

Calhoun: The NPS Institutional Archive DSpace Repository

Some remarks on exponential smoothing

Zehna, Peter W.
Monterey, California. Naval Postgraduate School
https://hdl.handle.net/10945/31879

This publication is a work of the U.S. Government as defined in Title 17, United States Code, Section 101. Copyright protection is not available for this work in the United States.

SOME REMARKS ON EXPONENTIAL SMOOTHING.

by
Peter W. Zehna

TA 7
. U62
no. 72

UNITED STATES NAVAL POSTGRADUATE SCHOOL

SOME REMARKS ON EXPONENTIAL SMOOTHING
by
Peter W. Zehna

December 1966
Technical Report/Research Paper No. 72

SOME REMARKS ON EXPONENTIAL SMOOTHING

 byPeter W. Zehna

//

$$
\begin{aligned}
& 747 \\
& 162 \\
& 1.72
\end{aligned}
$$

NAVAL POSTGRADUATE SCHOOL
Monterey, California

Rear Admiral E. J. O'Donnell, USN
Dr. R. F. Rinehart

Superintendent
Academic Dean

ABSTRACT:

A critical analysis of the technique of exponential smoothing as a demand forecasting tool in inventory theory. Certain standard formulas which have been developed for this technique are shown to be only asymptotically valid and therefore suspect when the number of demand periods is small. Alternate formulas, valid for any number of time periods, are derived for one special case that is commonly treated. Certain statistical weaknesses of this forecasting technique are then analyzed and, in particular, the use of mean absolute deviation to estimate variability is criticized.

This task was supported by: Naval Supply Systems Command, Code 13

Prepared by: P. W. Zehna

Approved by:
Released by:
J. R. Borsting
C. E. Menneken

Chairman, Department of
Operations Analysis
Dean of
Research Administration

[^0]
1. Introduction

The term "exponential smoothing" seems to have been coined for the first time by R. G. Brown [1] in 195y for a particular time series forecasting technique (or a statistical estimation technique, depending on one's paint of view.) Basically, the technique involves weighting each bit of past history with geometrically decreasing weights, less and less weight being given to the older part of the history. Certainly such a procedure has a great deal of intuitive appeal and, moreover, it has been shown that exponential smoothing entails less computer storage than some of the classical techniques such as forecasting by a moving average. These and other advantages are well documented in the book [4] on smoothing by Brown, a book almost entirely devoted to the exponential smoothing technique. Since an inventory system, particularly under a periodic review model, so often entails basing decisions for the future on past demana history, forecasting techniques are of considerable interest to the inventory manager.

It is quite evident that exponential smoothing has been widely adopted by Naval Supply Systems Command as a basic forecasting technique. A review of almost any document, such as various ALRAND reports and PAR documents which involve forecasting or estimation makes it quite clear that this is the case. And, since the book [4] by Brown is practically a sole source of information on the subject, it is not surprising to find said book extensively referenced throughout such documents. The writer has not been able to find any other text materials in which anything beyond a cursory treatment of exponential smoothing is
given. And yet this textbook by Brown, Chapter 9 in particular, is replete with errors of both a typographical and a conceptual nature. Some added difficulty is created by the use of notation which is not consistent with the meaning usually given such symbols in related scientific literature. For example, the notation $\hat{a}, \hat{b}, \hat{c}$, does not always denote estimates of the corresponding parameters a, b, c as they are normally is used. In other cases, the same symbol has been used ambiguously for two different quantities which certainly leads to confusion.

One of the biggest indictments of the material presented in Chapter 9 of Brown's book is the fact that his so-called Fundamental Theorem, which hardly qualifies a theorem to begin with, is only an asymptotic (with time) result but is presented, used and discussed in such a way as to lead the reader to believe otherwise. Indeed, since the entire book rests basically on this Fundamental Theorem, it is not surprising that nearly every result in the book is an asymptotic result. This includes claims for statistical unbiasedness which is weak enough in itself without holding only asymptotically. Yet, except for an occasional and casual use of the phrase, "after the initial transient becones negligible," the reader is never made aware of this fact.

Another fundamental criticism from a statistical point of view is Brown's constant use of mean absolute deviation (MAD) to estimate statistical variation. For the futility of using MAD to account for variability has been well documented in the statistical literature for
years. Its use by Brown seems to be justified mainly, and not surprisingly, because of its amenability to the exponential smoothing technique. Out of curiosity, the writer did a quick survey of the recent literature on the subject of variability and has been unable to find any significant result that would change one's attitude toward MAD. And yet, the disadvantages associated with this measure of variability is not mentioned once in Brown's book. But there is no hesitation in mentioning (p. 282) the computational disadvantage in using the standard deviation as measure of variability. And of course computational convenience is but one of a list of criteria to be considered in selecting a model and it is a real disservice to ignore other, perhaps even more important, criteria.

The purpose of this report, then, is to clarify some of the results given in Brown's book and to emphasize, much more strongly than does the author himself, the assumptions, tacit and otherwise, that yield these results. In this way, it is hoped that the reader will be more aware of the restrictive nature of some of the formulas derived in Brown's book and will thereby exercise some caution in their application. For a special case where Brown's formulas are only asymptotically (in time) valid, alternative forms are presented which are valid for finite values of time parameters.

2. Initial Conditions

The first matter to be discussed in this report concerns the very definition of exponential smoothing. In the first place, Brown seems to be inconsistent in the definition employed in his early papers
[1] and [2], and the one adopted later in his textbook [4]. In the former, single exponential smoothing of the sequence $x_{0}, x_{1}, x_{2}, \ldots, x_{t}$ is defined by,

$$
\bar{x}_{t}=\alpha_{j=0}^{t-1}(1-\alpha)^{j} x_{t-j}+\alpha(1-\alpha)^{t} x_{0}
$$

which may as well be written

$$
\bar{x}_{t}=\approx_{j=0}^{t}(1-\alpha)^{j} x_{t-j}
$$

since it is identicaliy the same. (The parameter α is a number in the interval [0, 17 , called the smoothing constant.) This is equation (3) page 675 of [2]. Yet, on page 101 of [4] we find the symbol $S_{t}(x)$ used to denote the same quantity and this time is defined to be,

The difference, of course, is in the coefficient of $(1-\alpha)^{t}$ in both expressions or, viewed another way, the difference lies in the weight to be given the observation x_{0}. In any case, both formulas are claimed to be derived from the basic recursion relation,

$$
S_{t}(x)=\gamma x_{t}+(1-\alpha) S_{t-1}(x),
$$

presumably valid for $t=1,2,3, \ldots$. But successive substitution in this recursion relation only yields

$$
S_{t}(x)=\alpha \sum_{j=0}^{t-1}(1-\alpha)^{j} x_{t-j}+(1-\alpha)^{t} S_{0}(x) .
$$

Clearly, then, the question of compatibility of these two forms of the definition of the exponential smoothing operator depends upon how one defines the initial condition $S_{0}(x)$. If the first formula is to be valid then we must have $S_{0}(x)=\alpha x_{0}$ while if the textbook form is used then it must be the case that $S_{0}(x)=x_{0}$. Since Brown is not explicit on this point we can only postulate what was intended. In either case, the resulting definition depends somewhat on how x_{0} is treated since in one case x_{0} is given weight α initially and unit weight in the other case. In the first case, given in Brown's paper, in viewing exponential smoothing as a variation of averaging so that the result is a weighted sum of the observations, then the sum of the weights is not unity which is awkward statistically speaking.

Of course, how one defines the initial condition is of little consequence when only asymptotic results are considered since the effect of the initial condition eventually becomes negligible in either of the above cases. And, for this reason, the inconsistency in defining $\mathrm{S}_{0}(\mathrm{x})$ (actually the utter lack of any explicit mention of same) never appears to be a problem because, as we have said, Brown's results are, by and large, only asymptotically valid hence applicable only to a steady state condition. Yet, the point is more than merely academic. The formula is a result of a recursion relation and, to apply such a relation in a model requires an initial condition as does any application of a mathematical recursion. Moreover, statistical properties, notably
unbiasedness, definitely depend upon how one treats the initial condition. Finally, there are many realistic situations in which there is simply not enougi past history to justify the application of an asymptotic result in which case the initial condition becomes a very important factor and can considerably influence the consequences.

Several points of view regarding the meaning to be attached to x_{0} in the sequence $x_{t}, t=0,1,2, \ldots$, can be justified. If x_{t} represents the demand occurring in the $t^{\text {th }}$ time period of an inventory model, then it is quite natural to define $x_{0} \equiv 0$ since initially, that is before we begin operating the system, there is no demand. In that case, it does not matter which of the above forms we use for $S_{0}(x)$ since, in either case we obtain $S_{0}(x) \equiv 0$ also. But then we may as well write

$$
S_{t}(x)=x_{j=0}^{t-1}(1-\alpha)^{j} x_{t-j}
$$

in which case, writing p for $1-\gamma$, the sum of the weights is

$$
\alpha{\underset{j=0}{t-1} r^{j}=1-j^{t}, ~}_{j=0}
$$

which is not unity. One of the consequences of this result is that if we are observing a process with constant mean then the smoothing operator $S_{t}(x)$ is not unbiased as is often claimed in such circumstances. This is precisely one of the problems encountered by Bessler and the writer
[8] in attempting to apply exponential smoothing to a dynamic inventory model originally developed by Vassian in 1955. This led them to define a modified version of smoothing which they call finite exponential smoothing. Denoting this modification by $\widetilde{S}_{t}(x)$, it is defined in [8] by

$$
\tilde{s}_{t}(x)=\alpha_{t} \sum_{j=0}^{t} \beta^{j} x_{t-j}
$$

where

$$
\alpha_{t}=\frac{\alpha}{1-p^{t}}
$$

With the coefficients thus normalized, the sum of the corresponding weights is unity as desired. Further properties of this modified version of smoothing and some of its applications may be found in [8].

Another point of view that might be taken regarding the initial condition applies when the assumption in the model is that $x_{t}=z_{t}+e e_{t}$ where z_{t} is a deterministic function of t and e_{t} is a random variable with mean zero and constant variance σ^{2}. In that case, it is natural to suppose that $x_{0}=\xi_{0}+e_{0}$ to be consistent with the rest of the model. Wiether or not such an assumption is suitable depends upon further considerations in the model. For example, suppose it is assumed that $\dot{G}_{t} \equiv a$, where $a \underset{F}{ } 0$. In that case, $S_{t}(x)$ is unbiased if we use the version $S_{0}(x)=x_{0}$ but is not unbiased if we use $S_{0}(x)=\alpha x_{0}$ instead.

In many of the applications which Brown discusses in his book 4., he speaks of x_{0} as representing some initial -- any initial .estimate of, say demand, up to the time the process is to be observed. In some cases, such an estimate may be sheer judgment, or rather guess, as to what the, say constant mean demand will be. In other cases, it may be obtained from the manner in which it is hoped that the process will behave. In still other cases, x_{0} may be a number which depends upon some related process whose behavior has been previously observed. In any case we are then considering x_{0} as being an estimate from a separate distribution, one not necessarily related to the assumption $x_{t}=\sum_{t}+e_{t}$. Then $S_{t}(x)$ is or is not unbiased depending upon both the distribution that does represent x_{0} as well as which form of $S_{0}(x)$ we use. For example, if $\xi_{t}=$ a for $t=1,2, \ldots$ then

$$
E\left[S_{t}(x)\right]=a-a \beta^{t}+p^{t} E\left[x_{0}\right]
$$

if we take $S_{0}(x)=x_{0}$ while

$$
\left.E_{[}^{[} S_{t}(x)\right]=a-a \beta^{t}+\alpha \beta^{t} E\left[x_{0}\right]
$$

if we take $S_{0}(x)=\alpha x_{0}$. In either case, whether or not $E\left[S_{t}(x)\right] \equiv a$ depends upon $E\left[x_{0}\right]$ and certainly in general it will be the case that $\left.E_{-}^{\top} S_{t}(x)\right] \not \equiv$ a.

3. Fundamental Theorem

As indicated earlier, most of the mathematics of exponential smoothing is summarized in what Brown calls his Fundamental Theorem of Exponential Smoothing, the statement and "proof" of which is given on page 133 of [4]. Using the model $x_{t}=\xi_{t}+e_{t}$ where, in general,

$$
\xi_{t}=a_{0}+a_{1} t+\frac{a^{2}}{2} t^{2}+\ldots+\frac{a n}{n!} t^{n} \text { and }\left\{e_{t}\right\}^{n}{ }_{t=0}^{n}
$$

represent independent random variables, identically distributed with zero means and constant variance σ^{2}, Brown asserts that his fundamental theorem 'proves that it is possible to estimate the $n+1$ coefficients in an $n^{\text {th }}$ order polynomial model by linear combinations of the first $(n+1)$ orders of exponential smoothing." The general $k^{\text {th }}$-order smoothing operator is defined inductively by

$$
S_{t}^{[k\rceil}(x)=\gamma S_{t}^{[k-1]}(x)+(1-\geqslant) S_{t-1}^{[k]}(x) \text { for } t=1,2,3, \ldots
$$

In the first place, the fundamental theorem is not really a theorem at all but simply an observation that the $p^{\text {th }}$-order smoothing operator can be written explicitly in terms of the coefficients of the model. But worse, what is stated as the fundamental theorem is simply not true. Thus, even for $p=l$ it is just not true that

$$
S_{t}(x)=\sum_{k=0}^{n}(-1)^{k} \frac{x_{t}^{(k)}}{k!} \propto \sum_{j=0}^{\infty} j^{k} \beta^{j}
$$

as asserted by the theorem. Later in this section, we will derive the correct expression for $S_{t}(x)$ and show that what is given here is an approximation.

Secondly, even if one were to call the result a theorem in a broad sense, the proof that is given is not a proof of the statement of the theorem at all. Indeed, the opening line of the proof on page 133 asks the reader to "Think of the infinite sequence of observations, \ldots, x_{t} for $t=-\infty, \ldots,-1,0,1, \ldots, m$." But one is not given an infinite sequence of observations. In fact, all that is given for any application are the observations $x_{0}, x_{1}, x_{2}, \ldots, x_{t}$. Giving the author the benefit of the doubt, however, let us suppose that the 'extra variables, are simply being used as surplus variables to generate a proof. Certainly the observations x_{t+1}, x_{t+2}, \ldots turn out to be redundant for we find, reading further, that a new sequence is introduced by the definition

$$
s_{t}=l_{\alpha \beta}^{0} \quad \text { if } t<0
$$

whereupon it is asserted that

$$
S_{t}(x)=\sum_{j=0}^{\infty} x_{t-j} S_{j}
$$

found by the convolution of $\left\{x_{j}\right\}_{j=-\infty}^{\infty}$ and $\left\{s_{k}\right\}_{k=-\infty}^{\infty}$.

Thus, the effect of defining S_{-1}, S_{-2}, \ldots to be zero is to cancel out the
observations x_{t+1}, x_{t+2}, \ldots in writing the convolution product given in the text. But what remains is, after correcting a misprint on page 133, given by

$$
S_{t}(x)=\alpha{\underset{z}{j=0}}_{\infty}^{Z_{t-j}^{j}}
$$

and this is not the definition of $S_{t}(x)$ although the author certainly uses the same symbol and refers to this as the single exponential smoothing operator.

What possible points of view can be taken to resolve this apparent inconsistency? One approach would be to assume the author intended to define S_{t} by means of

$$
S_{t}=\left\{\begin{array}{l}
\alpha p^{j} \text { if } 0 \leq j<t \\
0 \text { otherwise }
\end{array}\right.
$$

Or, we might assume that the extra variables are all zero, that is, $x_{n} \equiv 0$ if $n<0$. In either case, convolution would then yield the formula
which is consistent with the fact that we will be estimating with observations $x_{0}, x_{1}, \ldots, x_{t}$. Unfortunately, this formula is still not quite the same as that given previously in the text on page 101 where $S_{t}(x)$ is defined. There, the coefficient of x_{0} is given as β^{t} whereas
here in the fundamental theorem, the coefficient of x is $\alpha \operatorname{s}^{t}$ under 0 any of the above versions.

A third criticism is that the theorem does not prove (even if it were valid) that the coefficients in the model can be estimated by linear combinations of $S_{t}^{[1]}(x), S_{t}^{[2]}(x), \ldots, S_{t}^{[n+1]}(x)$ as quoted above. There is still the question of solving the system of equations given by the theorem for the coefficients. The author proceeds to do this for two special cases in the remainder of the chapter. But even so, we are compelled to remark that, of course it is possible to estimate the coefficients this way. Indeed one can use any function of the observations to estimate them. But for any estimates to be meaningful they should satisfy some criteria, at least from a statistical point of view. Are the estimates presented by the author unbiased? We have seen that in general they are not. For the special case $y_{t}=a_{1}+a_{2} t$, the estimates given are certainly not least squares nor, if normality is assumed, maximum likelihood since these estimates are well known and are not the same. One of the few criteria clained to be satisfied and shown by D^{\prime} Esopo [3] is that the estimates, not surprisingly, minimize "exponentially discounted least squares," i.e., minimizes the quantity
at least among polynomial fits. Such a ground rule for deriving estimates is not conventional, nowever, and is tantamount to selecting an estimate by fiat.

It might be instructive to see, in contrast to what appears
in Brown's fundamental theorem, what the precise results are at least for the special case of a linear model. In order to maintain the same notation as Brown we will assume a deterministic model at first so that we suppose $x_{t}=a+b t, t=0,1,2, \ldots$ Brown is not explicit on this point, continually confounding the original random model with the deterministic version whenever it suits his purpose. We will be careful to always make this distinction, however, so that estimation can be discussed in its proper contexts while analytic operations are only performed on deterministic quantities to which they should be restricted. We then have, in Brown's notation, $x_{t}^{(0)}=a+b t$ and (1) $x_{t}=b$. Since two versions of $S_{t}(x)$ exist even in the same context for finite t, we will have to make a choice of definitions. Here we will assume that the definition $S_{0}(x)=x_{0}$ is to be preferred since, then, the sum of the weights will be unity in the version

$$
S_{t}(x)=\beta_{k=0}^{t-1} \beta^{k} x_{t-k}+S_{0}^{t} x_{0}
$$

Also, double smoothing can then be written

$$
S_{t}^{[2]}(x)=\alpha \sum_{k=0}^{t-1} \sum^{k} S_{t-k}(x)+\beta_{S}^{t}(x) .
$$

Here we have made the natural assumption that

$$
S_{0}^{[2]}(x)=S_{0}(x)
$$

In order to derive the finite analogues of Brown's fundamental theorem, it is only necessary to substitute in these formulas and simplify the resulting algebra. The simplification is assisted by a knowledge of finite expansions functions of the basic geometric progression $\sum_{k=0}^{t} j^{k}$. For the record, the first three of these expansions are given below. They, and others, can easily be derived by successively differentiating with respect to the continuous variable $p(0<\rho<1)$ and simplifying the resulting algebra.

(3-1) $\quad \sum_{k=0}^{t} k \beta^{k}=\frac{\beta-(t+1) \beta^{t+1}+t \beta^{t+2}}{\alpha^{2}}$

$$
\sum_{k=0}^{t} k^{2} \beta^{k}=\frac{\beta+\beta^{2}-(t+1)^{2} \beta^{t+1}+\left(2 t^{2}+2 t-1\right) \beta^{t+2}-t^{2} \beta^{t+3}}{\alpha^{3}}
$$

From the above definition and assumptions we then have

$$
\begin{aligned}
S_{t}(x)= & \sum_{k=0}^{t-1} \beta^{k}(a+b(t-k))+a \beta^{t}=\alpha(a+b t) \sum_{k=0}^{t-1} \beta^{k} \\
& -\alpha p \sum_{k=0}^{t-1} k \beta^{k}+a \beta^{t} .
\end{aligned}
$$

After some simplification, we obtain,
(3-2) $\quad S_{t}(x)=x_{t}^{(0)}-b \frac{\beta}{\alpha}+\frac{b}{\alpha} \beta^{t+1}$.

Likewise, substituting in the formula for double smoothing yields,
(3-3)

$$
S_{t}^{[2]}(x)=x_{t}
$$

$$
{ }^{(0)}-2 b \frac{\beta}{\alpha}+2 \frac{b^{\alpha}}{\alpha} \xi^{t+1}+b t \beta^{t+1}
$$

These are the exact formulas for $S_{t}(x)$ and $S_{t}(x)$, valid for all
finite t, and of course they differ from those given by Brown.
It is now apparent how one can derive Brown's results as asymptotic versions of the exact cases. Since $0<\beta<1$, we have $\beta^{t+1} \rightarrow 0$ and $t \rho^{t+1} \rightarrow 0$, as $t \rightarrow \infty$. Then we may say that, for sufficiently large values of t, we may approximate $S_{t}(x)$ and $S_{t}^{[2]}(x)$ by,
(1)

$$
S_{t}(x) \doteq x_{t}^{(0)}-\frac{\beta}{\alpha} x_{t}^{(}
$$

(3-4)

$$
\begin{equation*}
S_{t}^{[2]}(x) \doteq x_{t}^{(0)}-2 \frac{\beta}{\alpha} x_{t}^{(} \tag{1}
\end{equation*}
$$

These are the formulas one would obtain from substituting into the Fundamental Theorem of page 133.

To actually apply these results and evaluate them statistically, we would want to consider the model $x_{t}=\bar{亏}_{t}+\epsilon_{t}$ where $\xi_{t}=a+b t$ and,

After some simplification, we obtain,

$$
\begin{equation*}
S_{t}(x)=x_{t}^{(0)}-b \frac{\beta}{\alpha}+\frac{b}{\alpha} \beta^{t+1} . \tag{3-2}
\end{equation*}
$$

Likewise, substituting in the formula for double smoothing yields,

$$
\begin{equation*}
S_{t}^{[2]}(x)=x_{t}^{(0)}-2 b \frac{\beta}{\alpha}+2 \frac{b}{\alpha} e^{t+1}+b t \beta^{t+1} \tag{3-3}
\end{equation*}
$$

\square
These are the exact formulas for $S_{t}(x)$ and $S_{t}(x)$, valid for all finite t, and of course they differ from those given by Brown.

It is now apparent how one can derive Brown's results as asymptotic versions of the exact cases. Since $0<\beta<1$, we have $\beta^{t+1} \rightarrow 0$ and $t p^{t+1} \rightarrow 0$, as $t \rightarrow \infty$. Then we may say that, for sufficiently large values of t, we may approximate $S_{t}(x)$ and $S_{t}^{[2]}(x)$ by,

$$
\begin{equation*}
S_{t}(x) \doteq x_{t}^{(0)}-\frac{\beta}{\alpha} x_{t}^{(1)} \tag{3-4}
\end{equation*}
$$

$$
\begin{equation*}
S_{t}^{[2]}(x) \doteq x_{t}^{(0)}-2 \frac{\beta}{\alpha} x_{t}^{(} \tag{1}
\end{equation*}
$$

These are the formulas one would obtain from substituting into the Fundamental Theorem of page 133.

To actually apply these results and evaluate them statistically, we would want to consider the model $x_{t}=\bar{s}_{t}+\epsilon_{t}$ where $\Xi_{t}=a+b t$ and,
as before, ϵ_{t} has mean zero and variance σ^{2}. Brown would have us use as estimates based on the data $x_{0}, x_{1}, \ldots, x_{t}$, the quantities,

$\hat{x}_{t}^{(1)}=\frac{\alpha}{p}\left[S_{t}(x)-S_{t}^{[2]}(x)\right]$

These are easily obtained by solving (3-4) as though they were equations and then replacing $x_{t}^{(0)}$ and $x_{t}^{(1)}$ by the symbols $\hat{x}_{t}^{(0)}$ and $\hat{x}_{t}^{(1)}$ since they involve or are themselves unknown parameters. Whatever means they are arrived at, certainly they are properly called estimates since they are functions of the data $x_{0}, x_{1}, \ldots, x_{t}$. They are not, however, unbiased as Brown claims if one uses, as one should, the precise formulas for $S_{t}(x)$ and $S_{t}^{[2]}(x)$.

To see that the estimates are biased, we notice first that

$$
E\left[\hat{x}_{t}^{(0)}\right]=2 E\left[S_{t}(x)\right]-E\left[S_{t}^{[2]}(x)\right]
$$

But,

$$
S_{t}(x)=\prod_{k=0}^{t-1} \sum_{t-k}^{k}+\beta^{t} x_{0}
$$

and, since $E\left[x_{t-k}\right]=a+b(t-k)$, we have,
which is the same expression we dealt with in the deterministic model (the $S_{t}(x)$ of that model). From that result, we have

$$
E\left[S_{t}(x)\right]=a+b t-b \frac{p}{\alpha}+\frac{b}{\alpha} \hat{p}^{t+1} .
$$

Similarly,

$$
E\left[S_{t}^{[2]}(x)\right]=a+b t-2 b \frac{\beta}{\alpha}+2 \frac{b}{\alpha} \beta^{t+1}+b t \beta^{t+1}
$$

Putting these facts together we thus obtain,

$$
\begin{equation*}
E\left[\hat{x}_{t}^{(0)}\right]=u+b t-b t \beta^{t+1} \tag{3-6}
\end{equation*}
$$

$$
E\left[\hat{x}_{t}^{(1)}\right]=b-b \beta^{t}-\alpha b t \beta^{t}
$$

In both cases, the estimates are biased downward, with a bias that is a function of the "trend" b. Since b is unknown, the bias may be scrious depending of course on the magnitude of b. The bias factors do converge to zero as time increases beyond bounds however, and we may say that the estimators Brown givesare thereby asymptotically unbiased.

> For the case $n=2$, that is for a quadratic model $\sim_{t}=a_{0}+a_{1} t+\frac{a_{2}}{2} t^{2}$, similar conclusions can be reached. The algebra involved is somewhat burdensome, however, and will not be repeated here. Suffice it to say that the exact formulas for
$S_{t}(x), S_{t}(x)$ and $S_{t} \quad(x)$ are such that for t sufficiently large, Brown's versions of these expressions hold. Again, if these approximations are treated as equations, one can solve the resulting system for the derivatives $x_{t}^{(0)}, x_{t}^{(1)}$ and $x_{t}^{(2)}$ to obtain Brown's results. When treated as estimates they are not, of course, unbiased any more than the linear case. Also, the unsuspecting reader should be warned that the results, published on pages 140 through 144 should be read and interpreted with caution even after correcting some obvious misprints. Thus, on page 140 for example, $\hat{a}_{0}(t)$ and $\hat{a}_{1}(t)$ are not, as one might presume from the model, estimates of a_{0} and a_{1} but rather estimates of $x^{(0)}(t)=a_{0}+a_{1} t+\frac{a_{2}}{2} t^{2}$ and $x^{(1)}(t)=a_{1}+a_{2} t$, respectively. Happily, of course, $\hat{a}_{2}(t)$ does happen to be an estimate of a_{2} since, for tiris case, $x^{(2)}(t)=a_{2}$.

No attempt was made to examine the results for higher order polynomials. Based on the quadratic model, it is clear that the algebra involved would be too unwieldy to make the task practical. Perhaps this is as good a justification for resorting to asymptotic results as any. And it should be stated that there is no serious objection to deriving asymptotic results and considering estimators with only asymptotic properties. The objection is to the inordinate use of the same notation for the finite case and the asymptotic case in formula after formula. Together with a complete lack of any discussion of the difference, it leads the unsuspecting reader to believe that the results are stronger than they really are.

4. Mean Absolute Deviation

In inventory applications of random demand models, safety levels are often determined in terms of some measure of variability, usually the common standard deviation of the demand distribution. As was mentioned in the introduction, Brown prefers to use mean absolute deviation, or MAD for short. This in spite of the statistical grounds for not using this particular measure. As he points out (page 275) the mean absolute deviation is proportional to the standard deviation in any probability distribution. Both are, after all, functions of the parameters of the distribution. But finding an appropriate estimate for MAD and deriving the corresponding distribution theory to guarantee the required probability for safety levels is quite another matter. Brown has not done this and, to make matters worse, never distinguishes between a population or true MAD and an estimate thereof, even to the point of using the same symbol and name for them.

In the first place, the definition adopted by Brown for MAD, denoted Δ, reduces to $\Delta=E[|x-\mu|]$ where x is any random variable having mean μ. As he himself points out on page 283 it would be better to define Δ as $E[|x-m|]$ where m is any median of the distribution of x. This is because $\left.E_{[}^{-}|x-c|\right]$ is minimized by choosing $c=m$. Yet he ignores this criterion and uses μ instead of m, justifying his choice on tae basis that forecasts estimate means rather than medians. But if one can justify computing Δ instead of σ because Δ is proportional to σ, surely the same argument can be used to estimate minstead of μ.

This is hardly a convincing reason but we will pass this point and use Brown's definition. Of course, in a symmetric distribution $\mu=m$ as he brings out. But it is precisely in the applications to random demand that skewed distributions such as the Poisson and Negative Binomial families arise in practice. This is especially pertinent to standard assumptions in Naval supply systems.

Brown quite aptly shows that the ratio of Δ to σ is approximately O. 8 for the Normal, Exponential, Uniform and Triangular families of probability distributions. Yet, except for the normal family, the interest must be primarily academic so far as inventory applications are concerned. It would be far more interesting, and quite instructive, to see what the situation is for other distributions. In particular, an examination of the Poisson family reveals that 0.8 can be a very poor approximation. In the roisson mass function

$$
p(x ; \lambda)=e^{-\lambda} \frac{\lambda^{x}}{x!}
$$

$\mathrm{x}=0,1,2, \ldots$ with $0<\lambda<1$,
we have

$$
\begin{aligned}
& i=\sum_{x=0}^{\infty}|x-\lambda| \mathrm{p}(\mathrm{x} ; \lambda) \\
& =\lambda e^{-\lambda}+\ddot{i}_{x=1}^{\infty}(x-\lambda) e^{-\lambda} \frac{\lambda^{x}}{x!}=\lambda e^{-\lambda}+\sum_{x=1}^{\infty} x e^{-\lambda} \lambda_{x}^{x}-\lambda \underset{x=1}{\infty} e^{-\lambda} \frac{\lambda^{x}}{x!} \\
& =\lambda e^{-\lambda}+\lambda-\lambda\left(1-e^{-\lambda}\right)=2 \lambda e^{-\lambda} .
\end{aligned}
$$

Since $\sigma=\sqrt{\lambda}$, we have $\frac{\Delta}{\sigma}=2 \sqrt{\lambda} \mathrm{e}^{-\lambda}$. Values of this ratio are shown for a variety of values of λ in Table 1 .

λ	0.01	0.05	0.10	0.25	0.50	0.75	0.90	0.99
$\frac{\Delta}{\sigma}$	0.198	0.425	0.572	0.779	0.858	0.818	0.771	0.739

TABLE 1. Ratio $\frac{\Delta}{\sigma}$ for Poisson family

As is evident from the table, the approximation 0.8 is extremely poor for slow moving items where the Poisson with small mean λ is a typical assumption. For values of $\lambda>1$ in the Poisson family and the geometric distribution with mean greater than unity, a similar analysis shows that the approximation 0.3 is not bad, however.

This may appear to be a minor academic point until one finds that the same ratio of $\sqrt{\frac{2}{11}}$ is used in the applications of Chapter 20 quite independent of any assumption as to the underlying probability distribution of demand. Also we might point out that even though Δ is proportional to σ in the population, it does not follow that the estimates $\tilde{\Delta}$ and $\tilde{\sigma}$ enjoy the same sort of relationship. This would imply a type of invariance principle such as that enjoyed by maximum likelihood estimates, and is, in general, not true when the estimates are not maximum likelihood.

This brings up another matter concerning MAD estimates. Brown uses error forecasts to estimate Δ. In fact, for the particular data
$x_{0}, x_{1}, \ldots, x_{t}$, the error forecast, $e(t)$ is defined by $e(t)=x_{t} \cdot \hat{x}_{t-1}$
where \hat{x}_{t-1} is taken to be the forecast at time $t-1$ of the demand at time t. Now in our basic model with constant mean, $\xi_{t}=a$, and exponential smoothing used to estimate the mean, we have

$$
\hat{x}_{t-1}=\alpha \sum_{k=0}^{t-2} \nabla_{t-1-k}^{k}+\beta^{t-1} x_{0}
$$

and if $E\left[x_{0}\right\rceil=a, E\left[\hat{x}_{t-1}\right]=a$. It then follows that $E[e(t)]=0$ and, from independence, the variance $\sigma_{e}^{2}(t)$ of the error forecast becomes

$$
\sigma_{\varepsilon}^{2}(t)=\sigma^{2}+\frac{\alpha}{1+\beta}\left(1-\beta^{2 t-2}\right) \sigma^{2}+\beta^{2 t-2} \sigma^{2} .
$$

as can be easily verified. Letting $t \rightarrow \infty$ we observe that the limiting variance $\sigma_{\mathrm{e}}{ }^{2}$ is given by

$$
\sigma_{e}^{2}=\left(1+\frac{\alpha}{1+\beta}\right) \sigma^{2}=\frac{2}{2-\alpha} \sigma^{2},
$$

a formula which is used throughout the text by Brown as though it were valid for all t. Incidentally, if there is a possibility of trend present so that the assumption of constant mean is suspect, not even tilis asymptotic formula should be used to describe the variance of forecast error.

Granted that t is sufficiently large so that the above asymptotic Viriance applies, it would follow that the true MAD for e_{t}, say Δ_{e}, would be defined by $E\left[e_{t} \mid\right]$ since $E\left[e_{t}\right]=0$. Then if it were true that $\Delta_{e}=\frac{2}{} \sigma_{e}$ as for a normal distribution, it would then follow that $\Delta_{e}=\frac{2}{\pi} \frac{2}{2-\alpha} \sigma$ as Brown claims. Then of course

$$
\sigma=\frac{\pi}{2} \frac{2-\alpha}{2} \Delta_{e}
$$

and if we can estimate Δ_{e}, we could then estimate σ by invoking an (unproved) invariance principle obtaining

$$
\tilde{\sigma}=\frac{\overline{11}}{2}, \frac{\overline{2-\alpha}}{2} \tilde{v}_{\mathrm{e}}
$$

In other words, if $\hat{\sigma}$ is the usual maximum likelihood estimate of o for the present assumption, it follows from the invariance principle that

$$
\hat{J}_{\mathrm{e}}=\frac{2}{-7} \frac{2}{2-\gamma} \hat{\sigma}
$$

is the maximum likelihood estimate of Δ_{e}. We are on safe grounds, statistically speaking. Now, a reasonable estimate of $\Delta \mathrm{e}$ based on the sample $e_{1}, e_{2}, \ldots, e_{t}$ and the fact that $E\left[e_{t}\right]=0$ would be the sample analogue of $E\left[\left|e_{t}\right|\right]$, namely, $\frac{1}{t}{\underset{i}{t}}_{t}^{t}\left|e_{i}\right|$. Brown, however, guided by exponential smoothing, uses instead the estimate

$$
\tilde{j}_{e}=\alpha_{k=0}^{t-1} \hat{\beta}^{k}\left|e_{t-k}\right|+\beta^{t} \Delta(0)
$$

Thus, apart from the initial condition, $\tilde{\Delta}_{e}$ is an exponentially weighted average of the same variables $\left|e_{1}\right|,\left|e_{2}\right|, \ldots,\left|e_{t}\right|$, which makes it about twice removed from any known distribution theory. If $\tilde{\Delta}_{e}$ is used in the above formula for \widetilde{a}, what can be said about the resulting estimate? It is definitely not maximum likelihood. Neither is it unbiased nor likely to be minimun variance. In truth, without some knowledge of the distribution of $\tilde{\dot{j}}_{\mathrm{e}}$, even under normality assumptions, very little can be said about $\tilde{\sigma}$.

In summary, then, there is a definite need for more distribution theory before a strong case can be made for exponentially smoothed estimates of MAD. Brown claims on page 286 that, "If one can estimate the mean absolute deviation of the forecast errors, it is quite simple to infer the probability that any given multiple of the estimated value will be exceeded. Quite the contrary, however, it is not only difficult hut practically impossible to infer such probability statements without a knowledge of the distributions involved. For example, even if x is normal with mean μ and variance σ^{2} so that for any $0<\gamma<1$ we can compute the value of K such that

$$
\gamma=P_{r}[x>\mu+K \sigma]
$$

it does not follow that when we estimate μ by exponential smoothing, say
$\tilde{\mu}$, and σ by $\sqrt{\frac{T r}{2}} \tilde{\Delta}$, that $P_{r}\left[x \geq \tilde{\mu}+k \sqrt{\frac{11}{2}} \tilde{\Delta}\right]$ is still γ. Yet this seems to be tacitly implied at several points of the book. At the very least, one should have some simulation results for the distribution of $\tilde{u}+k \sqrt{\frac{\pi}{2}} \tilde{\Delta}$ to make the result more plausible, as recommended by Asher and Wallace [6]. As they point out, if the usual Gauss-Markov assumptions are made, MAD or any estimator other than least squares will come off second best. The results of their study show that MAD is about 20% efficient compared to minimum variance estimators and also displayed greater bias.

5. Conclusions and Recommendations

Lest this report be taken as a total indictment of exponential smoothing as a forecasting technique, let it be said that it is freely admitted that this idea of weighting the past with ever-decreasing weights has a great deal of intuitive appeal. And it is granted that the technique has a computational advantage in requiring less computer storage than more standard techniques. Carried to its extreme, however, one could equally well justify using only the current observation for estimation purposes and ignore the past completely. At least such an estimator would possess some well known statistical properties.

And this is one of the points we wish to stress. An estimator, to be valuable, must satisfy various criteria that have been used to judge such estimators. Exponential smoothing, regardless of its intuitive appeal, must be able to stand the test alongside other alternatives. Invariably, this involves some knowledge of the probability distribution of estimators. Without such a knowledge, it is difficult to approve
or disapprove heartily of exponential smoothing. Certainly Brown has not developed such theory and neither, apparently, has anyone else to any extent. Lacking such a theory, a recent study by Astrachan and Sherbrooke [7] involved an empirical test of exponential smoothing. The results showed that exponential smoothing was not significantly better than techniques currently being used.

But even if these statistical points were resolved we would have to object to the way in which the results are presented in Brown's book for reasons clearly detailed in this report. To this end we are inclined to agree with the review of the book done for Operations Research (Vol. 13, No. 2) by Fishman who says, "In assessing the over-all contribution of this book to the forecasting literature, I would argue that it confuses rather than enlightens the well-informed as well as the mathematically unsophisticated reader." The writer would add that even the mathematically sophisticated reader may have considerable difficulty unravelling some of the ambiguity present in various formulae as well as justifying several claims to mathematical rigor. In any case, the user of this book should be aware of the asymptotic nature of the results and apply them with this restriction in mind.

Finally, we have seen that the indiscriminate use of mean absolute deviation as a measure of statistical variation creates the same theoretical problems that have caused it to be abandoned by statisticians these many years. As Asher and Wallace [6] put it, "... one should be prepared to give up considerable efficiency." The difficulties of obtaining probability distributions for MAD estimators introduced by

Brown appear to be extremely difficult at best. We re-emphasize the fact that such estimators, as well as any exponential smoothing estimators, must be more than a means of arriving at a number, ease of computation notwithstanding. Perhaps the variance estimation techniques we have criticized in this report are fruitful. But without some knowledge of the theory, and tieir probability distributions in particular, there simply is no way to pass judgment on them.

As for further research, the areas we have been discussing offer rich opportunities indeed. Since this report has essentially been devoted to a critique of Brown's book, it is perforce, negative in its spirit and conclusions. A more positive approach would be to define alternative procedures which would be as appealing as smoothing for computing purposes and would admit a statistical theory at the same time. This is especially needed for statistical variation to replace MAD as a means of determining safety levels. It is strongly recommended that further research in this specific direction be undertaken. It may very well turn out that the smoothing procedures are actually close to optimal in some sense. But it needs to be established that they are.

It does not appear feasible to develop formulas for exponential smoothing beyond the quadratic model. The algebra involved is simply too unwieldy. Perhaps it might be wise to reiterate at this point that we have no objection to asymptotic results as long as they are clearly labeled such. Indeed, for higher order polynomials it appears necessary to resort to such limiting results. Another possible area of research would thus be to investigate further the statistical properties of Brown's asymptotic formulae.

BIBLIOGRA PHY

[1.] Brown, Robert G., "Less Risk in Inventory Estimates," Harvard Business Review, July-August 1959, pp. 104-16.
[2.7 Brown, Robert G. and R. F. Meyer, "The Fundamental Theorem of Exponential Smoothing," Operations Research, Vol. 9, No. 5, September-October 1961, pp. 673-85.
[3.] D'Esopo, D. A., "A Note on Forecasting by the Exponential Smoothing Operator," Operations Research, Vol. 9, No. 5, September-October 1961, pp. 686-7.
[4.] Brown, Robert G., Smoothing, Forecasting and Prediction of Discrete Time Series, Prentice-Hall, Inc., 1963.
[5.] Dobbie, J. M., "A Simple Proof of a Theorem in Exponential Smoothing," Operations Research, Vol. 11, No. 3, May-June 1963, pp. 303-476.
[6.] Asher, V. G., and T. D Wallace, "A Sampling Study of Minimum Absolute Deviations," Operations Research, Vol. 11, No. 5, September-October 1963, pp. 747-58.

[7. $]$ Astrachan, Max and C. C. Sherbrooke, An Empirical Test of Exponential Smoothing,' RAND Corporation, RM-3938-PR, March 1964.

```
_ S.? Bessler, S. A. and P. W. Zehna, "Servomechanisms, Exponential
    Smoothing, and a Multiechelon Inventory Problem," Decision
    Studies Group, September 1966.
```

lixemants Departanent
Concral Jibroiry
University of California
Berkeley, California 9't720
Locthecu-California Company Centicral Library
Dapt. 77-14, Bldg. .170, Plt. B-1
Buthank, California 91503
Haval Ordance Tont Station
China Lalic, Califormia
Atm: Tcchnical Library
Serials Dept., Iihrary
University of California, San Dicgo Lis Jolla, California 92038

Aircraft Division
Iouglas Aircraft Company, Inc. 3855 Lidlewood Boulcvard
Long Bcach, California 90801
Attn: Technical Library
Librarien
Goverrment Publications Room
University of California
Ios Angeles, California 90024
Librarian
Numerical Analysis Research
University of California
405 Hilgard Avenue
Los Angeles, California 90024
Chief Scientist
Office of Naval Research Branch Office
1030 East Green Street
Pasadena, California 91101
Comanding Officer and Dircctor
U. S. Navy Electronics Lab. (Library)

San Diego, Calisormia 92152

General Dynamics/Convair
P.O. Box 1950

San Dicgo, California 92112
Attn: Engineering Library Mail Zone 6-157

Ryan Acronautical Company
Attn: I'cehnical Information Services
Lindbergh Field
San Diaso, California 92112
General Electric Company
Technical Infomation Centor
P.O. Dratrer QQ

Sante Barinara, California 93102
Library
Boulder Laboratories
National Bureau of Standards
Boulder, Colorado 80302
Government Documents Division University of Colorado Iibraries
Boulder, Colorado 80304
The Library
United Aircraft Corporation
400 Main Street
East. Hartford, Connecticut 06108
Documents Division
Yale University Library
New Haven, Connecticut 06520
Librarian
Bureau of ITaval Weapons
Washington, D. C. 20360
George Washington University Library 2023 G Street, N. W.
Washington, D. C. 20006
National Burciu of Standards Library
Room 301, Northwest Building
Washington, D. C. 20234

Director'
Naval. Jescarch Lahoratory
Washington, D. C. 20390
At.tn: Cole 202?
University of Chicago Library
Serial ficcords Departanent
Chicarso, Thlinois 60́j’'
Docunents Department
Northwestern Universi.ty Library
Fvanston, Illinois 60201
The Trchnological Institute, Library Northiestern University
Evanston, Illinois 60201
Tibrarian
Purdue University
Lafayette, Indiana 47907
Johns IIpkins University Library
Faltimore
Maryland 21218
Martin Company
Science-Technology Library Mail 398
Baltimore, Maryland 21203
Scientific and Technical Information
Facility
Attn: INASA Representative
P.O. Box 5700

Betherda, Maryland 20014
Documents Office
University of Maryland Library
Collere Park, Naryland 20742
The Johns Hopkins University
Applied Physics Laboratory
Silver Spring, Maryland
Attn: Document Librarian
Librarian
Technical Library, Code 245 L
Building 39/3
Boston I'aval Shi.pyard
Boston, Hassachusetts 02129

Massachusetts Institute or Technology
Serials and Documents
Hayden Iibrary
Cambridçe, Massachusetts 02139
Technical Report Collection
303A, Pierce Hall
Harvard University
Canibridge, Massachusetts 02138
Attil: Mr. John A. Harrison, Librarian
Alumni Memorial Library
Lowell Technological Institute
Lowell, Massachusetts
Librarian
University of Michigan
Ann Arbor, Michigan 48104
Gifts and Exchange Division
Walter Library
University of Minnesota
Minneapolis, Winnesota 55455
Reference Department
John M. Olin Library
Washington University
6600 Millbrook Boulevard
St. Louis, Missouri 63130
Librarian
Forrestal Research Center
Princeton University
Princeton, New Jersey 08540
U. S. Naval Air Turbine Test Station

Attn: Foundational Research Coordinator Trenton, New Jersey 08607

Engineering Library
Plant 25
Gruman Aircraft Engineering Corp. Bethyage, L. I., New York 11714

Librarian
Fordham University
Bronx, New York 10458
U. S. Naval Applied Science Laborator;

Technical Library
Building 291, Code 9832
Naval Base
Brooklyn, New York 11251
lifhrowan
Cornell Aeronautical Laboratory 4455 Cenesee Street
Burfalo, New Yows 142.2 .5
Central Serial Record Dept. Cornell University Library Itheca, New York 14850

Columbia University Iibraries Documents Acquisitions
535 W. 114 Street
Now York, New York 10027
Figineoring Societies Library 345 Fast 4.7.th Street
INew York, New York 10017
Library-Scrials Department Rensselaer Polytechnic Institute Troy, ITCW York lel81

Librarion
Documents Division
Duke University
Drurhem, IForth Carolina 27706
Ohio State University Libraries
Serial Division
1858 Neil Avenue
Coilumus, Ohio 43210
Coynander
Philade? phia Naval Shipyard
Piiladelphia, Pennsylvania 19112
Attn: Librarian, Code 249c
Steara Fngineering Library
Westinghouse Electric Corporation
Lester Franch Postoffice
Pnilisdelphia, Pennsylvania 19113
Hunt Library
Carnezie Institute of Technology
Pittsburgh, Pennsylvania 15213
Docurlents Division
Brow University Librery
Providence, Rhode Island 02912
Central Research Library Oalk Ridge National Laboratory Post Ofice Box X
Oali Ridge, Tennessee 37831

Documents Division
The Library
Texas A \& M University
College Station, Texas 77843
Librarian
LTV Vought Aeronautics Division P.O. Box 5907

Dallas, Texas 75222
Girts and Fichange Section
Periodical.s Department
University of Utah Libraries
Salt Lake City, Utah 84112
Defense Documentation Center (DDC)
Cameron Station
Alexandria, Virginia 22314
Attn: IRS (20 copies)
FOREIGIN COUNTRIES
Engineering Library
Hawker Siddeley Engineering Box 6001
Toronto International Airport
Ontario, Canada
Attn: Mrs. M. Newns, Librarian
Fxchange Section
National Lending Library for
Science and Technology
Boston Spa
Yorkshire, England
The Librarian
Patent Office Library
25 Southarapton Buildings
Chancery Lane
London W. C. 2., England
Librarian
National Inst. of Oceanography
Wormley, Godalming
Surrey, England
Dr. H. Tigerschiold, Director Library
Chalmers University of Technology Gibraltargatan 5
Gothenburg S, Sweden

LIBRARY DISTRIBUTION LIST (CONT'D)

```
Naval Supply Systems Command (Code 13)
Department of the Navy
Wishington, D. C. 20360 (5 copies)
Professor Peter W. Zehna
Department of Operations Analysis
Naval Postgraduate School
Monterey, California 93940 (5 copies)
Professor David Schrady
Department of Operations Analysis
Naval Postgraduate School
Monterey, California 93940 (1 copy)
Professor J. R. Borsting
Department of Operations Analysis
Naval Postgraduate School
Monterey, California 93940 (1 copy)
Navy Fleet Material Support Office
Operations Analysis Department (Code 97)
Mechanicsburg, Pennsylvania 17055 (5 copies)
Navy Aviation Supply Office
Attn: LCDR DeWinter
700 Robbin Avenue
Philadelphia, Pennsylvania (1 copy)
LCDR P. F. McNal1
Headquarters
Naval Supply Systems Command
Washington, D. C. (1 copy)
LCDR J. White
Operations Analysis Department
Navy Fleet Material Support Office
Mechanicsburg, Pennsylvania 17055 (1 copy)
LT J.W. Hatchett
Operations Analysis Department
Navy Fleet Material Support Office
Mechanicsburg, Pennsylvania 17055 (1 copy)
```


Security Classification

DOCUMENT CONTROL DATA•R\&D

(Secuity claeelfication of title, body of ebetrect and indexine mnotation muet be ontered whon the overell report le cleseified)

1. ORIGINATINGACTIVITY (Corporate author)	
U.S. Naval Postgraduate School Monterey, California 93940	2a. REPORT SECURITY CLASSIFICATION
UNCLASSIFIED	

3. REPORT TITLE

SOME REMARKS ON EXPONENTIAL SMOOTHING
4. DESCRIPTIVE NOTES (Type of report and inclupive detes)

Task Progress, August 1966 - October 1966
5. AUTHOR(S) (Laet name, firet name, initial)

Zehna, Peter W.

6. REPORT DATE December 1966	7a. TOTAL NO. OF PAGES 7b. NO. OF REFS 28 8
8. CONTRACT OR GRANT NO.	9a. ORIGINATOR'S REPORT NUMBER(S)
b. PROJECT NO. 14212	TR-72
c. Task No. RDT\&E 015-02-100	9b. OTHER mEPORT NO(S) (Any other numbere thet may be aesitned thit report)
d.	

10. AVAILABILITY/LIMITATION NOTICES

Qualified requesters may obtain copies of this report from DDC.
11. SUPPLEMENTARY NOTES
12. SPONSORING MILITARY ACTIVITY

Naval Supply Systems Command, Code 13
13. ABSTRACT

A critical analysis of the technique of exponential smoothing as a demand forecasting tool in inventory theory. Certain standard formulas which have been developed for this technique are shown to be only asymptotically valid and therefore suspect when the number of demand periods is small. Alternate formulas, valid for any number of time periods, are derived for one special case that is commonly treated. Certain statistical weaknesses of this forecasting technique are then analyzed and, in particular, the use of mean absolute deviation to estimate variability is criticized.

INSTRUCTIONS

1. ORIGINATING ACTIVITY: Enter the name and address of the contractor, subcontractor, grantee, Department of Defense activity or other organization (corporate author) issuing the report.
2a. REPORT SECURTY CLASSIFICATION: Enter the overall security classification of the report. Indicate whether "Restricted Data" is included. Marking is to be in accordance with appropriate security regulations.
$2 b$. GROUP: Automatic downgrading is specified in DoD Directive 5200. 10 and Armed Forces Industrial Manual. Enter the group number. Also, when applicable, show that optional markings have been used for Group 3 and Group 4 as authorized.
2. REPORT TITLE: Enter the complete report title in all capital letters. Titles in all cases should be unclassified. If a meaningful title cannot be selected without classification, show title classification in all capitals in parenthesis immediately following the title.
3. DESCRIPTIVE NOTES: If appropriate, enter the type of report, e.g., interim, progress, summary, annual, or final. Give the inclusive dates when a specific reporting period is covered.
4. AUTHOR(S): Enter the name(s) of author(s) as shown on or in the report. Enter last name, first name, middle initial. If rilitary, show rank and branch of service. The name of the principal aisthor is an absolute minimum requirement.
5. REPORT DATE: Enter the date of the report as day, month, year; or month, year. If more than one date appears on the report, use date of publication.
7a. TOTAL NUMBER OF PAGES: The total page count should follow normal pagination procedures, i. e., enter the number of pages containing information
7b. NUMBER OF REFERENCES: Enter the total number of references cited in the report.
8a. CONTRACT OR GRANT NUMBER: If appropriate, enter the applicable number of the contract or grant under which the report was written.
$8 b, 8 c, 8 \& 8 d$. PROJECT NUMBER: Enter the appropriate military department identification, such as project number, subproject number, system numbers, task number, etc.
9a. ORIGINATOR'S REPORT NUMBER(S): Enter the official report number by which the document will be identified and controlled by the originating activity. This number must be unique to this report.
9b. OTHER REPORT NUMBER(S): If the report has been assigned any other report numbers (either by the originator or by the sponsor), also enter this number(s).
6. AVALLABILITY/LIMITATION NOTICES: Enter any limitations on further dissemination of the report, other than those
imposed by security classification, using standard statements such as:
(1) "Qualified requesters may obtain copies of this report from DDC."
(2) "Foreign announcement and dissemination of this report by DDC is not authorized"
(3) "U. S. Government agencies may obtain copies of this report directly from DDC. Other qualified DDC users shall request through
""
(4) "U. S. military agencies may obtain copies of this report directly from DDC. Other qualified users shall request through
(5) "All distribution of this report is controlled. Qualified DDC users shall request through
\qquad
If the report has been furnished to the Office of Technical Services, Department of Commerce, for sale to the public, indicate this fact and enter the price, if known.
7. SUPPLEMENTARY NOTES: Use for additional explanatory notes.
8. SPONSORING MILITARY ACTIVITY: Enter the name of the departmental project office or laboratory sponsoring (pay ing $f o r$) the research and development. Include address.
9. ABSTRACT: Enter an abstract giving a brief and factual summary of the document indicative of the report, even though it may also appear elsewhere in the body of the technical report. If additional space is required, a continuation sheet shall be attached.

It is highly desirable that the abstract of classified reports be unclassified. Each paragraph of the abstract shall end with an indication of the military security classification of the information in the paragraph, represented as (TS), (S), (C), of (U).

There is no limitation on the length of the abstract. However, the suggested length is from 150 to 225 words.
14. KEY WORDS: Key words are technically meaningful terms or short phrases that characterize a report and may be used as index entries for cataloging the report. Key words must be selected so that no security classification is required. Identifiers, such as equipment model designation, trade name, military project code name, geographic location, may be used as key words but will be followed by an indication of technical context. The assignment of links, rales, and weights is optional.

[^0]: Naval Postgraduate School Technical Report/Research Paper No. 72 December 1966

