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ABSTRACT 

The problem of radiowave propagation over irregular terrain is solved by using the 

standard parabolic equation method. The ground is characterized by an impedance boundary 

condition and a height profile. A tropospheric boundary condition is used to truncate the 

computational domain. This thesis uses a novel approach of casting all the equations in a 

curvilinear coordinate system. The coordinate system is generated in a simple manner using 

the ground profile data. The equations are solved by the finite difference method using the 

Crank-Nicolson scheme. 

Different numerical values for various important parameters (e.g., step size, location 

of tropospheric boundary, the region above the tropospheric boundary, etc.) were used, and 

their effect on the accuracy and computing time are discussed. Validation of the numerical 

results with exact and/or experimental results are presented for different terrain profiles. Both 

perfectly electric conducting (PEC) and lossy impedance surfaces are considered. 

Accesion  For 

NTIS    CRA&! 
DTIC     TAB 
Unannounced 
Justification 

By   
Distribution | 

D 
D 

Availability Codes 

Dist 

A- 

Avail  and | or 
Special 



VI 



TABLE OF CONTENTS 

I. INTRODUCTION % 1 

A. BACKGROUND 1 

B. OBJECTIVE  2 

Ü.        FORMULATION   5 

A. IMPEDANCE BOUNDARY CONDITION 6 

B. STANDARD PARABOLIC PARTIAL DIFFERENTIAL EQUATION . 8 

C. TROPOSPHERIC BOUNDARY CONDITION 10 

D. TRANSFORMATION TO CURVILINEAR COORDINATE SYSTEM 13 

JH.       SOLUTION PROCEDURE _ 17 

A. GENERATION OF THE CURVILINEAR COORDINATE SYSTEM   17 

B. NUMERICAL IMPLEMENTATION USING THE CRANK-NICOLSON 

SCHEME 21 

IV.      COMPARISON OF RESULTS 27 

A. PARAMETRIC STUDY OF THE FINITE DIFFERENCE SCHEME . 27 

1. Forward-Difference  versus  Central-Difference   Scheme  for  the 

Impedance Boundary Condition   27 

2. Variation in Horizontal Step Size (With Fixed Vertical Step Size)28 

3. Variation in Vertical Step Size (With Fixed Horizontal Step Size)29 

4. Variation in the Tropospheric Boundary Condition Parameter . . 29 

B. PROPAGATION OVER A PEC PLANE 39 

1. Magnetic Field Variation with Horizontal Distance 39 

2. Magnetic Field Variation with Vertical Distance 39 

C. PROPAGATION OVER A PEC KNIFE-EDGE    45 

D. PROPAGATION OVER A CIRCULAR BOSS IN A PEC PLANE ... 46 

vn 



E. PROPAGATION OVER A LOSSY IMPEDANCE PLANE    50 

F. PROPAGATION OVER A LOSSY GAUSSIAN HILL 50 

G. PROPAGATION OVER A PEC ISOSCELES HILL 53 

H.       PROPAGATION OVER A PEC CLIFF 55 

I. PROPAGATION OVER A DIELECTRIC COATED CLIFF 56 

J. PROPAGATION OVER A MIXED PATH (LAND-SEA-LAND) .... 59 

K.       PROPAGATION OVER A LOSSY VALLEY 59 

V.        CONCLUSIONS AND RECOMMENDATIONS   63 

APPENDLX A.    MATLAB SOURCE LISTINGS 65 

A. EXECUTIVE ROUTINE 65 

B. PHYSICAL DOMAIN GRID 66 

C. CURVILINEAR COORDINATE SYSTEM METRIC 67 

D. MAGNETIC FIELD ON INITIAL DATA LINE 67 

E. FORMULATION OF PARABOLIC EQUATION MATRIX 68 

F. LOWER BOUNDARY CONDITION  70 

G. UPPER BOUNDARY CONDITION 71 

H. FRESNEL INTEGRAL FUNCTION 72 

I. INPUT DATA FILE FOR PROPAGATION OVER PEC PLANE .... 72 

J. INPUT DATA FILE FOR PROPAGATION OVER PEC KNIFE-EDGE73 

K. INPUT DATA FILE FOR PROPAGATION OVER CIRCULAR BOSS IN 

APEC PLANE    74 

L.        INPUT DATA FILE FOR PROPAGATION OVER LOSSY IMPEDANCE 

PLANE   75 

M.       INPUT DATA FILE FOR PROPAGATION OVER LOSSY GAUSSIAN 

HILL  76 

N.        INPUT DATA FILE FOR PROPAGATION OVER PEC ISOSCELES 

HILL  77 

Vlll 



O.        INPUT DATA FILE FOR PROPAGATION OVER PEC CLIFF 78 

P.        INPUT DATA FILE FOR PROPAGATION OVER DIELECTRIC COATED 

CLIFF   78 

Q.       INPUT DATA FILE FOR PROPAGATION OVER MIXED PATH . . 79 

R.        INPUT DATA FILE FOR PROPAGATION OVER LOSSY VALLEY 80 

LIST OF REFERENCES    83 

INITIAL DISTRIBUTION LIST    85 

IX 





LIST OF TABLES 

1.   Attenuation factor for propagation over PEC knife edge  . 46 

XI 



Xll 



LIST OF FIGURES 

Figure   1.       An electric source producing fields over an irregular terrain 5 

Figure  2.       Boundary interface between two regions 7 

Figure  3.       Discrete derivatives for integral evaluations   11 

Figure   4.       Curvilinear coordinate system       14 

Figure   5.       Physical and computational grids   18 

Figure  6.       Physical and computational domain segments 18 

Figure  7.       Curvilinear mesh for a Gaussian shaped ridge on flat ground 20 

Figure   8.       Internal grid points in computational domain 21 

Figure   9.       Grid points at the lower boundary 23 

Figure   10.     Grid points at the upper boundary 24 

Figure   11.     Surface magnetic field versus distance    -. 30 

Figure   12.     Hz versus distance @ height = 0.1A,  31 

Figure   13.     Hz versus distance @ height =y0 = 20k  32 

Figure   14.     Surface magnetic field versus distance   33 

Figure   15.     Hz versus distance @ height =y„ = 20A,  34 

Figure   16.     Surface magnetic field versus distance    35 

Figure   17.     Hz versus distance @ height -y0 = 20A,  36 

Figure   18.     Surface magnetic field versus distance    37 

Figure   19.     Hz versus distance @ height =y0 = 20X  38 

Figure  20.     Surface magnetic field versus distance   40 

Figure   21.     Hz versus distance @ height = 5X 41 

Figure  22.     Hz versus height @ distance = 6X 42 

Figure   23.     Hz versus height @ distance = 10A. 43 

Figure   24.     Hz versus height @ distance = 15A 44 

Figure  25. Perfectly conducting knife edge between the transmitter at A and the receiver 

at B, both of which are on a perfectly conducting ground 45 

Figure  26. Normalized surface magnetic field versus distance (PEC knife edge) ... 47 

xni 



Figure   27.     Normalized magnetic field versus height @d2 = 2X (PEC knife edge)  . 48 

Figure   28.     Magnitude of the normalized surface fields versus horizontal distance for a 

line source placed over a perfectly conducting plane with a semi-circular 

boss  49 

Figure   29.     Surface magnetic field versus distance (lossy plane)   51 

Figure   30.     Magnitude of the normalized surface fields versus horizontal distance for a 

source placed at the origin in front of a Gaussian hill 52 

Figure   31.     Perfectly conducting isosceles triangular hill of height 1.23 A and baselength 

20.16A 53 

Figure   32.     Magnitude of the normalized fields across a perfectly conducting isosceles 

triangular hill   54 

Figure   33.     Perfectly conducting cliff edge of height 1.05A  55 

Figure   34.     Magnitude of normalized fields across a perfectly conducting cliff 57 

Figure   3 5.     Magnitude of the normalized fields across dielectric coated horizontal surfaces 

on a cliff edge; er = 2.2. Dielectric thickness 0.15 cm. Normalized surface 

impedance is jO.171    58 

Figure   36.     Path loss over a land-sea-land path,/= 59.7 MHz, transmitter at 5m, receiver 

at 5m, vertical polarization 61 

Figure   37.     Path loss for propagation over a valley,/= 10 MHz, transmitter and receiver 

on the ground 62 

xiv 



I.   INTRODUCTION 

A.   BACKGROUND 

The topic of radiowave propagation over irregular terrain is extremely important in 

ground-to-ground as well as in ground-to-air communications used by the Navy, Air Force, 

and the Army. Similarly, the ability to predict radiowave propagation over irregular terrain 

has a significant impact in determining target detectability in a radar system. The physics of 

propagation is affected by ever-changing atmospheric conditions and by complex terrain 

features on the ground. The link reliability in a communication system or target detectability 

in radar can be significantly affected by the so called 'multipath fading'. The path between a 

transmitter and a receiver is often obstructed by natural or man-made obstacles such as hills, 

buildings, atmospheric layers, trees, rain, fog, etc. In the case of atmospheric multipath fading, 

abnormal propagation of electromagnetic waves resulting from super-refraction or sub- 

refraction can result in severe loss of signals. Reflection multipath fading, which is due to 

interference between the direct and the ground reflected waves depends strongly on the 

terrain geometry and ground constants. It is therefore important to designers and operators 

of communications and radar systems to predict the electromagnetic fields due to radiating 

sources in the troposphere and to assess the effects of environment on radiowave 

propagation. 

Any in-depth understanding of these systems requires a knowledge of the physical 

phenomena that governs low-angle propagation; more specifically, to be able to model 

complex fading phenomena due to refraction, reflection, scattering, and diffraction. Numerous 

analytical methods are available for predicting electromagnetic wave propagation such as 

geometric optics, physical optics, normal mode analysis, and combinations of the above. 

However, they have several limitations for predicting propagation in a complex environment. 

The parabolic equation method has been used to predict radiowave propagation in an 

inhomogeneous atmosphere and over flat terrain, and also for predicting radiowave 

propagation over sloping irregularities. 



In this thesis, we will concentrate solely on the effects of irregular terrain. Since the 

propagation path could extend over several thousands of wavelengths, it is important to have 

a method that is efficient numerically. The parabolic equation method is one such method. 

One advantage of a parabolic partial differential equation (PDE) over an elliptic PDE is that 

in the former case, the field at any location can be computed in terms of the field at a previous 

location. However, this would be accurate only when the waves propagate predominantly in 

the forward direction. In deriving a parabolic PDE, it is assumed that the waves are 

predominantly forward traveling. This is approximately met in a typical radio link where the 

received signal is primarily affected by the nature of the path between the transmitting and 

receiving antennas. Of course there are several situations when this is not true. For example, 

when there is a large obstacle behind a receiving antenna, back-scattering from the obstacle 

will affect the received signal. Nonetheless, the parabolic equation method has been used 

successfully in the past to predict propagation in several scenarios, particularly for 

atmospheric multipath fading. 

B.        OBJECTIVE 

In this thesis, we adopt the same parabolic PDE as in the previous approach [Ref. 1] 

to predict radiowave propagation over an irregular terrain. A tropospheric boundary condition 

is used to truncate the computational domain at the top, while an impedance boundary 

condition is used on the uneven terrain to characterize the ground. The key feature of this 

thesis is to use a novel approach of casting all the equations in a curvilinear coordinate 

system. A body fitted coordinate system is generated based on the specification of the ground 

profile. This permits accurate modeling of the boundary conditions which is so vital to the 

success of the model. The parabolic equation method is a full-wave method in that it includes 

all aspects of wave propagation such as forward reflection, refraction, diffraction, and surface 

wave propagation. However, as stated above, it ignores back-scattering. Chapter II presents 

the derivation and formulation of the governing partial differential equation for the standard 

parabolic equation method, the impedance boundary condition, and the tropospheric boundary 

condition. Also presented in Chapter II is the transformation of all the partial differential 



equations to a curvilinear coordinate system. Chapter HI details the generation of the 

coordinate system and the numerical procedure for solving the parabolic PDE. The 

performance of the numerical solution is examined in Chapter IV. This includes a study on 

the effects of using different numerical values for various important parameters (e.g., step 

size, location of the tropospheric boundary, the region above the tropospheric boundary, etc.) 

on the accuracy of the solution, and validation of the numerical results with exact and/or 

experimental results for different terrain profiles. Recommendations and conclusions are 

presented in Chapter V. Finally, MATLAB computer codes for the numerical implementation 

are presented in the Appendix. 





H.   FORMULATION 

In this chapter we present the governing partial differential equation for the fields 

together with the required boundary conditions. We present only the final forms and refer the 

reader to [Ref 2] for more details. Figure 1 shows a Hertzian electric source placed over an 

irregular, lossy terrain. The terrain is characterized by its height profile and an impedance 

boundary condition. The impedance of the ground depends on the ground constants (e0e„ 

u0u„ and a). We wish to solve the fields at a point on/over the ground in the presence of the 

irregularities. We consider only a 2-dimensional situation where the sources, geometry, and 

all fields are z-invariant. 

Electric 
Source 

(xO, yO) 

Tropospheric Boundary y=yrt 

Initial Range (x = x. {) 

I 
Ji 

v unit normal 

s unit tangent 

Figure 1.   An electric source producing fields over an irregular terrain. 



Section A deals with the impedance boundary condition. In Section B, we present the 

theory on the parabolic PDE. In Section C, we present the tropospheric boundary condition 

required to terminate the computational domain. In any partial differential equation, proper 

imposition of boundary conditions is very critical to the final solution. We desire to solve the 

parabolic PDE by an implicit finite difference scheme. Most of the previous work in this area 

used a cartesian mesh because of its simplicity. However, practical geometries seldom 

conform to cartesian coordinates. Some sort of interpolation is needed near the boundary 

when non-cartesian geometries are encountered, as in the present case. This could result in 

a severe loss of accuracy. To better model the boundary conditions, we solve the equations 

in a curvilinear coordinate system generated by treating the lower irregular boundary as one 

coordinate line. In Section D, we cast all the equations in a curvilinear coordinate system. 

A.        IMPEDANCE BOUNDARY CONDITION 

An impedance boundary condition (IBC) relates the tangential components of the 

electric and magnetic fields at the interface of two media. If v is a unit normal vector to the 

boundary, and s is a unit tangential vector as shown in Fig. 1, the boundary condition is [Ref. 

3] 

v x ( i? x E ) = -tioA v x H, (1) 

where As = ZJr\0 is the surface impedance normalized to the free-space impedance 

*!<> = \I^Jec and zsis tne actual surface impedance that is dependent on the media constants 

and the incident angles. The surface impedance is determined from the intrinsic impedance of 

the medium by considering plane wave reflections from the interface. Figure 2 shows the 

interface between two media. The complex propagation constants, yx,y2, and the intrinsic 

impedances r^ and r\2 can be expressed in terms of the media constants. They are 

yj * jantftae} = -k*, (2) 

Y2 = y»|i,Jie(o ♦ Joee} - -*jir
€re (3) 



Figure 2.   Boundary interface between two regions. 

and 

*\i - \ 1* - tl. 
\ €

re2 

(4) 

According to Snell's law, Yi sin 6; = y2 sin 6t. The plane-wave reflection coefficients for the 

vertical and horizontal polarizations, Rv and RH, are [Ref. 4] 

"a 
ti2sec6( - T]0sece, 

tljSecO, + TioSecO, 

il2cos6f - TJ jCos 6( 

T|2COS d( * TljCOS 0, 

(5) 

(6) 

Using these, the surface impedance of the lossy ground can be taken as 



z = 
,H 

r^secö^     Horizontal  Polarization 

ti cos 0,,     Vertical Polarization (7) 

Therefore, 

H 

\ € 

cos if. 

^r€r ■°i 
COS   l|f. 

M, 

For the special case of normal incidence, ij/j = 90°, 

A. = A. 
^ 

6r  -J°r 

(8) 

(9) 

where or =  . In this thesis, we will use a normalized surface impedance given in Eq. (9) 
(06 

for all the results. For a 2-Dimensional case with vertical polarization, the impedance 

boundary condition given by Eq. (1) can be simplified as 

dH 

dv 
- - JkerA^Hz =0. IBC  Vertical Polarization (10) 

Similarly, we have for the horizontal polarization 

—- - jk u —E  = 0. 
dv A« 

IBC  Horizontal Polarization 01) 

For a perfectly conducting material, AS
IW = 0 and the impedance boundary condition reduces 

dH z 
to  = 0 (Vertical Polarization) and E2 = 0 (Horizontal Polarization). 

dv 

B.        STANDARD PARABOLIC PARTIAL DIFFERENTIAL EQUATION 

For a two-dimensional electric source producing fields in a homogeneous region, all 

quantities are independent of the z-coordinate, and propagation takes place in the xy-plane. 

From Maxwell's equations, we have V * E = -ju\iH, and V * H = ju>eE + J. The fields 

could be expressed in terms of the z-component of the magnetic field, H^ in the case of 

vertical polarization (TEZ fields), and in terms of E2 for the horizontal polarization (7MZ 



fields). In a source-free environment, the equation satisfied by the magnetic field is 

V • (VH) ♦ k2
0Ht = 0. Vertical Polarization (12) 

Similarly the equation for the electric field is 

V • (VE) ♦ k]Ez = 0. Horizontal  Polarization (13) 

Equations (12) and (13) may be combined into an equation of the form 

V2i|r ♦ *> - 0, (14) 

where i|r = H2 for TE Polarization and i|/ = E2 for TM Polarization. Equation (14) is the 

standard Helmholtz equation and is elliptic in nature; the field at any one point depends on 

field at every other point in a complicated manner. However, for wave propagation problems, 

an approximate answer can be obtained by the use of a parabolic PDE. In this case, the field 

at a particular range depends on the field at previous range points only. Assuming that the 

wave propagates predominantly in the positive x-direction, we write 

*(JCJO = e**ii(xjO, (15) 

where t/Qy) is a slowly varying function of x. We now impose the restriction that 

l"J « 2*>J (16) 

( ux = — , ua = —— ) into Eq. (14) and arrive at 
dx      **     dx2 

du        -j    d2u 
öx" =  2ko  öy2 ' (17) 

Equation (17) is the exact form of the narrow angle parabolic PDE approximation. The 

impedance boundary conditions derived in the previous section can also be expressed in terms 

of the V function : 

uv - jko(_hVt * xju = 0, IBC  Vertical Polarization (18) 



u    - jk 

dx 

H 
*  X u - 0, IBC   Horizontal  Polarization 

where x   = — = - sin 0 and u 
v     dv 

du_ 

dv 
on the irregular terrain. By defining 

cx- < 

-jk0(As - sin6)       Vertical Polarization 

-jk0{ sin 6)     Horizontal  Polarization 
A" 

(19) 

(20) 

Eqs. (18) and (19) can be combined and written as 

u   + CM = 0. (21) 

The parabolic PDE given by Eq. (17) is valid for propagation angles close to the horizontal 

(±15° in practice) [Ref. 5]. 

C.        TROPOSPHERIC BOUNDARY CONDITION 

Our computational domain consists of the region above the lossy ground. To truncate 

the computational domain on the upper side, we consider a point y =y0 high enough and 

impose a boundary condition of the form 

uy * a.u - p on y = yo. (22) 

To derive this, we start with the parabolic equation u - 2jkux = Owith a complex k. 

Consider the problem of determining the field at any point in x > xini and y > y0, given the 

initial data on x = xini, u(xini:y) =fly), and the boundary data on y=y0, u(xy0) = g(x). For 

analytical simplicity, we assume k = k0 - je, e > 0. The lossless case which we are considering 

in the thesis can be considered as the limit of the lossy case as e -► 0. Using the Fourier sine 

integral, it is shown in [Ref. 2] that 

du 

dy r+y'o    \ 

2jk_ 

71 4 
«*,(*) 

dx 
]x-x. ."■'•y, cinl     \IX--Z 

(23) 

10 



The integrals can be evaluated approximately by replacing the derivatives with 

differences. Figure 3 shows data points on the line y=y0 and on the portion of x = xini which 

is above v = v0. 

A.       A, •  * mi 

Discrete Data 

y=y° 

p-1      p-H      p 
u u   u 

Xp-lXp->4Xp 

x-x mi 

Figure 3.      Discrete derivatives for integral evaluations. 

Consider the evaluation of duldy\y^0 six- xini = x^ with initial data on the line x = xini. Let 

us assume that this initial data is known on a uniform gridj'm =y0 + mAy, m = 0, 1, ••. The 

derivative in the interval (ym.h ym) can be approximated by the forward difference formula 

am „ u_ - u m-l 

Ay y 6 <y-v yJ> (24) 

where um = u(xiniy„). Then 

vkW. ' »^    A^   )y* k 

,(25) 

11 



where F(x) = j * e *^dx is a complex Fresnel integral [Ref. 6]. 

Now, consider the boundary data on the line y =y0. Assume a non-uniform grid xini, 

xim + xh Xim + x2 -, xM + xp.1/2 = x. On the interval x - xini = (xm_„ xm), the derivative can be 

approximated as 

*,(*) = 
u "'- u m-1 

X    -  X   . 
m m-1 

(26) 

where um = u(xm, y0). The second integral in Eq. (23) can now be obtained as 

I **■/        «/x  .+ x  .-T m-i 

u * -  umA 
u**- u** 

'x*s V^"T \lxr-*- x«-i + ^- x» \£--- *- /M4        /vl 

(27) 

Substituting Eq. (25) and (27) into Eq. (23), 

du 

dy > 

«/* 
71 (x     -   X   .) v  p-Vi        p-V 

■tnC Xp-<A 

A>»   m-i feW)-feM) 

P-l Ms u m   _    ö m-1 
«/* ..»^   ]_ —  + ur    , 

V  P-*        m       V  />-«        "-1 " ^        ^ 

(28) 

whereV« = ,/2(Vi+ XP " xP-vr xp-i = ,/j(V Vi> Ä '/IAX^. Equation (28) can be thought 

of as the discrete version of a continuous boundary condition of the form 

— ♦ r(x)u = s{x), 
dy 

(29) 

where 

12 



r(x) - W  1_ 

>i 

S(.X)  -  yflj  I 
u    -u   . m m-l 

m-l Ay 4. -r~r<ym-yA - 41-r-^y^-y^) 

8/Vtr p-i «    - u m-l W 
N * ->^T; ♦ f^ir,  \ *(» - vi> 

■a*"1 

(30) 

(31) 

D.        TRANSFORMATION TO A CURVILINEAR COORDINATE SYSTEM 

The partial differential equation in Eq. (17) and the boundary conditions in Eqs. (21) 

and (28) will now be transformed to a curvilinear coordinate system. Consider the narrow 

angle parabolic PDE given by Eq. (17) 

u   = 
X 

1      d2u 

Vk0  dy2 
(32) 

together with the tropospheric boundary condition 

dy 

and the impedance boundary condition on the irregular boundary 

(33) 

U     ♦   CM   =   0. 
v 1 (34) 

We will cast all of these equations in a curvilinear coordinate system (£, r\) shown in Fig. 4. 

This will permit accurate imposition of boundary conditions. Note that the parabolic nature 

of the equation will not change as a result of the transformation. The irregular terrain 

boundary will map into r| = 0 and the upper boundary into r\ = N (integer). The entire 

coordinate system is generated by the specification of the terrain geometry. 

Assuming the transformation x = x(E,), y = y(Z,,r\), and using the various metrics 

needed [Ref. 7], Eq. (32) becomes 

13 



_     11 
3 

L \    y* j 
VK Vk? 2    11 (35) 

f A" I Boundary Condition 1 T 
5    il =N 

J W//////////rf//;/}///////t//,;///SM 

Boundary Condition 2 
Physical Domain Computational Domain 

Figure 4.      Curvilinear coordinate system. 

1=0 

Letting 

i        y      \ 

2 

v    ^i y 
2jko 

+ x{ 
(36) 

2/*X 
(37) 

then Eq. (35) can be expressed as 

u. = b u   * * w 
t 2   t) 3   11 (38) 

The normal derivative on a r| = constant line is 
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/2 2 

«v(Ti=constant ) = -I-L.—L.^ _ c i La a? . (39) 

Using 

cos 6 =      and      sin 8 i ' (40) [~2 2 [~~2 
vx«+ y% vi+ n 

the boundary condition at the bottom boundary uv + c,u = 0 gets transformed for x^ = 0 to 

y 
«v - —-sin6cos6u. + c^y cos 6« = 0. (41) 

Similarly, the boundary condition aty=y0 gets transformed to 

«,(«- W ' K5-. **„«■)««., N) - y^m, N). ' (42) 
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m.   SOLUTION PROCEDURE 

In the previous chapter we presented the underlying equations and the relevant 

boundary conditions for the computation of fields over an irregular terrain. In Section A of 

this chapter, we present details on the generation of the coordinate system. In Section B, we 

adopt the Crank-Nicolson scheme in the transformed domain to obtain the required finite 

difference equations. 

A.        GENERATION OF THE CURVILINEAR COORDINATE SYSTEM 

Consider the computational domain between the terrain profile and a horizontal upper 

boundary. We treat the terrain profile as being comprised of piece-wise linear functions and 

consider a horizontal upper boundary as shown in Fig. 5. We wish to generate a coordinate 

system (£,T|) such that the lower and the upper boundaries correspond to constant r\ lines. 

The coordinate lines gradually become horizontal as one proceeds from the lower to the 

upper boundary. Specification of the lower and upper boundaries completely determines our 

coordinate system. Without loss of generality, we will choose the increments between the 

mesh points in the (£,T|) plane to be unity. Figure 5(a) shows the mesh points in the physical 

domain and Fig. 5(b) in the computational domain. Figure 6 shows corresponding pairs of 

points on the upper and lower boundaries in the physical and computational domains. The (x, 

y) coordinates of an interior point are generated by using linear interpolation. Letting Ax, = 

(*,+/ - XX Ay,= (v,+; -yX and A £s = (£i+1 - Q, the parametric equations for x and y are [Ref. 

2] 

Ax, 
*(5) - xt ♦ —1(5 -  I), 

y(l *> ■('-*)[ 
Ay, 

Ny' 

(43) 

(44) 

for §j < I < 5*i, 0 < n s N. 
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Figure 6.   Physical and computational domain segments. 
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It is possible to generalize this to any ground profile shape of the form/(^) by writing 

y 11 - f\ A') M1-*)'*)].^ (45) 

with x(£) given as above. However, we choose the piece-wise linear form for its ability to 

model discrete sets of data on the ground. At any interior point, £; < I < £i+1, the various 

metrics are obtained as 

*■    1 

xr = 

N) AS, ' 

Ax, 

1     A*,' 
*„ = °> 

y*-N y, - yt - -rra ~ ^ y    - 0. 

(46) 

(47) 

At the junction points £ = £, or 5,+;, we use the central difference formulas 

*i«-5«> 
XM   " 

It 

Ax,., ♦ Ax, 

*«- A^-AS, 

(,- nl AyM * Ay, 

■«« ♦ A5, 

(48) 

(49) 

Note that the analytical expression yields a discontinuous value for these derivatives. 

We use the analytical expressions only to generate grid points and use the central difference 

formulas to arrive at the derivatives with respect to \. In other words, once the grid points 

are generated on the lines A4', BB\ ..., etc., we assume that the space is smoothly connected 

through the grid points. In the numerical implementation using the Crank-Nicolson implicit 

scheme [Ref. 8], the metrics are needed at the midpoint with respect to £, i.e., at E, = ^ + 

A £/2, and the interior point formulas are applicable. For a uniform mesh in the computational 

domain, A £; = 1, TI = q, q = 0, 1,2,..., TV. 
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x? = A*r 

".-1'-^^, 

■±{> >\, = - I y. 
y i+ y 

(50) 

(51) 

(52) 

'■h)(^l-^ (53) 

Figure 7 shows an example of the curvilinear mesh for a Gaussian shaped ridge on flat 

ground. Note that the vertical increment is constant on any vertical line, but varies from line 

to line. 

10r 

10 15 20 
Horizontal Distance (wavelength) 

Figure 7.   Curvilinear mesh for a Gaussian shaped ridge on flat ground. 
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B.        NUMERICAL IMPLEMENTATION USING THE  CRANK-NICOLSON 
SCHEME 

Consider the narrow angle parabolic PDE together with the boundary conditions given 

by Eqs. (38), (41), and (42). We would like to implement the equations using a Crank- 

Nicolson implicit scheme [Ref. 8], We will write different forms for the internal and boundary 

regions. The grid points for an internal region in the computational domain are shown in Fig. 

8. Given the field data on the linep-1, we would like to predict the field on the line/?. 

-X 
A5 = l 

Aii = l 

5=P-1 p-% 

q+1 

ti=q-l 

Figure 8.   Internal grid points in computational domain. 

Using the notation a ' = u(p,q) = u(x ^p, the various derivatives (assuming A£ = AT| = 1) 

are 

ujp-KA) - < - «f\ (54) 
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\<P-*4) - %[«£♦ »;,- <«#♦ «£>]> (55) 

%,(p-y>4) - *[«;,- 2«;+ *;1+ «£- 2<v </]. (56) 

Substituting into Eq. (43) and rearranging the terms, we get [Ref. 2] 

^•».)-i-(-.K'-K».-^ 

♦^•^•(•-»•k-K^-T)""-0- (5?) 

Letting 

a = J4(Ä3 ♦ Kbfi*, (58) 

P - (*3)f, (59) 

Y = %(63 -  Kbtf«, (60) 

we have for/? = 1, 2, •••; q = 1, 2, •••, #-1 

«£ - (1 * P)< * Y«i - "«<; - (1 -  ß)<! - yu£. (61) 

We will extend the applicability of this equation to include q = 0 and q = Nto accommodate 

the derivative boundary conditions on the lower and upper boundaries. For q = 0, we have 

auf - (1 ♦ ß)«/ ♦ Y«_f = -««f-1 - (l -  ß)«*-1 - Y„* (62) 

For q = N,v/e have 

««*, "  (1 ♦ PX ♦ Y«jJ, - -«<; - (1 -  PX1 -  Y«£ (63) 
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A5 = l 

At] = l 

q=l 

q = 0 

q = -l 

Figure 9.   Grid points at the lower boundary. 

Figure 9 shows the grid points at the lower boundary. We use central differences for the 

boundary condition in Eq. (41) and combine with Eq. (62) to get 

p-\ .p-1 av - (i ♦ po< = -«'«r - a " ß>o . (64) 

where 

a' = a + Y, 

p' = p - 2Y>'cose 

p"= p - 2Y>\coseK ♦ 

( 2sin9^ 

2 sin0 

(65) 

(66) 

(67) 

We have also tried to use one-sided forward difference formulas near the terrain, but the 

results were less accurate than with the central difference scheme. Results for the two 

approaches will be compared in the next chapter. 
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A5 = l 

Aii = l 

q=N+l 

Figure 10.   Grid points at the upper boundary. 

Similarly, using central differences for the tropospheric boundary condition in Eq. (42) and 

combining with Eq. (63) results in 

where 

(i ♦ kyuj; - Y'«;., ■ (i - JD«jF ♦ Y'«£i ♦ 4«v^. (68) 

A. = ß + v 8a Jk 
TtAx 

>1 

Y  = Y + «, 

AVi = x/>" xp-v      VH 
= Vi + 1/zAVi = ,/2(x^+ Vi>' 
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,** 

" * ^(v^T1^+ ft» - *J>   N *Ax* N 

We augment Eq. (61) for q = 1, 2, ••• , N-\ with Eq. (64) and (68) for q = 0 and q = N 

respectively to define the equations for q = 0, 1,2,-, TV. The system of equations so defined 

can be expressed as a matrix equation of the form 

X X 

XXX 

XXX 

X X 
lN 

X X 

XXX 

XXX 

X X 

.p-l 

.p-1 

p-\ 4 ay s P-a 

(69) 

where X denotes a non-zero entry. The tri-diagonal matrix on the left hand side of Eq. (69) 

can be inverted efficiently to yield a solution on line £ = \p in terms of the field values on the 

line £ = 5^. Equation (69) can be used to march forward in range starting from initial data 

specified at £ = 0 (x = xim). 
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IV.   COMPARISON OF RESULTS 

Having presented the basic theory in the previous chapters, we will present numerical 

results in this chapter. The overall accuracy of the solution depends on a number of 

parameters such as the step size, location of the tropospheric boundary (i.e., y0 in Fig. 1), the 

region above the tropospheric boundary, and the differencing scheme used at the boundaries. 

In this chapter we will make a systematic study on the dependence of the solution on various 

parameters. Section A. 1 compares the results of the forward versus central differencing 

schemes for implementing the lower boundary condition. Sections A.2 and A.3 show the 

effects of horizontal and vertical step sizes, respectively. In Section A.4, we present the effect 

of the placement of the tropospheric boundary condition. In the remaining sections, we 

present comparisons with the results available in the literature for specific obstacles. 

A.        PARAMETRIC STUDY OF THE FINITE DIFFERENCE SCHEME 

1.        Forward-Difference versus Central Difference Scheme for the Impedance 
Boundary Condition 

In the implementation using the Crank-Nicolson implicit scheme, the derivatives at 

any interior point are approximated using the central difference formulas. This approximation 

is also extended to the lower boundary given in Eq. (69). Alternatively, the derivatives at the 

lower boundary could also be approximated using the forward difference formulas. From Eq. 

(43) and using the forward difference formulas, we have 

♦ (c^cosB)! J°  *"°   I = 0. (70) 

Equation (70) can be written as 

«'«,' - (i . ß>0' • -«'»f1 ♦ (i - ß'X"1, (71) 
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where 

«'.l,       ß'^ef^-c,),       p-.^e^.c,).       (72) 

Numerical results using both the central difference and forward difference schemes 

were used to compute magnetic field due to a vertically polarized line source on the surface 

of a PEC plane. The results of both schemes are compared with the exact solution [Ref. 9] 

and plotted in Fig. 11 (magnitude of magnetic field, Hz, on the surface of the PEC plane), 

Fig. 12 (Hz @ Height = 0.1 A), and Fig. 13 (Hz @ Height = y0 = 20A). It is observed that the 

central difference scheme produces a solution that agrees better with the exact solution. The 

solution using forward differences exhibits spurious oscillations which could not be resolved. 

Henceforth we will adopt the central difference scheme for the subsequent test cases shown. 

2.        Variation in Horizontal Step Size (With Fixed Vertical Step Size) 

The Crank-Nicolson scheme has the advantage of being valid (i.e., convergent and 

stable) for all finite values of the horizontal step size for a cartesian mesh. To verify the 

validity of the scheme with respect to horizontal step sizes, numerical results were evaluated 

for three different horizontal step sizes (Ax = 0. U, Ax = 0.2A, and Ax = 0.5 A) with a fixed 

vertical step size of A>> = 0. IX. The magnitude of the magnetic field, Hz, due to a vertically 

polarized line source placed at (xO = 0,y0 = 0) on the surface of a PEC plane are computed 

numerically and plotted in Fig. 14 (Hz on the surface of the PEC plane) and Fig. 15 (Hz @ 

Height =y0 = 20A). The plots show that the results are convergent for all the three horizontal 

step sizes, and excellent agreement is observed between the numerical results and the exact 

solution for the surface magnetic field. Minor oscillations are observed for magnitude of the 

magnetic field at the upper boundary. However, the average value of the magnetic field, Hz, 

is still close to the exact solution given by [Ref. 9] 

Hixy) - 2 
jk     (x -   X _)        rt.   „ 
if  K—^- H*(R) 
4 R 

(73) 
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where x = kx ,     xo = £ xo ,    Ro = fco^(x - x^)2 ♦ (y - yf, and H/2> is the Hankel 

function of the second kind of order 1. 

3. Variation in Vertical Step Size (With Fixed Horizontal Step Size) 

Next, we investigate the behavior of the Crank-Nicolson scheme with respect to 

vertical step size. In this study, the numerical results were evaluated for three different vertical 

step sizes (Ay = 0.1 A,, Ay = 0.2k, and Ay = 0.5 A) with a fixed horizontal step size of Ax = 

0.1 A. The same profile of a vertically polarized line source placed at (xO = 0,y0 = 0) on the 

surface of a PEC plane is adopted, and the magnitude of the magnetic field, Hz, are computed 

numerically. The results are plotted in Fig. 16 (Hz on the surface of the PEC plane) and Fig. 

17 (Hz @ Height =y0 = 20A.). Again the plots show that the results at the surface are 

convergent for all the three vertical step sizes tested, and excellent agreement is observed 

between the numerical results and the exact solution for the magnetic field, Hz. 

Minor oscillations are still observed at the upper boundary. Poor result's are obtained 

with Ay = 0.5 A.. This is possibly due to the inaccuracies of the upper boundary condition. 

Nonetheless, the numerical computation using step size of Ax = A v = 0.1X produces results 

which are in good agreement with the exact solution. 

4. Variation in the Tropospheric Boundary Condition Parameter 

In the evaluation of du/dy^ at x = x^+x,m, we have considered and assumed that 

initial data is known on a uniform grid>-m -y0 = mAy, m = 0,1, ■••. In practice we stop at some 

height y^c >ya- To ascertain how high a point should be considered, we examine the cases 

of extending beyond the tropospheric boundary by 5 A, 10A, and 20A, (i.e., yubc=y0 + 5A, 

10A, and 20 A). The simple test profile of the propagation of the magnetic field, Hz, due to 

a vertically polarized line source placed at (xO = 0,y0 = 0) on the surface of a PEC plane are 

computed numerically. In this study we choose Ax = A v = 0.1A and the upper boundary, y0 

= 20A. The results are plotted in Fig. 18 (Hz on the surface of the PEC plane) and Fig. 19 (Hz 

@ Height -y0- 20A). The plots show that the results are almost identical for all the three 

cases. To get an accurate representation of the tropospheric boundary condition, we need 

only to consider data on a vertical line which is within 5 A from the upper boundary. As such, 

all subsequent test cases will be computed using a tropospheric boundary with yubc=y+5 X. 

29 



05 

0 45t o    Central Difference 
x    Forward Difference 

exact solution 04 

0.35 

n 3 
T";  

£0.25 
X 

0.2 

0.15 

0.1 

0.05 

0 
c 

i i            i 

i            6            7 

Figure 

r 

11. Su 

5           < 
Horizon 

rfacem 

}          10         11          1 
al Distance (wavelength) 

agnetic field versus dist 

30 

2          1 

ance. 

3         1 4         15 



u.o 

0.45: 

0.4 

o    Central Difference 
x    Forward Difference 
 exact solution 

0.35 

0.3 

0.25 

0.2 

0.15 

0.1 

0.05 

8 9 10 11 12 13 14 15 
Horizontal Distance (wavelength) 

Figure 12.   Hz versus distance @ height = 0.1X. 

31 



0.14 

0.12 

0.1 

0.08 

N 

0.06 

0.04 

0.02 

f^rfS****" 

o    Central Difference 

x    Forward Difference 
 exact solution 

8 9 10 11 12 
Horizontal Distance (wavelength) 

13 14 15 

Figure 13.   Hz versus distance @ height = y0 = 20A. 

32 



N 
X 

0.5 

0.4i 

0.4 

0.35 

0.3 

0.25 

0.2 

0.15- 

0.1 - 

0.05- 

o    xdel=0.1*lambda 

x    xdel=0.2*lambda 

+    xdel=0.5*lambda 

exact so lution 

8 9 10 11 12 13 14 15 
Horizontal Distance (wavelength) 

Figure 14.   Surface magnetic field versus distance. 

33 



0.12r 

0.08- 

w 

I 
^0.06 

0.04 

0.02 

o xdel=0.1*lambda 

x xdel=0.2*lambda 

+ xdel=0.5*lambda 

 exact solution 

_L 

8 9 10 11 12 
Horizontal Distance (wavelength) 

13 14 15 
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Figure 18.   Surface magnetic field versus distance. 
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B.        PROPAGATION OVER A PEC PLANE 

In this section, we examine the effect of the height of the upper boundary, y0, on the 

stability and accuracy of the numerical results. The magnitude of the magnetic field, Hz, due 

to a vertically polarized line source placed at (xO = 0,y0 = 0) on the surface of a PEC plane 

are computed numerically. In this study we choose Ax = Ay = 0.1 A andj>„Ae =y0 + 5 A. 

Results are presented for^0= 5A,, 10A, 20A,, and 30A. The initial data line is at xini = 5k, and 

the magnetic field is marched over a horizontal distance of 10A,. 

1. Magnetic Field Variation with Horizontal Distance 

The variation in the magnitude of the magnetic field, Hz, along the horizontal distance 

on the surface of the PEC plane and at a height of 5 A is plotted in Fig. 20 and Fig. 21 

respectively. We noticed that the oscillations are predominant whenj0 is less than 20A. For 

y0 > 20A, the results are in good agreement with the exact solution. 

2. Magnetic Field Variation with Vertical Distance 

Figures 22, 23, and 24 depict the results of the variations of the magnitude of the 

magnetic field, Hz, with vertical height at horizontal distances of 6A, 10 A, and 15 A from the 

transmitter. Again, oscillations are present when the height of the upper boundary is below 

20A. More importantly, we observed that for a given horizontal distance, the deviations of 

the numerical results from the exact solution become more pronounced at higher points. This 

phenomenon is expected because the parabolic equation used in this thesis is valid for 

propagation angles close to horizontal (±15°). In fact the numerical result is fairly consistent 

with this restriction. For example, at a horizontal distance of 15 A from the transmitter (i.e., 

10A from the initial data line), the maximum height for which good results are expected is 

between 0 and 1.763 A. From Fig. 24, we see that this is true, and deviation between the 

numerical results and the exact solution begins at approximately 1.7A. The same trend is also 

observed in Fig. 22 and 23. However, the difference between the numerical results and the 

exact solution increases with distance from the transmitter. This could be due to inaccuracies 

of the tropospheric boundary condition. The error in the tropospheric boundary condition is 

accumulative, and we would expect to see higher error at larger distances. 
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C.        PROPAGATION OVER A PEC KNIFE-EDGE 

Consider a perfectly conducting knife edge of height hc as shown in Fig. 25, set on a 

perfectly conducting plane, with the transmitter and receiver both on the ground at distances 

dj and d2. The attenuation factor, AF, at point B can be found analytically and is given by 

[Ref. 10] 

where 

AF - 4 
N 2 Ju 

'e*"2/2 du, (74) 

«(5) = 5 
N 

2d 

Xdxd2 

u(X-h) - h 
\ 

2d 
Xdxd2 

(75) 

Figure 25.   Perfectly conducting knife edge between the transmitter at A and the receiver 
at B, both of which are on a perfectly conducting ground. 
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We consider the case where hc = 2X and d, = \0X. For this choice 6, = 11.3°. A vertically 

polarized line source is placed at xO = 0, yO = 0 and the magnetic field is determined from an 

initial range of 5X to a distance of 30A,. The height of the upper boundary is v0 = 20A andyubc 

=y0 + 5X. 

The variation of the surface magnetic field over the horizontal distance is plotted in 

Fig. 26. Variation of the magnetic field with height at a distance d2 = 2X is plotted in Fig. 27. 

Comparison of the attenuation factors at d2 = 21, 10A, 15A, and 20A (62 ~ 45°, 11°, 7.6°, 

5.7° respectively) computed numerically and the exact solution using Eq. (74) is given in 

Table 1. 

Distance d? AF (Numerical) AF (Exact) Error (%) 

2X 0.7758 0.4071 90.57% 

10A 1.1674 0.6725 73.59% 

15* 0.9330 0.7250 28.69% 

2QX 0.8048 0.7560 6.46% 

Table 1.   Attenuation factor for propagation over PEC knife edge. 

The rather large oscillations seen near the surface in Fig. 27 could be due to the non- 

applicability of the parabolic equation for high angles (i.e., 02 > 15°). 

D.        PROPAGATION OVER A CIRCULAR BOSS IN A PEC PLANE 

Next, we compare the numerical results for propagation over a semi-circular boss on 

a perfectly conducting plane. This problem typifies radiowave propagation over uneven 

terrain. A vertically polarized line source is placed in front of the semi-circular boss of radius 

b = 0.5X and centered at the origin. The transmitter is at xO = -0.75A, yO = 0.1X from the 

origin and the initial data line is at -0.6A from the center of the boss. There is good agreement 

between the exact solution given in [Ref. 9] and the numerical results generated here as 

evidenced in Fig. 28. 
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Figure 26.   Normalized surface magnetic field versus distance (PEC knife edge). 
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Figure 27.   Normalized magnetic field versus height @ d2 = 2 A (PEC knife edge). 
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Figure 28.   Magnitude of the normalized surface fields versus horizontal distance for 
a line source placed over a perfectly conducting plane with a semi-circular boss. 
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E.        PROPAGATION OVER A LOSSY IMPEDANCE PLANE 

In the previous sections, we have considered only propagation over PEC surfaces. In 

this section, we will investigate the case of propagation over a lossy impedance plane. The 

ground constant chosen are er = 10, or = 180 (corresponding to o = 10 mS/m at 1 MHz). 

The line source is placed at xO = 0,y0 = 0.01k. The horizontal step size, Ax = 0.1 k, and the 

vertical step size, Ay = 0. U. The initial data line is 5 A away from the source, and the solution 

is allowed to propagate for 25 wavelengths. The magnetic field on the initial data line is 

generated from the fields on a flat lossy plane [Ref. 11] 

H  - --£ 0 

4/ 

-P), 
«* W(*/i) ♦ «» W*(*/>> - J2\ 

N 
2/ -A>r2 

**/2<A,  +   SÜie2) 

(76) 

where 

'i ■ ft* ~ *f+(y- yf , r2 - ftx - xf ♦ (y ♦ yf , 

cos 6, (*- x) cos 0, (*- O sin 8, (y + yj 

The results for the surface magnetic field are plotted in Fig. 29. Comparison is made 

with the data points for the exact solution given in Fig. 22, pp. 52 of [Ref. 9]. There is very 

good agreement between the numerical results and the exact solution. 

F.        PROPAGATION OVER A LOSSY GAUSSIAN HILL 

Next, we treat the case of propagation over a Gaussian shaped ridge or hill. The 

height h(x) of the Gaussian hill is defined as 

h(x) - He -*&#*?, (77) 

where H is the maximum height, c is the location of the maximum, and w is a parameter 

controlling the width of the hill. A vertically polarized line source was placed at xO = 0,y0 = 

0.0U with H = 1 km, c = 5 km, and w = 3 km. The initial data line was at x   = 2 km. 
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Figure 29.   Surface magnetic field versus distance (lossy plane). 
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Figure 30.   Magnitude of the normalized surface fields versus horizontal distance for a 
source placed at the origin in front of a Gaussian hill. 
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The ground constants were er= 10 and or = 180 (corresponding to a = 10 mS/m at 1 MHz). 

We plot the results of the normalized magnetic field in Fig. 30 together with the results 

generated from WAGNER [Ref 12]. Although there is minor differences in the magnitude 

of the normalized magnetic field, it is seen that the trend in the two results are in good 

agreement. Both results predict large peak around 3.9 km from the source, which is attributed 

to focusing by the concave surface of the hill. A secondary peak at 4.5 km is also predicted 

by the numerical method. 

G.       PROPAGATION OVER A PEC ISOSCELES HILL 

Experimental results for propagation over a PEC isosceles triangular hill are given in 

[Ref. 10]. In [Ref. 10], an irregular path consisting of an isosceles hill of height 1.23A was 

constructed from aluminum sheets whose surface impedance was taken to be zero. The 

dimensions of the sloping side of the hill are shown in Fig. 31. 

Initial Data Line Hill H = 3.85 cm 

Transmitter 

äJ 
unperturb xl ground 

^      32 cm        w ^   31.5 cm    w ^   31.5 cm    w 

^    (10.2 4A) 
^                    ^ ^                    w 

Figure 31.   Perfectly conducting isosceles triangular hill of height 1.23 X and baselength 
20.16A. 
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Using the vertical line sources at a distance of 10.24 A. from the beginning of the hill, 

and a frequency of 9.6 GHz, the numerical solution is computed and marched from an initial 

data line of 5.12A. The normalized magnetic field taken at a height hR = 0.16A, above the 

irregular surface is plotted in Fig. 32. We have computed the attenuation factor for the 

experimental values given in Fig. 4, pp. 39 of [Ref. 10] as follows 

AF(dB) - 201og| ^-\ ♦ lOlogf -] , 
\E(r)) \rj (78) 

and compared them to the results obtained from our numerical method. In our case, we have 

chosen r, = 5.12A, to coincide with the initial data line. It can be seen that there is excellent 

agreement between the experimental data and the results from the numerical solution. 

H.       PROPAGATION OVER A PEC CLIFF 

Measured data for the magnitude of the field strength over an aluminum cliff edge was 

also given in [Ref. 10]. Measurements were carried out over the aluminum cliff which was 

situated 10.24A, from the transmitter and of height 1.05A as shown in Fig. 33. 

Transmitter     Initial Data Line 

unperturbed ground 

32 cm 

(10.24X) 

cliff 

327 cm 
(1.05A) 

Figure 3 3.   Perfectly conducting cliff edge of height 1.05 X. 
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We set up our computation model based on the geometry given in Fig. 33. At a 

frequency = 9.6 GHz, we placed a vertical line source at 10.24 A from the edge of the cliff, 

and set the initial data line at 5.12A. We have chosen Ax = Ay = 0.08 A (instead of Ax = Ay 

= 0. U) to enable plotting of data at a height, hR = 0.16A (2 vertical steps) at which height the 

measurements were also taken. The result of the numerical solution is plotted in Fig. 34. From 

the plot, we observe that the field attenuates over the first flat section as if the cliff is were 

absent. Immediately beyond the cliff, however, the field strength drops suddenly in the 

shadow region, and then increases with further increase in range, before returning as before 

to decreasing values with increased range. We have computed the attenuation factor based 

on the measured data given in Fig. 6, pp. 39 of [Ref. 10] using Eq. (78) and superimposed 

them in Fig. 34. Again, there is excellent agreement between the numerical solution and the 

experimental results, even for points near the cliff edge and immediately beyond the cliff. 

I. PROPAGATION OVER A DIELECTRIC COATED CLIFF 

Experimental results were also available for a dielectric coated cliff [Ref. 10]. 

Measurement have been carried out over the same cliff edge given in Fig. 33, but with the 

horizontal surfaces constructed from polypropylene covered aluminum sheet and the vertical 

edge made of aluminum sheet alone. The normalized surface impedance of the polypropylene- 

covered sheet with er = 2.2 and dielectric thickness, can be calculated to be AS
H = jO. 171, 

which is highly inductive. We use the same computational model as in Section H and plot the 

results in Fig. 35. Again, we compute the attenuation factor based on the measured data given 

in Fig. 7, pp. 40 of [Ref. 10] using Eq. (78) and superimposed it in Fig. 35. Again, we observe 

very good agreement between the magnitude of the of the attenuation factor between the 

numerical solution and the measured value. This is true for points near the cliff edge and 

immediately beyond the cliff edge. The behavior of the field strength computed numerically 

also corresponds very well with the experimental results. The results in Sections H and I 

clearly demonstrated the versatility of this numerical method for terrain with PEC surface and 

dielectric coated surface. 
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Figure 34.   Magnitude of the normalized fields across a perfectly conducting cliff. 
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J.        PROPAGATION OVER A MIXED PATH (LAND-SEA-LAND) 

Next, we would like to examine the capability of the parabolic equation formulation 

to predict radiowave propagation over long range and inhomogeneous ground. Consider a 

four-thirds earth atmosphere over a ground with electrical properties that change along the 

propagation path. The initial and final portions of this "mixed-path" problem are over land (er 

= 15, a = 0.03 mho/m), while from 47 to 50 km from the source the propagation takes place 

over sea (er = 80, a = 4 mho/m). Results of path-loss predictions at a receiver height zr = 5 

m for a 59.7 MHz transmitter at a height of zt = 5 m using IFDG method withy0 = 10m, xini 

= 40 km, Ay = lm, and Ax = 100 m for range, r < 47 km and r > 52 km, Ax = 10 m for 47 

km < r < 50 km; and Ax = 1 m for 50 km < r < 52 km is available in [Ref. 1] and the 

Millington approximation in [Ref. 13]. We computed our numerical solution based on the 

geometry described in [Ref. 1]. In view of the large distance, the asymptotic form of Hankel 

function was used in Eq. (76) to compute the magnetic field at the initial range 

H?(R) * — e*f-3n">, (79) 
\ nR 

where R <=  | ko(x-x^ \. The path loss is computed as 

Hz   jn L -- -20 log to 
f K 

(dB), (go) 

and plotted in Fig. 36. We see that there is excellent agreement in the path loss (attenuation 

factor) between our computed results and the those computed using the IFDG method [Ref. 

1]. We also noticed that the general behavior of our numerical solution is identical to the 

prediction given in [Ref. 1]. 

K.  PROPAGATION OVER A LOSSY VALLEY 

We also investigate the capability of the parabolic equation formulation to predict 

radiowave propagation over a lossy valley. Consider a vertical source radiating on a smooth 

horizontal ground at a distance 30 km from the edge of a 100-m-deep valley that is symmetric 
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about the midpoint of its horizontal bottom, which is 1 km long. The slope of each wall is 

±1/10, so that the total horizontal length of the terrain irregularity is 3 km. The ground is 

characterized by er = 4, a = 0.001 mho/m. Results using the IFDG prediction and the 

WAGNER method [Ref. 12] for receiver on the ground are given in [Ref. 1]. In [Ref. 1], the 

IFDG results were obtained using xini = 25 km, Ay = lm, Ax = 20 m for all range, r, except 

for 30 km < r < 35 km for which Ax = 1 m. Again, our computational geometry is similar to 

the IFDG geometry. The initial field is computed using Eq. (76) with the asymptotic form for 

Hankel function given in Eq. (79). The path loss for propagation at a frequency of 10 MHz 

is computed using Eq. (80) and plotted in Fig. 37. Although there is a slight deviation in the 

path loss between our numerical results and the IFDG method [Ref.l], we notice that the 

general trend of the path loss between our method and the IFDG method remains identical. 

The deviation in the magnitude of the path loss could be due to the fact that [Ref. 12] has 

considered an azimuthally symmetrical profile while our profile is 2-dimensionai and laterally 

symmetrical. 
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V.   CONCLUSIONS AND RECOMMENDATIONS 

In this thesis, a numerically efficient method to model tropospheric radiowave 

propagation over irregular terrain was implemented and tested. The parabolic equation 

method was used for predicting radiowave propagation. A tropospheric boundary condition 

was used to truncate the computational domain at the top, while an impedance boundary 

condition was used on the uneven terrain to characterize the ground. Because the parabolic 

equation method is a full-wave method, it includes all aspects of wave propagation such as 

forward reflection, refraction, diffraction, and surface wave propagation. However, it ignores 

back-scattering. Since the parabolic equation method models wave propagation only in the 

forward direction, it allows for a rapid solution of the fields by way of marching along in 

range starting from an initial range. A great advantage of the parabolic equation method 

compared to the commonly used ray method is that it is valid in the shadow region where the 

latter method completely breaks down. Furthermore, it appears to be the only practical 

method for predicting propagation over long ranges (thousands of wavelengths) and over a 

wideband (HF through SHF). 

The main advancement made in this thesis is the use of a non-rectangular mesh in a 

curvilinear coordinate system to model the uneven terrain. A body fitted coordinate is 

generated based on the specification of the ground profile, and the parabolic PDE, together 

with the boundary conditions, are cast in a curvilinear coordinate system. This not only makes 

the method more efficient, but also permits more accurate imposition and modeling of the 

boundary conditions. We used the Crank-Nicolson implicit scheme in the computational 

domain to solve the parabolic PDE. For a cartesian grid, this method is convergent and stable 

for all finite values of step size. In this method, the parabolic PDE is considered as being 

satisfied at the mid-point of the computational grid. Central difference approximations, which 

are second-order accurate, are used in the interior as well as at the boundaries. 

Numerical results to predict radiowave propagation over various obstacles were 

computed and validated with the results available in the open literature. These include both 
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a PEC plane and impedance ground with differing permittivity and conductivity. Excellent 

agreement was observed and demonstrated for the following cases : a PEC circular boss, 

lossy Gaussian hill, PEC triangular hill, loaded and unloaded cliff edges, mixed path, and a 

lossy valley. Three-dimensional obstacles are outside the scope of this thesis. 

The model presented in this thesis can be applied to problems in short range 

communications or radar target detection. At HF/VHF frequencies, the antennas are 

electrically close to the ground leading to significant perturbation of the received signals. 

Assessment of propagation of HF/VHF signals over inhomogeneous and irregular terrain is 

highly desirable. In the case of a radar system, signals received from a target depend on the 

direct ray and a ground reflected ray. The path taken by the ground reflected ray depends on 

the terrain roughness and ground constants. Since target detection is based on the composite 

signal, it is important to assess ground conditions and atmospheric factors. The numerical 

model developed in this thesis provides a useful tool for predicting the performance of radar 

or communication links before commencing to design, develop, and deploy the system in the 

field. From the model developed, one can predict propagation factors such as path loss, 

coverage diagrams, and the perturbation of antenna radiation patterns over realistic terrains 

and ranges. 

This thesis represents the beginning of an effort to predict radiowave propagation 

using the parabolic equation method. In its standard form, the accuracy of the method is 

limited to waves traveling within ±15° from the horizontal. It is recommended that follow-on 

work should use a wide-angle parabolic equation method to accommodate waves traveling 

over wider angles and in an inhomogeneous atmosphere. 

64 



APPENDIX A.   MATLAB SOURCE LISTINGS 

The formulation described in Chapter II and the numerical procedure described in 

Chapter III were implemented using MATLAB sofware. The routines that generated the 

results in Chapter IV are listed below. 

A.        EXECUTIVE ROUTINE 

% Filename: main.m 
% Title : Main Program or Executive Program 
% Revision No. :R1.0 
% Date of Last Revision : 10 Mar 95 
% Comments: 
% This is the main program for computing the Parabolic 
% Equation Solution of Radiowave Propagation in an 
% Inhomogenous Atmosphere and Over Irregular Terrain. 
% 
% Input Variables : none 
% 
% Output Variables: 
% 

% 

xphy 
yphy 
U 
wavelength 
time 

: x-coordinate of physical domain 
: y-coordinate of physical domain 
: computed Hz-Field 
: wavelength (frequency/3e8) 
: total CPU time used 

% 
% Associated Matlab Files : 
% Called by 
% Subroutines 
% 
% 

: none 
: data 
dinp 
cmet 
hfld 
epde 

: none 

% 
% 
% Associated Functions 
% 
clear all; 
t=cputime; 
data 
dinp 
cmet 
hfld 
epde 
time=cputime-t. 
save output xphy yphy N M U time wavelength 

% start CPU clock 
% input data file 
% compute the physical domain 
% compute the metric 
% compute Hz-Field on initial data line 
% march and compute Hz-Field 
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B.        PHYSICAL DOMAIN GRID 

% Filename : dinp.m 
% Title : Computation of Physical Domain 
% Revision No. :R1.0 
% Date of Last Revision : 10 Mar 95 
% Comments : 
% This subroutine computes the entire computational 
% domain based on the user input data for the physical 
% ground plane. 
% 
% Input Variables: 
0//° xin : x-coordinate of ground plane 
% yin : y-coordinate of ground plane 
% 
% Output Variables: 
% xphy : x-coordinate of physical domain 
% yphy : y-coordinate of physical domain 
% 
% Associated Matlab Files : 
% Called by : main 
% Subroutines : none 
% 
% Associated Functions     : none 
% 
nseg=length(xin> 1; % total number of segment 
% 
%%%%% Compute horizontal axis of the physical domain %%%%% 
% 
st=l; 
fori=l:nseg; 
npts(i)=round(sqrt((xin(i+1 )-xin(i))A2+(yin(i+1 )-yin(i))A2)/xdel); 
xphy(st)=xin(i); 
yphy(st)=ym(i); 
forj=l:npts(i)-l; 
xphy(st+j)=xin(i)+j*(xin(i+l)-xin(i))/npts(i); 
yphy( 1 ,st+j)=yin(i)+j*(yin(i+l )-yin(i))/npts(i); 

end; 
st=st+npts(i); 

end; 
xphy(st)=xin(length(xin)); % include the last point for x 
yphy(st)=yin(length(yin)); % include the last point for y 
% 
%%%%% Compute vertical axis of the physical domain %%%%% 
% 
M=length(xphy)-1; 
N=round(yup/ydel); 
fori=l:N; 

yphy(i+l ,:)=(1 -i/N).*yphy(l ,:)+(i/N)*yup; 
end; 
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C        CURVILINEAR COORDINATE SYSTEM METRIC 

% Filename: cmetm 
% Title : Generation of Curvilinear Coordinate System Metric 
% Revision No. :R 1.0 
% Date of Last Revision : 10 Mar 95 
% Comments : 
% This subroutine computes the various metrics or derivatives 
% (dx_xi, dx_eta, dy_xi, dy_eta, ddy_eta) at any interior 
% points. In the Crank Nicolson implicit scheme, the metrics 
% are needed at the midpoint with respect to xi, i.e., at 
% xi=xi+del_xi/2. 
% 
% Input Variables: 
% xphy : x-coordinate of physical domain 
% yphy : y-coordinate of physical domain 
% 
% Output Variables: 
% dx_xi : 1 st order x-derivative w.r.t. xi 
% dx_eta : 1 st order x-derivative w.r.t. eta 
% dy_xi : 1 st order y-derivative w.r.t. xi 
% dy_eta : 1 st order y-derivative w.r.t. eta 
% ddy_eta : 2nd order y-derivative w.r.t. eta 
% 
% Associated Matlab Files : 
% Called by : main 
% Subroutines : none 
% 
% Associated Functions     : none 
% 
msize=ones(size(yphy (:, 1))); 
dx_xi=msize*(xphy(2:M+l)-xphy(l:M)); 
dx_eta=0; 
fori=l:N+l; 

dy_xi(i, 1 :M)=( 1 -(i-1 )/N).*(yphy(i,2:M+l )-yphy(i, 1 :M)); 
end; 
dy_eta=msize*((yphy(N+l, 1 )-(yphy( 1,2:M+l)+yphy( 1,1 :M))./2)./N); 
ddy_eta=0; 

D.        MAGNETIC FIELD ON INITIAL DATA LINE 

% Filename: hfld.m 
% Title : Generation of Hz-Field on Initial Data Line 
% Revision No. :R1.0 
% Date of Last Revision : 10 Mar 95 
% Comments: 
% This subroutine generates the magneic field (Hz-Field) 
% at the initial data line for a line source over 
% an impedance plane. 
% (Note : Never place the initial data line at the 
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% same location as the transmitter, else the field 
% generated would be zero). 
% 
% Input Variables: 
% yphy : y-coordinate of physical domain 
% 
% Output Variables: 
% Hz : Magnetic Field @ initial data line 
% 
% Associated Matlab Files : 
% Called by : main 
% Subroutines : none 
% 
% Associated Functions : hankel2 
% 

yinit=[yphy(l:N,l)'yphy(N+l,l):ydel:ytop]; 
Ro=sqrt((xphy( 1 )-x0). A2+(yinit-yO). A2)*ko; 
% 
%%%%% Generate Hz-Field using Fredholm Equation %%%%% 
% 
hr2=hankel2(0,Ro); % load Hankel function of 2nd order 
H=2*((lj*ko)/4).*((xphy(l)-x0)./Ro).*hr2; 
Hz=H.'; 
% 
% Note: ".'" is for Nonconjugated Transpose. Using only '"" 
% will result in conjugated transpose (i.e. the sign 
% of the complex term is inverted) 

E.        FORMULATION OF PARABOLIC EQUATION MATRIX 

% Filename : epde.m 
% Title : Matrix Equation for the Parabolic System Equations 
% Revision No. :R1.0 
% Date of Last Revision : 10 Mar 95 
% Comments : 
% This program defines the PDE for the matrix equations 
% and performs the numerical implementation using the 
% Crank-Nicolson Implicit Scheme (Discretization). 
% The applicability of the PDE equation is also 
% extended to accommodate the derivative boundary 
% conditions on the lower and upper boundaries. 
% 
% Input Variables : 
% dx_xi : 1 st order x-derivative w.r.t. xi 
% dx_eta : 1st order x-derivative w.r.t. eta 
% dy_xi : 1 st order y-derivative w.r.t. xi 
% dy_eta : 1 st order y-derivative w.r.t. eta 
% ddy_eta : 2nd order y-derivative w.r.t. eta 
% Hz : Magnetic Field @ initial data line 
% 

68 



% Output Variables : 
%           U : computed Hz-Field 
% 
% Associated Matlab Files 
%          Called by : main 
%          Subroutines : elbc 
% eubc 
% 
% Associated Functions     : none 
% 
%%%%% Assume constant atmospheric refractive index %%%%% 
n= 1; dn_x=0; dn_y=0; 
al=-(2/n)*dn_x; a2=-(2/n)*dn_y; 
al_star=(nA2-l-2j*(al/ko))*(koA2); 
% 
%%%%% Set up the matrix coefficients, (M x N) for bl, b2, b3 %%%%% 
% 
templ=2j*ko-al; 
b 1 =dx_xi. *a 1 _star./temp 1; 
b2=dx_xi./dy_eta. *((a2-ddy_eta./dy_eta. A2)./temp 1 +dy_xi./dx_xi); 
b3=dx_xi./(temp 1 .*dy_eta.A2); 
alpha=0.5.*(b3+0.5.*b2); 
beta=(b3-0.5.*bl); 
gamma=0.5.*(b3-0.5.*b2); 
% 
%%%%% Initialization of Magnetic Field %%%%% 
% 
U(l:N+l,l)=Hz(l:N+l); 
% 
%%%%% Compute coefficient of Lower BC %%%%% 
% 
elbc 
% 
%%%%% Compute invariant coefficient of Upper BC %%%%% 
% 
r(l :M)=sqrt((8j*ko)/pi)./sqrt((xphy(2:M+l)-xphy(l :M))./2); 
% 
%%%%% Loading the matrix %%%%% 
% 
forp=l:M; 
A=spdiags([gamma(:,p) -(1 +beta(:,p)) alpha(:,p)], -1:1, N+l, N+l); 
B=spdiags([-gamma(:,p) -(1 -beta(:,p)) -alpha(:,p)], -1:1, N+l, N+l); 
A( 1,2)=alpha_p( 1 ,p); A( 1,1 )=-( 1 +beta_p( 1 ,p)); 
B( 1,2)=-alpha_p( 1 ,p); B( 1,1 )=-( 1 -beta_pp( 1 ,p)); 
% 
%%%%% Compute coefficient of Upper BC %%%%% 
% 
eubc; 
lambda=beta(N+1 ,p)+dy_eta(p)*2*alpha(N+l ,p)*(r(p)); 
gamma_p=gammaG^+l ,p)+alpha(N+l ,p); 
A(N+l,N+l)=l+lambda; 
A(N+1 ,N)=-gamma_p; 
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B(N+1,N+1)=(1 -lambda); 
B(N+1 ,N)=gamma_p; 
B(N+1,N+2)=1; 
U(N+2,p)=4*alpha(N+l,p)*dy_eta(p)*(s(p)); 
U( 1 :N+1 ,p+l )=(A\B)*U(1 :N+2,p); 
end; 

F.        LOWER BOUNDARY CONDITION 

% Filename : elbc.m 
% Title : Lower Boundary Conditions 
% Revision No. :R1.0 
% Date of Last Revision : 10 Mar 95 
% Comments: 
% This program formulates the equations for the 
% impedance boundary conditions imposed on the irregular 
% lower boundary. Impedance boundary conditions relates 
% the tangential components of electric and magnetic 
% fields at the interface of two media. 
% The surface impedance is determined from the 
% intrinsic impedance of the medium by considering 
% plane wave reflections from the interface. 
% 
% Input Variables : 
% dx_xi : 1st order x-derivative w.r.t. xi 
% dy_xi : 1 st order y-derivative w.r.t. xi 
% dy_eta : 1 st order y-derivative w.r.t. eta 
% alpha : coefficient for U(p,q+1) term 
% gamma ; coefficient for U(p,q-1) term o, 

% Output Variables : 
% alphajp : coefficient for U(p, 1) term 
% beta_p : coefficient"(1 +beta_P)" for U(p,0) term 
% beta_pp : coefficient"(1 -beta_pp)" for U(p-1,0) term 
% 
% Associated Matlab Files : 
% Called by : epde 
% Subroutines : none 
% 
% Associated Functions     : none 
% 
temp2=sqrt(dx_xi( 1,1 :M). A2+dy_xi( 1,1 ;M).A2); 
ct=dx_xi( 1,1 :M)./temp2;    % cos(theta) 
st=dy_xi( 1,1 :M) Vtemp2;    % sin(theta) 
cl=-lj*ko*(nA2.*delta_v - st); 
alpha_p=alpha( 1 ,:)+gamma( 1,:); 
temp3=2.*gamma(l,:).*dy_eta(l,:).*ct; 
beta_p=beta( 1 ,:)-temp3. *(c 1 -2*st./dx_xi( 1,1 :M)); 
beta_pp=beta(l ,:)-temp3.*(cl+2*st./dx_xi(l ,1 :M)); 
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G.       UPPER BOUNDARY CONDITION 

% Filename: eubc.m 
% Title : Upper Boundary Conditions 
% Revision No. :R1.0 
% Date of Last Revision : 10 Mar 95 
% Comments: 
% This program formulates the equations for the upper 
% boundary conditions at the tropospheric boundary. 
% To truncate the computational domain at the upper 
% boundary, a point high enough where the atmosphere 
% is homogeneous is considered. 
% 
% Input Variables: 
% dx_xi : 1 st order x-derivative w.r.t. xi 
% dy_xi : 1 st order y-derivative w.r.t. xi 
% dy_eta : 1 st order y-derivative w.r.t. eta 
% alpha : coefficient for U(p,q+1) term 
% gamma : coefficient for U(p,q-1) term 
% 
% Output Variables: 
% s : coefficient for U(p, 1) term 
% 
% Associated Matlab Files : 
% Called by : epde 
% Subroutines : none 
% 
% Associated Functions      : fresnel 
% 
tempA=0; tempB=0; tempC=0; 
x=(xphy(p+l)+xphy(p))/2; % x(p-l/2) 
xd=(xphy(p+1 )-xphy(p))/2; % x(p-1 /2)-x(p-1) 
for i=N+2:round(ytop/ydel+l); 
j=i-N-l; 
temp4(j)^esnel(sqrt(ko/(pi*(x-xm(l)))).*(yinit(i)-yinitG^+l))); 
temp5(j)^esnel(sqrt(ko/(pi*(x-xmO))))*(yinit(i-l)-yinit(N+l))); 
tempA=tempA+(Hz(i, 1 )-Hz(i-1,1 ))/ydel. *(temp4(j)-temp5(j)); 

end; 
% 
%%%%% Compute the U(N+1 ,p-l) term in s(p) %%%%% 
% 
tempA=sqrt(2j)*tempA; 
tempC=sqrt(8j *ko/pi)*U(N+1 ,p)/sqrt(xd); 
ifp=l; 

s(p)=tempA+tempC; 
else; 
temp6=sqrt(x-xphy(2:p))+sqrt(x-xphy(l :p-1)); 
tempB=sum((U(N+1,2:p)-U(N+l, 1 :p-1 ))./temp6); 
s(p)=tempA-sqrt(8j*ko/pi)*tempB+tempC; 

end; 
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H.        FRESNEL INTEGRAL FUNCTION 

% Filename : fresnel.m 
% Title : The Fresnel Integral Function 
% Revision No. :R1.0 
% Date of Last Revision : 10 Mar 95 
% Comments : 
% 
% Input Variables: 
% 
% Output Variables : 
% 
% Associated Matlab Files : 
% 
% Associated Functions : 
% 
function F=fresnel(limits); 
interval=0.001; 
if limits=0; 
F=0; 

elseif limits <0; 
limits— 1 *limits; 
tau=0:interval:limits; 
tau=-l.*tau; 
integral=exp(-lj*pi/2*(tau.*tau)); 
F=trapz(tau,integral); 

else 
tau=0:interval:limits; 
integral=exp(-1 j*pi/2*(tau.*tau)); 
F=trapz(tau,integral); 

end; 

I.   INPUT DATA FILE FOR PROPAGATION OVER PEC PLANE 

% Filename: pec.m 
% Title : Input Data File 
% Revision No. :R1.0 
% Date of Last Revision : 10 Mar 95 
% Comments: 
% This is the input data file for computing the Parabolic 
% Equation Solution of Radiowave Propagation in an 
% Inhomogenous Atmosphere and Over Irregular Terrain. 
% It contains the frequency of operation, the x and y 
% discretization size, x- and y-coordinates of the ground 
% plane domain, and the upper boundary. 
% It also contains the surface impedance (Note : surface 
% impedance = 0 for PEC). 
% 
% Input Variables : none 
% 
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% Output Variables: 
%           xphy : x-coordinate of physical domain 
%          yphy : y-coordinate of physical domain 
%          wavelength : wavelength (frequency/3 e8) 
% 
% Associated Matlab Files 
%          Called by : main 
%           Subroutines 
% 
% Associated Functions 
% 
freq=300e6; 

: none 

: none 

% frequency of operation 
wavelength=3e8/freq; % wavelength 
ko=2*pi*freq/3e8; % free space wave number 
xdel=0.1 »wavelength; % sizeofdelta-x 
ydel=0.1 »wavelength; 
% 
%%%%% Define Ground 
n/ 

% size of delta-y 

Plane Coordinates %%%%% 
yo 

xin( 1 )=5 »wavelength; yin( 1 )=0; 
xin(2)= 15 »wavelength; yin(2)=0; 
yup=20*wavelength; % y-upper boundary 
ytop=5*wavelength+yup; % troposphere boundary (@ infinity) 
x0=0;y0=0; 
% 
%%%%% Define Surface 

% position of transmitter 

Impedance %%%%% 
% 
delta_v=0; % surface impedance (PEC) 

J.         INPUT DATA FILE FOR PROPAGATION OVER PEC KNIFE-EDGE 

% Filename: kpec.m 
% Title : Input Data File for PEC Knife Edge 
% Revision No. :R 1.0 
% Date of Last Revision : 10 Mar 95 
% Comments : 
% 
% Input Variables : none 
% 
% Output Variables: 
%          xphy : x-coordinate of physical domain 
%          yphy : y-coordinate of physical domain 
%           wavelength 
% 
% Associated Matlab Files 

: wavelength (frequency/3e8) 

%          Called by : main 
%           Subroutines 
% 
% Associated Functions 
% 

: none 

:none 
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freq=300e6; 
wavelength=3e8/freq; 
ko=2*pi*freq/3e8; 
xdel=0.1 *wavelength; 
ydel=0.1 *wavelength; 

% frequency of operation 
% wavelength 

% free space wave number 
%sizeofdelta-x 
% sizeofdelta-y 

%%%%% Define Ground Plane Coordinates %%%%% 
% 
xin( 1 )=5*wavelength; yin( 1 )=0; 
xin(2)=9.9*wavelength; yin(2)=0; 
xin(3)= 10*wavelength; yin(3)=2*wavelength; 
xin(4)=10.1 *wavelength; yin(4)=2*wavelength; 
xin(5)= 10.2*wavelength;yin(5)=0; 
xin(6)=30* wavelength; yin(6)=0 
yup=22*wavelength; 
ytop=5*wavelength+yup; 
x0=0;y0=0; 
% 
%%%%% Define Surface Impedance %%%%% 
% 
delta_v=0; % surface impedance (PEC) 

% y-upper boundary 
% troposphere boundary (@ infinity) 
% position of transmitter 

K.       INPUT DATA FILE FOR PROPAGATION OVER CIRCULAR BOSS IN A 
PEC PLANE 

% Filename: boss.m 
% Title : Input Data File for Semi-Circular Boss over PEC Plane 
% Revision No. :R1.0 
% Date of Last Revision : 
% Comments : 
% 
% Input Variables : none 
% 
% Output Variables : 
%           xphy 
%          yphy 
%          wavelength 
% 

10 Mar 95 

: x-coordinate of physical domain 
: y-coordinate of physical domain 
: wavelength (frequency/3e8) 

% Associated Matlab Files 
%           Called by 
%          Subroutines 
% 
% Associated Functions 
% 
freq=3e6; 
wavelength=3e8/freq; 
ko=2*pi*freq/3e8; 
xdel=0.01 *wavelength; 
ydel=0.05*wavelength; 
% 

: main 
: none 

: none 

% frequency of operation 
% wavelength 

% free space wave number 
%sizeofdelta-x 
% sizeofdelta-y 
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%%%%% Define Ground Plane Coordinates %%%%% 
% 
b=0.5 *wavelength; 
A=wavelength; B=0.8*wavelength; 
x_mid=-0.5*wavelength:0.01 *wavelength:0.5*wavelength; 
y_mid=sqrt(bA2-x_mid.A2); 
x_mt=-0.6*wavelength:0.01 *wavelength:-0.51 *wavelength; 
y_fht=zeros(size(x_mt)); 
x_bk=0.51 *wavelength:0.01 *wavelength:wavelength; 
y_bk=zeros(size(x_bk)); 
xin=[x_fht x_mid x_bk]; 
%xin=xin-K).75*wavelength; 
yin=[y_fht y_mid y_bk]; 
clear x_fiit; clear x_mid; clear x_bk; 
clear y_mt; clear y_mid; clear y_bk; 
yup=20*wavelength; % y-upper boundary 
ytop=5*wavelength+yup; % troposphere boundary (@ infinity) 
x0=-0.75*wavelength; y0=0.1 *wavelength; % position of transmitter 
% 
%%%%% Define Surface Impedance %%%%% 
% 
delta v=0; % surface impedance (PEC) 

L.        INPUT DATA FILE FOR PROPAGATION OVER LOSSY IMPEDANCE 

PLANE 

% Filename: imped.m 
% Title : Input Data File for Lossy Impedance Plane 
% Revision No. :R1.0 
% Date of Last Revision : 10 Mar 95 
% Comments: 
% 
% Input Variables : none 
% 
% Output Variables: 
% xphy : x-coordinate of physical domain 
% yphy : y-coordinate of physical domain 
% wavelength : wavelength (frequency/3e8) 
% 
% Associated Matlab Files : 
% Called by : main 
% Subroutines : none 
% 
% Associated Functions      : none 
% 
freq= 1 e6; % frequency of operation 
wavelength=3e8/freq; -    % wavelength 
ko=2*pi*freq/3e8; % free space wave number 
xdel=0.1 *wavelength; % size of delta-x 
ydel=0.1 *wavelength; % size of delta-y 
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% 
%%%%% Define Ground Plane Coordinates %%%%% 
% 
xin( 1 )=0.5*wavelength; yin( 1 )=0; 
xin(2)=20*wavelength; yin(2)=0; 
yup=20*wavelength; % y-upper boundary 
ytop=5*wavelength+yup; % troposphere boundary (@ infinity) 
x0=0; y0=wavelength/300; % position of transmitter 
% 
%%%%% Define Surface Impedance %%%%% 
% 
er= 10; % relative permittivity 
sigma= 10e-3; % conductivity 
sigma_r=60*wavelength*sigma;      % relative conductivity 
delta_v=sqrt(l/(er-lj*sigma_r));% surface impedance (vertical pol) 

M.       INPUT DATA FILE FOR PROPAGATION OVER LOSSY GAUSSIAN HILL 

% Filename: gauss.m 
% Title : Input Data File for Lossy Gaussian Hill 
% Revision No. :R 1.0 
% Date of Last Revision : 10 Mar 95 
% Comments: 
% 
% Input Variables : none 
% 
% Output Variables: 
% xphy : x-coordinate of physical domain 
% yphy : y-coordinate of physical domain 
% wavelength : wavelength (frequency/3 e8) 
% 
% Associated Matlab Files : 
% Called by : main 
% Subroutines : none 
% 
% Associated Functions     : none 
% 
freq= 1 e6; % frequency of operation 
wavelength=3e8/freq; % wavelength 
ko=2*pi*freq/3e8; % free space wave number 
xdel=0.1 /3 *wavelength; % size of delta-x 
ydel=0.1 *wavelength; % size of delta-y 
% 
%%%%% Define Ground Plane Coordinates %%%%% 
% 
Ht= 1000; c=5000; w=3000; % constants for gaussian hill 
xin=2000:xdel:24*wavelength;% x-coordinate 
yin=Ht.*exp(-9.*(((xin-c)./w).A2)); % y-coordinate 
yup=30*wavelength; % y-upper boundary 
ytop=5*wavelength+yup; % troposphere boundary (@ infinity) 
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xO=0; yO=wavelength/100; % position of transmitter 
% 
%%%%% Define Surface Impedance %%%%% 
% 
er= 10; % relative permittivity 
sigma= 10e-3; % conductivity 
sigma_r=60*wavelength*sigma;      % relative conductivity 
delta_v=sqrt(l/(er-lj*sigma_r));% surface impedance (vertical pol) 

N. INPUT DATA FILE FOR PROPAGATION OVER PEC ISOSCELES HILL 

% Filename: isos.m 
% Title : Input Data File for PEC Isosceles Hill 
% Revision No. :R1.0 
% Date of Last Revision : 10 Mar 95 
% Comments: 
% 
% Input Variables : none 

: x-coordinate of physical domain 
: y-coordinate of physical domain 
: wavelength (frequency/3 e8) 

: mam 
:none 

: none 

% Output Variables: 
% xphy 
% yphy 
% wavelength 
% 
% Associated Matlab Files 
% Called by 
% Subroutines 
% 
% Associated Functions 
% 
freq=9.6e9; 
wavelength=3 e8/freq; 
ko=2*pi*freq/3e8; 
xdel=0.08*wavelength; 
ydel=0.08*wavelength; 
% 
%%%%% Define Ground Plane Coordinates %%%%% 
% 
xin( 1 )=5.12*wavelength; yin( 1 )=0; 
xin(2)=10.24*wavelength; yin(2)=0; 
xin(3)=20.32*wavelength; yin(3)=l .232*wavelength; 
xin(4)=30.4*wavelength; yin(4)=0; 
xin(5)=64*wavelength; yin(5)=0; 
yup=20*wavelength; 
ytop=5*wavelength+yup; 
x0=0;y0=0; 
% 
%%%%% Define Surface Impedance %%%%% 
% 
delta v=0; % surface impedance (PEC) 

% frequency of operation 
% wavelength 

% free space wave number 
% sizeofdelta-x 
%sizeofdelta-y 

% y-upper boundary 
% troposphere boundary (@ infinity) 
% position of transmitter 
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O.       INPUT DATA FILE FOR PROPAGATION OVER PEC CLIFF 

% Filename: cliff.m 
% Title : Input Data File for PEC Cliff 
% Revision No. :R1.0 
% Date of Last Revision: 10 Mar 95 
% Comments : 
% 
% Input Variables : none 
% 
% Output Variables: 
% xphy : x-coordinate of physical domain 
% yphy : y-coordinate of physical domain 
% wavelength : wavelength (frequencv/3e8) 
% 
% Associated Matlab Files : 
% Called by : main 
% Subroutines : none 
% 
% Associated Functions     : none 
% 
freq=9.6e9; % frequency of operation 
wavelength=3e8/freq; % wavelength 
ko=2*pi*freq/3e8; % free space wave number 
xdel=0.08*wavelength; % size of delta-x 
ydel=0.08*wavelength; % size of delta-y 
% 
%%%%% Define Ground Plane Coordinates %%%%% 
% 
xin(l)=5.12*wavelength; yin(l)=1.0464*wavelength; 
xin(2)= 10.24*wavelength; yin(2)= 1.0464*wavelength; 
xin(3)=10.34*wavelength; yin(3)=0; 
xin(4)=80*wavelength; yin(4)=0; 
yup=21 *wavelength; % y-upper boundary 
ytop=5 *wavelength+yup; % troposphere boundary (@ infinity) 
x0=0;y0=yin(l); % position of transmitter 
% 
%%%%% Define Surface Impedance %%%%% 
% 
delta_v=0; % surface impedance (PEC) 

P.        INPUT DATA FDLE FOR PROPAGATION OVER DD2LECTRIC COATED 
CLD7F 

% Filename: diele.m 
% Title : Input Data File for Dielectric coated Cliff 
% Revision No. :R1.0 
% Date of Last Revision : 10 Mar 95 
% Comments : 
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: x-coordinate of physical domain 
: y-coordinate of physical domain 
: wavelength (frequency/3e8) 

mam 
none 

none 

% frequency of operation 
% wavelength 

% 
% Input Variables : none 
% 
% Output Variables: 
% xphy 
% yphy 
% wavelength 
% 
% Associated Matlab Files : 
% Called by 
% Subroutines 
% 
% Associated Functions 
% 
freq=9.6e9; 
wavelength=3 e8/freq; 
ko=2*pi*freq/3e8; 
xdel=0.08*wavelength; 
ydel=0.08*wavelength; 
% 
%%%%% Define Ground Plane Coordinates %%%%% 
% 
xin( 1 )=0.5 *wavelength; yin( 1 )= 1.0464*wavelength; 
xin(2)= 10.24*wavelength; yin(2)= 1.0464*wavelength; 
xin(3)= 10.34*wavelength; yin(3)=0; 
xin(4)=80*wavelength; yin(4)=0; 
yup=21 *wavelength; % y-upper boundary 
ytop=5*wavelength+yup; % troposphere boundary (@ infinity) 
x0=0; yO=yin( 1); % position of transmitter 
% 
%%%%% Define Surface Impedance %%%%% 
% 
delta_v=0.171 j; % surface impedance 

% free space wave number 
% sizeofdelta-x 
% sizeofdelta-y 

Q. INPUT DATA FILE FOR PROPAGATION OVER MDCED PATH 

Filename: mix.m 
Title : Input Data File for Land-Sea-Land 
Revision No. :R1.0 
Date of Last Revision : 10 Mar 95 
Comments: 

% 
% 
% 
% 
% 
% 
% Input Variables : none 
% 

i Output Variables : 
xphy 
yphy 
wavelength 

% 
% 
% 
% 
% Associated Matlab Files 

: x-coordinate of physical domain 
: y-coordinate of physical domain 
: wavelength (frequency/3e8) 
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% Called by 
% Subroutines 
% 
% Associated Functions 
% 
freq=59.7e6; 
wavelength=3e8/freq; 
ko=2*pi*freq/3e8; 
ydel=0.2; 

: main 
: none 

: none 

% wavelength 
% Free space wave number 

% y-delta size 

%%%%% Define Ground Plane Coordinates %%%%% 
% 
xin(l)=40000;yin(l)=0 
xin(2)=47000; yin(2)=0 
xin(3)=50000; yin(3)=0 
xin(4)=52000; yin(4)=0 
xin(5)=60000; yin(5)=0 
yup=10; 
ytop=5 *wavelength+yup 
x0=0;y0=5; 

; xdel( 1 )= 100; impz( 1 )=sqrt( 1 /(15-9.045J)); 
; xdel(2)=10; impz(2)=sqrt(l/(80-1206j)); 
; xdel(3)=l; unpz(3)=sqrt(l/(15-9.045j)); 
; xdel(4)=100; impz(4)=sqrt(l/(15-9.045j)); 
; impz(5)=sqrt(l/(15-9.045j)); 

R       INPUT DATA FILE FOR PROPAGATION OVER LOSSY VALLEY 

% Filename: valley.m 
% Title : Input Data File for Valley 
% Revision No. : R0.2 
% Date of Last Revision : 20 Feb 95 
% Comments : 
% 
% Input Variables : none 
% 
% Output Variables : 
% xphy 
% yphy 
% wavelength 
% 
% Associated Matlab Files : 
% Called by : main 
% Subroutines : none 

x-coordinate of physical domain 
y-coordinate of physical domain 
wavelength (frequency/3 e8) 

% Associated Functions     : none 

freq=10e6; 
wavelength=3 e8/freq; 
ko=2*pi*freq/3e8; 
ydel=0.1 *wavelength; 
% 
%%%%% Define Ground Plane Coordinates %%%%% 
% 
xin( 1 )=28000; yin( 1 )= 100; xdel( 1 )=300; 

% frequency of operation 
% wavelength 

% free space wave number 
% size of delta-y 
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xin(2)=30000; yin(2)=100; xdel(2)=3; 
xin(3)=31000;yin(3)=0; xdel(3)=3; 
xin(4)=32000; yin(4)=0;  xdel(4)=3; 
xin(5)=33000; yin(5)=100; xdel(5)=3; 
xin(6)=35000; yin(6)=100; xdel(6)=30; • 
xin(7)=50000;yin(7)=100; 
yup=50+yin(l); 
ytop=5*wavelength+yup; 
xO=0;yO=yin(l); 
% 
%%%%% Define Surface Impedance %%%%% 
% 
ei=4; % relative pennittivity 
sigma= 1 e-3; % conductivity 
sigma_r=60*wavelength*sigma;      % relative conductivity 
delta_v=sqrt(l/(er-lj*sigma_r));% surface impedance (vertical pol) 
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