Empirical Mode Decomposition for Change Detection and Mine Detection

Chu, Peter
Monterey, California. Naval Postgraduate School

http://hdl.handle.net/10945/36387
Empirical Mode Decomposition for Change Detection and Mine Detection

Peter Chu
Naval Postgraduate School
Monterey, California
5/18/2010
Airborne Laser Mine Detection System (ALMDS)
L3-Klein 5500 Sidescan Sonar
Image → detecting mine
How can we detect mine from image such as sidescan sonar?
Efficient Method ➔

Empirical Mode Decomposition

(Huang et al., 1998)
One Dimensional EMD →

Time Series Analysis
Empirical Mode Decomposition:
Methodology: Test Data

Test Data

<table>
<thead>
<tr>
<th>Amplitude</th>
<th>Time (second)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-10</td>
<td>200</td>
</tr>
<tr>
<td>-9</td>
<td>250</td>
</tr>
<tr>
<td>-8</td>
<td>300</td>
</tr>
<tr>
<td>-7</td>
<td>350</td>
</tr>
<tr>
<td>-6</td>
<td>400</td>
</tr>
<tr>
<td>-5</td>
<td>450</td>
</tr>
<tr>
<td>-4</td>
<td>500</td>
</tr>
<tr>
<td>-3</td>
<td>550</td>
</tr>
<tr>
<td>-2</td>
<td>600</td>
</tr>
</tbody>
</table>

Graph showing amplitude vs. time (seconds) for test data.
Empirical Mode Decomposition:
Methodology: data and m1
Empirical Mode Decomposition:
Methodology: h1 & m2

Envelopes and the Mean: h1

Data: h1
Envelope
Envelope
Mean: m2
Empirical Mode Decomposition:
Methodology: h3 & m4
Empirical Mode Decomposition:
Methodology: h4 & m5

Envelopes and the Mean: h4

Data: h4
Envelope
Envelope
Mean: m5
Empirical Mode Decomposition

Sifting: to get one IMF component

\[x(t) - m_1(t) = h_1(t), \]
\[m_1(t) - m_2(t) = h_2(t), \]
\[\ldots \]
\[m_{k-1}(t) - m_k(t) = h_k(t). \]

\[\Rightarrow x(t) = m_k(t) + \sum_{i=1}^{k} h_i(t). \]

\(h_i(t) \rightarrow \) Intrinsic Mode Function (IMF)

\(m_k(t) \rightarrow \) Trend
The Stoppage Criteria

The Cauchy type criterion:
when SD is small than a pre-set value, where

\[
SD = \frac{\sum_{t=0}^{T} |h_{k-1}(t) - h_k(t)|^2}{\sum_{t=0}^{T} h_{k-1}^2(t)}
\]
EMD \rightarrow two modes
Wavelet-based signal separation → 6 modes
Bi-dimensional EMD (BEMD) → Image Data Analysis
“2D Spline”
Methods for Spline in BEMD

• Radial Based Function
• Thin Plate Interpretation
• Delaunay Triangulation
• By Slicing
• NURBS : NonUniform Rational B-Spline
Radial Based Function

Linear

\[\phi(r) = r \]

Cubic splines

\[\phi(r) = r^3 \]

Thin plate splines

\[\phi(r) = r^2 \log(r) \]

Hardy's multiquadrics

\[\phi(r) = \left(r^2 + c^2 \right)^{1/2} \]

Inverse multiquadrics

\[\phi(r) = \left(r^2 + c^2 \right)^{-1/2} \]

Exponential splines

\[\phi(r) = \exp(-cr) \]

Gaussian splines

\[\phi(r) = \exp(-cr^2) \]

Compactly supported spline

\[\phi(r) = (1-r)^m + p(r) \]
Thin Plate Smoothing

Thin plate smoothing spline calculates the function \(f(x,y) \) so that it minimizes the integral bending norm, \(I_f \), over the entire image

\[
I_f = \iint_{\mathbb{R}} \left[\left(\frac{\partial^2 f}{\partial x^2} \right)^2 + 2 \left(\frac{\partial^2 f}{\partial x \partial y} \right)^2 + \left(\frac{\partial^2 f}{\partial y^2} \right)^2 \right] dxdy
\]

This means the solution of a linear system with as many unknown as there are data points.
Delaunay Triangulations

- On the basis of Delaunay triangulation we will calculate maximum envelop using the Bernstein-Bezier fitting and interpolation. The Bernstein-Bezier calculation includes an optimal fitting around any maximum point and first order smooth connecting along each adjacent edge of Delaunay triangles.
The basis of Delaunay triangulation
Examples of BEMD
Transverse sonogram, left breast palpable mass.
Small, well defined anechoic cyst.
IMFs: 1 2 3
4 5 6
Combination of IMF 1 and IMF 2 gives the obvious uniform region. Left is the contour figure and right is the Image.
EMD \rightarrow
Effective Method for Identifying Change Detection
Intelligence Preparation of the Environment

INTEGRATION: Mine Detection and Classification

Change Detection

Contact eliminated as prior ID’d non-Mine

Contact not in pre-exercise imagery. Confirmed as Mk25 Bottom Mine.

IPE Objective: To gain efficiency in the detection of mine like objects for further prosecution
After Image Coregistration

Baseline Image

Repeat Image
My Plan

EMD →
Difference of the Two Images

→ Change Detection
Proposed Work

• (1) Development of efficient EMD software for analyzing 2D images
• (2) Analysis of NSWC-PC image data (sidescan sonar, laser, radar, ...) for software validation and verification
• (3) Implementation of the software into Navy mine detection platforms such as sidescan sonar, ALMDS, ...
• (4) Development of simple and efficient method for identifying change detection