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Multilevel Image Reconstruction with Natural Pixels

Van Emden Henson* Mark A. Limberf

Stephen F. McCormick! Bruce T. Robinson®

January 14, 1995

Abstract

The sampled Radon transform of a 2D function can be represented as a continuous linear map
A Ly() — RN, where (Au); = (u,);) and ¢; is the characteristic function of a strip through
) approximating the set of line integrals in the sample. The image reconstruction problem is:
given a vector b € R, find an image (or density function) u(z,y) such that Au = b. In general
there are infinitely many solutions; we seek the solution with minimal 2-norm, which leads to a
matrix equation Bw = b, where B is a square dense matrix with several convenient properties.
We analyze the use of Gauss-Seidel iteration applied to the problem, observing that while the
iteration formally converges, there exists a near null space into which the error vectors migrate,
after which the iteration stalls. The null space and near null space of B are characterized in order
to develop a multilevel scheme. Based on the principles of the Multilevel Projection Method
(PML), this scheme leads to somewhat improved performance. Its primary utility, however, is
that it facilitates the development of a PML-based method for spotlight tomography, that is,
local grid refinement over a portion of the image in which features of interest can be resolved at
finer scale than is possible globally.

1 Introduction

In this paper, we consider a model of transmission and emission tomography and an associated
image reconstruction technique. The reconstruction technique approximates a minimum norm
solution to an underdetermined linear inversion problem, based on an infinite-dimensional formula-
tion of the tomographic inversion problem. This formulation of the problem avoids the traditional
square pixel discretization of the image space and leads to a smaller, but dense, matrix problem
(compared to traditional algebraic reconstruction techniques). This approach leads to what have
been termed “natural pixels” in [1], and the “optimal grid” in [10].

Following the development of the natural pixel discretization, we consider solution techniques
for the resulting linear system. In particular, we employ Gauss-Seidel iteration, analyze its perfor-
mance, and then introduce a multilevel projection method (PML) for accelerating convergence.
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2 Image Reconstruction and the Radon Transform

We formulate the image reconstruction from projection problems in a general setting, but concen-
trate on a parallel beam geometry, for which we have implemented our ideas. The basic idea in
tomography is that an object is subjected to a dose of radiation, either by passing X-rays through
the object, or (if the object is a living patient) by administering a radiopharmeceutical. The
amount of radiation leaving the object can be measured, compared with the original amount, and
the difference is a measurement of the attenuation (transmission tomography) or activity (emission
tomography) within the object. In parallel beam geometry, the data is collected in collimated
bins, so that any activity detected in a particular bin can be attributed to the strip eminating
perpendicularly out of the detector, with width equal to that of the bin.

To model this apparatus, let u(z,y) be a function of the spatial variables 2 and y describing
the activity in the object. Typically this is some physical quantity, such as the material density of
the subject. The vector f represents the projection data. The data aquisition is modeled by

Jre w(@, y)r (2, y)dzdy h
Au = z - ¢ |==% (1)

Jre w(@, y)on (2, y)dudy I
where the function vy, is the characteristic function of the kth strip through the image, within
which passes (or emanates) the energy collected by the kth detector. For this to be well defined,

we restrict our function space to be Ly(Q), where Q is a compact subset of R?, called the image
space. Thus,
(Au); = (Pj,u)

defines a continuous linear map A : Lo(Q2) — R". The basic problem of computer assisted tomog-
raphy is to reconstruct the image u(z,y) from a collection of measured strip integrals, collected at
various angles. When this problem can be solved, it is done through some approximate inversion
of the Radon transform, which is defined as follows.

Let u(z,y) be a function defined on the region 2 € R?. Letting L denote any line in R?, the set
of line integrals of u(z,y), along all possible lines L, is a function of two variables, and is known as
the Radon transform of u(x,y), provided the integral exists. Formally,

[Rul(p,$) = [ ula,y)ds = [ ulw, )i cos ¢+ ysing — p)dudy
L
where 0 is the Dirac delta function. The line L is parametrized by

p = xcos ¢+ ysin g, (2)

where p is the signed distance from the origin and ¢ is an angle measured counter-clockwise from
the positive x-axis. Thus, (2) determines the equation of a line in the xy-plane normal to the unit
vector 5 = (cos¢,sing)?. Figure 1 shows the geometry of the Radon transform of a function
u(z,y) in terms of this parameterization.

Viewing the Radon transform as an operator, the image reconstruction problem can be cast
as Ru = f, where f represents the collection of measured line integrals. Given f, a finite
sampling of f, we model the problem Ru = f with Au = f, since each of the strip integrals (1;, u)
approximates a collection of line integrals, for those lines falling within the strip. Hence, the data
f forms a sampling of the continuous Radon transform. We will refer to the set of strip integrals
(1) as the strip averaged Radon transform.
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Figure 1: The geometry of the Radon transform.

3 Optimal Grid Discretization

Suppose there are M angles ¢; for j = 1 : M, such that ¢; = 0 < ¢ < ¢3 . < ¢p < 7, and
that at each angle ¢; there are n(j) strips, or detector bins. Then N = Zj 1 n( ) gives the total
number of data points. Suppose the image space Q is some convex, compact region in R?, and
assume that for the j/* angle the n(j) strips are parallel, non-overlapping, and entirely cover 2.
Let 9¢(z,y) be the characteristic function of the £/ strip. Then the discrete strip averaged Radon
transform is the map A : Ly(©2) — R” defined in equation (1).

Assuming the system Au = f is consistent, it is underdetermined; that is, since A is a linear
mapping from an infinite-dimensional space, L3(f), to the finite dimensional space R, the null
space of A, NS(A), is infinite dimensional. If there are any solutions to Au = f, there are infinitely
many. We must select some representative solution image u from the infinite number of feasible
images. The minimum norm solution to the equation Au = f is given by u(z,y) = A*w, where w
solves the N x N system

AA*w =f.
We write this system as Bw = f and concentrate on efficient methods to solve it. Note that forming
A*w corresponds to backprojecting the vector w over the image space.

A simple formula can be used to construct the matrix B. Note that A* : RN — Ly(Q) is defined

by

[A*w](z,y) Zwﬂ/)z (z,y). (3)

Since the 1; are characteristic functions, we observe from equation (3) that the optimal image u is
piecewise constant on the set of polygons defined by the intersections of the strips, at all angles.
This set of polygons we term the optimal grid, as shown in Figure 2.

The (i,)"" entry of B can be determined by computing the 5" entry of Be; where e; is the 7*!
standard basis vector in RY. Specifically,

(Beo,; = (Ad"e); = (Adi(a.y); = [ Wil )ity )dady = ().
Thus, B is an N x N matrix with entries

bij = (i, 1)) (4)
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Figure 2: A representative grid of polygons. The optimal solution is constant on each polygon.
This particular optimal grid corresponds to having 16 detector bins of uniform width for each of 20
angles, taken at regular angular intervals between 0 and 7.

We immediately have

Theorem 1. The N X N matriz B is non-negative, symmetric, positive semidefinite
with positive diagonal entries, bj; > 0.

Proof: This follows immediately since ¢, > 0, B = AA*, (u,AA*u) = (A*u, A*u), and
bis = (Yi, ¥i). |
Since we will employ iterative methods, it is important to identify those vectors that may cause
difficulty in the iteration process. That is, we seek to characterize the eigenvectors of R that
are associated with small nonzero eigenvalues of B. Such eigenvectors have the property that Bw
is small (in norm) compared to w, and error vectors of this nature have residuals that are small
compared to the error. We refer to them as vectors in the near null space, and assert that their
presence in the error causes slow convergence. The near null space will be studied in section 4.2.
For now, we are concerned with characterizing the null space of B, which is just the null space of
AA*:
NS(B) = NS(AA*) = NS(A"). (5)

For this characterization we need
Definition: 4 vector w € R" s said to be constant by angle if, upon writing

J
Vi ala
J
V2 . a2,
w = : , v; € R @), v = : ,
J
M “n(j)

thenag:agﬂ,izl,...,n(j)—l,forjzl:M.



Using this definition, we may show that

Theorem 2. A vector w € RN is in NS(B) if and only if w is constant by angle and
the elements of w sum to zero; that is, sumi]\ilwi =0.

Proof: Let {¢}(x,y)|k = 1 : M} be the set of strips that contain the point (2,y). There is one
such strip from each projection angle. Let {wg|k = 1: M} be the set of coefficients associated with
those strips. Clearly, if w is constant by angle and sums to zero, it is in N.S(B), since

N M
i=1 k=1
Conversely, suppose w € NS(A*) so that

N
=1

Writing w as in the definition of constant by angle, that is,

w=[vl, ..., vi]T, VjERn(j), vi=[a],...,a T

then the objective is to show that for the j*" projection angle, the subvector vj € R"U) is constant.
Without loss of generality, we show only that v; is constant.

Denote the j'™ strip at the first angle as €2;. Consider the partitioning of the image space (2
into the set of polygons determined by the intersections of all strips at all angles except the first.
Clearly, for each j, the boundary between €2; and );,; intersects the interior of at least one of
these polygons. Hence, it is possible to select two points, (z1,y1) € Q; and (z2,y2) € Qj41, such
that the line segment joining (z1,y;) and (z2,y2) lies entirely in one strip emanating from each of
the other angles. That is, the line segment lies entirely in each of the strips €,,...,Q

By construction,

M*

M
0 =[A"W](z1,y1) — [A"W](z2,92) = (Oéjl - a}ﬂ) + > wi, Yk, (21, 91) — Yk, (22, 92))
— ol _al =
J Jj+1

since (21, y1), Yj+1(22,y2), Y, (1, y1) and 9y, (22, y2) all equal 1. Tt then follows that a} = a}_H.
That is, w is constant by angle.

Finally, since w € NS(A*), it must be that the terms sum to zero, because

An immediate corollary is the following.



Corollary 1. The dimension of the nullspace of B is M — 1, where M 1is the number
of projection angles. A basis for NS(B) is

w; = [f7 _I7 67 . ) 6]
Wy = [67 fa _f7 67 ) 6]
Wpy—1 = [6,...,6, T,—f]

where each constant vector 1T € R™U),

4 Gauss-Seidel Relaxation on Bw =f

Many iterative methods are available for solving equations in B, and, indeed, many have been
applied to the general image reconstruction problem [1, 9, 18, 19, 20, 24]. Here we consider Gauss-
Seidel iteration, one sweep of which may be stated as: For j = 1: N, modify the j** component of
the vector w such that the j'™" component of the resulting residual vanishes. The j*™ correction is
given by

1

w ¢ w+ —(e;,f — Bw)e;.
bjj
A more common formulation arises from splitting B in terms of its diagonal, upper triangular,

and lower triangular parts, giving B = D — L — U. Then the (n + 1) sweep may be written as

where g = (D — L) 'f is a fixed vector and Pg = (D — L) 'U is known as the Gauss-Seidel
iteration matriz. Letting w* be any vector that solves Bw = f, we may write an error vector
defined as z(™ = w(") —w*. It is easy to see that z("t1) = Pgz(™ and, hence, z*1) = (Pg)"z(0).
Convergence of the iteration to w* is guaranteed if the spectral radius p(Pg) is less than one.

The matrix B, however, is rank deficient, so that if any solutions exist, then infinitely many
solutions exist, and the iteration does not converge under all initial guesses. However, measured in
the energy semi-norm

x| = (Bx,x)"?,
Gauss-Seidel cannot diverge.

Theorem 3. The energy semi-norm of the error does not increase under Gauss-Seidel
iteration on Bw = f. That is, |||z™tV||] < [||2™]]|.

Proof: A direct proof follows from the easily derived relation
2
e]', BZ(n)
12"V = |||Z(")|||—<b%>- (6)

Gauss-Seidel applied to Bw = f cannot diverge in the energy sense, but to understand when it
actually converges we first examine the related Kaczmarz iteration, applied to Au = f.
Proof of the following may be found in [13, 18, 25]:



Theorem 4. Let L : Hi — Hs be a continuous linear operator, where Hq is a Hilbert
space and Hy is an N -dimensional Hilbert space with orthonormal basis {vy,va,...,vN}.
Let g € Hy be given, and suppose that Lu = g has a solution. Suppose u® e range(L*),
and define the sequence u'¥) generated by the Kaczmarz iteration by

Set u + uk),

Forj=1:N,
Determine s such that (vj, L(u + sL*vj) — g) = 0.
Set u < u+ sL*vj.

Set uk+1) « q,

Then u®) converges, as k — oo, to the minimum norm solution of Lu = g.

Kaczmarz iteration applied to Au = f uses H, = Lo(Q2), H, = R" with orthonormal basis

{61,62, ce eN}, and
_ (ej,f — Au)
5= (ej,AA*ej) ' (7)

Proof of the following may be found in [20] or [25].

Theorem 5. Let w© be any vector in RN, and let wk3) for j = 1 : N and
k=1,2,..., be the vector resulting from the j™ step of the k" sweep of Gauss-Seidel
iteration on Bw = f, using w®) as the initial guess. Then the image A*w*J9) is just
the image u'k9) resulting from the j™" step of the k™ sweep of the Kaczmarz iteration
applied to Au = f with initial quess u(® = A*w(0),

An immediate consequence of this theorem is the following.

Corollary 2. Let w(© be any vector in RY, and let {w(k)} be the sequence of vectors
produced by Gauss-Seidel iteration on Bw = f. If Au = £ has a solution, then the
sequence A*wF) converges, as k — oo, to the minimum norm solution of Au = f.

4.1 Numerical Performance

We use the positron emission problem, as in PET and SPECT, for our model problem in developing
the iterative methods presented here. Such applications are characterized by relatively small values
of N and M, so that we are dealing with fairly small computational problems. Typically, the
number of bins per angle, N, is less than 100, as is the number of angles, M. Accordingly, our
numerical experiments use N = 16,32,64, and M = 10,20,64. Here we report on one such test,
which is very representative of the performance characteristics we have observed.

Figure 3 displays an “exact” image, the Shepp-Logan phantom [23], from which a set of values
for the right-hand side vector f is constructed. In generating the vector f we used N = 64 and
M = 20. Twenty five sweeps of Gauss-Seidel on Bw = f produce the reconstructed image shown
in 3.

Qualitatively, one can argue that the procedure produces a good reconstruction, in that most
of the identifiable features of the original image are present. Since, in general, the exact image



Figure 3: An “exact” image is shown on the left, and a reconstructed image is shown on the right.
The reconstruction geometry uses data collected in 64 bins of uniform width along each of 20 angles.
The 20 angles are equispaced at angular intervals of A¢p = w/20 in the interval [0, 7). Twenty-five
sweeps of Gauss-Seidel iteration were used to reconstruct the image.

is unknown, we use the residual f — Bw as a numerical indication of how well the method solves
the problem. Figure 4 displays the logarithm of ||f — Bw(™)||5 as a function of n, the number of
iteration sweeps. Noteworthy is the fact that the first few sweeps result in significant reduction in
the norm of the residual, but that the improvement per sweep declines until (after approximately
10 sweeps) the residual norm remains essentially unchanged.

Log of residual norm

o B 10 15 20 25 30
Number of sweeps

Figure 4: Performance of the Gauss-Seidel iteration on Bw = f is displayed by plotting the loga-
rithm of || — Bw(™)||y as a function of n, the number of iteration sweeps. Twenty-five sweeps of
Gauss-Seidel iteration were used to reconstruct the image.

This behavior, of rapid improvement in the residual norm over the course of several sweeps
followed by stagnation of the residual norm, is characteristic of many iteration methods. In the
field of partial differential equations, this numerical “stalling” often occurs because relaxation elim-
inates the oscillatory components of the error rapidly, but is ineffectual on the remaining smooth
components of the error. The stalling phenomenon is often eliminated through the use of multigrid
algorithms. Shortly we will develop a multigrid method for the problem Bw = f, in an attempt to
address the numerical stalling. Before doing so, however, we wish to make two observations.



First, the stalling phenomenon is often unrelated to the quality of the reconstructed image
when the quality is measured by the subjective standard of “looking good”. While this measure is
hard to quantify, and therefore not so useful to the mathematician or engineer, it is the ultimate
measure applied by the end user, for example, the radiologist tasked with treating a patient. It
is important to note that the reconstructed images frequently look good after only one or two
iteration sweeps, while the numerical stalling is not apparent until much later. Figure 5 shows
reconstuctions of the “exact” image of Figure 3 as they appear after 1, 2, and 4 sweeps. While
subtle differences are apparent in the reconstructions, all are “good”. Indeed, it is difficult to
differentiate the reconstructions after 4 sweeps and 25 sweeps (Figure 3). For this reason, the
residual norm may not be the appropriate indicator of reconstruction quality.

Figure 5: Reconstructions of the image from Figure 3 using 1, 2, and 4 Gauss-Seidel sweeps are
displayed clockwise from the upper left. It is difficult to distinguish these reconstructions, and even
more difficult to determine which is “best”.

4.2 Mode analysis

The second observation we make is that it is possible to examine the performance of the Gauss-
Seidel iteration on individual components of the error. For numerical partial differential equations
this is often done by way of Fourier analysis [4]. However, Fourier analysis is not particularly useful
in this setting, because the Fourier modes are not eigenfunctions of the continuum operator, nor
are discrete Fourier modes eigenvectors of either the matrix B or the iteration matrix Pg.



The approach we take is somewhat empirical in nature: we examine the eigenvalues and corre-
sponding eigenvectors of the matrix B. Since B is singular with rank N — M + 1, we know that
zero is an eigenvalue of multiplicity M — 1. We are not concerned with eigenvectors corresponding
to the zero eigenvalues, as they have no impact on the norm of the residual or on the reconstruction
itself (their backprojections vanish).

Slow convergence of the iteration implies that the correction given by the iteration is insufficient.
Since the size of the correction to the 5" unknown is determined by the j*™ entry in the residual,
then slow convergence implies that the residual is “small” compared to the error. Indeed, this has
been shown to be the case for many familiar iteration schemes [3]. Since B applied to the error
gives the residual, troublesome components are thus errors consisting essentially of the eigenvectors
associated with the small nonzero eigenvalues of B- the near null space components.

Figure 6 displays a plot of the eigenvalues of a representative B matrix, which is typical of
the spectra of all matrices we have examined. The geometry for this case has M = 20 angles
and N = E?gl () = 592 total detectors. The set of eigenvalues is divided into three groups:
the zero eigenvalues, the large non-zero eigenvalues, and the group of small eigenvalues A\, whose
amplitudes decay rapidly with increasing index k. The last 19 eigenvalues, A574 through As92, are
zero, and the associated eigenvectors form NS(B). The vertical dashed line in the figure marks
the division between the “good” eigenvalues (A; through Aso5) and the eigenvalues with rapidly
decaying magnitude (Ag9¢ through As73),whose associated eigenvectors form the near null space.
These near null space eigenvectors are the “slow” modes that stall performance.

Log of eigenvalues of B

Figure 6: The logarithms of the eigenvalues of a typical matriz B are shown. M = 20 angles are
used, so that the null space of B has dimension 15. The eigenvalues between index 1 and index 325
are the “good” modes, while those between 326 and 573 are the near null space eigenvalues.

We show this empirically in the following way. Representative modes are selected from the
“cood” and near null space segments of the spectrum. Each such mode is used as the right-hand
side of Bw = f. Gauss-Seidel relaxation is then applied, with an initial guess of 0, to solve the
equation. Two important observations are obtained in this way. First, by computing the norm of
the residual at the end of each sweep, we may determine the convergence factor for each mode.
Second, after one sweep of Gauss-Seidel, we compute the projection of the current approximation in
the directions of all the eigenvectors of B, and plot the resulting magnitudes against the eigenvalue
index. This results in a “power spectral density” of the latest iterate. Since the initial error in
such an experiment is in the direction of a single eigenvector (the right-hand side), such a spectral
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density plot tells us to what extent the iteration mixes modes, and if the iteration excites some of
the modes, to which part of the spectrum they belong.

Figure 7 shows a typical set of results of these experiments. On the left are residual norms, as
a function of iteration sweeps, for two eigenvectors. The dashed line shows the residual norms for
the eigenvector corresponding to A5, a typical “good” mode, while the solid line gives the residual
norms for the eigenvector corresponding to As40, a typical near null space mode. In the center is
shown the power spectral density plot after one sweep with the 15-mode as the right-hand side,
while on the right is the corresponding spectral density plot for the 540-mode.

Residual Norms Spectral plot, mode 15 Spectral plot, mode 540
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Figure 7: The residual norms are shown for Gauss-Seidel applied to Bw = f using eigenvectors as
the right-hand side. Observe that for mode 15 (dashed line) the iteration converges well, while for
mode 540 the iteration stalls immediately. The spectral densities of the vectors resulting from one
relazation sweep is shown for mode 15 (center) and mode 540 (right).

The results shown in Figure 7 support our assertion regarding the modes. That is, the iteration
attenuates “good” error modes rapidly, while the iteration stalls on near null space error modes. In
addition, we see that there is mode mixing in the spectral density plots for both cases, but that it is
much more pronounced in the case of mode 540. In both cases, though, the exitation of extraneous
modes occurs predominantly in the near null space band.

Finally, the images resulting from backprojecting modes 15 and 540 are shown in Figure 8, and
again they are typical cases. The backprojected “good” modes generally appear as smooth, highly
geometric structures in image space, often as gently undulating surfaces. The backprojected near
null space modes, as the name implies, are almost invisible. They often show distinct geometric
characteristics, such as narrow subparallel striping, or isolated spikes in nearly flat images.

At this stage we have a good idea what the Gauss-Seidel method achieves. Further, we have a
fairly complete picture of where and why it stalls. We next develop multilevel methods for solving
Bw = f. We do this for three reasons. First, we believe that if the nature of the near null space
modes can be accurately determined, it may be possible to design a “coarse grid correction” to
treat the bad modes of the error. That is, we may be able to find a grid on which the bad modes
can be anihilated efficiently. Hence, we may hope to achieve multigrid acceleration on this problem.
Since the bad modes are not characterized by physical smoothness, like they are in model multigrid
problems, standard coarsening is not likely to be very effective. As with other applications that
do not possess standard smoothness properties, we must be careful to use what we know about
these bad components to devise a coarsening process that closely matches them. Our first attempt

11



Figure 8: The images corresponding to backprojecting mode 15 (left) and mode 540 (right) are
shown. The “good” mode is a gently undulating surface, while the near null space mode is nearly
black.

is based on the presumption that, at certain scales (e.g., when the number of angles is small
compared to the resolution within projections), they must be smooth within projections. We base
our multigrid scheme on this idea. A second and equally important reason for using multigrid is our
anticipation of the Spotlight CT problem, introduced in the final section of this paper. Finally, the
correct isolation of these modes that occurs naturally and efficiently in multilevel processing may
pave the way for treating them by an individualized regularization process that is better tailored
to the computational objectives.

5 Multilevel Image Reconstruction

5.1 Multilevel Projection Methods (PML)

Designing a multigrid method for a new problem is a difficult task, especially when the application
is far removed from the classical multigrid setting of elliptic PDEs. Multigrid has been extended
to a wide variety of such problems, with varying degrees of success [6, 17, 22]; multigrid design in
such instances is generally a lengthy and difficult process.

The multilevel projection methodology (PML) was developed to provide a simpler, system-
atic approach to multilevel algorithm design [15]. A basic tenet of PML design is that only the
appropriate subspaces in which the problem is to be set need to be determined. The problem
is discretized by orthogonal projections, and the projection operators in turn lead to the correct
choices for intergrid transfer operators, relaxation techniques, and coarsening schemes.

To briefly describe the fundamentals of PML, let H; and Hy be Hilbert spaces and L : Hy — Hs
be a linear operator. The continuum problem is to find u € Hy such that Lu— f = 0. Discretization
by projections is accomplished as follows.

Let S" be a finite-dimensional subspace of H;, and let ps" . H, — S" be an orthogonal
projection of H; onto S”, where the superscript h refers to a discretization parameter. We also
require a finite-dimensional subspace T" C Hy, and an orthogonal projection P Hy — Th, as
well as mappings Pqn : Sh — Hy and P : T" — Hy.

The projection operators are used to generate a discrete operator L" : S — T" by projecting

12



the action of the continuum operator L onto the subspaces, that is, the discretized problem becomes
PThL(PS hu) =0, for u € H;. This allows us to define the discrete operator for the problem by

—fh =0, for u" €S",  where L"=PT"LPS" and f"=PT"Y.

We pause here to show that the strip pixel discretization developed earlier is in fact a discretiza-
tion by projection.

Theorem 6. For each j =1: M, let Q be exactly partitioned into n(j) parallel non-
overlapping strips and let N = Z] 1n(j). Number the strips from 1:N and let ¢;(x,y)

be the characteristic function of the j* strip. Let S™ be the subspace of the Hilbert space
Hy = Ly(Q2) spanned by the set

N
{¢j}j:1 .
Then the matriz equation

Bw = f

is a discretization by projections of the problem Au = f, where A is the strip averaged
Radon transform (1) and B is the N x N matriz with entries bj = (1, Yy).

Proof: We define the various subspaces of the discretization as follows. H; and S” are defined
in the statement of the theorem. Note that (3) implies that S” = range {A*}. We take Hy = R
and define the subspace T" to be H,. Since Hy = T" = RY, we may take pT" = Iy, the N x N

identity matrix. The discrete equation will then be APS"y = f , where PS"y is the orthogonal
projection of u(z,y) onto S”, so

N *
= > wppp(z,y) = AVw
k=1

for some w € RY. Since P5" is an orthogonal projection, we must have (u — P hu) L 4; for every
¢; € S". Hence, for j =1: N,

0 = <u — PS"u, ¢j>
N
= <u - Z Wr Yk, 1/)j>
= Z I/ka 1/)]

2

Thus, if PS"y = AM'w is an orthogonal projection of u(z,y) into S”, then the vector w must
satisfy

[ pr) (o), - (w,pn)]" = Bw. (8)
But the left-hand side of (8) is just Au, so w must solve Au = Bw, and the projection-discretized
form of Au = f is just Bw =f. [ |

13



Henceforth, to keep track of the level we are examining, we use the notation B*w" = f" where
B" is the matrix defined by (4). We also adopt superscripts for use with the characteristic functions
of the strips, e.g., z/;,’;.

An important observation to be made here is that it is not necessary to know the projection
operators explicitly if the condition of orthogonal projection adequately defines the discrete operator
L,

Now we can examine how the PML method makes use of discretization by projections to build
a two-level solver. Let P5*" and PT*" be projection operators mapping the continuum spaces H;
and Hy into “coarse grid” subspaces S2h « §h ¢ Hy and T?" ¢ T" ¢ H,. The coarse grid operator
is given by L2 = pT*" [ ps™.

The two main components of any multigrid problem are relaxation and coarse grid correction.
The PML approach defines relaxation by decomposing the spaces S” and T" into sums (which need
not be direct sums) of m subspaces

m

m
sh = ZS}} and ™ = ZTZh-
(=1 =1

Any element of S can be written as a linear combination (not necessarily unique!) of the elements
of S?:

m
uh = Zalu@), where “?e) € Sp.
(=1

The ¢** relaxation step is defined by adding to the current approximation u” an element of the

subspace S? such that the projection of the residual into Tlh vanishes. A relaxation sweep is made
by performing the relaxation step for all m subspaces. Hence, relazation by projections is defined
by

Relaxation: uh — GMuh)
For /=12, ..., m
1. Determine “?e) € Sé‘ such that PTZth(uh + u?e)) — fh=o0.

2. Set uh « ul + u@).

In standard multigrid, coarse grid correction is performed by restricting the residual equation
to the coarse grid, solving for the error, interpolating the error to the fine grid, and adding it to
the fine grid approximation. This basic process is also what PML does, though in an abstract
way that is guided by the discretization. Given the coarse level subspaces S?* c S" ¢ H; and
T? c T" C H,, together with the associated projection operators, the aim is to determine an
element of the coarse space S2" that, when added to the current approximation u”, satisfies the
projection of the residual equation onto T2". Thus, coarse grid correction by projections is written
as

14



Coarse grid correction: uh — CMuh)

1. Determine u2h € S2h such that
P (L(PS"ul + PS5 u2h) — ) =0,

2. Set uh « ul + u2h.

Relaxation and coarse grid correction together form a two-level PML method that is given by

Two Level PML method: ul < PML"(u")
o ul — GM(uh).
o ul « CMuM).

The two-level PML algorithm can be converted into a multilevel scheme in just the same way
that standard multigrid schemes are developed from two-grid schemes: the exact solver in the coarse
grid correction is replaced by a recursive call u?" «+ PML*"(u*"), leading to a PML V-cycle, for
example.

6 PML Image Reconstruction

6.1 Discretization and intergrid transfers

Applying PML to equations in A is somewhat subtle [15], primarily because of the need to treat both
projection (Radon transform) and image spaces, but with the optimal pixel discretization, applying
PML to equations in B = AA* may be more direct. We have already shown that Bw" = f is
a discretization by projections of the problem Au = f onto S and T". It is easy to define coarse
subspaces S?* and T?" in a manner that leads to a useful multilevel algorithm.

Let S be the span of the N strip pixels 1/);?, where the h is some parameter that indicates the
level of the discretization (e.g., h may be the width of the widest strip pixel). Suppose for simplicity
that there is an even number of strip pixels for each of the M views, and that we number the strips
from 1} to 1/)5{, in a way so that two adjacent strips on any view are always numbered consecutively.
Then a useful subspace S?* can be constructed according to

N/2
} where ]%h = 1/)316,1 + 1/J§k (9)

S%h — g an{ 2h
p ko fp_q

Thus, each strip pixel in the coarse subspace is the union of two adjacent fine space strip pixels.
This may be viewed in physical terms as widening the aperature of the detectors, or bins.
;V:/f wjzhz/)?h, from which we
easily obtain A2 : §2h — RN/2 by (AQhu) = (1?",u). This in turn leads us to the projection
2

discretized coarse level problem B*'w?" = £2 where B?" = A% A?"" is an N/2 x N/2 matrix with
entries b?jh = < iZh, 72h>

The multilevel scheme requires interlevel transfer operators to map grid functions between the
coarse and fine levels, and a basic tenet of PML is that these operators are defined implicitly. That

With these coarse space strip pixels, we find that A2 w2h = >
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is, P5." : S — $?" and P, : §?" — S" are defined by
Pgn = PsuPS,, and PS5 = PS5 pPS"

Analogous transfers can be defined for the subspaces T?" c Th C H,.
To determine the intergrid transfer operators Pg,f " and szhh, we begin with a simple observation
based on the definition of the coarse space strips 1/)I%h.

Lemma 1. The operators A" : S* — T and A% : S?h — T2 are related by
A2h ésh?h yu

where ngh is an N/2 x N matriz given by

11

Furthermore, the adjoint operators A" : Th — Sh and A2h™ . T2h — §2h gre related by
* * 2n\ T’
A =AM (PN

Proof: Let the coarse grid strip pixel @b,%h be the union of adjacent fine grid strip pixels given by
o= b+l for k =1:N/2. Then

<¢§k717 u>
(¥ )

The first assertion of the lemma follows by partitioning the vector A"u into blocks consisting of
pairs of adjacent entries and forming the matrix ng " by placing, for k = 1: N/2, the block (1 1)
in the (2k — 1)*" and (2k)" positions of the k' row of an N/2 x N zero matrix. Matrix vector
multiplication then yields A"u.

The second assertion is established by

(i u) = (Wheoy + 0wy = (hor w)+ (W, w) = (1 1)

AZhFg2h (%h 2 77[)]2\;1/2)W2h
= (vl vl ek, ) W
. a\T
- [Ah (Pg‘,f") ]w%. i

The second part of the lemma verifies that the operator ngh gives a consistent definition to

a\T

the adjoint of the coarse space operator A2" showing that A2"" = (PghzhAh)* = Al (Pg,fh) .
Sh

Pg;h AhAh*Pthh = Pg;h BhPS%hh, we find that the standard variational conditions of multigrid are
satisfied by this discretization [5].

o\ T
Thus we may define ngh = (PS Zh) . Combining this with the observation that B2 = A%hA?h* =
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6.2 Relaxation

Following the principles of PML, we select sets of m subspaces S? and Tlh whose unions equal S”
and T", respectively. The most obvious choice is to select m = N and Sé‘ = span {1,[)1’}}, that is,
each subspace is the span of an individual strip pixel.

Lemma 2. Let Sg = span {1/)?} and Tzh = span {e?} for?=1: N, where e? is the ¢t
standard basis vector in T". Then the PML relazation on AMul = £ is implemented by
performing point Gauss-Seidel iteration on the matriz equation B'w = f".

Proof: The /*" step of PML relaxation consists of finding that value of « satisfying
PF" (AP (W + ag}) — £) =0,
where u is the current approximation to the solution, and then modifying the approximation by

ul < uh 4 az/;?. Now z/;é1 = Ah*e?, and since PS"uh € Sh, then we know that PS"yh = AV wh for
some w" € T". Hence we seek « such that

0 = PlTh (Ah(Ah*Wh +aAlel) - fh)
= PI"BM(wh + ael) — .
Noting that PKT " s accomplished by forming the inner product with eZ, then o must satisfy
(e (B"w" + aB"el) = f,

whose solution is given by
1
o = Lt —blwh,
(7

where beT is the ¢ row of B". Hence, the ¢ step of the PML relaxation is

1
wi Wi+ o (fi — by w")

which is precisely the correction of the ¢! step of Gauss-Seidel applied to B'w" = f*, [ |

6.3 Coarse grid correction

Like relaxation, coarse grid correction in the PML approach is defined by the selection of the
subspaces and the implicit intergrid transfer operators. For the problem Au = f, it is performed
by finding the element u?"* € S? that satisfies

P (APl + Py — £1) =0, (10)

where u” is the current approximation in the fine space S®. The correction is then given by
u — u" + u?". Note that

P apPS"yh = PS PT" APS W = PS5, Bl w"
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where A"*w" represents PS"u". We also know that since u?h € 5%l there is a vector y** € T?h
h 2h . h h

such that u?" = A2"*y2" Hence, PT*" ApS*"y2h = B?hy?h Noting also that pre = ng f, then

(10) becomes

P Bhwh 4+ By — S e = 0.

The correction step is thus w” < w’ + nghy%. Hence, with the operators we have constructed,
the PML coarsening step for this problem is formally the same as conventional multigrid:

1. Set £ = PS" (£ — Bhwh).
2. Solve B?y?h = £2h

3. Correct the approximation by w" « w” + ngh yh.

Of course, as with any multigrid algorithm, in practice the exact solve on the coarse grid is
replaced by a recursion, so that the only time an exact solution is computed is on the coarsest
subspace. To form such a recursion in the strip pixel PML setting, we need only continue defining
coarser spaces S/, for j = 1,2,.... This is done by taking the strip pixels that generate the
new subspace to be the pairwise union of strip pixels in the current subspace, just as was done to
produce S?* from S*. Once this is done, a PML V-cycle can be defined in the usual way.

PML V-cycle: wh < PMLV (wh, B £h)

1. Relax v, times on B"x" = f" with initial guess

wh.

2. If S" represents the coarsest level, go to 3. Other-
wise:
(a) £2" « PS5 (f* — B'wh)
(b) w2 0.
(c) w?h « PMLV (w2l B2 £2h)
(d) wh « Wh—i—Pg;thh.
3. Relax v times on B"x" = f" with initial guess

wh.

6.4 Numerical Performance

Figures 9 and 10 display two examples of the image reconstructions obtained with the PMLV
algorithm. The pair of images in Figure 9 were obtained using 20 views with 32 detectors per
view, and restricting the image to lie in the unit square. The data were generated by projecting
the exact image on the left, while the reconstruction of the image by PMLV is shown on the right.
The reconstruction was made using 3 PMLV cycles with 2 relaxation sweeps on the downward leg
of the V and one relaxation sweep on the upward leg. The Shepp-Logan phantom was used for the
reconstruction in Figure 10, which was obtained from 64 views with 64 detectors per view. Again,
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Figure 9: The performance of the PMLV method may be observed by comparing the actual (left)
and reconstructed images (right) of a “brain phantom”. The reconstruction was obtained using 3
PMLYV cycles with 2 relazation sweeps on the downward leg of the V and one relazation sweep on
the upward leg. The image on the left was used to generate the data used in the reconstruction, with
20 angles and 32 detectors per angle.

the image on the left was used to generate data for the multilevel reconstruction (right), which was
made from 3 PMLV (2,1)-cycles.

To compare the performance of PMLV and Gauss-Seidel, let the work entailed by one sweep of
Gauss-Seidel on the finest level be one work unit (WU), which is an O(N?) operation. Computation
of the residual requires approximately one WU. The work required for one PMLV-cycle, using vy +1»
sweeps of Gauss-Seidel on each level, is then be bounded by

1 1 4
HNnl+-+—=+ ) = - 1).
(1 +va+1)( MVRET R ) 3(u1+u2+ )

PMLV was applied to several reconstruction problems, using several different geometries. The
performance of the algorithm in all tests was similar, and may be summarized by examining the
results of a typical suite of experiments. In these tests the parameters 1y = 2 and vy, = 1
gives the number of iteration sweeps, respectively, descending and ascending through the V-cycle.
Hence, one V-cycle requires approximately % WU. The problem was coarsened to the coarsest
possible level, giving one strip per view and a problem of size M x M at the coarsest level. Figure
11 compares the typical performance of Gauss-Seidel to the PMLV algorithm for a problem with
32 detectors over 20 angles.

It is clear from Figure 11 that, even for this relatively small problem, PMLV initially outperforms
Gauss-Seidel. However, continued iteration of Gauss-Seidel eventually achieves similar results at
similar costs. We believe this is due largley to the fact that the bad modes do not possess the
physical smoothness characteristic of bad modes in elliptic PDE problems, so that coarsening by
row-lumping within projections does not entirely succeed at eliminating the bad modes. We think
that this may be caused by the problem entering a scale regime where there is close coupling
between the projections. This is likely to mean that a special lumping of rows is needed, where the
oscillatory but possibly regular pattern of these components across angles is taken into account.
Note that the slopes at the right end of the curves indicate that further iteration may favor PMLV.
However, it is important to recall that the ultimate goal is quality image reconstruction, and that
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Figure 10:  The reconstruction on the right was obtained using the multilevel method from data
generated from the image on the left, using 64 angles and 64 detectors per angle. The reconstruction

was obtained using 3 PMLV cycles with 2 relazation sweeps on the downward leg of the V and one
relazation sweep on the upward leg.

Performance Plots

\ -- PMLV

\ __ Gauss-Seidel

log(norm(residual))
5

Figure 11: Comparison of the performance of Gauss-Seidel and PMLV. The logarithm of the residual
norm s plotted as a function of the number of work units required to attain it.
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Figure 12: Ezact image (left), minimum norm solution (center), and PMLV solution (right)

the residual norm may not be a reliable measure of success. It is also important to recall the
ill-posed nature of reconstruction. Consider the problem Bw = f, whose exact solution (in the
least squares sense) is

w = B'f,

where BT is the psuedo-inverse of B . In terms of the singular value decomposition B = ULV,
the solution w can be expressed as

r 1 T r 1
w = Lz:la—ivzui ] f = ;U—ivz < u;,f >,
where the 0;’s are the singular values, u; and v; (the left and right singular vectors of B) are the
columns of U and V, and » = rank(B). If there is measurement noise in the data, so that instead
of f the data are f+¢, then solution components corresponding to small singular values will magnify
this noise. These are the components in the near null space that are slow to be recovered. Thus,
continued iteration after the procedure stalls in an attempt to recover these slow components has
the potential to corrupt the solution with magnified noise [11, 19].

Experiments have shown, in fact, that it is possible to drive the residual norm to zero, finding
one of the solutions to the linear system, and have reconstructed images that are of poor subjective
quality, perhaps worse than that of early iterates. Figure 12, for example, displays an exact image
and two reconstructions of the data for that image. One reconstruction is made by computing
w = B'f, while the other is made by running 3 PMLV cycles. The residual norms are 1.8 x 1013
(pseudoinverse) and 4 x 10~% (PMLV), but it can be seen that PMLV has produced a somewhat
better reconstruction.

Such problems require some form of regularization to prevent the ill-posedness from completely
corrupting the approximation. One way to do this [18] is to stop iterating when the algorithm
begins to stall. An ad hoc approach to this is to measure the difference between successive residual
norms, and stop iterating when a tolerance is achieved. A potentially more effective stopping
criteria exists [20], based on a newly developed convergence theory for multilevel algorithms [7],
but this is beyond the scope of interest here.
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7 Spotlight CT Image Reconstruction

Often, one desires high resolution in a certain region of the image, for example, where a tumor is
suspected. Discretizing the entire image space at a fine resolution may be impractical, as this leads
to extremely large systems of equations. An attractive alternative is to discretize the region of
special interest at a fine resolution and the remaining image space at a coarser resolution, leading
to a composite grid problem. This is called spotlighting the region of interest. Numerous multigrid
methods have been developed for handling composite grid problems [2, 16, 21]. One such method
that we develop in the next section is a consequence of PML methodology.

7.1 Fast Adaptive Composite Grid (FAC)

The spotlight CT problem is essentially a composite grid problem, in which an operator equation
Lu = f must be solved on a composite grid Q% comprised of a global coarse grid Q2" and one or
more local refinement grid Q" (the refinement grid may itself be a composite grid, which permits
recursive refinement). Fast adaptive composite grid methods (FAC) were developed [14, 16] in
order to utilize multigrid technology to treat such problems efficiently. It comes from the PML
methodolgy by simply restricting the fine grid subspaces to local collections of detectors.

FAC succeeds because it handles the composite grid as a nested sequence of regular grids that
can be treated independently using virtually any regular-grid method. The key ingredients lie in
having appropriate representations of the operator and intergrid transfer operators. Thus, grid
functions u must be representable on the composite, global, and refinement grids (uf, u?", u"), and
operators must exist to transfer grid functions between these grids ( I ,’1‘ (k5 Qf I,%h (k5 2k,

If% : Q- Qb and Izﬁh : Q2P — Q). Finally, it is critical that the operator L be representable
on these grids (L%, L?" L"). In general, the details of these operators and representations can be
developed in a straightforward fashion once the grids are defined; the details, however, are very
technical and can be found in [12, 14, 16]. Once the operators and grids are defined, FAC proceeds
in the following two-step sequence:

Step 1: Set F2h Iih(f@—L@u@), uh — (L2071 f2h b uﬁ—l—fghu%
Step 2: Set fh %Ig(f@—LEU@), u — (L)L fh, UQFUE"‘I%“}Z'

Despite this formal definition, FAC need not utilize exact solvers on the global coarse grid or
the refinement patch. Historically, FAC has been used predominantly with iterative methods [14].

7.2 The spotlight grid

We utilize FAC methodology to devise a discretization for the spotlight CT problem. We begin
with a global grid Q2" generated by the natural pixels 1/1]2-". We next add a refinement grid Q" by
forming strips 2/)?. For each view we choose pairs of strips whose union conforms exactly to one of
the global strips. As a very simple example, consider the discretization given by three views, each
consisting of four strip pixels (Figure 13, left). The resulting global (coarse grid) operator is the
12 x 12 matrix Byj, o5, the matrix whose (j, E)th entry is b?h = <1/)J2-h, Q/)]%h>. The refinement grid Q"

is formed by partitioning one strip from each view into two strips. Hence 13" generates % and 5.
Similarly, strips 3 and 4 on the refinement grid are a partition of 12" and ¢?? generates refinement
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global Refined
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Figure 13: The global grid Q" (bottom left) is generated by strips from three views (top left), while
the refinement patch (bottom right) is generated by finer strips from the three views (top right). The
union of all strips generates the composite grid (bottom center).

strips 5 and 6 (Figure 13, right). The refinement strips 1,[),’6‘ generate a refinement patch operator
By, p,, formed in the usual manner by b? = (2/)?, Yl giving a 6 x 6 matrix in the simple example.
The composite grid Q% formed in this manner is shown at the bottom of Figure 13.

The basic assumption of the discretization, that the unknown image is a linear combination
of the strip functions, is unchanged. The total number of strips is N = Nyj, + Nj, the sum of
the number of strips on the global grid and the refinement patch. Hence, the image u = Al'w is
given by (3) where 9; = 1/;]2-h if 1 <j < Noy and ¢ = 1/;;?_N2h if Nop, < 7 < N. We can define the
composite grid version of AL by (Au) j = (4}, u) using the same ordering of the ¢;’s. The discretized

composite grid operator By, ;, may then be computed in the standard way, by B, = A@A@*, and
it has, as its (7, k)" entry, the element b]h—-k = (4j, ). This method accounts for the interaction of
the refinement grid with the global coarse grid, including the inner products between the fine strips
and coarse strips. In fact, this leads to a natural partitioning of the composite grid operator as

By, — Bopon  Bopp
== Bpoan  Bpp

We observe that by the ordering of the 1);’s and the definition of AL" we are led to a natural
definition of the composite grid unknown, namely u2 = (w?*» w")T. Naturally, we must have a
compatible composite grid data vector f& = (£2" £*)T. Conceivably, the coarse grid data and the
refinement data could be acquired in separate recordings, but it is more likely that a single data set
be generated, from which the coarse and refinement data are derived. The composite grid problem

Bﬁ,ﬁwﬁ = f2 then becomes
Bopon  Bapp w2h _ £2h (11)
Bhan  Bup wh £ho )
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Figure 14: The “exact” image used to generate data for the spotlight tomography problem is shown
on the left. In the center is shown the PML reconstruction on the global coarse grid Q2", using
data generated for 20 angles with 32 strips per angle. On the right is the spotlight reconstruction,
generated using data for strips half the width of the global coarse grid, over the central region of the
image.

7.3 FAC Implementation

It can be shown [14, 20] that FAC in this setting is equivalent to applying two steps of block
Gauss-Seidel iteration to the system (11). That is, FAC takes the two step form:

Step 1: Set w2« B;hlﬂh(f% — Bop pwh),

Step 2: Set wh B,;}ll(fh — Bh,ZhWZh)

These steps are formal, of course, since we know that Boj, o is singular. In fact, we take w < B~f
to mean “solve Bw = f”, which need not be done with exact solvers. In principle we may apply any
method to these subproblems: ART, filtered backprojection, Fourier methods. A natural choice is
an iterative method, such as Gauss-Seidel or multigrid. Noting that each of the steps are solving a
“residual” equation on one of the grids, this process may be viewed as one of multilevel correction.

The composite grid operator Bj,j, possesses a host of useful and interesting properties [20],
related to a family of useful properties generated by the discretization method and inherent in
the global and local operators Bap o, and By, . Space limitations do not permit elaboration here,
nor is there room for a performance analysis. A rigorous treatment of the method, including a
performance assesment, is forthcoming [8, 20].

We demonstrate the promise of the spotlight method with a simple example. A “brain” phantom
is generated, consisting of a uniform grey region within the skull (high-density elliptical ring).
Embedded in the grey region is a small square high-density region. Data is generated by integrating
the product of this image with the characteristic functions of the strips representing a 20 angle, 32
bins-per-angle discretization. The square of high density has width equal to one half the width of
the individual strips making up the global coarse grid. The “exact” image is shown on the left of
Figure 14, while the global coarse grid reconstruction is shown in the center.

A single-level refinement region is generated by refining one half of the strips in the center
of the set for each angle, using strips of half the width of those on the global coarse grid. The
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Figure 15: The central portions of global coarse grid (left) and spotlight (right) reconstructions of
Figure 1/ are shown in this figure. The image reconstructed from the composite grid data clearly
shows the object of interest, while the global coarse grid image fails to resolve it.

reconstructed image using the spotlight method with 1 cycle of FAC is shown on the right of Figure
14. Both the global coares grid and refinement grid portions of the composite grid were solved
using 3 V-cycles, each with 2 relaxation sweeps on the downward leg and 1 relaxation sweep on the
upward leg. The high-density region, which does not show in the global coarse-grid reconstruction,
appears in the spotlight reconstruction. This is demonstrated a bit more clearly in Figure 15, in
which only the central region of each of the reconstructions is shown.

We chose this example because of its clarity for the reader. However, it does not really illustrate
the practical benefits of FAC because it costs essentially the same as would solving the globally
refined problem. In practice, we envision that FAC will be used for spotlighting smaller features
of the image, and to much finer detail. That is, rather than refining one half of the strips on each
angle by splitting them once, we foresee refining a much smaller region, such as one tenth of the
strips along each angle, to a resolution four or eight times that of the global coarse grid. In such
settings the benefits of spotlighting would be very substantial.

8 Concluding Remarks

The results presented here are encouraging, in that they demonstrate that multilevel methodology
can be applied to the image reconstruction problem with some hope of success. The benefits of
multilevel reconstruction, the way we have developed it, remain somewhat limited, although we do
see images of quality equal to those produced by Gauss-Seidel, achieved at somewhat lower cost.

We believe that this limitation may stem from restricting the coarsening to be within projec-
tions. That is, we have reduced only the number of detectors per angle, not the number of angles
themselves. Evidence gathered by examining the near null space components suggests that angle
coarsening is essential for efficiency at coarse grain resolution, which multigrid methods always face.
This is currently being explored.

The results presented here show great promise in the area of spotlight tomography, for cases
where a finer resolution image is needed over portions of the image space. It is not feasible to
compute entire images at the fine resolution, since such problems lead to extremely large, dense
systems. As the simple example shows, however, PML can be used to formulate the spotlight
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problem to use FAC technology in a way that may lead to practical algorithms.
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