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ABSTRACT

The problem of radiowave propagation over irregular terrain is solved by using the
standard parabolic equation method. The ground is characterized by an impedance boundary
condition and a height profile. A tropospheric boundary condition is used to truncate the
computational domain. This thesis uses a novel approach of casting all the equations in a
curvilinear coordinate system. The coordinate system is generated in a simple manner using
the ground profile data. The equations are solved by the finite difference method using the
Crank-Nicolson scheme.

Different numerical values for various important parameters (e.g., step size, location
of tropospheric boundary, the region above the tropospheric boundary, etc.) were used, and
their effect on the accuracy and computing time are discussed. Validation of the numerical
results with exact and/or experimental results are presented for different terrain profiles. Both

perfectly electric conducting (PEC) and lossy impedance surfaces are considered.
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I. INTRODUCTION

A. BACKGROUND

The topic of radiowave propagation over irregular terrain is extremely important in
ground-to-ground as well as in ground-to-air communications used by the Navy, Air Force,
and the Army. Similahy, the ability to predict radiowave propagation over irregular terrain
has a significant impact in determining target detectability in a radar system. The physics of
propagation is affected by ever-changing atmospheric conditions and by complex terrain
features on the ground. The link reliability in a communication system or target detectability
in radar can be significantly affected by the so called 'multipath fading'. The path between a
transmitter and a receiver is often obstructed by natural or man-made obstacles such as hills,
buildings, atmospheric layers, trees, rain, fog, etc. In the case of atmospheric multipath fading,
abnormal propagation of electromagnetic waves resulting from super-refraction-or sub-
refraction can result in severe loss of signals. Reflection multipath fading, which is due to
interference between the direct and the ground reflected waves depends strongly on the
terrain geometry and ground constants. It is therefore important to designers and operators
of communications and radar systems to predict the electromagnetic fields due to radiating
sources in the troposphere and to assess the effects of environment on radiowave
propagation.

Any in-depth understanding of these systems requires a knowledge of the physical
phenomena that governs low-angle propagation; more specifically, to be able to model
complex fading phenomena due to refraction, reflection, scattering, and diffraction. Numerous
analytical methods are available for predicting electromagnetic wave propagation such as
geometric optics, physical optics, normal mode analysis, and combinations of the above.
However, they have several imitations for predicting propagation in a complex environment.
The parabolic equation method has been used to predict radiowave propagation in an
inhomogeneous atmosphere and over flat terrain, and also for predicting radiowave

propagation over sloping irregularities.




In this thesis, we will concentrate solely on the effects of irregular terrain. Since the
propagation path could extend over several thousands of wavelengths, it is important to have
a method that is efficient numerically. The parabolic equation method is one such method.
One advantage of a parabolic partial differential equation (PDE) over an elliptic PDE is that
in the former case, the field at any location can be computed in terms of the field at a previous
location. However, this would be accurate only when the waves propagate predominantly in
the forward direction. In deriving a parabolic PDE, it is assumed that the waves are
predominantly forward traveling. This is approximately met in a typical radio link where the
received signal is primarily affected Aby the nature of the path between the transmitting and
receiving antennas. Of course there are several situations when this is not true. For example,
when there is a large obstacle behind a receiving antenna, back-scattering from the obstacle
will affect the received signal. Nonetheless, the parabolic equation method has been used
successfully in the past to predict propagation in several scenarios, particularly for

atmospheric multipath fading.

B. OBJECTIVE

In this thesis, we adopt the same parabolic PDE as in the previous approach [Ref. 1]
to predict radiowave propagation over an irregular terrain, A tropospheric boundary condition
is used to truncate the computational domain at the top, while an impedance boundary
condition is used on the uneven terrain to characterize the ground. The key feature of this
thesis is to use a novel approach of casting all the equations in a curvilinear coordinate
system. A body fitted coordinate system is generated based on the specification of the ground
profile. This permits accurate modeling of the boundary conditions which is so vital to the
success of the model. The parabolic equation method is a full-wave method in that it includes
all aspects of wave propagation such as forward reflection, refraction, diffraction, and surface
wave propagation. However, as stated above, it ignores back-scattering. Chapter II presents
the derivation and formulation of the governing partial differential equation for the standard
parabolic equation method, the impedance boundary condition, and the tropospheric boundary

condition. Also presented in Chapter II is the transformation of all the partial differential




equations to a curvilinear coordinate system. Chapter III details the generation of the
coordinate system and the numerical procedure for solving the parabolic PDE. The
performance of the numerical solution is examined in Chapter IV. This includes a study on
the effects of using different numerical values for various important parameters (e.g., step
size, location of the tropospheric boundary, the region above the tropospheric boundary, etc.)
on the accuracy of the solution, and validation of the numerical results with exact and/or
experimental results for different terrain profiles. Recommendations and conclusions are
presented in Chapter V. Finally, MATLAB computer codes for the numerical implementation

are presented in the Appendix.







II. FORMULATION

In this chapter we present the governing partial differential equation for the fields
together with the required boundary conditions. We present only the final forms and refer the
reader to [Ref. 2] for more details. Figure 1 shows a Hertzian electric source placed over an
irregular, lossy terrain. The terrain is characterized by its height profile and an impedance
boundary condition. The impedance of the ground depends on the ground constants (€€,
KoM, and o). We wish to solve the fields at a point on/over the ground in the presence of the
irregularities. We consider only a 2-dimensional situation where the sources, geometry, and

all fields are z-invariant.

: Tropospheric Boundary Y=Y,
e e = A et

Initial Range (x =X, )

Electric
Source

A,
V unit normal

A
s unit tangent
IIIIIo,'

(%0, y0)

Figure 1. An electric source producing fields over an irregular terrain.




Section A deals with the impedance boundary condition. In Section B, we present the
theory on the parabolic PDE. In Section C, we present the tropospheric boundary condition
required to terminate the computational domain. In any partial differential equation, proper
imposition of boundary conditions is very critical to the final solution. We desire to solve the
parabolic PDE by an implicit finite difference scheme. Most of the previous work in this area
used a cartesian mesh because of its simplicity. However, practical geometries seldom
conform to cartesian coordinates. Some sort of interpolation is needed near the boundary
when non-cartesian geometries are encountered, as in the present case. This could result in
a severe loss of accuracy. To better model the boundary conditions, we solve the equations
in a curvilinear coordinate system generated by treating the lower irregular boundary as one

coordinate line. In Section D, we cast all the equations in a curvilinear coordinate system.

A. IMPEDANCE BOUNDARY CONDITION '
An impedance boundary condition (IBC) relates the tangential components of the
electric and magnetic fields at the interface of two media. If ¥ is a unit normal vector to the

boundary, and § is a unit tangential vector as shown in Fig. 1, the boundary condition is [Ref.
3]

Vx (VxE)--nApxH, (1)

where A, = Z/n, is the surface impedance normalized to the free-space impedance
n, - Me: and Z is the actual surface impedance that is dependent on the media constants
and the incident angles. The surface impedance is determined from the intrinsic impedance of
the medium by considering plane wave reflections from the interface. Figure 2 shows the
interface between two media. The complex propagation constants, v,, y,, and the intrinsic

impedances n, and n, can be expressed in terms of the media constants. They are
2 . . 2
Y; =Jjeuoe) - -k, )

. . 2
Y; sjopp (o +jwee) = -k pe 3)




-

Free Space

)

Figure 2. Boundary interface between two regions.

and

“rz

ﬂl = "I,,, “2 = ﬂ,,

rc2

(4)

According to Snell's law, v, sin 6, = v, sin 6,. The plane-wave reflection coefficients for the

vertical and horizontal polarizations, R, and R, are [Ref. 4]

n,sec 0, - nsecH,

H

n,sec O, + nsec, ’

n,cos 6, - n,cos 0,

v

n,cos 8, + ncos O, '

Using these, the surface impedance of the lossy ground can be taken as

&)

(©)




7 { Z, = nsecB, Horizontal Polarization 7
£ Z,V = n,c05 0, Vertical Polarization (
Therefore,
" B, cos 2y, * - m cos 2y,
A Pl B .} Y ) e il oy ®)
€YC urerc GTC urerc
For the special case of normal incidence, s, = 90°
Af = A:, = 1 . ] (9)
er -]Ur
where ¢ = ——. In this thesis, we will use a normalized surface impedance given in Eq. (9)

we
for all the results. For a 2-Dimensional case with vertical polarization, the impedance

boundary condition given by Eq. (1) can be simplified as

oH,
T - jkeAH -0,  IBC Vertical Polarization (10)
v

o

Similarly, we have for the horizontal polarization

dE,
ov

.= 0. IBC Horizontal Polarization (11)

s

For a perfectly conducting material, A" = 0 and the impedance boundary condition reduces

OH
to —5— = 0 (Vertical Polarization) and £, = 0 (Horizontal Polarization).
v

B. STANDARD PARABOLIC PARTIAL DIFFERENTIAL EQUATION

For a two-dimensional electric source producing fields in a homogeneous region, all
quantities are independent of the z-coordinate, and propagation takes place in the xy-plane.
From Maxwell's equations, we have V x E - jopH,and V x H - joeE + J. The fields
could be expressed in terms of the z-component of the magnetic field, H_, in the case of

vertical polarization (7E, fields), and in terms of E, for the horizontal polarization (7M,



fields). In a source-free enyironment, the equation satisfied by the magnetic field is
V:(VH)+kH, 0.  Vertcal Polarization (12)
Similarly the equation for the electric field is
V- (VE)+ k)E, - 0. Horizontal Polarization (13)
Equations (12) and (13) may be combined into an equation of the form
Vs kly = 0, (14)

where ¢ = H, for TE Polarization and ¢ = E, for TM Polarization. Equation (14) is the
- standard Helmholtz equation and is elliptic in nature; the field at any one point depends on
field at every other point in a complicated manner. However, for wave propagation problems,
an approximate answer can be obtained by the use of a parabolic PDE. In this case, the field
at a particular range depends on the field at previous range points only. Assuming that the

wave propagates predominantly in the positive x-direction, we write

VEY) = e Muy), (15)

where u(x,y) is a slowly varying function of x. We now impose the restriction that

lu_| « 2k, |u| (16)
2
(u, - gf- , U = 6_112 ) into Eq. (14) and arrive at
x ox
.a_u A a_zu_ 17
ox 2k, gy (7

Equation (17) is the exact form of the narrow angle parabolic PDE approximation. The
impedance boundary conditions derived in the previous section can also be expressed in terms

of the '»' function :

u, - jk(A] +x)u <0,  IBC Vertical Polarization (18)




0, IBC Horizontal Polarization (19)

u - Jjk ! +x |u
v H v
A‘

where x - gﬁ =-sinfand u, - %i on the irregular terrain. By defining
v v

-jk (A - sin@)  Vertical Polarization

“©17 - jko(iﬂ - sin®) Horizontal Polarization ° (20)
AS
Eqgs. (18) and (19) can be combined and written as
u,+cu =0 (21)

The parabolic PDE given by Eq. (17) is valid for propagation angles close to the horizontal
(£15° in practice) [Ref. 5].

C. TROPOSPHERIC BOUNDARY CONDITION
Our computational domain consists of the region above the lossy ground. To truncate
the computational domain on the upper side, we consider a point y = y, high enough and

impose a boundary condition of the form
u + ou =B ony-=-y,. (22)

To derive this, we start with the parabolic equation u, - 2jku - Owith a complex £.
Consider the problem of determining the field at any point in x > x,, and y > y,, given the
initial data on x = x,,, #(x,,,y) = f{y), and the boundary data on y = y,, u(x.y,) = g(x). For
analytical simplicity, we assume k =, - je, € > 0. The lossless case which we are considering
in the thesis can be considered as the limit of the lossy case as € — 0. Using the Fourier sine

integral, it is shown in [Ref. 2] that

ou ) _2il_r_
o] - | 2]

w5y & (T)

- -y Y 2Ae-x
! f f(0)e Ty f dt ] (23)
‘/x—xl.m. ™Yo T \fX-T

10




The integrals can be evaluated approximately by replacing the derivatives with

differences. Figure 3 shows data points on the line y =y, and on the portion of x = x,,, which -

is above y =y,

- Discrete Data

eU, a Y=Yo
.Ul 1 2 1 Ya .
U U vutu X-X,,
" *—@ 00— 0—>
U,=U" x;, x, X, X, X,

Figure 3.  Discrete derivatives for integral evaluations.

Consider the evaluation of du/dy|,,, at x - x,,, = x,.,, with initial data on the line x = x,,,. Let
us assume that this initial data is known on a uniform grid y,, =y, + mAy, m=0, 1, . The

derivative in the interval (y,, ;, ,,) can be approximated by the forward difference formula

) Ll Y€ G V) (24)
ay Ay

where u,, = u(x,,.y,,). Then

= <= 2 X-x l um - um-
ify ft(t)e-ﬁ( Yo 126 "“)d‘l: . E( 1) n
\/; TVm-1

() - A{onl] o

11




where F(x) - fo T ey isa complex Fresnel integral [Ref. 6].
Now, consider the boundary data on the line y = y,. Assume a non-uniform grid x,,,

Ximi T Xp5 Xipy + X5 =, X + X, = x. On the interval x - x,,, = (x,_ 1» X,,), the derivative can be

approximated as
u - u
1) = —m |
g.(7) " (26)

where u,, = u(x,, y,). The second integral in Eq. (23) can now be obtained as

Tint® %ot gt(‘r) p1 u™ - ym uP%h_ gy pl
LS .2 : @27)
- 1 - -
T ing X it xp_’5 T L pr_% xm_l + \/xp_% xm xp_% xp_l

Substituting Eq. (25) and (27) into Eq. (23),
ou Em’ ot ) 8jk u[:mf b
ay n(xH,— xp_l) .,
2 3wl A A\ g o)
) Ay El(u ) n(xp-% o) G- yO) “(x;»%_xw) O3

p1 .
Efi u"” N I R , 28)
m-l \/x - x \/x _ ‘\ n(xp_%- x )

p-

- 1 -
where X, = Yalx, x,) = X, X

o = (X, X)) 8 ‘/;Ax},.Equation (28) can be thought

of as the discrete version of a continuous boundary condition of the form

ou r(xu = s(x), (29
oy

where

12




) - | 1| (30)
Tox-x

. p-1 .
N - um -um-l k k
= 2 ——— — - — -
@ - VY Ex Ay [F(\ 1t(x-x..w,)(y"l y‘)) F(‘\l 'Jt(::c—xim.)(y""l y))}
- I_sf_k_ Pi u” - u™ B L (31
T m Jx - xm + ‘/x - xm-l ﬂ(x - xp_])

D. TRANSFORMATION TO A CURVILINEAR COORDINATE SYSTEM
The partial differential equation in Eq. (17) and the boundary conditions in Egs. (21)

and (28) will now be transformed to a curvilinear coordinate system. Consider the narrow

angle parabolic PDE given by Eq. (17)

x 2jko ay 2’ ( )
together with the tropospheric boundary condition
0
a—yu (x,oyy) + rixux,v) = s(x,¥y), (33)
and the impedance boundary condition on the irregular boundary
u,+ cu = 0. (34)

We will cast all of these equations in a curvilinear coordinate system (€, i) shown in Fig. 4.
This will permit accurate imposition of boundary conditions. Note that the parabolic nature
of the equation will not change as a result of the transformation. The irregular terrain
boundary will map into n = 0 and the upper boundary into n = N (integer). The entire
coordinate system is generated by the specification of the terrain geometry.

Assuming the transformation x = x(£), y = y(§,n), and using the various metrics

needed [Ref. 7], Eq. (32) becomes

13




d_Fm| % X% ¥
“o N S S =, (35)
y,‘ JE, yq 2_]’(0)/,'1
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Figure 4. Curvilinear coordinate system.
Letting
x y 1 y
b= % iy b (36)
n Ya J%, £
5 i
3° ’ 37)
2k Y, (
then Eq. (35) can be expressed as
u, - bz”q + b3u‘m (38)

The normal derivative on a = constant line is
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Xy + )y X +y
u (n=constant ) = P % - ‘x" &y Uy . (39)
Using

cos® - ——  and sin® - ——— | (40)
2 2 2 2 '
Te + Ve V¥ * Ve

the boundary condition at the bottom boundary u, + c,u = 0 gets transformed for x, = 0 to

y
u, - -x—“sinecos Bu, + c,y cosBu - 0. (41)
4

Similarly, the boundary condition at y = y, gets transformed to

u (5, N) + 7, N, (EJu(E,, N) = 3, 5(E,, N). ' 42)
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1. SOLUTION PROCEDURE

In the previous chapter we presented the underlying equations and the relevant
boundary conditions for the computation of fields over an irregular terrain. In Section A of
this chapter, we present details on the generation of the coordinate system. In Section B, we
adopt the Crank-Nicolson scheme in the transformed domain to obtain the required finite

difference equations.

A. GENERATION OF THE CURVILINEAR COORDINATE SYSTEM

Consider the computational domain between the terrain profile and a horizontal upper
boundary. We treat the terrain profile as being comprised of piece-wise linear functions and
consider a horizontal upper boundary as shown in Fig. 5. We wish to generate a coordinate
system (&,n) such that the lower and the upper boundaries correspond to constant n lines.
The coordinate lines gradually become horizontal as one proceeds from the lower to the
upper boundary. Specification of the lower and upper boundaries completely determines our
coordinate system. Without loss of generality, we will choose the increments between the
mesh points in the (£,1) plane to be unity. Figure 5(a) shows the mesh points in the physical
domain and Fig. 5(b) in the computational domain. Figure 6 shows corresponding pairs of
points on the upper and lower boundaries in the physical and computational domains. The (x,
y) coordinates of an interior point are generated by using linear interpolation. Letting Ax, =
(x.,-x), Ay,= (., -y), and A, = (E,,, - £)), the parametric equations for x and y are [Ref.
2]

(& Ax‘(z - E)
x(§) = x, + AT D> (43)
Ay
N e —LE - .

for, <& <&,,0<n <N
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Figure 5. Physical and computational grids.
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Figure 6. Physical and computational domain segments.
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It is possible to generalize this to any ground profile shape of the form f{x) by writing

= 1 - 1) + -'—1- = ( —l) + 1
y ( ¥ Sx) et v S [x(®)] el (45)

with x(£) given as above. However, we choose the piece-wise linear form for its ability to
model discrete sets of data on the ground. At any interior point, £, < £ < £_,,, the various

metrics are obtained as

I x =0 (46)
13 AE; ? ] ’
Ay 1[ Ay
n | Ay, f
. N e R L e 1 S 21 B - 0.
yE ( NJAE, y'fl N yo yi AEi(E El) y'}'] (47)

At the junction points £ = &, or £,,,, we use the central difference formulas

X .- X Ax, . + Ax
x (E=E ) - 12 i - i1 i (48)
3 (3! s
Em - Ei AEM * AE:

Ay, + Ay,

- -1 - 1)_____ _
Ye(8=E,) ( AT, . AL,

- (49)

Note that the analytical expression yields a discontinuous value for these derivatives.
We use the analytical expressions only to generate grid points and use the central difference
formulas to arrive at the derivatives with respect to £. In other words, once the grid points
are generated on the lines A4', BB/, ..., etc., we assume that the space is smoothly connected
through the grid points. In the numerical implementation using the Crank-Nicolson implicit
scheme [Ref. 8], the metrics are needed at the midpoint with respect to £, i.e.,at £ = §, +
A /2, and the interior point formulas are applicable. For a uniform mesh in the computational

domain, A,=1,1=¢q,9g=0,12, .., N.
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] q
(1 o
_ 1 ylol+ yi
y'l - ; y,_ 2 s

(50)
51)

(52)

(53)

Figure 7 shows an example of the curvilinear mesh for a Gaussian shaped ridge on flat

ground. Note that the vertical increment is constant on any vertical line, but varies from line

to line.

10(““
of---- +—171.. 1.
- e
8 g I gt My W
T
@ P /——\ .
7;3 ] . // ? /___\ R WA
[ L1 /./- "~
5 Py /:\ -
I // //\ ™
3 4k // //'Q \ \\
g %7778NN\\Ny
2k.... // ............. \\
L+ : q\
0 5 10 15 20 25

Horizontal Distance (wavelength)

30

Figure 7. Curvilinear mesh for a Gaussian shaped ridge on flat ground.
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B. NUMERICAL IMPLEMENTATION USING THE CRANK-NICOLSON
SCHEME

Consider the narrow angle parabolic PDE together with the boundary conditions given
by Eqgs. (38), (41), and (42). We would like to implement the equations using a Crank-
Nicolson implicit scheme [Ref. 8]. We will write different forms for the internal and boundary
regions. The grid points for an internal region in the computational domain are shown in Fig.

8. Given the field data on the line p-1, we would like to predict the field on the line p.

< ac-l >
|
¢ 1 ¢— !
i
!
An=1 :
I
:
. T ‘_ q
I
I
I
I
I
|
I n=g-1
¢ ; '@
£=p-1 ] p

Figure 8. Internal grid points in computational domain.

Using the notation u ;’ - u(p,q) = u(x,w), the various derivatives (assuming A = An =1)

are

w @) = u? - uP, (54)
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p1 ? Pl b4
u,q(P"'/ZsQ) = 1/4[”4.1* Ui~ (ug.l* uq—l)]’
P P P p1 PPl
u'm(p—‘/z,q) = Nlug- 2u)s uy Ug = 2ug v ug]

Substituting into Eq. (43) and rearranging the terms, we get [Ref. 2]
1({ 5, 1 b,
g e (1w o 2

1 bz p-1 pl 1 bz p-1
+;(—2—+bs)uﬂ +(l-—b3)uq +;b3- —2—u“ = 0.

Letting

o - %(b, + %b Y
%
p = (b3)g— b

Y = %, - %b),

we haveforp=12 -;¢9=1,2, - N-1

p P b4 Pl p-1 Pl
aug, - (1 B)uq * YU, = -euy, - (1 - B)uq - Yu,,.

(53)

(56)

7

(58)

(59

(60)

(61)

We will extend the applicability of this equation to include g = 0 and ¢ = N to accommodate

the derivative boundary conditions on the lower and upper boundaries. For g = 0, we have

aulp -1 - B)uop + yu_f = —auf’l -1 - [3)11;H - yu_’;].
For g =N, we have

P 4 P p1 pl p-1
ey, - (1 + Pluy + yuy, = —euy, - (1 - Bluy, - yuy,

22
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)

An

Ya

Figure 9. Grid points at the lower boundary.

Figure 9 shows the grid points at the lower boundary. We use central differences for the

boundary condition in Eq. (41) and combine with Eq. (62) to get

«ul - A+ Pyl - -euP - 1 - pHul, (64)
where

o - a -y, , (65)

25in 0
B’ = B - 2vycos E)(cl - sxm ) > (66)

3

25in O

B"=pB - 2yy,cos e(c, + s;n ) . (67)

3

We have also tried to use one-sided forward difference formulas near the terrain, but the
results were less accurate than with the central difference scheme. Results for the two

approaches will be compared in the next chapter.
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Ag=1

An=1

p-1 p%

Figure 10. Grid points at the upper boundary.

Similarly, using central differences for the tropospheric boundary condition in Eq. (42) and

combining with Eq. (63) results in

! 1 ; 1 4
(A« Muy = Yudy = (1= Muf’ » yufy « day g™ (68)
where
Jk
A - +y 8a
P n TAx
p-1
Y=v+¢
AJ&:},_l =X, - X, Xpy = X5y * 1/zAxp_1 = l/z(xp + xp—l)’
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oo VU i(“,.. T U, [ : ym) ) F(\u—l—y'”")]

Ay m1 X, X,y
. -1
B ‘ 8jk ')*:’ Uy - Uy 16jk  p1
Y1 m-l (\/x - x + X - x ) \ TtAx N
p-Y% m P-Y% m-1 p1

We augment Eq. (61) forg =1, 2, -, N-1 with Eq. (64) and (68) forg=0and g=N
respectively to define the equations for g =0, 1, 2, -, N. The system of equations so defined

can be expressed as a matrix equation of the form

p. [ pl
X X 4o XX %o 0
XXxx u? | X x X ul’
XXX , XXX ,
= + - (69)
: ; i "
t H
%
XX__R:_ i XX__u;;.I_ . 4ay'qsp ]

where X denotes a non-zero entry. The tri-diagonal matrix on the left hand side of Eq. (69)
can be inverted efficiently to yield a solution on line £ = £ in terms of the field values on the
line £ = £ ,,. Equation (69) can be used to march forward in range starting from initial data

specified at £ = 0 (x =x,,).
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IV. COMPARISON OF RESULTS

Having presented the basic theory in the previous chapters, we will present numerical
results in this chapter. The overall accuracy of the solution depends on a number of
parameters such as the step size, location of the tropospheric boundary (i.e., y, in Fig. 1), the
region above the tropospheric boundary, and the differencing scheme used at the boundaries.
In this chapter we will make a systematic study on the dependence of the solution on various
parameters. Section A.1 compares the results of the forward versus central differencing
schemes for implementing the lower boundary condition. Sections A.2 and A.3 show the
effects of horizontal and vertical step sizes, respectively. In Section A.4, we present the effect
of the placement of the tropospheric boundary condition. In the remaining sections, we

present comparisons with the results available in the literature for specific obstacles.

A. PARAMETRIC STUDY OF THE FINITE DIFFERENCE SCHEME

1. Forward-Difference versus Central Difference Scheme for the Impedance
Boundary Condition

In the implementation using the Crank-Nicolson implicit scheme, the derivatives at
any interior point are approximated using the central difference formulas. This approximation
is also extended to the lower boundary given in Eq. (69). Alternatively, the derivatives at the
lower boundary could also be approximated using the forward difference formulas. From Eq.

(43) and using the forward difference formulas, we have

vlw? - al) + @ -ul")] - (hcos 9sin9) @l - ol

e
+ (e, cos e)( M) - 0. (70)
Equation (70) can be written as
ul - (1« Bl - -aul . (1 - prul, (71)
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2sin 0 )
— cl s

25in O )
+ (:l .
X

X

o' =1, p’- ¥, cos 0( B” - ¥, cos 9( (72)

13 4

Numerical results using both the central difference and forward difference schemes
were used to compute magnetic field due to a vertically polarized line source on the surface
of a PEC plane. The results of both schemes are compared with the exact solution [Ref. 9]
and plotted in Fig. 11 (magnitude of magnetic field, Hz, on the surface of the PEC plane),
Fig. 12 (Hz @ Height = 0.11), and Fig. 13 (Hz @ Height =y, = 201). It is observed that the
central difference scheme produces a solution that agrees better with the exact solution. The
solution using forward differences exhibits spurious oscillations which could not be resolved.

Henceforth we will adopt the central difference scheme for the subsequent test cases shown.

2. Variation in Horizontal Step Size (With Fixed Vertical Step Size)

The Crank-Nicolson scheme has the advantage of being valid (i.e., convergent and
stable) for all finite values of the horizontal step size for a cartesian mesh. To verify the
validity of the scheme with respect to horizontal step sizes, numerical results were evaluated
for three different horizontal step sizes (Ax=0.11, Ax =024, and Ax = 0.5A4) with a fixed
vertical step size of Ay = 0.1. The magnitude of the magnetic field, Hz, due to a vertically
polarized line source placed at (x0 = 0, y0 = 0) on the surface of a PEC plane are computed
numerically and plotted in Fig. 14 (Hz on the surface of the PEC plane) and Fig. 15(Hz @
Height = y,= 201). The plots show that the results are convergent for all the three horizontal
step sizes, and excellent agreement is observed between the numerical results and the exact
solution for the surface magnetic field. Minor oscillations are observed for magnitude of the
magnetic field at the upper boundary. However, the average value of the magnetic field, Hz,
is still close to the exact solution given by [Ref. 9]
Jjk, (£ - %)
4 R

(-]

H(xy) = 2 [ HO®)|, (73)
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where £ - kx , X -kx R, - ka‘/(x - x)+ (v - y)*, and H is the Hankel
function of the second kind of order 1.
3. Variation in Vertical Step Size (With Fixed Horizontal Step Size)
Next, we investigate the behavior of the Crank-Nicolson scheme with respect to
vertical step size. In this study, the numerical results were evaluated for three different vertical
step sizes (Ay = 0.1, Ay =0.2A, and Ay = 0.51) with a fixed horizontal step size of Ax =
0.1A. The same profile of a vertically polarized line source placed at (x0 = 0, y0 = 0) on the
surface of a PEC plane is adopted, and the magnitude of the magnetic field, Hz, are computed
numerically. The results are plotted in Fig. 16 (Hz on the surface of the PEC plane) and Fig.
17 (Hz @ Height = y, = 201). Again the plots show that the results at the surface are
" convergent for all the three vertical step sizes tested, and excellent agreement is observed
between the numerical results and the exact solution for the magnetic field, Hz.
Minor oscillations are still observed at the upper boundary. Poor results are obtained
with Ay = 0.5A. This is possibly due to the inaccuracies of the upper boundary condition.
Nonetheless, the numerical computation using step size of Ax = Ay = 0.1 produces results

which are in good agreement with the exact solution.

4, Variation in the Tropospheric Boundary Condition Parameter

In the evaluation of du/dy|,, at x = x, ,+x,,, we have considered and assumed that
initial data is known on a uniform grid y,, - y,=mAy, m=0, 1, --. In practice we stop at some
height y,,. > y,. To ascertain how high a point should be considered, we examine the cases
of extending beyond the tropospheric boundary by 5, 104, and 204, (i.e., 5. =Y, t 54,
10, and 201). The simple test profile of the propagation of the magnetic field, Hz, due to
a vertically polarized line source placed at (x0 = 0, y0 = 0) on the surface of a PEC plane are
computed numerically. In this study we choose Ax = Ay =0.1A and the upper boundary, y,
=204. The results are plotted in Fig. 18 (Hz on the surface of the PEC plane) and Fig. 19 (Hz
@ Height = y, = 201). The plots show that the results are almost identical for all the three
cases. To get an accurate representation of the tropospheric boundary condition, we need

only to consider data on a vertical line which is within 54 from the upper boundary. As such,

all subsequent test cases will be computed using a tropospheric boundary with y,,. =y, 54,
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Figure 11. Surface magnetic field versus distance.
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B. PROPAGATION OVER A PEC PLANE _
In this section, we examine the effect of the height of the upper boundary, y,, on the
stability and accuracy of the numeﬁcal results. The magnitude of the magnetic field, Hz, due
to a vertically polarized line source placed at (x0 = 0, y0 = 0) on the surface of a PEC plane
are computed numerically. In this study we choose Ax = Ay =0.1A and y,,, =y, + SA.
Results are presented for y, = 5A, 104, 20, and 30A. The initial data line is at x,, = 51, and

the magnetic field is marched over a horizontal distance of 10A.

1. Magnetic Field Variation with Horizontal Distance

The variation in the magnitude of the magnetic field, Hz, along the horizontal distance
on the surface of the PEC plane and at a height of 5A is plotted in Fig. 20 and Fig. 21
respectively. We noticed that the oscillations are predominant when y, is less than 20A. For

Y, > 204, the results are in good agreement with the exact solution.

2. Magnetic Field Variation with Vertical Distance

Figures 22, 23, and 24 depict the results of the variations of the magnitude of the
magnetic field, Hz, with vertical height at horizontal distances of 6A, 104, and 154 from the
transmitter. Again, oscillations are present when the height of the upper boundary is below
20A. More importantly, we observed that for a given horizontal distance, the deviations of
the numerical results from the exact solution become more pronounced at higher points. This
phenomenon is expected because the parabolic equation used in this thesis is valid for
propagation angles close to horizontal (£15°). In fact the numerical result is fairly consistent
with this restriction. For example, at a horizontal distance of 15A from the transmitter (i.e.,
10A from the initial data line), the maximum height for which good results are expected is
between 0 and 1.763A. From Fig. 24, we see that this is true, and deviation between the
numerical results and the exact solution begins at approximately 1.7A. The same trend is also
observed in Fig. 22 and 23. However, the difference between the numerical results and the
exact solution increases with distance from the transmitter. This could be due to inaccuracies
of the tropospheric boundary condition. The error in the tropospheric boundary condition is

accumulative, and we would expect to see higher error at larger distances.
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C. PROPAGATION OVER A PEC KNIFE-EDGE
Consider a perfectly conducting knife edge of height 4, as shown in Fig. 25, set on a
perfectly conducting plane, with the transmitter and receiver both on the ground at distances

d; and d,. The attenuation factor, AF, at point B can be found analytically and is given by

[Ref. 10]

AF - 4.I§ f"ef""‘”’ &, (74)
2d 2d
) - uw(E-h) - h | .
u(f) = § "dd, R u_ = u(&-h) | 7d, (75)

where

I R\
A \\\
/// \\\

hc // \\\

/// E \\\

/ \\\
TX // \ RX
b L}

o
d

Figure 25. Perfectly conducting knife edge between the transmitter at A and the receiver
at B, both of which are on a perfectly conducting ground.
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We consider the case where A, =24 and d, = 10A. For this choice 0, =11.3°. A vertically
polarized line source is placed at x0 = 0, y0 = 0 and the magnetic field is determined from an
initial range of 5A to a distance of 30A. The height of the upper boundary is y,=20A and y,,,
=y, +5A.

The variation of the surface magnetic field over the horizontal distance is plotted in
Fig. 26. Variation of the magnetic field with height at a distance d, = 24 is plotted in Fig. 27.
Comparison of the attenuation factors at d, = 24, 104, 154, and 201 (8, = 45°, 11°, 7.6°,
5.7° respective