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ABSTRACT 

Autonomous object recognition is an active area of interest for military and 

commercial applications: Given an input image from an infrared or range sensor, find 

interesting objects in those images and then classify those objects. In this work, automatic 

target recognition of ship types in an infrared image is explored. The first phase segments 

the original infrared image in order to obtain the ship silhouette. The second phase 

calculates moment functions of those silhouettes that guarantee invariance with respect to 

translation, rotation and scale. The thlrd phase applies those invariant features to a 

backpropagation neural network and classifies the ship as one of the five types. The 

algorithm was implemented and experimentally validated using both simulated three- 

dimensional ship model images and real images derived from video of an ANIAAS-44V 
Forward Looking Infrared (FLIR) sensor. 





DISCLAIMER 

The algorithms and computer programs developed in this research were not 

exercised for all possible cases of interest. While every effort has been made, within the 

time available, to ensure that the programs are free of computational and logic errors, 

they cannot be considered validated. Any application of these programs without 

additional verification is at the risk of the user. 
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I. INTRODUCTION 

A. AUTOMATIC TARGET RECOGNITION 

Automatic target recognition (ATR) is a technological discipline that deals with 

the understanding, design, development, and production of techniques and hardware for 

the classification of objects of interest as they are sensed by remote means, either actively 

or passively. During the past several decades, numerous attempts have been made to 

create such systems [Ref. 1-61. However, progress in ATR has been slow [Ref. 71 

because some new problems have appeared. For example, the vision problem pushes the 

fields of artificial intelligence, neural networks, microelectronics, sensors, and computer 

science to their limits. 

In any pattern recognition application, it is important to select features that 

adequately and uniquely describe the objects to be recognized. Moreover, the features 

associated with an object should be invariant with respect to the position, rotation, and 

scale of that object in the field of view. Thus the ideal recognition system is robust to 

orientation variations, scale variations and boundary perturbations [Ref. 81. 

Our proposed approach is to use the moment invariants [Ref. 91 for the set of 

features to quantify the object. The thesis reports the mathematical foundation of two- 

dimensional moment invariants and shows that recognition schemes based on them could 

be truly position, size and orientation-independent. Since the moments are global 

features, application of such a feature space is limited to images with minimal 

background and scenes containing only one object. Ships on the open sea are appropriate 

for such feature spaces [Ref. 101. The moment invariants are used to construct a feature 

vector of low dimension, and recognition is performed using this feature vector applied to 

a trained artificial neural network classifier. 



B. APPLICATIONS OF AUTOMATIC OBJECT RECOGNITION 

Automatic object recognition has diverse applications in numerous fields of 

science and technology and is permeating many aspects of military and civilian 

industries. It is popular within the field of robotic vision because of the limited domains 

and the controllability of the environment in which they are used [Ref. 71. 

In military applications and specifically naval applications, electro-optic and 

infrared sensors have been connected to weapon systems. In several cases an ATR 

algorithm is responsible for discriminating a target from a non-target object, enabling the 

possible target destruction. Other systems address classification tasks where targets types 

are determined. Another example is a Forward Looking Infrared (FLIR) sensor combined 

with image-processing hardware for discriminating tanks from trucks, bushes, and other 

environmental objects. 

C. PROJECT GOALS 

In this thesis, a fast and robust system is presented that classifies ships seen from 

an arbitrary viewpoint and range in three-dimensional space. The approach is concerned 

with segmented rigid bodies viewed without occlusion from other objects. However, self- 

occlusion due to change of viewpoint is allowed. 

Although object separation from background is a challenging task in general, our 

application can be carried out with relative ease. This is the case because a shp  has 

usually a clear contrast with the background in Forward Looking Infrared (FLIR) 

imagery. This greatly simplifies ship classification. 

Our approach is model-based, meaning that the kinds of objects to be recognized 

are known in advance and can be summarized in a set of models. The specific model 

database we have implemented contains five classes of ships: destroyer, figate, aircraft 

carrier, research ship and merchant ship. This database was used in the training phase. 

For each ship model and viewpoint, a silhouette was extracted and a moment-invariant 

signature calculated consisting of a twelve-element feature vector. 



Then for a ship image of unknown type, we compute its signature. Classification 

is done using an artificial neural network. The neural-net classifier's generalization 

capabilities are used to group the moment-invariant signatures, corresponding to different 

views of an object, into a single ship type class. 

The proposed scheme is summarized in Figure 1 below 

Orthographic Moment - 
3- D Ship 

Projection j Invariant 
Models 

(Silhouette) Signature 
Calculation 

I r-----l I Moment- I 
FUR Images Image Invariant 

from Real Ships Segmentation Sirnature 

Neural- 
Network I- 

Figure 1 : Processing scheme of moment invariant recognition. 

This thesis has been organized as follows: in Chapter II we present techniques for 

feature extraction followed by mathematical foundations of moment invariants. In 

Chapter 111 we present an artificial neural network as a classifier and the backpropagation 

learning rule. Chapter IV details the input image database and the training and testing of 

our system. Chapter V summarizes the results from the experimentation using simulated 

images from three-dimensional ship models and real ship images from FLIR sensors. 

Chapter VI contains concluding remarks. 
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11. FEATURE SELECTION AND MOMENT INVARIANTS 

A. OVERVIEW 

An old adage says "Good Features make Good Recognizers" [Ref. 111. This is 

true whether your recognizer is using an artificial network or a statistical based decision 

mechanism. So our project paid careful attention to feature extraction from ship images. 

Many approaches have been advocated for features in automatic target 

recognition. Present methods can be categorized as either global or local. Global methods 

use global features of an object boundary or of an equivalent representation. Such 

techniques are the Fourier descriptors (FD) [Refs. 1, 51, moments [Ref. 121 and 

autoregressive models [Ref. 131. Local methods use features such as critical points [Ref. 

141 or high-resolution pursuit (HRP) [Refs. 8, 151. 

For global-based approaches, there is a wide variety of published literature similar 

to the approach described herein. Global methods have the disadvantage that a small 

distortion in a section of a boundary of an object will result in changes to all global 

features. 

One early work is Dudani et a1 [Ref. 161, which used moment invariants for 

feature extraction and a probabilistic approach for the classification of airplanes. Dudani 

used six different aircraft types and the images were based on physical models. His 

training set was based on over 3000 images taken in a 140' by 90' sector. The testing set 

contained 132 images (22 images of each of the six classes) obtained at random viewing 

aspects. The classification accuracy achieved in this six-class problem was 95%. 

Later, Wallace and Wintz [Ref. 171 propose a technique similar to Dudani7s with 

Fourier Descriptor (FD) of the silhouette boundary as features. The Fourier descriptor is 

one method of describing the shape of a closed figure. Wallace and Wintz used a graphics 

program to test their algorithm implementing three-dimensional models for six different 

aircrafts. The graphics program approximated each airplane by using 50-100 planes. 

Again, the evaluation was done using a randomly selected set and comparing to the 

library of projections. However, they used only 143 projections for training (9.9 times 



less than that used by Dudani et al) and the aircraft outlines were taken from a sector of 

180" by 180". Wallace and Wintz considered a bigger sector trying to avoid Dudani's 

approach, because if we delete the angles near the front view and rear view of the aircraft 

the problem is much easier: shapes vary much more with slight rotations when viewed 

almost edgewise [Ref. 171. The maximum classification accuracy achieved by Wallace 

and Wintz was 88.0%. 

Reeves et a1 [Ref. 181 presents a geometrical-moment approach using moments of 

the image that are normalized with respect to scale, translation and rotation. They call 

them "standard moments". The experiments described there were based on the same 

software used by Wallace and Wintz. They also used the same six types of airplanes, the 

same training set and the same testing set. However, they have chosen the moment 

feature representation because Fourier descriptors (FD) are particularly sensitive to 

perturbations in the object boundary. For example, the FD7s for the image of a disk differ 

greatly from those for a disk with a tiny wedge missing. Reeves et a1 used two 

classification criteria: the minimum Euclidean distance and the minimum Euclidean 

distance after "variance balancing". The best classification result was 93%. 

More recent work of Khotanzad [Ref. 191 used global features derived from 

complex orthogonal Pseudo-Zernike Moments (PZM). Khotanzad tested the performance 

of PZM by recognizing 26 uppercase English characters (A to Z), typed and handwritten. 

The database contained 624 images corresponding to 24 images per character. These 

images were generated with arbitrarily varying scales, orientations, and translations. The 

available samples were divided into halves. The first half was used for training and the 

second for testing. There were 12 training images and 12 testing images per character. 

His neural network classifier formed by 45 input nodes, 26 output nodes and 40 hidden 

nodes got 100% of classification accuracy. 

Systems using local features perform well in the presence of noise, distortion or 

partial occlusion. The effects on an isolated region of the contour alter only the local 

features associated with that region, leaving all the other local features unaffected. 

However, the choice of representative local features is not trivial and the recognition 

process based on local features is more computationally intensive and time consuming 

[Ref. 21. 



B. MOMENT INVARIANTS 

Moment invariants are a reliable and versatile way to construct a feature vector of 

low dimension as the basis for the neural-network classifier. Moments have been used as 

pattern features in a number of applications [Ref. 9, 201 to recognize two-dimensional 

image patterns. 

The regular moments m,, of a digital image pattern represented by f(x,y) are 

defined as: 

Hu [Ref. 91 first introduced moments as image-recognition features. Using 

nonlinear combinations of normalized central moments, he derived seven invariant 

moments, which have the desirable property of being invariant under image translation, 

scaling and rotation. The classic central moments that have the property of translation 

invariance are: 

m10 where X = - - m01 and y=- 
moo moo 

Hu discovered these moments MI,  M2, ..., M7, are invariant under translation 

and rotation: 



The functions M1 through M6 are invariant under rotation, reflection, or a 

combination of rotation and reflection. This property helps to simplifL the range of all 

distinct views of the ships as explained in section D of chapter IV. 

The above moments can be normalized to become invariant under a scale change 

by using the radius of gyration r of a planar pattern [Ref. 161: 

The radius of gyration for a particular object from a particular angle of view is 

directly proportional to the size of the image or inversely proportional to the distance B 

of the object along the optical axis: 

(pZ0 + C102)112 B = constant (11) 

Therefore, the radius of gyration r can normalize the moment functions M2 

through M7 to obtain size invariance, what Hu called the "normalized central moments": 



C. FEATURE VECTOR 

The above moments of an object can be computed for both the image boundary 

and the solid silhouette. Minute details such as the shape of the stacks of a ship are better 

characterized by the moments from the boundary. Gross structural features of the ship are 

better characterized by moments derived of silhouette; also, these moments are less 

susceptible to noise [Ref. 161. 

In our system, two sets of six moment invariant functions (M2', M3', M4', M5', 

M6' and M77, six from the boundary and six from the silhouette, were computed. As the 

distance B of the object along the optical axis was not known, the M I 7  component was 

not used. The twelve-component feature vector was sent to the neural network classifier 

for the recognition phase. 
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111. THE ARTIFICIAL NEURAL NETWORK (ANN) CLASSIFIER 

A. MOTIVATION 

Over the past few years, an explosion of interest in ANN models and their 

applications has occurred [Ref. 21, 22, 231. ANNs posses a number of properties which 

make them particularly suited to complex classification problems [Ref. 22, 25, 261. 

Unlike traditional classifiers, ANN models can examine numerous competing hypotheses 

simultaneously using massive interconnections among many simple processing elements. 

In addition, ANNs perform extremely well under noise and distortion. 

The implementation of a model-based target recognition scheme using ANNs 

seems to be attractive. First of all, ANNs provide their own way to represent the 

knowledge that they store [Ref. 271. In addition, the complexity and the computational 

burden increase slowly as the number of data models increases. 

Although ANN'S performance is excellent, many researchers still criticize ANNs 

because they can require much training time before they can perform a specific task. 

However, in our automatic target recognition classifier, the recognition phase is of far 

more importance and it must run as quickly and accurately as possible; the training phase 

can be performed off-line. 

In this thesis specifically, a three-layer perceptron neural network [Ref. 281 

trained with the backpropagation learning rule [Ref. 291 was implemented. In this 

scheme, expensive storage of a multiview database is not needed since during training the 

neural net extracts all the relevant information from the library. Also, due to the 

generalization capability of the neural net, good results can be obtained even with a small 

number of views in the library. 



B. MULTILAYER ANN AND THE BACKPROPAGATION RULE 

Artificial neural networks were developed by modeling a biological neuron. A 

generic neuron is formed by "cell body", "dendrites" and "axon". The electrical signals 

arrive in a neuron by the dendrites and are passed to the cell body where they are added. 

If a threshold is achieved, the neuron is activated and the information is passed to the 

axon. The axon is the transmission line of the neuron. The axon will pass the information 

to the chemical synapses connections. The learning process will be responsible for 

increasing the synaptic strength, which measures the degree of coupling between two 

neurons. 

Many neuron models appear in the literature. The beginning of the development 

of neural network models is related to the paper of Warren McCulloch and Walter Pitts 

published in 1943. They studied the implementation of logical functions using artificial 

neurons. The mathematical model of the neuron proposed by McCulloch-Pitts, shown in 

Figure 2 below, assumes the function realized by the cell body as being a "step function" 

applied to the summation of the weighted inputs. The weights control the importance of 

each input. 

Neuron 

Figure 2: McCulloch-Pitts Model. 

The McCulloch-Pitts model applied to a single layer of neurons (perceptrons) 

cannot solve problems where the inputs cannot be linearly separated. The PDP group in 

their collection of papers [Ref. 281 proposed modifications to the previous model. The 

step function was replaced by a function that is monotonic, differentiable and smooth 

(often implemented by a sigmoid). The learning algorithm used is "backpropagation". 



Artificial neural networks (ANN) are specified by the topology of the network, 

the characteristics of the nodes (neurons) and the learning algorithm. The topology of a 

multilayer ANN is a structured hierarchical layered network as shown in Figure 3 below: 

Figure 3: Multilayer neural-network graph. 

It consists of several layers of nodes, and usually an input layer and an output 

layer. Between the input layer and the output layer, we have one or more "hidden" layers 

of nodes. Hidden nodes often represent domain knowledge useful for solving recognition 

tasks [Ref. 271. Generally, each node in one layer is interconnected with all the nodes in 

adjacent layers with connections (synapses). Each connection is associated with a weight, 

which measures the degree of interaction between the corresponding nodes. 

A general L-layered feed-forward artificial neural network consists of No input 

nodes and NL output nodes. The number of nodes in the hidden layers is Nk for l<k<L-1. 

In this notation, the input layer is not counted as a layer. So an L-layer feed-forward 

artificial neural network has L-1 hidden layers and the Lth layer is the output layer. In 

this thesis, we implemented a 2-layered (L=2) feed-forward artificial neural network with 

No=12 (the moment invariant feature vector) and N2=5 (five ship types). The number of 



hidden nodes was found in order to maximize the neural net performance, as detailed in 

Chapter V. 

The algorithms for multilayer ANN processing can be divided into two phases: 

retrieving and learning. In the retrieving phase of the algorithm, information flows from 

the input layer through the hidden layers to the output layer. The nodes update their own 

activation values based on the system dynamics. In the learning phase, modification of 

the weights corresponding to the connection edges takes place. In this thesis, the popular 

backpropagation rule [Ref. 281 learning algorithm is used. This algorithm performs 

supervised learning; in each step it adjusts the connection weights, minimizing the mean- 

square error between the target value (the desired) and the output value (the actual) if the 

network. 

During the retrieving phase, we present continuous valued input data XI, x2, ..., 
xno called exemplar patterns and the corresponding desired output data tl, t2, . . ., t n ~  called 

target patterns. Input data are propagated forward through the network, which computes 

the activation value for each node, until the output layer is reached. 

The learning phase involves a backward pass through the network during which 

the error signals produced at the output layer are passed to each node in the network and 

appropriate weight changes are made. For each weight, the gradient of the output error 

with respect to that weight is computed. The weight is changed in the direction that 

reduces the error. 



IV. EXPERIMENT DESCRIPTION 

A. PROGRAMMING ENVIRONMENT 

Our Automatic Recognition Algorithm was based on programs written in 

MATLAB 5.3.0 from Mathworks. MATLAB is a complete computing environment for 

the interactive analysis and visualization of data, integrating an array-oriented language 

with mathematical analysis and graphical display techniques. The neural-network 

programs used in this thesis were implemented using functions from the MATLAB 

Neural Network Toolbox. The three-dimensional model and all image analysis were 

performed using the MATLAB Image Processing Toolbox. 

Although MATLAB is an interpretative language, it is possible to translate all 

MATLAB source codes into C code and create executable files using the MATLAB C 

Compiler. Consequently, our Target Recognition System could be used in a real-time 

application. 

B. THE THREE-DIMENSIONAL SHIP MODEL DATABASE 

1. The Three-Dimensional Ship Modeling 

This section will describe our implementation of three-dimensional ship models. 

The three-dimensional wire-frame models represent a graphics object by connected 

polygons or faces. The model is defined by specifylng the coordinates of the vertices of 

each polygon and then specifylng the faces by connecting the specified vertices in a 

specific order. This three-dimensional modeling was based on a MATLAB function 

called "patch" (see "find1nputSet.m" in the Appendix A). 

Five ship types were chosen to be included in the recognition class and therefore 

be modeled: namely, an aircraft carrier, a frigate, a destroyer, a research ship (Point Sur), 

and a merchant ship. With these five types, it was possible to address a typical scenario at 

sea, where we can find military ships, small civilian ships and big merchant ships. 



The three-dimensional wirefiame model for the aircraft carrier was based on a 

1 : 1800 scaled drawing of the Carl Vinson aircraft carrier (Nimitz Class) [Ref. 301. This 

drawing is shown in Figure 4 and a picture of the Carl Vinson aircraft carrier is shown in 

Figure 5. The model was implemented manually since no CAD model was available. It 

was formed of 45 vertices and 34 planes (see the "aircraftm" program in Appendix A). 

Figure 6 shows the model fiom four view angles. 

Figure 4: Scaled drawing of the Carl Vinson aircraft carrier [From Ref.301. 

Figure 5: Picture of the Carl Vinson aircraft carrier [From Ref. 301. 



Figure 6: The aircraft camer three-dimensional model in four view angles. 

The three-dimensional wireframe model for the destroyer was based on a 1 : 1500 

scaled drawing of the Oscar Austin destroyer (Arleigh Burke Class) [Ref. 301. This 

drawing is shown in Figure 7 and a picture of the Oscar Austin destroyer is shown in 

Figure 8. The destroyer model was formed of 92 vertices and 57 planes (see the 

"destroyer.m7' program in Appendix A). Figure 9 shows the model from four view angles. 

Figure 7: Scaled drawing of the Oscar Austin destroyer [From Ref.301. 



Figure 8: Picture of the Oscar Austin destroyer [From Ref.301. 

Figure 9: The destroyer three-dimensional model in four view angles. 



The three-dimensional wireframe model for the frigate was based on a 1:1200 

scaled drawing of the Rentz hgate  (Oliver Hazard Perry Class) [Ref. 301. This drawing 

is shown in Figure *I0 and a picture of the Oscar Austin destroyer is shown in Figure 11. 

The hgate model was formed of 130 vertices and 66 planes (see the "frigate.m" program 

in Appendix A). Figure 12 shows the model from four different view angles. 

Figure 10: Scaled drawing of the Rentz frigate [From Ref.301. 



Figure 12: The frigate three-dimensional model in four view angles. 

The three-dimensional wireframe model for the merchant Ship was based on a 

scaled drawing of the Sea Isle City U.S. tanker [Ref. 311. This drawing is shown in 

Figure 13 and a picture of the Sea Isle City U.S. tanker is shown in Figure 14. The 

merchant model was formed of 100 vertices and 58 planes (see the "merchant.m" 

program in Appendix A). Figure 15 shows the model viewed from four view angles. 

Figure 13: Scaled drawing of the Sea Isle City tanker [From Ref.311. 



Figure 14: Picture of the Sea Isle City tanker [From Ref.311. 

Figure 15: The merchant three-dimensional model in four different view angles. 



The three-dimensional wireframe model for the research ship was based on 

general specifications and dimensions extracted from FUV Point Sur Cruise Planning 

Manual (see Figure 16). The research ship model was formed of 76 vertices and 32 

planes (see the "poitsur.m" program in Appendix A). Figure 17 shows the model viewed 

from four view angles. 

Figure 16: Picture of the RN Point Sur. 

Figure 17: The Point Sur three-dimensional model in four view angles. 



2. Viewpoint Control 

To extract silhouettes, the orientation of the three-dimensional ship model must 

be specified. It was possible to specify the viewpoint with the MATLAB "view" 

command by defining azimuth and elevation with respect to the axis origin. Azimuth is a 

polar angle in the x-y plane, with positive angles indicating counter-clockwise rotation of 

the viewpoint. Elevation is the angle above (positive angle) or below (negative angle) the 

x-y plane. The counter-clockwise concept for the azimuth was adopted because the 

viewing azimuth is the negative of the ship's heading. Therefore, a ship with heading of 

30' clockwise is equivalent to viewing that ship with azimuth of 30' counter-clockwise. 

The diagram in Figure 18 illustrates the coordinate system. The arrows indicate positive 

directions. The origin was assumed to be located approximately in the center of gravity of 

the ship model. Only the portion above sea level was considered. Using this coordinate 

system, we can verify that the broadside view of any ship model corresponds to 0' in 

azimuth and 0' in elevation, in this situation the bow direction will be to the right 

(positive x). 

Figure 18: Diagram illustrating the coordinate system and the ship model origin. 

One view of each of the five modeled ships is illustrated in Figure 19. In this 

figure, the azimuth angle is -37.5 degrees and the elevation angle is 30 degrees. 



Figure 19: Views of the three-dimensional ship models (az.=-37.5", elev.=30°). 

3. Orthographic Projection 

Once the three-dimensional model is created and the aspect angle is set using the 

"view" command, a silhouette can be created by projecting the three-dimensional ship 

model. The orthographic method projects the viewing volume as a rectangular 

parallelepiped onto a plane, i.e., relative distance from the camera does not affect the size 

of objects. Using orthographic projection it is possible to get a good approximation of the 

real process of image generation when the distance from the object to the camera is much 

greater than the relative deep of the object structural points. This applies to our task 

because ships are generally far away from the FLIR sensors. Figure 20 shows some 

silhouettes created using the orthographic projection applied to the images shown in 

Figure 19. 

Figure 20: Silhouettes created using the images of Figure 19. 



C .  THE REAL FLIR IMAGES DATABASE 

1. Domain Issues 

We also obtained real images taken at sea using the ANIAAS-44V Fonvard- 

Looking Infrared (FLIR) sensor, mounted on a springboard at the nose of the SH-60B 

Rapid Deployment Kit equipped helicopter. The FLIR images were available through a 

VHS-format videotape showing several ships. However, only images of our modeled 

ships were considered for our analysis. The FLIR images show good contrast and were 

displayed in black-hot (higher temperatures areas are black) format. Image frames were 

acquired using a commercial video-grabber board installed in a PC-type desktop 

computer. 

The real FLIR images that we extracted from the videotapes were used to test our 

recognition system, previously trained with the three-dimensional ship model data. This 

was considered particularly important since presenting the classifier with new images 

with blurriness and an unknown target viewpoint is challenging. 

Only 25 real FLIR images were used for testing due to the small number of 

modeled ships in the FLIR tape. These were: two destroyer images (Figure 21), four 

aircraft carrier images (Figure 22), 15 merchant ship images (Figure 23), four research 

ship images (Figure 24), and no frigate images. 

-- 

Figure 21 : Real FLIR images of destroyers 



Figure 22: Real FLIR images of aircraft camer class. 



Figure 23: Real FLIR images of merchant ship class. 



Figure 24: Real FLIR imagesof research ship class. 

The quality of the images was not ideal because the FLIR system projects 

alphanumeric data and targeting aids onto the screen. Figure 25 shows one of the FLIR 

images. Specifically, the crosshairs partially obscure the ship image and interfere with the 

classification process. A segmentation was necessary to eliminate the background 

including the alphanumeric data. 



Figure 25: FLlR image of the Arleigh Burke Destroyer. 

2. Segmentation 

Prior to computing the moment invariants of the ship of the Figure 25, we must 

suppress the background and extract the ship silhouette. In this segmentation, we 

employed histogram and thresholding techniques. 

We assume that the extracted 320x240 pixels image contains one ship only. This 

image includes the ship, water, alphanumeric data, and may include the sky. As the first 

step, we generated the gray-level histogram of the image and selected a threshold level 

that best extracted the ship from the water region. Figure 26 shows the histogram of 

Figure 25. 



Figure 26: Gray-level histogram of Figure 21. 

In this image, the average brightness for the water region is greater than that for 

the ship region. If we had a sky region in this picture, the values in the sky region would 

be lower than in the ship region. The histogram profile was analyzed and it was verified 

that the highest peak was related to the water portion of the image. It was also verified 

that the first peak left of the highest was related to the ship. The region between the "ship 

peak" and the "water peak" was a transition region; the threshold value selected 

corresponded to the minimum in the transition region. In Figure 26, those values are 

water peak= 95, ship peak= 65 and threshold= 72. The original image was thresholded at 

that value and a binary image generated. Figure 27 shows the result for Figure 25. 



Figure 27: Binary image thresholded at level 72 using Figure 25. 

In a second step, we eliminated spurious pixels by extracting the greatest 

connected region and filling the holes (see segnentation.m in Appendix A). The final 

ship silhouette found for Figure 25 is shown if Figure 28. 

Figure 28: Silhouette found after cleaning up Figure 27 



D. TRAINING PHASE OF THE NEURAL NETWORK CLASSIFIER 

The neural network ship classifier required a training phase using representative 

projective views. As explained in Section B of Chapter 11, the moment functions 

invariance under reflection helps to simplify the range of all representative views distinct 

ship views. Three-dimensional objects which possess symmetry about a plane, such as a 

ship, can have its significant range of distinct views for azimuth restricted to [-90°, 90'1, 

where 0" corresponds to the broadside ship silhouette [Ref. 161. Elevation angles were 

restricted to the upper hemisphere with 45 degrees as the upper operational limit, as the 

helicopter will be viewing the ship with lower elevation angles. 

One training set and two testing sets of projections were generated. The training 

set was 48 views of each of the five ship types taken at viewpoints separated by 15' in a 

1 80°x450 sector; i.e., { (0, a), 0 = -90°, -75", -60°, . . ., 75'; a = 0°, 15", 30°, 45' ) where 0 

and a represent azimuth and elevation angles respectively. Examples of the training 

images are in Figure 29 below. In this figure, the elevation angle is 15' and the azimuth 

angles from left to right are: -90°, -60°, -30°, 0°, 30°, and 60". The ship types from top to 

bottom are aircraft carrier, destroyer, frigate, merchant, and research ship. 



a P a h -  -h 

Figure 29: Examples of the training images for each modeled ship 

E. TESTING PHASE 

There were two testing sets; 41400 silhouettes projected from the three- 

dimensional ship models and the 25 real FLR images. The first test set contains 8280 

views of each of the five ship models taken at viewpoints separated by l o  in azimuth and 

l o  in elevation; i.e., ((@,a), 9 = -90°, -89", -BO,  . . ., 89" ; a = 0°, lo, 2", . . ., 45' ) where 8 

and a represent azimuth and elevation angles respectively. Although this set contains the 

training set, the number of training views was very small (96 views) to compromise the 

simulation results. The real image test set was described earlier. 



F. PROGlZAMS DEVELOPED 

All 16 programs were written in MATLAB. They can be divided in four 

categories (see Table 1 and Appendix): 

- Three-dimensional ship modeling: specialized functions used to create 

the three-dimensional models used in other programs; 

- Moment invariant computation: programs used to calculate the 

moment invariants of a specific ship silhouette; 

- Neural network training: programs used to train the neural network 

implemented; and 

- Testing: programs used to evaluate the performance of the system 

implemented. 



Name 

Three- 
dimensional 
ship 
modeling 
programs 

Moment 
invariants 
computation 
programs 

Neural 
network 
training 
programs 

Testing 
programs 

Create the model for aircraft carrier 

Create the model for destroyer 

Create the model for frigate 

Create the model for research ship 

Create the model for merchant ship 

Returns the 12-element input set 

Returns the six moment functions values 

Returns the central moment 

Returns the centroid of a silhouette 

Creates and trains a neural network 
responsible for recognizing ship types 

Returns all the silhouettes to be used by 
the neural network during training phase 

Create a Graphical User Interface to 
evaluate the system implemented. Three 
ship silhouettes are shown in the 
interface: (1)the original silhouette, (2)the 
rotated, scaled and noisy silhouette 
defined by the user, and (3)the neural 
network guessed silhouette 

Draws the ship silhouette inside the 
Graphical User Lnterface 

Segments a FLIR real image using a 
histogram and threshold technique 

Creates 05 mat files containing the 
silhouettes of each ship for increments of 
one degree in azimuth and elevation, 
then plots the errors 

Returns a vector with the size of all the 
viewangles being tested, where "1" will 
mean misclassified and "0" will mean 
correct classified 

Table 1 : Programs implemented 
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V. RESULTS FROM EXPERIMENTATION 

A. EVALUATION STRUCTURE 

Experiments were carried out in order to evaluate the proposed system. For this 

purpose, the five ship models detailed in chapter N were used. The parameters generally 

used to characterize the overall performance of an automatic target recognition system 

are the probability a given ship is correctly recognized (recall) and probability a given 

type identification is correct (precision). By classification is meant recognition, the 

determination of the target type. Performance data is generally given in the form of a 

conhsion matrix together with the size of the feature vector and database. 

Using the probability of correct classification as a reference and the simulated 

three-dimensional ship model images as a database, it was possible to iteratively optimize 

our system. This optimization was achieved in three distinct experiments. 

B. FIRST EXPERIMENT 

The first experiment was implemented as described in chapter N. Experiments 

were performed with simulated 12-components moment invariants signatures from the 

models. The six moment invariants of the solid silhouette and the six moment invariants 

of the boundary make up the signature vector, as described in chapter 11. The training 

signatures were generated from images of the three-dimensional models taken at a regular 

pace of 15 degrees in azimuth increments and in four different viewing elevation angles: 

0°, 15O, 30' and 45'. The total training set was 48 images. 

The testing set contained the images of the three-dimensional models taken at a 

regular pace of 1' in azimuth increments and using the same four elevation angles used 

during training. The neural network used was small, with only 20 hidden neurons and a 

single hidden layer. Backpropagation was used as the training technique. The network 

was successhlly trained. This network yielded 90.1% discrimination leaving an overall 

approximate 10% error rate. Details of the experiment are summarized in Table 2. 



Network Parameters 

# input nodes 

# nodes in hidden layer 

Network- 1 

12 

2 0 

# output nodes 

# training set 240 (12 x 4 x 5) 

# test set 3600 ( 1 8 0 x 4 ~  5) 

Accuracy 90.1% 

Table 2: Neural network for experiment 1 

The first experiment enabled us to analyze the azimuth behavior of the neural net 

generalization capability. For this purpose, we plotted for each ship type the classification 

error percentage with respect to azimuth (Figures 30 to 32). 

Aircrat Carrier Testing Results [adding all 4 elemtion angles) 

O Training set ==> 48 
- Testing set ==> 720 

Silhouettes correct classiied ==> 631 p7.696) 

azimuth angle 

Figure 30: Accuracy with respect to azimuth for aircraft carrier 



Destroyer Testing Results (adding all 4 elevation angles) 
I I I I I I I I 

Q Training set ==> 48 
Testing set ==> 720 
Silhouettes correct classiied ==> 676 (93.9%) 

azimuth angle 

Frigate Testing Results (adding all 4 elevation angles) 

1 0 Training set ==> 48 
- Testing set ==r 720 

Silhouettes correct classiied ==> 6' 

azimuth angle 

Figure 3 1 : Accuracy with respect to azimuth variation for destroyer and frigate 



P ointsur Testing Results [adding all 4 elevation angles) 
50 I I I I I I I I I I 

0 Training set ==a 48 
- Testing set ==a 720 

Silhouettes cowect classiied ==> 685 (95.1 %) 

azimuth angle 

M erchant Testing Results (adding all 4 elewt ion angles) 
50 I I I I I I I , I 

45 - O Training set ==> 48 
- 

- Testing set ==r 720 
40 - Silhouettes correct classiled ==> 639 (88.8%) - 

P 

35 - 

30 - - 
6 25 

E 
20 

15 

10 

5 

0 
-100 8 0  6 0  -40 -20 0 20 40 60 80 100 

azimuth angle 

Figure 32: Accuracy with respect to azimuth variation for Point Sur and merchant 

ship 



Analyzing the results of these graphs, we can verify that the major errors were 

related to high azimuth angles. This error pattern helped us to decide to use an unevenly 

spaced training set. In the second experiment, we increased the number of azimuth 

training angles by using small steps (5") in high azimuth angles. 

C. SECOND EXPERIMENT 

In the second experiment, we increased the number of training azimuth angles by 

using an unevenly spaced training set. For low azimuth angles (-45' to 45'), we kept the 

15" step, but for high azimuth angles we chose a smaller step of 5" .The new training set 

contained 96 views of each of the five ship types taken at the following viewpoints: ((8, 

a),  8 = -90, -85, -80, -75, -70, -65, -60, -55, -50, -45, -30, -15, 0, 15, 30, 45, 50, 55, 60, 

65, 70, 75, 80, 85; a = 0, 15, 30, 451, where 8 and a represent azimuth and elevation 

angles respectively. 

The neural network and testing set were the same used in the first experiment. We 

obtained 91.2% accuracy. We also tried another neural network architecture with 30 

hidden nodes and the classification rate improved to 94.8%. Details of these experiments 

are summarized in Table 3. 

I Network Parameters I Network-2 I Network-3 

I # input nodes 1 l2 1 l 2  
# nodes in hidden layer 20 3 0 

# output nodes 5 5 

# training set 480 (24 x 4 x 5) 480 (24 x 4 x 5) 

# test set 3600 (180 x 4 x 5) 3600 (180 x 4 x 5) 

Table 3: Neural networks for experiment 2 

As we can see in Table 3, with a bigger training set and 30 hidden neurons the 

neural network-3 yielded the best accuracy. Figures 33 to 35 show the classification 

error percentage with respect to azimuth for network-3. 










































































































































