Deploying Efficient Internet Topology Primitives

Beverly, Robert

Monterey, California: Naval Postgraduate School.

http://hdl.handle.net/10945/41685
Deploying Efficient Internet Topology Primitives

Naval Postgraduate School
Robert Beverly

September 18, 2013
Team Profile

- **Naval Postgraduate School:**
 - US Navy’s Research University
 - Located in Monterey, CA
 - 1500 students (all 5 services, civilians, foreign military)

- **Our team:**
 - PI: Robert Beverly
 - Faculty: Geoffrey Xie (NPS CS), Ralucca Gera (NPS Math), Arthur Berger (Akamai)
 - Students: Guillermo Baltra, Billy Brinkmeyer, Daryl Lee, Sam Trassare
Customer Need

- **Internet-scale Topology Mapping**
- **Need:**
 - Topology of Internet remains poorly understood
 - Critical infrastructure protection: robustness, vulnerability, correlated failures, IPv4/IPv6 interdependence, etc.
 - DHS BAA: “…identify infrastructure components in greatest need of protection.”
 - Researchers: modeling, prototyping new protocols, clean-slate designs, Internet evolution, etc.
- **Production systems, e.g. Ark, iPlane:**
 - Require O(weeks) to map
 - Induce significant load
 - Can miss short-lived events (which may be of *most* interest)
Approach Summary

• Started with theory primitives we proposed in [BBX10]
• Key Insights:
 – Utilize available external knowledge
 – Maintain state over prior rounds of probing
 – Adaptively sample to discover subnet structure
 – Maximize probing efficiency and information gain:
 • Which destinations to probe
 • How/where to perform the probe
• Implement in production on CAIDA’s Archipelago (Ark)
• Gather performance metrics
A Performance Metric

- Hard: how to evaluate “quality” of inferred topologies?
- Developed edge/vertex symmetric difference (esd/vsd) metric:
 - Intuitive (0-100%) difference between two topologies
 - Fast, scalable

\[
\text{vsd}(G, H) = \frac{|V(G) \setminus V(H)| + |V(H) \setminus V(G)|}{|V(G)| + |V(H)|} = \frac{1 + 1}{6 + 6} = 16.7\%
\]
Edge Symmetric Difference

- Example using VSD, applied to archived topology data:

Utilize External Knowledge

- System input is set of global BGP prefixes (e.g. routeviews)
- Use knowledge of how networks are commonly provisioned and subnetted:

 Easier to believe A and B in different subnets

 Even though same “distance” apart. Use Least Common Prefix [BBX10]: find destinations with best probability of being in different subnets
Adaptive Probing

• Binary search each prefix, prune leaves that do not returning new topology
• Maintain set of interfaces discovered within the AS advertising the target prefix
• If new interfaces discovered by a probe, subdivide prefix and probe sub-prefix

• Design based on real-world challenges implementing primitive in [BBX10]:
 – No edit distance (distorted by load balancing)
 – Not pair-wise, no longer memoryless
 – Permits different vantage point for each probe, thus enabling integration with vantage point spreading
Maintain State

• We find 50% of prefixes probed by only ~10 monitors

• Thus, the choice of vantage point matters

• Developed and implemented Ingress Point Spreading:
 – Examine the set of ingresses into the target network discovered during prior rounds of probing
 – Rank order vantage points per target network to exploit ingress diversity
 – Expansion to “notional ingresses” permits any number of vantage points to be rank ordered intelligently
 – Prevents premature termination of adaptive sampling algorithm
Benefits

- Probing 50,000 randomly chosen BGP prefixes
- Compared to state-of-the-art Ark system
- More topology with half the load and time

<table>
<thead>
<tr>
<th>Metric</th>
<th>RSI+IPS</th>
<th>Ark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vertices</td>
<td>520,105</td>
<td>465,788</td>
</tr>
<tr>
<td>Edges</td>
<td>1,034,228</td>
<td>934,326</td>
</tr>
<tr>
<td>Probes</td>
<td>2,073,988</td>
<td>4,042,521</td>
</tr>
<tr>
<td>Ingresses</td>
<td>38,787</td>
<td>31,110</td>
</tr>
<tr>
<td>Time</td>
<td>18h 33m</td>
<td>53h 48m</td>
</tr>
</tbody>
</table>
Current Status

• Implemented primitives on Ark:
 – Worked with CAIDA to debug, refine Ark interface
 – Integration into cohesive system
 – Operational experience gathering real topologies (amid load balancing, etc) using CAIDA’s topo-on-demand
• Have met year 1 milestones and deliverables
• Topology publication output:
 – **PAM2013**: “IPv6 Alias Resolution via Induced fragmentation”
 – **IMC2013**: “Speedtrap: Internet-scale IPv6 Alias Resolution”
 – **IMC2013**: “Internet Nameserver IPv4 and IPv6 Address Relationships”
 – **MILCOM2013**: “A Technique for Network Topology Deception”
Next Steps

- Probe whole Internet (rather than 50K subset)
- Begin multi-cycle probing using combined primitives
- Better quantify load savings and running time
- Begin gathering, analyzing, and reducing topologies to router and AS-level
- Tech transfer:
 - Working closely with CAIDA and Akamai
 - CAIDA will deploy an implementation of our primitives, beginning with IPv6 (to lower risk)
 - Planned activity for years 2 and 3
Contact Information

• Center for Measurement and Analysis of Network Data @NPS: http://www.cmand.org
• Contact:
 Robert Beverly
 Assistant Professor
 http://rbeverly.net/research
 rbeverly@nps.edu
 831-656-2132