Pit+[\t) = sX(^xP{t\r) x<^' + rxQxr',

with the only change being the addition of the s term, which is the fade factor. This is

calculated by

.V = exp (Ar/x) ,

where

At is the measurement interval (0.5 s),

T is the age-weighting time constant.

For this filter, the time constant is chosen to he 30 s to ensure a (ilter responsive to rapid

changes in vehicle parameters while still retaining sufficient memory. The resulting fade

factor is 1.0168.

As Sorenson and Sacks explain {Sorenson and Sacks, 1971), the use of this fade

factor does not affect the stability of the Kalman filter. The only disadvantage is that by

using the fade factor, the error covariance matrix is altered. Therefore, the eiTor

covariance matrix is no longer the best estimate of the error in the state estimate but only

an approximation.

3.8 Observability

If a system is completely observable, the state vector can be entirely determined

from the measurements. If the system is only partially observable, then any system errors

involving unobservable quanuties that propagate through the filter cannot be identified by

measurements. For example, if position is not observed, then any consistent eiTors in

velocity measurements will continue to increase the position error. In contrast, if velocity

is not measured but position is, velocity can still be observed due to its known effect on
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position. In the context of vehicle navigation, a partially observable system means that

there is no way to provide a reasonable estimate of the unobservable quantities. If that is

the case, the filter will be useless.

To be observable, the matrix [C'^\A'V\(A'^)-Ch . MA'^T^C'^] must have rank n

{Gelb, 1974). When all data are available, the C"^ matrix has 17 linearly independent

columns' by inspection, and the system is trivially observable. However, when fewer data

are available the observability changes. When only IMU package, attitude package, and

doppler velocimeter information is available, the observability matrix is no longer trivial.

Powers ofA greater than two yield only zero matrices and do not contribute to

observability. Eliminating zero columns and repeated columns.

[d\A^d\A^-d] =

[ {)

)!()() {)

)()!() {)

)()()!

) 1

) 1

)

)

) 1

) {) 1

) {) 1 {)

) {) 1

) 1

) 1

) {) {) 1

) {) -1

) {)

Y

A

5

a

(3

r {)

-1

The Gre^k lettersa, p, F, y, A, and 5 represent elements of the 3x3 coordinate

transformadon matrix. In this case, they do not add to the rank of the matrix since column

15 containing them is simply a linear combination of columns four through six, while

column 16 is a linear combination of the lirst three columns. Therefore, the rank of the

matrix is only 14, leaving three state variables as unobservable. Not surprisingly, two of
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the unobservable states in this case are X- and Y-positions. Without observing position,

there is no way to deteirnine if the estimates of velocity and attitude contain errors causing

divergence of the state estimates from the actual values. The third unobservable state

concerns gyro and compass bias. Without position measurements, true heading

measurements are impossible. While independent measurements of gyro and magnetic

compass headings allow the filter to observe the difference between the two biases,

without true heading measurements the actual value of either cannot be determined (since

the difference can be calculated, knowing one of these biases would permit calculation of

the other. Thus there is only one additional unobservable state due to the lack of true

heading information).

Similar calculations can be performed for the other two possible data

combinations. Lacking only velocity data, the system is observable since position

measurements can verify the accuracy of velocity estimates. Without X- and Y-position

information available at least occasionally, the filter cannot be expected to provide valid

estimates.
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Chapter 4

Kalman Filter Performance Using

Simulated Data

4.1 Purpose of Simulation

The initial tests of this Kahnan filter are performed using simulated data. This

allows simple modification of data parameters to evaluate filter performance under a

variety of conditions. Several tests are perfonned using the same basic data set. The

specific parameters for each test are explained in detail.

4.2 Data Generation

4.2.1 Method of Data Generation

The total time of the simulation is fixed at one hour. This provides ample time for

filter evaluation and coincides with the period used for the actual data evaluation

conducted in Chapter 5.

Generating a valid data set is a multistep process. First, the control inputs are

determined using reasonable values for linear accelerations and angular velocities. Then

the nominal standard deviations for the control input measurements and system

measurements ai'e computed, along with system initial conditions. These use the values

determined in Section 3.5, unless otherwise noted. For all simulated data, initial

conditions are found in Table 4-1.

To generate noise-free measurements in the appropriate coordinate system for each

sensor, first the attitude measurements are computed for the entire hour using the

MATLAB function "dlsim," with the angular velocity measurements as input. Using these

noise-free attitude computations, the vehicle-referenced linear accelerations are

transfonned into eanh-referenced coordinates using the coordinate transformation found

in Section 3.7.2.2. Next, "dlsim" is used again to provide earth-referenced velocities and
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Table 4-1: Initial Conditions for Simulations

Parameter Initial Value

X-Velocity

Y-Velocity 0.5 m/s

Z-Velocity

X-Position

Y-Position

Z-Positioii

Roll

Pitch

Heading 300°

Gyro Bias

Compass Bias -18°

positions. Finally, attitude is used to transfonn the computed velocities into the vehicle-

referenced coordinates used in the filter.

After these noise-free measurements are computed, noise is added using the

MATLAB function "randn,'' which provides a Gaussian distribution with the desired

vai'iance. Additionally, the frequency of data output from each sensor is determined. The

last step is to add desired gyro bias, compass bias, and any gyro drift.

4.2.2 Noise-free Data Used for All Simulation Tests

To provide a convenient basis for comparison among the tests, the same noise-free

data set is used for each. Figures 4- 1 through 4-4 provide a graphic display of a sample of

these measurements.
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4.3 Simulation Tests

4.3.1 Test 1: Accurate Initial Conditions

For the first test, doppler velocimeter readings are provided every 10 s and X-Y

position information every 100 s. The initial conditions provided for the state variables

match their actual values, including gyro and magnetic compass biases. Additionally, a

gyro drift of 5°/lir is simulated.

Figure 4-5 shows a comparison of actual to estimated position. Position data are

available frequently, allowing the filter to maintain a close match between estimated and

actual positions. Figure 4-6 provides a close-up of a smaller part of the data to allow better

resolution.

Estimating parameters with frequent data updates is relatively easy for the filter to

accomplish. For example. Fig. 4-7 shows a portion of the data set comparing actual and

estimated Z-position; Fig. 4-8 shows the same for roll. Heading is a more difficult state to

estimate due to the inherent biases of the available instruments, the gyro and the compass.

Figure 4-9 shows the estimate of heading throughout the data mn; Fig. 4-10 shows a
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Fig. 4-10. Actual and estimated gyro bias.
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comparison of actual and estimated biases for the gyro. With the frequent availability of

data, the filter provides a good estimate of the heading and associated biases. Overall, with

Gaussian noise and frequent data the filter performs well. Subsequent tests check its

performance under more strenuous conditions.

4.3.2 Test 2: Inaccurate Initial Conditions Combined with Position Data

Gap

For the second test, all parameters are the same except for those noted in Table 4-2.

Additionally, no position information is available for a 50()-s interval towards the start of

the run..

Table 4,2: Initial Conditions for Simulation Test 2.

Parameter Initial Estimate Actual Value

Compass Bias -24" -18"

Gyro Bias -7" 0"

Heading 307" 300"
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Fig. 4-11. Comparison of measured and estimated X-Y positions.

As can be seen in Fig. 4-11, the lack of early position eiTor combined with the

incorrect initial heading and biases causes some inaccuracies during the time without

position data. However, after position infomiation is again received the filter quickly

adjusts to correct itself.

The large error in the initial heading estimate is somewhat artificial since in actual

operation, the towed vehicle should normally be within a few degrees of the surface ship's

average heading. However, even with a large initial eiTor heading, gyro bias, and compass

bias all approach their actual values by the end of the hour, as seen in Figs. 4-12 through

4-14. If position infomiation had been available throughout the data run, the final

estimates would have been even closer.

4.3.3 Test 3: Estimation Without Doppler Velocimeter

The last test uses exactly the same parameters as test 2, except that no doppler

velocimeter information is included. Under these conditions, an estimate of the ^

importance of the velocimeter can be made. The same graphs are produced for
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Fig. 4-14. Estimate of magnetic compass bias.

comparison. As can be seen in Figure 4-15, the gap in position data combined with the

lack of accurate velocimeter information creates such a large error in position due to

velocity errors that all subsequent fixes are rejected by the filter algorithm. This renders

position unobservable, and filter divergence results. However, since the compass and gyro

are still producing independent sources of heading information, the filter is able to make

some corrections to bias. Without fixes to provide true heading measurements, the heading

does not converge to its actual value but uses a weighted average of the gyro and compass

measurements to minimize the error.
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Fig. 4-18. Comparison of actual and estimated gyro bias.
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Chapter 5

Kalman Filter Performance Using Actual

Data

5.1 Description of Data

The data used for this evaluation were obtained in July, 1994, during operation of

the DSL- 120, a towed vehicle mounting a sidescan sonar. Both data set.s used for filter

testing comprise approximately one hour of navigational sensor information. Due to the

specific characteristics of the data package, two modifications were made to the Kalman

filter algorithm to allow proper processing.

First, gyro data were not obtained. Therefore, only the magnetic compass is used

as the heading sensor for this data. As a consequence, the order of the filter is reduced by

one due to the removal of gyro bias as a state variable.

Second, analysis of the data reveals some anomalies. During the first data run,

numerous spurious velocities of approximately ."^O m/s are observed. In the second data

run, regular spurious compass readings of exactly 40'^ are found. These anomalies are

removed before using the data in the filter.

5.2 First Data Set

On initial inspection, the first data set appears to be excellent for Kalman filter use

due to the frequency of obtained data, especially from the long-baseline positioning

system. However, closer analysis reveals that the behavior of the linear accelerometers is

erratic. Figure 5-1 shows an example of this behavior. The difference between the two

concentrations of outputs is O.OX g, which coiresponds to a linear acceleration of

approximately 0.8 m/s". If the filter uses this erratic accelerometer data, it rapidly diverges

due to the large estimated accelerations translating into large, nonexistent velocities.

Therefore, to run the filter on this data set the accelerometer measurements are set to zero
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Fig. 5. 1. Output of Linear Accelerometer.

for the entire run. The Kalman filter uses the remaining measurements of velocity,

position, roll, pitch, and heading to estimate all parameters.

Figures 5-2 and 5-3 show the difference in measured and estimated X-Y positions.

The doppler velocimeter provides accurate measurements of velocities, which

compensates for the lack of accelerometer measurements. Therefore, the filter is able to

track position well.

As an example of a parameter which has the advantage of continuous

measurements, a comparison of measured and estimated roll is shown in Fig. 5-4. The

discrete character of the sensor measurements compared to the continuous Kalman filter

estimate is obvious.

The last estimate meriting special attention is heading. With the frequent fixes, true

heading measurements are readily available. As can be seen from Figs. 5-5 and 5-6,

occasionally an maccurate true heading measurement will temporarily affect the estimated

heading and bias.
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Fig. 5.6. Estimated compass bias.

5.3 Second Data Set

The second data set poses more of a challenge for the filter, since after four initial

fixes are obtained there is a gap of nearly one-half hour without further XY-position

information. However, the linear accelerometers do not show the same erratic behavior

during this data set and are therefore used as part of the measurement vector. Figures 5-7

through 5-12 show the performance of the filter in estimating position in light of this data

gap. When position infonnation is restored, there is a discontinuity in the filtered estimate

of position due to the eiTor developed by the filter estimate during the gap. After frequent

fix informadon is again received, filter position estimates track with actual positions

obtained from the long-baseline navigation system.

Besides position, the most important vehicle parameter to estimate accurately is

heading. Without an accurate heading, sidescan sonar information will be inaccurate as

well. Since both the gyro and the compass can be biased, a vital characteristic of the filter
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Fig. 5.7. XY-position estimates (:) compared to position fixes (o). Note the presence of a

flyer in the upper left corner, which was properly rejected by the filter.

is its ability to estimate heading. Figure 5-112 shows the estimated heading during the

hour. To understand filter behavior in the vicinity of this disconfinuity, X-position

behavior is examined individually in Fig. 5-10. After a fix is received following the long

data gap, the first fix is weighted heavily and the estimated X-position jumps to the

location of the fix. As can be seen in the figure, however, that first fix was rather

inaccurate, although still within the specification of the fix rejection filter. Subsequent

fixes are weighted less heavily since the emir covariance matrix is adjusted after receipt of

the first fix. Therefore, estimated position adjusts to actual position over several fixes.

The jump in esUmated heading at t=2()()() seconds is a result of the gap in position

information. However, despite this lengthy gap, the estimated heading remained

consistent within three degrees.

Parameters with more frequent data update rates are easier for the filter to estimate

since measurements are confinuously matched against the estimates. As one example, the

comparison of esfimated Z-position for a small portion of the hour is shown in Figure 5-

12.
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Fig. 5.12. Comparison of measured and estimated Z-position.

With the aid of the doppler velocimeter, the Kalman filter is able to maintain a

valid estimate of vehicle parameters during this lengthy gap in position information. The

key requirements in achieving this are:

1. The doppler velocimeter is available to provide accurate velocity infoiTnation

throughout the data gap.

2. Prior to losing position information, heading accuracy was sufficient to allow the

Kalman filter to bridge the gap while still remaining within the window for fix

acceptance once position data is regained.

86





Chapter 6

Conclusions

6.1 Fulfillment of Objectives

The objective of this thesis was to develop an extended Kalman filter that could

provide accurate estimates of underwater vehicle position and attitude in real-time. Based

on the tests of the filter using both simulated and actual data, I believe that the result is a

qualified success. On the positive side, the Kalman filter was able to process the data fast

enough to permit real-time processing onboard ship, which would allow major reductions

in post-cruise processing costs. Additionally, the real-time processing allows those

conducting sidescan surveys to verify that the desired areas have been mapped by

checking the navigational estimates.

A second success is that when provided with sufficiently accurate and frequent

data, the Kalman filter can provide accurate estimates of all vehicle motion and attitude

changes. Even when gaps occur in the positioning system, the accuracy of the doppler

velocimeter combined with a good prior estimate of heading allows the filter to maintain

sufficient accuracy to arrive close to measured position when position data is regained.

Also, the Kalman filter has the ability to estimate gyro bias and compass bias to

compensate for inaccurate initial heading infoiTnadon and the effects of gyro drift.

Therefore, the heading estimate becomes increasingly accurate as fix information is

received and the filter is allowed to update over longer periods of time.

In contrast to the successes, there were also some failures. Many of these can be

attributed to sensor limitations, especially those of the linear accelerometers contained

within the IMU package. A constant bias can be compensated for, but in the first data run

there was an example of erratic accelerometer behavior that threatened the viability of the

entire estimation process. Only by recognizing this problem and relying on the doppler

velocimeter entirely could accurate estimates of vehicle position be maintained. While in

principle the Kalman filter is designed to permit any measurement to be used despite its

noise characterisfics, this application tests that theory due to the vaiying data rates of the
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sensors. For a "standard" Kalman filler, all measurements are obtained at every lilter

update step. Therefore, noisy measurements can be made nearly meaningless by assigning

greater inherent accuracy to less noisy ones. In this case, that is not possible. When the

only available measurement in the series of integrations leading to position is acceleration,

the filter is forced to use it. Even though its weight is initially low, over time these

measurements have a significant effect on the estimates of velocity and position until other

sensor data are received.

A second concern is whether the heading estimates provided by the filter are

accurate enough to be truly useful for sidescan sonar mapping operaUon. When scanning

at long range, even a few tenths of a degree of heading eiTor can be significant. While

heading accuracy should continue to improve as the filter operates for longer periods, a

compromise is always necessary when deciding how to weight old measurements. If old

measurements are weighted too heavily, the filter does not respond to actual changes in

state variables, such as a change in course. On the other hand, weighting old

measurements less results in greater filter movement toward new measurements with

subsequent instability and potentially eiToneous changes in bias estimates.

Finally, the filter as presently constructed is of limited utility in estimating vehicle

motion for a maneuvering vehicle. While, theoretically, control inputs could be added

fairly easily, the modeling necessary for accurate results is not yet a reality. While most

current operafions involving a thruster-controlled vehicle are limited to a small area and

can therefore take advantage of a high update rate for position information, future

advances in vehicle technology promise a long-range, independently-operating

autonomous vehicle. As constructed here, it is doubtful that the Kalman filter can provide

sufficient accuracy given the sensors available.

6.2 Future Work

There is much work that could be done to improve the performance of this Kalman

filter estimation process. A few possibilities are as follows.

First and most obviously, improved sensors would translate directly into improved

measurements. The primary candidates for such improvements are the linear
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accelerometers and the gyro. Without gyro stabilization, it is difficult to improve

accelerometer stability. However, improvements continue to be made, and it is hoped that

cost, weight, and power requirements will continue to decline to allow better acceleration

measurements. As an adjunct to this effort, more testing needs to be performed on the

accelerometers in use to understand their characteristics and limitations more fully.

Hopefully, the ring-laser gyro will soon become inexpensive enough for practical use in

this application to improve heading measurements. Also, the method of obtaining true

heading used here is only one possibility. Any improvements in true heading accuracy

would improve the estimates of both heading and heading sensor bias.

To allow this filter to be useful for such highly maneuverable vehicles as Jason,

further work needs to be cairied out on modeling control inputs to the filter. Additionally,

if a strapdown IMU package is still in use, the addition of the effects of angular velocities

on linear acceleration and velocities may have to be considered due to the greater angular

velocities involved.

Finally, there are always refinements which can be made to improve filter

performance. One possibility is to add to the state vector esfimates for other sensor biases.

This has the potential for improving all measurements, especially those of the

accelerometers, which appear to have biases that are always present and frequently

changing.
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Appendix

KFSetup Program

% This program provides the initial conditions required to run the Kalman

% filter algorithm.

DTOR = pi/18();% Conversion of degrees to radians

% The A matrix propagates the state variables

A = zeros(17);

A(4:6,l:3)=eye(3);

A(13:15,10:12)=eye(3);

% The G matrix provides the effects of inputs (accelerations and angular

% velocities) on the state variables

G = zeros(17,6);

G(l:3,l:3) = eye(3);

G(l():12,4:6) = eye(3);

% The C matrix is the measurement matrix

CHDG = [1 -1 ();1 -1;1 ()]; % 3x3 matrix used to forni heading portions of C matrices

CF = eye(17);% Full C matrix when all info available

CF(15:17,15:17) = CHDG;
CNV = zeros(14,17);% C matrix when no velocity info available

CNV(l:3,l:3) = eye(3);

CNV(4:ll,7:14)=eye(8);

CNV(I2:14,15:17) = CHDG;
CNP = zeros(14,17);% C matrix when no position info available

CNP(l:6,l:6) = eye(6);

CNP(7:I2,9:14) = eye(6);

CNP(13:14,15:17) = CHDG(1:2,:);

CNPV = zeros(l 1,17);% C matrix when neither position nor velocity available

CNPV(l:3,l:3) = eye(3);

CNPV(4:9,9:14)=eye(6);

CNPV(1():1 1,15:17) = CHDG(1:2,:);

% The D matrix is necessary only for generating simulated data

D = zeros(17,6);

DNV = zeros(14,6);

DNP = zeros(14,6);

DNPV = zeros(ll,6);

% EiTor Covariance Matrix for random forcing function
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Q = zeros (6);

QXYZ = (().2*eye(3)).^2; % Set variance for accelerometers

Q(1:3,1:3) = QXYZ;
QRPH = (2*DTOR*eye(3)).^2; % Set variance for angular velocimeters

Q(4:6,4:6) = QRPH;
% Error Covariance Matrix for measurements

RACC = (().l*eye(3)).^2;

RAR = (().5*DTOR*eye(3)).^2;

RPos = (3*eye(2)).^2; % Set variance for acoustic position fixes

RDepth = ().1'^2;% Set variance for deptii

RPR = (().5*DTOR*eye(2)).'^2; % Set variance for pitch and roll

RHG = (().l*DTOR)'^2;% Set variance for heading by gyro

RHM = (.5*DTOR)^2; % Set variance for heading by compass

% Reference Points

xinit = 0;

yinit = 0;

tinit = 0;

zinit = 0;

magvar = -24; % Set initial magnetic compass bias

gyrovar - -1\ % Set gyro bias

% Initial conditions

x_()ACC = [();();()];

x_()AR = [();0;()];

x_()V = [();().5;()];% Velocities (x,y,z)

x_()XY = [()-xinit;()-yinit]; % Position (x,y)

x_()Z = zinit-();7r' Position (z)

x_()R = 0*DTOR;%Roll
x_()P = ()*DTOR;% Pitch

xJ)H = (3{)()+gyrovar)*DTOR;% Heading

x_()

[x_()ACC;x_()V;x_()XY;x_()Z;xJ)AR;x_{)R;x_()P;x_()H;gyrovar*DTOR;magvar*DTOR]

% Initial En^or covariance matrix

P_() = zeros(17); % Initial P matrix for states

PJ)(1:3,1:3) = (().l*eye(3)).^2;

P_()(4:6,4:6) = (.()2*eye(3)).^2; % Initial uncertainty in velocity (m/s)

P_()(7:8,7:8) = (3*eye(2)).^2; % Initial uncertainly in position (m)

P_()(9,9) = 0.3^2; % Initial uncertainty in depth (m)

P_()(l():12,l():12) = (().5*DTOR*eye(3)).^2;

P_()(I3:14,13:14) = (l*DTOR*eye(2))^2; % Initial uncertainty in roll and pitch

P_()(15,15) = (2*DT()Rr2;% Initial uncertainty in heading

PJ)(16,16) = (2*DT()Rr2;% Set initial gyro bias variance

P_{)(17,17) = (2*DTOR)'^2;% Set initial magnetic compass bias variance
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w = zeros(6,l);% random forcing function

g = -9.8;% gravity vector

% Set IMU biases to be subtracted from raw data (units of g for ace, degrees/s for

% angular rates)

xaccbias = 0;

yaccbias'= 0;

zaccbias = 0;

rrbias = 0;

prbias = 0;

yrbias = 0;
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KFRun

%dt = 1/24/3600/2; % Gives desired kalman filter update time step of 0.5 seconds

tO = tinit; % Set initial time for filter for calculating time steps

t = tO; -

tfix = tO; % Time of last fix

kk = 1; % Index for state estimate file

nn = 0;

mm = 0;

qq=l;
zl = zeros(3,l);

z2 = zeros(3,l);

Posmat = zeros(4,2);

fixcount = 0;

SWAcheck = ();% Set Counters to count lines of each type of data in filter step

PAScheck = 0;

PVScheck = 0;

LBLcheck = 0;

FixedSim2=zeros(720(),18); % Matrix to hold processed raw data

Templn=[];

EstSim2 = [];

rejfix = 0; % Counter to keep track of rejected fixes

Xp = x_(); % Set initial condition for estimated states

Pp = P_0; % Set initial condition for error covariance matrix

while nn < 7200; % Setup loop to read all data from file

% The following loop ensures both SWA and PAS data are available to the filter

while SWAcheck ==
I PAScheck ==

mm = mm+1;
nn = nn+1;

Templn(mm,:) = SlM(nn,:); % SIM is data file

Templn(mm,l) = Templn(mm,l)-tinit;

[M,N] = size(TempIn);

t = TempIn(M,l);

% This loop reads the next dt worth of data from the file. For real-time

% processing, use same principle to read dt worth of data into Templn.

while Templn(mm, 1 )-t() <= dt; % Check to see if have dt worth of data

nn = nn+1;

mm = mm+1;
Templn(mm,:) = SIM(nn,:);

Templn(mm,l) = Templn(mm,l)-tinit;

[M,N] = size(Templn);

t = TempIn(M,l);
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end

% This loop checks if both SWA and PAS data is present. If the data does not

% contain at least one sample of both SWA and PAS data, another dt worth will

% be added prior to proceeding.

for i = qq:M
if Templn(i,2) <1()631 I Templn(i,2) > 10633

SWAcheck = SWAcheck+1;

else

Templn(i,2:7) = zeros(l,6); % set bogus data to zero

end

if Templn(i,13) <10631 I Templn(i,13) > 10633

PAScheck = PAScheck+1;

Templn(i,13) = zinit-TempIn(i,13);

TempIn(i,14:15) = TempIn(i,14:15).*DTOR;

if(360-TempIn(l,16))<75ITempIn(l,16)<75

ifTempIn(i,16)>27()

Templn(i, 1 6)=TempIn(i, 1 6)-36();

else

end

else

end

Templn(i,16) = TempIn(i,16)*DTOR;

if (36()-TempIn( 1 , 17))<75 I Templn( 1 , 17)<75

ifTempIn(i,17)>27()

TempIn(i,17)=TempIn(i,17)-360;

else

end

else

end

Templn(i,17) = TempIn(i,17)*DT0R;

else

Templn(i,13;17) = zeros(l,5); % set bogus data to zero

end

if Templn(i,8) <1{)631 I Templn(i,8) > 10633

PVScheck = PVScheck+1;

else

Templn(i,8:l()) = zeros(l,3); % set bogus data to zero

Templn(i,18)=p;

end

if Templn(i,l 1) <1()631 I Templn(i,l 1) > 10633

LBLcheck = LBLcheck+1;

Templn(i,l 1) = Templn(i,l l)-xinit;

Templn(i,12) = Templn(i,12)-yinit;

else

Templn(i,l 1:12) = zeros(l,2); % set bogus data to zero
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end

end

qq = M+1;
end

FixedSim2((nn+l-M):nn+l-l,:)=TempIn;

% Now we will provide the estimates of x^(t+llt) and P(t+llt). These are done

% now rather as the last step in the tllter propagation due to the variable

% time step. Now that we know the time step, we can more accurately project

% the step estimates into the future.

%DT = (t-t())*24*36()(); % This is the length of the current filter time step.

[Xm,Pm] = fullkfpred(A,G,w,Q,Xp,Pp,DT);

% We now have enough data to run the filter. For data with more than one time

% sample's worth present, the data for the whole time step is averaged.

% Also, any suspected bias is removed. The inputs are converted into the proper

% units for filter use. Also, the data is checked to see if LBL and/or doppler

% data is available, which will deteimine which version of the filter to use.

% Therefore, the input to the kalman filter will have only one line of

% averaged data, which will always include SWA and PAS data, and may also

% have LBL and/or doppler data.

zl(l) = (((sum(TempIn(:,2))/SWAcheck))-xaccbias)*(-g)+((sin(Xp(13)))*g);

zl(2) = (((sum(TempIn(:,3))/SWAcheck))-yaccbias)*(-g)-((sin(Xp(14)))*g);

zl(3) = (((sum(TempIn(:,4))/SWAcheck))-zaccbias)*(-g)-

((cos(Xp(13))*cos(Xp(14)))*g);

z2(l) = (((sum(TempIn(:,5))/SWAcheck))-iTbias)*DTOR;

z2(2) = (((sum(TempIn(:,6))/SWAcheck))-prbias)*DTOR;

z2(3) = (((sum(TempIn(:,7))/SWAcheck))-yrbias)*DTOR;

%zl=zeros(3,l); % Used only if not using actual accelerometer measurements

%z2=zeros(3,l);

% One other requirement is to check for position fiyers. If a position update

% is bogus, it will be ignored and the filter run without it. A position update

% will be compared with the current filter estimate of position. If they differ

% by more than five times the std deviation of the position uncertainty, the

% position update will be ignored.

if LBLcheck ~=

tcheck = (t-tfix);

Pcheckx = sum(TempIn(:,l l))/LBLcheck;

Pchecky = sum(TempIn(:,12))/LBLcheck;

errest = sqrt(((Pcheckx-Xp(7)r2)+(Pchecky-Xp(8))^2);

if errest > (l()*RPos(l,I))+(().()5*tcheck)

rejt"ix = rejfix+l;

LBLcheck = 0; ^

else

tfix = t;
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end

end

% The first case is when all data is availahle. True heading will only be

% available after five fixes have been obtained.

% Angular measurements have already been converted to radians using DTOR.
if LBLcheck ~= & PVScheck ~=

fixcount= tlxcount+1;

Z = zeros(17,l);

Z(I:3) = zl;

Z(4) = sum(TempIn(:,8))/PVScheck;

Z(5) = sum(TempIn(:,9))/PVScheck;

Z(6) = sum(TempIn(;,l()))/PVScheck;

xLBL = sum(TempIn(:,I l))/LBLcheck;

Z(7)= xLBL;

yLBL = sum(TempIn(:,i2))/LBLcheck;

Z(8)= yLBL;

Z(9) = sum(TempIn(:,13))/PAScheck;

Z(10:12) = z2;

Z(13) = sum(TempIn(:,14))/PAScheck;

Z(14) = sum(TempIn(:,l5))/PAScheck;

ghdg = sum(TempIn(:,16))/PAScheck;

if ghdg<()

ghdg = ghdg+(2*pi);

else

end

Z(15) = ghdg;

mhdg = sum(TempIn(:,17))/PAScheck;

if mhdg<()

mhdg = mhdg+(2*pi);

else

end

Z(16) = mhdg;

R = zeros(17);

R(1;3,1:3) = RACC;
R(4:6,4:6) = eye(3).*((sum(TempIn(:,18))/PVScheck)^2);

R(7:8,7:8) = RPos;

R(9,9) = RDepth;

R(1():12,1():12) = RAR;
R(13;14,13:14) = RPR;

R(15,15) = RHG;
R(16,16) = RHM;
C = CF;

% Update the matnx containing the last four position fixes

Posmat(l,:) = Posmat(2,:);
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Posmat(2,:) = Posmat(3,:);

Posmat(3,:) = Posmat(4,:);

Posmat(4,:) = [xLBL,yLBL];

if fixcount<4

Z = Z(1:16);

R = R(1:16,1:16);

C = CF(1:16,:);

else

% Now, calculate true heading using a least-squares fit to the last four fixes

L = [l,Posmat(l,l);l,Posmat(2,l);l,Posmat(3,l);l,xLBL];

B = [Posmat(l,2);Posmat(2,2);Posmat(3,2);yLBL];

bfit= inv(L'*L)*L'*B;

if bfit(2)>=0 & yLBL > Posmat(l,2)

thdg = (pi/2)-atan(brit(2));

elseif bfit(2)<() & yLBL < Posmat(l,2)

thdg = (pi/2)-atan(bfit(2));

else

thdg = (3*pi/2)-atan(bfit(2));

end

Z(17) = thdg;

% Calculate variance of this heading measurement

[HV] = hvar(Posmat,thdg);

R(17,17) = [HV];

end

% The second case is when SWA, PAS, and LBL data is available, but no doppler.

elseif LBLcheck ~= & PVScheck ==

fixcount = fixcount+1;

Z = zeros(14,l);

Z(l:3) = zl;

xLBL = sum(TempIn(:,ll))/LBLcheck;

Z(4)= xLBL;

yLBL = sum(TempIn(:,12))/LBLcheck;

Z(5)= yLBL;

Z(6) = sum(TempIn(:,13))/PAScheck;

Z(7:9) = z2;

Z(l()) = sum(TempIn(:,14))/PAScheck;

Z(il) = sum(TempIn(:,15))/PAScheck;

ghdg = sum(TempIn(:,16))/PAScheck;

if ghdg<()

ghdg = ghdg+(2*pi);

else ''

end

Z(12) = ghdg;
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mhdg = sum(TempIn(;,l7))/PAScheck;;

if mhdg<()

mhdg = mhdg+(2*pi);

else

end

Z(13) = mhdg;

R = zeros(14,14);

R(1:3,1:3) = RACC;
R(4:5,4:5) = RPos;

R(6,6) = RDepth;

R(7:9,7:9) = RAR;
R(10:11,10:11) = RPR;

R(12,12) = RHG;
R(13,13) = RHM;
C = CNV; % Update the matrix containing the last four position tlxes

Posmat(l,:) = Posmat(2,:);

Posmat(2,:) = Posmat(3,:);

Posmat(3,:) = Posmat(4,:);

Posmat(4,:) = [xLBL,yLBL];

if fixcount<4

Z = Z(1:13);

R = R(1:13,1:13);

C = CNV(1:13,:);

else

% Calculate true heading

L = [l,Posmat(l,l);l,Posmat(2,l);l,Posmat(3,l);l,xLBL];

B = [Posmat(l,2);Posmat(2,2);Posmat.(3,2);yLBL];

bfit= inv(L'*L)*L'*B;

if bfit(2)>=() & yLBL > Posmat(l,2)

thdg = (pi/2)-atan(bfit(2));

elseif bfit(2)<() & yLBL < Posmat(l,2)

thdg = (pi/2)-atan(bfit(2));

else

thdg = (3*pi/2)-atan(bfit(2));

end

Z(14) = thdg;

% Calculate vanance of this heading measurement

[HV] = hvar(Posmat,thdg);

R(14,14) = [HVJ;

end

% The third case is when SWA, PAS, and doppler data is available, but no LBL.

elseif LBLcheck == & PVScheck ~=

Z = zeros(14,l);

Z(l:3) = zl;
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Z(4) = sum(TempIn(:,8))/PVSchcck;

Z(5) = sum(TempIn(:,9))/PVScheck;

Z(6) = sum(TempIn(:,l()))/PVScheck;

Z(7) = sum(TempIn(:,13))/PAScheck;

Z(8:lO) = z2;

Z(ll) = sum(TempIn(:,14))/PAScheck;

Z(12) = sum(TempIn(:,15))/PAScheck;

ghdg = sum(TempIn(:,16))/PAScheck;

if ghdg<()

ghdg = ghdg+(2*pi);

else

end

Z(13) = ghdg;

mhdg = sum(TempIn(:,17))/PAScheck;

if mhdg<0
mhdg = mhdg+(2*pi);

else

end

Z(14) = mhdg;

R = zeros(14);

R(1:3,1:3) = RACC;
R(4:6,4:6) = eye(3).*((sum(TempIn(:,18))/PVScheck)'^2);

R(7,7) = RDepih;

R(8:1(),8:1()) = RAR;
R(11:12,11:12) = RPR;

R(13,i3) = RHG;
R(14,14) = RHM;
C = CNP;

% The last case is when only SWA and PAS data is available.

else

Z = zeros(ll,l);

Z(l:3) = zl,

Z(4) = sum(TempIn(:,13))/PAScheck;

Z(5:7) = z2;

Z(8) = sum(TempIn(:,14))/PAScheck;

Z(9) = sum(TempIn(:,15))/PAScheck;

ghdg = sum(TempIn(:,16))/PAScheck;

if ghdg<()

ghdg = ghdg+(2*pi);

else

end

Z(l()) = ghdg;

mhdg = sum(TempIn(:,I7))/PAScheck;

if mhdg<()
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mhdg = mhdg+(2*pi);

else

end

Z(ll) = mhdg;

R = zeros(ll);

R(1:3,1:3) = RACC;
R(4,4) = RDepth;

R(5:7,5:7) = RAR;
R(8:9,8:9) = RPR;
R(1(),1()) = RHG;
R(11,11) = RHM;
C = CNPV;
end

% Now the filter can finally be run using KFcalc.

[Xp,Pp]=fullkfcalc(C,R,Xm,Pm,Z);

EstSim2(kk,l:18) = [Xp',tl; % Store state estimates with time stamp nn

SWAcheck = 0;

PAScheck = 0;

LBLcheck =

PVScheck =

mm = 0;

to = t;

qq=l;
Tempin = [];

kk = kk+l;

pp=l;

end
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KFpred

% The function kfpred provides the estimates of x'^Ct+lIt) and P(t+llt).

% It must be done out of the normal order for a Kalman filter since the time

% step is unknown until the next block of data is processed.

% The format is; [Xm,Pml=kfpred(A,G,U,Q,xcurr,P,t)

% t is the time stamp for the current update step.

function[Xm,Pm]=:kfpred(A,G,U,Q,xcurr,P,t)

headg = xcurr(15);

pitch = xcurr(14);

roll = xcurr(13);

dheadg = (2*pi - headg); % Change axes

pcos = cos(pitch);

psin = sin(pitch);

rcos = cos(roll);

rsin = sin(roll);

hcos = cos(dheadg);

hsin = sin(dheadg);

A(7,4) = rcos*hcos;

A(7,5) = psin*rsin*hcos - pcos*hsin;

A(7,6) = pcos*rsin*hcos + psin*hsin;

A(8,4) = hsin*rcos;

A(8,5) = psin*rsin*hsin + pcos*hcos;

A(8,6) = pcos*rsin*hsin - psin*hcos;

A(9,4) = -rsin; A(9,5) = psin*rcos;

A(9,6) = pcos*rcos;

[Phi,Gamma] = c2d(A,G,t);

Xm = Phi*xcurr + Gamma*U; % Xm = x'^lt+llt)

%Pm = l.{)168*Phi*P*Phi' + Gamma*Q*Gamma'; % Use for maneuvering vehicle

Pm = l.()()l*Phi*P*Phi' + Gamma*Q*Gamma'; % Use when have position data gaps or

no maneuvering
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FullKFcalc

% The function FuUKFCalc implements the kalman filter for full data sets

% The format is: [Xp,Pp]=fullkfcalc(C,R,Xm,P,Z)

% t is the time stamp for the current update step.

function[Xp,Pp]=fullkfcalc(C,R,Xm,P,Z)

while Xm(15)<()

Xm(15) = Xm(15)+(2*pi);

end

while Xm(15)>2*pi
Xm(15) = Xm(15)-(2*pi);

end

while Xm(i6)>pi

Xm(16)=Xm(16H2*pi);
end

while Xm(16)<(-pi)

Xm(16)=Xm(16)+(2*pi);

end

while Xm(17)>pi

Xm(17)=Xm(17)-(2*pi);

end

while Xm(17)<(-pi)

Xm(17)=Xm(l7)+(2*pi);

end

Ze = C*Xm; % Ze = y^(tlt-l)

I = Z-Ze; rr.I^yltVy'^Ctlt-l)

V = C*P*C'+R; % V = covariance matrix of innovations

k = p*C'*inv(v);

Xp = Xm + k*I; % xp = x'^(tlt)

while Xp(15)<()

Xp(15) = Xp(i5)+(2*pi);

end

whileXp(15)>2*pi

Xp(15) = Xp(15)-(2*pi);

end

while Xp(16)>pi

Xp(16)=Xp(16)-(2*pi);

end

while Xp(16)<(-pi)

Xp(16)=Xp(16)+(2*pi);

end

while Xp(17)>pi

Xp(17)=Xp(17H2*pi);
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end

while Xp(17)<(-pi)

Xp(17)=Xp(17)+(2*pi);

end

temp = eye(17)-(k*C);

Pp = temp*P*temp'+k*R*k'
; % p = P(tlt)
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HVar

% The function hvar provides the variance of the ime heading

% measurement.

% The format is [HV] = hvar(Posmat,thdg)

function[HV] = hvar(Posmat,thdg)

tempvar = 0;

Htemp = zeros(3,l);

fori= 1:3;

LL = [ 1 ,Posmat(i, 1 ); 1 ,Posmat(i+ 1,1)];

BB = [Posmat(i,2);Posmat(i+l,2)];

bbfit= inv(LL'*LL)*LL'*BB;

if bbfit(2)>=() & BB(2)>BB(1)

temphdg = (pi/2)-atan(bbfit(2));

elseif bbrit(2)<() & BB(2)<BB(1)

temphdg = (pi/2)-atan(bbfit(2));

else temphdg = (3*pi/2)-atan(bbnt(2));

end

Htemp(i) = temphdg;

end

fori= 1:3;

if Htemp(i)-thdg>pi

HVar(i) = ((Htemp(i)-(2*pi))-thdg)'^2;

elseif thdg-Htemp(i)>pi

HVar(i) = ((thdg-(2*pi))-Htemp(i)r2;

else

HVar(i) = (Htemp(i)-thdg)^2;

end

end

HV = (sum(HVar))/3;

HVS
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