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The use of simulation as a modeling and analysis tool is wide spread. Simulation is an enabling tool for
experimenting virtually on a validated computer environment. Often the underlying function for a computer
experiment result has too much curvature to be adequately modeled by a low-order polynomial. In such
cases, finding an appropriate experimental design is not easy. We evaluate several computer experiments
assuming the modeler is interested in fitting a high-order polynomial to the response data considering both
optimal and space-filling designs. We also introduce a new class of hybrid designs that can be used for

deterministic or stochastic simulation models.

Key Words: Optimal Design; Response Surface; Space-Filling Design.

COMPUTER simulation models are often used in
place of or in conjunction with physical experi-
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ments. Simulation is an extraordinarily powerful tool
that allows the study of a system virtually. If the
computer-simulation model is a valid representation
of the real system, the experimentation and analysis
with the model can lead to results and conclusions
that are valid for the real system. It is as desirable to
experiment with computer simulation models as it is
to experiment with physical systems. This requires
the choice of an experimental design and analysis
technique. The issues associated with the creation
of design and analysis of computer experiments are
sometimes different than those encountered in the
physical domain.

Usually computer simulation models have no
stochastic component so the result for any partic-
ular set of conditions is deterministic. Examples
of deterministic computer-simulation models include
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finite-element analysis (FEA) models and circuit-
simulation (or SPICE) models. Experimental designs
intended for use on a deterministic model are often
associated with several desirable properties that are
not encountered in traditional design of experiments
literature. First, the design should span or fill a large
portion of the design region. Filling the design re-
gion is important because little is known about what
portions of the region will provide the most informa-
tive or interesting results. Also, responses from com-
puter experiments can be complex, and space-filling
designs are robust in the sense that they allow a vari-
ety of models to be fit. Second, if factors are deemed
insignificant or removed from the model, the resul-
tant projected design should span or fill a large por-
tion of the lower dimension design region. In physical
experimentation or stochastic simulation, when fac-
tors are removed from the model after they are found
to provide no contribution to the response, the pro-

~ jected design frequently results in replicated design

points. For example, a 22 factorial design projected
into two factors results in a replicated 22 design. In a
computer simulation, this projection of the factorial
design would result in a loss of half of the informa-
tion because replicated points provide no new infor-
mation in a deterministic setting. These properties
have driven new research on experimental design for
computer simulation. Designs that aim to fulfill these
properties are called space-filling designs.

Computer experiments can be computationally
expensive in terms of time required to run a sin-
gle simulation—a single input. Therefore, surrogate
models are used to mimic the input—output relation-
ship in the form of a simpler mathematical expression
that can be quickly computed. Surrogate models en-
compass a broad range of techniques ranging from
parametric to nonparametric analysis. As previously
stated, the response surface in a deterministic model
can be very complex. Determining which model-
fitting technique to use is dependent on several fac-
tors, such as the problem, the goal of the model, and
the knowledge of the analyst. The use of high-order
polynomials is only one of many techniques available
as a surrogate modeling choice. Polynomial regres-
sion models of order two are commonly encountered;
however, models of order greater than two can also be
found in the literature. Allen et al. (2003) use second-
order response models to fit test functions that mimic
computer-simulation models. Fang et al. discuss the
application of polynomial regression as a surrogate
modeling technique. In Danehy et al. (2002) and Ted-
der et al. (2007), second- through sixth-order poly-
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nomials are used to fit flow-field data (such as tem-
perature) from a combustion experiment. This pa-
per presents a comparison of experimental designs
for computer-simulation models when the expected
form of the surrogate model is a high-order poly-
nomial. Note that the sample size requirements for
polynomials become large as the order of polynomial
increases and the dimension of the design increases.
In some cases, these sample sizes may not be feasible
for extremely computationally intensive simulations.

We compare experimental designs based on their
prediction variance with respect to the polynomial
model. The results drive the motivation for a new
class of hybrid designs that are a combination of
space-filling and optimal designs.

Next a literature review of design comparison for
computer simulations is presented, followed by a dis-
cussion of the method that will be used to compare
the designs in this paper. The designs that will be
compared are then presented, followed by the results,
the introduction to a new class of hybrid designs, a
case study that evaluates robustness of the design
and model-selection criterion, and finally conclusions
and future work.

Literature Review

Three articles that evaluate experimental designs
for computer simulations are reviewed. Allen et al.
{(2003) compares combinations of experimental de-
sign classes with respect to second-order response
surfaces and Kriging modeling methods. They find
that there was inconclusive evidence as to which
modeling method performed the best, due to the de-
pendency on the experimental design used. They also
observed that unavoidable bias errors constituted a
large source of prediction error in regression model-
ing and estimation errors dominated prediction er-
rors in Kriging modeling.

Hussain et al. (2002) present seven two-dimen-
sional functions that were used to test two meta-
models. The metamodels tested were a radial basis
function, which was originally developed to fit irreg-
ular topographic contours of geographical data, and
quadratic polynomial models. Factorial designs and
Latin hypercube designs (LHDs) were used as the
experimental designs. The paper concludes that the
factorial design had the best performance with re-
spect to the polynomial surfaces and the LHD has
the best performance with respect to the radial-basis
functions. Also, the radial-basis functions were shown
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to have better performance (in terms of model fit
to the response surfaces generated by the test func-
tion and prediction capabilities) than the polynomial
models.

Bursztyn and Steinberg (2004) develop a new
method of design comparison based on a Bayesian
interpretation of an alias matrix. They use this new
alias sum-of-squares design-comparison method and
three other comparison methods—entropy criterion,
minimum-distance criterion, and integrated mean-
square error (IMSE) criterion—to compare designs
for computer simulations. In the paper, the compar-
isons are motivated by random field-regression mod-
els and low-degree polynomial approximations with
some terms considered as bias. They compared Latin
Hypercube designs, U-designs, lattice designs, rota-
tion designs, and fractional factorial designs. The re-
sults demonstrate that the new alias sum-of-squares
criteria developed in the paper tends to favor the
rotational designs. The fractional factorial designs
perform best in terms of the entropy and minimum-
distance criteria. While this makes sense mathemat-
ically, the authors point out that these designs may
not be the best choices due to their lack of good
coverage and tendency to replicate points when pro-
jected. The IMSE criteria favored the space-filling de-
signs with the best particular covariance model and
demonstrated consistently low performance for the
two-level fractional factorial designs.

None of the three papers investigates higher than
second-order—polynomial terms. This paper evalu-
ates experimental designs based on their prediction
performance for second-order— through fifth-order—
polynomial models. The next section presents a dis-
cussion of the comparison method used in this paper
followed by a section containing the designs that will
be used for the comparison.

Evaluation of Designs

The prediction variance is a standard criterion for
comparing designs when modeling physical systems
with a stochastic component. The scaled prediction
variance (SPV) normalizes the prediction variance
over the design region and is computed as

NV [j(zo)]

o2 = Nmf)(X'X)_lxg, (1)

where X is the model matrix and z is the point be-
ing evaluated. Zahran et al. (2003) introduce fraction
of design space (FDS) plots that graph the empirical
distribution function of SPV over the design region.

Journal of Quality Technology

FDS plots are used in the assessment of prediction
capability for response surface designs. This is done
by generating a large number of design points in the
region and evaluating their scaled prediction variance
based on Equation (1). These values are then sorted
and plotted versus their order expressed as a pro-
portion. Tables containing percentiles based on the
scaled prediction variance over the regions and frac-
tion of design (FDS) plots are used as methods for
comparing designs for computer experiments where
the expected response is a high-order polynomial.

Because deterministic computer experiments have
no stochastic component, it is necessary to justify the
use of scaled-prediction variance as a performance
criterion. Suppose that a given computer experiment
is adequately modeled using a polynomial fit. The
difference between the observed and fitted values
in a deterministic computer model, however, is not
stochastic error, it is model bias. If the polynomial
model adequately describes the response surface of
the true underlying function, the model bias of the
(s is negligible. The model bias of an individual pre-
diction is also fairly small because the fit is adequate.
Assume that the source of this bias is due to multi-
ple high-order terms. Thus, deviations between the
observed and predicted values will behave like the
sum of a number of independent small quantities.
Appealing to the central limit theorem, as the num-
ber of these quantities get large, these deviations will
converge to the normal distribution. We then justify
the prediction variance criterion as a measure of the
sum of a large number of small biases.

Designs Used for Comparison

Numerous space-filling designs have been pro-
posed in the last 30 years. We investigated sphere-
packing, Latin-hypercube, uniform, and maximum-
entropy designs. We compared the prediction perfor-
mance of the space-filling designs to the I-optimal
and D-optimal designs. These designs have low pre-
diction variance with respect to polynomial models.
The I-optimal designs minimize the average variance
of prediction over the design region. While they do
not satisfy desirable properties of computer simula-
tion experiments—for example, projections of these
designs result in replicate points—they can act as a
baseline for good performance in terms of the predic-
tion variance criterion. A description of the designs
used follows.

The sphere-packing design, also known as the
maximin design, maximizes the minimum distance
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between pairs of design points. This design was de-
veloped in Johnson et al. (1990). The maximin de-
sign maximizes the minimum intersite distance and
is specified by

mgx min d(u,v) = Jua d(u,v), (2)
where d(u,v) is a distance that is greater than or
equal to zero and D represents the design points.
Examples of applications of the maximin designs can
be found in Jank and Shmueli (2007), Liefvendahl
and Stocki (2006), Chen et al. (2006), Roux et al.
(2006), and Bursztyn and Steinberg (2006).

The Latin-hypercube design was developed by
McKay et al. (1979). The Latin-hypercube design is
defined in Fang et al. (2006) as, “A Latin Hypercube
design (LHD) with n runs and s input variables, de-
noted by LHD(n, S), is an n X s matrix, in which each
column is a random permutation of {1,2,...,n}.”
Examples of applications of LHDs can be found in
Bayarri et al. (2007), Welch et al. (1992), Mease and
Bingham (2006), Tyre et al. (2007), and Storlie and
Helton (2008). The maximin criterion is used as a
secondary criterion for creating the LHDs. All of the
LHDs generated in this paper are maximin Latin-
hypercube designs.

The uniform design was created by Fang (1980)
and Wang and Fang (1981). The uniform design tries
to generate a set of points in the design space to be
uniformly scattered, as in the uniform distribution.
The uniform design is a design created such that the
discrepancy, a measure of uniformity, of the design is
the smallest (the distribution closest to that of the
uniform). Fang et al. (2006) detail several measures
of discrepancy, where F(z) is defined as a uniform
distribution on C* (the unit cube) and Fp () is the
empirical distribution of the design D,,. Thus,

1 n
Fp, (z)= EZI{ZEkl £ Bigovasles S 8up  (3)
k=1

where = (21,...,%s) and I{A} =1 if A occurs, or
0 otherwise. In this paper, the software used to cre-
ate the uniform design uses the centered Ly discrep-
ancy found in Hickernell (1998). The Ly discrepancy
can be treated as an objective function that can be
minimized in continuous space. An example of the
application of a uniform design is found in Bursztyn
and Steinberg (2006).

The maximum-entropy design, developed in
Shewry and Wynn (1987), uses entropy as the op-
timality criterion, where entropy is a measure of the
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amount of information contained in the distribution
of a data set. In their paper, they show that the ex-
pected change in information is maximized by the
design D that maximizes the entropy of the observed
responses at the points in the design. If the data is
assumed to be from a normal (m,o?R) distribution,
where R is

By = el D teleu2:0?), )

which is the correlation of responses at two design
points, then the design maximizes the determinant
of R (|R|) (Sacks et al. (1989)). Note that this crite-
rion requires the specification of the values in the 6
vector, which, in practice, is not known prior to ex-
perimentation. To create maximum-entropy designs
in this paper, we made the assumption that the val-
ues of @ are all equal. An application of this design
can be found in Ko et al. (1995).

Optimal-design theory for experimental design
emerged following World War II and was motivated
by many authors. I-optimal designs, or integrated
variance designs, minimize the average scaled predic-
tion variance over the design region. A D-optimal de-
sign minimizes the generalized variance of the model
coefficients. This is done by creating a design that
maximizes [ X'X| (Myers and Montgomery (2002)).
Examples of optimal designs can be found in Atkin-
son and Donev (1992). A specific application of the
D-optimal design for stochastic computer simulation
models can be found in Park et al. (2002).

Examples of each of the designs are presented in
Figure 1. Note that the I-optimal and D-optimal
designs are the same for 2 factors in 10 runs fit to
a second-order polynomial. These designs are seen
to only have nine points because they each have a
replicated point. The I-optimal design replicates the
center point and the D-optimal design replicates a
corner point.

Results

Here we compare four types of space-filling de-
signs (sphere packing, LHD, uniform, and maximum
entropy) and two types of optimal designs (I-optimal
and D-optimal) using percentiles of prediction vari-
ance over the design region and graphical evaluation
via FDS plots (Zahran et al. (2003)).

In order to test the predictive capabilities of space-
filling designs and optimal designs when fitting a
high-order polynomial, we generated designs rang-
ing from two to five factors and used second-order to
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FIGURE 1. Examples of 2 Factors, 10-Run Designs for Each of the Designs Being Evaluated.

fifth-order polynomials to generate the X model ma-
trix. To generate a sphere-packing, Latin-hypercube,
or uniform space-filling design, no model specifica-
tion is necessary, only the required number of points
(sample size) is needed. To generate a maximum-
entropy design, one must specify prior estimates of
the values in the 8 vector. In this paper, we assumed
equal values of the 6’s. To generate an optimal de-
sign, a model must be specified as well as the number
of design points required. Table 1 illustrates the min-
imum number of design points needed to fit a given
polynomial with two to five factors.

For all 16 cases (four separate factors levels and
four increasing degrees of polynomial), four sets of

TABLE 1. Minimum Number of Design Points
Needed (n = p) to Fit a Given Polynomial
for a Specified Number of Factors

Order of polynomial

Factors 2 3 4 5
2 6 10 15 21
3 10 20 35 56
4 15 35 70 126
5 21 56 126 252

Journal of Quality Technology
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designs were generated using an increasing sample
size. One design contained a minimum number of
design points, the second design contained the min-
imum design points plus two additional points, the
third design contained the minimum design points
plus four additional points, and finally the fourth de-
sign contained double the number of minimum points
needed. Table 2 illustrates all of the designs gener-
ated with their respective number of runs.

For each of the designs illustrated in Table 2, we
generate percentiles of prediction variance and FDS
plots a uniform random sample of 10,000 points from
the hypercube [—1, 1]P. As an example, Figure 2 illus-
trates FDS plots for each of the designs evaluated for
a second-order model in two factors and 10 runs. Fig-
ure 2 shows that the I-optimal design dominates the
other by having the lowest prediction variance across
99.9% of the region. The I-optimal design is followed
by the D-optimal and sphere-packing design, which
have equivalent prediction variance performance in
this example. The worst design in the example is the
maximum-entropy design.

Tables 3 and 4 demonstrate the prediction vari-
ance percentiles for the second-order of the space-
filling designs and the optimal designs, respectively.
The space-filling designs are labeled as SP (sphere
packing), LH (Latin hypercube), U (uniform), and

Vol. 42, No. 1, January 2010
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TABLE 2. Number of Runs Required for Each of the Designs Analyzed

Order of polynomial

2nd order 3rd order 4th order 5th order
Runs —
Factors p p+2 p+4 2p p p+2 p+4 2p p p+2 p+4d 2 p p+2 p+d4d 2
2 6 8 10 12 10 12 14 20 15 17 19 30 21 23 25 42
3 10 12 14 20 20 22 24 40 35 37 39 70 56 58 60 112
4 15 17 19 30 35 37 39 70 70 72 74 140 126 128 130 252
5 21 23 25 42 56 58 60 112 126 128 130 252 252 254 256 504

ME (maximum entropy). The dark-gray boxes repre-
sent the percentiles corresponding to the minimum-
prediction variance and the light-gray boxes cor-
responding to the percentiles with the maximum-
prediction variance. Of the space-filling designs in
Table 3, the sphere-packing design tends to have the
best performance with respect to prediction variance
for the second-order design. In 9 out of the 16 designs
shown, the sphere-packing design has the lowest pre-
diction variance for more than 50% of the design re-
gion. Table 3 also illustrates that the uniform design
tends to have the worst performance when compared
with the other space-filling designs.

Results from Table 4 indicate that the I-optimal
design has the best performance in terms of predic-
tion variance with respect to the second-order de-
signs. We expected this because the I-optimal de-
signs minimize the average prediction variance of a
design with respect to the hypothesized model form.
It is not surprising that, in general, the percentiles

Maximum Entropy Uniform

g} y

!
|
/ Lattin Hypercube

phere Packing

Prediction
Variance

OO 20 O 0 b,

FIGURE 2. FDS Plot for Designs with 2 Variables and
10 Runs Fit to a Second-Order Polynomial Model.

Vol. 42, No. 1, January 2010

of prediction variance for the I-optimal design would
be lower than the competitive designs. In many of
the designs shown in Table 4, the D-optimal design
has a higher prediction variance at every percentile
value recorded, with the exception of the maximum
prediction variance. This result is also somewhat in-
tuitive because the D-optimal design tends to spread
points to the outside regions of the design, where the
joint confidence regions for the unknown betas are
influenced the most.

Similar results are demonstrated for the third-,
fourth-, and fifth-order cases. The tables for all of
these cases can be found in Appendices A, B, and C,
which correspond to results from the third-, fourth-
, and fifth-order polynomial cases, respectively. The
best overall performance for the space-filling designs
is not consistent as polynomial order increases. The
sphere-packing designs generally perform better than
the Latin hypercube. The uniform and maximum-
entropy designs demonstrate the worst performance.
As for the optimal designs, in almost all cases, the
I-optimal design illustrates superior prediction vari-
ance properties to the D-optimal, by having the low-
est overall prediction variance across most of the de-
sign space (the p-dimensional hypercube [-1,1]?).
Additionally, when comparing all of the designs to-
gether, the /-optimal and D-optimal have a lower
prediction variance than the space-filling designs.

A New Class of Hybrid Designs

From the results presented in the previous section,
it is clear that space-filling designs are clearly infe-
rior to optimal designs with respect to their predic-
tion variance using a polynomial model of any order.
We wished to determine if augmenting space-filling
designs with points chosen specifically to reduce pre-
diction variance with respect to a polynomial model
would result in a satisfactory compromise.

www.asq.org
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TABLE 3. Prediction Variance Percentiles for Second-Order Models for Space-Filling Designs

n=p+2=8runs

n=p+4=10runs n=2p=12runs ]
U SP LH U ME
3 2.88
3.12 3.12
3.6
4.32
6.48 4.68]
9.84 6.12]
13.2
15.84 36.48
n=2p =20 runs
SP LH u ME
7 7
78 5
6
8 6
132 8
21.2 10.4
28 12.8]
82.6 38.4

i1
|

1148.39

A small example demonstrates the idea. Consider
Figure 3, which illustrates two designs, both contain-
ing two factors and 10 runs designs to fit a third-order
polynomial (note these are saturated designs). The
FDS plot for each of these designs is shown in Fig-
ure 4.

1t is clear from this figure that the I-optimal de-
sign performs better because it has lower prediction
variance over the entire curve. Can the performance
of the LHD be improved by augmenting the design
with I-optimal points? Figure 5 illustrates two de-
signs each with two factors. The first design (Figure
5a) is an J-optimal design with 16 design points and
the second (Figure 5b) is the LHD shown in Fig-
ure 3b augmented with 6 I-optimal points that were
chosen to minimize the average prediction variance of
the combined design given the preexisting 10 points.
The FDS plot for these designs is shown in Figure 6.

The improved performance of the augmented LHD

Journal of Quality Technology

n =2p =42 runs
SP LH u ME

7.98 6.72

9.66 9.24
147 13.02
19.74 19.32
30.66 28.98
45.36 42
56.7 52.08
178.08 136.08

is clear from examination of Figure 6. Design aug-
mentation is a standard procedure in physical ex-
perimentation. Building up information sequentially
through design augmentation is efficient and econom-
ical. Montgomery (2006) points out that it is almost
always preferable to run a fractional design, analyze
the results, and then decide on the best set of runs to
perform next. We believe that design augmentation
can also be used in computer-simulation modeling.
We find that design augmentation is especially effec-
tive when the initial analysis of a space-filling design
indicates that a polynomial is adequate. The results
illustrated in Figure 4 and Figure 6 demonstrate that
this procedure can be effective in improving the pre-
diction variance across the design region. This is im-
portant because the goal of a surrogate model is to
closely approximate the computer model. We intro-
duce augmentation of space-filling designs and refer
to them as space—filling-hybrid designs.

The next section demonstrates the augmentation

Vol. 42, No. 1, January 2010
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TABLE 4. Prediction Variance Percentiles for
Second-Order Models for Optimal Designs

+4=10runs

n=2p =20 runs

=p+4=14runs |
O

n=p+2=17runs

[n=p+2=23runs n=p+4=25runs n = 2p =42 runs
| Opt

technique and investigates the robustness of the de-
signs to the choice of surrogate model fitted. That is,
we consider the performance of the designs with re-
spect to not only the polynomial model, but also the
Gaussian process (GASP model). Trade-offs between
design and modeling choices are illustrated in the ex-

14 0 n n
054 [ ] » ]
1
L 04 m ]
-0.54 ] ] n
-1 J n | ] L ]
T T ¥ T T ¥ T
-1 -0.5 0 05 1
X1

a}16 Run I-Optimal Design for a 31
order polynomial Model

93

T T
05 0.8

FDS

T P
03 04

o

01 02 07 09 1

FIGURE 4. FDS Plots of the /-Optimal Design (Figure
3a) and LHD (Figure 3b). In this figure, the LHD is the
design with the poorer prediction variance. Note: the log
scale is used for the y-axis.

ample through a study of the theoretical integrated
prediction variances and empirical mean-square er-
ror.

Case Study

In this section, we present a case study relating to
a NASA-sponsored air-breathing propulsion experi-
ment. Theoretical prediction variance of the pure de-

14 n n | |
| |
05 -
] m
[ ]
4 n
2 [ ]
1 =
-05 ™
1 | |
R ] [ ] n ]
T ¥ T T T T T
-1 -05 0 05 1
X1

b) 16 Run Augmented Latin Hypercube Design
fora 3" order polynomial Model

FIGURE 3. Two Designs Each with 2 Factors and 10 Runs Designed for a Third-Order Polynomial. Figure 3a contains an

l-optimal design and Figure 3b is an LHD.
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b) 16 Run Augmented Latin Hypercube Design
for a 3" order polynomial Model

a)16 Run I-Optimal Design for a 3™
order polynomial Model

FIGURE 5. Two 16-Run 2-Factor Designs for a Third-Order Polynomial Model.

While the output response is expected to be mod-
eled by a third-order polynomial model, we also
consider the GASP model. Note that we expect a
third-order model to provide a good fit to the data,
but because we are using a mathematical model in
place of the CFD, we know that the true underlying
function is neither polynomial nor a Gaussian pro-
cess. We compared three designs: the maximin Latin-
hypercube design, the augmented maximin Latin-
hypercube design, and the [-optimal design. The
Latin-hypercube design was chosen because is has
good performance with respect to the kriging model
and it is a staple in the computer-simulation litera-

sign and an augmented hybrid design are considered.
Additionally, empirical mean square error of the de-
signs is calculated by using the surrogate model to
predict points not in the original design. The sim-
ulation results are based on a computational fluid
dynamics (CDF) model built to mimic the flow-field
parameters within an open jet flame. Because the
CFD is not available for commercial use, we cre-
ated a mathematical model that predicts the CFD
accurately to four decimal places. The physical ex-
periment on which the CFD is based is described in
Johnson et al. (2009). In the example in this section,
we are interested in modeling response, oxygen, as a
function of two input factors: z- and y-axis location. ture.
See Figure 7, which displays a surface profile plot of

the function.

]

0.9

0.8
i— Augmented LHD

0.7 \

> 0.6
0.5

Augmentation Technique

The hybrid design strategy that we propose is
based on the design-augmentation technique de-
scribed below:

Step 1: Assume that the total design size is N =
(3] + Mng.
Start with n; points using some space-filling
design. Collect data at each of the n; points
and find and fit an adequate polynomial
model.

Step 2:

Augment the space-filling design with ng

0.4

0.3

N\

| - optimal

Ly EEURE EAUES SRR BUEEN LR 5 LR R B R N
0 010203 04 05 06 0.7 08 09

FDS

FIGURE 6. FDS Plots of Designs in Figure 5.
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points using a polynomial variance criterion.

The degree of the polynomial and important
terms can be influenced by the fit in step 1.

Theoretical Integrated Variance

In this subsection, we evaluate the theoretical per-
formance of the designs in the case study. We com-
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Oxygen
Oxygen

FIGURE 7. Oxygen as a Function of x- and y-Axis.

pare the designs with respect to the GASP integrated
variance (IV) and the polynomial IV. The GASP pre-
diction variance is given by the following equation:

Var(j(z))

= =1—r'(z,0)R"(X,6)r(z,0)
o

(1-1VR(X,0)r(z,6))°
1’R-1 (X., é)l

(5)

The polynomial prediction variance equation was
presented in Equation (1). Note that both the GASP
IV and the polynomial IV can be computed by in-
tegrating the prediction variance equation over the
design region, which is the [—1, 1] hypercube. Three
18-run designs are compared. The first design is a
maximin LHD, the next is an augmented maximin
LHD generated with n; = 12 and ny = 6, and the
third is an I-optimal design (optimal with respect
to the third-order model in two variables). Table 5
presents the theoretical results. Note that the theo-
retical IV cannot directly be compared between the
GASP model and the cubic polynomial model. The
LHDs have the lowest expected IV with respect to

TABLE 5. Theoretical Integrated Prediction Variance for

Each of Three Designs for the Gaussian Process
(GASP) Model and the Cubic Polynomial

LHD Hybrid I-optimal
GASP 0.009 0.0214 0.0407
Cubic 0.576 0.3999 0.365

Vol. 42, No. 1, January 2010
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TABLE 6. Empirical Root-Mean-Square Error
for Each of Three Designs Fit Using Either
the GASP Model or the Cubic Model
LHD Hybrid I-optimal
GASP 0.01776 0.01514 0.02996
Cubic 0.01983 0.01794 0.02488

the GASP model and the I-optimal design has the
lowest IV with respect to the cubic model. The hy-
brid design demonstrates a compromise between the
pure LHD and the pure I-optimal design. By aug-
menting the LHD, we see an improved performance
with respect to the cubic polynomial and a degrada-
tion in performance with respect to the GASP model.

Empirical Mean-Square Error

In addition to the theoretical performance of the
designs, the empirical performance is also considered.
Table 6 presents the results for empirical root mean-
square error (ERMSE) of the design with respect to
the model used to fit the design points. In this case
study, the hybrid design outperformed the other de-
sign/surrogate model combinations. While all of the
values are relatively small, the results demonstrate
that the hybrid LHD has the lowest ERMSE for when
the design is fit to both the GASP model and the cu-
bic polynomial model.

Conclusions

The results presented in this paper give insight
into how space-filling designs perform with respect to
prediction variance properties for polynomial mod-
els. The designs are compared with optimal designs,
which are designed with respect to criteria pertain-
ing to the polynomial models.. Of the space-filling
designs, the sphere-packing design was generally the
best choice of design for minimizing the SPV for a
polynomial model, followed by the Latin-hypercube
design. We also introduce a new class of hybrid de-
signs. These designs consist of a space-filling design
augmented with I-optimal points. These designs are
shown to have much improved prediction variance
with respect to polynomial models.

One of the benefits of deterministic computer-
simulation models is the ability to build up a design
sequentially, without concern for blocking or random-
ization. In such cases, the space-filling-hybrid design
is an excellent choice. After running a preliminary set
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of runs, the experimenter has a better idea of what
modeling strategy to use. At this point, the design
can be augmented with a criterion that is optimal for
that strategy.

While some might question the use of the space-
filling design for polynomials at all, it is important to
remember that, in advance of any experimentation,
it is impossible to know whether a polynomial model
of any order will prove to be adequate. Using a space-
filling design for initial exploration makes sense.

The implications to the researcher are summarized
in the following points: (1) space-filling designs do
not perform as well as optimal designs with respect
to a polynomial model, (2) of the space-filling de-
signs, sphere-packing designs generally have the low-
est prediction variance with respect to polynomials,

and (3) augment space-filling designs with I-optimal
points whenever initial modeling indicates that the
computer-simulation model can be adequately ap-
proximated by a polynomial.
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Appendix A
Prediction Variance for Third-Order Models

TABLE 7. Prediction Variance Percentiles for Third-Order Models for Space-Filling Designs

}___ n=p=10runs n=p+2=12runs n=p+4=14runs I n=2p =20 runs
2 Factors [SP U TME SP LH V] ME SP JLH |U ME SP LH
min 6 R 48 4.2 4 I 5. 3.8] k 4
5% IR 6| i | 8.0 4
25% ~ 10.44
50% 15.48
75% 24.96
90%| 63.24
95% 128.4

713.16

340.8|

n=p=20runs | n=p+2=22runs

n=p+4=24runs

3 Factors
min

5%, 2
5% 26.62
50% 462
75% 101.42
90% 275
95% 469.7
max| T 1196:6 368258

SP LH u ME SP LH

n=p=35runs

4 Factors [§] ME SP ME
min| 12 Z
5%! 37|
25% 71.04
50% | 1295
75% 2942.24| 265.66 40.6
90%. © 7200.82|  529.1 65.8
95%| 1519.7 [ 3641.75 119125 789.21 13060.72| 590.07 89.6
max|13384.7| 18964.8| 191464 T 2045.2| 89726.9| 6631.88 - 14390.6] 3320.85 619.5
n=p =56 runs | n=p+2=58runs n=p+4=60runs n=2p=112runs
5 Factors |SP SP LH U ME ME SP LH lU ME
min 43.12 4424 26.68 43.5 24.36 34.8 34.2 - 168 12.32 13.44
5%| 179.76 4. 111.94 107.3 69.6 25.76 25.76
25%| 469.28 322.48| 280.14 145.2 32| 36.96
50%| 913.36 752.26 585.8 284.4 y 56
75%| 1692.88 B¢ i 1803.8 1380.4 621 97.44
90%| 2687.4 2972.48 6679.86| 3823.94| 3678.94 1275 166.88
95%| 4776.8 £ 5689.8| 6637.52 1924.2 A 232.96
max 39326.6 39424.9| 55452.6 29947.8 9603 1186.08| 1361.92
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TABLE 8. Prediction Variance Percentiles for Third-Order Models for Optimal Designs

n=p=10runs

n=p+2=12runs

n=p+4=14runs

n=2p=20runs

n=p=20runs

n=p+2=22runs

Nn=p+4=24runs

n =2p =40 runs

3 Factors
min

5%

25%

1 Opt D Opt

75%

95%
max|

1 Opt D Opt

| Opt D Opt

n=p=35runs

n=p+2=237runs

n=p +4=239runs

n=2p=70runs

TOpt D Opt

| Opt D Opt

82.88

1 Opt D Opt

n=p=56runs

Nn=p+2=>58runs

n=p+4=60runs

n=2p=112runs
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Appendix B
Prediction Variance for Fourth-Order Models

TABLE 9. Prediction Variance Percentiles for Fourth-Order Models for Space-Filling Designs

n=p+2=17runs n=p+4=19 runs
SP LH U ME SP LH U ME
7.31 6.97 . 7.6 7.41
9.35 8.67 8.93 9.12
11.9 11.02 11.4
14.45 15.47 13.68 14.06
20.91 18.53 18.24 18.24
40.46 24.14 23.75 32.3
30.77 100.13 27.74 57.19
1301.18 92.14 702.62 108.3]

n=p=35runs n=p +2 ] n=p+4=_39runs L n=2p =70 runs
3 Factors |SP LH U ME U SP LH U ME
min 19.6 13.3 ) 13.3
5% 43.75 42.35 16.1
25% 91.35 84.7 37.37 21 22.4
50% 184.45 182.35 54.76 25.9 28.7
75%| 456.7 386.05 92.5 30.8 46.2
90% 1537.2 763.7 172.42 93.8
95% 3165.4 1199.45 238.28 162.4 40.6
max| 142059.1 9359 530.21 111.3 2429
n=p=70runs n =2p =140 runs
4 Factors [S LH [u ME
min{ e 51.8 46.9
5% 219.8 249.2
25% 788.9 864.5
50% 2517.2 2114
75%| 7675.5 5134.5
90%| 15145.2 13273.4
95%| 20278.3 29230.6
max| 3 246286.6| 470064
n=p=126runs
I

371531.52 925300

Journal of Quality Technology Vol. 42, No. 1, January 2010

" -
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



COMPARING COMPUTER EXPERIMENTS FOR FITTING HIGH-ORDER POLYNOMIAL METAMODELS 99

TABLE 10. Prediction Variance Percentiles for Fourth-Order Models for Optimal Designs

n=p=15runs n=p+2=17 runs n=p+4=19runs n=2p=30runs

2 Factors

n=p +2=37runs n=p+4=239runs n=2p =70 runs

n=p+2=72runs n=p+4=74runs n =2p = 140 runs

TOpt _ |DoOpt TOpt  |DOpt

4 Factors

n=p=126 runs n=p+2=128 runs
5 Factors || Opt D Opt

min
5%
25%
50%
75%
90%
95%
max|

n =2p =252 runs
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Appendix C
o g . .
Prediction Variance for Fifth-Order Models
TABLE 11. Prediction Variance Percentiles for Fifth-Order Models for Space-Filling Designs
n=p+4=25runs
2 Factors SP LH U ME
min i T 9 9.25
5% 7 iz 125
25% 36.34] 15.75) | 1625
50% 101.43 25.25 i 22.25
75% 342.7 46.75|  97.78| 32.25
90% 857.67 102.25) & ] 45.75
95% 1116.19 214 | 6175
max 7233.04 4466.75] 1876.75] Bl
n=p+2=>58runs n=p+4=60runs j
3 Factors SP LH SP LH U ME
min 336[1] 33.04) 31.32 26.68[ 1 33.08| e 28.2 ;
5%| 124.32] 94.64 51.62 T
25%| 346.08] 368.48 98.02 78
50%| 778.96] 1178.8 215.76 151.2
75%| 1819.44 2647.12| 3411.52 583.48 408
90%| 3690.9 11039.28] 7162.4 1366.48 1397.4
95%| 52304 26107.2 5 9900.8 2249.82 I 3327
max| 258 | 758089.36| 218 107511.04 16493.5| 3843412.3] 5176.8| 67502.4]
n=p =126 runs | n=p+4=130runs
4 Factors |SP LH U
min 85.68 88.2 |l I 1
5% 315 355.32
25%| 892.08 1179.36| .04
50%| 1 3262.14 2268
75%| 42 10032.12] 6311.34
90%| 30134.16 16049.88 87644.1
95%]| 1 4 63653.94 28322.28
max| 45180.68| 8455909.14 328589.1 B0177| 4290402.6|
p = 252 runs
5 Factors |SP u
min
5%
=%
50%| 260946[ i
75% 202882.68
662946.48 138739.88 g
95% 1299329.6 288709.1 4|
31106676
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TABLE 12. Prediction Variance Percentiles for Fifth-Order Models for Optimal Designs

n=p=21runs

2 Factors

1 Opt D Opt

min

12.81

5%

25%

50%|

75%

90%

95%

max|

n=p+2=23runs

n=p+4=25runs n =2p =42 runs

| Opt

D Opt

1 Opt D Opt 1 Opt D Opt

1

n=p+4=60runs n=2p=112 runs

3 Factors

min

5%

25%

50%|

75%

90%|

95%|

max|

D Opt 1 Opt [D Opt

n=p =126 runs n=p+4=130runs n = 2p = 252runs
4 Factors |l Opt D Opt 1 Opt D Opt 1 Opt [D Opt 1 Opt D Op!f
min Gl .
5%|
25%
50%
75%
90%|
95%|
max| 92
n=p =252 runs n=p+2 =254 runs
5 Factors |l Opt D Opt D Opt
min| 12852 : 9.38] 2286
5% 1 26| 347.98
25% 447.04
50%| ¢ 528.32
75%| 31 622.3
90%  391.16] 716.28
95%| 3  464.82 T74.7
max| 1479.24 12369.82 1170.94
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