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1. Introduction

The term "exponential smoothing'' seems to have been coined for

the first time by R. G. Brown [l] in 1959 for a particular time series

forecasting technique (or a statistical estimation technique, depending

on one's paint of view.) Basically, the technique involves weighting

each bit of past history with geometrically decreasing weights, less

and less weight being given to the older part of the history. Certainly

such a procedure has a great deal of intuitive appeal and, moreover, it

has been shown that exponential smoothing entails less computer storage

than some of the classical techniques such as forecasting by a moving

average. These and other advantages are well documented in the book

4; on smoothing by Brown, a book almost entirely devoted to the

exponential smoothing technique. Since an inventory system, particularly

under a periodic review model, so often entails basing decisions for the

future on past demand history, forecasting techniques are of considerable

interest to the inventory manager.

It is quite evident that exponential smoothing has been widely

adopted by Naval Supply Systems Command as a basic forecasting technique.

A review of almost any document, such as various ALRAND reports and

PAR documents which involve forecasting or estimation makes it quite

clear that this is the case. And, since the book [4] by Brown is

practically a sole source of information on the subject, it is not

surprising to find said book extensively referenced throughout such

documents. The writer has not been able to find any other text materials

in which anything beyond a cursory treatment of exponential smoothing is
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given. And yet this textbook by Brown, Chapter 9 in particular, is

replete with errors of both a typographical and a conceptual nature.

Some added difficulty is created by the use of notation which is not

consistent with the meaning usually given such symbols in related

scientific literature. For example, the notation a, S, c, does not

always denote estimates °f the corresponding parameters a, b, c as they

are normally is used. In other cases, the same symbol has been used

ambiguously for two different quantities which certainly leads to

confusion.

One of the biggest indictments of the material presented in

Chapter 9 of Brown's book is the fact that his so-called Fundamental

Theorem, which hardly qualifies a theorem to begin with, is only an

asymptotic (with time) result but is presented, used and discussed in

such a way as to lead the reader to believe otherwise. Indeed, since

the entire book rests basically on this Fundamental Theorem, it is

not surprising that nearly every result in the book is an asymptotic

result. This includes claims for statistical unbiasedness which is

weak enough in itself without holding only asymptotically. Yet, except

for an occasional and casual use of the phrase, 'after the initial

transient becomes negligible, " the reader is never made aware of this

fact.

Another fundamental criticism from a statistical point of view is

Brown's constant use of mean absolute deviation (MAD) to estimate

statistical variation. For the futility of using MAD to account for

variability has been well documented in the statistical literature for





years. Its use by Brown seems to be justified mainly, and not

surprisingly, because of its amenability to the exponential smoothing

technique. Out of curiosity, the writer did a quick survey of the

recent literature on the subject of variability and has been unable

to find any significant result that would change one's attitude

toward MAD. And yet, the disadvantages associated with this measure

of variability is not mentioned once in Brown's book. But there is no

hesitation in mentioning (p. 282) the computational disadvantage in

using the standard deviation as a measure of variability. And of

course computational convenience is but one of a list of criteria to

be considered in selecting a model and it is a real disservice to ignore

other, perhaps even more important, criteria.

The purpose of this report, then, is to clarify some of the

results given in Brown's book and to emphasize, much more strongly

than does the author himself, the assumptions, tacit and otherwise,

that yield these results. In this way, it is hoped that the reader

will be more aware of the restrictive nature of some of the formulas

derived in Brown's book and will thereby exercise some caution in their

application. For a special case where Brown's formulas are only

asymptotically (in time) valid, alternative forms are presented which

are valid for finite values of time parameters.

2. Initial Conditions

The first matter to be discussed in this report concerns the very

definition of exponential smoothing. In the first place, Brown seems

to be inconsistent in the definition employed in his early papers





[l] and [2], and the one adopted later in his textbook [4]. In the

former, single exponential smoothing of the sequence x ,x ,x ,...,x
1 2 t

is defined by,

t-1 t

x = ,v
. ( 1 - or)

J
x + a ( 1 - <y) x

* ]-0
C "

J °

which may as well be written

t
J

x = « (1 - ^) X
t t-j

j-0

since it is identically the same. (The parameter Of is a number in the

interval [0, 1~1
, called the smoothing constant.) This is equation (3)

page 675 of [2]. Yet, on page 101 of [4] we find the symbol S
t
(x) used

to denote the same quantity and this time is defined to be,

t" 1
J t

S (x)= o/
N

(1 - y) x + (1 - y) x .

t t-j

J-0

t
The difference, of course, is in the coefficient of (1 - cr) in

both expressions or, viewed another way, the difference lies in the

weight to be given the observation x . In any case, both formulas are

claimed to be derived from the basic recursion relation,

5 (x) = v x + (1 - c0 S (x) ,

t t t-1

presumably valid for t = 1,2,3,...* But successive substitution in

this recursion relation only yields
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1

j
S
t
(x) - or S (1 - cv) x + (1 - of) S

q
(x) .

Clearly, then, the question of compatibility of these two forms of the

definition of the exponential smoothing operator depends upon how one

defines the initial condition S (x) . If the first formula is to be valid

then we must have S (x) = or x„ while if the textbook form is used then

it must be the case tnat S (x) = x . Since Brown is not explicit on

this point we can only postulate what was intended. In either case,

the resulting definition depends somewhat on how x is treated since in

one case x is given weight ex initially and unit weight in the other

case. In the first case, given in Brown's paper, in viewing exponential

smoothing as a variation of averaging so that the result is a weighted

sum of the observations, then the sum of the weights is not unity which

is awkward statistically speaking.

Of course, how one defines the initial condition is of little

consequence when only asymptotic results are considered since the effect

of the initial condition eventually becomes negligible in either of the

above cases. And, for this reason, the inconsistency in defining Sq(x)

(actually the utter lack of any explicit mention of same) never appears

to be a problem because, as we have said, Brown's results are, by and

large only asymptotically valid hence applicable only to a steady state

condition. Yet, the point is more than merely academic. The formula

is a result of a recursion relation and, to apply such a relation in a

model requires an initial condition as does any application of a

mathematical recursion. Moreover, statistical properties, notably





unbiasedness , definitely depend upon how one treats the initial

condition. Finally, there are many realistic situations in which there

is simply not enough past history to justify the application of an

asymptotic result in which case the initial condition becomes a very

important factor and can considerably influence the consequences.

Several points of view regarding the meaning to be attached to

x in the sequence x , t = 0, 1, 2, . ..
;
can be justified. If x

represents the demand occurring in the t
tn time period of an inventory

model, then it is quite natural to define x = since initially,

that Is before we begin operating the system, there is no demand. In

that case, it does not matter which of the above forms we use for S n (x)

since, in either case we obtain S_(x) == also. But then we may as

well write

t-1

S (x) = a I (1 - cv)
J
x ,

j-0

in which case, writing p for 1 - t, the sum of the weights is

t
:
1

j
or I yj = 1 - p ,

which is not unity. One of the consequences of this result is that if

we are observing a process with constant mean then the smoothing operator

S (x) is not unbiased as is often claimed in such circumstances. This

is precisely one of the problems encountered by Bessler and the writer





[8] in attempting to ^pply exponential smoothing to a dynamic inventory

model originally developed by Vassian in 1955. This led them to define

a modified version of smoothing which they call finite exponential

smoothing . Denoting this modification by S (x) , it is defined in [8]

by

t j

S (x) = o L t3 x

j
t

i=0 t-J

where

ot =
t

1 - p
c

With the coefficients thus normalized, the sum of the corresponding

weights is unity as desired. Further properties of this modified version

of smoothing and some of its applications may be found in [8],

Another point of view that might be taken regarding the initial

condition applies when the assumption in the model is that

x =2 + e where !L is a deterministic function of t and e is a
t t t t t

2
random variable with mean zero and constant variance a . In that case,

it is natural to suppose that x =5 + e to be consistent with the
o

rest of the model. Whether or not such an assumption is suitable

depends upon further considerations in the model. For example, suppose it

is assumed that s - a, where a r 0. In that case, S (x) is unbiased
t t

if we use tae version S (x) = x but is not unbiased if we use

S (x) = 'y x instead.





In many of the applications which Brown discusses in his book

4 , lie speaks of x as representing some initial -- any initial --

estimate of, say demand, up to the time the process is to be observed,

In some cases, such an estimate may be sheer judgment, or rather

guess, as to what the., say constant mean demand will be. In other

cases, it may be obtained from the manner in which it is hoped that

the process will behave. In still other cases, x may be a number

which depends upon some related process whose behavior has been

previously observed. In any case we are then considering x as being

an estimate from a separate distribution, one not necessarily related

to the assumption x = l + e . Then S (x) is or is not unbiased
t t t t

depending upon both the distribution that does represent x as well

as which form of S (x) we use. For example, if i = a for t = 1,2,...

tnen

EL S (x) ! = a - a P
t
+ P E[ x ]

if we take S (x) = x while

t t r
EL S (x) = a - a 3 + or EL x J

t

if we take S (x) - en x . In either case, whether or not e[ S (x) ] = a
t

depends upon e[ x
| and certainly in general it will be the case that

El S (x) ] P a.





3. Fundamental Theorem

As indicated earlier, most of the mathematics of exponential

smoothing is summarized in what Brown calls his Fundamental Theorem of

Exponential Smoothing, the statement and 'proof" of which is given on

page 133 of [4]. Using the model x =
''J + e where, in general,

a a
2 2 n n , n

§ = a„ + a,t + t + ... + —r-t and { e }

t 1 2 n! t t -

represent independent random variables, identically distributed with

2
zero means and constant variance a , Brown asserts that his fundamental

theorem 'proves that it is possible to estimate the n + 1 coefficients

in an ntn order polynomial model by linear combinations of the first

(n + 1) orders of exponential smoothing. 1 The general k -order

smoothing operator is defined inductively by

[k] [k-1] [k]

S (x) = cv S (x) + (1 - d) S , (x) for t = 1,2,3,...
t t t-1

In the first place, the fundamental theorem is not really a theorem

at all but simply an observation that the p
tn -order smoothing operator

can be written explicitly in terms of the coefficients of the model.

But worse, what is stated as the fundamental theorem is simply not

true. Thus, even for p = 1 it is just not true that

(k)

k=0

S . ,.
k X

t " > J
k! j=0





as asserted by the theorem. Later in this section, we will derive

the correct expression for S (x) and show that what is given here is

an approximation.

Secondly, even if one were to call the result a theorem in a

broad sense, the proof that is given is not a proof of the statement

of the theorem at all. Indeed, the opening line of the proof on

page 133 asks the reader to "Think of the infinite sequence of

observations, ... ,x for t = -«>,... ,-1,0,1,. .. ,<"." But one is not
t

given an infinite sequence of observations. In fact, all that is given

for any application are the observations x ,x ,x ,...,x . Giving the
1 2 t

author the benefit of the doubt, however, let us suppose that the

extra variables, are simply being used as surplus variables to generate

a proof. Certainly the observations x ,x ,... turn out to be
t+1 t+2

redundant for we find, reading further, that a new sequence is introduced

by the definition

.0 if t <

V L t

ofcj if t >

whereupon it is asserted that

S (x) - T ac S
t t-j j

j=0

found by the convolution of { x.} and ( S ]

j j= -co k k= -co

Thus, the effect of defining S ,S , . . . to be zero is to cancel out the

10





observations x ,x , . . . in writing the convolution product given
t+1 t+2

in the text. But what remains is, after correcting a misprint on

P-ige 133, given by

08
J

S (x) = a T- x
t t-i

j-o

and this is not the definition of S (x) although the author certainly
t

uses the same symbol ;md refers to this as the single exponential

smoothing operator.

What possible points of view can be taken to resolve this

apparent inconsistency? One approach would be to assume the author

intended to define 3 by means of
t

a p
J if < j < t

otherwise

Or, we might assume that the extra variables are all zero, that is,

x = if n < 0. In either case, convolution would then yield the
n

formula
c

j

S (x) = C<
V b x

t j=0 t-j

which is consistent with the fact that we will be estimating with

observations x ,x ,...,x . Unfortunately, this formula is still not
1 t

quite the same as that given previously in the text on page 101 where

S (x) is defined. There, the coefficient of x is given as 3 whereas

11





t
here in the fundamental theorem, the coefficient of x is ry P under

any of the above versions.

A third criticism is that the theorem does not prove (even if it

were valid) that the coefficients in the model can be estimated by

linear combinations of S
L

(x) , S (x) , . . . , S (x) as quoted

above. There is still the question of solving the system of equations

given by the theorem for the coefficients. The author proceeds to do

this for two special cases in the remainder of the chapter. But even

so, we are compelled to remark that, of course it is possible to

estimate the coefficients this way. Indeed one can use any function

of the observations to estimate them. But for any estimates to be

meaningful they should satisfy some criteria, at least from a statistical

point of view. Are the estimates presented by the author unbiased? We

have seen that in general they are not. For the special case

b = a + at, the estimates given are certainly not least squares
t 1 2

nor, if normality is assumed, maximum likelihood since these estimates

are well known and are not the same. One of the few criteria claimed to be

satisfied and shown by D'Esopo [3] is that the estimates, not surprisingly,

minimize "exponentially discounted least squares," i.e., minimizes the

quantity
00

'

2
at .'- p (x - p )

j=0 t-j t-j

at least among polynomial fits. Such a ground rule for deriving estimates

is not conventional, however, and is tantamount to selecting an estimate

by fiat.

12





It might be instructive to see, in contrast to what appears

in Brown's fundamental theorem, what the precise results are at least

for the special case of a linear model. In order to maintain the

same notation as Brown we will assume a deterministic model at first

so that we suppose x = a + bt, t = 0,1,2,..., Brown is not explicit

on this point, continually confounding the original random model with

the deterministic version whenever it suits his purpose. We will be

careful to always make this distinction, however, so that estimation

can be discussed in its proper contexts while analytic operations are

only performed on deterministic quantities to which they should be

restricted. We then nave, in Brown s notation, x = a + bt and

(1)

x = b. Since two versions of S (x) exist even in the same context
t t

for finite t, we will have to make a choice of definitions. Here we

will assume that the definition Sn (x) = x is to be preferred since,

then, the sum of the weights will be unity in the version

t-1 k
t

S (x) = £ 3 x + p x .

t k=0 t-k

Also, double smoothing can then be written

[2] t-1 k t

S (x) - or I S (x) + 3 S (x)
t k=0 t-k o

Here we have made the natural assumption that

[2]
s
o

(x) = V x) *

13





In order to derive the finite analogues of Brown's fundamental

theorem, it is only necessary to substitute in these formulas and

simplify the resulting algebra. The simplification is assisted by

a knowledge of finite expansions functions of the basic geometric
t k

progression I 3 . For the record, the first three of these
k=0

expansions are given below. They, and others, can easily be derived

by successively differentiating with respect to the continuous

variable 3 (0 < p < 1) and simplifying the resulting algebra ,

t + 1

p =

k=0 a

t+1 t+2
(3-1) t k

^
3 - (t+1) g + t 3

1 k

k=0 a
2

4. v 2 2 t+1 2 t+2 ? „t+3
J, 2

k
3 + 3 - (t+1) 3 + (2t + 2t-l) 3 - t

z
3

-- k 3 =

k=0 3
a

From the above definition and assumptions we then have

t_1
k t

t_1
k

S (x) = a 7 3 (a + b (t-k)) + a 3 - a (a + bt) I 3
t k=0 k=0

t-1 k
ffgl k 3 + a 3 .

k=0

14





After some simplification, we obtain,

(0) 3 b t+1
(3-2) S(x)=x -b +_

fcj

t a a

Likewise, substituting in the formula for double smoothing yields,

[2] <°> 3 b
t+1

t+1
(3-3) S (x) = x - 2b — + 2 — P + bt p

1

t t Qi 01

[2]
These are the exact formulas for S (x) and S (x) , valid for all

t t

finite t, and of course they differ from those given by Brown.

It is now apparent how one can derive Brown's results as asymptotic

t+1
versions of the exact cases. Since < (3 < 1, we have p

1 —->0 and

t+1
t P -^*CLas t—J* 03

. Then we may say that, for sufficiently large

[2]
values of t we may approximate S (x) and S (x) bv,

> t t

(3-4)

(0) o (1)

S (x) = x " — x
t tat
[2] (0) ^ W

S (x) = x - 2 — x
t t Of t

These are the formulas one would obtain from substituting into the

Fundamental Theorem of page 133.

To actually apply these results and evaluate them statistically, we

would want to consider the model x =5 + e where § = a + bt and,
t t t t

15





After some simplification, we obtain,

(0) b
t+i

(3-2) S(x)=x -b +
t

ex «

Likewise, substituting in the formula for double smoothing yields,

[2] C°> 3 b
t+1

t+l
(3-3) S (x) = x - 2b — + 2 — p + bt t*

t t a a

[2]
These are the exact formulas for S (x) and S (x) , valid for all

t t

finite t, and of course they differ from those given by Brown.

It is now apparent how one can derive Brown's results as asymptotic

t+l
versions of the exact cases. Since < < 1, we have p

1 — >0 and

t+l
t P —;»CLas t~^ m

. Then we may say that, for sufficiently large

[2]
values of t we may approximate S (x) and S (x) by,

S t t

(3-4)

(0) p (1)

S (x) = x - — x
c tat
[2]

t
(0) p (1)

S (x) = x - 2 — x
1 tat

These are the formulas one would obtain from substituting into the

Fundamental Theorem of page 133.

To actually apply these results and evaluate them statistically, we

would want to consider the model x = § + e where v = a + bt and,
t t t t

15





2
as before, e has mean zero and variance o . Brown would have us use

as estimates based on the data x ,x ,...,x , the quantities,
1 t

(3-5)

. (0) [2]
x
t

= 2S
t
(x) - S (x)

. (1) a ^
x = — r s (x) - s (x)i

i- t t

These are easily obtained by solving (3-4) as though they were equations

(0) (1) - (0) „ (1)
and then replacing x and x by the symbols x and x since

t t t t

they involve or are themselves unknown parameters. Whatever means

they are arrived at, certainly they are properly called estimates since

they are functions of the data x ,x ,...,x . They are not, however,
1 t

unbiased as Brown claims if one uses, as one should, the precise formulas

L2 I

for S (x) and S "(x) .

To see that the estimates are biased, we notice first that

EC x
(0)

] = 2EC S (x) ] - E[ S
[2l

(x) ].
t t t

But,
t-1 k t

S (x) = ex P x + 3 x
t k=0 t-k o

and, since E[ x 1 = a + b(t-k), we have,
t-k

t-1 k
E[ S (x) ] = a .I 3 (a + b(t-k)) + a (3

t k=0

16





which is the same expression we dealt with in the deterministic model

(the S (x) of that model). From that result, we have
t

K t+1

E[ S (x) ] - a + bt - b JL + -2 p

S imilarly,

r L2l P b
t+1 t+1

Er S (x) ] = a + bt - 2b — + 2—0 + bt 3
t a Q-

Putting these facts together we thus obtain,

El x J = u + bt - bt |3

(3-6)
l

r
.i lK t t

EL x
!

- b - b 3 -Qfbtfi
t

In both cases, the estimates are biased downward, with a bias that is

a function of the ''trend'* b. Since b is unknown, the bias may be

serious depending of course on the magnitude of b. The bias factors

do converge to zero as time increases beyond bounds however, and we

may say that the estimators Brown gives are thereby asymptotically

unbiased.

For the case n = 2, that is for a quadratic model

a.; 2
= a + a t + —=— t , similar conclusions can be reached. The

t 1 2

algebra involved is somewhat burdensome, however, and will not be

repeated here. Suffice it to say that the exact formulas for

17





[21 [3]
S (x) , S (x) and S._ (x) are such that for t sufficiently large,
t t

t

Brown's versions of these expressions hold. Again, if these

approximations are treated as equations, one can solve the resulting

(0) (1) (2)
,system for the derivatives x , x and x to obtain Brown s

t t t

results. When treated as estimates they are not, of course, unbiased

any more than the linear case. Also, the unsuspecting reader should

be warned that the results, published on pages 140 through 144 should

be read and interpreted with caution even after correcting some obvious

misprints. Thus, on page 140 for example, a (t) and a (t) are not,

as one might presume from the model, estimates of a and a but rather
1

(0)
a
2 2 (1)

estimates of x (t) - a + a t + — t and x (t) = a + a t *
1 2 1 2

"

respectively. Happily, of course, a (t) does happen to be an estimate
2

< 2>/ xof a since, for tnis case, x ( t) = a .

No attempt was made to examine the results for higher order

polynomials. Based on the quadratic model, it is clear that the algebra

involved would be too unwieldy to make the task practical. Perhaps this

is as good a justification for resorting to asymptotic results as any.

And it should be stated that there is no serious objection to deriving

asymptotic results and considering estimators with only asymptotic

properties. The objection is to the inordinate use of the same notation

for the finite case and the asymptotic case in formula after formula.

Together with a complete lack of any discussion of the difference, it

leads the unsuspecting reader to believe that the results are stronger

than they really are.

18
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4. Mean Absolute Deviation

In inventory applications of random demand models, safety levels

are often determined in terms of some measure of variability, usually

the common standard deviation of the demand distribution. As was

mentioned in the introduction, Brown prefers to use mean absolute

deviation, or MAD for short. This in spite of the statistical grounds

for not using this particular measure. As he points out (page 275)

the mean absolute deviation is proportional to the standard deviation

in any probability distribution. Both are, after all, functions of the

parameters of the distribution. But finding an appropriate estimate

for MAD and deriving the corresponding distribution theory to guarantee

the required probability for safety levels is quite another matter.

Brown has not done this and, to make matters worse, never distinguishes

between a population or true MAD and an estimate thereof, even to the

point of using the same symbol and name for them.

In the first place, the definition adopted by Brown for MAD, denoted

<-», reduces to a = EL x - a |! where x is any random variable having

nean M<« As he himself points out on page 283 it would be better to

define o as El
i

x-m |] where m is any median of the distribution of x.

This is because E[ x-c |] is minimized by choosing c = m. Yet he

ignores tnis criterion and uses m- instead of m, justifying his choice

on t.ie basis that forecasts estimate means rather than medians. But

if one can justify computing li instead of a because A is proportional

to o, surely the same argument can be used to estimate m instead of p..

19





This is hardly a convincing reason but we will pass this point and

use Brown's definition. Of course, in a symmetric distribution px = m

as he brings out. But it is precisely in the applications to random

demand that skewed distributions such as the Poisson and Negative

Binomial families arise in practice. This is especially pertinent

to standard assumptions in Naval supply systems.

Brown quite aptly shows that the ratio of A to a is approximately

0.8 for the Normal, Exponential, Uniform and Triangular families of

probability distributions. Yet, except for the normal family, the

interest must be primarily academic so far as inventory applications

are concerned. It would be far more interesting, and quite instructive,

to see what the situation is for other distributions. In particular,

an examination of the Poisson family reveals that 0.8 can be a very

poor approximation. In the Jroisson mass function

-A X

p(x; X) = e ±-

x = 0,1,2,... with < X < 1,

we hdve
CO

A = N
_.

| x - X
|
p(x; X)

x=0

-X « -X x -X «> -X x °° -X x
= Xe + ; (x - X) e — = Xe + Z xe iL - X I e -L_

x=l x! x=l x! x=l x!

-k _ x
-X

=Xe +X-X(l-e)=2X e
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-X
Since a = "i X, we have — = 2'V X e . Values of this ratio are shown

a

for a variety of values of X in Table 1.

X 0.01 0.05 0.10

1

0.25 0.50 0.75 0.90 1 0.99

A
0.198 0.425 0.572

;

0.779 0.858 0.818 0.771 0.739

TABLE 1. Ratio — for Poisson family
a

As is evident from the table, the approximation 0.8 is extremely poor for

slow moving items where the Poisson with small mean X is a typical

assumption. For values of X > 1 in the Poisson family and the geometric

distribution with mean greater than unity, a similar analysis shows

that the approximation 0.8 is not bad, however.

This may appear to be a minor academic point until one finds that

/ 2
the same ratio of / — is used in the applications of Chapter 20 quite

\l V
independent of any assumption as to the underlying probability

distribution of demand. Also we might point out that even though A is

proportional to o in the population, it does not follow that the

estimates A and a enjoy the same sort of relationship. This would

imply a type of invariance principle such as that enjoyed by maximum

likelihood estimates, and is, in general, not true when the estimates

are not maximum likelihood.

This brings up another matter concerning MAD estimates. Brown

uses error forecasts to estimate A. In fact, for the particular data

21





x ,x ,...,x , the error forecast, e(t) is defined by e(t) = x - x

where x , is taken to be the forecast at time t-1 of the demand at
t-1

time t. Now in our basic model with constant mean, § a, and
t

exponential smoothing used to estimate the mean, we have

t-2 k t-1
X .

s CV I P X +P x
t " 1

k=0 t" 1^ °

and if E[ x ] = a, EL x ] = a. It then follows that e[ e(t) ] =
t -i

2
and, from independence, the variance a (t) of the error forecast

e

becomes

2 2 2t-2 2t-2
a (t) = a + —2L- (1 - fj )a + & a .

e
1 + 3

as can be easily verified. Letting t—^ °° we observe that the limiting

2variance a is given by

? 2 o 2
a *

( 1 + 2 ) a = f a
e 1-1-0 2 - a

;

a formula which is used throughout the text by Brown as though it were

valid for all t. Incidentally, if there is a possibility of trend

present so that the assumption of constant mean is suspect, not even

this asymptotic formula should be used to describe the variance of

forecast error.

22





Granted that t is sufficiently large so that the above asymptotic

variance applies, it would follow that the true MAD for e , say A
,

would be defined by e[ e |] since e[ e ] = 0. Then _if it were

2true that A =
-. _±_ a .as for a normal distribution, it would then

e e)

follow that A * v ~_ 2 o as Brown claims. Then of course

" 2-cv

a = — • —£-li_ A
v

2
e

and if we can estimate A , we could then estimate a by invoking an
e

(unproved) invariance principle obtaining

~ / T> ... 2-ot

* 2 2 e

In other words, if o is the usual maximum likelihood estimate of

o for the present assumption, it follows from the invariance principle

that

e / 7T 2-m

is the maximum likelihood estimate of A . We are on safe grounds,

statistically speaking. Now, a reasonable estimate of A based on
e

tne sample e ,e ,...,e and the fact that e[ e ] = would be the

sample analogue of EL e ], namely, — ,\ | e.|. Brown, however,
t t i*i

i

guided by exponential smoothing, uses instead the estimate
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t_1
k

, t
A » al P e , + P A (0) .

k=0 fc
"k

Thus, apart from the initial condition, A is an exponentially weighted
e

rage of the same variables |e-,
,

|e_ ,..., le |, which makes it about
1 2 t

ave

twice removed from any known distribution theory. If A is used in
e

the above formula for 3 , what can be said about the resulting estimate?

It is definitely not maximum likelihood. Neither is it unbiased nor

likely to be minimum variance. In truth, without some knowledge of

the distribution of A
, even under normality assumptions, very little

can be said about a.

In summary, then, there is a definite need for more distribution

theory before a strong case can be made for exponentially smoothed

estimates of MAD. Brown claims on page 2b6 that, "If one can estimate

the mean absolute deviation of the forecast errors, it is quite simple

to infer the probability that any given multiple of the estimated value

will be exceeded. ' Quite the contrary, however, it is not only difficult

but practically impossible to infer such probability statements without

a knowledge of the distributions involved. For example, even if x is

normal with mean u and variance a^ so that for any < y < 1 we can

compute the value of K such that

Y = P [ x >. n- + K a]
r

it does not follow that when we estimate u. by exponential smoothing, say
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il, and a by \
; -~ A ? that P [x ^ u + K y 2 A ^ is still v.

Yet this seems to be tacitly implied at several points of the book. At

the very least, one should have some simulation results for the

distribution of u + K 1
— A to make the result more plausible, as

v

2

recommended by Asher and Wallace [6]. As they point out, if the usual

Gauss-Markov assumptions are made, MAD or any estimator other than least

squares will come off second best. The results of their study show that

MAD is about 207o efficient compared to minimum variance estimators and

also displayed greater bias.

5. Conclusions and Recommendations

Lest this report be taken as a total indictment of exponential

smoothing as a forecasting technique, let it be said that it is freely

admitted that this idea of weighting the past with ever-decreasing

weights has a great deal of intuitive appeal. And it is granted that the

technique has a computational advantage in requiring less computer

storage than more standard techniques. Carried to its extreme, however,

one could equally well justify using only the current observation for

estimation purposes and ignore the past completely. At least such an estimator

would possess some well known statistical properties.

And this is one of the points we wish to stress. An estimator, to

be valuable, must satisfy various criteria that have been used to judge

such estimators. Exponential smoothing, regardless of its intuitive

appeal, must be able to stand the test alongside other alternatives.

Invariably, this involves some knowledge of tne probability distribution

of estimators. Without such a knowledge, it is difficult to approve
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or disapprove heartily of exponential smoothing. Certainly Brown has

not developed such theory and neither, apparently, has anyone else to

any extent. Lacking such a theory, a recent study by Astrachan and

Sherbrooke [7] involved an empirical test of exponential smoothing.

The results showed that exponential smoothing was not significantly

better than techniques currently being used.

But even if these statistical points were resolved we would have

to object to the way in which the results are presented in Brown's

book for reasons clearly detailed in this report. To this end we

are inclined to agree with the review of the book done for Operations

Research (Vol. 13, No. 2) by Fishraan who says, "In assessing the over-all

contribution of this book to the forecasting literature, I would argue

that it confuses rather than enlightens the well-informed as well as

the mathematically unsophisticated reader." The writer would add that

even the mathematically sophisticated reader may have considerable

difficulty unravelling some of the ambiguity present in various formulae

as well as justifying several claims to mathematical rigor. In any case,

the user of this book should be aware of the asymptotic nature of the

results and apply them with this restriction in mind.

Finally, we have seen that the indiscriminate use of mean absolute

deviation as a measure of statistical variation creates the same

theoretical problems that have caused it to be abandoned by statisticians

these many years. As Asher and Wallace [6] put it, "... one should be

prepared to give up considerable efficiency. ' The difficulties of

obtaining probability distributions for MAD estimators introduced by
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Brown appear to be extremely difficult at best. We re-emphasize the

fact that such estimators, as well as any exponential smoothing

estimators, must be more than a means of arriving at a number, ease

of computation notwithstanding. Perhaps the variance estimation

techniques we have criticized in this report are fruitful. But without

some knowledge of the theory, and tueir probability distributions in

particular, there simply is no way to pass judgment on them.

As for further research, the areas we have been discussing offer

rich opportunities indeed. Since this report has essentially been

devoted to a critique of Brown's book, it is perforce, negative in its

spirit and conclusions. A more positive approach would be to define

alternative procedures which would be as appealing as smoothing for

computing purposes and would admit a statistical theory at the same

time. This is especially needed for statistical variation to replace

MAD as a means of determining safety levels. It is strongly recommended

that further research in this specific direction be undertaken. It may

very well turn out that the smoothing procedures are actually close to

optimal in some sense. But it needs to be established that they are.

It does not appear feasible to develop formulas for exponential

smoothing beyond the quadratic model. The algebra involved is simply

too unwieldy. Perhaps it might be wise to reiterate at this point that

we have no objection to asymptotic results as long as they are clearly

labeled such. Indeed, for higher order polynomials it appears necessary

to resort to such limiting results. Another possible area of research

would tnus be to investigate further the statistical properties of

Brown's asymptotic formulae.
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