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ABSTRACT 

Precision control of unmanned underwater vehicles (UUVs) requires accurate knowledge 

of the dynamic characteristics of the vehicles. However, developing such models are time 

and resource intensive. The problem is further exacerbated by the sensitivity of the 

dynamic model to vehicle configuration. This is particularly true for hovering-class 

UUVs since sensor payloads are often mounted outside the vehicle body. Methods are 

investigated in this thesis to learn the dynamic model for such a hovering-class UUV in 

real time from motion and position measurements. Several system identification 

techniques, including gradient estimation, Bayesian estimation, neural network 

estimation, and recursive linear least square estimation, are employed to estimate 

equations of motion coefficients.  Experimental values are obtained for the surge, sway, 

heave, and yaw degrees of freedom.  Theoretical results are obtained for the roll and pitch 

degrees of freedom. The experimentally obtained model is then compared to the true 

vehicle behavior. 

 v 



THIS PAGE INTENTIONALLY LEFT BLANK 

 vi 



TABLE OF CONTENTS 

I. INTRODUCTION........................................................................................................1 
A. MOTIVATION ................................................................................................1 
B. LITERATURE REVIEW ...............................................................................2 
C. SCOPE OF THIS WORK ...............................................................................5 

II. SEABOTIX VLBV300 REMOTELY OPERATED VEHICLE ..............................9 
A. OVERVIEW .....................................................................................................9 
B. VEHICLE SPECIFICATIONS ....................................................................10 
C. CAVR VEHICLE CONFIGURATION .......................................................11 
D. PROPULSION MODEL ...............................................................................12 

III. GENERIC MOTION MODEL .................................................................................17 
A. FULL EQUATIONS OF MOTION .............................................................17 
B. ASSUMPTIONS AND SIMPLIFIED EQUATIONS .................................22 

IV. SYSTEM IDENTIFICATION ..................................................................................25 
A. PARAMETER ESTIMATION FOR A STATIC SYSTEM ......................25 

1. Recursive Linear Least Squares .......................................................25 
2. Neural Network ..................................................................................26 
3. Gradient Estimator ............................................................................32 
4. Bayesian Filtering ..............................................................................34 

B. PARAMETER ESTIMATION OF A DYNAMIC SYSTEM ....................38 
C. PERSISTENCE OF EXCITATION ............................................................39 

V. SYSTEM IDENTIFICATION APPLIED TO VLBV300 ......................................43 
A. RLLS ESTIMATION ....................................................................................45 

1. RLLS Estimation Applied to Simulator ..........................................45 
2. RLLS Applied to SeaBotix vLBV300 ...............................................47 
3. Conclusion: RLLS Estimator............................................................61 

B. NEURAL NETWORK ESTIMATION .......................................................63 
1. Neural Network Applied to Simulator .............................................63 
2. Neural Network applied to SeaBotix vLBV300 ..............................68 

C. GRADIENT ESTIMATOR ...........................................................................71 
D. BAYESIAN FILTERING .............................................................................73 

VI. CONCLUSIONS ........................................................................................................77 
A. SUMMARY ....................................................................................................77 
B. FUTURE WORK ...........................................................................................79 

APPENDIX A. 6 DOF MOTION SIMULATOR MATLB CODE ..........................81 

APPENDIX B. SIMULINK DIAGRAMS ..................................................................85 

LIST OF REFERENCES ......................................................................................................87 

INITIAL DISTRIBUTION LIST .........................................................................................89 

 
 vii 



THIS PAGE INTENTIONALLY LEFT BLANK 

 viii 



LIST OF FIGURES 

Figure 1. SeaBotix vLBV300 miniROV platform (From [15]) has been modified to 
allow tethered, autonomous operations..............................................................9 

Figure 2. Horizontal and vertical thruster configuration of the vLBV300 ......................11 
Figure 3. Body reference frame of the vLBV300 ...........................................................12 
Figure 4. Thruster testing showing surface effects ..........................................................15 
Figure 5. Bounded propulsion model for a single thruster on the vLBV300 

compared with experimental data ....................................................................16 
Figure 6. A basic neural network showing the network output expressed as a sum of 

weighted inputs. ...............................................................................................27 
Figure 7. Diagram of an adaptive neural network (After [16]) .......................................29 
Figure 8. Network architecture of a NARX created in Matlab .......................................31 
Figure 9. Convergence of simulator surge parameters ....................................................46 
Figure 10. SeaBotix vLBV300 in the instrumented NPS dive tank ..................................48 
Figure 11. Simulated surge displacement compared to experimental surge 

displacement at a PWM command of 20 .........................................................50 
Figure 12. Simulated surge velocity compared to experimental surge velocity at a 

PWM command of 20 ......................................................................................50 
Figure 13. Simulated surge displacement results compared to measured surge 

displacement results at a PWM command of 50 using coefficients 
determined at a PWM command of 50 ............................................................54 

Figure 14. Simulated surge displacement results compared to measured surge 
displacement results at a PWM command of 20 using coefficients 
determined at a PWM command of 20 ............................................................54 

Figure 15. Comparison of surge displacement to experimental displacement using 
coefficients determined at PWM command of 50 and a simulated run at a 
PWM command of 20. .....................................................................................55 

Figure 16. Surge displacement comparison using linear only damping model .................59 
Figure 17. Convergence of surge coefficients at high speed .............................................60 
Figure 18. Convergence of heave coefficients at high speed ............................................61 
Figure 19. Diagnostic plot of NARX with three nodes and two time delays ....................64 
Figure 20. Diagnostic plot of NARX with ten node and two time delays ........................64 
Figure 21. Comparison of actual surge velocities to ten node and three node NARX .....65 
Figure 22. Diagnostic results for surge element of complex NARX ................................67 
Figure 23. Comparison of surge velocity response ...........................................................68 
Figure 24. Diagnostic results for velocity mapping, three node, two delay NARX in 

surge direction only..........................................................................................69 
Figure 25. Comparison of three and one node NARXs to measured data ........................70 
Figure 26. GE results in the surge direction with no noise added .....................................72 
Figure 27. GE results in the surge direction with added noise. .........................................73 
Figure 28. RLLS estimator ................................................................................................85 
Figure 29. Gradient estimator ............................................................................................85 
Figure 30. Simulator ..........................................................................................................86 

 ix 



THIS PAGE INTENTIONALLY LEFT BLANK 

 x 



LIST OF TABLES 

Table 1. General characteristics (From [15]) .................................................................10 
Table 2. Tether characteristics (From [15]) ...................................................................11 
Table 3. Comparison of hydrodynamic parameters .......................................................47 
Table 4. Normalization variables used in the Prime I system (From [1]) ......................51 
Table 5. Parameter estimation results for SeaBotix vLBV300 at high speed ................61 
 
 

 xi 



THIS PAGE INTENTIONALLY LEFT BLANK 

 xii 



LIST OF ACRONYMS AND ABBREVIATIONS 

AUV Autonomous Underwater Vehicle 

CAVR Center for Autonomous Vehicle Research 

DOF Degree(s) of Freedom 

EBP Error Back Propagation 

EOD Explosive Ordnance Disposal 

GE Gradient Estimator 

HD High Definition 

NARX Nonlinear Autoregressive (with External Input) Neural Network 

NIO Nonlinear Input-Output Neural Network 

NN Neural Network 

PA Port, aft propeller on the vLBV300 

PE Persistence of Excitation 

PF Port, forward propeller on the vLBV300 

PWM Pulse Width Modulation 

RLLS Recursive Linear Least Square Estimator 

ROV Remotely Operated Vehicle 

RPM Revolutions per Minute 

SA Starboard, aft propeller on the vLBV300 

SF Starboard, forward propeller on the vLBV300 

SV Starboard, vertical propeller on the vLBV300 

THAUS Tethered Hovering-Class Autonomous Underwater System 

UUV Unmanned Underwater Vehicle 

VP Port, Vertical propeller on the vLBV300 

  

 xiii 



THIS PAGE INTENTIONALLY LEFT BLANK 

  

 xiv 



ACKNOWLEDGMENTS 

First and foremost, I would like to thank my beautiful wife, Alisha, for her love 

and support throughout this process.  Without her wit, intelligence, and friendship none 

of this work would have been possible.  I would also like to greatly thank Dr. Noel du 

Toit, my adviser, for his support and patience.  His dedication to the work and his 

students is unparalleled at the Naval Postgraduate School.  Finally, I would like to thank 

Dr. Vladimir Dobrokhodov for his incredibly valuable assistance and his willingness to 

drop whatever he is doing to share his vast knowledge with a confused student. 

 xv 



THIS PAGE INTENTIONALLY LEFT BLANK 

 

 xvi 



I. INTRODUCTION 

A. MOTIVATION 

Historically, robotics research has focused on individual capabilities, such as 

traveling between points and obstacle avoidance. However, a fundamental shift is 

occurring: robots are increasingly being put to work in real-world environments. These 

environments tend to be complex and cluttered, and the tasks are complicated, requiring 

advances in controls, sensing, perception, and communication. In particular, dive 

operations are inherently dangerous. Physiological effects limit dive duration and 

frequency and necessitate a large support crew, increasing operational costs. The sensory-

deprived underwater environment makes navigation, communication, and documentation 

challenging. The Center for Autonomous Vehicle Research (CAVR) at the Naval 

Postgraduate School (NPS) is developing a Robotic Diver Assistant System (RDAS) to 

provide autonomous support to diver teams, which has the potential to significantly 

enhance underwater operations. The RDAS project is aimed at providing utility to the 

diver team (e.g., illumination, improved situational awareness, etc.) without burdening 

the team with vehicle command and control, thereby augmenting the diver team and 

allowing more effective, efficient, and safer operations. This program seeks to go beyond 

co-inhabitance of man and machine—the aim is to fundamentally enable the 

transformative capability of robots as underwater co-workers. 

The RDAS finds application in many naval operations, but of particular interest is 

the potential benefit to the salvage, explosive ordinance disposal (EOD), and undersea 

rescue operations of the Department of the Navy.  This application requires operation of a 

hovering-class unmanned underwater vehicle (UUV) in close proximity to humans as 

well as other features (e.g., structures, the sea bottom, etc.), which in turn requires 

precision control of the vehicle.  The application will require testing of a vehicle in 

multiple configurations (i.e., different payload combinations) as well as the development 

of various perception and control strategies.  An accurate dynamic model is required to 

facilitate precision control. However, these hydrodynamic models are notoriously time 

and resource consuming to develop in practice. Developing individual models for all 
 1 



possible configurations is impractical. An effective and efficient method for learning the 

dynamic model online is necessary to execute the RDAS program as well as other closed-

quarters operations.   

The goal of this research is to learn a parameterized dynamic model for an UUV 

in real time, and to automate the procedure where possible.  Each change in payload 

configuration changes the weight distribution, center of buoyancy, and drag properties of 

the platform (i.e., changes the dynamics), requiring a new model.  Initially, a propulsion 

model is developed using experimentally obtained thruster data, then the full equations of 

motion for a free body are developed.  Then, several assumptions are made to simplify 

these equations which are in turn used to create a vehicle simulator.  Various techniques 

in System Identification and probabilistic state estimation (that account for uncertainties 

in the measurement and modeling process) are investigated to develop a parametric 

model of the system as well as a non-parametric, neural-network-based approach.  These 

methods are investigated to determine which of the four are able to be used for this 

application as well as the strong and weak points of these methods.  The applicability of, 

and results from, these results are tested using the developed simulator and then either 

applied to the vLBV300 or discarded.  This work culminates in a hydrodynamic model of 

the SeaBotix vLBV300 remotely operated vehicle (ROV), which is the development 

platform for the CAVR robotic diver assistant. 

B. LITERATURE REVIEW 

An accurate dynamic model for an UUV is required to inform the parameter 

learning process, for simulation of a vehicle, and for validation of experimental results.  

Fossen [1] presents a detailed approach exploring the kinematics and dynamics that make 

up a complete model for a generic six degree of freedom underwater vehicle.  He presents 

an approach using the Newton-Euler formulation based on Newton’s second law 

 C Cm fυ =  (1) 

where m is the mass of a body, Cυ  is acceleration and Cf is force acting on the body.  It 

can easily be seen from Equation (1) that if no force is acting on the body then 
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acceleration will be zero and the body will move at a constant speed.  Fossen then 

describes Euler’s first and second axioms to Newton’s second law, 

        C C C Cp f p mυ
   (2) 

        C C C Ch m h I ω

   (3) 

where Cf  and Cm  are the forces and moments acting on a body referenced to its center 

of gravity, IC is the inertia tensor about the body’s center of gravity, and ω  is the angular 

velocity vector.  These axioms describe Equation (1) in terms of the conservation of 

linear, Cp , and angular momentum, Ch , which is very convenient.  Fossen applies these 

concepts to develop his generic, six degree of freedom (DOF), nonlinear, and dynamic 

equations of motion.  This generic model is then specialized for the development 

platform to account for the unique design, relatively slow speeds of operation, and high 

level of maneuverability.  The results from [1] are extensively used in this research.  

System identification, also known as model learning, attempts to learn model 

parameters by systematically exciting various dynamic modes of the vehicle and is an 

established research field.  System identification techniques are distinguished by when 

they are applied to gathered data (online vs. offline) and what type of model is of interest 

(parametric vs. non-parametric).   

Offline approaches capture the vehicle motion for a commanded behavior and 

then choose parameters that best represent all the data offline (i.e., regression techniques, 

such as Linear Least Squares Regression, which minimize the compounded error for the 

whole data set).  Slotine and Li [2] and Astrom and Wittenmark [8] present various 

analytical and computational methods, including the gradient estimator (which minimizes 

the instantaneous estimation error) and versions of the least square estimator for system 

identification to handle time-varying parameters and ill-conditioned learning problems.   

Alternatively, model parameters can be estimated online: the estimate is 

continually updated as new data becomes available. The estimation process itself is 

considered as a dynamic process, to which stability and convergence analyses can be 

applied. It is often possible to adapt offline techniques for online implementation (e.g., 
 3 



recursive least squares regression), or to develop new techniques entirely (e.g., Gradient 

Descent methods) [2, 8].  Andrieu et al. [12] investigates a method for online, point 

estimation of static parameters for general state-space models.  Kugler [13] presents a 

non-linear parameter to output operator approach that allows it to be applied to both finite 

and infinite dimensional differential equations.  Thrun and Bulgard [3] present a 

probabilistic approach based on the Bayes filtering process for online state estimation that 

accounts for noise and uncertainty in the state and process measurements.  The Bayesian 

approach is premised on the concepts of controllability and observability.  A method for 

determining both the controllability and observability of a system is presented by Ogata 

[18]. 

Offline system identification techniques have been applied to UUVs. Doherty [6] 

and Prestero [7] both employed various analytical techniques based on assumptions, 

geometry, and empirical formulae to determine the hydrodynamic coefficients of the 

Hydroid REMUS100 UUV.  Prestero’s work dealt with a typical REMUS while Doherty 

derived coefficients for the “long-body” REMUS equipped with cross body thrusters.  

Both authors used experimental data to confirm their analytical findings. Chen et al. [5] 

used a projective mapping method to estimate the dynamic parameters of a hovering class 

UUV similar to the work presented here.  A vision-based system is used to capture 

several images of a UUV during specialized maneuvers to track the vehicle position.  Eng 

et al. [9] used a free decay pendulum technique to measure the hydrodynamic coefficients 

directly.   

This technique differs from the free-motion techniques mentioned above since the 

vehicle is mounted in a rig that constrains the vehicle motion. The method is based on the 

classical decay test with damped pendulum motion.  A UUV is mounted to the pendulum 

rig and allowed to swing freely.  It’s planar and angular motion is captured on video 

which was then processed to determine Cartesian position coordinates, as well angular 

rate.  This allowed for analytical computation of hydrodynamic parameters using the 

pendulum dynamics, and not the free-motion vehicle dynamics, limiting applicability to 

the problem at hand. Bahrke [19] used analytical as well as on-line statistical estimation  
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to estimate the speed, steering, and diving parameters of the equations of motion for the 

NPS AUV II vehicle.  A Kalman filter based parameter estimator is used to estimate 

parameters. 

Parametric models are informed by the physical characteristics of the system 

derived from first principles (e.g., the generic hydrodynamic model developed by Fossen 

[1]).  The generic hydrodynamic model informs the basis functions required to model the 

system response, and the parameters define the relative weighting of these basis 

functions.  Alternatively, generic sets of basis functions can be used to model the system 

dynamics.  One such example is neural network representations, where, for example, 

radial basis functions are used.  System identification techniques can similarly be used to 

learn the relative weights of these basis functions.  These techniques are referred to as 

non-parametric approaches, a misnomer since the model is in fact parameterized, but 

these parameters do not have physical meaning.  Non-parametric model representations 

for dynamical systems, such as neural networks, have been investigated (e.g., Scarselli 

and Tsoi [10]).  According to Scarselli, a neural network with sufficient number of nodes 

is capable of learning and representing any dynamic system.  These non-parametric 

models are less desirable since they lack physical meaning, but accurately capture 

complex input-output relations and thus find application is simulator development.  A 

neural network approach has been applied to a UUV by Juan et al. [14].  The motion 

model of a Beaver underwater vehicle was developed using a wavelet neural network 

while the thruster model was developed using an improved radial basis function neural 

network. 

C. SCOPE OF THIS WORK 

This work develops a non-linear model, based on the rigid body dynamics and 

hydrodynamic force and moment analysis presented by Fossen, for a hovering-class UUV 

and learns the model parameters using various system identification techniques.  This 

specialized model is first implemented in simulation using known coefficients (obtained 

from Chen et al. [5]), which is used to verify the system identification and online 

parameter estimation techniques (e.g., error convergence and parameter estimate 
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convergence to the true values, persistence of excitation, etc.).  As a part of this analysis, 

the sequence of excitations is identified to learn the relevant model parameters.  Next, 

these system identification techniques are applied to the physical system, the SeaBotix 

vLBV300, to obtain the parameters for the simplified hydrodynamic model. Position and 

orientation measurements, obtained from an instrumented dive tank environment and 

external motion capture system, are used to learn the dynamic model of the UUV in real-

time.  The predicted system response from the model is compared to the true response of 

the platform to validate the model.  Similarly, a probabilistic estimation technique is 

evaluated for the system at hand.  Finally, a non-parametric model is developed to 

evaluate applicability and limitations of this approach.  The thesis is structured as 

follows: 

Chapter II presents a brief history of the platform of interest, the SeaBotix 

vLBV300.  An overview of its current and potential applications is presented as are 

appropriate vehicle specifications provided by the manufacturer. 

Chapter III presents the development and specialization of the hydrodynamic 

(parametric) model for a hovering class UUV.  The appropriate assumptions about the 

UUV and its assumed operating environment are presented as is the proposed reference 

frames.  These assumptions allow for the simplification of the hydrodynamic model.  

Next, the appropriate and complete kinematic and dynamic equations of motion are 

developed and presented.  Finally, a propulsion model is developed for the individual 

thrusters as well as the vectored thruster system and presented.   

Chapter IV discusses the various system identification techniques investigated.  

Recursive methods such as prediction error based techniques using gradient estimators or 

least-squared estimators are investigated as are a statistical approach based on Bayesian 

Inferencing, and a non-parametric approach based on neural networks.   

Chapter V presents the results of a simulated parameter estimation experiment 

based on known parameters from previous research [5].  The framework for the 

parametric model derived in Chapter III and the system identification techniques derived 

in Chapter IV are validated and results presented. Also presented are the parameter 
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estimation results and a complete hydrodynamic model for the vLBV300 vehicle 

developed from real world implementation of the techniques discussed in Chapters III 

and IV.  This chapter also presents a verification of the results as well as sequential 

procedure for determining the dynamic coefficients of a UUV using on-line parameter 

estimation based on conclusions obtained from the experimental data 

Chapter VI presents conclusions based on the results and limitations identified by 

this work.  It also presents areas for further refinement or research and conclusions on 

this work. 
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II. SEABOTIX VLBV300 REMOTELY OPERATED VEHICLE 

A. OVERVIEW 

The vLBV300, manufactured by SeaBotix, Inc. of San Diego, California, is a 

MiniROV/Hovering class remotely operated vehicle.  It is operated through a tether and 

can be controlled with a joystick.  Data and power are transmitted through the tethered 

interface.  For propulsion and maneuvering the vLBV300 uses six brushless DC thrusters, 

four of which are vectored in the horizontal plane (surge, sway, yaw), the angles of which 

can be manually adjusted, while the remaining two are fixed in the vertical plane (heave, 

roll).  As a result, the vehicle allows control in 5 degrees of freedom (DOF) when 

individual thrusters are commanded, or 4 DOF when controlled via the joystick. The 

vehicle can be equipped with a variety of sensors including a controllable HD camera, 

rear and side cameras, sonars, as well as a grabber arm for in-water intervention.  A 

typical configuration is shown in Figure 1.   

 
 

Figure 1.  SeaBotix vLBV300 miniROV platform (From [15]) has been modified to 
allow tethered, autonomous operations. 

Based on its specifications, SeaBotix recommends the vLBV300 for a variety of 

applications including work on offshore oil or gas platforms, coastal and inshore surveys, 

maritime security of ports, harbors and vessels, or long line penetration or pipe 
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inspections.  The vehicle is operated in tele-operated mode for these applications: a 

human pilot controls the vehicle via the joystick in the surge, sway, heave, and yaw 

directions.  

In the current research, a different application is investigated: autonomous close-

proximity operations in the presence of static and dynamic obstacles (i.e., human divers).  

The vLBV300 is particularly well suited to proximal operations for the following 

reasons: 

• The vehicle has 5 degrees of freedom, including surge, sway, heave, yaw, 
and roll.  Controllability in the sway direction is of particular importance 
for proximal operations to ensure diver safety.  

• The vehicle is light-weight (i.e., easy to deploy and recover), neutrally 
buoyant (to ensure safe operations among divers), and powerful enough to 
maneuver among divers and carry considerable payloads. 

• The vehicle has an open-frame architecture, allowing various payloads to 
be integrated with relative ease. 

• A computer control interface has been developed in addition to the 
joystick interface that allows autonomous operation of the vehicle.  A 
high-level control interface allows computer control via the joystick 
commands, while a low-level control interface allows individual thrusters 
to be commanded. 

B. VEHICLE SPECIFICATIONS 

Specifications for the vehicle are provided by the manufacturer.  Table 1 lists 

general specification of the vLBV300 and Table 2 lists tether specifications.  The specific 

vehicle setup for the scope of this work is discussed in the next section.   

Depth Rating 304.8 m 
Length 0.625 m 
Width 0.39 m 
Height 0.39 m 

Diagonal 0.55 m 
Weight in air 18.09 kg 

Table 1.   General characteristics (From [15]) 
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Diameter 0.889 cm 
Length 250 m (nominal) 

Working load 978.6 N 
Breaking strength 6.86 kN 

Buoyancy neutral 

Table 2.   Tether characteristics (From [15]) 

C. CAVR VEHICLE CONFIGURATION 

The vLBV300 is a miniROV remotely operated vehicle which can be commanded 

via a high- or low-level computer interface, resulting in a tethered, hovering-class 

autonomous underwater system (THAUS).  As configured for this research, the vehicle 

weighs 20.9 kg in air; is 0.625 m long, 0.39 m wide, and 0.39 m tall; and has a BlueView 

sonar attached in addition to the standard payload (tilt-controlled forward-looking camera 

and LED arrays).  This payload will be expanded with an inertial navigation system 

(INS), Doppler velocity log (DVL) and GPS unit in the near future.  

The aft pair of horizontal thrusters is vectored to an angle of 45 degrees from 

centerline while the forward pair of horizontal thrusters is vectored to 35 degrees from 

centerline.  The vertical thrusters are angled at 18 degrees (see Figure 2).  

 
Figure 2.   Horizontal and vertical thruster configuration of the vLBV300 
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A right handed, body-fixed frame is used with x pointing forward, y pointing 

right, and z pointing down (see Figure (3)).   

 
Figure 3.  Body reference frame of the vLBV300 

D. PROPULSION MODEL 

As discussed in Section B, the SeaBotix ROV can be controlled either via a high-

level, joystick interface that allows for four DOF control or via low-level pulse width 

modulation (PWM) thruster commands directly to each thruster via a computer program 

which provides for five DOF control.  In order to ensure maximum control of the vehicle, 

for this research only the low-level commands are used.  

The low-level PWM commands range from -102 to 102 and is related to the 

thruster RPM.  For the aft thruster-pair, the positive direction is defined as producing 

clockwise rotation of the propeller, which results in motion in the positive (ahead) surge 

direction.  For the forward thrusters, a positive command results in counter-clockwise 

rotation and therefore also thrust in the positive surge direction.  A positive sway 

command results in the leading edge propellers (right hand set for motion to the right) 

spinning in the positive direction while the trailing set spins in the negative direction.  A 

positive command to the vertical thrusters results in clockwise rotation and motion in the 
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positive heave (downward) direction.  Using these definitions and the thruster geometry, 

the vehicle’s propulsion forces are defined below.  For ease of notation the thrust 

generated by the horizontal, forward, starboard propeller is referred to here as FS.  The 

horizontal, forward, port propeller thrust is referred to as FP.  The horizontal, aft, 

starboard propeller thrust is referred to as AS and the horizontal, aft, port propeller thrust 

is referred to as AP.  The thrust generated by the vertical starboard and vertical port 

propellers are referred to as VS and VP, respectively.  The vectoring angle for the forward 

pair of thrusters is called fα , the vectoring angle for the aft pair of thrusters is called rα , 

and the vectoring angle for the vertical pair of thrusters is called β  (see Figure 2).  Xprop 

is the total force generated by all thrusters in the surge direction, Yprop is the total force 

generated by all thrusters in the sway direction, and Zprop is the total force generated by 

all thrusters in the heave direction.  Kprop is the total moment generated around the body 

x-axis, Mprop is the total moment generated around the body y-axis, and Nprop is the total 

moment generated around the body z-axis. 

 
( )
( )

* c * c

* c * c

X AP FPprop r f

AS FSr f

α α

α α

= − +

−
 (4) 

 

( )
( )

*s *s

*s *s

( ) *s

Y FS ASprop rf

FP AP rf

VL VR

α α

α α

β

= + −

+

− −

 (5) 

 ( )* cZ VL VRprop β= +  (6) 

 ( )*s *K VL VR LVprop β= +  (7) 

 0M prop =  (8) 
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( )
( )
( )
( )

* c * c * 1

* c * c * 1

*s *s * 2

*s *s * 2

N AP FP LHprop r f

AS FS LHr f

AP FP LHr f

AS FS LHr f

α α

α α

α α

α α

= − +

− +

− +

− +

 (9) 

Note: For ease of notation s● = sin(●), c●=cos(●), and t●=tan(●).  LV, LH1, and 

LH2 are moment arms.  LV is defined as the distance between the centroid of the two 

vertical propellers while LH1 is the distance between the centroid of the propellers of the 

aft or forward pair, and LH2 is defined as the distance between the centroid of the 

propellers of the right or left side pair.  Mprop is zero in all cases since pitch cannot be 

controlled on any vehicle considered in this research. 

The relationship between low-level PWM commands and a measured force for 

individual thrusters is determined through in-tank testing using the aft thruster pair only 

and a Futek USB210 strain gage. The results for both the positive and negative direction 

are virtually identical for commands from 10 to 60, as would be expected from the 

performance of a fixed pitch propeller.  Due to a limitation with the experimental setup, 

surface effects affected results above a PWM command of 60 (i.e., the 60-102 range) as 

can be seen in Figure 4.  The vehicle was secured to an anchor point outside the tank via 

a line (with the strain gage integrated into this line) in order to keep the strain gage dry.  

Because the line rested on the lip of the tank which is necessarily several inches higher 

than the water line, the vehicle assumed a negative pitch (downward) angle during every 

test.  This resulted in the aft pair of thrusters being up to several inches closer to the 

surface at higher PWM commands than the forward thrusters.  This difference in depth, 

and therefore water pressure, was significant enough above the PWM command of 60 for 

the aft pair of thrusters to experience significant cavitation, reducing their effectiveness.  

The aft pair of thrusters was used for the positive direction testing and the forward pair of 

thrusters was used for the negative direction testing.   
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Figure 4.  Thruster testing showing surface effects 

Because of this, a regression was only fit to data for PWM commands between 10 and 60.  

Since the planned vehicle operations will be at low thrust (and speed), this thruster model 

is sufficient.  The truncated, experimentally obtained data was then used to fit a second-

order polynomial to relate PWM values to generated thrust. 

 20.006736 0.03366 0.0684Thrust PWM PWM= − +  (10) 

The results of the regression are compared with the experimental data in Figure 5.   
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Figure 5.  Bounded propulsion model for a single thruster on the vLBV300 compared 

with experimental data 
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III. GENERIC MOTION MODEL 

A. FULL EQUATIONS OF MOTION 

The non-linear dynamic equations of motion for a six degree of freedom (DOF) 

submersed body are presented by Fossen [1] as 

 ( ) ( ) ( )M C D gυ υ υ υ υ η τ+ + + =  (11) 

The vector υ contains the body velocities and angular rates, 

 [ , , , , , ]Tu v w p q rυ =  (12) 

where u is velocity in the surge direction, v is velocity in the sway direction, w is velocity 

in the heave direction, p is the angular rate about the x-axis of the body frame, q is the 

angular rate about the y-axis of the body frame, and r is the angular rate about the z-axis 

of the body.  All velocities in this work are presented in units of meters per second and all 

angular rates in radians per second. 

The vehicle’s pose (position and orientation) is described by the vector η:  

 [ , , , , , ]Tx y zη φ θ ψ=  (13) 

where x, y, and z are the vehicle’s position with respect to an inertial reference frame, and 

φ , θ, ψ are Euler angles determined using the zyx-convention.  All positions in this work 

are presented in units of meters and all Euler angles in units of radians. 

Vehicle pose dynamics are related to body velocities, angular rates, and the pose 

itself, by  

 ( )Jη η υ=  (14) 

 1 3 3

3 3 2

0
0
J

J
J
×

×
=
 
  

 (15) 

where 

 1

c c s c c s s s s c c s
s c c c s s s c s s s c

s c s c c
J

ψ θ ψ φ ψ θ φ ψ φ ψ φ θ
ψ θ ψ φ φ θ ψ ψ φ θ ψ φ

θ θ φ θ φ

− + +
= + − +

−

 
 
 
 

 (16) 

 17 



 2

1
0
0 / /

s t c t
J c s

s c c c

θ θ φ θ
φ φ

φ θ φ θ
= −
 
 
 
 

 (17) 

Matrices M and C(υ) are each composed of two parts: a contribution from the rigid-

body dynamics and a contribution from the added, or apparent, mass and inertia.  The 

rigid body dynamics are derived by Fossen [1] based on Newton’s second law and 

Euler’s first and second axioms to that law while the added mass and inertia terms are 

derived from an energy based approach resulting from Kirchoff’s equations as discussed 

in [1].   

The inertia matrix, M, is the sum of the rigid body mass, MRB , and the added inertia 

matrix, MA, 

 RB AM M M+  (18) 

 

0 0 0
0 0 0
0 0 0
0

0
0

g g

g g

g g
RB

g g X XY XZ

g g YX Y YZ

g g ZX ZY Z

m mz my
m mz mx

m my mx
M

mz my I I I
mz mx I I I
my mx I I I

− 
 − 
 −

=  − − − 
 − − −
 
− − −  

 (19) 

 

u v w p q r

u v w p q r

u v w p q r
A

u v w p q r

u v w p q r

u v w p q r

X X X X X X
Y Y Y Y Y Y
Z Z Z Z Z Z

M
K K K K K K
M M M M M M
N N N N N N

 
 
 
 

=  
 
 
 
  

     

     

     

     

     

     

 (20) 

where m is the vehicle mass in air and xg, yg, and zg are the Cartesian coordinates in the 

body frame of the vehicle’s center of gravity.  IX is the vehicle’s moment of inertia 

around the x-axis of the body, IY is the vehicle’s moment of inertia around the y-axis of 

the body, and IZ is the vehicle’s moment of inertia around the z-axis of the body.  These 

terms represent the moment of inertia due to un-coupled, single DOF rotation about the 

axis of the DOF movement.  The inertia terms with more than one letter in the subscript 
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denote the vehicle’s moment of inertia due to coupled motion.  For example IXY denotes 

the vehicle’s moment of inertia around the vehicle’s x-axis due to rotation around the y-

axis.   

Fossen defines the added mass coefficients shown in Equation (20) as describing 

the pressure-induced forces and moments due to a forced harmonic motion of the body 

which are proportional to the acceleration of the body [1].  For example vX


 is the force 

along the x-axis due to an acceleration, v , in the y-direction.  Mathematically, this is 

expressed as 

 v
XX
v

∂
∂





 (21) 

C(υ) is the matrix of Coriolis and centripetal terms and is also the sum of a rigid body, 

CRB, and added mass, CA, components:  

 ( ) ( ) ( )RB AC C Cυ υ υ+  (22) 

where 

 3 3 1

2 3

0( )RB
C

C C
C υ × =   

 (23) 

and 

 1

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

g G g g

g G g g

G G g g

m y q z r m x q w m x r v
C m y p w m z r x p m y r u

m z p v m z q u m x p y q

 + − − − +
 = − + + − − 
 − − − + + 

 (24) 

 2

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

g G g G

g G g G

g g g g

m y q z r m y p w m z p v
C m x q w m z r x p m z q u

m x r v m y r u m x p y q

 − + + −
 = − − + + 
 + − − + 

 (25) 

 3

0
0

0

YZ XZ Z YZ XY Y

YZ XZ Z XZ XY X

YZ XY Y XZ XY X

I q I p I r I r I p I q
C I q I p I r I r I q I p

I r I p I q I r I q I p

− − + + − 
 = + − − − + 
 − − + + − 

 (26) 
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3 2

3 1

2 1

3 2 3 2

3 1 3 1

2 1 2 1

0 0 0 0
0 0 0 0
0 0 0 0

( )
0 0

0 0
0 0

A

a a
a a
a a

C
a a b b

a a b b
a a b b

υ

− 
 − 
 −

=  − − 
 − −
 
− −  

 (27) 

where 

 

1

2

3

1

2

3

u v w p q r

v v w p q r

w w w p q r

p p p p q r

q q q q q r

r r r r r r

a X u X v X w X p X q X r
a X u Y v Y w Y p Y q Y r
a X u Y v Z w Z p Z q Z r
b X u Y v Z w K p K q K r
b X u Y v Z w K p M q M r
b X u Y v Z w K p M q N r

= + + + + +

= + + + + +

= + + + + +

= + + + + +

= + + + + +

= + + + + +

     

     

     

     

     

     

 (28) 

The damping matrix, D(υ), is the sum of radiation-induced potential damping due 

to forced body oscillation, DP, linear skin friction due to laminar boundary flow and 

quadratic skin friction due to turbulent flow, DS, wave drift damping, DW, and damping 

due to vortex shedding, DM, 

 ( ) ( ) ( ) ( ) ( )P S W MD D D D Dυ υ υ υ υ+ + +  (29) 

Radiation induced damping, DP, is often referred to as potential damping and is a 

result of a body being forced to oscillate with the excitation frequency of waves 

encountered which results in added mass, damping, and restoring forces.  While generally 

negligible compared to other forces at great depth for underwater vehicles, it is of more 

concern for surface vehicles.   

Damping due to skin friction is a function of the vehicle’s exterior make up as well as 

speed.  Low-speed, laminar flow results in a low frequency contribution while turbulent 

flow results in a high frequency contribution. 

Wave drift damping is only of significance for surface vessels advancing into waves. 

Damping due to vortex shedding occurs in a non-viscous fluid and is a function of the 

speed at which the vehicle moves, the density of the water in which it is operating, the 
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projected cross sectional area and the vehicle’s Reynolds number.  This is the most 

significant of the damping contributors for an underwater vehicle.  The general equation 

for this damping is further explored by Equation (45). g(η) is the vector of restorative 

forces and moments,  

 

( )s
( ) c s
( ) c c

( )
( ) c c ( ) c s
( )s ( ) c c
( ) c s ( )s

G B G B

G B G B

G B G B

W B
W B
W B

g
y W y B z W z B
z W z B x W x B
x W x B y W y B

θ
θ φ
θ φ

η
θ φ θ φ
θ θ φ
θ φ θ

− 
 − − 
 − −

=  − − + − 
 − + −
 
− − − −  

 (30) 

where W is the weight (in air) of the vehicle, W= mg, B is buoyant force produced by the 

fully submerged vehicle, and xg, yg, and zg  are the Cartesian coordinates in the body 

frame of the vehicle’s center of gravity while xb, yb, and zb are the Cartesian coordinates 

in the body frame of the vehicle’s center of buoyancy.  All gravitational forces and 

moments are assumed to act through and around the vehicle’s center of gravity while all 

buoyancy forces and moments are assumed to act through and around the vehicle’s center 

of buoyancy.   

The vector of the forces and moments exerted on the vehicle by the thrusters is τ.  

Recall from Equations (4) - (9) that Xprop, Yprop, and Zprop are forces in the translational 

DOF while Kprop, Mprop, and Nprop are moments in the rotational DOF. 

 X Y Z K M Nprop prop prop prop prop propτ  
 =  (31) 

The sign convention for the forces that make up τ follow the right handed reference 

frame sign convention established for the vehicle in Chapter II.  That is, Xprop is positive 

when it generates a force in the positive surge direction (forward).  The force Yprop is 

positive when it generates a force in the positive sway direction (right).  The force Zprop is 

positive when it generates a force in the positive heave direction (downward).  The 

moment Kprop is positive when it generates a right-handed moment around the x-axis.  

The moment Mprop is positive when it generates a right-handed moment around the y-

axis.  The moment Nprop is positive when it generates a right handed moment around the 

z-axis. 
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B. ASSUMPTIONS AND SIMPLIFIED EQUATIONS 

In order to model the non-linear dynamics of the UUV, Equations (11) and (14) 

must be solved for υ and η.  Several assumptions are made about the characteristics of the 

UUV to simplify the components of Equation(11).  The vehicle is assumed to be 

neutrally buoyant (B=W) and the tether is assumed to have no effect on vehicle motion or 

trim.  The x and y coordinates of the center of gravity and center of buoyancy are 

assumed to coincide.  Also, since the specific mass distribution of the vehicle is not 

known, a uniform distribution of mass is assumed [5, 6] and the components of the inertia 

tensor that are off the main diagonal are neglected.  The moments of inertia are estimated 

using the equation for moment of inertia of a solid, rectangular cuboid  

 2 21 ( )
12XI m height width= +  (32) 

 2 21 ( )
12YI m height length= +  (33) 

 2 21 ( )
12ZI m length width= +  (34) 

and result in IX = 0.559 kgm2, IY = 0.953 kgm2, and IZ = 0.90 kgm2 for the vLBV300.  

These assumptions further simplify the equations of motion to yield: 

 

0
0
0

( )
( ) c s
( )s

0

G B

G B

g
B z z
B z z

η
θ φ
θ

 
 
 
 

=  
− − 
 −
 
  

 (35) 

 ( ) c sBK G BF B z z θ φ= −  (36) 

 ( )sBM G BF B z z θ= −  (37) 
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0 0 0 0
0 0 0 0
0 0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0 0

G

G

RB
G X

G Y

Z

m mz
m mz

m
M

mz I
mz I

I

 
 − 
 

=  
− 

 
 
  

 (38) 

 3 3 1

2 3

0
( )RB

C
C

C C
υ × 

=  
 

 (39) 

where 

 1

( ) ( ) 0

G

G

G G

mz r mw mv
C mw mz r mu

m z p v m z q u

− 
 = − 
 − − − + 

 (40) 

 2

( )
( )

0

G G

G G

mz r mw m z p v
C mw mz r m z q u

mv mu

− − 
 = − − + 
 − 

 (41) 

 3

0
0

0

Z Y

Z X

Y X

I r I q
C I r I p

I q I p

− 
 = − 
 − 

 (42) 

Furthermore, the vehicle is assumed to have three planes of symmetry, will be 

fully submerged for all motion, and will only move at low speeds.  Therefore, (see [1] 

Equations (2.17) and (2.23)) the following simplified terms are obtained: 

 diag , , , ,AM X Y Z K M Nu v w p q r
  = −          

 (43) 

 

0 0 0 0

0 0 0 0

0 0 0 0
( ) 0 0

0 0

0 0

A

Z w Y vvw
Z w X uw u

Y v X uv u
C Z w Y v N r M qw v r q

Z w X u N r K pw u r p
Y v X u M q K pv u q p

υ

−

−

−
= − − −

− −

− −

 
 
 
 
 
 
 
 
  



 

 

   

   

   

 (44) 

Assuming in addition that the vehicle is performing only uncoupled motion with 

complete turbulent flow, the damping term is in the form: 
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 ( ) diag , , , , ,D X u Y v Z w K p M q N ru u v v w w r rp p q qυ   = −     
 (45) 

Combining all assumptions yields the following simplified dynamic equations for 

non-coupled motion for the THAUS UUV: 

 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) (

prop u v w u u

prop v u v v

prop w u v w w

prop X p v w Z Y r q

BKp p

prop Y q w

X m X u m Y vr m Z wq X u u

Y m Y v m Zw wp m X ur Y v v

Z m Z w m X uq m Y vp Z w w

K I K p Y Z wv I I N M rq

K p p F

M I M q Z

= − − − + − −

= − − − + − −

= − − − + − −

= − + − + − + +

− −

= − +

  

 

  

    

 



 





 ) ( )

( ) ( ) ( )

u X Z r p

BMq q

prop Z r u v Y X p q

r r

X uw I I N K rp

M q q F

N I N r X Y uv I I K M rp

N r r

− + − + −

− +

= − + − + − + −

−

  

    



 (46)  

The validity of these assumptions, based on the accuracy of the learned model compared 

to the measured response, will be discussed in Chapter VI.  
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IV. SYSTEM IDENTIFICATION 

A. PARAMETER ESTIMATION FOR A STATIC SYSTEM 

Consider a regression model of the form [8] 

 1 1 2 2 ... m m T
i i i i iy ϕ θ ϕ θ ϕ θ ϕ θ= + + + =  (47) 

where yi, i=1,2,…,n,  is a series of observations, 1 2 ...
Tm

i i i iϕ ϕ ϕ ϕ =    are the known 

regressor functions (which are functions of the states and controls), and 

1 2 ...
Tmθ θ θΘ =     are the unknown parameters (to be estimated).  The goal of online 

system identification is to recursively estimate the unknown parameters Θ according to 

some adaptation law as new information becomes available.  

Several methods of parameter estimation are available to perform the necessary 

recursive estimation, including the gradient estimator, the recursive linear least squares 

(RLLS) estimator, a statistical, Bayesian approach, and a neural network based approach. 

1. Recursive Linear Least Squares 

The goal of the linear least squares estimator is to minimize the square of the error 

between the complete history of the measured and modeled response of the system with 

respect to Θ, as in [2] and [8]. 

 21
min ( , ) min ( )

12
T

i i

n
V n y

i
ϕΘ = − Θ∑

Θ Θ =
 (48) 

To accomplish this, let [ ]1 2 ... n
T

Y y y y=  be the set of measurements and define the 

error terms ˆT
i i iyε ϕ= − Θ , where Θ̂  is an estimate of the unknown parameter vector.  This 

can be written in vector notation: [ ]1 2 ...
T

nE ε ε ε= . Finally, let  

 
1
T

T
n

ϕ

ϕ

Φ =
 
 
 
  

  (49) 

Then the loss function in Equation (48) can be written as: 
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1

1 1 1
( , )

2 2 2

n T
i

i
V n E E Eθ ε

=
= = =∑  (50) 

where E Y= − ΦΘ . This loss function is minimized by: 

 ( ) 1*ˆ T TY
−

Θ = Φ Φ Φ  (51) 

which requires that TΦ Φ  is non-singular to yield a unique solution.  In a similar manner, 

the recursive linear least square (RLLS) estimator is defined as 

 1 1
ˆ ˆ ˆ( )T

i i i i i iK y ϕ− −Θ = Θ + − Θ  (52) 

where the filter gain is given by: 

 ( ) 1

1 1
T

i i i i i iK P I Pϕ ϕ ϕ
−

− −= +  (53) 

and 1( )T
i i i iP I K Pϕ −= − .  To ensure a unique solution to RLLS estimation 

1

T k T
i i

i
ϕ ϕ∑

=
Φ Φ =  

must be of full rank, or non-singular. 

2. Neural Network 

Computational neural networks (NN) are modeled after the understanding of 

biological nervous systems and modeled as a dense web of elements or nodes with 

weighted connections that may be adapted, or trained, during use of the network to 

improve performance [16].  The strength of the NN lies in its ability to process many 

computational tasks in parallel instead of in a serial manner as done by most computers, 

in its inherent robustness, and in its ability for adaptation or learning.  The large number 

of interconnected nodes allows for several competing hypotheses to be investigated and 

pursued simultaneously by the network.  Because a NN is composed of a large number of 

interconnected nodes, damage to one, or even several, may not completely destroy the 

system as would happen in a serial computer.  Neural networks using variable weights 

between nodes and a learning strategy also have the ability to learn and improve 

performance during operation or after damage.  This ability also provides for a degree of 

robustness in the presence of variability of the processing element.   
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Neural networks are of interest to this work because of this ability to learn and 

adapt online as well as their ability to accurately model complicated non-linear systems.  

While the end results is a non-parametric “black box” input-output model that does not 

afford the same physical understanding of a system as the hydrodynamic model by 

Fossen does, the NN model can provide a highly accurate simulation that is able to 

account for the nonlinearities inherent to modeling an underwater vehicle.   

The simplest type of neural network sums N inputs of xi which commonly 

represents a vehicle’s state or control input such as thruster commands.  xi is multiplied 

by its respective weights, wi, and the network passes the results through a non-linear 

function, f, with a delay described by θ as presented by Lippmann [16]. The non-linear 

function is called the “basis” function and helps define the architecture of the model in 

the same manner as the regressor does in a parametric representation.  A visual 

representation is given in Figure 6. 

 
1

0
( )

N

i i
i

y f w x θ
−

=

= −∑  (54) 

 
Figure 6.  A basic neural network showing the network output expressed as a sum of 

weighted inputs. 

The goal of a large group of nodes becomes to determine which of a large set of 

functions is best representative of an unknown input function or series of input functions, 
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as well as non-parametric uncertainties.  Non-parametric uncertainties typically 

encompass measurement noise, equipment failure, environmental disturbances or other 

uncertainties [21].   

In system identification terms, as presented in Section VI.A, this is expressed as: 

 T
i i iy θ ϕ ε= +  (55) 

where iε represents the approximation error of the non-parametric uncertainties.  In order 

to identify the parameters contained in Tθ in the face of these uncertainties, a set of basis 

functions, iϕ , which in the RLLS context were informed by the parametric model itself, 

must be chosen.  These basis functions are chosen such that the error iε  becomes small 

over the expected area of operation of the system being identified. 

Physically, this means that a series of basis functions are tested, along with 

weights for each portion of the basis function until the basis function set and associated 

weights are found that most closely represents the uncertain input-output relation.  

Lippmann presents an adaptive classifier along these lines (see Figure 7) [16] that takes a 

series of inputs and computes a series of performance related scores that reflect the 

accuracy of each basis function examined.  These scores are passed on to a second stage 

where only the best score is passed.  This best score is then used to adapt the weights of 

the network. 
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Figure 7.  Diagram of an adaptive neural network (After [16]) 

“Training,” or adaptation of the network, can take place online as in Figure 7, or 

prior to using the network.  Input data is fed to the network in concert with known output 

data.  The network then trains itself according to various methods and a set of coefficients 

are produced.  Two of the most well-known adaptation schemes are the steepest decent 

algorithm, or error back propagation (EBP), and the Gauss-Newton algorithm.  The EBP 

method is presented in [17] as 

 1i i iw w gα+ = +  (56) 

where iw is the weight assigned to a particular node at step i, α is the step size, ig is the 

first-order derivative of the total error function ( , )E x w , and 1iw +  is the updated node 

weighting.  Further notation in [17] includes:  p is the index of training patterns from 1 to 

P, m is the index of outputs from 1 to M, and N is the total number of weights. 

The Gauss-Newton method uses the Jacobian matrix, J, to relate the gradient g to 

a vector of errors e.   
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 g Je=  (57) 
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 1,1 1,2 1, ,1 ,2 ,

T
M P P P Me e e e e e e =      (59) 

This results in the Gauss-Newton learning algorithm to recursively update the weights of 

the network. 

 1
1 ( )T

i i i i i iw w J J J e−
+ = −  (60) 

Where the EBP is stable it converges slowly and while the Gauss-Newton method 

converges rapidly, it is unstable.  The training method used in this work is the Levenberg-

Marquardt method which is a combination of the steepest descent algorithm and the 

Gauss-Newton algorithm.  The Levenberg-Marquardt method combines the strengths and 

omits the weaknesses of the EBP and Gauss-Newton methodology.  It converges rapidly 

and is stable [17].  A combination coefficient, µ , is introduced and the learning method 

becomes 

 1
1 ( )T

i i i i i iw w J J I J eµ −
+ = − +  (61) 
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where I is the identity matrix.  The combination coefficient is used to switch between the 

EBP and Gauss-Newton methods during training.  As µ  approaches zero and the Gauss-

Newton method is used.  When it is large, the EBP method is used. 

The computer program MATLAB provides a NN toolbox for the creation and 

training of various types of NN.  For this work, a nonlinear input-output autoregressive 

neural network (NARX) is created and trained with the Levenberg-Marquardt method.  

Ten nodes were used along with four delays in order to maximize network performance 

while balancing the required computational infrastructure based on the principle that the 

number of nodes and delays determines how well the neural network can approximate the 

system being modeled [10].  The network architecture is shown in Figure 8. 

 
Figure 8.  Network architecture of a NARX created in Matlab 

Using this toolbox and the NARX network architecture , these methods can be 

applied to system identification (with the intent to learn complex input-output 

relationships).  In terms of the regression model of Section IV.A known data, (e.g, the 

regressor data contained in ϕ ), can be fed in along with known output data y.  The 

network will then find an appropriate basis function and train the coefficients to closely 

match input to output.  Another benefit to the NARX architecture over other architectures 

(including the simple non-linear input output model, or NIO) is that past values of y are  

fed back to the network if they are available to provide more accurate error estimation, 

online training, and an overall better estimate.   

The major disadvantage of a NN model of a physical system is that the resulting 

model does not have any physical meaning.  As discussed before, the end result of NN 
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estimation is a non-parametric (aka “black box”) representation.  The basis functions and 

weights assigned to them do not provide any physical insight into the system as Fossen’s 

hydrodynamic coefficients do.  So, while the resulting model may describe vehicle 

motion extremely well it cannot be used to infer other physical characteristics of the 

vehicle and must be validated by direct comparison of simulation to actual results.  The 

value of the NN lies in its ability to learn complex, non-linear systems and account for 

these non-linearities through the training process whereas the parametric representation 

relies on assumptions and simplifications that do not always hold true.  In the end, a very 

accurate model of a complex system can be produced with disproportionately small time 

and effort. 

3. Gradient Estimator 

The gradient estimator (GE) is the simplest of the various on-line estimation tools 

[2] and is a prediction-error-based method.  The prediction error is defined as 

 ˆi i ie y y−  (62) 

 ˆ
iΘ = Θ −Θ  (63) 

where ŷ  is the predicted output of Equation (47) at time step i, Θ̂ is a vector of the 

estimated parameters, and Θ  is the parameter estimation error .  The gradient estimator 

works by updating the parameters contained in Θ  in the opposite direction of the gradient 

of Equation (62), the instantaneous prediction error, so that ei is reduced.  

 0
[ ]ˆ

ˆ

T
l le ep ∂

Θ = −
∂Θ

  (64) 

where p0 is the estimator gain.  Equation (64) can be re-written in terms of Θ and ϕ as 

 0
ˆ T

i ip eϕΘ = −  (65) 

and in terms of the parameter estimation error Θ  as 

 0
Tp ϕ ϕΘ = − Θ

   (66) 

Slotine [2] proves the stability of Equation (65) using the Lyapunov candidate function 
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 TV = Θ Θ  (67) 

and gives its derivative as 

 02 0T TV p ϕ ϕ= − Θ Θ ≤    (68) 

which implies that the GE is stable and the magnitude of the squared parameter error is 

always decreasing.  To guarantee that the GE will converge to the true value, however, 

the signal used to excite it must be sufficiently exciting.  A signal is said to be sufficiently 

exciting if it possesses the appropriate level of persistence of excitation (PE). That is, the 

input signal must be sufficiently rich in frequency content (normally accomplished by 

using multiple sinusoids as inputs) to excite the relevant modes.  Simply put, a signal 

composed of several sinusoids is capable of estimating more parameters than a signal of 

one sinusoid (this concept is explored in depth in Section IV.C).  For this work, PE is not 

a limiting condition since multiple sinusoidal input signals may be applied to the vehicle 

to excite it.   

For the gradient estimator PE is also essential to ensure the robustness of the 

estimator.  Robustness is the ability of the estimator to maintain reasonably good 

parameter estimation in the presence of parametric uncertainties such as parameter time-

variation, measurement noise, and disturbances.  If the input signal is not sufficiently PE 

then the estimator values may diverge even without the presence of noise or uncertainty 

[2].   

The quality of the estimates produced by the gradient estimator also depends on 

the rate of parameter variation, the level of non-parametric uncertainties, and the 

magnitude of the estimator gain [2].   

The rate of variation of the parameters to be estimated affects the robustness of 

the estimator as well.  If the parameters vary rapidly the estimator will have a much 

harder time accurately estimating the parameters and converging to the true value [2].  

The hydrodynamic parameters to be estimated by this work are not expected to be time-

varying so this limitation of the gradient estimator does not come into play here.1 

1 The parameters have been experimentally observed to vary with velocity.  In order to compensate for 
this some time-variance may be assumed later.  This assumption will be revisited in Chapter VI. 
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The presence of noise or un-modeled disturbances in the vehicle dynamics and 

measurements play a large part in the accuracy of the results produced by the GE.  This is 

illustrated by adding a disturbance term, di, to yi in Equation (62) resulting in 

 ˆ ( )i i i ie y y d= − +  (69) 

Substituting Equation (69) into Equation (65) shows the effect of the disturbance 

 0
ˆ ˆ[ ( )]T

i i ip y y dϕΘ = − − +  (70) 

which in turn affects parameter error through Equation (63).  That is, for a large 

disturbance, the parameter estimation error becomes large.  For this work, which involves 

noise in both the measurement noise from the motion capture system and process noise 

from the highly non-linear nature of a body moving in a non-viscous fluid, disturbances 

will greatly degrade the accuracy of a gradient estimator. 

The effect of the magnitude of the estimator gain is easily seen in Equation (64).  

A larger gain results in a faster rate of convergence, but just as in optimization, increasing 

the gain or step size only improves performance up to a certain point. Increasing the gain 

to too high a level can result in oscillation and very slow convergence to the true 

parameters.  Since the estimator gain is defined by the user this factor does not limit the 

use of a GE for this research.   

4. Bayesian Filtering 

Bayes’ rule provides a method to compute a posterior probability from a set of 

given prior probabilities.  It states that given a collection of k mutually exclusive and 

exhaustive events A1, A2,…,Ak that have their own prior probability P(Ai)(i=1,…,k), and 

any other event B, with P(B) > 0, the posterior probability of Aj given B has occurred, 

( | )jP A B , can be expressed as [15]  

 

1

( | ) ( )
( | )  j 1,...,

( | ) ( )

j j
j k

j j
i

P B A P A
P A B k

P B A P A
=

= =

∑ 

 (71) 
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This concept can easily be applied to parameter estimation.  Thrun et al. [3] 

present an adaptation that uses measurement and control input data to represent and 

evolve the belief state: the probability of state xi given all the available information.  The 

belief about a state, such as hydrodynamic parameters being estimated, at a time i is 

calculated from the belief at time t-1, the control input ut at time t, and the measurement, 

yi.  For example, assuming that xt has a Gaussian distribution, the belief state, b, can be 

described by the first and second moments of the distribution, mean, µ , and variance, 
2σ .   

 
2

2
( )

21( )
2

ix

ib x e
µ
σ

σ π

−
−

=  (72) 

Bayes rule provides an algorithm to recursively calculate the new belief state 

given the dynamic and measurement models, as well as the previous belief state and the 

measurement (e.g., [3]).  It consists of two steps.  The first step is called the prediction 

and it calculates the belief for state xt, called ( )tb x , based on the belief of the previous 

belief-state, xt-1, and the control input ut.  

 1 1 1
0

( ) ( | , ) ( )
i

t i i i i ib x p x x u b x dx− − −= ∫  (73) 

The second step is referred to as the measurement update.  Here the Bayes filter 

uses the belief calculated by the prediction step in Equation (58) and multiplies it by the 

probability that measurement zt was observed.  Each hypothetical posterior state is treated 

this way and because the resulting product may not integrate to one the normalization 

factor η is used to ensure a proper probability is returned. 

 ( ) ( | ) ( )t t t tb x p z x b xη=  (74) 

In order to use Equations (73)-(74) recursively b(x0) must be initialized at i = 0.  Thrun et 

al. suggest that if x0 is precisely known then b(x0) should be initialized as a point mass on 

the correct value of x0 with zero probability elsewhere.  If nothing is known about x0, 

however, a uniform distribution should be used for b(x0) [3].  Thrun et al. then gives the 

recursive form of Equations (73)-(74) as 
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 1 1 1( ) ( | , ) ( )i i i t i ib x p x x u b x dx− − −= ∫  (75) 

 ( ) ( | ) ( )i i i ib x p z x b xη=  (76) 

Practical implementation of Equations (75)-(76) requires the initial belief 0( )b x , the 

measurement probability ( | )i ip z x , and the state transition probability 1( | , )i i ip x u x − .  The 

choice of the probability distributions for these required probabilities, as well as the 

system being modeled, shapes the type of Bayesian filter.  For example, assuming a 

linear system, an initial Gaussian distribution, that all three probability distribution 

functions are zero mean, Gaussian white noise turns, and that the dynamic and 

measurement equations are linear the Bayesian filter into a Kalman filter 

For the problem at hand, the system has non-linear dynamics described by: 

 1 ( , , )
(0, )

i i i i

i

x f x u
N Q

ω
ω

+ =


 (77) 

where 1ix + is a vector of states at time i+1, ix is a vector containing the states to be 

estimated at time step i, iu is the control input at time step i, and iω  is the zero mean, 

white noise with covariance Q associated with the process at time step i.  The system has 

measurements zk: 

 
( , )
(0, )

i i i

i

z h x
N R

ν
ν

=


 (78) 

where kυ is the zero mean, white noise measurement noise with covariance R at time step 

i.  One implementation of Bayes rule for non-linear systems is to linearize the system 

around trim points and to apply the Kalman filter machinery, resulting in different types 

of filters examples of which are the extended Kalman filter, unscented Kalman filter, and 

the particle filter [3].  To do this the concept of the Jacobian is used.  The Jacobian is 

defined as the partial derivative of a process with respect to each of the variables that 

inform that process.  Now, define the following i x j Jacobian matrices 
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∂
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∂

∂
∂









 (79) 

Remembering that all noise distributions are assumed to be zero mean, Gaussian 

white noise and using an initial state, x0, and an initial covariance matrix, P0, the 

prediction step is: 

 
| 1 1| 1 1

| 1 1 1| 1 1 1 1

ˆ ˆ( , ,0)i i i i i

T T
i i i i i i i i

x f x u

P A P A W QW
+ − − −

− − − − − − −

=

= +
 (80) 

where | 1ˆi ix − is the predicted state at time i given the state information from the previous 

step and | 1i iP − is the predicted covariance at time i based on the covariance information 

from the previous step.  Next is the measurement step  

 | 1ˆ( )i i i iy z h x −= −  (81) 

which consists of the measurement zi and gives as its output the updated measurement 

error iy .  The Kalman gain, Ki, is then calculated as 

 1
| 1 | 1( )T T T

i i i i i i i i i iK P H H P H V RV −
− −= +  (82) 

and the estimate ˆix is updated by 

 | | 1 | 1ˆ ˆ ˆ( ( ,0))i i i i i i i ix x K z h x− −= + −  (83) 

Then the covariance matrix Pk is updated as 

 | 1( )k k k k kP I K H P −= −  (84) 
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The process then repeats starting at Equation (80) allowing for recursive, on-line 

estimation of the parameters contained in ˆix . 

B. PARAMETER ESTIMATION OF A DYNAMIC SYSTEM 

The system identification techniques presented to date are developed for a static 

system of form 1 1 2 2 ... m m T
i i i i iy ϕ θ ϕ θ ϕ θ ϕ θ= + + + = .  When identifying parameters for a 

dynamic system some additional steps are required to write the system in the form of (46) 

[11].  Consider the dynamic system: 

 0 ( , ) ( , )

y

x f x u f x u

Cx

= +

=



 (85) 

Θ is a matrix of unknown parameters and Φ(x,u) is a known regressor that consists of 

known basis functions.  This dynamic model must be converted to a static system in order 

to apply the system identification techniques of the previous section. This can be 

accomplished through the introduction of filtered signals.  First, rewrite Equation (85) as: 

 0 ( , ) ( , )x ax ax f x u x u+ = + + Φ Θ  (86) 

A filtered version of x, xf , is also introduced as 

 f fx ax ax+ =  (87) 

where a is the filtering time constant. Next, define fz x x= − , then fz x x= −  , allowing eq. 

(86) to be rewritten as: 

 0 ( , ) ( , )z az f x u x u+ = + Φ Θ  (88) 

The right hand terms can be thought of as forcing functions, and the first order ordinary 

differential equation has a known, unique solution:  

 0
0 0

( ) ( )(0) ( , ) ( , )
t tat a t a tz e z e f x u d e x u dτ ττ τ− − − − −= + + Φ Θ∫ ∫  (89) 

Assume the initial conditions x(0)=xf(0)  so that z(0)=0.  Then equation (88) can be 

simplified to  

 0( ) fz t = Φ + Φ Θ  (90) 
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where 0 0
0

( ) ( , )
t a te f x u dτ τ− −Φ = ∫  is the filtered version of f0(x,u) and ( )

0
( , )

t a t
f e x u dτ τ− −Φ Φ∫   

is the filtered version of Φf(x,u). Furthermore, rewriting the measurement equation in 

terms of z and xf, the dynamic system is converted into a static system: 

 0f fy Cx C C− − Φ = Φ Θ  (91) 

Since Φ0 and Φf are filtered states, they can be calculated recursively as: 

 0 0 0 ( , )

( , )f f

a f x u

a f x u

Φ = − Φ +

Φ = − Φ +





 (92) 

Now, the dynamic system is presented as an equivalently static system consisting 

of filtered version of the known and unknown dynamics that make up the system.  

Because of this, the previously derived system identification techniques can be applied to 

the equivalent static system. 

C. PERSISTENCE OF EXCITATION 

The quality, or richness, of the signal used to excite a system during parameter 

estimation is of great importance for the quality of the estimate.  For the GE it is required 

to ensure convergence to the true values of the parameters being estimated.  Recall the 

equation for parameter estimation error of a GE, Equation (66).  Solving this differential 

equation gives 

 0 0
0

exp( ( ) ( ) )
i

T
i p r r drϕ ϕΘ = Θ −∫   (93) 

where r is a dummy variable used for integration across the input signal ( )rϕ .  This 

implies that 

 
0

lim ( ) ( )
i

T

i
r r drϕ ϕ

→∞
= ∞∫  (94) 

Therefore, iΘ will converge to zero (and therefore the estimated parameters will 

converge to the true values) if there are positive constants T and α such that for all i > 0  
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0

( ) ( )
i T

T r r dr Iϕ ϕ α
+

>∫  (95) 

where I is the identity matrix. 

Recall from Equations (51) that to guarantee a unique solution to the RLLS 

problem TΦ Φ must not be singular.  This concept is similarly discussed in depth by 

Astrom in [8] as requiring the matrix: 

 

2

1 1 1

2

1 1 1

2

1 1

( 1) ( 1) ( 2) ( 1) ( )

( 1) ( 2) ( 2) ( 2) ( )

( 1) ( ) ( )

k k k

n n n
k k k

T
n n n

k k

n n

u i u i u k u i u k n

u i u k u k u i u k n

u i u k n u k n

+ + +

+ + +

+ +

 − − − − − 
 
 

− − − − − Φ Φ =  
 
 
 − − −
  

∑ ∑ ∑

∑ ∑ ∑

∑ ∑





 

 (96) 

to be of full rank where u denotes the input signal, i is the time step, k is the total number 

of time steps, and n denotes the order of the system.  Astrom defines this as the excitation 

condition.  For long data sets all sums in Equation (96) are taken from 1 to k giving: 

 

(0) (1) ( 1)
(1) (0) ( 2)1lim

( 1) ( 2) (0)

T
n k

c c c n
c c c n

C
k

c n c n c

→∞

− 
 − Φ Φ =
 
 − − 









 (97) 

where c(i) are the empirically determined covariances of the input signal such that 

 
1

1( ) lim ( ) ( )
k

k i
c i u i u i k

k→∞
=

= −∑  (98) 

Interpreting Equations (96)–(98) helps define a signal as PE of order n if the limit 

of (97) exists and Cn is positive definite.  It is important to recall here that the only 

guarantee required for existence of a unique solution to the RLLS problem is to satisfy 

that Equation (51) is full rank which is primarily driven by the regressor structure in Φ .   
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Therefore, if a non-PE signal is applied to a system the RLLS estimated values will 

converge to the true values, but only slowly  Therefore, if it is possible, a PE signal 

should always be used to guarantee rapid convergence. 
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V. SYSTEM IDENTIFICATION APPLIED TO VLBV300 

The generic hydrodynamic model for an underwater vehicle was specialized for the 

vLBV300 by introducing various assumptions in Section III.B.  Even with these 

simplifying assumptions (often times ignoring off-diagonal coefficients), the resulting 

model is highly coupled (see Equation (46) and 15 distinct parameters to be estimated).  

By exciting specific, uncoupled modes for the vLBV300 sequentially, individual 

parameters can be isolated and thus estimated.  For example, by commanding thrust in 

the surge direction through Xprop, only motion in the surge direction is induced, reducing 

Equation (46) to: 

 
0, 0, 0, 0, 0

u u prop

u

X u u X
u

m X

v w p q r

+
=

−

= = = = =





    

 (99) 

The filtering techniques of the previous chapter can then be applied to this simplified 

system to obtain a static system and to perform the system identification: 

 1
i i

u u

u u

i
prop

y
X

m X m X

u u
X

θϕ

θ

ϕ

=

 
=  

− −  
 

=  
 

 

 (100) 

The inertia parameters are not identified specifically since they do not appear in 

the dynamic equations without their corresponding added mass term (e.g., Ix and 
p

K


 

always appear together). This does not affect the applicability of the mode and the 

assumed values presented in Chapter III are used for clarification. 

Since the SeaBotix ROV is also controllable in sway, heave, roll and yaw, the 

following simplifications are similarly possible and the system identification of the 

previous section can similarly be applied.  

Sway: 
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0, 0, 0, 0, 0

v v prop

v

Y v v Y
v

m Y

u w p q r

+
=

−

= = = = =





    

 (101) 

Heave: 

 
0, 0, 0, 0, 0

w w prop

w

Z w w Z
w

m Z

u v p q r

+
=

−

= = = = =





    

 (102) 

Roll: 

 

0, 0, 0, 0, 0

p p propBK

X p

K p p F K
p

I K

u v w q r

+ +
=

−

= = = = =





    

 (103) 

Yaw: 

 
0, 0, 0, 0, 0

r r prop

Z r

N r r N
r

I N

u v w p q

+
=

−

= = = = =





    

 (104) 

However, control in the pitch degree of freedom is not possible (Mprop=0), but this 

mode can be excited by taking advantage of the coupling and commanding a combination 

of other modes.  An examination of the dynamic equation associated with pitch reveals 

that by exciting the vehicle in the surge and heave degrees of freedom, the pitch portion 

of Equation (31) can be excited, resulting in the simplified to 0, 0, 0v p r= = =    and: 

 

( )

( )

( )

( )

u u propw

u
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q qw u BM

Y q

m Z wq X u u X
u

m X

m X uq Z w w Z
w

m Z

Z X uw M q q F
q

I M

− − + +
=

−

− + +
=

−

− − + +
=

−









 









 (105) 
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In terms of Equation (85) define: 

 

( )

( )
0

0

u u propw

u

w w propu

w

m Z wq X u u X
m X

m X uq Z w w Z
f

m Z

− − + + 
 − 
 − + + =
 −
 
 
 
 









 (106) 

 
0 0
0 0

( )BM w uq q F Z X uw

 
 Φ =  
 − −  

 (107) 

 1
( ) ( )

q q

Y q Y q

M
I M I M

 
Θ =  

− −   

 (108) 

In an effort to verify the system identification approach and investigate 

persistence of excitation for the system, a simulator is developed according to the 

dynamics presented in Equation (46). Chen et al. [5] presents a model for the Seamor 

hovering-class ROV (the parameters were estimated using the Projective Mapping 

Method, while the mass and inertia parameters are listed as: mass = 20.4 kg, Ix = 0.429 

kgm2, and Iy = Iz = 0.609 kgm2).  The results described in [5] are used as true values and 

the four system identification techniques described in Chapter IV are in turn applied to 

the simulated system to verify that the true parameters are estimated. 

A. RLLS ESTIMATION 

1. RLLS Estimation Applied to Simulator 

The hydrodynamic coefficients are time-invariant in the simulator and a certain 

amount of measurement and process noise is expected.  Recall from Equation (51) that 
TΦ Φ  must be of full rank to guarantee the RLLS filter will converge to the true values of 

the parameters being estimated.  As an example, the surge direction Equation (99) is 

investigated in this context.  Here u u X propiϕ
 =    so 

 
2

,
2

1 , ,

( )k
i i i i prop iT

i prop i i i prop i

u u u u X
X u u X=

 
Φ Φ =  

  
∑  (109) 
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The rank of the matrix described by Equation (109) was analyzed using data from the 

previously developed simulator and determined to be 2, or full rank.  Therefore, 

according to the construction of the RLLS filter for this system the estimated parameter 

values will converge to the true values, given enough data (and time).  This result is 

typical for the other DOF equations as well. 

The RLLS estimator is applied to the simulator (with coefficients presented in [5]) 

to sequentially identify the hydrodynamic coefficients and verify the correct 

implementation of the RLLS method.  As an example, results of the simulator RLLS 

surge testing are presented in Figure 13.   

 
Figure 9.  Convergence of simulator surge parameters 

As discussed in Section IV.A and in [8], persistence of excitation is a construct 

for guaranteeing speed of convergence of the solution to the RLLS problem.  The 

estimated parameter values can be seen to converge to the true values rapidly, implying 

that the system is persistently excited with a step function.  A “stair-step” series of step 

inputs are more suitable if, as in this case, testing space and time are limited (due to the 

test tank facility).   
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These results for the surge direction are typical for the other coefficients with the 

exception of pitch.  This is due to un-modeled dynamics represented by FBM in Equation 

(37).  Chen et al. [5] did not present the value for zB, the position of the center of 

buoyancy relative to the center of gravity.  Without knowing this value, assumed to be 

zero in the simulation, exact results cannot be achieved.  The restorative force due to zB 

shows up in the dynamics for the roll DOF as well but the contribution of zB to FBK is 

small due to small induced pitch angles and as such the parameters were still estimated 

accurately.  Full estimation results are presented in Table 3. 

 

 True value Est. value Units 
uX


 -27.08 -27.08 kg 

u uX  -61.117 -61.117 kg/m 

vY


 -25.952 -25.952 kg 

v vY  -139.81 -139.81 kg/m 

wZ


 -68.576 -68.576 kg 

w wZ  -51.724 -51.724 kg/m 

pK


 -61.683 -61.683 kgm2//rad 

p pK  -12.0 -12.0 kgm2//rad2 

qM


 -79.411 -82.363 kgm2//rad 

q qM  -56.61 -58.77 kgm2//rad2 

rN


 -0.154 -0.154 kgm2//rad 

r rN  -1.772 -1.772 kgm2//rad2 

Table 3.   Comparison of hydrodynamic parameters 

From these results, it can be concluded that the RLLS estimator performs properly and 

that the signal used to excite the system contains sufficient PE. 

2. RLLS Applied to SeaBotix vLBV300 

Since the vLBV300 is not yet equipped with an onboard Inertial Navigation 

System (INS), an external motion capture system (VICON) is used to measure the vehicle 
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position and orientation in the NPS CAVR test tank.  From these pose measurements, the 

linear and angular velocities are estimated.  The VICON system consists of Infrared LED 

arrays and cameras that track reflective markers in the operating space.  Due to the 

absorption of electromagnetic signals in water, the current system is only applicable for 

in-air operation.  To overcome this limitation, the vLBV300 has been extended above the 

water surface with a light-weight, low inertia structure.  By tracking this structure and 

performing the appropriate coordinate transformations, the submerged vehicle’s motion 

can be tracked.  This structure has a small effect on the dynamics of the vehicle, and a 

more appropriate solution is being investigated (such as relying on INS data instead).  

The VICON system provides high-accuracy data (<1cm) at high data rates (100 Hz).   

 
Figure 10.  SeaBotix vLBV300 in the instrumented NPS dive tank 

There are some limitations associated with this experimental setup, the primary of 

which is the size of the NPS dive tank.  At approximately 1.4 meters deep, 4.5 meters 

wide and 6.5 meters long the size of the tank prohibits extended data collection, an effect 

that is exacerbated during higher speed runs.  In order for the VICON system to provide, 

data it must be able to see the motion capture “pucs” (IR reflectors) on top of the 
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vehicle’s extension.  As the vehicle approaches the extremes of the tank, these reflectors 

may become occluded from the cameras, causing jumps in the data and further limiting 

the space available for experiments.  Another limitation is the VICON system itself.  

While VICON provides very high accuracy in position and pose data it is a physical 

system and is therefore subjected to some measurement noise.  VICON does not provide 

velocities or angular rates and therefore the provided position data must be filtered and 

differentiated (and transformed as required) to obtain the required body velocities and 

angular rates.  This differentiation has the effect of magnifying the noise present in the 

VICON measurements.  A low-pass filter is used to remove high frequency noise in the 

measurements but those effects are still apparent in the output velocities and angular 

rates.  In the near future, CAVR will be installing an INS into the SeaBotix vLBV300.  

This will help to improve the parameter estimation results by removing the need to 

externally measure and process position data as well as allowing sustained, at-sea data 

runs.  All of these effects are seen in the application of RLLS to the SeaBotix vLBV300 

but do not prevent system identification results from being obtained. 

One of the fundamental assumptions for the generic hydrodynamic coefficients 

for the system introduced in Chapter III is time and state independence.  This may be a 

valid assumption for systems operating around a trim point, as is implicitly the case for 

the simulator (and thus the results for the previous section).  However, in practice these 

coefficients are dependent on the system state, in particular vehicle velocity.  This can be 

seen in the initial application of the RLLS estimator to the vLBV300 using real-world 

data.  The RLLS estimator is used to estimate the surge parameters of the vLBV300 

during a run with a PWM command of 20 to the aft thrusters only.  The resulting 

coefficients are used to obtain a response which is compared to a second experimental 

run also conducted at a PWM of 20 to the aft thrusters.  The surge displacement results 

are presented in Figure 11 and the velocity results are presented in Figure 12. 

The simulated results did not match the experimental results as expected, and in 

fact differed by a significant amount.  The discrepancy derives from the speeds at which 

the coefficients were derived and the speed at which the vehicle moved in the 

experimental data.  The average steady state surge velocity u of the run used to determine 
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the coefficients was 0.3635 m/s while the value of u for the experimental run used for 

comparison was 0.2915 m/s.  The effects of this are clearly seen in Figures 11 and 12. 

 
Figure 11.  Simulated surge displacement compared to experimental surge displacement 

at a PWM command of 20 

 
Figure 12.  Simulated surge velocity compared to experimental surge velocity at a PWM 

command of 20 
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One approach to capture the dependence of these coefficients on velocity in 

particular is to introduce dimensionless coefficients.  Fossen [1] presents a table of 

normalization variables (the Prime I system), which is used to achieve the desired non-

dimensional form.  The normalization variables relevant to this work are presented in 

Table 4. 

Units Prime-system I 
Mass 3

2
Lρ  

Inertia 5

2
Lρ  

Force 2 2

2
U Lρ  

Moment 2 3

2
U Lρ  

Quadratic Damping 2

2
Lρ  

Linear Damping 2

2
ULρ  

Table 4.   Normalization variables used in the Prime I system (From [1]) 

L is the characteristic length of the vehicle which defines the scale of the vehicle.  

In this case it is chosen to be the length of the vehicle along its x axis, or 0.625 meters.  

ρ is the density of water at the temperature of the tank in which the vehicle is being 

tested.  For this work that is assumed to be the density of freshwater at 15 degrees 

centigrade, 31,000 kg
m

ρ = .  Finally, let the steady state velocity of the vehicle be 

 
2 2 2U u v w= + +  (110) 

In the following, the subscript c applied to U denotes the value used to derive the 

coefficients while the subscript r applied to U denotes the value used during the 

comparison run. 

Using the variables from Table 4, it is possible to define a prime set of 

dimensionless variables.  As an example, the variables from Equation (99) for surge are 

shown in detail here while only the results of the other two planar DOF are presented.  
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Inserting Equations (111)-(114) into Equation (99) gives the non-dimensional equation 
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Similarly, then 
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Since Equation (104) involves an inertia term, Iz, instead of a mass term as before, 

the coefficients become 
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Inserting Equations (118)-(121) into Equation (104) gives the non-dimensional equation 
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 (122) 

It is easy to see that Equations (115)-(117) and (122) can still be re-arranged to fit 

the form of Equation (47) so the RLLS may still be used to estimate the unknown 

parameters.  To fully investigate the vehicle and verify the normalization scheme used, 

two surge runs are presented at high speed (PWM command of 50) and low speed (PWM 

command of 20) to the aft thruster pair.  Dimensionalized and non-dimensionalized 

coefficients are determined for both runs and initially compared to different runs at the 

same PWM command that the coefficients are estimated at.  Slightly different steady 

state velocities are determined for the two runs at the same PWM command for both the 

high and low speed runs.  The high speed run results are presented in Figure 13 and the 

slow speed results are presented in Figure 14. 
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Figure 13.  Simulated surge displacement results compared to measured surge 

displacement results at a PWM command of 50 using coefficients determined 
at a PWM command of 50 

 
Figure 14.  Simulated surge displacement results compared to measured surge 

displacement results at a PWM command of 20 using coefficients determined 
at a PWM command of 20 
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In both cases it can be seen that the non-dimensional simulator performs more 

accurately than the dimensionalized version, but in the high speed run the 

dimensionalized simulator also performs well.  Additionally, when coefficients derived 

during the low speed run are used to simulate a high speed run (or vice versa) the results 

diverge significantly from the experimental data.  This is in part due to the application of 

the model away from the trim condition.  Figure 15 shows the divergence of the high 

speed coefficients used to simulate a low speed run.  Low speed coefficients simulating a 

high speed result also demonstrate this effect and diverge significantly. 

   
Figure 15.  Comparison of surge displacement to experimental displacement using 

coefficients determined at PWM command of 50 and a simulated run at a 
PWM command of 20. 

Both the inaccuracy in the dimensionalized simulator seen in Figures 13 and 14 

and the divergence of the non-dimensionalized simulator shown in Figure 15 can be 

explained by an examination of the Reynolds number.  The Reynolds number is a 

dimensionless parameter that relates the viscous behavior of all Newtonian fluids [20].  It 

is expressed mathematically as 

 
Re VLρ

µ
=

 (123) 
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where V and L are the characteristic velocity and length that describe the vehicle’s 

passage through the fluid, ρ is the density of the fluid the vehicle is travelling in, and µ

is the viscosity of the fluid.  The Reynolds number is also used to determine if a condition 

of similarity exists between the results determined from two different experiments.  

White defines the similarity condition as existing if the Reynolds number of one run is 

equal the Reynolds number of the second run.  He demonstrates this using a ratio of 

generic force coefficients [20] 

 

2 2
1 1 1 1

2 2 2 2

F V L
F V L

ρ
ρ

 
=  

   (124) 

According to Equation (124) a scaled relationship between the two force coefficients 

exists if the Reynolds number of the two experiments is the same.  For this work, since 

the density of the water and the characteristic length of the vehicle is the same between 

experiments Equation (124) simplifies to 

 

2

1 1

2 2

F V
F V

 
=  
   (125) 

which shows that the velocities must be equal in order for the condition of similarity to 

exist.  Because the experiments are conducted at different velocities the Reynolds 

numbers are not the same and the coefficients cannot be scaled.  This difference is not 

noticeable in Figures 13 and 14 because the steady state velocities are similar enough.  

(i.e., it is close enough to the trim condition).  This is not the case for the high-vs low-

speed runs. 

The second conclusion drawn from an analysis of the Reynolds number explains 

the difference between the dimensionalized and non-dimensionalized simulators in the 

low speed analysis.  Recall another assumption previously made that only turbulent flow 

would exist around the vehicle during its motion.  This allowed for simplification of the 

damping matrix ( )D ν  to only include the quadratic damping terms and allowed for the 

neglect of the linear damping terms.   
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The Reynolds number is also a good indicator of which type of flow will be 

present around a body moving in a fluid.  White states that turbulent flow will be present 

at Reynolds numbers greater than approximately 106 [20].  Calculating the Reynolds 

numbers for the low speed and high speed runs gives  
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These Reynolds numbers show the flow around the vehicle should be totally 

laminar for the low speed run, not turbulent, and therefore that ignoring the linear 

damping terms is not a good assumption.  This effect is particularly visible in the low 

speed run shown in Figure 14.  The fact that the high speed run in Figure 13 matches well 

implies that for the vLBV300 turbulent flow is beginning to dominate around 0.9 meters 

per second therefore the vehicle is likely operating at the end of the transition region.  

The damping matrix of the model, then, must be updated to include the linear damping 

coefficients instead of quadratic damping for the low speed run. 

 ( )( ) diag , , , , ,D X Y Z K M Nu v w p q rυ  = −    (127) 

Equations (99)-(104) then become 
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and Equation (108) becomes 
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RLLS regression is again applied to the data sets surge, sway, heave, and yaw 

using the updated model regressor form 

 1
( ) ( )

u
i

propu u

uXu
Xm X m X
  

=   − −    

  (130) 

as well as the updated non-dimensionalized regressor form.  The surge equations are 

presented as an example because the other updated DOF equations are typical to surge. 
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The surge displacement results using the linear damping matrix for a slow speed 

run are presented in Figure 16 and show that the damping model is still not entirely 

correct. 
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Figure 16.  Surge displacement comparison using linear only damping model 

Based on these results it is concluded that the true force due to damping is 

probably a combination between linear and quadratic, between laminar and turbulent.  

While the Reynolds number for this run suggests total laminar flow, the equation used for 

this is the Reynolds number of an infinitely flat, smooth plate.  The SeaBotix vLBV300 is 

clearly not a smooth, flat plate.  Thus, it is more likely that the vehicle operates in the 

transition region from laminar to turbulent flow.  Most likely, there are local instances of 

turbulent flow due to the rough surface of the sides and underside of the vehicle while 

laminar flow exits on the largely flat upper surface.  The damping matrix can be 

represented as a combination of both the linear and quadratic terms and this is a good 

area for further work. 

Since the quadratic damping model performed well at a PWM command of 50 for 

both the dimensionalized and non-dimensionalized simulators the full results for the high 

speed experiments in surge, sway, heave, and yaw are presented here as a starting point 

for future work.  As demonstrated, these values will only be accurate around the speed at 

which they are derived but they are useful as a starting point for future work. 
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Complete system identification results for the SeaBotix vLBV300 at high speeds 

are presented in Table 5.  The high speed runs for surge and sway are conducted at a 

PWM command of 50 while the heave and yaw runs were conducted at PWM command 

of 40 (the shallowness of the tank in the heave DOF and the tether wrapping around the 

vehicle limited operations).  The convergence of the surge coefficient values, both 

dimensionalized and non-dimensionalized, is presented in Figure 17 and the sway and 

yaw DOF results are similar to this.  The heave DOF results are presented in Figure 18 to 

demonstrate the limitation imposed by the shallow depth of the tank.  In order to prevent 

the vehicle from colliding with the bottom of the tank, only about two seconds of data is 

available to the estimator.  Figure 18 shows that the RLLS appears to converge then 

makes a correction (both in the dimensional and non-dimensional filter) at the very end.  

Clearly, longer data runs would provide more time for the filter to converge and therefore 

more accurate results. 

 
Figure 17.  Convergence of surge coefficients at high speed 
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Figure 18.  Convergence of heave coefficients at high speed  

 Dimensionalized Units Non- 
Dimensionalized 

uX


 -13.5778 kg -0.1146 

u uX  -27.7411 kg/m -0.1416 

vY


 -27.9347 kg -0.2334 

v vY  -50.6868 kg/m -0.2592 

wZ


 -46.3258 kg -0.3971 

w wZ  -64.5970 kg/m -0.3000 

rN


 -3.1023 kgm2//rad -0.8112 

r rN  -2.1709 kgm2//rad2 -0.3416 

Table 5.   Parameter estimation results for SeaBotix vLBV300 at high speed 

3. Conclusion: RLLS Estimator 

The RLLS estimator is applied to both a dimensionalized and non-

dimensionalized model for the SeaBotix vLBV300 platform.  The benefits of the non-

dimensionalized approach are demonstrated to make small adjustments around the trim 
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conditions. The non-dimensional RLLS produced both a low-speed and a high-speed 

model that performed well when tested at their respective speeds and generally performed 

better than the dimensionalized simulator.  A Reynolds number analysis and supporting 

experimental data suggests that the vehicle operates in different regimes for the low-and 

high-speed operations and an alternative model for low-speed operations is investigated.  

From these results it is concluded that a combination of these models may be required. 

Also, since there is a strong dependence of the model coefficients on vehicle state 

(velocity in particular), it may be more appropriate to model the system with time-

varying parameters, which can also be estimated with system identification techniques 

(recommended future work). 

The RLLS is an excellent estimator for this work.  It has the ability to estimate 

parameters of both constant and time-varying parameters, which as demonstrated, may be 

a useful extension of this work to provide the most accurate hydrodynamic parameter 

results possible.  A major current limitation is the size of the NPS dive tank, which does 

not allow for data runs longer than approximately 12 to 15 seconds at low speed or five-

to-seven second runs at high speed.  In the presence of noise and uncertainty this is often 

not enough time for the filter to converge.  Longer data runs would greatly benefit the 

RLLS by allowing it more time to converge.   

Additionally, this portion of the work identified the ideal sequence of 

commanded, decoupled motion to identify the full set of model parameters.  Because of 

the ability to perform uncoupled motion in the surge, sway, heave, roll, and yaw DOF the 

parameters of those equations should be determined in that order.  This is required to 

allow for the identification of the pitch coefficients through coupling of surge and heave.  

After these primary terms have been determined, they can  be plugged back into the 

appropriate equations of motions (used in subsequent estimation runs).   

This strategy can also be applied through careful analysis of the equations of 

motion to identify more coupling terms (to relax some of the assumptions).  The coupled 

motions can be performed in all possible permutations (surge-sway, heave-roll, sway-

heave, etc.) in order to determine the cross-coupling terms that were initially neglected in 

the equations of motions.  Finally, with these initial parameters in place, the filter can be 
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deployed on-line on the vehicle to constantly learn and update from these baseline values.  

As more data is collected through normal operations the estimates can be refined or can 

adapt to mid-mission configuration changes.   

B. NEURAL NETWORK ESTIMATION 

1. Neural Network Applied to Simulator 

The strength of the neural network approach is that, using sufficient number of 

nodes, an arbitrary number of inputs can be mapped to an arbitrary number of outputs 

with good accuracy [10].  The type of NN investigated is the Non-linear Autoregressive 

(with External Input) NN (NARX).  This type of model architecture is generally more 

accurate than other models because it incorporates feedback.  That is, previous values of 

the output y are fed back to help improve the accuracy of the network and continually 

train the network.  As an example, thruster force in the surge direction was mapped to 

surge velocity for the simulated Seamor ROV.  Both the Xprop command and the resulting 

surge velocity are corrupted by low power, white noise.  First, a network using three 

nodes and two delays is trained then a network using 10 nodes and two delays is trained  

The diagnostic graph of the NARX response for the three node network is presented in 

Figure 19 while the response for the 10 node network is presented in Figure 20.  

In the learning block, 70 percent of the supplied data was used to create and train 

the network, 15 percent was used to validate the network, and the final 15 percent was 

used to further test the network.  The top graph shows the response of the output element 

one, or for this network, surge velocity u, over time plotted against test and validation 

points.  The lower graph shows the magnitude of the error between the network output 

and the supplied, true output data.  . 
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Figure 19.  Diagnostic plot of NARX with three nodes and two time delays 

 
Figure 20.  Diagnostic plot of NARX with 10 node and two time delays 
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A comparison between Figures 19 and 20 shows that increasing the number of 

nodes from three to 10 has little effect on the magnitude of the error.  However, a 

comparison of their outputs when plotted against the simulated surge velocity 

demonstrates another constraint of NN: using too many nodes to model a simple system.  

This comparison of the surge velocities produced by both networks is presented in Figure 

21. 

 
Figure 21.  Comparison of actual surge velocities to 10 node and three node NARX 

Figure 21 shows that, for the simple input-output relationship between Xprop and 

surge velocity a three node network is capable of modeling the response of this system.  

It also does a good job of rejecting the high frequency noise used to corrupt the inputs 

and outputs.  The 10 node network, however, attempts to model the unwanted high 

frequency noise content.  This demonstrates the power of increasing the size of a NN as 

well as the dangers of doing so.  Therefore, when choosing a NN size careful 
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consideration must be given to using enough nodes to adequately model the system while 

ensuring the noise inherent to the system is not also modeled by the NN.     

Another important consideration when modeling using NN is the data used to 

train the network.  The network will only be as good as the information contained in the 

training data.  For example, when initially training the NN used to map the Xprop to surge 

velocity, a disproportionate amount of the data used was for the steady state condition of 

the simulator after it reached cruising speed.  Since the NN toolbox randomly chooses 

points from the data provided to train the network, this resulted in poor modeling of the 

transient.  Truncating the data used to train the NN to involve an equal amount of data for 

the transient and steady state generated the much better results seen in Figure 21.  

Therefore, if a single NN is expected to model an entire complex system then when 

training it is crucial to do so values for all possible operational ranges and conditions and 

to ensure all dynamics are equally represented in the amount of data provided to train the 

system. 

Next, a 10 node, four time delay NARX neural network is created and trained for 

all four controllable DOF of the Seamor ROV.  This is accomplished by exciting the four 

controllable DOF sequentially in the order surge, sway, heave, yaw then exciting the 

vehicle in the coupled modes of surge-sway, surge-heave, surge-yaw, sway-heave, sway-

yaw, heave-yaw, surge-sway-heave, and surge-sway-yaw.  The goal of this input 

sequence is to excite the vehicle as completely in all six DOF (relying on coupling effects 

for roll and pitch) as possible in order to ensure the information used to train the NARX 

is a rich as possible.  The output values used to train the NARX are the simulated body 

velocity and angular rate values u, v, w, and r.  The input commands and output 

measurements are corrupted with low power, white noise to make the simulation as 

realistic as possible.  The diagnostic results relevant to the surge output element are 

presented in Figure 22. 

Because of the computational infrastructure available for this work, trying to 

include roll and pitch is not possible.  Nor are longer data runs.  The computer used 

cannot handle the training process for even a small, 10 node network using six inputs, six 

outputs, and the large array of training data.  It is also difficult to increase the number of 
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nodes for non-simple (one input to one output) systems which again demonstrates the 

importance of choosing a network size to adequately model the system while avoiding 

“over-modeling” and over-burdening of the computer used to create and train the 

network.  

 

Figure 22.  Diagnostic results for surge element of complex NARX 

To verify this model, and that the data used to train it was sufficient, the NARX 

was tested using simple coupled motion between surge and sway since the data used to 

train this NN included similar coupled motion.  The results of plugging the resulting 

NARX model into the simulator are presented in Figure 23. 
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Figure 23.  Comparison of surge velocity response 

The results presented in Figure 23 show the power of using information rich 

training data and choosing the right network size.  Because a complex and information 

rich training scheme is used to train the network, when a different input signal is applied 

the NARX is able to adapt and correctly model the system (with some difficulty in the 

transient section due to the network response time).  This serves to further highlight the 

importance of the data used to train the NN.  Also, since a more complex relationship is 

modeled, a greater number of nodes are required to adequately model the system. . 

2. Neural Network applied to SeaBotix vLBV300 

Now that the NN concept, specifically using the NARX architecture, has been 

validated using the simulator, it is applied to the SeaBotix vLBV300.  As discussed in 

Section V.B, while limited computing power restricts the number of nodes that can be 

employed, the best results are produced ensuring the richest possible data is used to train 

the networks..  The NARX experiment applied to the vLBV300 was a stair-step input the 
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surge direction where only the thrust generated in the surge direction was supplied as 

input and only u, the surge velocity was used as the targeted output.  A three node 

network, using two time delays was created in MATLAB with the error analysis 

presented in Figure 24.  A single node, single delay network was also created but the 

diagnostic results are not presented as they are very similar to the three node network. 

 
Figure 24.  Diagnostic results for velocity mapping, three node, two delay NARX in surge 

direction only 

Again, the error plot demonstrates just how well a very small NN can be trained to follow 

a non-linear dynamic system.  As before, the network was then verified by comparing its 

outputs to measured data as presented in Figure 25. 
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Figure 25.  Comparison of three and one node NARXs to measured data 

Even the single node NARX was able to match the transient—almost too well: the single 

node network is able to match the noise inherent to the Vicon system.   

Next, a complex run by the SeaBotix coupling the surge, sway, heave, and yaw 

degrees of freedom was used to train a complex NN.  Because of the small size of the 

tank and a limitation with capturing joystick to PWM commands, the network could not 

be sufficiently trained to model the system.  Based on the simulation results, this is due to 

not enough data being collected for the various DOF.  The simulation results are achieved 

by using 100 simulated seconds of data with a sample rate of 10 Hz.  This yielded over 

10,000 data points.  It was not possible to collect this much information, or as rich as 
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information using the actual SeaBotix due to the current experimental setup and reliance 

on externally collected motion data. 

Conceptually, a single well-trained NN will be able to approximate motion in any 

DOF or number of coupled, controllable DOFs, but as shown that will require a network 

that is trained, and re-trained, with rich and comprehensive input data.  This ideal 

network may require a large number of nodes depending in the complexity of the system 

being modeled, but as shown too many nodes will actually degrade the performance of 

the NN estimator.  This training data must contain information on all operating modes, 

controllable DOF, spanning the full range of motions of the anticipated operations in 

order to ensure success.  This highly accurate model will be useful for both motion 

prediction and fault detection and assessment.  For example, if the vehicle suspects it is 

damaged due to onboard diagnostics or because of divergence of true motion from 

another model (perhaps supplied by the RLLS method) it could enter a sub-routine where 

it performs motion similar to those used to create the simplified NN.  Significant 

deviation from this simplified motion would not only imply damage or obstruction but 

would also simplify the fault diagnosis process since fewer numbers of thrusters are used 

as inputs to these networks. 

C. GRADIENT ESTIMATOR 

The GE is greatly limited by the presence of un-modeled disturbances and 

measurement noise, and is very sensitive to the values used to tune the filter – particularly 

step size, p0 as defined in Section IV.A.3.  As in Chapter IV, since both of these are 

expected to be present in this work the GE is not a good choice for online parameter 

estimation of a ROV and is not further investigated.  This is confirmed by attempting to 

use the GE to estimate the surge parameters of the Seamus ROV presented in [5].  Recall 

that the only guarantee of convergence for a GE is sufficient PE, therefore a chirp signal 

was used to excite the simulated system since it a signal of the highest order of PE and is 

rich in frequency content as well.   
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First, the system is excited using a chirp signal (a sinusoid based signal of high PE 

that increases its frequency over a set period time) with no simulated noise and the 

estimator step size, p0, is varied from one to 1000.  The results presented in Figure 26 are 

typical for all p0 values. 

 
Figure 26.  GE results in the surge direction with no noise added 

The results, while oscillating, can be seen to be drifting down towards the true 

values of 61.117 kg/m2 and 27.08 kg for  and uu uX X


, respectively.  uX


even arrives in 

the general vicinity of its true value and then proceeds to oscillate around it.  u uX , 

however, is very far from the true value even after a 30 second period of excitation.  In 

order for the u uX  value to arrive at its true value the experiment would have to run for a 

very long period of time (on the order of thousands of seconds in this example)  Because 

of the small size of the NPS tank long experimental runs are not possible.  As such a 

longer simulated experiment was not conducted since an operational equivalent is not 

currently possible and because the RLLS estimator is shown to function better in the 

presence of both noise and uncertainty.  Combining this long time to convergence, with 

the oscillation caused by the choice of p0, reveals the GE to be a poor choice for this 

work. 
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Adding even very low power noise (a magnitude of 0.0001) to the regressor 

inputs to the filter illustrates the vulnerability of the GE to noise.  The results presented in 

Figure 27 further show why the GE is a poor choice for this work.  Because of this, the 

GE method was not applied to the SeaBotix platform. 

 
Figure 27.  GE results in the surge direction with added noise. 

D. BAYESIAN FILTERING 

By choosing a zero mean, normal distribution for the probability functions related 

to the coefficients to be estimated as well as the measurement and process noise 

distributions the Bayesian filter becomes an extended Kalman filter.  In order to 

successfully apply the Kalman filter equations a system must be observable as derived by 

Ogata [18]. 

To check for system observability, first the system must be linearized and written 

in the canonical state-space form 

 
x Ax Bu
y Cx Du
= +
= +



 (133) 
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The surge direction is considered first by re-arranging Equation (99) into the form of 

Equation (133) to give 
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In Equation (134) 1 ( )
u u
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.  It is important to note that in 

Equation (134) u refers to the surge velocity in the body frame of reference and in 

Equation (133) it refers to a control input.  Matrices B and D are ignored here since they 

do not enter into the observability analysis.  Then, from [18], observability of the system 

is given by 
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where n is the size of the state space, or three, in this example.  The observability matrix 

from Equation (135) is then calculated as 

 1, ,
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The determinant of matrix A is zero which means that this observability matrix is rank 

deficient.  Therefore, the system is not observable.  Since the system is not observable the 
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extended Kalman filter cannot be applied to this work.  This is not an atypical result.  

While most physical systems are in fact observable, the way they are expressed 

mathematically may not be [18].  Therefore, the Bayesian approach is not investigated 

further for this work and it is not applied to the SeaBotix vLBV300. 
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VI. CONCLUSIONS 

A. SUMMARY 

Estimating the hydrodynamic coefficients of an underwater vehicle is a difficult 

process.  The motion of a body in areal fluid is a highly complex, highly coupled, and 

non-linear process.  A propulsion model is developed that maps individual thruster low 

level PWM commands to generated thrust and a geometric model that converts thrust into 

body forces and moments.  Then, starting with the first principles for the equations of 

motion for a six DOF submerged vehicle as presented by Fossen [1], several assumptions 

are introduced to simplify this model and create a parametric representation of the 

SeaBotix vLBV300 THAUS.   

This thesis is focused on applying various system identification techniques to 

learn the model parameters for the THAUS.  Since these system identification techniques 

are developed for static regression models, a method of converting a dynamic system into 

an equivalent static system is presented before four system identification techniques are 

applied: recursive linear least squares (RLLS), computational neural networks (NN), 

gradient estimator (GE), and a Bayesian filtering method.  The GE and Bayesian 

estimator approaches are not suitable for this work or not applicable and as such no 

results are compared to the other parametric model based system identification method –

the RLLS. 

The RLLS approach is applied to learn the coefficients at a low- and high-speed 

trim condition, respectively.  By sequentially exciting the system in individual, decoupled 

directions, the model parameters can be estimated.  Since the vehicle cannot be controlled 

in the pitch direction, coupled motion between the surge and heave directions are 

required for system identification.  It is shown that these parameters can indeed be 

estimated online. This is demonstrated on a simulator with known parameters as well as 

the vLBV300 platform, utilizing an external motion capture system and performing tests 

in the NPS CAVR test tank. Model accuracy is good in most directions; however the 
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experimental setup limited the lengths of the data sets, which was particularly 

constraining for higher-speed data collection as well as angular motion.  

Comparing predicted and measured responses, the vehicle response close to the 

trim condition is accurately captured, but behavior deviates farther away due to the 

complex dynamics and inherent parameter dependence on vehicle state.  Dimensionless 

parameters are introduced to account for parameter deviation from the trim condition. 

These dimensionless parameters are learned with their dimensional counterparts.  The 

dimensionless parameter model formulation yielded more accurate predictive capability 

since the model can correct for slight variations in vehicle velocity (around the trim 

condition).  However, this technique is not applicable to large deviations.  To this end, a 

Reynolds number analysis shows that the low-speed trim condition falls within the 

laminar-to-transition flow regime, for which linear damping may be a more appropriate 

model (quadratic damping is assumed, as motivated by vortex shedding effects for 

turbulent flow).  This revised model is investigated for the low-speed trim condition, but 

without significant improvement in model performance.  As a result, it is concluded that 

operation in this flow transition regime will likely require inclusion of both terms.  The 

original model (with quadratic damping) appears to be appropriate for the higher-speed 

operations.  

A non-parametric approach is also investigated based on a computational NN 

framework.  A simple network is created for both the simulator and the SeaBotix 

vLBV300 that successfully mapped the thruster force in the surge direction to the surge 

velocity u.  Then a more complicated network is created to map the four controllable 

DOF thruster forces to their respective body velocities and angular rate.  This is 

accomplished for both the simulator, but the experimental setup did not allow sufficient 

data to be captured for the physical system.  The potential of the NN framework and its 

ability to capture complex input-output relations inherent in modeling underwater 

vehicles is demonstrated.  The richness of the data used to train a NN is very important.  

Much like the concept of PE, a NN is only as good as the data with which it is trained.  

Then, the importance of using a sufficient number of nodes and time delays is 

demonstrated, but the pitfall of over-fitting is also high-lighted.  Because this approach is 
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non-parametric, the resulting model does not have the same physical meaning as the 

parametric approaches presented so a direct comparison of the identified parameters is 

not possible.   

B. FUTURE WORK 

Based on the results achieved in this work, as well as the limitations identified, 

several areas for future work have been identified.  First, the propulsion model is based 

on sending low-level commands directly to each thruster.  This was beneficial in that it 

allowed for control of the vehicle in an additional DOF, the roll direction.  However, it is 

a limitation given the small size of the NPS dive tank.  Mapping joystick commands 

directly to the generated thrust will allow for mid-experiment course corrections to avoid 

collision or further excite the vehicle without throwing off the force input to the filters.     

The assumption that the tether dynamics does not affect the vehicle dynamics or 

pose is observed to be marginal at best during the testing, particularly during operations 

in the test tank.  Further work is required to model the effects of the tether to ensure the 

more accurate control is possible.   

CAVR is acquiring an INS for the SeaBotix vLBV300 in the near future.  This 

will overcome many of the experimental setup limitations encountered in this work.  The 

main advantage is that the sensor will allow a greater range of motions to be tracked, as 

well as ocean-based operations. Open ocean trials will allow for much longer data runs 

allowing the filters to have more, and thanks to wave action, richer data to use for 

convergence.  Once this has occurred, the approach and filters developed in this work can 

be modified to use the measurements provided by the INS in order to improve the 

accuracy of the filter.   

A key assumption that allowed the use of the classical RLLS filter is that the 

parameters being estimated were not time varying.  Because of this, the RLLS is 

formulated to consider information contained in the entire experiment (i.e., no old data is 

discarded).  Because the hydrodynamic coefficients were shown to vary with vehicle 

speed and were also shown to be non-scalable to that speed difference, a time-varying 

approach may prove beneficial and should be investigated.  This would not require 
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substantial further work as the classical RLLS employed in this work can be readily 

adapted with a “forgetting” factor that allows it to only consider data over a certain 

period of time.  Other approaches for time-varying parameters can be investigated.   

Considering the Bayesian filtering approach: while the system as written is not 

observable and the extended Kalman filter approach is not usable, alternative 

mathematical formulation of the problem may produce the necessary condition for 

observability.  This will allow for an investigation of not only the extended Kalman filter 

approach but for other statistical methods based on Bayes’ rule, such as the unscented 

Kalman filter or a particle filter, which would also prove useful when considering the 

time-varying parameter problem.   
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APPENDIX A. 6 DOF MOTION SIMULATOR MATLB CODE 

function [ydot,etadot,J,out] = fcn(y,eta,tau) 
%y=[u;v;w;p;q;r]; 
%tau=[X;Y;Z;K;M;N]; 
%eta=[x;y;z;phi;theta;psi]; 
 
g = 9.81; % Acceleration due to gravity in meters/second^2 (m/s^2) 
m = 20.9; % Mass in kilgrams (kg) 
W = m*g; % Weight in Newtons (N) 
B = W; % Measured Vehicle Buoyancy (N) 
  
% Moments of Inertia WRT Origin at Half-Length 
I_xx = .5587; % kg*m^2 
I_yx = 0; 
I_zx = 0; 
I_xy = 0; 
I_yy = .9531; % kg*m^2 
I_yz = 0; 
I_zy = 0; 
I_xz=0; 
I_zz = .9; % kg*m^2 
I=[I_xx -I_xy -I_xz; -I_yx I_yy -I_yz; -I_zx -I_zy I_zz]; 
  
% Center of Buoyancy WRT Origin at Vehicle Nose 
x_cb = 0.00; % x-location (m) 
y_cb = 0.00; % y-location (m) 
z_cb = 0.00; % z-location (m) 
  
% Center of Buoyancy WRT Origin at Vehicle Half Length 
% halflength=L/2; 
x_cb = 0.00; 
y_cb = 0.00; % y-location (m) 
% z_cb = -5.016E-1; % z-location (m) 
z_cb=-.05; 
% Center of Gravity WRT Origin at Vehicle Half Length 
x_cg = 0; % x-location (m) 
y_cg = 0.00; % y-location (m) 
z_cg = 0; % z-location (m) 
  
% Non-Linear Force Coefficients 
X_uu = -4.56; % Cross-flow Drag (kg/m) 
X_udot = 200.4802; % Added Mass (kg) 
X_u = -6.8387; 
X_vdot = 0; 
X_wdot = 0; 
X_pdot = 0; 
X_qdot = 0; 
X_rdot = 0; 
X_wq = 0; % Added Mass Cross-term (kg/rad) 
X_qq = 0; % Added Mass Cross-term (kg*m/rad) 
X_vr = 0; % Added Mass Cross-term (kg/rad) 
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X_rr = 0; % Added Mass Cross-term (kg*m/rad) 
Y_vv = -55.006; 
Y_v=0;% Cross-flow Drag (kg/m) 
Y_rr = 0; % Cross-flow Drag (kg*m/rad^2) 
Y_uv = 0; % Body Lift Force and Fin Lift (kg/m) 
Y_udot = 0; 
Y_vdot = -21.584; % Added Mass (kg) 
Y_wdot = 0; 
Y_pdot = 0; 
Y_qdot = 0; 
Y_rdot = 0; % Added Mass (kg*m/rad) 
Y_ur = 0; % Added Mass Cross-term and Fin Lift (kg/rad) 
Y_wp = 0; % Added Mass Cross-term (kg/rad) 
Y_pq = 0; % Added Mass Cross-term (kg*m/rad) 
Y_uudr = 0; % Fin Lift Force (kg/(m*rad)) 
Z_ww = -67.8358; 
Z_w=0;% Cross-flow Drag (kg/m) 
Z_qq = 0; % Cross-flow Drag (kg*m/rad) 
Z_uw = 0; % Body Lift Force and Fin Lift (kg/m) 
Z_udot = 0; 
Z_vdot = 0; 
Z_wdot = -21.3775; % Added Mass (kg) 
Z_pdot = 0; 
Z_qdot = 0; % Added Mass (kg*m/rad) 
Z_rdot = 0; 
Z_uq = 0; % Added Mass Cross-term and Fin Lift (kg/rad) 
Z_vp = 0; % Added Mass Cross-term (kg/rad) 
Z_rp = 0; % Added Mass Cross-term (kg/rad) 
Z_uuds = 0; % Fin Lift Force (kg/(m*rad)) 
  
K_pp = -103.335;  
K_p=0;% Rolling Resistance (kg*m^2/rad^2) 
K_udot = 0; 
K_vdot = 0; 
K_wdot = 0; 
K_pdot = -23.890; % Added Mass (kg*m^2/rad) 
K_qdot = 0; 
K_rdot = 0; 
M_ww = 0; % Cross-flow Drag (kg) 
M_qq = -129.99;  
M_q=0;% Cross-flow Drag (kg*m^2/rad^2) 
M_uw = 0; % Body and Fin Lift and Munk Moment (kg) 
M_udot = 0; 
M_vdot = 0; 
M_wdot = 0; % Added Mass (kg*m) 
M_pdot = 0; 
M_qdot = -46.726; % Added Mass (kg*m^2/rad) 
M_rdot = 0; 
M_uq = 0; % Added Mass Cross-term and Fin Lift (kg*m/rad) 
M_vp = 0; % Added Mass Cross-term (kg*m/rad) 
M_rp = 0; % Added Mass Cross-term (kg*m^2/rad^2) 
M_uuds = 0; % Fin Lift Moment (kg/rad) 
N_vv = 0; % Cross-flow Drag (kg) 
N_rr = -.8814;  
N_r=0;% Cross-flow Drag (kg*m^2/rad^2) 
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N_uv = 0; % Body and Fin Lift and Munk Moment (kg) 
N_udot = 0; 
N_vdot = 0; % Added Mass (kg*m) 
N_wdot = 0; 
N_pdot = 0; 
N_qdot = 0; 
N_rdot = -.4202; % Added Mass (kg*m^2/rad) 
N_ur = 0; % Added Mass Cross-term and Fin Lift (kg*m/rad) 
N_wp = 0; % Added Mass Cross-term (kg*m/rad) 
N_pq = 0; % Added Mass Cross-term (kg*m^2/rad^2) 
N_uudr = 0; % Fin Lift Moment (kg/rad) 
tauf=tau; 
%% Mass Matrices 
Ma = -1*[X_udot X_vdot X_wdot X_pdot X_qdot X_rdot;... 
    Y_udot Y_vdot Y_wdot Y_pdot Y_qdot Y_rdot;... 
    Z_udot Z_vdot Z_wdot Z_pdot Z_qdot Z_rdot;... 
    K_udot K_vdot K_wdot K_pdot K_qdot K_rdot;... 
    M_udot M_vdot M_wdot M_pdot M_qdot M_rdot;... 
    N_udot N_vdot N_wdot N_pdot N_qdot N_rdot]; 
Mrb = [m 0 0 0 m*z_cg -m*y_cg;... 
    0 m 0 -m*z_cg 0 m*x_cg;... 
    0 0 m m*y_cg -m*x_cg 0;... 
    0 -m*z_cg m*y_cg I_xx -I_xy -I_xz;... 
    m*z_cg 0 -m*x_cg -I_yx I_yy -I_yz;... 
    -m*y_cg m*x_cg 0 -I_zx -I_zy I_zz]; 
M = Ma+Mrb; 
  
%% Coriolis and Centripetal Matrix Calculation 
%y=[u;v;w;p;q;r]; 
%tau=[X;Y;Z;K;M;N]; 
%eta=[x;y;z;phi;theta;psi]; 
u=y(1); 
v=y(2); 
w=y(3); 
p=y(4); 
q=y(5); 
r=y(6); 
a1 = X_udot*u+X_vdot*v+X_wdot*w+X_pdot*p+X_qdot*q+X_rdot*r; 
a2 = X_vdot*u+Y_vdot*v+Y_wdot*w+Y_pdot*p+Y_qdot*q+Y_rdot*r; 
a3 = X_wdot*u+Y_wdot*v+Z_wdot*w+Z_pdot*p+Z_qdot*q+Z_rdot*r; 
b1 = X_pdot*u+Y_pdot*v+Z_pdot*w+K_pdot*p+K_qdot*q+K_rdot*r; 
b2 = X_qdot*u+Y_qdot*v+Z_qdot*w+K_qdot*p+M_qdot*q+M_rdot*r; 
b3 = X_rdot*u+Y_rdot*v+Z_rdot*w+K_rdot*p+M_rdot*q+N_rdot*r; 
Ca = [0  0  0  0  -a3  a2;... 
      0  0  0  a3  0  -a1;... 
      0  0  0 -a2  a1  0;... 
      0 -a3 a2 0  -b3  b2;... 
      a3 0 -a1 b3  0  -b1;... 
     -a2 a1 0 -b2  b1  0]; 
%Fossen's Simplified for UUV 
  
rb1 = zeros(3); 
rb2 = [-m*(y_cg*q+z_cg*r) m*(y_cg*p+w) m*(z_cg*p-v);... 
    m*(x_cg*q-w) -m*(z_cg*r+x_cg*p) m*(z_cg*q+u);... 
    m*(x_cg*r+v) m*(y_cg*r-u) -m*(x_cg*p+y_cg*q)]; 
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rb3 = [m*(y_cg*q+z_cg*r) -m*(x_cg*q-w) -m*(x_cg*r+v);... 
    -m*(y_cg*p+w) m*(z_cg*r+x_cg*p) -m*(y_cg*r-u);... 
    -m*(z_cg*p-v) -m*(z_cg*q+u) m*(x_cg*p+y_cg*q)]; 
rb4 = [0 -I_yz*q-I_xz*p+I_zz*r I_yz*r+I_xy*p-I_yy*q;... 
    I_yz*q+I_xz*p-I_zz*r 0 -I_xz*r-I_xy*q+I_xx*p;... 
    -I_yz*r-I_xy*p+I_yy*q I_xz*r+I_xy*q-I_xx*p 0]; 
Crb = [rb1 rb3; rb2 rb4]; 
  
  
C = Ca+Crb; 
%% Damping Matrix 
d1 = [X_u 0 0 0 0 0;... 
    0 Y_v 0 0 0 0;... 
    0 0 Z_w 0 0 0;... 
    0 0 0 K_p 0 0;... 
    0 0 0 0 M_q 0;... 
    0 0 0 0 0 N_r]; 
d2 = [X_uu*abs(u) 0 0 0 0 0;... 
    0 Y_vv*abs(v) 0 0 0 Y_rr*abs(r);... 
    0 0 Z_ww*abs(w) 0 Z_qq*abs(q) 0;... 
    0 0 0 K_pp*abs(p) 0 0;... 
    0 0 M_ww*abs(w) 0 M_qq*abs(q) 0;... 
    0 N_vv*abs(v) 0 0 0 N_rr*abs(r)]; 
D =-d1; 
out=[D(1,1), d1(1,1),d2(1,1),u]; 
  
%% Restoring Force Matrix 
%eta=[x;y;z;phi;theta;psi]; 
phi=eta(4); 
theta=eta(5); 
psi=eta(6); 
gn = [(W-B)*sin(theta);... 
    -(W-B)*cos(theta)*sin(phi);... 
    -(W-B)*cos(theta)*cos(phi);... 
    -(y_cg*W-y_cb*B)*cos(theta)*cos(phi)+(z_cg*W-
z_cb*B)*cos(theta)*sin(phi);... 
    (z_cg*W-z_cb*B)*sin(theta)+(x_cg*W-x_cb*B)*cos(theta)*cos(phi);... 
    -(x_cg*W-x_cb*B)*cos(theta)*sin(phi)-(y_cg*W-y_cb*B)*sin(theta)]; 
gnd=gn; 
 
%% Y dot calculation 
 ydot = M\(tauf-C*y-D*y-gn); 
J1=[cos(psi)*cos(theta) -sin(psi)*cos(phi)+cos(psi)*sin(theta)*sin(phi) 
sin(psi)*sin(phi)+cos(psi)*cos(phi)*sin(theta);... 
    sin(psi)*cos(theta) cos(psi)*cos(phi)+sin(phi)*sin(theta)*sin(psi) 
-cos(psi)*sin(phi)+sin(theta)*sin(psi)*cos(phi);... 
    -sin(theta) cos(theta)*sin(phi) cos(theta)*cos(phi)]; 
J2= [1 sin(phi)*tan(theta) cos(phi)*tan(theta);... 
    0 cos(phi) -sin(phi);... 
    0 sin(phi)/cos(theta) cos(phi)/cos(theta)]; 
J=[J1, zeros(3); zeros(3),J2]; 
  
etadot = J*y; 
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APPENDIX B. SIMULINK DIAGRAMS  

 
Figure 28.  RLLS estimator 

 
Figure 29.  Gradient estimator 
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Figure 30.  Simulator  
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