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ABSTRACT 

The research described here examined computer vision algorithms for suitability to aid or 

replace the current methods of ship detection and tracking from a photonics mast.  

Evaluation was conducted on three object detection methods: a bag of words (BOW) 

robust multi-class classification method; a histogram of oriented gradient (HOG) method, 

originally used for pedestrian tracking; and a deformable parts model (DPM) that was 

originally designed for pose recognition that has been successful in multi-class 

classification.  A fourth method that combines the HOG and BOW was created and 

successfully reduced false positive detections while maintaining a high recall rate. 

The object detection methods were analyzed through a search theory model to 

frame evaluation for operational ship detection.  Each object detection method was 

optimized following a design of experiments approach utilizing a cluster computer.  The 

BOW method had the highest recall for ships 25 pixels and smaller, while the HOG 

method was the fastest of all methods when implemented on a graphical processing unit.  

The DPM method had the highest average recall for ships greater than 25 pixels but the 

lowest recall for smaller ships.  Finally, the hybrid HOG and BOW method had the 

highest mean recall and lowest mean false positive rate over all ship sizes. 
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EXECUTIVE SUMMARY 

The U.S. Navy, like many organizations, continues to have computers automate tasks that 

were previously accomplished by people.  It is only beneficial to have a computer 

automate a task if the computer can perform the task as well as an operator.  The 

challenges of using computers to perform automatic visual ship detection on a submarine 

were investigated in this thesis, and how well a computer could perform this task was 

considered.  There are many automated tools to help detect and track ships from a 

submarine, most of which are for sound navigation and ranging (SONAR) and radio 

detection and ranging (RADAR) systems.  Operator understanding of the tactical and 

contact picture can be improved by automatic visual ship detection.  One benefit of visual 

ship detection is that it operates passively, requiring no transmission.  Additionally, it can 

provide very accurate bearing and range information.  The visual sensor can also detect 

ships that may not be detected by SONAR and RADAR.   

A search theory model used for the evaluation and comparison of SONAR and 

RADAR systems was adapted for this investigation [1].  The evaluation model was used 

to incorporate many of the challenges faced by a submarine in visual ship detection.  

These challenges included detecting ships at great distances in open seas and detecting 

ships in the midst of a harbor.  Incorporating these challenges into the evaluation model 

provided a better understanding of the capabilities of the computer vision algorithms 

investigated. Many computer vision algorithms have been utilized for visual ship 

detection, and many of these algorithms are considered.  Most of these approaches were 

found to have limitations if used onboard a submarine.  Some of these limitations include 

using frame differences or blocks above the horizon, to be considered as ships.  Instead of 

considering these methods, object detection methods were examined that have been 

successful for many classes of objects.   

Three-object detection algorithms were evaluated for use as a visual ship detector 

onboard a submarine.  The first method was a bag of words (BOW) approach, a robust 

multiclass object detection method that allows the evaluation of many computer vision 

visual feature methods [2].  In the BOW evaluation, 10 methods of selecting visual 
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feature keypoints were investigated.  The second method investigated was a histogram of 

oriented gradients (HOG) approach that has been very successful in tracking pedestrians 

[3].  The third method was a deformable parts model (DPM), which has been used for 

detecting many types of objects and can detect and differentiate people performing 

different poses [4].  Lastly, a hybrid ship detector was created by combining the HOG 

and BOW methods (HYBRID).  The HYBRID detector provides the benefits of speed of 

detection and localization from HOG while successfully reducing the false positive rate 

to the lowest levels of all evaluated detectors.  The HYBRID method is capable of being 

trained to utilize the multiclass detection of the BOW method, allowing it to differentiate 

between classes of ships such as a merchant or a warship.   

To create the best ship detector from each of the three object detection methods, a 

design of experiments was conducted to train the detectors on a cluster computer. From 

the design of experiments, thousands of ship detectors were created from each object 

detection method. The training parameters that produced the best ship detectors are 

described for each object detection method.  Out of the thousands of ship detectors, the 

top detectors from each method were evaluated using the search theory evaluation model.  

Then, the top detectors from each method were compared against each other and against 

the HYBRID model.  Using the search theory evaluation model provided an expectation 

for the operational use of each ship detector without actually performing an operational 

test.  The evaluation takes into account the probability of detection per glimpse of the 

target by range and the time between possible glimpses while performing 360-degree 

scans with the detector. 

Scaled ship images are shown in Figure 1, with an initial average size of 256 

pixels tall and scaled to 75, 50, 25, 20, 15 and 10 percent of the original image size.  The 

ship sizes in Figure 1 are similar to the sizes used to simulate the detection of ships at 

greater ranges.  The HYBRID detector had the best average results over all scales with an 

89.14 percent detection rate and a 10.28 percent false positive rate.  The DPM ship 

detector was second with average rates over all scales of 85.57 percent and an 11 percent 

false positive rate, followed by HOG and then BOW.  Additionally, the HOG was the 

fastest computationally when performed on a GPU at greater than eight, 1920 by 1080 
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pixel, frames per second (fps), followed by BOW and HYBRID at five and two fps.  

Finally, the DPM method was the slowest at one frame every two seconds, though faster 

implementations of DPM are discussed and considered through the model in the 

evaluation.  

 
Figure 1. Example of a cropped ship image with the average pixel height of the 

evaluation set, and the subsequent 75, 50, 25, 20, 15 and 10 percent scales of 
the image, used to find probability of detection by range (after [5]). 

The results of using the search theory evaluation model provided the expectation 

that the HYBRID detector would detect a 10-meter masthead height (MHH) contact 

traveling at a relative speed of 20 knots at a 9.7-kilometer sweep width.  Simply put, the 

HYRID model should detect this contact by the time it is within 9.7-kilometers of the 

sensor.  This was given that the sensor, lens, focal length and scan techniques used in the 

evaluation model are followed, to include a sensor being only two meters above sea level.  

Using these evaluation restrictions, we achieved expectations for the detection range 

(sweep width).  The sweep width for a 20 knots relative speed contact by MHH is 

illustrated in Figure 2 for the top ship detector from each model evaluated.  The rest of 
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this thesis is a description in detail how the evaluation model was created and how these 

object detection methods were selected and adapted to be ship detectors, along with their 

individual performances. 

 
Figure 2. Expected detection range (sweep width) of the best ship detector from each 

method for a 20 knot relative velocity contact based on the MHH. 

LIST OF REFERENCES 
 

[1] D. H. Wagner et al., Eds., Naval Operations Analysis 3rd ed. Annapolis, MD: 
Naval Institute Press, 1999. 

[2] G. Csurka et al., “Visual Categoriation With Bags of Keypoints,” in 
Workshop on Statistical Learning in Computer Vision, ECCV, Prague, Czech 
Republic, 2004, pp. 1–22. 

[3] N. Dalal and B. Triggs, “Histograms of oriented gradients for human 
detection,” in IEEE Computer Society Conference on Computer Vision and 
Pattern Recognition, vol. 1, San Diego, CA,  2005, pp. 886–893. 

[4] Y. Yang and D. Ramanan, “Articulated pose estimation with flexible 
mixtures-of-parts,” in Conference on Computer Vision and Pattern 
Recognition, Colorado Srpings, CO, 2011, pp. 1385–1392. 

[5] National Oceanic and Atmoshperic Administration (2012). National Oceanic 
and Atmoshperic Administration Photo Library. [Online]. Avaiable: 
http://www.photolib.noaa.gov/. 

0 5 10 15 20 25 30
0

2

4

6

8

10

12

14

16

18

MHH (m)

Sw
ee

p 
W

id
th

 (k
m

)

 

 

BOW BRISK SURF 25 Word Model With Two Times Pre−Scaling

HOG 32 By 48 Descriptor

DPM Four−Part Model

Hybrid 32 By 48 HOG With 25 Word SURF SURF BOW



 xxi 

ACKNOWLEDGMENTS 

“Trust in the Lord with all your heart, and lean not on your own understanding; in 
all your ways acknowledge Him, and He shall direct your paths.” Proverbs 3:5–6 

Thank you, Lord Jesus, for the influence of the Holy Spirit and for blessing me 
with the support of my wife, Megan, and help and direction of my advisors, Dr. Mathias 
Kölsch and Dr. Douglas Fouts. 

“You are worthy, O Lord, to receive glory and honor and power; for You created 
all things, and by Your will they exist and were created.” Revelation 4:11 

 
 

 



 xxii 

THIS PAGE INTENTIONALLY LEFT BLANK 

 



 1 

I. INTRODUCTION 

A. COMPUTER VISION SHIP DETECTION FOR NAVAL FORCES 

The U.S. Navy continues to rely on computers to perform tasks that were 

previously done by operators.  Many benefits are gained by having a computer perform a 

task rather than an operator, such as enabling operators to be more effective at their 

missions.  A computer can do visual ship detection, though there are many challenges to 

overcome.  The focus of this research is on evaluating object detection methods as a 

viable replacement or aid for operators to continuously search for surface contacts with a 

photonics mast visual sensor.  Many object detection methods are considered, and four 

approaches were chosen for evaluation as possible visual ship detectors for naval forces. 

B. BENEFITS OF AUTOMATIC VISUAL SHIP DETECTION 

When operating in a nautical environment there are many choices of sensors for 

detecting and tracking other vessels.  In many cases, the searcher may want to remain 

undetected themselves, especially if the operational priorities for detection are passive 

intelligence, surveillance and recognizance (ISR).  Unmanned vehicles, such as 

unmanned aerial vehicles, unmanned surface vehicles or unmanned undersea vehicles, 

could be conducting ISR and would benefit from computer vision ship detection. 

Submarines currently conduct ISR missions with priority to use passive detection 

methods and sensors only.  One of the most useful and accurate sensors is an optical 

sensor.  Most optical sensors, including a periscope or photonics mast, require continual 

observation by an operator to detect, classify and track any contacts acquired from these 

sensors.  Other sensors such as sound navigation and ranging (SONAR) and radio 

detection and ranging (RADAR) systems have had faster integration of automatic 

detection, classification and tracking systems.  The same automatic detection could be 

available for an optical sensor through computer vision with the rapid advancements and 

the creation of many precise and robust object detections methods.   

Not all contacts can be detected by passive RADAR and SONAR systems; these 

contacts may require an optical sensor for detection and tracking.  Passive RADAR will 
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only pick up contacts that are emitting or reflecting a RADAR signals.  Contacts can also 

be too quiet to detect with SONAR or the acoustic environment can limit detection.  An 

optical sensor can detect many of these contacts that are undetectable by passive SONAR 

and RADAR.  Visual detection of a contact has additional benefits.  For example, a 

visually acquired contact can be easily classified.  After classifying a contact visually, the 

range can be calculated quickly and with every visual observation.  Bearing accuracy is 

another benefit of visual detection, along with providing the direction the contact is 

facing and, subsequently, the direction of movement.   

Visual detection of a contact can give course, bearing and range in a single 

observation and speed with follow-on observations.  Managing multiple visual contacts at 

once can be difficult for operators.  An operator can only make an observation on a single 

contact at a time.  An observation records the contact bearing and possibly records an 

image.  Range can be determined from the height of the contact.  Course can be 

determined by the direction the bow is facing and calculated from the observer’s point of 

view.  Speed can be calculated from follow-on observations using the change in bearing 

and range.  Detecting and tracking ships visually can take two people, one to operate the 

sensor the other to record the data.  This process can be rather quick for a proficient team 

or can be very slow for people in training.  The same process must be repeated frequently 

for every contact to continuously update the contact picture.  

The quality of information gathered from an optical sensor is dependent on the 

operators.  The probability of detection of a distant vessel is also dependent on the 

operators.  An operator’s visual acuity contributes to the probability of detection, along 

with fatigue, strain, training and proficiency.  There are other factors such as weather, sea 

state and the position of sun that can change the probability of detecting a ship.  

Detecting ships with computer vision algorithms would reduce or eliminate many of the 

issues that operators face.  A computer would have a known visual acuity, probability of 

detection and scan rate.  These parameters would not change with fatigue as they do with 

an operator.  When a computer can detect every ship that is seen visually with a 100 

percent probability of detection and an instantaneous rate of scan, it would be obvious to  
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have a computer take over this function.  Currently, 100 percent detection probability is 

not realistic for a computer or an operator but is it time for a computer to be the primary 

visual ship detector? 

C. CHALLENGES OF AUTOMATIC SHIP DETECTION 

There are many challenges for an operator or for a computer when detecting ships 

in open seas and harbor environments.  For open seas ship detection, distance between 

ship and sensor can provide challenges.  As the distance increases, the size of the ship in 

the image decreases, only being blocked by the horizon.  The horizon and great distance 

can cause other problems such as mirage, an optical distortion that may make the ship 

unrecognizable.  Weather can also be challenging for open seas and in harbors.  A 

challenge common in harbor ship detection is that buildings can closely resemble ship 

superstructures.  For a computer to replace operators for ship detection, it should be able 

to overcome the challenges of open seas, harbor and costal ship detection.  To take into 

account these challenges, training and testing images were selected to incorporate many 

of these challenges.  The evaluation images were scaled down to approximate ships at 

great distances.  Images that contain many buildings and no ships are used to challenge 

the ship detection methods for operations in coastal waters.   

D. MODELING THE EVALUATION BASED ON SEARCH THEORY 

To frame the evaluation around performing the task of visual search and detection 

with a computer, a search theory approach that has been developed for evaluating 

SONAR and RADAR systems was adapted. Multiple computer vision object detection 

algorithms were evaluated with the search theory framework.  The framework provided 

useful information to compare the computer vision algorithms as operational ship 

detectors. To determine how well a computer performed the task of visual ship detection, 

the performance of recall, precision and time to process an image frame were measured.  

These parameters were used to calculate a probability of detection from a single glimpse 

δ by range and a detection probability per sensor sweep PD by range.  Finally, the search 

theory model combines all of the parameters into a single number defined as sweep width  
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ω to directly compare each detection method.  The creation of the evaluation model 

allowed for still imagery to represent the challenges of operational ship detection without 

performing an actual operational test.   

E. FOCUS OF THIS RESEARCH  

The investigation of the ship detection was confined to the horizontal aspect, so 

the sensor detecting the ship was in the same horizontal plane as the ship being detected.  

The first concern was “Can a computer detect a ship with enough precision and detection 

probability to be a viable alternative to a human operator?”  The selection of algorithms 

to test was based on published results of the detection probabilities for other objects since 

there was very limited work in the field of visual ship detection from the horizontal 

aspect.  Much of the research in visual ship detection is from overhead and satellite point 

of view.  The initial investigation for this thesis considered visual detection approaches 

used for satellites through collaboration with K. Rainey et al. [1].  The initial 

investigation found ship detection from a photonics mast to be a much different problem 

than ship detection from a satellite, with larger variances in size and aspects of ships.  

Realizing these differences led the focus of the research towards general object detection 

methods instead of following satellite ship detection methods. 

All the detection methods evaluated were able to detect ships of multiple sizes, 

scales and aspects.  Evaluating these methods based on recall and precision for ship 

detection was the first priority.  The second priority was ensuring that the algorithms 

could detect ships fast enough to be a viable alternative or aid to an operator.  Multicore, 

multithreaded, parallel computations of central processing units (CPUs) and parallel 

computation on graphical processors (GPUs) was used to optimize the detection methods 

for the evaluation hardware.   

F. OBJECT DETECTION METHODS EVALUATED AS SHIP DETECTORS 

The challenges found for visual ship detection led the investigation to consider 

three classes of object detection methods.  A fourth approach was developed by sending 

the positive detection of one method to another method for additional evaluation.  The 

first method evaluated was a bag of keypoints or bag of words (BOW) method introduced 
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by Csurka et al. [2].  The BOW method was evaluated as a two-class detector, detecting 

either ships or non-ships.  A benefit of the BOW approach was it can be extended to 

multi-class detection and can be trained to detect ships of different classes as done by 

General Dynamics [3]. The second object detection approach evaluated was a histogram 

of oriented gradients (HOG) method developed by Dalal and Triggs [4].  HOG has been 

very successful at tracking pedestrians and can be implemented and optimized for 

computation on a GPU, as shown by Lillywhite et al. [5].  The third method evaluated 

was a deformable parts model (DPM) based on work by D. Ramanan et al. [6].  DPM 

object detectors have been used for detecting many types of objects and are commonly 

used in pattern analysis, statistical modeling and computational learning (PASCAL2) 

visual object classes challenge (VOC) [7]. 

Many of the most successful object detection methods from PASCAL2 VOC have 

been hybrid detection models.  The fourth ship detector evaluated was a hybrid model.  

The hybrid method (HYBRID) was constructed by sending the results of the HOG 

detector to the BOW classifier.  The HYBRID detector was created to take advantage of 

the fast computation of the HOG detection method done on a GPU while having the 

option to extend it to multi-class detection provided by the BOW model.  The HYBRID 

was able to reduce the false positive rate while maintaining or increasing recall at a cost 

of increasing computational time and complexity.   
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II. BACKGROUND 

The field of object detection in computer vision was very large, whereas the 

subset of computer vision for ship detection was very small.  Research of ship detection 

in computer vision has been done for multiple purposes, from detecting ships in satellite 

imagery or for harbor surveillance, to detecting ships as a general object as part of the 

PASCAL2 VOC.  Previously developed ship detectors and the selected object detection 

methods are analyzed in this chapter.  The selected object detection methods are broken 

down into computational stages of preprocessing, feature detection, feature extraction and 

feature comparison.  Feature comparison that utilizes machine learning for matching of 

features is also discussed. 

A. PREVIOUS COMPUTER VISION SHIP DETECTION  

The majority of research published on ship detection from the horizontal point of 

view is for the purpose of harbor surveillance.  General Dynamics investigated an object 

detection method using scale-invariant feature transform (SIFT) [8] to identify ships in a 

harbor [3].  The National Ocean Technology Center in Tianjin, China investigated harbor 

surveillance in Ship Tracking Using Background Subtraction and Inter-frame 

Correlation [9].  S. Fefilatyev et al. at the University of South Florida conducted an 

investigation for maritime surveillance using an autonomous buoy with an automatic 

identification system (AIS) and an onboard camera and video processing computer 

[10,11,12].  

Some of the most robust algorithms investigated for ship detection have been 

submitted to the PASCAL2 VOC [7]. In 2007, the VOC added boats as one of the 20 

classes in the challenge.  The VOC receives many competitors every year, and the 

challenge was based on detecting individual classes of objects in images containing 

multiple classes of objects.  The evaluation approach of this research differs by only 

looking for ships in images that could contain ships.  The algorithms that have had 

success at classifying and detecting boats for the VOC have been BOW, HOG and DPM 

methods.  The best boat detector from 2012 VOC had an average precision (AP%) of 
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24.8 and was a hybrid BOW that used segmentation for localization [13].  The second 

best boat detector used HOG features and local binary patterns; the third best was a DPM 

algorithm that used multiple-kernel learning for the support vector machine (SVM) [13].  

B. PREPROCESSING AND PRE-FILTERING 

In many cases, when a detection method has more computational intensive stages, 

a fast preprocessing method was used to find regions of interest (ROI).  Many 

preprocessing methods require a video stream or data from previous frames.  A video 

stream allows for background subtraction of the sky and ocean, as done by the National 

Ocean Technology Center in Ship Tracking with Background Subtraction [9].  A 

preprocessing stage that performs horizon detections was also found to be beneficial for 

ship detection from a buoy by Fefilatyev et al. [12].  These preprocessing stages are 

beneficial in their applications; although, it was found difficult to apply to a submarine 

photonics mast that would be continually moving and rotating.  The Ship Tracking with 

Background Subtraction algorithm was highly dependent on background subtraction, 

using frame differences to find motion in the image as a possible ship for processing in 

future stages.  Background subtraction was accomplished by removing mean image color 

and intensity of the background over frame averaging from subsequent frames [9].  A 

moving sensor may cause the appearance that every pixel is moving, providing 

difficulties for background subtraction.  Background subtraction could not be applied 

using a similar method since this evaluation was conducted on still images.   

The ship detection method that used horizon detection was limited by the 

dependence of this preprocessing stage.  In their ship detection from a buoy-mounted 

camera, Fefilatyev et al. [12] selected ROI that extend above the horizon as possible 

ships.  Any frame where the horizon was not detected was rejected for further processing.  

The horizon localization approach was not intended for use on a horizon that might be a 

coastline, which may contain ROI that are buildings and not ships.  The horizon was 

found by segmenting the image into sky and ocean.  Many of the evaluation images 

contained ocean, land and sky and Fefilatyev et al. did not account for land in their 

horizon detector [14].  None of the ship detection methods evaluated required these 
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preprocessing stages and none were applied.  The only preprocessing that any of the 

methods required was digital zoom or pre-scaling.  Many of the features of the ship 

detectors required more pixels to create the feature than were in the smaller scale images.   

Digital zoom was accomplished by linear interpolation to double the size of the images 

and improved results in many cases.  The two times pre-scaling increased the 

computation time for future stages by providing four times the pixels for finding features.   

C. FEATURE AND KEYPOINT LOCATIONS 

There are many different processes for locating interest or keypoints in images 

and many ways to describe them or extract feature descriptors from these keypoints.  

Some features come from other image processing techniques such as splicing together 

images, while others have been developed purely for use in detection and classification of 

objects.  The general BOW detection method provides a means to independently evaluate 

many keypoint selection methods, feature descriptor methods and descriptor matching 

methods.  All of the keypoint selecting methods have their advantages and disadvantages, 

such as some may hold more information and get better matching result while others may 

be faster to compute and match.  Many keypoint selection algorithms were considered in 

the evaluation of the BOW method as a ship detector.  

Most of the processes to extract keypoints transform the image from color 

intensity into gradients of intensity such as the Harris corner detector (HARRIS) [15].  

Features from accelerated segment test (FAST) built upon HARRIS, with additional 

thresholding and non-maximum suppression, to quickly select repeatable corners, and 

FAST was more adept to invariants than its predecessors [16].  SIFT extended this 

gradient approach by selecting keypoints through a difference of Gaussian filter (DoG) 

and a Hessian matrix [8].  Speeded up robust features (SURF) was created to address the 

high dimensionality of the SIFT descriptor to reduce the description and matching time 

[17].  SURF introduced a box filter approximation to calculate the DoG for the Hessian 

matrix keypoint selector.  Center surround extrema (CenSurE) as introduced in [18] and 

subsequently described as (STAR) in [19] was developed after SIFT and SURF but uses 

the HARRIS edge filter to reject features.  STAR also uses a Laplacian approximation by 
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calculating difference of boxes where one box resides entirely in the other box.  STAR is 

more similar to SURF than SIFT.  Good features to track (GFTT) is one of the earliest 

feature selection methods predating HARRIS and used Eigenvalues to measure 

“texturedness” of image intensity to select keypoints [20].  Another method is maximally 

stable extremal region (MSER) where the features are created by thresholding the 

grayscale intensity of the image and selecting regional outliers from these thresholds 

[21].  All of these methods for locating keypoints are available in the OpenCV library 

[19] and have been evaluated with the BOW ship detector in Chapter III.  

Recently, there has been an increase in the use of features that are described as 

binary features.  They are classified as binary features because they use a binary 

representation method instead of a floating-point representation.  Binary should not be 

confused with integer, since the binary representation uses every bit as part of the 

descriptor, where an integer representation is a sequential number representation.  The 

typical distance of measure between binary features is the Hamming distance.  Three of 

these binary feature descriptor methods are binary robust independent elementary 

features (BRIEF) [22], oriented fast and rotated BRIEF (ORB) [23] and binary robust 

invariant scalable keypoints (BRISK) [24].  Both ORB and BRISK were evaluated as 

feature selection methods for the BOW ship detector; ORB is the extended version of 

BRIEF; their associated feature descriptor and matching methods could not be evaluated 

in the BOW model.  The binary representation was not compatible with the BOW 

descriptor and matching methods since the implementation required a floating-point 

descriptor.  Even though the descriptor had to be floating-point, the method that selected 

the keypoints to create the descriptors did not require a floating-point selection method.  

Fewer restrictions on the keypoint selector allowed the comparison of many more 

keypoint selecting methods than descriptor and matching methods. 

D. DESCRIPTOR CREATION 

Once keypoint locations have been selected, the features at these locations in the 

image are described in a vocabulary or dictionary by a descriptor. The descriptors are 

matched or compared in later stages through a machine-learning algorithm.  Two feature 
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descriptors, SIFT and SURF, were chosen to evaluate through the BOW method with two 

additional variants, modified by the opponent color space as described by E. Koen et al. 

[25].  The opponent color space allowed comparisons of OpponentSIFT and 

OpponentSURF descriptors that extend the SIFT and SURF descriptor over the 

individual Red, Green, Blue (RGB) color spaces.  OpponentSIFT and OpponentSURF 

have been shown to have better results for category recognition by K. van de Sande et al 

[25].  SIFT and SURF are the most prevalently used floating-point descriptors.  The 

implementation of binary descriptors for image matching has been shown to be an 

efficient alternative to SIFT or SURF [23] but not yet for object detection. The BOW 

model is not inherently compatible with binary descriptors since it is based on machine 

learning comparison through a SVM that relies on floating point descriptors.   

The BOW implementation locates keypoints to be the selected feature locations. 

The descriptors are calculated at these keypoints instead of at every location in the 

images.  The HOG and DPM detectors that were selected skip both the preprocessing 

stage and the keypoint selection stage and instead create descriptors of the entire image 

and at multiple scales.  Both these detectors transform the image into a grid of HOGs.  

The image is transformed first into the vertical and horizontal gradient such as in many of 

the keypoint location methods.  Then the entire image is divided into small regions and 

described as HOGs.  The HOG detector in this research, like the original for pedestrian 

detection [4], scans the detector descriptor over the image regional descriptors looking 

for possible matches.  HOG and DPM are also scale invariant and can detect objects that 

are larger than the detector descriptor by scaling the image down and running the 

detection again.  The only way to find objects smaller than the original detector is to scale 

the image up before running the detector, which is one of the reasons for pre-scaling as a 

preprocessing stage. The DPM detector was built on the OpenCV DPM library from H. 

Bristow [26], implementing the DPM detection method described by D. Ramanan et al. 

[27].  The DPM detector HOG descriptors are constructed for individual parts.  DPM also 

adds an additional constraint on the locations of these parts relative to each.  For BOW, 

HOG and DPM to detect a ship, the descriptors from the detector and the image must 

meet matching criteria. 
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E. MACHINE LEARNING AND DESCRIPTOR MATCHING 

The last stage for detecting a ship was the matching of the descriptors where a 

decision was made to declare a positive detection.  The complexity of matching 

descriptors from the detector and the image increases with the size and number of 

descriptors.  Machine learning was used to reduce the number of comparisons.  Some 

approaches still compare every descriptor from a training database to every descriptor in 

the evaluation imagery such as used in by the General Dynamics study to identify a ship 

down to the exact ship [3].  Machine learning can reduce the descriptors from all of the 

training images down to a single descriptor for comparison with the evaluation images.  

The two most widely used machine-learning approaches for object detection are Naïve 

Bayes and SVM.  Training in this research was conducted with SVMs, which have been 

found to “substantially outperform Naïve Bayes” [28], when training on large data sets 

with widely varying data; the ship images used here varied greatly.   

A matcher compares descriptors by measuring the distance between descriptors.  

There are many methods of measuring distances between descriptors.  For HOG and 

DPM, this distance was the geometric distance in the dimensional space created by the 

feature descriptor and was done by a linear SVM.  DPM extends the linear SVM to a 

SVM with latent variables for the distances and relationship among the parts [27].  Three 

matchers for the BOW were tested.  Two matched with brute force algorithms, measuring 

the distance between every descriptor of the detector and the evaluation image.  The 

difference in the brute force methods was one used Manhattan distance (L1) and the other 

used Euclidean distance (L2).  The third matcher also used L2 and was the fast library 

approximate of nearest neighbors (FLANN).  FLANN was developed to reduce the 

number of comparisons improving computational speed [29].   

Even though the brute force methods compare every descriptor, the number of 

descriptors can be specified.  BOW method clusters the training descriptors into the 

desired number of words to describe the object being trained on, in this case ships.  A 

point that best represents the cluster center was then selected as the word for all those 

descriptors; the collection of all of the words was called the vocabulary as described in an 

initial Xerox research report [2].  BOW also clusters the evaluation image descriptors into 
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a vocabulary of the same size.  A match was called if the calculated distances are below a 

threshold. The threshold was initially set by the SVM as the distance from the detector 

descriptors to the hyper plane that best separates the training positive descriptors from the 

training negative descriptors.  This threshold was adjusted to create the receiver operator 

characteristic (ROC) curves in the evaluation. 

F. EVALUATION CRITERIA 

The evaluation method takes into account the application for using the computer 

vision algorithms as a visual ship detector sensor on a submarine photonics mast.  In 

search theory, there are evaluation methods for comparing sensors from SONAR and 

RADAR to searching with the human eye.  The evaluation model was an adaptation of a 

method for comparing sensors in the field of SONAR and RADAR that are discussed and 

summarized in Search and Detection [30] and in Naval Operations Analysis [31].  

SONAR and RADAR evaluation methods define the probability of detection for a 

discrete glimpse based on the contact known signal strength, signal-to-noise ratio and 

signal excess.  This evaluation differs by defining detection probabilities based on 

experimentally obtaining recall from the evaluation images.  The evaluation method is 

dependent on the time between glimpses of the target.  This time was determined by the 

computational time of the detection methods and hardware limitation described in III.B 

Evaluation Method and Criteria.  The dependencies on computational time led to the 

consideration of optimization for multicore CPUs and GPUs. 

G. PARALLEL PROCESSING FOR COMPUTATION SPEED GAINS 

Most computer vision image processes are inherently parallel.  The evaluated 

detectors were built upon the OpenCV library [19].  The matrix operations and image 

processing function of the OpenCV library are optimized for multicore CPUs by using 

OpenMP [32] or Intel Thread Building Blocks (TBB) [33].  More recently, algorithms of 

the OpenCV library have been ported to GPUs through both OpenCL [34] and CUDA 

[35].  A seven times speed up for a pedestrian HOG detector using the OpenCV GPU 

methods versus the multicore CPU methods has been demonstrated by A. Baksheev et al. 

[36].  This HOG detector is very similar to the implementation constructed here, though 
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comparable results were not obtained.  The published seven times speed up did not take 

into account the memory transfer time from the main memory to the GPU memory, 

which was considered in the evaluation done here.  This research also considered much 

larger imagery at 1920 by 1080 pixels, compared to the 640 by 480 pixels. 
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III. METHODS 

A. TRAINING AND SELECTION AS A DESIGN OF EXPERIMENTS 

Training was conducted for all detectors as a design of experiments; the first 

priority was to maximizing each object detection method’s probability of detecting ships.  

Each detector had different parameters that were adjusted during the training and are 

discussed in the beginning of that method’s section.  Careful selection was used for both 

the evaluation and training data, ensuring the evaluation set was represented well by the 

training data, as recommend by Zhu et al. [37].  Also, the training data was accurately 

labeled as recommended by J. Ponce et al. [38].  Each training session took on the order 

of minutes to days and to train this large number of detectors, the Naval Postgraduate 

School high performance computer “Hamming” was utilized.  The ship detectors were 

narrowed down based on recall of ships to the best few for each method.  These top 

detectors for each method were then evaluated for computational speed on specific 

hardware.  Finally, the best ship detector from each method was compared in Chapter IV 

based on the evaluation model.   

B. EVALUATION METHOD AND CRITERIA 

The evaluation method was based on the concept of lateral range curves and 

sweep width ω, from the field of search theory, discussed in the textbooks Naval 

Operations Analysis [31] and Search and Detection [30].  The ω was considered the 

expected detection range of the sensor when allocating sensors to search for a target [31].  

This evaluation model allowed the comparison of the different ship detection algorithms 

to each other in a manner relevant for operational ship detection from a photonics mast.  

In constructing the operational model, the evaluation images were meticulously labeled to 

obtain the pixel height of all ships.  The Kodak KAI-2093 was assumed throughout the 

model to be the image equitation sensor.  The sensor was assumed to have taken all of the 

evaluation imagery to model the size of ships in the images to a corresponding range.  

The probability of detecting a ship in a single observation, or “glimpse,” was determined 

over multiple ranges by experimentally obtaining recall probabilities over multiple scales 
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of images.  The evaluation model also took into account the computational time for each 

algorithm to continuously scan 360-degrees. 

The evaluation model also took into consideration that there would be physical 

hardware driving the rotation of the sensor.  The visual sensor could cause optical 

distortion by rotating too quickly during the exposure time.  To prevent this type of 

distortion, limits were set on the rotation rate of the sensor.  The frame rate was also 

limited to 30 frames per second (fps).  The time to detect a ship in each image frame was 

calculated using identical hardware and conditions for all methods. The 360-degree scans 

were required to be continuous so no bearing was ever missed.  Additionally, overlap was 

required to ensure a ship could not pass between frames without detection.  The time the 

sensor took to make a complete sweep was limited by either the rotating hardware or the 

processing time of the detection method. The time to process an image frame and the 

time to complete a sensor sweep were used when calculating the detection probability for 

a given range of a ship. The evaluation model limits the range to be the closest point of 

approach (CPA).  The lateral range curves were then constructed by graphing the 

probabilities of detection for multiple detection ranges.  The ω was calculated as the area 

under the lateral range curve as defined in Naval Operation Analysis.  The ω is 

considered the expected detection range of a sensor when allocating sensors to search for 

a target [31].  The ω provided a single number to compare the detection methods.   

1. The Evaluation Images 

The evaluation set consisted of 405 positive images that contain a ship and 100 

negative images that did not contain a ship.  The positive images were selected to contain 

a wide variety of ship types from small speedboats to aircraft carriers and submarines.  

The images were also selected on a basis of being from a sea level vantage point.  This 

point of view best represents the perspective of a submarine photonics mast.  The 

negative evaluation image set contained scenes of ocean, sky, coastline with and without 

buildings and some ocean pictures that contained creatures, such as whales and birds.  

The image set was selected to best represent the environment in which a submarine 

would be operating.  Many of the positive and all of the negative images came from the 
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National Oceanic and Atmospheric Association (NOAA) [39].  Images where also 

obtained from Jane’s Fighting Ships [40] and http://www.shipphotos.co.uk/ [41].  None 

of the images were taken with the 1920 by 1080 sensor used in the evaluation model.  

The positive evaluation images had a mean size of 645 by 451 pixels; a sample of six 

images is shown in Figure 1.  The negative images had a mean size of 1564 by 1078 

pixels, and a sample of these images is shown in Figure 2.  The size of the images was 

not as important to the evaluation model as the size of the ships in the images.  The 

heights of the ships in pixels are the inputs to calculate observational ranges. 

 
Figure 1.  Samples of the positive evaluation images (from [39]). 

 
Figure 2.  Samples of the negative evaluation images (from [39]). 
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2. Calculating Range by Pixels 

The actual sensor that recorded each image was unknown.  Knowing the hardware 

that acquired the image of the ship is critical for determining the range at which the 

sensor was from the ship.  The KAI-2093 was assumed to have produced all of the 

images with four possible lens configurations.  The KAI-2093 pixel array was 1920 x 

1080 square pixels of 7.4 µm per side, resulting in a sensor height of 8 mm [42].  The 

four lens types simulate low, medium, high and super high power zoom.  The focal 

lengths fl  considered are 7, 46, 140 and 280 mm, giving a field-of-view (FOV) of 36, 16, 

6, and 2.4 degrees, respectively.  The FOVs are labeled as wide, medium, narrow and 

ultra-narrow, or WFOV, MFOV, NFOV and UNFOV, respectively.   

The pinhole camera equations in Computer Vision: A Modern Approach [43] 

provided two equal ratios. The first was the vertical resolution in pixels hsp, 1080 for the 

KAI-2093, and fl over the sensor height in meters hsm, 8 mm for the KAI-2093.  The 

second was the range R from the pinhole to the ship and the height of the ship in pixels 

mp over physical height of the ship in meters mm.  Range of observation was calculated 

by rearranging these ratios as  

 
R =

fl mm hsp
hsm mp

. (1) 

Using one of the four lenses with a different fl varies the range of observation.  The 

drawback of a longer range was a narrower FOV.  The mp was measured on a per image 

basis since all positive evaluation images were labeled with LabelMe [44].  The mm is the 

independent variable for range in equation (1) to calculate the range for ships of different 

physical heights.   

The model also takes into account the distance to the horizon and how a ship 

disappears over the horizon as the range increases.  The maximum range in meters for 

two contacts in visual sight is [45]: 

 
Rmax = 3570 hs + mm( ) .  (2) 

The height of the ship below the horizon mbh and the actual range R to the contact were 

calculated by rearranging equation (2):  
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mbh =

R
3570

+ hs
⎛
⎝⎜

⎞
⎠⎟
2

. (3) 

The height of the ship visible above the horizon mah is then  

 mah = mm −mbh . (4) 

A diagram displaying the over-the-horizon range variables is illustrated in Figure 3.  

Given an observer’s sensors hs, the height of the photonics mast of two meters yields a 

distance to the horizon of 5.05 kilometers.  Two equations can then be developed for mp.  

The first equation is for ranges less than the distance to the horizon:  

 
mp =

flmmhsp
Rhsm

. (5) 

The second equation is for contacts at ranges greater than the distance to the horizon:  

 
mp =

fl hsp mm − R
3570 − hs( )2( )
R

. (6) 

 
Figure 3.  Over the horizon, line-of-sight range diagram. 

Illustrated in Figure 4 and Figure 5 are the pixel heights for a 30 meter (98.4 feet) 

and 10 meter (32.8 feet) mast head height ship with respect to its range.  These graphs 

were constructed with equation (5) for ranges less than the distance to the horizon and 

equation (6) for ranges greater than the distance to the horizon.  The graphs are plotted 

for ranges until the vessel was completely hidden by the horizon.  The range at which 

half of the ship is hidden over the horizon was also labeled.  Evaluations were not  
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conducted on images in which half of the ship or more was over the horizon, and the 

evaluation assumed that the detection probability was zero beyond this point for all 

detectors.   

 
Figure 4.  Graph of the visible height in pixels of a ship 30-meter MHH ship by range. 

 
Figure 5.  Graph of the visible height in pixels of a ship 10-meter MHH ship by range. 

The dashed lines across the graphs in Figure 4 and Figure 5 at 256 pixels 

correspond to the mean mp of the positive evaluation images.  The mp was calculated 

from the top of the highest mast to the lowest point on the waterline.  The standard 

deviation of mp was 85.4 pixels.  The positive and negative evaluation images were 
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scaled down to 75, 50, 25, 20, 15 and 10 percent of the original image height and width, 

preserving the aspect ratio.  The other dashed lines in Figure 4 and Figure 5 correspond to 

the mean mp values of the scaled down images with values of 192, 128, 64, 51, 38 and 25 

pixels.  The scaled down images simulate ships at greater distances.  No additional noise 

was introduced to simulate any other type of optical distortion, such as haze or mirage. 

However, some of the positive evaluation images were already blurry from optical 

distortion.  This simulation of ship detection at multiple ranges allowed for 

experimentally obtaining the probability of detection PD at these ranges. 

3. Experimentally Obtaining Detection Probability by Range 

The evaluation model defines two detection probabilities.  The first was the 

probability of detecting a ship from a single glimpse, the glimpse probability δ.  The 

second was the probability of detecting a ship through multiple glimpses in a single 

sweep of the sensor PD.  The PD was used as an upper bound for methods that can 

achieve multiple glimpses in a single sensor sweep.  The δ was obtained for each range 

where the dotted lines cross the solid lines in Figure 5.  These intersections correspond to 

the mean ship height for the scaled evaluation sets.  The δ for the ranges of intersection 

were calculated using the Pythagorean theorem and were the point on the corresponding 

ROC curve that was closest to a true positive detection percentage (recall) of one and 

false positive detection percentage (1-precision) of zero.  Two other methods of obtaining 

δ from an ROC curve were considered.  The first was using the area under the recall and 

precision ROC curve, which is similar to how AP% is calculated for PASCAL2 VOC 

results [13].  Area under the curve was not implemented since all ROC curves that have 

an area under the curve of greater than one half and are concave down would have a 

higher δ using area under the curve than if calculated with the Pythagorean theorem.  The 

last method considered was designating a fixed false positive rate.  A fixed false positive 

rate is less comprehensive to the evaluation, and the false positive rates are compared in 

the Chapter IV. 

For the cases in which only a single glimpse of the contact was obtained, PD was 

equal to δ.  In cases where multiple glimpses of the target was obtained in a single 360-
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degree sensor sweep, the PD should be increased.   However, assuming statistically 

independent glimpses is considered unrealistic, making 

 
PD = 1− 1−δ( )

i=1

n

∏
 

(7)  

for n independent glimpses unrealistic [31].  A statistical independence model is 

unrealistic because if the detection method did not detect the ship upon the first glimpse, 

it cannot be guaranteed that the method would have the same probability of detecting the 

ship in the next frame, when conditions are similar [31].  Taking multiple shots with a 

camera in very rapid secession could yield some images that are clearer than others, 

changing the probability of detection for some images.  To allow for an increase in 

probability for multiple glimpses that was lower than statistical independence, the δ was 

weighted by the number of glimpses in equation (7) by raising δ to the power of the 

number of glimpses n in  

 
PD = 1− 1−δ n( )

i=1

n

∏ . (8) 

The weighted glimpses probability method and the statistical independent methods are 

illustrated in Figure 6 with δ = 0.7 .  As can be seen from the graphs, the weighted 

method approaches PD = 100 percent more slowly than the statistical independence 

method. The upper bound of detection probability for methods that could achieve 

multiple glimpses in a single sensor sweep is given by equation (8).  
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Figure 6.  Example graph of the PD calculated with δ of 0.7 for both statistically 

independent and weighted glimpses. 

4. Calculating Time Per Frame and Sweep Time 

The time to process one frame tF was obtained experimentally.  The time it takes 

for the detector to sweep 360-degrees, sweep time ts, was limited by tF or the hardware 

limits of the equipment.  The KAI-2093 and the lenses under consideration do not have a 

360-degree FOV; thus, a ship could be partially in one frame and partially in the next and 

not be detected.  A ship could also travel opposite to the sweep direction and pass into a 

sector that was just scanned from the next sector to be scanned during the tF.  To 

minimize the probability of missing a ship entirely, when ts was limited by tF, the sensor 

was assumed to scan at the maximum rate to grab frames with a 10 percent overlap.  Ship 

detector methods that process frames faster had their ts limited by the assumed hardware, 

with ts of 30 seconds for WFOV and MFOV and 60 seconds for NFOV and UNFOV.  

Limiting the ts allowed faster detection methods to have an overlap percentage greater 

than 10 percent.  When the overlap was large enough to have multiple glimpses of every 

bearing during a single sweep, multiple glimpses of contacts were considered for upper 

bounding PD.  The rotation rate or ts limits were imposed to ensure adequate exposure  
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time and were provided as hardware limitation of the sensor.  The assumed minimum 

hardware limits of ts were 30 seconds for WFOV and MFOV and 60 seconds for NFOV 

and UNFOV. 

For ts greater than the hardware limits, ts was calculated as  

 
ts = tF ×

360 ×1.1
FOV

 . (9) 

Obtaining tF was done by evaluating the detectors on an image set that consists of two 

1920 by 1080 pixel images to match the KAI-2093.  One image was positive and the 

other negative, so all detectors could produce 100 percent recall and 100 percent 

precision on these two images.  This was important for the HOG, DPM and HYBRID 

methods since the computation time increased for the number of positive detections, 

whereas the BOW detection time did not change for positive detections.  To minimize the 

impact that measurement time had on calculating timing and to include the memory 

transfer in the timing calculations, 100 copies of each of these images were created to 

comprise the 200 images for the tF calculation test.  The tF was then averaged over five 

runs of the timing set to reduce effects of other processes that may have stolen processing 

time.  All timing data does not contain the time to initialize the detectors and was 

gathered on the same computer under the same conditions.   

The computer used to measure timing had an Intel® Core™ i7-3770K processor 

with four 64-bit cores and eight physical threads.  The processor had three levels of 

cache: each core had a 64 kB and 256 kB level one and two cache, and all four cores 

share an 8 MB level three cache.  The main memory was 16 GB of 1,600 MHz DDR3 

RAM.  The operating system was 64-bit and was located with the swap space on a SATA 

III SSD via a SATA III connection.  All of the images were located on a separate SATA 

III SSD via a SATA II connection.  The machine also had two graphics cards a NVIDIA 

GeForce® GTX 650 with 1 GB of DDR5 RAM, which was connected via a PCI Express 

3.0 x 16 and was used to drive the monitor.  The second card was a NVIDIA Quadro 

2000 with 1 GB of DDR3 RAM connected via a PCI Express 3.0 x 4 and performed all 

GPU computations.  The accuracy of the calculated recall and precision was verified for  
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all methods in which the tF and ts were determined on this machine since all of the 

experimentally obtained ROC data was gathered on a cluster computer with a different 

operating system and libraries. 

5. Constructing Lateral Range Curves and Calculating Sweep Width 

The ts was important for determining how far a ship traveled during the sweep 

time between possible observations.  Lateral range curves are specific for a given contact.  

For this evaluation the lateral range curves are displayed for a 10-meter MHH contact 

traveling at a relative velocity of 20 knots (10.3 m/s).  Velocity was always considered 

relative to the searcher.  As in Naval Operations Analysis [31], the lateral range was 

calculated as the CPA of a passing contact.  Visualization of how the glimpse probability 

δ for detecting a ship at range rm becomes the probability of detecting a contact at lateral 

range x is illustrated in Figure 7.  In order to guarantee at least one glimpse of the contact, 

one and one half complete sweeps of the sensor was required to be completed for the 

calculation of x.  The extra half a sweep accounted for cases where a target entered the 

detection radius just after the sensor passed, then traveled behind the sensor scan, exiting 

the detection radius before the sensor could glimpse the contact.  From Figure 7 the 

distance a contact travels inside the detection radius is 2yo.  The evaluation model 

required the sensor complete one and a half sweeps prior to the contact traveling 2yo for a 

contact with relative velocity v.  Half the distance traveled by the contact inside the 

detection radius is then 

 
yo =

1.5tsv
2

. (10) 
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Figure 7.  Lateral range calculation diagram (after [31]). 

The lateral range x is calculated by rearranging the Figure 7 equation for x and 

substituting equation (10) for yo.  The lateral range is then  

 
. (11) 

There are two cases for calculating the PD at x: the first for a single glimpse, the δ, the 

second is when ts was limited by the hardware and multiple glimpses of a contact are 

possible.  For the first case, there is at least 10 percent overlap of individual frames, and 

PD = δ.  The second case is the upper bound of weighted PD and was calculated from 

equation (8).  The number of glimpses n was rounded down and calculated as  

 
n = ts FOV

360tF
. (12) 

The maximum number of glimpses was limited by the 30 fps of the KAI-2093.  

Listed in Table 1 by FOV are the minimum sweep time, maximum number of glimpses, 

y0 = rm
2 − x2
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and minimum frame time required for two glimpses.  The lateral range curves were 

constructed by plotting the δ by x.  For the evaluation model there were seven sets of 

scaled images, each one providing one point on the lateral range curve.   The expected 

detection range from each method was then derived as the area under the lateral range 

curve and is the sweep width ω.  The ω was calculated by using a trapezoidal 

approximation of the area under the lateral range curves developed from δ and upper 

bounded by weighted PD when possible. 

Table 1.   The minimum sweep time ts, maximum glimpses n and minimum frame time tF 
for two glimpses by FOV. 

 ts minimum (seconds) nmaximum tF for 2 glimpses (seconds) 

WFOV 30 90 1.5 

MFOV 30 40 .67 

NFOV 60 30 .5 

UNFOV 60 12 .2 

C. BAG OF WORDS 

1. Design of Experiments for BOW 

For the BOW model of detectors, over 2,000 detectors were trained and evaluated 

in the design of experiments.  The parameters varied were the feature detector, 

descriptors, matchers, number of words and the number of training images.  Initial tests 

for changing the number of training images did not greatly improve results beyond 100 

positive and 100 negative images.  Eventually, 105 positive and 105 negative images 

were used for training.  A large improvement was observed from using labeled positive 

images cropped to a rectangle containing the top of the highest mast to the bottom of the 

hull and from bow to stern.  Ten methods of extracting feature locations were evaluated.  

Four methods to describe these features location and three ways to match descriptors 

were examined.  Initially, the number words were varied from 25 to 1,000.  The BOW  
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detectors performed better with less than 100, words and most BOW detectors performed 

the best with only 25 words.  Additional evaluations with fewer than 25 words showed no 

increase in performance. 

a. Locating Feature Keypoints 

The nine feature detectors, as described in Chapter II.C, plus one 

additional feature detector were evaluated. The additional feature detector performed the 

worst, selected keypoints across the entire image at uniform intervals and is not shown in 

Figure 8.  The nine other keypoint selection methods are shown in Figure 8 for the same 

image.  This image displays how the algorithms can find many locations in the sky when 

cloudy and in the ocean from variances by waves.  The number of keypoints selected by 

each algorithm varies from 471 with MSER to 11,263 with FAST.  From the 

visualization of the keypoints, it is observed that SURF, SIFT, ORB and BRISK 

keypoints have location, magnitude and direction displayed.  Magnitude is displayed by 

the size of the circle where direction is displayed by the line inside the circle.  STAR and 

MSER have magnitude but no direction.  FAST, GFTT and HARRIS have location 

displayed only, even though the keypoint retains an angle and a quality level.  The 

HARRIS and GFTT keypoint selection methods are very similar in that they both execute 

the GFTT algorithm; the difference is that the HARRIS method enables the HARRIS 

corner detector to threshold keypoint locations for selection by removing lower quality 

points. 

HARRIS did not seem to impact the GFTT method for reducing the 

number of keypoints selected since GFTT selected 1,000 and HARRIS also selected 

1,000 keypoints.  The default maximum number of keypoints for the GFTT and the 

HARRIS methods was 1,000.  No adjustments were made for any of the methods to 

adjust the maximum number of allowed keypoints.  In Figure 8, ORB does the best at 

selecting keypoints that are on the ship only.  SURF appears to have selected the most 

keypoints in the clouds.  SIFT, SURF and FAST all selected a large number of keypoints 

in the sea.  STAR, MSER and BRISK selected fewer keypoints than the other methods 

and selected a smaller portion in the clouds but many in the sea.  Even though the next 
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stage requires the keypoints to be described by a floating-point feature of either SIFT or 

SURF, the locations where the features are described were selected by one of these nine 

methods. The OpenCV Library in which this BOW implementation was built upon 

contains more detailed descriptions of the implementations of the keypoint location, 

extraction and description methods [19].  

 
Figure 8.  Visualization of nine of the different keypoint location methods evaluated 

through the BOW detector (after [39]). 

b. Feature Extraction and Description 

The descriptors created in the BOW model are the vocabularies created 

during training.  Each vocabulary was limited in the number of words and was created to 

best represent the data in the positive training images by the SVM.  The features can be 

considered the sentences that are created by the descriptors, words.  Four descriptor 

methods were tested: SURF, SIFT, OpponentSURF and OpponentSIFT.  The 

OpponentSURF and OpponentSIFT variants create a feature across the three separate 

color images, red, green and blue, and then combine them into one descriptor as 
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described by K. E. A. van de Sande et al. [25].  The opponent methods required more 

processing time, and the results were not as promising as SURF and SIFT alone.  SURF 

took the least processing time and produced the highest number of successful resulting 

detectors across all of the keypoint methods.  The SIFT descriptor had many successful 

detectors as well and had the detector that had the closest recall and precision to 100 

percent on the full size evaluation images.  For the MSER and FAST keypoint selection 

methods, the SIFT descriptor greatly outperformed the SURF descriptor methods on 

recall and precision regardless of what matcher was used.  

c. Matching the Descriptors 

The three matchers were brute-force L1, brute-force L2 and FLANN.  

Detectors matching with L2 frequently outperformed detectors with the same keypoint 

selection and description methods, where L1 was the only difference.  There were few 

occasions where L1 outperformed L2.  There were also frequent occasions where 

FLANN and L2 produced identical results on the evaluation set for recall and precision.  

Interestingly, the method with fast in the name, FLANN, was typically the slowest 

method while L2 was typically the fastest.  The matching methods had the smallest 

impact on the total time of computation.  When two detectors returned the same results 

and only differed by the matcher, the fastest implementation was selected for further 

evaluation. 

2. Selecting the Best BOW Detectors 

 In narrowing down the BOW methods to a few top detectors for comparison, 

every trained detector was evaluated on the full size images.  From this initial evaluation, 

the top 400 BOW detectors were selected based on glimpse probability δ.  The best two 

detectors of every feature selection method were also maintained, even if they were not in 

the top 400.  Both the binary feature selection methods, ORB and BRISK, as well as 

DENSE, the uniform selection keypoint method, were not in the top 400.  SURF, SIFT 

and MSER methods comprised the majority of the top 400 in this initial stage of 

reduction.  In the next stage of selection, the top 400 detectors were tested on all of the 

scaled images with multiple threshold values.  The top 100 detectors, including individual 



 31 

thresholding values, were selected from each scaled evaluation set; many of these 

detectors were the same detector.  When a detector was in the top 100 of one scale, the 

probability was high that it would be near the top for multiple scales.  Also, many of the 

detectors had multiple thresholding values that produced results in the top 100 of multiple 

scales.  The SURF, SIFT and MSER keypoint selection methods again dominated the top 

100 in almost every scale; besides these three methods, the best of each feature selection 

method was maintained for further evaluation.  The detectors were narrowed down to 22 

based on the detection probability alone.  

3. Evaluation of Glimpse Probability for the Best BOW Detectors 

The detectors were narrowed down to twelve detectors, maintaining the best 

detector for every feature method, except DENSE.  Multiple detectors of SIFT and SURF 

were maintained, and the δ of these twelve are shown in Table 2.  The δ was obtained 

from the ROC curves located in Appendix A, ROC Curves, Figure 26 through Figure 32.  

All feature location methods except the two binary methods had δ of greater than 90 

percent for full size images; BRISK was very close at 89 percent.  In Table 2, the highest 

δ for each scale is red.  The best detector for each scale jumps around, yet the δ of many 

of the detectors are within a few percentage points.  For the SIFT and SURF feature 

methods, no detector was clearly superior in all categories, each one having the highest δ 

for only one scale.  The multiple detectors of SIFT and SURF keypoints provide a means 

to compare the effects of modifying the descriptor, matcher and number of words.  The 

ORB detector, which selected all features on the ship in Figure 8, performed surprisingly 

poorly.  ORB had the lowest δ for the two largest image sets.  ORB and STAR keypoint 

methods require a larger number of pixels to calculate features.  The requirement for a 

larger number of pixels prevented ORB and STAR to calculate features on the small 

images, subsequently, making their δ zero for small ships.  Factoring in speed of 

computation was the next aspect of comparison for the evaluation model.  
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Table 2.   Glimpse probabilities of the top 12 BOW detectors for evaluation image 
scales 100 percent to 10 percent. 

	  
Keypoint	   Descriptor	   Matcher	   Words	  

100	  
(%)	  

75	  
(%)	  

50	  
(%)	  

25	  
(%)	  

20	  
(%)	  

15	  
(%)	  

10	  
(%)	  

SURF	   SURF	   L2	   25	   91	   86	   84	   83	   77	   76	   66	  
SURF	   SURF	   FLANN	   50	   92	   90	   84	   77	   82	   74	   70	  
SURF	   SIFT	   FLANN	   25	   97	   90	   93	   78	   66	   78	   66	  
SIFT	   SURF	   L1	   25	   98	   88	   88	   79	   70	   66	   56	  
SIFT	   SURF	   L2	   25	   97	   92	   84	   77	   75	   63	   60	  
FAST	   SIFT	   L2	   50	   92	   89	   83	   71	   74	   72	   71	  
STAR	   SURF	   FLANN	   25	   96	   86	   84	   0	   0	   0	   0	  
MSER	   SIFT	   L1	   50	   95	   87	   85	   79	   76	   73	   67	  
GFTT	   SURF	   L2	   25	   92	   76	   76	   69	   62	   43	   58	  
HARRIS	   SURF	   FLANN	   100	   95	   83	   72	   76	   56	   72	   62	  
ORB	   SURF	   FLANN	   25	   81	   74	   76	   69	   66	   47	   0	  
BRISK	   SURF	   L2	   25	   89	   85	   84	   77	   76	   67	   39	  

4. Evaluation of Frame Time and Number of Glimpses for the Best 
BOW Detectors 

The descriptor extractor stage had the largest effect on the computation.  After 

experimentally obtaining the tF, the ts were calculated from equation (9) and are listed in 

Table 3.  When calculated ts were less than the specified hardware-limited ts, the 

hardware-limited ts is listed instead.  The disparity in computation time between SURF 

descriptor and SIFT descriptor is evident when comparing the SURF feature methods.  

The two SURF feature methods using SURF descriptors were over 10 times faster 

computationally than a SURF keypoint method that used SIFT descriptors.  The SURF 

keypoint, SIFT descriptor, FLANN matcher detector had the highest δ for the 50 percent 

and 15 percent scaled images and nearly the highest in all other categories, yet it took 

over 17 minutes to perform a complete sweep in UNFOV.  The MSER detector was 

nearly as slow computationally; part of the long computation time for MSER was due to 

the calculation of SIFT descriptors.  FAST keypoint detectors also had the highest δ with 

SIFT descriptors and were nearly three times faster than the other methods that computed 

SIFT descriptors; however, they were still much slower than all SURF descriptor 

methods.   
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Table 3.   Sweep time for the 12 best BOW detectors by FOV. 

Keypoint	  Descriptor	   Matcher	   Words	  
tF	  

(seconds)	  

Sweep	  time	  ts	  (seconds)	  
WFOV	   MFOV	  NFOV	  UNFOV	  

SURF	   SURF	   L2	   25	   0.554	   30	   30	   60	   91	  
SURF	   SURF	   FLANN	   50	   0.615	   30	   30	   60	   101	  
SURF	   SIFT	   FLANN	   25	   6.445	   71	   160	   425	   1,063	  
SIFT	   SURF	   L1	   25	   0.959	   30	   30	   63	   158	  
SIFT	   SURF	   L2	   25	   0.959	   30	   30	   63	   158	  
FAST	   SIFT	   L2	   50	   2.368	   30	   59	   156	   391	  
STAR	   SURF	   FLANN	   25	   0.145	   30	   30	   60	   60	  
MSER	   SIFT	   L1	   50	   6.147	   68	   152	   406	   1,014	  
GFTT	   SURF	   L2	   25	   0.169	   30	   30	   60	   60	  
HARRIS	   SURF	   FLANN	   100	   0.167	   30	   30	   60	   60	  
ORB	   SURF	   FLANN	   25	   0.101	   30	   30	   60	   60	  
BRISK	   SURF	   L2	   25	   0.086	   30	   30	   60	   60	  

 

Every detector with SURF descriptors had a tF of less than one second.  There was 

still an order of magnitude difference between the fastest detector, which used BRISK, 

and the slowest SURF descriptor detector; these differences had a large impact in the 

number of glimpses.  The number of glimpses for the best BOW detectors are shown in 

Table 4.  No detectors processed frames fast enough to reach the maximum number of 

glimpses imposed by the 30 fps of the KAI-2093.  Many of the methods that had a higher 

δ had longer computation time and vice versa.  Constructing the lateral range curve 

incorporates both glimpse probability and computation time in a manner relevant to the 

operational use of these methods on a submarine.  
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Table 4.   Numbers of glimpses for the 12 best BOW detectors by FOV. 

Keypoint	  Descriptor	   Matcher	   Words	  
tF	  

(seconds)	  

n	  (number	  of	  glimpses)	  	  
WFOV	   MFOV	  NFOV	  UNFOV	  

SURF	   SURF	   L2	   25	   0.554	   5	   2	   1	   1	  
SURF	   SURF	   FLANN	   50	   0.615	   4	   2	   1	   1	  
SURF	   SIFT	   FLANN	   25	   6.445	   1	   1	   1	   1	  
SIFT	   SURF	   L1	   25	   0.959	   3	   1	   1	   1	  
SIFT	   SURF	   L2	   25	   0.959	   3	   1	   1	   1	  
FAST	   SIFT	   L2	   50	   2.368	   1	   1	   1	   1	  
STAR	   SURF	   FLANN	   25	   0.145	   20	   9	   6	   2	  
MSER	   SIFT	   L1	   50	   6.147	   1	   1	   1	   1	  
GFTT	   SURF	   L2	   25	   0.169	   17	   7	   5	   2	  
HARRIS	   SURF	   FLANN	   100	   0.167	   17	   7	   5	   2	  
ORB	   SURF	   FLANN	   25	   0.101	   29	   13	   9	   3	  
BRISK	   SURF	   L2	   25	   0.086	   34	   15	   11	   4	  

5. Lateral Range Curve and Sweep Width  

The lateral range curves were constructed for the twelve best BOW detectors 

using δ for a 10 meter MHH contact with a relative speed of 20 knots, as described in 

Chapter III.B.  The lateral range curves are presented in Appendix B, Lateral Range 

Curves, Figure 56 through Figure 59.  The sweep width ω was calculated from these 

lateral range curves and is displayed in Table 5.  The two SURF keypoint SURF 

descriptor detectors had the highest ω for all FOVs.  The BRISK and HARRIS detectors 

have high ω for all FOVs even though they had some of the lowest δ; the higher ω is 

contributed to their fast computation time.  The MSER and SURF detectors with SIFT 

descriptors had some of the lowest ω even though they had some of the highest δ; these 

detectors also had a ω of zero for WFOV.  The low ω was a result of the long 

computation times; the ts was so long that the target could travel twice the range of the 

calculated δ before one and a half scans could be completed by these detectors.  The 

reason for the STAR detector ω being zero was similar; the δ was zero for the smaller 

ship images, making the area under the curve zero for the longer ranges.  The STAR 

method had the lowest ω for all FOVs as a result of having a zero δ for small ships.   
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Similarly, ORB also could not compute features on the smallest images, giving it a δ of 

zero at long ranges.  However, having a low tF allowed ORB to still have a large ω when 

calculated with weighted PD.    

Table 5.   The 12 best BOW detectors ω calculated from δ for a 10-meter MHH 
contact with a relative velocity of 20 knots. 

	  
Keypoint	   Descriptor	   Matcher	   Words	  

Sweep	  Width	  ω	  (km)	  
WFOV	   MFOV	   NFOV	   UNFOV	  

SURF	   SURF	   L2	   25	   0.22	   1.94	   5.67	   8.84	  
SURF	   SURF	   FLANN	   50	   0.22	   1.95	   5.68	   8.82	  
SURF	   SIFT	   FLANN	   25	   0.00	   1.55	   4.58	   5.13	  
SIFT	   SURF	   L1	   25	   0.19	   1.82	   5.34	   8.42	  
SIFT	   SURF	   L2	   25	   0.19	   1.82	   5.33	   8.38	  
FAST	   SIFT	   L2	   50	   0.21	   1.82	   5.30	   7.79	  
STAR	   SURF	   FLANN	   25	   0.00	   0.60	   1.92	   3.91	  
MSER	   SIFT	   L1	   50	   0.00	   1.59	   4.74	   5.46	  
GFTT	   SURF	   L2	   25	   0.15	   1.54	   4.58	   7.42	  
HARRIS	   SURF	   FLANN	   100	   0.20	   1.75	   5.14	   8.07	  
ORB	   SURF	   FLANN	   25	   0.10	   1.32	   3.99	   6.81	  
BRISK	   SURF	   L2	   25	   0.17	   1.74	   5.12	   8.24	  

 

Methods that had fast computation times also benefited from the increase in 

detection probability from multiple glimpses.  Analysis of the possible increase was 

considered by using weighted PD as the upper bound ω and is displayed in Table 6.  The 

weighted PD increased the ω of many of the detectors over 40 percent for WFOV, 30 

percent for MFOV and NFOV and 20 percent for UNFOV.  The SURF key point SURF 

descriptor detectors are now surpassed by the BRISK and HARRIS detectors for NFOV 

and UNFOV; HARRIS also had the top ω for MFOV.  The SURF feature SURF 

descriptor detectors ω increased for WFOV and maintained the highest ω for this FOV.  

Consequently, it was found that implementing pre-scaling increased δ by sacrificing 

computation time.  The impacts on both the δ and tF are considered through the 

evaluation method. 
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Table 6.   The 12 best BOW detectors ω calculated from PD for a 10-meter MHH 
contact with a relative velocity of 20 knots. 

	  
Keypoint	   Descriptor	   Matcher	   Words	  

Sweep	  Width	  (km)	  
WFOV	   MFOV	   NFOV	   UNFOV	  

SURF	   SURF	   L2	   25	   0.28	   2.25	   5.67	   8.84	  
SURF	   SURF	   FLANN	   50	   0.28	   2.26	   5.68	   8.82	  
SURF	   SIFT	   FLANN	   25	   0.00	   1.55	   4.58	   5.13	  
SIFT	   SURF	   L1	   25	   0.25	   1.82	   5.34	   8.42	  
SIFT	   SURF	   L2	   25	   0.25	   1.82	   5.33	   8.38	  
FAST	   SIFT	   L2	   50	   0.21	   1.82	   5.30	   7.79	  
STAR	   SURF	   FLANN	   25	   0.00	   0.68	   2.15	   4.25	  
MSER	   SIFT	   L1	   50	   0.00	   1.59	   4.74	   5.46	  
GFTT	   SURF	   L2	   25	   0.22	   2.07	   5.97	   8.73	  
HARRIS	   SURF	   FLANN	   100	   0.27	   2.30	   6.60	   9.40	  
ORB	   SURF	   FLANN	   25	   0.14	   1.78	   5.29	   8.49	  
BRISK	   SURF	   L2	   25	   0.24	   2.22	   6.48	   10.02	  

6. Improvements in Sweep Width by Pre-Scaling 

Pre-scaling as a preprocessing stage increased the tF and was only implemented 

on the BOW detectors that had a tF of less than one second.  The timing data was 

obtained using the previous method, with the exception of also pre-scaling by a factor of 

two the 1920 by 1080 images.  The resulting tF and ts are displayed in Table 7.  The tF 

more than doubled for eight of the nine fastest detectors.  ORB was the only detector 

where tF increased less than the scaling factor, surpassing BRISK as the fastest detector.  

Shown in Table 8 is the number of glimpses resulting from the increased pre-scaling 

computation time.  Previously, five methods had multiple glimpses for NFOV and 

UNFOV; now only the binary feature methods ORB and BRISK have multiple glimpses 

for these FOVs.  Without pre-scaling all methods had multiple glimpses for WFOV; with 

pre-scaling only five methods have multiple glimpses for WFOV.  Substantial gains in 

the δ for these detectors on small images overcame the increase in tF and decreases in 

glimpses.   
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Table 7.   The tF and ts of the nine fastest BOW detectors for two-times pre-scaling. 

Keypoint	  Descriptor	  Matcher	  Words	  
tF	  (seconds)	   	  Sweep	  time	  ts	  (seconds)	  

Initial	   2	  x	  zoom	   WFOV	   MFOV	   NFOV	   UNFOV	  
SURF	   SURF	   L2	   25	   0.554	   1.880	   21	   47	   124	   310	  
SURF	   SURF	   FLANN	   50	   0.615	   2.017	   22	   50	   133	   333	  
SIFT	   SURF	   L1	   25	   0.959	   3.626	   40	   90	   239	   598	  
SIFT	   SURF	   L2	   25	   0.959	   3.628	   40	   90	   239	   599	  
STAR	   SURF	   FLANN	   25	   0.145	   0.535	   6	   13	   35	   88	  
GFTT	   SURF	   L2	   25	   0.169	   0.577	   6	   14	   38	   95	  
HARRIS	   SURF	   FLANN	   100	   0.167	   0.571	   6	   14	   38	   94	  
ORB	   SURF	   FLANN	   25	   0.101	   0.170	   2	   4	   11	   28	  
BRISK	   SURF	   L2	   25	   0.086	   0.199	   2	   5	   13	   33	  

Table 8.   Number of glimpses by FOV of the nine fastest BOW detectors for two-times 
pre-scaling. 

Keypoint	  Descriptor	   Matcher	   Words	  
tF	  

(seconds)	  

n	  (number	  of	  glimpses)	  	  
WFOV	   MFOV	  NFOV	  UNFOV	  

SURF	   SURF	   L2	   25	   1.880	   1	   1	   1	   1	  
SURF	   SURF	   FLANN	   50	   2.017	   1	   1	   1	   1	  
SIFT	   SURF	   L1	   25	   3.626	   1	   1	   1	   1	  
SIFT	   SURF	   L2	   25	   3.628	   1	   1	   1	   1	  
STAR	   SURF	   FLANN	   25	   0.535	   5	   2	   1	   1	  
GFTT	   SURF	   L2	   25	   0.577	   5	   2	   1	   1	  
HARRIS	   SURF	   FLANN	   100	   0.571	   5	   2	   1	   1	  
ORB	   SURF	   FLANN	   25	   0.170	   17	   7	   5	   2	  
BRISK	   SURF	   L2	   25	   0.199	   15	   6	   5	   2	  

 

The δ results from pre-scaling are shown in Table 9 and were obtained from the 

ROC Curves in Appendix A, ROC Curves, Figure 33 through Figure 39.  Both the STAR 

and ORB detectors no longer had a zero δ for any of the scaled images.  Some of the δ 

also went down; most notably in the two SIFT keypoint SURF descriptor detectors for 

the largest three scales of ships.  The two SIFT keypoint SURF descriptor detectors δ 

increased for the smaller scales.  The ORB and BRISK detectors had the smallest  
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increase in tF and largest increase in δ for the smallest images.  GFTT had an increase in 

δ for all image scales except full scale, which was unchanged.  The increases in δ of 

GFTT propelled it to have some of the largest ω. 

Table 9.   The δ of the nine fastest BOW Detectors on evaluation image scales 100 
percent to 10 percent for two-times pre-scaling. 

	  
Keypoint	   Descriptor	   Matcher	   Words	  

100	  
(%)	  

75	  
(%)	  

50	  
(%)	  

25	  
(%)	  

20	  
(%)	  

15	  
(%)	  

10	  
(%)	  

SURF	   SURF	   L2	   25	   93	   87	   89	   86	   81	   80	   80	  
SURF	   SURF	   FLANN	   50	   93	   92	   92	   86	   80	   79	   79	  
SIFT	   SURF	   L1	   25	   82	   82	   80	   86	   89	   84	   84	  
SIFT	   SURF	   L2	   25	   88	   82	   85	   85	   91	   84	   84	  
STAR	   SURF	   FLANN	   25	   91	   89	   89	   83	   74	   18	   18	  
GFTT	   SURF	   L2	   25	   92	   90	   88	   87	   88	   75	   75	  
HARRIS	   SURF	   FLANN	   100	   90	   80	   78	   78	   78	   71	   71	  
ORB	   SURF	   FLANN	   25	   86	   83	   76	   70	   75	   67	   67	  
BRISK	   SURF	   L2	   25	   83	   91	   93	   80	   75	   78	   78	  

 

The ω calculated using δ for the nine fastest BOW detectors and two times pre-

scaling are displayed in Table 10; the lateral range curves used to produce these ω are 

located in Appendix B, Lateral Range Curves, Figure 60 through Figure 63.  Most of the 

detectors ω increased for the all FOVs.  SIFT keypoint SURF descriptor L1 detector was 

the only method where ω decreased for UNFOV.  Both SIFT keypoint SURF descriptor 

detectors had a decrease in ω for WFOV.  Both SURF keypoint SURF descriptor 

detectors maintained the highest ω for WFOV.  For MFOV, GFTT and the two SURF 

SURF detectors had the largest ω.  GFTT surpassed all the detectors for the largest ω for 

NFOV and UNFOV.  The BRISK detector ω also surpassed the SURF keypoint SURF 

descriptor detectors for UNFOV.  The BRISK detector surpassed all other BOW 

detectors for all FOVs with ω calculated using the upper bound of PD.  Table 11 contains 

the ω calculated using PD.  The upper bound of ω for pre-scaling compared to no pre-

scaling increased and decreased for many of the detectors.  The ω for HARRIS decreased 

for all FOV, except WFOV.  The ω increased in all FOVs for STAR, GFTT, ORB and 
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BRISK.  The ω calculated thus far have been for a specific contact down to the height 

and relative speed; speed and MHH are considered the variables in the next section. 

Table 10.   Sweep width calculated with δ of the nine fastest BOW detectors utilizing 
two-times pre-scaling on a 10-meter MHH contact and relative velocity of 20 

knots. 

	  
Keypoint	   Descriptor	   Matcher	   Words	  

Sweep	  Width	  (km)	  
WFOV	   MFOV	   NFOV	   UNFOV	  

SURF	   SURF	   L2	   25	   0.24	   2.05	   5.93	   8.95	  
SURF	   SURF	   FLANN	   50	   0.24	   2.05	   5.94	   8.98	  
SIFT	   SURF	   L1	   25	   0.18	   2.02	   5.85	   8.35	  
SIFT	   SURF	   L2	   25	   0.18	   2.04	   5.92	   8.45	  
STAR	   SURF	   FLANN	   25	   0.08	   1.38	   4.17	   7.31	  
GFTT	   SURF	   L2	   25	   0.23	   2.05	   5.97	   9.27	  
HARRIS	   SURF	   FLANN	   100	   0.22	   1.88	   5.50	   8.53	  
ORB	   SURF	   FLANN	   25	   0.20	   1.79	   5.24	   8.17	  
BRISK	   SURF	   L2	   25	   0.23	   2.02	   5.86	   9.07	  

 

Table 11.   Sweep width calculated with PD of the nine fastest BOW detectors utilizing 
two-times pre-scaling for a 10-meter MHH contact and relative velocity of 20 

knots. 

	  
Keypoint	   Descriptor	   Matcher	   Words	  

Sweep	  Width	  (km)	  
WFOV	   MFOV	   NFOV	   UNFOV	  

SURF	   SURF	   L2	   25	   0.24	   2.05	   5.93	   8.95	  
SURF	   SURF	   FLANN	   50	   0.24	   2.05	   5.94	   8.98	  
SIFT	   SURF	   L1	   25	   0.18	   2.02	   5.85	   8.35	  
SIFT	   SURF	   L2	   25	   0.18	   2.04	   5.92	   8.45	  
STAR	   SURF	   FLANN	   25	   0.10	   1.55	   4.17	   7.31	  
GFTT	   SURF	   L2	   25	   0.29	   2.32	   5.97	   9.27	  
HARRIS	   SURF	   FLANN	   100	   0.28	   2.21	   5.50	   8.53	  
ORB	   SURF	   FLANN	   25	   0.28	   2.36	   6.76	   9.58	  
BRISK	   SURF	   L2	   25	   0.30	   2.44	   7.03	   10.22	  

7. The Impact of Ship Size and Speed on Sweep Width 

Ship size in pixels was set as the dependent variable in the evaluation model 

allowing for consideration of different physical MHH and contact speeds as an 
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independent variable.  The detection range was dependent on the size of the ship under 

consideration.  The impact of MHH on ω is shown in Figure 9 for the BRISK model 

detector with two times zoom implemented.  The solid lines are ω calculated using the 

weighted PD providing the upper bound, and the dashed lines are the ω calculated using a 

single δ per sweep.  In Figure 9, the concavity of ω increases for MFOV, NFOV and 

UNFOV beginning at five kilometers influenced by the horizon.  It is also observed from 

Figure 9 that a contact with a MHH of less than six meters cannot be detected when using 

the WFOV lens.  

 
Figure 9.  Graph of ω by MHH for the BRISK BOW detector with two-times pre-

scaling. 

The impact of a contact’s velocity on the ω for a 10-meter MHH contact is 

displayed in Figure 10.  The ω goes down as the relative speed between the sensor and 

the contact goes up.  The solid line again represents the upper bound of ω calculated by 

PD, and the dashed line is ω calculated with a single δ per sweep.  The speed of the 

contact had less of an impact on detection range for this BRISK BOW two times zoom 

detector over slower computational detectors.  The BRISK BOW detector swept at the 

imposed hardware limited ts, allowing the contact of interest to only travel a short 
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distance between sweeps.  This short ts did not prevent the 10-meter MHH contact from 

being undetected by a WFOV when traveling faster than 34 knots. 

 
Figure 10.  Graph of ω by relative velocity for the BRISK BOW detector with two-

times pre-scaling. 

D. HISTOGRAMS OF ORIENTED GRADIENTS 

The HOG detector was built similar to the original work “Histograms of Oriented 

Gradients for Human Detection” [4].  The design of experiments approach was used to 

create over 3,000 ship detectors out of HOG descriptors.  The size of the descriptors and 

manipulation of the training images were used in the design of experiments.  A 

systematic selection approach was used to reduce the large number of detectors to a few 

for the evaluation method.  The OpenCV libraries were utilized to implement the same 

detection of ships with the HOG descriptors on a GPU reducing the computation time. 

Mixed results were obtained in the comparison of the δ between the CPU and GPU 

implementation.  Pre-scaling was attempted to increase the δ.  The final internal HOG 

comparison was done on seven descriptors implemented on a GPU. 
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1. Establishing Training and Design of Experiments for HOG 

Prior to the design of experiments there were many trial-and-error 

implementations of training HOG descriptors.  As described above in Chapter II.E, the 

HOG detector used a sliding window approach; the window that is scanned is a HOG 

descriptor.  Displayed in Figure 11 is a visualization of a HOG descriptor.  In Figure 11 

the length of the line displays each bin magnitude, and the direction of the line 

corresponds the gradient angle forming the bin.  The initial HOG implementation took 

the entire set of positive and negative training images and transformed them into HOG 

descriptors.  Then, all of these descriptors were applied to a linear SVM to compute the 

representation of the positive HOG descriptor for matching.  The first improvement 

found was in creating two descriptors from every training image, one from the original 

image and one from the image flipped over the y-axis.  The flipping created a more 

symmetric HOG descriptor and was not biased when the training set had more port 

aspects of ships than starboard aspects of ships and vice versa.  The descriptor in Figure 

11 was trained using flipped descriptors and is not entirely symmetrical, though some 

symmetry is observed.   

 
Figure 11.  Visualization of a 32 pixels tall by 48 pixels wide HOG descriptor. 

The next improvement came from the implementation of a bootstrapping 

approach for the negative training images.  P. M. Roth et al. provide a basis for 
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improving training with bootstrap learning [46].  The bootstrapping approach 

implemented selected a percentage of the negative images to not initially train on and 

then created a detector from the descriptors that had been used for training to that point.  

Once a detector was trained, the initial trained detector was evaluated on the percentage 

of negative images left out for bootstrapping.  The positive detections during this process 

were then added to the negative training descriptors, both the original and the flipped 

descriptors.  Initially, the set of trained images were all scaled down to fit in the 

descriptor, whereas the bootstrapped negatives used a sliding window that could return 

many false positives per bootstrap image.  Even though there were only 105 negative 

images for training, the sliding window could find thousands of false positives while 

bootstrapping.  When the negative descriptors greatly outnumbered the positive 

descriptors, the detector returned by the SVM also favored the negative descriptors by 

returning more false positives.  Limiting the number of negative training descriptors to 

three times the positive training descriptors prevented some of the biasing.  The best 

detectors found a very small number of false positives to bootstrap because they already 

had developed a good descriptor prior to bootstrapping. 

The HOG detection descriptors produced in training had a fixed height and width.  

The height and width were constrained to be multiples of eight and each eight by eight 

pixels square created one histogram.  All descriptors used a constant nine-bin histogram.  

The bin size and number of bins were constrained to the allowed values of the GPU 

implementation.  The height and width of the descriptors were varied in the design of 

experiments, always as a multiple of eight.  The training images were resized to the size 

of the descriptors, not preserving image ratio.  The mean ship height to width ratio of the 

cropped training images was 1 to 2.16.  The descriptor heights were varied from 32 to 

188 pixels and widths from 40 to 288 pixels.  The bootstrapping percentage was varied 

from zero percent to 40 percent while limiting the number of negative descriptors to three 

times the number of positive descriptors.  Many of the HOG detectors produced a δ of 

greater than 90 percent on the full-scale images. 
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2. Selecting the Best HOG Detectors 

The small images were very challenging for larger descriptors.  Many of the large 

descriptors had the highest δ for full scale images but required upwards of seven times 

pre-scaling to detect any ship in the smallest scale images.  The small detectors could 

detect ships in the small images without pre-scaling.  Not requiring pre-scaling was found 

to be important in the evaluation model.  The small descriptors could still easily detect 

larger ships by the scale down and rescan method of multiscale detection.  The smaller 

descriptors were also faster computationally, requiring fewer comparisons between the 

descriptor bins and the image bins.  The findings showed that the height and widths did 

not need to be near the average ratio of the training images or evaluation images in order 

to create a descriptor with a high δ.  The best HOG descriptors were selected following 

an approach similar to selection of the BOW detectors.  All HOG descriptors were 

evaluated on all scales of images with multiple threshold values, and 10 detectors from 

each scale were selected based on δ.  Seven detectors were selected to evaluate and 

compare to the other detection methods; detectors were in the top 10 δ for multiple 

scales. 

3. Optimization Through Pre-Scaling and Graphical Processors 
Computation 

Improvements for the selected descriptors, δ and tF, were attempted through pre-

scaling and implementation on a 192 CUDA core GPU.  The δ were successfully 

improved through pre-scaling.  The byproduct of pre-scaling was that tF was increased by 

more than a factor of four when pre-scaled by a factor of two.  The tF were reduced by 

implementation of the HOG detector on the GPU but not enough to overcome the factor 

of four increase from pre-scaling.  Nearly all computation was now done on the GPU, 

and only the resulting locations of positive detections were returned.  The image memory 

transfer time was included in the calculations.  Initial timing test for a single image 

showed the time to transfer the image was over two seconds, whereas the computation 

time was a fraction of a second.  The two seconds was found to be the initial transfer time 

for the first image and initial setup of the GPU for computation.  All transfer times after 
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the first image were fractions of a second.  The initial setup time was removed by pre-

loading an additional image onto the GPU before starting the timing test on the batch of 

200 images. 

The OpenCV library GPU methods were limited to performing detections on 

grayscale images vice the RGB images that were initially used on the CPU version of the 

HOG detector.  All testing was then conducted on grayscale images for HOG after 

discovering that loading the images as grayscale had little impact on the δ and reduced 

the tF.  Overall, the best ω was from the GPU implementation of the detector with no pre-

scaling.  The next best implementation was the CPU detection with no pre-scaling, 

followed by the GPU detector with two times pre-scaling, and last the CPU detection 

with two times pre-scaling.  Next, the CPU and GPU versions of the seven best HOG 

detectors are compared with no pre-scaling through the evaluation method. 

4. Evaluation of Glimpse Probability for the Top HOG Detectors 

The δ for the CPU and GPU implementation are similar but not identical.  In 

some cases the CPU outperformed the GPU, and in some cases the GPU outperformed 

the CPU.  The δ for the top seven HOG detectors evaluated using the CPU are given in 

Table 12 and evaluated using the GPU are in Table 13.  The ROC curves used to obtain 

these δ are provided in Appendix A, ROC Curves, Figure 40 through Figure 53.  The 

slight differences between the computation done with the CPU and the GPU are observed 

when comparing Table 12 and Table 13.  Neither the GPU nor CPU showed a single 

detector that was superior to the rest using δ.  These detectors also had very fast, yet 

similar tF and number of glimpses. 
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Table 12.   The δ of the top seven BOW detectors for evaluation image scales 100 percent 
to 10 percent performed on CPU. 

	  
Height	   Width	  

Bootstrap	  
(%)	  

100	  
(%)	  

75	  
(%)	  

50	  
(%)	  

25	  
(%)	  

20	  
(%)	  

15	  
(%)	  

10	  
(%)	  

32	   48	   5	   94	   93	   88	   81	   81	   74	   57	  
32	   48	   15	   91	   94	   86	   81	   81	   79	   60	  
32	   48	   25	   95	   92	   94	   86	   86	   76	   60	  
32	   48	   30	   95	   90	   92	   84	   84	   78	   68	  
32	   48	   40	   94	   94	   88	   84	   84	   73	   66	  
32	   56	   30	   96	   93	   93	   87	   87	   77	   42	  
32	   56	   40	   98	   91	   89	   84	   84	   77	   44	  

 

Table 13.   The δ of the top seven BOW detectors for evaluation image scales 100 percent 
to 10 percent performed on GPU. 

	  
Height	   Width	  

Bootstrap	  
(%)	  

100	  
(%)	  

75	  
(%)	  

50	  
(%)	  

25	  
(%)	  

20	  
(%)	  

15	  
(%)	  

10	  
(%)	  

32	   48	   5	   95	   94	   88	   86	   86	   73	   61	  
32	   48	   15	   88	   93	   90	   85	   82	   79	   59	  
32	   48	   25	   95	   96	   91	   89	   83	   80	   59	  
32	   48	   30	   96	   93	   93	   86	   82	   78	   67	  
32	   48	   40	   97	   93	   87	   88	   80	   73	   63	  
32	   56	   30	   93	   86	   94	   86	   82	   78	   42	  
32	   56	   40	   95	   95	   93	   88	   84	   77	   52	  

5. Frame Time, Sweep Time and Number of Glimpses for CPU and GPU 
HOG Detectors 

The top seven HOG descriptors all had a tF of under 0.2 seconds, enabling them 

all to have multiple glimpses for all FOVs.  The GPU was only slightly faster than the 

CPU, computing at 66 percent to 72 percent of the time per frame.  The CPU and GPU tF 

and the number of glimpses for the GPU are displayed in Table 14.  The calculated tF was 

obtained using the same method as before.  The HOG detector provides more information 

than the BOW detector does on a positive detection.  The HOG detector provides the 

location in the image of the positive detection or localizes the detection in the image.  

The HOG descriptor can also have multiple positive detections in the positive and 
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negative images.  To compare the BOW, HOG and DPM, only a single positive detection 

was considered in the positive and negative images.  The HOG detector also performs 

multi-scale detection bounding small ships as well as large ships.  The amount of scaling 

and number of levels to scale were implemented as runtime variable.  All of the 

evaluations for determining δ and tF were obtained with a scale factor of 1.25 and 12 

levels of scaling.  Optimization was not conducted for the scale factor or levels of scales 

and could be done to improve the detectors even more.  The selected scale factor and 

levels of scales covered all the evaluation image sizes and was selected through a limited 

trial-and-error approach. 

Table 14.   The tF of the top seven HOG detectors performed on both CPU and GPU 
and the number of glimpses from the GPU by FOV. 

	  
Height	   Width	  

Bootstrap	  
(%)	  

CPU	  tF	  
(seconds)	  

GPU	  tF	  
(seconds)	  

GPU	  Glimpses	  
WFOV	   MFOV	   NFOV	   UNFOV	  

32	   48	   5	   0.173	   0.116	   25	   11	   8	   3	  
32	   48	   15	   0.189	   0.135	   22	   9	   7	   2	  
32	   48	   25	   0.197	   0.142	   21	   9	   7	   2	  
32	   48	   30	   0.176	   0.120	   25	   11	   8	   3	  
32	   48	   40	   0.175	   0.122	   24	   10	   8	   3	  
32	   56	   30	   0.184	   0.125	   24	   10	   8	   3	  
32	   56	   40	   0.176	   0.117	   25	   11	   8	   3	  

 

An example of the localization of multiple ship detections is shown in Figure 12.  

The image in Figure 12 was not part of the evaluation set but contains multiple sailboats, 

and the HOG ship detector was able to detect them well.  Notably, the training set 

contained no sailboats.  All positive detections are boxed in green in the image.  There 

are two ships that have multiple positive detections and were not suppressed from 

grouping by the multiscale detection.  An additional run time variable was the number of 

scales to group if there are multiple detections in the same region of the image but at 

different scales.  The two boxes that overlap near the right side of the image are not 

counted as two detections on the same ship since there are two sailboats there.  The 32 

pixel tall by 48 pixel wide HOG descriptor that was created using 30 percent of the 
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negative images to bootstrap produced the detections in Figure 12.  This HOG descriptor 

is displayed in Figure 11 and had the highest ω when calculated using both weighted PD 

and δ. 

 
Figure 12.  Example of multiple ship detection with localization using HOG detector 

(after [39]). 

6. Lateral Range Curves and Sweep Width of HOG Detectors 

The lateral range curves are provided for the top seven HOG descriptors evaluated 

using the GPU and calculated with δ in Appendix B, Lateral Range Curves, Figure 64 

through Figure 67.  From the trapezoidal approximation of the area under these curves, 

the values of ω were obtained.  The ω calculated using the δ alone and PD are shown in 

Table 15 and Table 16.  In the final stage of the evaluation, there was one HOG 

descriptor that stood out having the highest ω.  Also provided is the ω by MHH and ω by 

relative velocity in Figure 13 and Figure 14.  Observed from these figures are similar 

effects as discussed for the BOW detector.  The ω becomes concave down for contacts 

over the horizon in Figure 13.  In Figure 14, the ω for HOG goes down slower as relative 

velocity increases compared to BOW.  The slower decrease is contributed to the faster 

computation time of the HOG method on a GPU.  Both graphs again show a zero 



 49 

detection probability when using WFOV.  The zero detection probability is for very small 

contacts that are close to the sensor in Figure 13 and very fast contacts in Figure 14.  

Table 15.   The ω calculated using δ from the top seven HOG detectors performed on a 
GPU for a 10-meter MHH contact with relative velocity of 20 knots. 

	  
Height	  

	  
Width	  

	  
Bootstrap	  (%)	  

	  

Sweep	  Width	  ω	  (km)	  

WFOV	   MFOV	   NFOV	   UNFOV	  
32	   48	   5	   0.21	   1.97	   5.78	   9.12	  
32	   48	   15	   0.22	   1.98	   5.79	   9.10	  
32	   48	   25	   0.22	   2.03	   5.92	   9.32	  
32	   48	   30	   0.22	   2.03	   5.94	   9.32	  
32	   48	   40	   0.21	   1.97	   5.76	   9.09	  
32	   56	   30	   0.20	   1.92	   5.63	   8.99	  
32	   56	   40	   0.21	   1.98	   5.81	   9.22	  

 

Table 16.   The ω calculated using PD from the top seven HOG detectors performed 
on a GPU for a 10-meter MHH contact with relative velocity of 20 knots. 

	  
Height	  

	  
Width	  

	  
Bootstrap	  (%)	  

	  

Sweep	  Width	  ω	  (km)	  

WFOV	   MFOV	   NFOV	   UNFOV	  
32	   48	   5	   0.28	   2.40	   6.94	   10.46	  
32	   48	   15	   0.28	   2.40	   6.94	   10.19	  
32	   48	   25	   0.28	   2.40	   6.95	   10.29	  
32	   48	   30	   0.29	   2.44	   7.04	   10.58	  
32	   48	   40	   0.28	   2.41	   6.96	   10.45	  
32	   56	   30	   0.25	   2.29	   6.66	   10.23	  
32	   56	   40	   0.27	   2.36	   6.83	   10.40	  
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Figure 13.  Graph of ω by MHH of contact from the top HOG ship detector. 

 
Figure 14.  Graph of ω by relative speed from the top HOG ship detector for a 10-meter 

MHH contact. 

E. DEFORMABLE PARTS MODEL 

The DPM detector was trained using a modified version of the D. Ramanan and 

Y. Yang flexible mixture of parts original training algorithm [27].  The detection program 

for evaluation was developed with a DPM OpenCV library created by H. Bristow [26].  

The DPM training was semi-supervised, requiring labels for the center of each part and 
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the tree structure connecting the parts.  The DPM ship detector design of experiments 

used four variables: the number of parts, connections of parts, allowed overlap of parts 

and HOG descriptor parameters.   

1. Design of Experiments for DPM 

Over 300 ship detectors were successfully trained in the DPM design of 

experiments.  Thousands of combinations were attempted in the design of experiments, 

but the majority of attempts were unsuccessful in creating a detector from the training set.  

The number of parts was varied from three to 20.  The parts tree structure was initially 

varied and subsequently found to produce the best results with the tree starting on a mast 

or on the superstructure.  The number overlapping parts was varied from no overlapping 

parts to all parts allowed to overlap.  The DPM HOG descriptor bin size and number of 

bins was also varied from four to 15.  The training method used 20 percent of the images 

for bootstrapping and was not changed.  The HOG descriptors used for DPM dynamically 

changed during training vice being set as the descriptors from the HOG detector.   

The DPM HOG features were limited to square window, and the window sizes 

were increased during training until all parts for all images met a desired descriptor 

threshold.  There were also four poses created for each DPM detector.  The DPM training 

failed if it required the creation of more than four poses to describe the training set.  In 

Figure 15 a seven-part DPM model is shown and is one of the four poses trained for this 

model.  All four descriptors for this seven-part DPM are shown in Figure 16.  This 

descriptor was trained on full size training images and is why each descriptor is so large.  

The magnitude of the gradient in these descriptors is displayed by the intensity of the 

white instead of the length of the vector as before with the HOG descriptor.  The bow, 

stern, superstructure and mast can be seen in the descriptor shown in Figure 15.  
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Figure 15.  Visualization of a single pose DPM descriptor from a seven-part model nine 

bin HOG. 

 
Figure 16.  Visualization of the four poses of a seven-part, nine bin HOG DPM 

descriptor. 
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This DPM was originally implemented as a pose detector, and each pose is shaped 

like a different class or aspect of ships as seen in Figure 16.  The two models on the right 

more closely resemble a cargo or tanker ship, where the superstructure is located far 

away from the bow.  The two descriptors on the left resemble vessels where the 

superstructure is located closer to amidships.  Even though none of these models appear 

to cover ships where the bow or stern is facing the sensor, they can still detect ships with 

a narrow aspect as seen in Figure 17.  Displayed in Figure 17 is a four-part model and 

seven-part model detection of the same vessel.  The seven-part model does not need all 

parts on the ship to find a positive match.  It appears that the descriptor positions in the 

upper left of Figure 16 was the pose used to detect the ship in the seven-part model of 

Figure 17.  The visualization of the descriptor and the detection do not overlap exactly, 

demonstrating the uncertainty in position of the descriptors that the DPM allows.  Only 

one of the four poses of the descriptor was needed to find a positive match as shown in 

Figure 17.  Having these four different poses benefits the DPM detector and allowed it to 

have the highest δ thus far on the full size images.  As with the HOG detector, DPM 

provided the location of detection in the images.  For comparison, only a single positive 

detection was considered for each image. 

 
Figure 17.  Visualized detection of a ship from a four-part model, left, and seven-part 

model, right (after [39]). 
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2. Selecting the Best DPM Detectors 

Many of the DPM detectors performed extremely well on the full size images, 

with recalls above 98 percent while maintain a false positive percentage below five 

percent.  The challenge that the DPM had was in detecting small vessels.  Many of the 

DPM detectors could maintain very high recall and precision down to the 50 percent 

scaled images, but below the 50 percent scale recall quickly dropped to zero.  The recall 

dropped to zero when the models were larger than the images.  Shown in Figure 18 is the 

ROC curve for the seven-part DPM visualized in Figure 16.  This seven-part model had 

highest δ out of all DPM detectors for full size images down to 50 percent scale images 

but then dropped to zero on smaller images.  In Figure 18, when the 25 percent scale 

curve goes horizontal, the positive detections reached 100 percent for the evaluation 

images that were large enough for the detector to detect a ship.  Pre-scaling was not 

found as successful as with other methods. 

 
Figure 18.  ROC curve for seven-part DPM detector on full size to 25 percent scale 

evaluation images. 
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After applying two-times pre-scaling to the images, this seven-part model could 

detect ships in the 25 percent and 20 percent scales better than any other DPM detector.  

The issue again was that this DPM detector could not detect ships in the smaller images.  

The ROC curve for this seven-part detector with two-times pre-scaling for full scale to 10 

percent scaled images is displayed in Figure 19.  Using the fact that the DPM detector 

could successfully detect ships that were one-half the size of the original training images, 

training was attempted using 20 percent scaled training images instead of trying to pre-

scale by a factor of four. 

 
Figure 19.  ROC curve for seven-part DPM detector on full scale to 10 percent scaled 

evaluation images when using two-times pre-scaling. 
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resulting δ was a four-part model, and a visualization of this model is shown in Figure 20.  

The model creates four poses of the parts, though all four poses were identical as shown 

from the visualization.  The four parts of this four-part model also all overlap, making the 

DPM descriptor in essence a single HOG descriptor.  Only three parts are shown for the 

four-part model since one of the parts was entirely covered by the other parts.  

Computation time was another challenge for the DPM detector. 

 
Figure 20.  Visualization of the four poses of a four-part, nine-bin HOG DPM descriptor. 

3. Frame Time and Sweep Time for DPM 

Though DPM has some of the highest δ for large ships, it comes at the cost of 

long computational time.  The tF for both the seven-part model and the four-part model 

was two seconds, which was faster than any of the BOW models that used SIFT 

descriptors vice SURF descriptors.  A tF of two seconds was not fast enough to have 

multiple glimpses, even with the WFOV lens, but two seconds was fast enough to meet 

the maximum rotation time of 30 seconds with the WFOV lens.  When pre-scaling was 

used, tF did not increase linearly with the pre-scale factor, and a quadratic increase was a 

closer approximation.  For a pre-scale factor of two, the tF increased to 7.6 seconds and 

increased to 34 seconds for a pre-scale factor of four.  Pre-scaling by a factor of four 
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would be required for the seven-part model to detect ships of sizes represented by the 10 

percent scaled images.  Shown in Table 17 are the tF and the associated ts for the DPM 

detectors. 

Table 17.   The tF and ts for the DPM detectors by FOV. 

	  

tF	  
(seconds)	  

Sweep	  time	  ts	  (seconds)	  
WFOV	   MFOV	   NFOV	   UNFOV	  

No	  pre-‐scaling	   2.0	   30	   49.5	   132	   330	  
Two	  times	  pre-‐scaling	   7.3	   80	   180	   482	   1,204	  
Four	  Times	  pre-‐scaling	   34.0	   374	   842	   2,244	   5,610	  

NFOV and UNFOV had very long ts.  Without pre-scaling in UNFOV, the DPM 

detector took five and a half minutes to complete an entire sweep.  With two times pre-

scaling, the ts increased to more than 20 minutes.  Implementation of four times pre-

scaling would increase a single sweep to more than an hour and a half.  There has been 

some significant improvements to DPM detectors recently with the iRobot at Nvidia GPU 

Technology Conference 2013 showing a DPM that was five times faster when performed 

on a GPU and CPU vice a CPU alone [47].  The results of this DPM model gave a tF of 

less than 200 milliseconds when performing on VGA images, which are 640 by 480 

pixels.  This is less than one sixth the pixel area that was used to calculate tF in this 

evaluation. 

Table 18.   The δ  of the DPM detectors for evaluation image scales 100 percent to 10 
percent. 

	  
Detector	  Model	  

100	  
(%)	  

75	  
(%)	  

50	  
(%)	  

25	  
(%)	  

20	  
(%)	  

15	  
(%)	  

10	  
(%)	  

Four-‐part	  Model	  no	  pre-‐scaling	   96	   91	   93	   94	   92	   93	   40	  
Seven-‐part	  Model	  no	  pre-‐scaling	   97	   96	   99	   50	   0	   0	   0	  

Seven-‐part	  Model	  two	  time	  pre-‐scaling	   97	   98	   99	   97	   92	   57	   0	  

4. Lateral Range Curves and Sweep Width of DPM Detectors 

The four-part model with no pre-scaling and the seven-part model with and 

without two-times pre-scaling were selected to calculated the ω.  These were the two best 
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DPM detectors; one was produced from small training images and one from large 

training images.  The δ for these models are shown in Table 18.  The δ were calculated 

using the ROC curves shown in Figure 18 and Figure 19 for the seven-part model and 

from Figure 54 in Appendix A, ROC Curves, for the four-part model.  None of these 

detectors had a tF low enough to have multiple glimpses at any FOV resulting in PD = δ  

in Table 18.  The lateral range curves for these three detection methods are provided in 

Appendix B, Lateral Range Curves, Figure 68 through Figure 71.  The ω for these 

detectors are shown in Table 19.  The four-part model had the largest ω for all FOVs.  

The seven-part model with two times pre-scaling had a lower ω with the UNFOV than 

with the NFOV and is the only detector that showed this phenomenon.  The drop in ω 

was caused by the large increase in tF and subsequently ts.  The seven-part model with 

and without pre-scaling has a ω of zero for WFOV resulting from the distance the 20-

knot contact could travel was greater than twice the detectable range for these detection 

methods.  Given that there are faster DPM implementations, ω was calculated for a five 

times faster tF and the resulting ω values are shown in Table 20.  For the case of a five 

times faster tF, multiple glimpses are possible and were considered for calculating the 

corresponding ω with PD.  The DPM methods did not break 10 km for the ω even with a 

five times faster detection rate, as the BOW and HOG detectors had when using PD to 

calculate ω. 

Table 19.   The ω of the DPM detectors calculated using PD = δ, evaluated for a 10-meter 
MHH contact with a relative velocity of 20 knots. 

	  
Detector	  Model	  	  

Sweep	  Width	  (km)	  
WFOV	   MFOV	   NFOV	   UNFOV	  

Four-‐part	  Model	  no	  pre-‐scaling	   0.22	   2.05	   6.00	   9.26	  
Seven-‐part	  Model	  no	  pre-‐scaling	   0.00	   0.60	   1.93	   3.42	  

Seven-‐part	  Model	  two	  time	  pre-‐scaling	   0.00	   0.97	   3.24	   1.60	  
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Table 20.   The ω of the DPM detectors calculated using PD assuming a five times faster 
tf, evaluated for a 10-meter MHH contact with a relative velocity of 20 knots. 

	  
Detector	  Model	  	  

Sweep	  Width	  (km)	  
WFOV	   MFOV	   NFOV	   UNFOV	  

Four-‐part	  Model	  no	  pre-‐scaling	   0.25	   2.27	   6.54	   9.62	  
Seven-‐part	  Model	  no	  pre-‐scaling	   0.00	   0.71	   2.22	   4.37	  

Seven-‐part	  Model	  two	  time	  pre-‐scaling	   0.15	   1.71	   5.10	   8.52	  

5. Sweep Width by Mast Head Height and Velocity 

The ω by MHH and ω by relative velocity for the four-part DPM detector are 

provided in Figure 21 and Figure 22.  The graph of ω by MHH was very similar to the 

graphs for the other model detectors; it differs in that there is only one line per FOV.  For 

the DPM detector, the tF was not fast enough to have multiple glimpses, leaving only a 

single curve per FOV.  The longer tF for the DPM also had a large and noticeable impact 

on the ω by relative velocity.  The ω decreased much faster for the DPM detector method 

as relative velocity increased, especially for the UNFOV. 

 
Figure 21.  Graph of ω by MHH for the four-part DPM ship detector on a 20-knot relative 

velocity contact. 
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Figure 22.  Graph of ω by relative velocity for the four-part DPM ship detector on a 10-

meter MHH contact. 
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IV. RESULTS 

In Chapter III, the evaluation method was created using search theory principles. 

The evaluation method models computer vision algorithms as a ship detector for 

operational naval platforms.  Three object detection methods were then trained through 

experiments to optimize the algorithms for ship detection.  Thousands of detectors were 

trained and evaluated.  The evaluation of the best ship detector for each method is 

discussed in this section through the observations of these evaluations.  A HYBRID 

detector was constructed using the HOG to find ROIs and the BOW method to determine 

if the ROIs contain a ship.  The results of the three ship detection methods discussed in 

Chapter III as well as the HYBRID detector are compared in this chapter. 

A. HYBRID HOG AND BOW 

The HYBRID combines some benefits of the HOG and BOW methods.  The 

BOW method has the highest glimpse probability δ for the smallest scale images.  The 

HOG was the fastest detection method that could localize the detection in the images.  

The majority of the computation for HOG was processed in parallel on a GPU.  The 

approach assumed that by turning the threshold down on the HOG detector, it would pass 

more ROI to be evaluated by the BOW method.  The threshold settings for both the HOG 

and BOW methods were important.  Low threshold values for HOG caused too many 

ROIs to be passed, causing the whole image to be evaluated by the BOW.  If the HOG 

only passed true positive detections, then the detector would be no better than HOG 

alone.  

The threshold values also had a large impact on the computational time.  As the 

number of ROI that HOG detected increased, so did the computation done by the BOW 

model.  The best results for the BOW occurred when two times pre-scaling was 

implemented; the HYBRID was also most successful when two times pre-scaling was 

implemented on the ROI.  The highest sweep width ω for the HYBRID model resulted 

from using two-times pre-scaling with the HOG on the GPU.  Many of the top BOW 

models were attempted with the HYBRID, and the greatest success was from SURF 
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keypoints, SURF descriptor and L2 matcher method.  The 32 by 48 HOG created using 

30 percent bootstrapping found the ROI for the HYBRID.  Reducing the threshold for the 

HOG detector made the grouping of rectangles done by HOG insufficient by itself, 

passing multiple ROI around the same ship.  Implementing merging of these overlapping 

rectangles produced much better results and was added to the HYBRID detector. 

B. COMPARITSON OF DETECTION METHODS 

Comparisons were made between the top ship detectors from each method 

utilizing each stage of the evaluation model.  In addition to the comparison of δ, the false 

positive rate was also compared.  Challenges for calculating the computation time of the 

HYBRID method are discussed, along with computational time comparisons.  The final 

stage of comparison was done using the ω for UNFOV with multiple MHH and contacts 

speeds. 

1. Glimpse Probability and False Positive Rate 

The best of the BOW, HOG and DPM based on the ω were selected to compare 

against the HYBRID implementation of HOG and BOW.  The BOW with the largest ω 

was the BRISK SURF L2 25 word model using two-times pre-scaling.  The HOG with 

the largest ω was the 32 by 48 model trained with 30 percent bootstrapping.  The DPM 

with the largest ω was the four-part model trained on 25 percent scaled training images.  

The HYBRID method used the best HOG based on ω and used the SURF feature, SURF 

descriptor, L2 matcher and 25 word model that was in the best of the BOW models. 

Table 21 contains the δ for the top detectors from each method, and the ROC curves for 

the HYBRID detector are in Appendix A, ROC Curves, Figure 55.  The δ of the 

HYBRID method did improve over the HOG method in the smaller scale images and in 

some cases surpassed the BOW and HOG methods.   
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Table 21.   The δ of the top detectors from each method on evaluation image scales 100 
percent to 10 percent. 

	  
Detector	  Method	  

100	  
(%)	  

75	  
(%)	  

50	  
(%)	  

25	  
(%)	  

20	  
(%)	  

15	  
(%)	  

10	  
(%)	  

BOW	   83	   91	   93	   80	   75	   78	   78	  
HOG	   96	   93	   93	   86	   82	   78	   67	  
DPM	   96	   91	   93	   94	   92	   93	   40	  

HYBRID	   94	   96	   93	   92	   87	   86	   76	  
 

An observation made through comparisons of the ROC curves was that even 

though obtained δ did not improve much in the HYBRID method, the false positive 

percentage was greatly reduced.  The false positive probabilities that correspond to the 

calculated δ are displayed in Table 22.  The BOW and HOG models had a false positive 

probability of greater than 30 percent for their calculated δ on the 10 percent scale 

images, where the HYBRID method had 15 percent false positive detections at the 

calculated δ for this scale.  The DPM method had the lowest false positives and highest δ 

for 25 percent down to 15 percent scaled images but then had the lowest δ on the smallest 

scale ships with a higher false positive rate.  The DPM and HYBRD methods did very 

well on the 50 percent to full-scale images, and both had less than a 10 percent false 

positive rate for these scales.  The HYBRID method had the lowest average false positive 

rate and surpassed the DPM method in computational speed. 

Table 22.   False positive probabilities of the top detectors from each method on evaluation 
image scales 100 percent to 10 percent. 

	  
Detector	  Method	  

100	  
(%)	  

75	  
(%)	  

50	  
(%)	  

25	  
(%)	  

20	  
(%)	  

15	  
(%)	  

10	  
(%)	  

BOW	   15	   18	   18	   22	   17	   22	   43	  
HOG	   9	   12	   13	   10	   11	   10	   30	  
DPM	   8	   9	   9	   10	   11	   13	   17	  

HYBRID	   6	   8	   7	   11	   12	   13	   15	  

2. Frame Time, Sweep Time and Number of Glimpses 

As previously discussed, the HOG method was the fastest computationally, 

followed by the BOW and then DPM methods.  The computation time of the HYBRID 
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method was dependent on the selected threshold values.  The tF for the HYBRID methods 

was measured using the same 100 positive and 100 negative, 1920 by 1080 evaluation 

images.  Timing for the HYBRID method was measured in two ways, one when no 

positive detections were found and a tF of 0.485 seconds was obtained.  Then tF was 

measured when a positive detection was obtained in the positive timing images.  An 

example of the HYBRID positive detection is shown in Figure 23 for the positive timing 

evaluation image.  In this timing evaluation there were four regions of interested selected 

by the HOG, three of which were not accepted by the BOW portion of the HYBRID 

detector.  The evaluated tF increased to 0.740 seconds when using the threshold values 

that produced a positive detection as seen in Figure 23.  The rest of the evaluations were 

conducted with tF of 0.740 seconds. 

 
Figure 23.  Example detection of the ship in the positive timing evaluation image by the 

HYBRID detector (after [39]). 

The HYBRID method used the BOW implementation pre-scaling the already pre-

scaled ROI by another factor of two; this implementation of BOW alone had a tF of 1.88 

seconds. The HOG detector of the HYBRID alone had a tF of 0.485 seconds when timed 

with two-times pre-scaling.  The HYBRID model met the minimum tS for all FOV except 

UNFOV and was only fast enough to have multiple glimpses in the WFOV as shown in 
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Table 23 and Table 24.  The ability to not have multiple glimpses made the calculated 

PD = δ  for calculating ω with the HYBRID and DPM detectors.   

Table 23.   The tF and ts of the top detector from each method by FOV. 

Detector	  Method	  
tF	  

(seconds)	  

Sweep	  time	  ts	  (seconds)	  
WFOV	   MFOV	   NFOV	   UNFOV	  

BOW	   0.199	   30	   30	   60	   60	  
HOG	   0.117	   30	   30	   60	   60	  
DPM	   2.0	   30	   49.5	   132	   330	  

HYBRID	   0.740	   30	   30	   60	   122	  
 

Table 24.   The number of glimpses of the top detector from each method by FOV. 

Detector	  Method	  
tF	  

(seconds)	  

n	  (number	  of	  glimpses)	  	  
WFOV	   MFOV	  NFOV	  UNFOV	  

BOW	   0.199	   15	   6	   5	   2	  
HOG	   0.117	   25	   11	   8	   3	  
DPM	   2.0	   1 1 1 1 

HYBRID	   0.740	   4	   1	   1	   1	  

3. Lateral Range Curves and Sweep Width 

With PD = δ, the benefit of having a possible increase for detecting a ship through 

multiple glimpses is not available.  The HYBRID tF was fast enough to have more than 

10 percent overlap per frame with the MFOV and NFOV lens and have multiple glimpses 

with the WFOV lens.  Observed from every model was that the WFOV had such a low ω 

for all detector models that it would seem to be impractical as ship detection sensor for 

most operations.  The MFOV lens had ω of nearly a decade larger than the WFOV but 

still may be impractical as a ship detection sensor.  The NFOV and UNFOV lens 

obtained greater than 5 km ω for a 10-meter MHH contact, which may not be an 

acceptable range of detection for all operations.  Even though the UNFOV could detect 

ships at much larger ranges than the NFOV, the NFOV also has some benefits.  If the 

sensor were in rough seas, the horizon would be moving up and down in the image.  The 

probability that the horizon could be maintained in every image capture increases for the 
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NFOV over the UNFOV.  The HYBRID detector has similar ω as the other top detectors 

from each method when calculated using PD as seen in Table 25. 

Table 25.   The ω of the top detector from each method calculated using PD, evaluated for a 
10-meter MHH contact with a relative velocity of 20 knots. 

	  
Detector	  Model	  	  

Sweep	  Width	  ω	  (km)	  
WFOV	   MFOV	   NFOV	   UNFOV	  

BOW	   0.30	   2.44	   7.03	   10.22	  
HOG	   0.29	   2.44	   7.04	   10.58	  
DPM	   0.22	   2.05	   6.00	   9.26	  

HYBRID	   0.29	   2.16	   6.28	   9.69	  

The HYBRID models ω was not as large as the upper bound ω of BOW and HOG 

detectors, shown in Table 25.  The HYBRID model did surpass the DPM method in ω 

when calculated with PD.  Shown in Table 26 is the ω calculated based on δ for the top 

detectors from each model.  The lateral range curves used to produce the ω in Table 26 

are located in Appendix B, Lateral Range Curves, Figure 72 through Figure 75. The 

HYBRID model had the largest ω when calculated using δ for all FOVs.  Of all the BOW 

models, the model that used GFTT and two-times pre-scaling had the largest ω when 

calculated using δ and was 9.27 km for UNFOV.  The GFTT ω is still less than the HOG 

and HYBRID methods in Table 26. 

Table 26.   The ω of the top detector from each method calculated using δ, evaluated for a 
10-meter MHH contact with a relative velocity of 20 knots. 

	  
Detector	  Model	  	  

Sweep	  Width	  ω	  (km)	  
WFOV	   MFOV	   NFOV	   UNFOV	  

BOW	  (BRISK)	   0.23	   2.02	   5.86	   9.07	  
HOG	   0.22	   2.03	   5.94	   9.32	  
DPM	   0.22	   2.05	   6.00	   9.26	  

HYBRID	   0.24	   2.16	   6.28	   9.69	  

Provided in Figure 24 are the top detectors from each methods graph of ω by 

MHH for the UNFOV lens and a 20 knots relative velocity contact; this ω was calculated 

using δ.  The HYBRID outperformed all other methods with this calculation of ω except 

for contacts less than one meter tall, in which HOG alone was superior.  The DPM 
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performed the worst on small contacts but then increased its performance above other 

methods as MHH increased.  Also observed from this graph was that all of the detectors 

performed very well and were all very close in their performance.  The differences in 

computational speed also impacted the ω when relative velocity was considered.  

 
Figure 24.  Graph of ω by MHH for the top detector of each method, based on UNFOV 

lens and a 20-knot relative velocity contact. 

Provided in Figure 25 is the top detector from each method graph of ω by relative 

velocity for a 10-meter MHH contact.  In this graph, as the contacts relative velocity 

increased, the distance that the contact traveled in-between detections was increased.  The 

further the contact traveled, the closer the range of detection was when the lateral range 

was calculated.  The distance that the contact could travel was entirely based on the tS of 

the detector and relative velocity.  The shorter tS is, the shorter the distance traveled by 

the contact is between sweeps, and thus the closer the lateral range is to the range of the 

calculated δ.  The detectors ω in Figure 25 is also calculated using δ and not PD.  The 

HYBRID method was only slightly superior in terms of ω for all relative velocities. The 

impact of the DPM methods slow computation time is shown as relative velocity is 

increased.  The DPM method had the second largest ω for slow contacts and then had the 
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lowest ω for the fastest contacts.  All of these methods performed well in the evaluation 

model given that where these succeeded, thousands of trained ship detectors failed. 

 
Figure 25.  Graph of ω by relative velocity for the top detector of each method, based on 

UNFOV lens and a 10-meter MHH contact. 

C. FUTURE RESEARCH 

A design of experiments approach was not taken with the HYBRID detector, 

which was conducted with the other detection methods.  There could still be room for 

improvement with adjusting the parameters that have already been built into the 

HYBRID detector.  The scaling and number of level parameters along with the 

thresholding values used to produce the ROC curves can be adjusted dynamically and 

allow for optimization in a changing environment.  The other BOW implementations may 

have also produced better results on the ROI produced by the HOG detector. 

Instead of using a scale down and rescan approach for multiscale detection, 

creating HOG descriptors at each scale that better represent a ship at that scale could 

improve the HOG ship detection in speed of detection, recall and precision.  

Computational speed could be increased if this was performed on the GPU, allowing all 

of the descriptors to scan the image in parallel without requiring resizing the image.  

Recall and precision could be improved with the descriptors better representing the ships 
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at every scale.  Having different descriptors for different ship types may also improve 

recall and precision, as may having different descriptors for different aspects of ships, 

similar to the DPM poses.   

Many of these methods were developed as multiclass detection methods, though 

the detectors were only trained as single class (ships) or two classes (ships or non-ships) 

detectors.  The BOW detector in this research was programed as a multiclass detector and 

could be trained as such.  The detectors could return better recall results by more useful 

information, such as identifying a war ship or a merchant ship.  The DPM by iRobot was 

implemented on a GPU and is also multiclass, trainable to distinguish between vessel 

types, though the computation time increased for each additional class [47].  The HOG 

detector by itself is not usually used for multiclass detection, but the HYBRID approach 

could use the multiclass capabilities of BOW to determine class of vessel.  Until a 

computer can, in real time, detect and classify ships with 100 percent recall and precision, 

there will continue to be future research and room for improvement. 

There was also room for improvement in the evaluation model.  The model was 

designed to represent a photonics mast sensor on a submarine, though this model could 

be extended to many platforms.  The model also has room for improvement based on the 

many assumptions in making the model.  The assumption that the detectors could only 

detect a vessel if more than half of the ship was above the horizon placed a hard limit on 

the detection range for developing the lateral range curves and, subsequently, for 

calculating ω.  This visual detection limit may have been conservative or may have been 

generous; fine-tuning the model requires further research.  Future research could also 

develop a more accurate increase in detection probability for multiple glimpses with a 

visual sensor. 

Limits were also put on how fast the sensor could turn and accurately acquire 

image frames.  Having actual hardware specification for the rotating equipment and light 

sensitivity of the sensor could help to improve the evaluation model.  Changing the 

sensor and lens to meet a detection range and probability specification could also 

optimize the detection methods evaluated.  When considering the implementation of the 

evaluation model for determining the operational performance of ship detectors, it may 
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be important to base the calculation of δ off a maximum allowable false positive 

probability instead of the point closest to 100 percent recall and precision.  The 

evaluation model was not limited by a set false positive rate. 
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V. CONCLUSIONS AND RECOMMENDATIONS 

In search of a computer vision algorithm that could replace or aid operators in 

open seas and harbor ship detection, an evaluation model was created based on search 

theory evaluation methods for SONAR and RADAR systems.  Using a larger focal length 

and narrower fields of view provided the greatest increase in detection range for all ship 

detection methods evaluated. The restriction and assumption of the evaluation method 

limited the computer vision algorithms to a maximum sweep width ω, or detection range, 

of 10.88 km for a 10-meter MHH contact traveling with a relative velocity of 20 knots.  

The optimized BOW, HOG and DPM object detection methods as open sea and harbor 

ship detectors all had ω of over 9.0 km for this same 10-meter MHH contact. 

The HYBRID ship detector had a 9.69 km ω for the same 10-meter MHH contact.  

The HYBRID detected ships larger than 125 pixels tall with greater than 93 percent recall 

and a false positive rate of 8 percent or less.  The HYBRID detector also detected ships 

between 38 and 64 pixels tall with an 86 percent to 92 percent recall and 11 percent to 13 

percent false positive rate.  This HYBRID detector had the lowest false positive rate, at 

15 percent, of all the evaluated ship detectors on the smallest ship images tested.  The 

smallest ships tested had a mean pixel height of 25 pixels tall, and the recall for these 

small ships was 76 percent for the HYBRID model.  Detecting small ships in imagery 

was found to be the most difficult challenge for all the ship detection methods. The 

evaluation model purposely challenged the computer vision algorithms by having 

negative evaluation images that contained many objects that could cause false positive 

detections.  The HYBRID detector was the most successful at overcoming these 

challenges. 

The HYBRID detector provides many qualities desirable for an operational ship 

detector for use with a submarine photonics mast.  Firstly, the HYBRID detector has the 

benefits of multiscale ship detection done on a GPU, being able to detect ships of many 

sizes or at many ranges from the sensor very quickly using parallel processing.  

Additionally, the HYBRID detector localizes the ship detection in the image, which 

provides better bearing accuracy to a fire control system than a classification method 
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such as BOW alone.  Finally, the additional BOW stage of the HYBRID detector 

provides the increase in recall rate for ships that appear small in imagery while also 

reducing the false positive rate for all ship sizes.   

A recommendation to improve the HYBRID model is to utilize the multiclass 

capabilities of the BOW algorithm to further categorize detected ships into classes.  

Another recommendation that could greatly improve the HYBRID method is to create 

multiple scales of descriptors for multiple ship aspects that can be parsed over the image 

in parallel on a GPU.  The multiple scales of descriptors would increase the detection 

probabilities at the different scales, as shown from having descriptors of different sizes in 

the HOG evaluation.  The ability to process the multiple descriptors in parallel on the 

GPU, without having to resize and rescan the image, should also improve computational 

speed.  Operational testing and comparison of these algorithms would be required to 

consider these computer vision detectors to replace an operator for ship detection from a 

photonics mast.  The high detection rates and low false positive rates along with the 

speed of computation makes the HYBRID method a good candidate to aid operators as an 

automatic visual ship detector. 
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APPENDIX A. ROC CURVES 

 
Figure 26.  ROC curves for the 12 best BOW detectors on full-scale images. 
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Figure 27.  ROC curves for the 12 best BOW detectors on 75 percent scale images. 
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Figure 28.  ROC curves for the 12 best BOW detectors on 50 percent scale images. 
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Figure 29.  ROC curves for the 12 best BOW detectors on 25 percent scale images. 
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Figure 30.  ROC curves for the 12 best BOW detectors on 20 percent scale images. 
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Figure 31.  ROC curves for the 12 best BOW detectors on 15 percent scale images. 
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Figure 32.  ROC curves for the 12 best BOW detectors on 10 percent scale images. 
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Figure 33.  ROC curves for the nine fastest BOW detectors on full-scale images pre-

scaling with a factor of two. 
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Figure 34.  ROC curves for the nine fastest BOW detectors on 75 percent scale images 

pre-scaling with a factor of two. 
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Figure 35.  ROC curves for the nine fastest BOW detectors on 50 percent scale images 

pre-scaling with a factor of two. 
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Figure 36.  ROC curves for the nine fastest BOW detectors on 25 percent scale images 

pre-scaling with a factor of two. 
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Figure 37.  ROC curves for the nine fastest BOW detectors on 20 percent scale images 

pre-scaling with a factor of two. 
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Figure 38.  ROC curves for the nine fastest BOW detectors on 15 percent scale images 

pre-scaling with a factor of two. 
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Figure 39.  ROC curves for the nine fastest BOW detectors on 10 percent scale images 

pre-scaling with a factor of two. 
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Figure 40.  ROC curves for the top seven HOG detectors on full-scale images preformed 

on CPU. 
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Figure 41.  ROC curves for the top seven HOG detectors on 75 percent scale images 

preformed on CPU. 
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Figure 42.  ROC curves for the top seven HOG detectors on 50 percent scale images 

preformed on CPU. 
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Figure 43.  ROC curves for the top seven HOG detectors on 25 percent scale images 

preformed on CPU. 
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Figure 44.  ROC curves for the top seven HOG detectors on 20 percent scale images 

preformed on CPU. 
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Figure 45.  ROC curves for the top seven HOG detectors on 15 percent scale images 

preformed on CPU. 
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Figure 46.  ROC curves for the top seven HOG detectors on 10 percent scale images 

preformed on CPU. 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
ec

al
l %

1−Precision %
 

 

Height Width Bootstrap%
  32          48      5
  32          48      15
  32          48      25
  32          48      30
  32          48      40
  32          56      30
  32          56      40



 94 

 
Figure 47.  ROC curves for the top seven HOG detectors on full-scale images preformed 

on GPU. 
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Figure 48.  ROC curves for the top seven HOG detectors on 75 percent scale images 

preformed on GPU. 
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Figure 49.  ROC curves for the top seven HOG detectors on 50 percent scale images 

preformed on GPU. 
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Figure 50.  ROC curves for the top seven HOG detectors on 25 percent scale images 

preformed on GPU. 
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Figure 51.  ROC curves for the top seven HOG detectors on 20 percent scale images 

preformed on GPU. 
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Figure 52.  ROC curves for the top seven HOG detectors on 15 percent scale images 

preformed on GPU. 
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Figure 53.  ROC curves for the top seven HOG detectors on 10 percent scale images 

preformed on GPU. 
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Figure 54.  ROC curves for the four-part model DPM detectors on Full size to 10 percent 

scale images. 
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Figure 55.  ROC curves for HYBRID HOG and BOW method on full size to 10 percent 

scale images. 
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APPENDIX B. LATERAL RANGE CURVES 

 
Figure 56.  Lateral range curves for the 12 best BOW detectors with WFOV for a 10-

meter MHH contact and relative speed of 20 knots. 

 
Figure 57.  Lateral range curves for the 12 best BOW detectors with MFOV for a 10-

meter MHH contact and relative speed of 20 knots. 
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Figure 58.  Lateral range curves for the 12 best BOW detectors with NFOV for a 10-

meter MHH contact and relative speed of 20 knots. 

 
Figure 59.  Lateral range curves for the 12 best BOW detectors with UNFOV for a 10-

meter MHH contact and relative speed of 20 knots. 
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Figure 60.  Lateral range curves for the top nine BOW detectors with WFOV, using pre-

scaling of two, for a 10-meter MHH contact and relative speed of 20 knots. 

 
Figure 61.  Lateral range curves for the top nine BOW detectors with MFOV, using pre-

scaling of two, for a 10-meter MHH contact and relative speed of 20 knots. 
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Figure 62.  Lateral range curves for the top nine BOW detectors with NFOV, using pre-

scaling of two, for a 10-meter MHH contact and relative speed of 20 knots. 

 
Figure 63.  Lateral range curves for the top nine BOW detectors with UNFOV, using pre-

scaling of two, for a 10-meter MHH contact and relative speed of 20 knots. 
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Figure 64.  Lateral range curves for the top seven HOG detectors on GPU with WFOV 

for a 10-meter MHH contact and relative speed of 20 knots. 

 
Figure 65.  Lateral range curves for the top seven HOG detectors on GPU with MFOV for 

a 10-meter MHH contact and relative speed of 20 knots. 
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Figure 66.  Lateral range curves for the top seven HOG detectors on GPU with NFOV for 

a 10-meter MHH contact and relative speed of 20 knots. 

 
Figure 67.  Lateral range curves for the top seven HOG detectors on GPU with UNFOV 

for a 10-meter MHH contact and relative speed of 20 knots. 
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Figure 68.  Lateral range curves for the top three DPM detectors with WFOV for a 10-

meter MHH contact and relative speed of 20 knots. 

 
Figure 69.  Lateral range curves for the top three DPM detectors with MFOV for a 10-

meter MHH contact and relative speed of 20 knots. 
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Figure 70.  Lateral range curves for the top three DPM detectors with NFOV for a 10-

meter MHH contact and relative speed of 20 knots. 

 
Figure 71.  Lateral range curves for the top three DPM detectors with UNFOV for a 10-

meter MHH contact and relative speed of 20 knots. 
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Figure 72.  Lateral range curves for the top detectors from each model with WFOV for a 

10-meter MHH contact and a relative speed of 20 knots. 

 
Figure 73.  Lateral range curves for the top detectors from each model with MFOV for a 

10-meter MHH contact and relative speed of 20 knots. 
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Figure 74.  Lateral range curves for the top detectors from each model with NFOV for a 

10-meter MHH contact and relative speed of 20 knots. 

 
Figure 75.  Lateral range curves for the top detectors from each model with UNFOV for a 

10-meter MHH contact and relative speed of 20 knots. 
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