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ABSTRACT 

This thesis presents a solid state thyristor switched power supply capable of 

providing 50 kJ from a high voltage capacitor to a railgun.  The efficiency with which 

energy is transferred from a power supply to a projectile depends strongly on power 

supply characteristics. This design will provide a better impedance match to the railgun 

than power supplies utilizing spark gap switches.  This supply will cost less and take up 

less volume than a similar supply using spark gap switches; it will also produce a smaller 

electromagnetic pulse.  Voltage limitations on the thyristors require two in series acting 

as a single switch.  Railgun, snubber circuit and gate control systems were modeled for a 

50 kJ railgun supply.  These simulations yielded component values necessary to protect 

and control the thyristors for voltages up to 10 kV, currents up to 180 kA, and changes in 

current with respect to time up to 109 A/s. 
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I. INTRODUCTION  

A. PURPOSE 

The purpose of this thesis was to design a Solid State power supply for ongoing 

research in the Naval Postgraduate School’s Railgun program.  Currently the power 

supplies use “Titan High-Action Spark Gap Switches” to transfer energy from high 

voltage electrolytic capacitors to a large inductor for current pulse shaping and then onto 

the Railgun.   Although these power supplies and switches have proven to be reliable, 

there is a need for them to be improved.  A solid state design using thyristors (also known 

as Silicon Controlled Rectifiers (SCRs)) will be more efficient, cost less and take up less 

volume due to design simplification.  The physical construction of the switches will also 

reduce the electromagnetic signature.  Finally, this design is important because the 

Navy’s railgun power supplies will be switched this way in the future [1].   

Two top level concerns will be addressed in this thesis.  First, companies that 

build these parts provide data sheets with listed limitations.  The problem is that industry 

does not make these large thyristors for impulse power applications.  They are made to be 

used by industry in continuous power applications.  This design will begin to explore 

how to use the thyristors in railguns and not break them.  The second concern addressed 

in the design is preventing false or intermittent triggering of the thyristors.  It is 

paramount to have full control of when the thyristors trigger at the large energy and 

power levels appropriate for railguns.  

B. OVERVIEW 

The Mission of the Electromagnetic Railgun (EMRG) Innovative Naval Program, 

based out of the Office of Naval Research (ONR), is to develop the science and 

technology (S&T) necessary to design, test, and install a revolutionary 64 Mega Joule 

(MJ)  EMRG aboard United States (U.S.) Navy Ships in the 2020-2025 timeframe [2].  In 

the fall of 2006 the Navy commissioned an 8 MJ Railgun at the Electromagnetic Launch  
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Facility (EMLF) at Naval Surface Warfare Center (NSWC), Dahlgren, VA.  By the 

summer of 2007 NSWC will have a 32 MJ railgun delivered and the program schedule 

has it fully operational by 2009.   

There are many advantages to changing to this type of weapon over a standard 

gun.  From the logistics and storage perspective these rounds are non-explosive.  This 

means a large reduction in logistical cost.  Also, the magazine can be reduced in size 

because it is considered non-explosive and it does not have to be designed to withstand 

damage or prevent high explosive inadvertent discharge.  Figure 1 shows the other 

benefits of the Railgun as compared to the ERGM and LRAP rounds.  A smaller 

projectile delivers more energy to the target, at a further distance in a shorter period of 

time.  The energy on target is defined as Kinetic Energy computed from summing the 

quantity of fragments and average impact velocity.  Under each round in Figure 1 the 

weight is shown with two numbers.  The first number is the weight of the projectile itself 

and the second number is the weight of the propellant charge.  The railgun round, which 

does not use a propellant charge, lists the equivalent amount of fuel.  Two other benefits 

include the ability to scale up and/or down the weapon system and less recoil exerted on 

the mount [3].   

 
Figure 1.   Projectile Comparison [from Ref.4].  

2.2MJ
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Not until the past couple of years have other institutions within the Railgun 

community made promising improvements; however, there are still significant technical 

issues that need to be resolved in order to sustain the program.  The railgun is made up of   

subsystems which include the power supply, the gun, and the projectile.  For the power 

supply the major concerns are the energy storage elements, and what the switching 

typology will be.  For the gun they include reducing the size of the system, increasing 

bore life and reducing EMP.  Finally the projectile has to withstand the incredible amount 

of force, acceleration and EMP exerted upon it.  If improvements are not made in all 

three subsystems, the total system has the chance of being terminated.   

C. APPROACH / THESIS ORGANIZATION 

The new power supply was designed from the perspective of system as a whole.  

Subsystems for detail circuits and major components were then identified.  Component 

behavior was modeled by solving mathematical equations in Simulink, a software 

subprogram that runs inside Matlab.  The model yielded limitations from which 

component selection was made.  Besides the thyristors, diodes and inductor the power 

supply also has two separate sub-circuits that needed to be designed. A snubber circuit 

was designed to protect the thyristors statically and dynamically. Then a gate control 

circuit was designed to ignite the thyristors.  Each of these two sub-circuits were put onto 

Printed Circuit Boards (PCB) that were designed and laid out with an online software tool 

called PCB123.  Once the boards were populated the system was then put into Rhino a 3-

D CAD software tool for final component placement and bussing dimensioning.   

Chapter II will detail the design for the entire power supply.  Chapter III will 

detail the results from the testing of the gate control circuit and Chapter IV will highlight 

future and follow on work. 
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II. DESIGN 

A. POWER SUPPLY 

1. Introduction 

The starting point of this design centered on the capacitor and its specifications.  

The railgun lab currently has six 11 kV, 50 kJ, 0.83 mf capacitors waiting to be placed in 

power supplies.  The design focused on a single capacitor per supply with the intent to 

increase to two capacitors in parallel.  Two capacitors would supply 100 kJ which is 

equivalent to the other two supplies currently in operation.  Figure 2 shows the electric 

circuit.   Once the capacitors are charged up to firing voltage, the two thyristors are 

triggered and forced into forward conduction mode.  Energy is then transferred to from 

the capacitor to the inductor through the railgun.  The crowbar diodes then go into 

forward conduction and the rest of the energy is then released into the railgun.   

 
Figure 2.   Electric Circuit. 



 6

2.  Model Simulation Using Simulink and Matlab  

The railgun model presented here was used to approximate the shape of the 

source current and quantify the voltage stress on the circuit components [4].   

 

Mass (m)

+

v r 

- 

i 

i 

i× H 
× B 

r2

r 1 

x=0 

fe

B=0 
0 r =

 
Figure 3.    Railgun model. 

The magnetic field intensity, H
→

, created by the current in the top rail, i , is a 

function of the distance from the center of the rail ( 0r = ):  

( ) 1 22  where 
2

iH d l i H r i H r r r r
r

π
π

→ →

⋅ = ⇒ = ⇒ = > >∫  

The contribution to flux linkage from the top rail is: 

( ) ( )( )
2

1

2 1
1 ln ln

2 2

r

r

i iB d S x dr x r r
r

µ µλ
π π

→ →

= Φ = ⋅ = = −∫ ∫  

By symmetry the contribution to flux linkage for the bottom rail is the same.  The 

inductance is defined as the ratio of flux linkage to current: 

( ) ( ) ( )( )2 1ln lnL x x r r
i
λ µ

π
= = −  

The railgun voltage, rv , is:   

( ) ( )( )

( ) ( )( )

2 1

2 1

ln ln

where ln ln

r
d dx di dx div r r i x k i x
dt dt dt dt dt

k r r

λ µ
π
µ
π

⎡ ⎤ ⎡ ⎤= = − + = +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

= −
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For this linear magnetic circuit the coenergy stored in the coupling field is: 

( ) 21
2cW L x i=  

The electric force acting on the mass is [5]:   

( ) ( )( )
2 2

2 1ln ln
2 2

c
e

W i kif r r
x

µ
π

∂
= = − =

∂
 

The equivalent circuit to describe the power supply behavior is: 

     where the velocity is  and L is the circuit inductance

c r

c

di di dx diV L Ri v L Ri k i x
dt dt dt dt
di di dxV L Ri kiv kx v
dt dt dt

⎡ ⎤= + + = + + +⎢ ⎥⎣ ⎦

= + + + =
 

The rail resistance, ( )R x , does depend on the position x of the mass in the railgun.  

The differential equation for the current is: 

where R is the circit resistancecV Ri kivdi
dt L kx

− −
=

+
 

Vc vr

L R

i

 
Figure 4.   Electrical circuit model 

 

The differential equations to describe the electromechanical system are: 

2

2                   e cf V Ri kivdx dv d x div a
dt dt dt m dt L kx

− −
= = = = =

+
 

The above equations were then programmed into Simulink and a model was 

developed to verify characteristic output curves for time based current and voltage.   
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Figure 5.   Simulink Model of a Railgun [from Ref 4]. 

3.  Component Selection 

Details on the snubber circuit and Gate control circuit are in sections II.B and 

II.C.  In order to hold off the maximum voltage of the capacitor, two thyristors are placed 

in series, as shown in Figure 2, so that the maximum voltage across a thyristor during the 

hold off condition will be 5000 V.  Figure 6 gives the specified maximum hold off 

voltage of these thyristors to be 6500 VDSM [6].  The data sheet also specifies the 

maximum current to be 71.4 kA; however, ABB has calculated maximum sustainable 

currents greater or equal to 180 kA for pulses shorter than 3 ms, as shown in Figure 7.  In  
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order to control the current rise with respect to time a minimum of 4 µH  inductor is 

needed.   Specified maximum turn-on dI/dt to these thyristors is 91 10  A s× .  For a high 

quality factor tank circuit: 

 

0 0
22

-4

0
4

4 -6
2 9

CV 4VdI =
dt π L( LC 2)
where C capacitance(8.3×10  F)
L Circuit Inductance (H) and V  is the inital charge on C.

4(10 )If V=10 , then L³ =4×10 H.
π 10

π
≈

≡
≡  

 
Figure 6.   ABB Data Sheet for the 5STP 42U6500 Phase Control Thyristor [from Ref 6]. 

 

 
Figure 7.   Surge on-state current vs. pulse length.  Half-Sine wave.  [from Ref 6]. 
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4.  Summary 

This model of the electromechanical behavior of a railgun was developed to 

predict the electrical stress on a solid state switching power supply.  From this model 

component selections were made and detailed sub-circuits were further developed.   

Simulation results shown in Figures 8 and 9 were consistent with laboratory data. 

 
Figure 8.   Simulated behavior of mechanical variables 
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Figure 9.   Simulated railgun current 

 

B. SNUBBER CIRCUIT 

1. Introduction 

The snubber circuit is designed for two separate states of operation.  The first 

state is considered the static condition and it is the point at which the thyristors are 

holding off the charged capacitor.  Due to manufacturing tolerances each thyristor will 

have a slightly different leakage current.  Thus, the thyristors will not share the voltage 

evenly.  Placing a bleed resistor in parallel with one thyristor develops a voltage 

potential.  Repeating this on the second thyristor with an equal resistor ensures that each 

device is at the same voltage and therefore the static load is equivalent.   

The second state of operation for the snubber circuit is the dynamic state.  This 

state is defined as the point in which one thyristor has been triggered; however, the 

second thyristor has not.  During this time the Resistive-Capacitive (RC) portion of the 

snubber circuit, which has also been placed in parallel with the thyristor, will resist the 
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change in voltage and hold the voltage potential on the non-triggered device for a brief 

moment. During the delay the second thyristor will be triggered and thereby release the 

energy from the capacitor into the inductor.  

2.  Model Simulation Using Matlab  

Figure 10 is a subsystem inside the Power Supply Model simulation.   

 
Figure 10.   Simulink Model for Snubber Circuit Component selection [from Ref 4]. 

 

3.  Component Selection  

The following component values were input into the simulation above to obtain 

Figure 11.  To ensure each thyristor shares the same voltage in the static condition fifteen 

1 MΩ  resistors were placed in parallel to make an equivalent 70 kΩ  resistor.  To ensure 

the max voltage on second thyristor does not exceed the 6500 kV limit during the 
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dynamic condition, six 6000 V , 0.068 µf  film capacitors were placed in parallel to make 

an 0.408 µf equivalent capacitor.  These capacitors were placed in series with four 2.2 Ω  

resistors.   PCB123 was used to make the PCBs and is shown in Figure 11.   

 

 
Figure 11.   Simulated thyristor voltage sharing when the turn-on differs by 0.5 µs  

time ( sµ )  
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Figure 12.   Snubber circuit pictures from top left moving clockwise.  PCB123 board 

layout, PCB123 3-D View, Side view, Top View.  
 

4. Summary  

The model that was shown in Figure 10 for the subsystem in the power supply 

design was used for determining the values of the components of the snubber circuit.  

Figure 11 shows that thyristor 1 and 2 share voltage up until the time when the first 

thyristor is triggered.  With out triggering the second thyristor, voltage begins to build up.  

Figure 11 shows that with the modeled components the second thyristor must be 

triggered within 0.5 µs  to stay well within the 6500 VDSM limit.   

C. GATE CONTROL CIRCUIT 

1. Introduction 

The objective of the gate control circuit was to simultaneously turn on both 

thyristors by taking a single input light signal and converting it into two equivalent 
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current pulses. Sections C-2 through C-4 go into detail on how this was accomplished.  

One of the main objectives of this thesis was to ensure that the thyristors were kept from 

false triggering, Section C-5 covers this in detail along with describing the circuit 

protection.  

2. Signal Conditioning for One Gate Control Circuit 

The recommended current waveform for triggering the thyristors was provided in 

the data sheet and is shown in Figure 13.  This waveform was the driving factor in the 

gate control circuit design.  A thyristor is a current-controlled bipolar semiconductor.  In 

order to make sure the thyristor turns on when directed the device needs a current pulse 

(IGM) between 2 and 5 A.  As per the data sheet, see Appendix A, this current is not to 

exceed 10 A (IFGM).  The time frame in which to reach the 90 percent of the IGM is less 

than or equal to1 µs . The duration (tp1) of this first pulse needs from5 to 20 µs .  The 

second pulse (tp2) is used to ensure that the thyristor remains on for the entire event.  The 

intent of this design was to apply the first current pulse at 5 A for 20 µs  and then apply 

the second pulse for 0.5 A for 10 ms.  To create the single current waveform two separate 

pulses were magnetically coupled together into a single output, Ig3.  Ig3 is shown in Figure 

13. The first pulse will be set to 20 µs and the second pulse will be set to10 ms .  Rg1 will 

set Ig1 to 5 A and Rg2 will set Ig2 to 0.5 A.   

 
Figure 13.   Recommended gate current waveform [from Ref 6]. 
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Figure 14.   Gate driver equivalent circuit. 

 

 

Figure 16 is the circuit diagram of the gate driver circuit and Figure 17 is a picture 

of the same circuit.  Each of these figures have been broken into 8 sections to better aid in 

the following circuit description.    
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Figure 15.   Gate Control Circuit.  

 
Figure 16.   Top down view of Gate Control Circuit. 

 

Section 1 is an off-the-shelf GSC25 Low-Voltage Power Supply (LVPS) 

purchased from Global Performance Switchers.  It takes 120 VAC and converts it into 

+5/+15 VDC.  Maximum current on the output for the +5 and + 15 V is 2.5 and 1.5 A 

respectively.  The LVPS is fully protected against short circuit and output overload.  
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Short circuit is cycling type power limit [7].  Two modifications were made to 

incorporate this LVPS.  First, a bleed resistor of 1.0 kΩ added as a continuous load to the 

+15 V terminal and ground terminal to ensure that the LVPS stayed in a continuous 

regulation state.  The bleed resistor also gives a path for the holdup capacitors to 

discharge when the power supply is turned off.  The second modification to the LVPS is 

described in the next paragraph.   

Section 2 of the gate driver circuit is comprised of two 16 V 5600 µF  holdup 

capacitors.  As mentioned in the previous paragraph, the output current limit on the     

+15 V power supply is 1.5 A.  Without these capacitors the LVPS would be driven into 

an overload condition and the desired current waveforms would not be produced.  The 

following energy balance calculation was made to determine the capacitance needed to 

ensure the two that the current pulses were maintained.  

( )2 2

0

1 115 2 12 0.003( ) (15 )
2 2

10    

T

CAP Vidt cV VAs c V

c mF

= < ⇒ ⋅ ⋅ ⋅ <

⇒ >

∫  

To obtain the minimum capacitance needed the capacitors have to be able to drive 

the largest desired current pulse.  This pulse is defined as pair of 15 V, 12 A, 3 ms pulses 

and therefore, the minimum capacitance needed would be 10 mF.   

Section 3 highlights the fiber receiver.  The device chosen here is the          

HFBR-2521. The output of this device is held high until the light pulse is received.  Once 

this happens the output goes low and triggers the next devices.  A critical point to 

mention is that the trigger pulse duration has to be less than tp1 as defined in section 

II.C.2.  Power comes from the +5V of the LVPS.   

The next section is section 4 and is comprised of two LM555 Monostable timer 

circuits.  The LM555s are each accompanied by the RC network needed to set the output 

timing and one 0.01 µF capacitor for filtering.  Once the input is a signal goes from high 

to low, the output is inverted and goes from low to high based off the values of the RC 

network.  Figure 17 from LM555 data sheet and Table 1 show the resistor and capacitor  
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values need to set the timing pulse tp1 and tp2.  The data sheet refers to the timing pulse as 

the time delay td.  The output of this stage is from low to high.  Power for the LM555’s 

comes from the +5 V LVPS.  

 
Figure 17.   RA Values to set td based off specific C values. [from Ref (8)]  

 
 

 tp1 tp2 
RA 1.49 kΩ  68.0 kΩ  

C 0.01 µF 0.1 µF  

td 10 µs  8 ms  
Table 1.   LM555 resistor and capacitor component values to set the timing for the current 

pulse IG1 and IG2. 
 

 Now that the timing of the two pulses is set, the peak current of each pulse is 

established via a MIC4452 non-inverting MOSFET driver and resister combination. This 

is shown in section 5 of Figure 16 and 17.  From Figure 14 the voltage drop on the 

resistor Rg will set the current Ig.  Table 2 shows the values of Rg1 and Rg2 needed to 

obtain Ig1 and Ig2.  For protection a schottky diode was put in before the transformer to 

prevent reverse current back onto the drivers.  Power for the drivers comes from the +15V 

LVPS.   
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 IG1 IG2 

R 2.2 Ω  22 Ω  

Peak Current 5 A 0.0A 

Table 2.   Resistance values to set IG1 and IG2. 
 

 Section 6 is the high voltage isolation section of the gate driver.  Magnetic 

coupling of the control circuit was critical due to the high blocking voltage on the 

thyristor which is coupled through the gate.  The transformers are 500174K Magnetics 

tape wound core made of magnesil material.  The major design consideration here was to 

minimize leakage flux while ensuring the magnetic core did not saturate.  After wrapping 

the primary windings on the core two layers of Kapton tape were used to isolate the 

primary windings from the secondary windings. The same was done again after wrapping 

the secondary windings onto the core.  Details regarding the High Voltage (HV) isolation 

tape can be found in Appendix (C).  The second function of the core was to combine the 

two current pulses Ig1 and Ig2 into a single output pulse Ig3.  There are 25 windings on the 

core with a turns ratio of one.   

 Section 7 is the voltage clamp and it was designed to protect the gate to cathode 

from over-voltage.  The clamp is made up of the two zener diode stacks placed in parallel 

with the output of the transformer and the gate/cathode of the thyristor.  Each stack has a 

10V breakdown voltage in the forward direction and 5V breakdown voltage in the reverse 

direction.  Finally, section 8 is the output of the gate driver circuit and is connected to the 

gate and cathode of the thyristor.    

3. Signal Sequencing for Both Gate Control Circuits  

A second pulse, identical to the one described in the eight steps above, had to be 

produced within in 0.5 µs as mentioned in Chapter II.  As indicated in Figure 10, the 

model shows that the time difference between each thyristor turning on has to be less 

than 0.5 sµ .  All the sections that were described in the part II.C.2 were duplicated on the 

same board.  The input light pulse also triggers the second set of LM555s.  To save space 
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on the Printed Circuit Board (PCB) the second HV transformer was placed on the 

underside.  See Figure 18.  Care was taken during component layout to ensure all signal 

paths were of equivalent size and length.   

 
Figure 18.   Side view of Gate Control Circuit 

 

4. Model Simulation Using Matlab to Design the Transformers 

Simulink was used to model the transformers.  The purpose behind modeling the 

transformers was to determine if the transformers were going to saturate and thereby not 

let the current pulse be transferred to the secondary coil.  The manufactures data was put 

into the model along with the component values of resistors that set IG1 and IG2 listed in 

Table 2.  See Appendix (B) for the MATLAB code used to set these values.  Figure 19 

shows the model.  Three state conditions exist for the model. The first is when both IG1 

and IG2 turn on. The second is when IG1 is turned off and IG2 is still applied, and the third 

is when both IG1 and IG2 are both off.  Figure 20 shows the details of each of subsystems 

and Figure 21 shows the output current.  The blue trace is IG1, the green is IG2 and the red 

trace is IG3.   
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Figure 19.   Simulink Transformer Model to Determine Values of Rg1 and Rg2.  
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Figure 20.   Details of subsystem in Simulink Model. 
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Figure 21.   Simulated current pulses from the Simulink Transformer Model.  

 

5. False Triggering Suppression and Circuit Protection 

False triggering is a major concern when using thyristors in a noisy environment.  

To use this design to its fullest extent it has to be able to work in proximity to spark gap 

power supplies.  These supplies produce significant EMP.  Electrical isolation and 

shielding was incorporated into the design to keep the thyristors from false triggering.  

Figure 22 from the ABB data sheets specifies a minimum value for the gate-trigger 

current (IGT) to be greater than 400 mA and a gate-trigger voltage (VGT) to be greater than 

2.6 V when operating the device at 25 °C .  As the temperature of the device increases 

ABB states that the thyristor can potentially trigger on a gate signal of only    0.3 V 

and/or 10 mA; however, operation at room temperature is planned for this power supply.   

 IG1 
 IG2 
 IG3 

time ( sµ ) 

Current (A) 
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Figure 22.   Maximum rated values for triggering [from Ref 6]. 

 

Isolation is accomplished in these layers via two transformers.  The first isolation 

from the 120 VAC from the wall outlet to the output of the LVPS will block any 

disturbances being fed back from the outlet.  The second isolation, between the control 

circuits and the gate/cathode connections, will prevent high voltage from being fed back 

to the control circuit and thereby causing damage.  Figure 25 shows the two isolation 

transformers outlined in blue.    

Shielding was incorporated to suppress possible EMP and was accomplished via 

two methods.  A copper ground plane was chosen for high frequency protection copper 

and for low frequency protection a mumetal box encases the entire circuit board.  Figure 

23 shows the process of calculating the attenuation loss in dB based off the thickness of 

the material used and the skin depth of each material.  The thickness of the mumetal is 

0.035 in and by taking the ratio of the thickness to the skin depths Figure 23 produces an 

attenuation of 15 dB at 60 Hz and 90 dB of attenuation at 1 kHz.  The thickness of the 

copper is 0.0014 in.  Following the same process yields attenuation of 15 dB at 10 MHz 

and 90 dB at 1 GHz.  The yellow box in Figure 25 shows where the copper ground plane 

is located on the gate control PCB.  The mumetal box is not shown.    
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Figure 23.   Table and chart of computing attenuation for shielding [from Ref 9]. 
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To minimize pickup all the control signals were kept to a minimum length and 

were placed in the inner layer of the PCB.    

Minimum creepage and clearance was also a concern and had to be maintained.  

Figure 24 lists the minimum surface creepage distance to be 56 mm (2.2 in) and the 

minimum air strike distance to be 22 mm (0.86 in).  The red arrows in Figure 25 show the 

major points of contention.   Each of these lines will be a minimum of 1 in.  As 

mentioned above, the transformers are wrapped in Kapton tape with each layer of tape 

rated to block 10 kV.  

 
Figure 24.   Minimum surface creepage distance and air strike distance.   

 
Figure 25.   EMP Suppression and Creepage and Clearance. 
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6.  Summary 

Although this circuit may seem simplistic it was paramount that an identical 

current pulse be delivered to each thyristor at nearly the same time.   It was critical that 

the circuit be designed to prevent a false triggering of the thyristors.  These objectives 

were accomplished by using shielding for noise suppression.  Isolation transformers were 

used to protect the LVPS and control circuit from the outlet and from the high voltage on 

the thyristors.  Finally the physical layout of the components maintains the minimum 

creepage and clearance distances.  PCB123 was used to for the design layout and is 

shown in Figure 26 and Figure 27.   
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Figure 26.   PCB 123 top view of the gate control circuit.   

 

 
Figure 27.   PCB123 3-D view of the gate control circuit.  
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III. EXPERIMENTAL DATA ACQUISITION FOR GATE 
CONTROL CIRCUIT  

A. INTRODUCTION 

 Three changes made from the initial design are described in section III. B.  Data 

collection for the gate control circuit started by identifying the correct high voltage 

isolation transformer.  Signal sequence testing was completed next, then the peak currents 

and timing were tested.  Finally, the di/dt for the gate was measured to determine the 

circuit delay from the time between when the fiber pulse was sent and the start of both 

thyristors gate pulse signals.  

B. CONSTRUCTION 

Upon initial testing a problem with the power supply was noted.  When measuring 

the +5 V or +15 V supply the reading would cycle up and then back down to zero.  It was 

determined that the supply had to be under continuous load to regulate.  A 1 kΩ  resistor 

was added to the +15 V terminal and ground.   

The board that was tested was the second of two built.  On the first board a faulty 

LM555 had to be replaced.  During the de-soldering the board was permanently damaged 

and caused the +5 V supply to be grounded. For the second board, chip sockets were 

used.  These sockets were not used initially in trying to keep the signal traces small; 

however, final testing showed they did not adversely affect the circuit.  

Initially a HRBF-2821 was chosen as the fiber receiver based on its performance 

as specified by the manufacture.  Testing revealed it was not the same type of receiver as 

all the other HFBR-2X21; therefore, a receiver was used instead.  A second socket with 

wire wraps and jumpers was used on top of the board socket to handle the changes in the 

in HFBR-2121 receiver’s pinout.   
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C. DATA COLLECTION 

1. High Voltage Isolation Transformer  

To determine the most efficient coil, 4 different wire wrapped coils were made.  

Figure 28 shows the results of this testing.  The blue trace is that of the fiber optic signal 

set to give a low voltage for10 sµ .  IG1 is the blue wire and IG2 is the magenta wire.  Each 

of the blue and magenta wires shown in the figure are the primaries.  The secondary coil, 

IG3, is the orange wire.   

Core 1 has a turns ratio of N=1:1 with the core completely covered in the primary 

windings each having 43 turns.  The secondary coil is tightly wrapped on the right half of 

the core.  As the plot shows, this did not give the desired coupling with a low di/dt rise 

time.   

For core 2 the primary windings were pulled back to match the area of the 

secondary.   Now the turns ratio was N=1:2.  Although this configuration had the desired 

coupling with a high di/dt, the current was now reduced by half.   

Cores 3 and 4 are similar with a turns ratio of N=1:1 and the secondary loosely 

wrapped.  The difference is core 3 is completely wound with 43 turns and core 4 is only 

wrapped half with 25 turns.  Core 4 was chosen because of its slightly better 

performance.    
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Figure 28.   Results from transformer testing.  
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2. Sequence Testing 

To test the circuit board two Integrated Bipolar Junction Transformers IGBTs 

were used for their PN junctions.  This was to simulate the gate to cathode connections 

on the thyristors.  A Pearson Transformer was used on each gate signal to measure the 

current.  Figure 29 shows the test set up.   

 
Figure 29.   Gate control circuit test set up. 

  

Figure 30 shows that both rise to 5 A in 20 sµ  and are held on at 0.5 A for at 

least. 50 sµ   This closely matches the desired from ABB as shown in Figure 31.  Figure 

32 shows that the delay from the time the fiber receiver sends the low pulse to the time 

IG3 starts to be 300 ns.  Both IG3s for each thyristor rise at the same time and reach the 90 

percent of IGM (defined as tr  in Figure 31) in1 sµ .   
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Figure 30.   Output waveforms from the gate control circuit.  

 

 
Figure 31.   Recommended gate current waveform [from Ref 6]. 

 



 36

 
Figure 32.   Gate control circuit time delay and rise time.   
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IV. CONCLUSIONS AND RECOMMENDATIONS 

A. INTRODUCTION 

The final chapter will start by covering a brief discussion on validation of the 

models and then it will move into discussing how the research question was answered.  

Because the fabrication of the entire supply was not completed the majority of the future 

work will reside in testing and optimizing these models.  This chapter ends with 

conclusions. 

B. VALIDATIONS OF MODELS 

The gate control circuit model proved to be helpful in ensuring the magnetic cores 

were not going to saturate.  Now the model can be used to see how changing components, 

such as the resistors, will affect the output current pulse.  The models for both the 

snubber circuit and the railgun will be validated in future testing.   

C. RESEARCH QUESTION ANSWERED 

The intent of this thesis was to provide the Naval Postgraduate School Railgun 

Lab with a solid state power supply design.  The supply was designed and now the supply 

is well on its way to final construction and testing.  The snubber circuit was built and 

waits testing.  The gate control circuit was built and bench tested.  The results from the 

testing were better than expected with the delay between the two triggers so small it is 

said to be simultaneous.   

D.  FUTURE WORK 

The next round of testing should include testing the gate control circuit next to the 

spark-gap power supplies when they are fired.  This test will ensure that the false 

triggering mitigation designs work to an acceptable level.  Next, the rest of this supply 

needs to be put together in a housing.  Figure 33 shows the initial arrangement of parts in 

the proposed power supply.  The thyristors (red and blue disks) and crowbar diodes 

(yellow and green disks) are clamped directly above the capacitor (blue upright 
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rectangular box) via a single clamp.  The light green cylinder is the inductor. Figure 33 

also shows the proposed placement of the snubber circuit boards.  Figure 34 shows the 

spark-gap power supplies. Each of the two power supplies shown are placed in the same 

size housing as the proposed design in Figure 33.  By reducing the volume of the 

switching components the inductor is now be placed inside the power supply hosing.  

Once the new supply is built testing and optimization for the entire system can then 

begin. 

 
Figure 33.   CAD drawings of the new power supply. 
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Figure 34.   Picture of the spark-gap power supplies. 

 

Future projects include modeling and observing how theses power supplies can be 

paralleled together to form a pulse forming network.  Integrating the output inductor into 

the bus network would reduce the resistance of the power supply and has the potential for 

increasing the efficiency of the railgun.    

E. CONCLUSIONS.  

Although the final power supply was not completed and tested, much progress 

was made in converting over from the expensive, noisy, non-efficient, and larger power 

supplies to a new design that will be cheaper, less-noisy, more efficient, and smaller.  

Using commercial products to do military applications is not straight forward.  Because 

this application is so different than the planed intent a new data sheet will be written from 

future testing.  In turn, this will allow the purchase of even smaller devices or allow more 

capacitors to be controlled by a single thyristor.    
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APPENDIX A 
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APPENDIX B 

Matlab code for the transformer design: 

 
%Transformer design equations 
%Magnetics Magnesil tape wound toroid 50017, 4 mil material 
%ID 2 inches, OD 2.5 inches, thickness 0.5 inches 
%ID .0508 m , OD .0635 m   , thickness .0127 m 
le=.1795; 
Ae=.689/100^2   % meters^2 
uo=4*pi*1e-3; 
ur=40000; 
le=.152;                            %meters 
turns=25;    %Original Value 
%turns=10;       %Changed Value 
ipeak=24;        
B=uo*ur*turns*ipeak/le/10^-4      %gausses 
inductance=uo*ur*turns^2*Ae/le   %H 
H2=0.4*pi*turns*ipeak/(le*100)  %oersteds 
  
N1=turns; 
N2=turns; 
N3=turns; 
Lleak=1e-6;   %Original 
%Lleak=20e-6;    %Changed Value 
L11=inductance;        %Convert to henries 
L22=N2^2/N1^2*L11;L33=N3^2/N1^2*L11; 
L12=N2/N1*L11;L21=L12; 
L13=N3/N1*L11;L31=L13; 
L23=N3/N2*L22;L32=L23; 
%third coefficient is negative in each row because the winding polarity 
is 
%reversed. 
Lmat=[L11+Lleak L12 -L13; L21 L22+Lleak*N2^2/N1^2 -L23; L31 L32 -L33-
Lleak*N3^2/N1^2]; 
Rg1=2.0; 
Rg2=20; 
Rg3=.005; 
Rmat=[Rg1 0 0;0 Rg2 0; 0 0 -Rg3]; 
inv_Lmat = inv(Lmat); 
Lmat2x2 = Lmat(2:3,2:3) 
Rmat2x2 =Rmat(2:3,2:3) 
inv_Lmat2x2 = inv(Lmat2x2); 
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APPENDIX C 
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