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RESEARCH ARTICLE

                       Y ANG  JH, H USTON  J, D AY  M, B ALOGH  I.  Modeling peripheral vision 
for moving target search and detection.  Aviat Space Environ Med 
2012; 83: 585  –  93 .  

   Introduction:   Most target search and detection models focus on fo-
veal vision. In reality, peripheral vision plays a signifi cant role, espe-
cially in detecting moving objects.   Methods:   There were 23 subjects 
who participated in experiments simulating target detection tasks in 
urban and rural environments while their gaze parameters were tracked. 
Button responses associated with foveal object and peripheral object 
(PO) detection and recognition were recorded. In an urban scenario, 
pedestrians appearing in the periphery holding guns were threats and 
pedestrians with empty hands were non-threats. In a rural scenario, non-
U.S. unmanned aerial vehicles (UAVs) were considered threats and U.S. 
UAVs non-threats.   Results:   On average, subjects missed detecting 2.48 
POs among 50 POs in the urban scenario and 5.39 POs in the rural 
scenario. Both saccade reaction time and button reaction time can be 
predicted by peripheral angle and entrance speed of POs. Fast moving 
objects were detected faster than slower objects and POs appearing at 
wider angles took longer to detect than those closer to the gaze center. 
A second-order mixed-effect model was applied to provide each sub-
ject’s prediction model for peripheral target detection performance as a 
function of eccentricity angle and speed. About half the subjects used 
active search patterns while the other half used passive search patterns. 
  Discussion:   An interactive 3-D visualization tool was developed to pro-
vide a representation of macro-scale head and gaze movement in the 
search and target detection task. An experimentally validated stochastic 
model of peripheral vision in realistic target detection scenarios was 
developed.   
 Keywords:   peripheral vision  ,   target detection  ,   recognition  ,   search and 
target acquisition  .     

 MODELING OF SEARCH and target acquisition 
(STA) has been a major concern for military simu-

lations. For example, simulation models considering in-
dividual soldiers such as COMBAT XXI, OneSAF, and 
JSAF use the ACQUIRE algorithm for calculating visual 
detection probabilities. However, it has been shown that 
the ACQUIRE algorithm does not suffi ciently refl ect the 
performance of human observers ( 3 , 8 , 9 ), i.e., false posi-
tive detection and correct detection should be taken into 
account and modeled. Although frequencies of false 
positive detection can be modeled as a certain probabi-
listic property, the location of false positives still remains 
to be explored. Furthermore, since the ACQUIRE model 
was originally developed to represent imaging sensors, 
only a limited fi eld of view is considered ( 16 ). As this 
model was extended to represent unaided human vi-
sion, this limitation was not addressed. Therefore, all 
combat simulations that use ACQUIRE-based models 
ignore what happens in the peripheral fi eld of view of 
human observers. The motivation for this work is to 

address this defi ciency in our current simulation by de-
veloping a model of detection outside of the foveal fi eld 
of view that can be used in conjunction with the current 
methodologies to provide a better representation of un-
aided human vision. 

 Current target detection mechanisms in urban envi-
ronments use the so-called  ‘ windshield wiper ’  approach 
( 4 ), where the visual fi eld is split into several adjacent 
and non-overlapping fi elds of view and the target detec-
tion mechanism is applied to each fi eld of view indepen-
dently, generally in a sweep from left to right and back. 
The way of determining the locations to which the tar-
get detection mechanism is applied is far from actual 
human behavior. Jungkunz ( 8 , 9 ) investigated more likely 
fi xation locations with respect to eccentricity, saliency, 
and distracters in the scene. He found that the maximum 
distracting capability is not tied to maximum saliency, 
but the distractor attracts the gaze less if its eccentricity 
from the initial fi xation location gets longer. 

 Target detection algorithms, including those used in 
the above studies, have been mainly concerned with 
human eye movement, specifi cally where the foveal gaze 
moves and how long the gaze stays during the search 
task. For example, probably the best-known model of 
visual attention ( 6 , 7 , 11 ) uses saliency to determine the 
focus of attention. Improvements on this model employ 
machine-learning methods to train a detector on objects 
of interest ( 10 ) or gaze patterns of human subjects per-
forming a similar task ( 13 ). While these models do per-
form better target detection than saliency-only in the 
indicated studies and are based to mimic human un-
aided search algorithms, they do not provide insight as 
to how peripheral vision infl uenced those movements. 

 The fovea provides high visual acuity within 2° of vi-
sual angle and this acuity decreases with higher eccen-
tricity from the center of the visual fi eld ( 5 , 14 , 15 ). On the 
other hand, peripheral vision is good at fast detection of 
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movement and seeing in dim lighting conditions ( 17 ). 
Considering many targets are non-static in realistic sce-
narios, peripheral vision is essential for detecting mov-
ing objects outside the fovea. However, little work has 
been focused on the role of peripheral vision in STA in 
realistic military scenarios. Junkunz ( 8 , 9 ) observed that 
subjects hardly ever waste even a single fi xation if no 
distracting items are present, even if the target has very 
low contrast with the background. His study focused 
on foveal vision (in the vicinity of the gaze fi xation 
point) and did not investigate effects of peripheral vi-
sion. Since peripheral vision is useful for detecting 
objects, it could affect how humans follow gaze fi xa-
tions points. 

 Thus we designed a search and target detection task 
in a 180° horizontal, 60° vertical field-of-view virtual 
environment integrated with eye-tracking systems and 
performed a human-in-the-loop experiment. Our goal 
was to provide an improved model of unaided human 
vision, i.e., a stochastic model of target detection perfor-
mance as a function of peripheral angle (eccentricity) 
and object entrance speed. As part of this project we de-
veloped an interactive visualization tool designed to 
provide a representation of spatial and temporal corre-
spondence among features scanned in the virtual en-
vironment in relation to dynamic changes in the sce nario, 
including peripheral objects (POs) and moving vehicles.  

 METHODS  

    Subjects 

 There were 23 subjects (21 men, 2 women), ages 24 to 
44, who participated in the study. Subjects self-reported 
visual acuity. There were 17 who reported 20/20 vision 
or better, 4 who reported 20/30 vision, 1 who reported 
20/40 vision, and 1 who reported 20/50 vision. As long 
as subjects could identify targets in the practice session, 
where they were allowed to ask questions and experi-
menters were allowed to provide answers and direc-
tions, they could continue with the main urban and rural 
scenarios. Subjects who were military personnel had 
served between 6 and 19 yr of active duty. This study 
was approved by the Naval Postgraduate School 
Institutional Review Board. Subjects were recruited 
through school-wide e-mails and fl iers. All subjects pro-
vided Institutional Review Board approved informed 
consent to participate in this study and were made 
aware of their right to withdraw at any time without 
consequence.   

 Equipment 

 The basic elements of the apparatus included three 
sets of two stereo cameras and associated faceLAB 5.0 
software (Seeing Machines Inc., Tucson, AZ  ) collecting 
eye and head movement data, three 94 ″  x 63 ″  screens on 
which a continuous simulated environment was pro-
jected, and one Bamboo touch pad (Wacom Co., Ltd., 
product #: CTT460) for recording subjects ’  responses. 
Each subject was positioned 7 ft away from the center 
screen to ensure having a 180° horizontal fi eld-of-view 

in the simulated environment. One set of stereo cameras 
with 16-mm lenses was positioned in front of each pro-
jector display and adjusted for each subject individually, 
based on height. The faceLAB Link 2.0 software con-
nected the three sets of stereo cameras to link individual 
systems to work as one and track 180° of head rotation 
from left to right. An Image Generator (IG) driven by the 
Delta3D game engine provided a view of urban and 
rural virtual environments on the display. Responses 
were recorded using four buttons on a Bamboo touch 
pad. Data from the touch pad and faceLAB Link 2.0 
were sent to the IG and integrated into a data fi le syn-
chronized with the virtual environment.   

 Procedure 

 The context for the experiment given to the partici-
pants was that they were manning a vehicle checkpoint 
in a location where there may be hostile activity. The 
main task was to monitor vehicles approaching the 
checkpoint for potential threats, but also to be vigilant 
for other possible threats. The focus of the experiments 
was to collect data on peripheral vision, but the subjects 
were not told this so as not to bias their behavior. They 
were told that the main vehicle monitoring task was the 
focus of the study. Two settings were used for the study: 
one was a complex urban setting with many buildings 
and other terrain features. The second one was a rural 
setting with only a small number of buildings and few 
other terrain features. 

 Subjects were instructed to detect objects in their pe-
riphery, i.e., pedestrians or unmanned aerial vehicles 
(UAVs). POs appeared at various angles and speeds. In 
the urban scenario, peripheral angles (eccentricity) were 
 – 80°,  – 70°,  –  55°,  1 45°,  1 65°, and  1 80°, where 0° was on 
a line beginning at the subject’s head and ending in the 
middle of the center display, and left and right rotation 
is shown in  –  and  1 , respectively. Eccentricity angles 
were non-symmetric in the urban scenario because the 
POs, pedestrians, needed to hide behind urban features 
such as a trash bins, trees, or pillars. POs appeared in 
slow or fast motion, which was 0.05°  z  s  2 1  or 0.2°  z  s  2 1 , 
respectively. Inter-arrival times between POs were pre-
defi ned via a Poisson process having  l   5  8 s. POs in the 
urban environment, pedestrians, would slide out from 
behind an object located on the predefi ned eccentricity 
angle slowly or quickly and remain on screen for 2 or 10 s 
or until they were identified as friendly or hostile. 
Threats (hostile pedestrians) held guns, while non-
threats (friendly) ones did not. In the rural scenario, POs 
were UAVs that appeared in the distance and moved 
directly toward the subject before reaching a maximum 
size and turning toward the closest edge of the display. 
UAVs would then fl y at a constant speed for 4 s or until 
they were identifi ed as friendly or hostile before disap-
pearing. Peripheral angles were  6 50°,  6 65°,  6 75°,  6 80°, 
and  6 85°. Threats (hostile UAVs, HESA Ababil, Iran) 
had a red canard, a wing at the back and an upward 
vertical stabilizer, while non-threats (friendly UAVs, RQ 
1A Predator, United States) had a wing in the middle 
of the fuselage and downward-pointing tails. Subjects 
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were told to press a  “ peripheral threat button ”  when 
recognizing threats and a  “ peripheral non-threat but-
ton ”  when recognizing non-threats. 

  Vehicle monitoring task:  the subjects ’  main task was to 
monitor vehicles to keep their gaze predominantly in 
the vicinity of 0° of eccentricity, i.e., the center of the 
screen. The IG only placed POs when subjects ’  gaze was 
in the vicinity of the center of the fi eld of view — the 
Poisson process mentioned before was paused if a sub-
ject’s gaze was lingering outside this vicinity. Threats 
(hostile automobiles) were defi ned as dump trucks and 
utility trucks with a female driver and male passenger 
as well as sedans with a male driver and no passenger. 
The rest of the vehicles were considered non-threats or 
friendly. The vehicles only appeared on the central pro-
jector screen. They would appear in the distance and fol-
low a road to the checkpoint, eventually coming to a full 
stop. At this point, the vehicle would be close enough 
for the subject to identify the genders of the people in 
the vehicles. Once the vehicle stopped, subjects pressed 
either the  “ threat vehicle button ”  or the  “ non-threat ve-
hicle button ”  to identify whether the vehicle was hostile 
or friendly. Then, the vehicle would disappear and the 
next one in the queue would pull up to take its place. 
Vehicles would remain on the screen until identifi ed as 
friendly or hostile. Concurrently with the vehicle moni-
toring task, subjects were performing the peripheral 
object detection task described above. 

 After a brief introduction to the study, subjects were 
fi rst asked to read and sign an informed consent form 
before the experiment started. Then they fi lled out 
anonymous demographic data, which included level 
of visual acuity and number of years of military ser-
vice. The three faceLAB TM  eye tracking systems were 
then calibrated for the subject. Following the calibra-
tion the subjects were briefed on how to identify hos-
tile vehicles and were instructed that their primary 
task was to assess whether vehicles would be allowed 
to pass through a security checkpoint. Their secondary 
task would be to watch for and identify pedestrians in 
the urban scenario or UAVs in the rural scenario. Sub-
jects were told to emphasize accuracy over speed. All 
subjects used binocular vision at all times. After the 
task was explained, a practice scenario was adminis-
tered using the urban environment. This scenario 
would go on for 10 min or until the subject said that 
they felt confi dent in their ability to correctly identify 
targets. During the practice task, if the subject asked a 
question, it would be answered. When the practice had 
fi nished, the experimental urban scenario was given, 
which lasted for 10 min. During the experimental run, 
experimenters remained silent though the subjects 
were allowed to speak. At the completion of the urban 
scenario, the faceLAB TM  calibration was checked to en-
sure that the eye trackers were still operating correctly. 
Once this was confi rmed, the rural practice scenario 
was given, followed by the rural main scenario. After 
this was fi nished, screen calibration data were collected 
again to compare eye tracking data quality with that of 
the beginning of the experiment.   

 Statistical Analyses 

 Signal detection theory was used to indicate over-
all performance on the target detection, recognition, 
and vehicle monitoring task. Missed Detection and 
False Alarms represent negative performance metrics, 
whereas Correct Rejection and Correct Detection are 
positive metrics. A repeated measure ANOVA was 
performed as a preliminary analysis and a mixed-
effect model ( 10 ) was used to develop mathematical 
models for the prediction of target detection perfor-
mance. Mixed-effects modeling can determine both 
fi xed effects and random effects, which are inter-
twined in experimental data and can provide a model 
in a proper and parsimonious way ( 12 ). The general 
form of a mixed-effect model can be described as be-
low ( 10 ): 

 ( , )ij i ij ijy f ex  

where  y ij   is the  j th   response of the  i th   individual,   x    ij   is the 
predictor vector for the  j th   response of the  i th   individual, 
 f  is a nonlinear function of the predictor vector and a 
parameter vector   φ    i   of length  r , and  e ij   is a normally dis-
tributed noise term. There are no restrictions on the pre-
dictor vectors   x    ij  . The parameter vector can vary from 
individual to individual. This is incorporated into the 
model by writing   φ    i   as 

 φi = Aiβ + Bibi, bi ≈ N(0, � 2 D) 

where   b   is a  p -vector of fi xed population parameters,  b   i   
is a  q -vector of random effects associated with individ-
ual  i , the matrices  A  i  and  B  i  are design matrices of size 
 r   3   p  and  r   3   q  for the fi xed and random effects, respec-
tively, and   s   2  D  is a covariance matrix. A second order 
model for the prediction of target detection performance 
was used in this study.     

 RESULTS 

 The signifi cance level  a  for testing hypotheses was set 
to 0.05. Spearman’s rank correlation is shown in   r   and 
the corresponding  P -value is shown in  P . A total of 50 
POs appeared in the urban and rural scenarios. Among 
the 50 PO appearances, subjects did not respond 2.48 
times on average (median  5  2, SD  5  1.88) in the urban 
scenario and 5.32 times on average (median  5  5, SD  5  
3.28) in the rural scenario. Of the 50 Pos, 4 were threats, 
i.e., pedestrians lifting guns or hostile UAVs with red 
canards. In the urban scenario, on average, subjects 
missed 0.35 threats (median  5  0, SD  5  0.57), whereas 
they falsely identifi ed non-threats as threats 0.26 times 
(median  5  0, SD  5  0.54). In the rural scenario, on aver-
age, subjects missed 0.18 threats (median  5  0, SD  5  
0.39), whereas they falsely identifi ed non-threats as 
threats 0.55 times (median  5  0, SD  5  0.80).     Table I   
summarizes overall PO detection performance for all 
subjects.     
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 POs appeared at various angles and speeds.     Table II   
summarizes the mean, median, and SD of button reac-
tion time for each peripheral angle and speed. Similarly, 
saccade reaction time (fi rst fast eye movement followed 
by each PO’s appearance) was analyzed in the same way 
as shown in  Table II . In the urban scenario, a two-factor, 
within-subject repeated measures ANOVA showed that 
subjects had faster saccade reaction time (SRT) and but-
ton reaction time (BRT) for fast-moving POs than for slow-
moving POs [F(1,22)  5  43.52,  P   ,  0.001 and F(1,22),  5  
236.66,  P   ,  0.001]; bigger peripheral angles had 
slower SRT and BRT in both the left and right direc-
tions [F(5110)  5  13.06,  P   ,  0.001 and F(5110),  5  11.29,

  P   ,  0.001].     Fig. 1   shows the mean SRT and BRT and vi-
sually confi rms the statistical fi ndings. Effects of PO ec-
centricity and speed were not as apparent in the rural 
scenario as in the urban scenario.         

 A mixed-effect model was used to develop mathemat-
ical models for the prediction of target detection perfor-
mance. Polynomial bases were selected since continuous 
functions can be estimated by polynomials (e.g., Taylor 
series). As we increase the order of the polynomial, we 
can account for more nonlinearity in the system. There-
fore, we decided on a second order polynomial as an 
initial default model, which should not be oversimplify-
ing as a linear model would be, nor   overfi t the data as 

  TABLE I.         DESCRIPTIVE STATISTICS OF PERIPHERAL OBJECT DETECTION AND VEHICLE MONITORING PERFORMANCE.  

  Urban Scenario  Rural Scenario   

 Mean Median SD Mean Median SD  

  Peripheral object detection performance 
    Peripheral Objects Missed (Missed Detection) 2.48 2 1.88 5.32 5 3.28 
    Targets Missed (Missed Recognition) 0.35 0 0.57 0.18 0 0.39 
    Non-Targets Recognized (False Alarm) 0.26 0 0.54 0.55 0 0.80 
    Targets Detected (Correct Recognition) 3.30 3 0.71 3.05 3 0.79 
    Non-Targets Rejected (Correct Rejection) 44.60 45 1.90 40.91 42 3.37 

 Vehicle Monitoring Task Performance 
    Vehicles Checked 128.0 126.5 5.28 147.4 144 10.18 
    Vehicles in Queue 0.072 0.039 0.086 0.068 0.012 0.16 
    Vehicles in View 1.73 1.70 0.14 3.27 3.23 0.15 
    Threats Missed (Missed Detection) 0.14 0 0.35 0.41 0 0.67 
    Non-Threats Recognized (False Alarm) 3.36 1.5 4.96 0.82 0 1.74  

  TABLE II.         MEAN, MEDIAN, AND SD OF BUTTON/SACCADE REACTION TIME FOR EACH ANGLE AND SPEED COMBINATION  P -VALUES 
COMPARING GROUP MEANS BETWEEN PASSIVE AND ACTIVE GROUPS.  

  Urban Scenario (Pedestrian detection: mean/median/SD)  Rural Scenario (UAV detection: mean/median/SD)   

 Button Reaction Time  Saccade Reaction Time  Button Reaction Time  Saccade Reaction Time   

 Slow Fast Slow Fast Slow Fast Slow Fast  

   – 85° N/A N/A N/A N/A 2.56/2.52/0.66 
( 0.0017 )

2.47/2.41/0.86 
( 0.029 )

1.17/0.82/0.88 
( 0.0024 )

0.94/0.72/0.80 
( 0.017 ) 

  – 80° 2.28/2.13/0.46 
(0.57)

1.42/1.28/0.42 
(0.12)

1.16/1.11/0.38 
(  , 0.001 )

0.88/0.89/0.28 
( 0.046 )

2.17/2.16/0.72 
(0.18)

2.30/2.18/0.55 
(  , 0.001 )

0.96/0.76/0.69 
(0.33)

0.94/0.70/0.58 
( 0.0018 ) 

  – 75° N/A N/A N/A N/A N/A 2.08/1.83/0.69 
(0.065)

N/A 0.84/0.58/0.46 
(  , 0.001 ) 

  2 70° 2.17/2/08/0.43 
(0.22)

1.36/1.26/0.24 
( 0.04 )

1.07/1.08/0.47 
( 0.0091 )

0.78/0.80/0.23 
(  , 0.001 )

N/A N/A N/A N/A 

  – 65° N/A N/A N/A N/A 2.08/1.98/0.70 
(0.14)

2.24/2.06/0.59 
(0.25)

0.92/0.79/0.52 
( 0.0012 )

0.88/0.57/0.41 
( 0.0039 ) 

  – 55° 1.67/1.51/0.24 
(0.43)

1.17/1.10/0.21 
(0.76)

0.88/0.83/0.31 
(  , 0.001 )

0.66/0.72/0.22 
(0.052)

N/A N/A N/A N/A 

  – 50° N/A N/A N/A N/A 1.89/1.74/0.43 
(0.61)

2.36/2.25/0.85 
(0.60)

0.79/0.75/0.33 
(  , 0.001 )

0.91/0.68/0.69 
(0.21) 

 45° 2.05/1.84/0.50 
(0.56)

1.33/1.22/0.23 
(0.10)

0.99/0.98/0.42 
( 0.01 )

0.71/0.72/0.21 
( 0.001 )

N/A N/A N/A N/A 

 50° N/A N/A N/A N/A 1.90/1.75/0.54 
(0.30)

2.26/2.11/0.54 
(0.39)

1.06/1.10/0.70 
(0.12)

0.91/0.58/0.46 
( 0.016 ) 

 65° 1.79/1.60/0.34 
(0.06)

1.42/1.32/0.32 
(0.41)

0.92/0.98/0.35 
(  , 0.001 )

0.77/0.72/0.24 
( 0.025 )

2.09/2.09/0.44 
( 0.012 )

2.24/2.27/0.57 
( 0.060 )

1.01/0.67/0.61 
( 0.0024 )

1.18/1.25/0.52 
( 0.0035 ) 

 75° N/A N/A N/A N/A 2.71/2.53/0.79 
( 0.044 )

1.85/1.92/0.74 
(0.26)

1.15/0.66/0.68 
(  , 0.001 )

0.96/0.57/0.88 
( 0.0028 ) 

 80° 2.24/1.98/0.65 
(0.07)

1.74/1.51/0.77 
(0.20)

1.37/1.31/0.60 
(0.005)

0.90/0.96/0.28 
(0.016)

3.36/3.27/1.36 
( 0.048 )

2.66/2.33/0.89 
( 0.02 )

1.53/1.19/1.35 
(0.12)

1.07/0.93/0.86 
( 0.03 ) 

 85° N/A N/A N/A N/A 2.27/2.05/0.54 
(0.065)

N/A 0.84/0.53/0.58 
(0.12)

N/A  

   Bold font indicates a signifi cant difference.   
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the higher order models do. A second order model for 
the prediction of target detection performance was set 
as shown below: 

 
rt x x x

b x b x b x

= ⋅ + ⋅ + ⋅ +

= + ⋅ + + ⋅ + + ⋅
1 1

2
2 1 3 2 4

1 1 1
2

2 2 1 3 3 2( ) ( ) ( ) ++ +( )4 4b  

where  rt   5  reaction time,  x 1    5  angle (in degrees),  x  2   5  
speed (1  5  slow, 2  5  fast),   b  i    5  fi xed effects for  x i  ,  b i    5  
random effects for  x i  . Estimated variables using MATLAB 
for both urban/rural scenarios and button/saccade 
reaction time are shown in     Table III  . Fixed parameters 
(  b   1 ,   b   2 ,   b   3 , and   b   4 ) stayed in the model if they were sig-
nifi cant ( a   5  0.05). Similarly, random parameters ( b  1 ,  b  2 , 
 b  3 , and  b  4 ) were removed from the model if the corre-
sponding covariance matrix element was negligible, i.e., 
 ,  0001. For all cases, random effects  b  1 ,  b  2 , and  b  3  were 
negligible, so using only fi xed effects (i.e.,   b   1 ,   b   2 , and   b   3 ) 
provided a better model fi t. On the other hand, the ran-
dom effect in the constant term ( b 4  ) remained in the model. 
The corresponding random effect  b 4   for each subject 
varied from  2 0.7525 to 1.0524 (The corresponding ran-
dom effect  b 4   for each subject is available upon request). 
For the rural scenarios, the speed of a peripheral object, 
 x  2 , was not a signifi cant predictor of the model in the 
rural scenario, thus it was removed from the fi nal model. 
All fi xed effects were signifi cant ( P   ,  0.05) except a fi xed 
effect of  x 1  

2  , i.e.,   b   1  of rural SRT ( P   5  0.062).     
 Both BRT and SRT were positively associated with the 

second order terms of the peripheral angle, such that the 

reaction time graph describes a parabola facing upward 
as shown in     Fig. 2  . This upward parabola shows that 
reaction time tends to slow as peripheral angle increases. 
The fi rst order term of the angle is negatively associated 
with both BRT and SRT, showing that the symmetry 
point of the parabola is not exactly on the center, but 
rather skewed toward the right about 3.5° 2 5.5°. This 
consistent minor skewness to the right side of the screen 
could just be a modeling error or subjects ’  general pref-
erence to the right side of the screen (or the seat might 
have been slightly off center or slightly rotated to the 
right). The symmetry line was on 17.7° for rural SRT; 
however, the fi xed effect was not statistically signifi cant 
and this number is not as reliable as previous ones. On 
the other hand, speed was negatively associated with 
both BRT and SRT, representing faster POs tending to 
lead to shorter reaction times in general.  Fig. 2  repre-
sents data and the mixed-effect model of Subject 12 as 
an example.     

 The above mixed-effect model predicts reaction time 
only when subjects detected POs. Whether subjects 
detected POs on a given peripheral angle and speed can 
be obtained from the data.  Table I  showed overall PO 
detection performance whereas     Fig. 3   shows PO detec-
tion probability for each peripheral angle and speed 
given for the urban and the rural scenario, respectively. 
For instance, on average, subjects detected only 62.6% of 
peripheral targets that appeared at  2 85°, but 100% at 
 6 50° in the rural scenario. The PO detection probability 
shows an inverse U-shape describing how the detection 
probability decreases as peripheral angle increases. Sub-
jects failed to notice POs in the rural scenarios more than 

  

  Fig.     1.         Mean button reaction time (BRT) and mean saccade reaction time (SRT).    

  TABLE III.         MIXED-EFFECT MODEL PARAMETER ESTIMATION.  

  Mixed-Effect Model Remarks  

  Urban BRT   2
1 1 2 4.000088 .00081 .63 (2.3 )urbanbrt x x x b  Random effects  b 1  ,  b 2  , and  b 3   are negligible and 

 thus are not included in the model.  Urban SRT   2
1 1 2 4.000067 .00053 .28 (1.05 )urbansrt x x x b   

 Rural BRT   2
1 1 4.00010 .0011 (1.80 )ruralbrt x x b   x  2  was not a signifi cant predictor ( P   .  0.01) and 

 thus was not included in the model. 
 Rural SRT   2

1 1 4.000031† .0011 (.85 )ruralsrt x x b  Random effects  b 1  ,  b 2  , and  b 3   are negligible and 
 thus are not included in the model.*  

   BRT  5  button reaction time; SRT  5  saccade reaction time.  
   †   P   ,  0.01; *  P   ,  0.05; **  P   ,  0.01.   
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twice as much as in the urban scenarios, i.e.,  “ Num. of 
peripheral objects missed (Missed Detection) ”  was 2.48 
times and 5.32 times in the urban and rural scenarios, 
respectively. This can be explained by the fact that rural 
scenarios had higher eccentricity angles, e.g., 85°, and 
subjects indeed showed lower detection probability at 
those angles.     

 The vehicle monitoring task was the main task given 
to the subjects. Reviewing subjects ’  performances on the 
main task could provide workload-related measures. 
 Table I  summarizes key performance variables in the 
task. Vehicles Checked is the total of vehicles subjects 
monitored/checked during the urban scenario, Vehicles 
in Queue is fully stopped vehicles waiting for clearance, 
Vehicles in View is vehicles shown on the screen, Threats 
Missed (Missed Detection or MD) is hostile vehicles 
identifi ed as non-hostile vehicles, and Non-Threats Rec-
ognized (False Alarm or FA) is the number of non-hostile 
vehicles indentifi ed as hostile vehicles. FA was signifi -
cantly higher in the urban scenario than in the rural 
scenario. 

 As a preliminary step to see whether performances on 
the main task (i.e., the vehicle monitoring task) and the 

secondary task (i.e., the peripheral target detection task) 
affected each other, correlation coeffi cients between pe-
ripheral object detection performance and vehicle moni-
toring performance variables were calculated as shown 
in     Table IV  . MD P  is missed detections of peripheral ob-
jects, MR P  is threat peripheral objects identifi ed as non-
threats, FA P  is non-threat peripheral objects identifi ed as 
threats, MD v  is threat vehicles identifi ed as non-threats, 
FA v  is non-threat vehicles identifi ed as threats, Total v  is 
checked vehicles, Queue v  is vehicles in the queue, and 
View v  is vehicles displayed on the screen. Correct Detec-
tion (CD) and Correct Rejection (CJ) are not included 
because they can be derived from MD and FA respec-
tively, i.e., p(CD|threat)  1  p(MD|threat)  5  1 and 
p(CJ|non-threat)  1  P(FA|non-threat)  5  1.     

 In the urban scenario, MD P  and MD v  are positively 
correlated ( P   ,  0.05), suggesting that subjects who missed 
POs more often incorrectly identify foveal threat vehi-
cles as non-threats, or vice versa. MD P  and Total v  are 
positively correlated ( P   ,  0.01), suggesting that subjects 
who missed POs more had more vehicles examined, or 
vice versa. If subjects were more focused on the vehicle 
monitoring task, which could result in examining more 
vehicles, they were more likely to miss objects that ap-
peared in their periphery. MD v  and Total v  are positively 
correlated ( P   ,  0.1), which shows the tradeoff between 
accuracy and speed. Subjects who had more vehicles ex-
amined (i.e., emphasis on speed) had a higher number 
of missed detections (i.e., accuracy deterioration). 

 In the rural scenario, FA v  positively correlated with 
MD p  ( P   ,  0.10), suggesting subjects tend to miss periph-
eral targets when they falsely identify vehicles as threats. 
MD v  and MR p  were negatively correlated ( P   ,  0.10), 
suggesting a performance tradeoff between foveal and 
peripheral vision tasks, i.e., when subjects miss threats 
in foveal vision, they tend to have less missed recognition 
in peripheral vision. On the other hand, the positive cor-
relation between FA v  and FA p  ( P   ,  0.05) suggests that 
the more of a tendency there is for identifying targets 
in the periphery as threats, the stronger the tendency to 
do the same in foveal vision. 

  

  Fig.     2.         Mixed-effect model shown with BRT and SRT data of subject No.12.    

  

  Fig.     3.         PO detection probability with respect to peripheral angle.    
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 As part of this project, we developed an interactive 
3-D visualization tool, Interactive Virtual Environment 
and Eye Head Movement Visualization, designed to 
provide a representation of spatial and temporal corre-
spondence among features scanned in a virtual environ-
ment in relation to dynamic changes in the scenario, 
including peripheral objects and moving vehicles. The 
visualization replays the scene at various speeds, maps 
the gaze on the screen features, rotates the head accord-
ing to head direction measurements, changes the gaze 
vector color depending on data confi dence level, and 
shows button press actions. By using this tool as shown 
in     Fig. 4  , we can observe subjects ’  local gaze points as 
well as their gaze and head movement patterns. Gaze 
and head movement data were collected to obtain a better 
idea of human search strategies, e.g., if there is any pat-
tern for choosing foveal scan area, how actively subjects 
engage their head and gaze, etc. Observations of partici-
pants ’  macro head and gaze movement showed that 

subjects employed either  “ active ”  or  “ passive ”  search 
strategies during the experiment. We defi ne active search 
as subjects actively looking for POs by rotating their 
heads to the left and the right periodically, while we de-
fi ne passive search as subjects focused on the main ve-
hicle monitoring task until they thought they saw POs 
in their view. There were 11 subjects who showed the 
active search strategy, whereas 12 showed the passive 
search strategy. Our data showed no signifi cant differ-
ences in expertise levels, i.e., years of service, between 
subjects who applied active search strategy and pas-
sive search strategy. However, do the two different 
search strategies show any difference in target detection 
performance?     

 In the urban scenario, the button reaction time of 
both the passive and active groups did not show a sig-
nifi cant difference for most angle and speed combina-
tions. However, the SRT of the passive search group 
was signifi cantly greater than that of the active search 

  TABLE IV.         SPEARMAN’S RANK COEFFICIENT  r  BETWEEN PERFORMANCE VARIABLES.  

  MD P MR P FA P MD v FA v Total v Queue v   

  Urban 
    MD P --  
    MR P  2 0.03 --  
    FA P 0.03  2 0.14 --  
    MD v 0.42*  2 0.30 0.29 --  
    FA v  2 0.31 0.10  2 0.07 0.01 --  
    Total v 0.62**  2 0.34 0.23 0.38 †  2 0.13 --  
    Queue v 0.09 0.31  2 0.29  2 0.02 0.12 0.05 -- 
    View v 0.07 0.20 0.15 0.10 0.09 0.16 0.77** 
 Rural 
    MD P --  
    MR P  2 0.01 --  
    FA P 0.34 0.30 --  
    MD v 0.24  2 0.38 † 0.21 --  
    FA v 0.37 † 0.12 0.50*  2 0.05 --  
    Total v  2 0.21 0.15  2 0.14  2 0.21  2 0.02 --  
    Queue v 0.14  2 0.34  2 0.05 0.05 0.01  2 0.32 -- 
    View v 0.07  2 0.30  2 0.19 0.10  2 0.08  2 0.14 0.77**  

   MD P   5  missed detections of peripheral objects, MR P   5  threat peripheral objects identifi ed as non-threats, FA P   5  non-threat peripheral objects identi-
fi ed as threats, MD v   5  threat vehicles identifi ed as non-threats, FA v   5  non-threat vehicles identifi ed as threats, Total v   5  checked vehicles, Queue v   5  
vehicles in the queue, and View v   5  vehicles displayed on the screen.  
   †   P   ,  0.10, *  P   ,  0.05, **  P   ,  0.01.   

  

  Fig.     4.         Interactive Virtual Environment and Eye Head Movement Visualization.    
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group. Although subjects who used the active search 
strategy had faster saccade detection time than those 
with the passive search strategy, their overall detection 
response time, i.e., BRT, was not different from those 
who applied the passive search strategy. Thus, an ac-
tive search strategy did not provide observably faster 
performance than a passive search strategy. However, 
in the rural scenario, the BRT of the active search group 
was signifi cantly faster than those of the passive search 
group for some combinations of entrance speed and 
angle.  Table II  shows the  P -value in both scenarios 
whether BRT and SRT are signifi cantly different be-
tween subjects who applied active search strategy and 
passive search strategy. These contradicting results 
between urban and rural environments need to be in-
vestigated more in a future study — for example, how 
the environmental complexity affects human visual 
performance. 

 In terms of accuracy, there was no signifi cant differ-
ence between the two groups in the urban scenario. 
Missed Detections, Missed Recognition, and False 
Alarms did not differ. However, the passive group 
had signifi cantly ( P   ,  0.05) fewer Missed Detections 
in their main task, i.e., the vehicle monitoring task. 
Thus, we can conclude that using a passive search 
strategy is better for the urban scenario because sub-
jects showed better performance in the main task than 
when using the active strategy while they did not 
compromise their peripheral target detection perfor-
mance. In the rural scenario, the passive search group 
had more Missed Detections and False Alarms in the 
peripheral object detection/recognition task ( P   ,  
0.05) while the main task performance was not different 
between the two groups. The rural and urban envi-
ronments resulted in confl icting performances be-
tween passive and active search strategies, which 
requires follow-up research to investigate environ-
mental factors (e.g., scene complexity) infl uencing 
target detection performance.   

 DISCUSSION 

 Statistical results from human response data (both 
ocular movement and button response) confi rmed that 
PO detection performance can be predicted by eccen-
tricity (peripheral) angle and entrance speed of the PO. 
Subjects self-reported their own visual acuity before 
they started. Since the purpose of the study was not to 
see the correlation of visual acuity and target detection 
tasks, we did not collect objective visual acuity. Subjects 
only had to have suffi cient visual acuity to perform the 
target detection tasks and this was verifi ed during the 
practice session. It is evident that our subjects had un-
equal visual acuity. Intersubject differences were mod-
eled via the mixed effect model as shown in the previous 
section. Regardless of whether intersubject differences 
come from unequal visual acuity or unequal muscle re-
sponse time, the mixed effect model is able to handle 
differences within or between subjects. 

 The goal of this work was to produce a human perfor-
mance data based model of target detection in the pe-
ripheral fi eld of view that can be used in combat 
simulations. As a result, a second-order mixed-effect 
model was applied to provide each subject’s prediction 
model for peripheral target detection performance as a 
function of eccentricity angle and speed in both urban 
and rural environments. It was expected that target de-
tection performance in an urban environment would be 
worse than that in a rural environment due to scene 
complexity (i.e., number of objects shown in the scene). 
To the contrary, subjects showed better target detection 
performance such as higher detection rate and shorter 
response time in the urban environment. A confounding 
variable could be the eccentricity angle. POs were placed 
behind urban features such as trash bins in the urban 
scenarios, which resulted in a lower eccentricity angle 
range ( 6 80°) than those of rural environments ( 6 85°). 
Since our model predicted increased eccentricity angles 
would decrease the target detection rates, the inconsis-
tent eccentricity angles could affect overall performance. 
Even when we removed inconsistent eccentricity angles 
from data analysis and compared target detection perfor-
mance using only the same eccentricity angles between 
urban and rural scenarios, e.g., at 65°, this discrepancy 
still held. There are two possible explanations for this 
result. First, the entrance motion of POs was different, 
i.e., translational vs. radial movements. In the urban sce-
nario, pedestrians stepped out from hidden features, 
which was a translational motion with no size change. In 
the rural scenario, UAVs appeared from a great distance 
and increased in size as they approached the subject, which 
was a radial motion that involved size changes. Either PO 
sizes or movement type seemed to affect target detection 
performance. Secondly, many subjects commented that 
our UAV detection scenario in the rural environment was 
less realistic than the pedestrian detection in the urban en-
vironment. It may be that subjects perform better with fa-
miliar tasks than uncommon tasks. 

 Since the objective was to produce an  “ effects ”  model 
where we can reproduce the net effect of this phenome-
non, we have not looked into what the underlying causes 
may be of our observations. In addition, it was critical 
for our use to collect data in realistic settings; therefore, 
we could not constrain the stimuli in a way to facilitate 
experiments that can tease out the underlying mecha-
nisms. Furthermore, much of the work on the effect of 
eccentricity looks at relatively small angles ( 1 , 2 ) when 
compared to the target locations used in our experi-
ments, so it is not clear how those results can be applied 
to the work done here. As future work it may be benefi -
cial to see how the methodology developed for looking 
at the effects of eccentricity can be applied to settings 
where the targets are at extreme angles as in our work. 

 Our mixed-effect model on peripheral vision effects 
on target detection will be included in COMBAT XXI to 
construct more realistic human behavior in that military 
simulator. Our model, supported by human data, could 
be compared with existing visual detection models 
such as the inverse cube law of sighting to enhance 
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understanding of target detection in general. Addition-
ally, it may be used to help inform ways to train soldiers 
to use search strategies in combat environments. Future 
study will include overall STA performance comparison 
between using foveal vision only vs. both foveal and pe-
ripheral vision.    
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