Lessons learned managing a 60TB digital evidence corpus and writing digital forensics tools

Garfinkel, Simson L.
Monterey, California. Naval Postgraduate School

http://hdl.handle.net/10945/44322
Lessons learned managing a 60TB digital evidence corpus and writing digital forensics tools.

Simson L. Garfinkel
Associate Professor, Naval Postgraduate School*
June 17, 2013
http://simson.net/
http://digitalcorpora.org/

* For purpose of identification only.

“The views expressed in this presentation are those of the author and do not reflect those of the Department of Defense or the US Government.”
NPS is the Navy’s Research University.

Monterey, CA — 1500 students
- US Military & Civilian (Scholarship for Service & SMART)
- Foreign Military (30 countries)

Graduate Schools of Operational & Information Sciences (GSOIS)
- Computer Science
- Defense Analysis
- Information Sciences
- Operations Research
- Cyber Academic Group

National Capital Region (NCR) Office
- 900 N Glebe (Ballston)/Virginia Tech building
Digital information is pervasive in today’s society.

There are many sources of digital information:

- Traditional Systems: Desktops, Laptops
- “Mobile:” Tablets, Cell Phones, embedded systems
- Internet-Based Services (servers)

Government has many possible uses for this information:

- Establish possession of contraband information (child pornography, credit card #s)
- Recover stolen information
- Document a conspiracy (stock fraud; murder-for-hire)
- Investigation, intelligence & analysis
Digital forensics makes this evidence available. The US Government employs a “digital forensics model.”

Preparation: policy, training & tools

Collect & preserve evidence

Extract preserved data

Analysis

Reporting & Testimony
Digital forensics makes this evidence available. The US Government employs a “digital forensics model.”

Preparation: policy, training & tools

Collect & preserve evidence

Extract preserved data

Archive

Reporting & Testimony

Analysis
Most DF efforts focus on training, collection and extraction.

Preparation:
- policy, training & tools

Collect & preserve evidence:

Extract preserved data:

Training the force:

Collection Techniques

Data visibility
My team develops better approaches for automation and analysis — “big data for little devices”

Identify high-value data (automatically).
—*Contacts, calendar, GPS, documents*

Correlate devices with identical or similar data.
• Previously unknown organizations or connections

Present
• Make the results understandable

Translate with human language technology (HLT)
• Apply to العربية, español, 汉语/漢語, 日本語, svenska, etc.

Archive and Manage our holdings
• Make use of institutional knowledge.
Three principles underly this research

1. Work with “big data”
 — Scale is our advantage — use it!
 — Many techniques developed on small data sets do not scale
 — We discover important techniques by working with a big corpus!
Three principles underly this research

1. Work with “big data”

2. Automation is essential.
 - *Today most forensics is done manually — this doesn’t scale.*
 - *We develop techniques & tools for automation.*

Navy Cyber Defense Operations
Three principles underly this research

1. Work with “big data”
2. Automation is essential.
3. **Concentrate on bulk data.**
 - Leverage data that are fragmented and incomplete
 - Deleted and partially overwritten files
 - Fragments of memory in swap & hibernation
 - Tool marks
 - These techniques can be applied to files
Digital forensics (DF) research is different from both traditional computer science and DF practice.

DF research is different!
- DF research is **hard and expensive** — but it looks easy!
- DF is **practitioner driven** — most DF developers are not professional programmers
- Most **practitioners are not computer scientists** — don’t understand data
- DF has **immediate needs of great significance** (kidnapping, defense, etc.)

Managing a research corpus is harder than managing case data
- Practitioners will analyze each data **once**
- Researchers repeatedly re-analyze data as tools improve
- Sharing 60TB of data is hard — and sharing is part of research

DF software development is challenging
- Tools must constantly improve and evolve
- Research tools must be “product quality”
- Researchers don’t get exemplars when tools crash

“Lessons Learned Writing Digital Forensics Tools”
DFRWS 2012
This talk presents “lessons learned” while managing a significant corpus and writing DF tools.

Quick intro to Digital Forensics

The Real Data Corpus

Lessons learned writing DF tools
- DFXML — a language for describing DF products
Lessons learned managing a research corpus

Real Data Corpus, Harvard University, 2006
≈ 800 drives
My first purchase of six used computers yielded:

- A law firm (client-attorney documents)
- A mental health practitioner (patent records)
- A single, divorced mother (child support disputes)
- A novelist (unfinished manuscript)
- + 2 more!

A purchase of 10 hard drives from “Weird Stuff”, Sunnyvale, CA:

- Financial records
- HR records
- Email
- Source code

A lot of confidential information was being inadvertantly released!
In 2002 I started the PhD program at MIT CSAIL

I only had three years of funding

There is a thriving used HD market

• Re-used within an organization
• Given to charities
• Sold on eBay

I used forensics for “usable security”

• Deletion patterns can show “intent”

My goal — show how usability failures became security failures
I bought 250+ drives the first year

I stored “disk image” as GZIP-compressed raw files on a single server.

Critical technology for 2006

- Handling read errors from subject drives.
- Automated metadata collection of subject drive \textit{and imaging computer} (aimage).
The presence of private information showed sanitization failures. It’s condition showed user intent.

I scanned for “private information” with `strings(1)` and `grep(1)`

- Example: email addresses; credit card numbers; SSNs; DOBs

Entire corpus re-processed each time tools improved

- Law enforcement — typically processes each drive once

Manually examined drives that had lots of email addresses
Example: CCNs on hard drive images.

No drives should have a lot of CCNs.

By definition, all of these drives are interesting.
“Interesting” drives were targeted for additional analysis.
I traced 20 drives back to their former owners.

While tracing back the drives, I discovered cross-drive analysis.
We documented a significant problem with the secondary market.

Some of reactions to this research were confused.

“Good luck [recovering] data from this.”

“Our prognosis: drive slagging is a fool-proof method to prevent data recovery.”

• It’s easy to remove data from a hard drive
 —You just have to do it!
After the initial findings, this research moved in 4 directions:

- **2003-2005**: Data leakage on used equipment.
 - **2005-2008**: Corpus expansion.
 - **2005-2008**: Real data as simulant.

 Advanced Forensic Format
 - File formats for digital evidence

 Digital Forensics XML
 - Systematic capture of metadata

 Cross-Drive Analysis
 - TBD

 bulk_extractor
 - Systematic recovery of encoded PII
Corpus management: Technical Issues
I imaged 250+ drives the first year

I stored images as raw.gz
 • naturally led me to stream-based forensics

Lessons learned:
 • ATA is hot-swappable

 Lesson: read the documentation for the computer that you are using

 • Don’t maintain software (aimage) that does the same thing as other open source software (guyimager)

Critical technology:
 • Handling read errors
 • Automated metadata collection

Lesson: Make the most of the tools that you have; follow technical innovations they force upon you.
Using disk images for research required storing data online for easy access.

Law enforcement typically process each image once, then archives
We store data online so we can reprocess.

What works best:

• simplicity — a single file with all metadata embedded
• convenience — small file names with short paths (ease of use)
• permanence — file names and path names that wouldn’t change

Automation is key; any process that involves manual record keeping is going to introduce inaccuracies that will be hard to detect and correct.

Useful data will outlive any storage system, so make provisions to move the data when you design the system.
In 2005 I started on AFF (Advanced Forensics Format):

- Store metadata & data together; Extensible
- Read & Write, but optimized for archiving
- Advanced support:
 - digital signatures, encryption, chain-of-custody
- aimage imager that did “sparse imaging” and error recovery

AFF4 addressed workflow, metadata, and efficiency issues

Since 2010 I have given up on AFF:

- E01 can now handle terabyte-sized HDs in a single file
- Joachim Metz’s ewf.acquire & libewf do an excellent job supporting E01
Since joining NPS the “non-US corpus” has grown substantially.
Drive corpus — good geographical diversity.
Today we have 100-200 mobile devices. More diversity, but less representative of the market.

Samsung Feature: 4
Samsung Smart: 22
HTC Feature: 4
HTC Smart: 10
SONY Feature: 6
SONY Smart: 4
Nokia Feature: 18
Nokia Smart: 5
Motorola Feature: 2
Motorola Smart: 1
LG Feature: 2
LG Smart: 3
Dell Windows: 2
Sharp Smart: 1
T-Mobile Feature: 1
Huawei Smart: 1
O2 Windows: 1
Bad ATA drives crash Linux & FreeBSD

Crashes look like wild memory writes.
• ATA spec allows DMA to system memory
• Motherboards probably don’t defend against wild DMA

Question:
• Can we use this as a memory acquisition technique?
• There is “legacy ATA” on many motherboards.

Many bad drives had sensitive data!
• Always read to the “end” of the drive
• Read all the drives in the RAID set

Many technical options remain unexplored.

Drives with some bad sectors invariably have more sensitive information on them than drives that were in working condition when they were decommissioned.
Corpus Management — use descriptive path names

Many different modalities:

- Disk images — “drives”
- Memory Images — “ram”
- Scenarios — symlinks to source images
- Packet Dumps — “net”
- Files — “files”
- Created by NPS, redistributable — “NPS”

Many different sources and distribution restrictions:

- Used purchased inside US — “US” (not used by USG)
- Used purchased outside US — “NUS”
- Created by NPS, redistributable — “NPS”

Consistent naming scheme on every machine:

/corp/source/modality/description/daughter-files

/corp/nist/rds/rds328/
corp/nps/files/govdocs1m/123/123456.jpg
/corp/nus/drives/in/IN10-0249/IN10-0249.E01, IN10-0249.E01.txt

Although it is advantageous to have names that contain no semantic content, it is easier to work with names that have some semantic meaning.

Names must be short enough to be usable but long enough to be distinct.
Names should be consistent and usable.

/corp/source/modality/description/daughter-files
/corp/nist/rds/rds328/
corp/nps/files/govdocs1m/123/123456.jpg
/corp/nus/drives/in/IN10-0249/IN10-0249.E01, IN10-0249.E01.txt

Every data object should have a unique file name.

- Put something very descriptive in the file name
 —Source country
 —Scenario name
- Don’t change file names.
 —If you must change names, try to have the old name inside the new name
 ubnist1.E01 -> nps-2009-ubnist1.E01
- It’s okay to change directories.

Different users want different subsets of the corpus.

- It’s best if they use the same file hierarchy.

Place access-control information as near to the root of a path name as possible.
Anti-virus and indexing cause numerous problems

Disable AV and indexing on your corpus.
- Forensic data has viruses
- Corrupt and unstructured data frequently crash indexers

Exceptions need to be frequently reapplied:
- After software updates
- After OS upgrades
- When new external HDs are attached.

Configure anti-virus scanners and other indexing tools (e.g., Apple’s build_hd_index) to ignore directories that might contain raw forensic data.
There is no good way to distribute a 60TB data set

Approaches we have tried:
- Transferring over the Internet by scp, rsync, BitTorrent, uftp, Aspera
- Sending 2TB internal SATA drives
 - Need SATA dock.
 - (NTFS seems best choice for read-only)

Added complications — “bit rot” long term storage — off track writes
- Evaluating the Impact of Undetected Disk Errors in RAID Systems
 https://www.perform.csl.illinois.edu/Papers/USAN_papers/09ROZ01.pdf
- Modeling the Fault Tolerance Consequences of Deduplication
 https://www.perform.csl.illinois.edu/Papers/USAN_papers/11ROZ02.pdf

Solutions developed by other disciplines for distributing large files rarely work well when applied to DF without substantial reworking.
Corpus management — Policy issues

— Privacy

— Illegal content — financial, passwords and copyright

— Illegal content — pornography

— Institutional Review Boards (IRBs)

Even if something is legal, you may wish to think twice before you do it.
Privacy — What’s legal isn’t necessarily right.

Information in the RDC is not legally “private”
• “The reasonableness of a search for Fourth Amendment purposes ... turns upon the understanding of society as a whole that certain areas deserve the most scrupulous protection from government invasion. There is no such understanding with respect to garbage left for collection at the side of a public street.”
 — CALIFORNIA v. GREENWOOD, 486 U.S. 35 (1988)
• In practice, we avoid disclosing PII because doing so would be wrong.

Copyright on user-generated material — different from privacy!
• Users do not transfer copyright to us, but we do have some rights in our copy
• “First Sale” doctrine — “In our view, the copyright statutes, while protecting the owner of the copyright in his right to multiply and sell his production, do not create the right to impose, by notice, such as is disclosed in this case, a limitation at which the book shall be sold at retail by future purchasers, with whom there is no privity of contract.”
 — Bobbs-Merrill Co. v. Straus, 210 U.S. 339 (1908)
• “Fair Use” — four part test. 1) purpose of the use (non-profit educational); 2) nature of the copyrighted work; 3) The amount of the work that is copied; 4) the impact of the use on the market value for the copyrighted work.
Illegal content — different kinds requires different rules.

“Counterfeit Access Device and Computer Fraud and Abuse Act”
- Passed by Congress in 1984
- Outlaws possession of “access devices” with intent to commit fraud.
- Financial information (credit card numbers) and passwords are access devices.
- The key issue is intent — I don’t have the intent do defraud.

Copyright — rely on “Fair Use” (17 USC §107)
- Four part test. 1) purpose of the use (non-profit educational); 2) nature of the copyrighted work; 3) The amount of the work that is copied; 4) the impact of the use on the market value for the copyrighted work.
- The RDC doesn’t impact the value of the data, and it’s non-profit.

Conventional pornography
- The RDC has lots of pornography in it
- No access given to minors

Obscenity (e.g. child pornography)
- We can’t determine if something is really child porn...
- Names “suggestive” of child pornography are removed.

Never sell access to the corpus.

Do not give minors access to real data.

Do not intentionally extract pornography from research corpora.
In the United States, federally funded research involving human subjects must be reviewed by an accredited Institutional Review Board.

• “Human subject” means a living individual about whom an investigator conducting research obtains:
 — Data through intervention or interactions with the individual, or
 — Identifiable private information
• “Research” means “a systematic investigation, including research development, testing and evaluation, designed to develop or contribute to generalizable knowledge.”

Options:
• Make the RDC public (so it’s not private)
 — That would be unethical
• Don’t do “research”
• Get IRB approval (and that’s what we do)

IRBs exist to protect human subjects, but many have expanded their role to protect institutions and experimenters.

This expanded role occasionally decreases the protection afforded human subjects.

Even with the IRB watching over you, it's important to watch your back.
Data normalization is critical — but very hard.

We have many different kinds of data:

• Drive images
• Files
• Mobile phones
• Software

We try to “normalize” by:

• Consistent containers
• Consistent file names & paths

Metadata normalization with Digital Forensics XML (DFXML)...
Lessons learned while writing digital forensic tools

<dfxml>

DFXML
Most DF tools act like “filters” or “extractors.” They turn *corpus bulk data* into *actionable intelligence*.

It is not this simple in practice.
The same tool is applied to many data sources.
Different tools may be applied to the same data.
Tools improve over time

DATA1

TOOL1 (2006)

STUFF 1-1-2006

DATA1

TOOL1 (2008)

STUFF 1-1-2008

DATA1

TOOL1 (2013)

STUFF 1-1-2013
3 x 3 x 3 = 27 different outputs!
This can get out of control quite quickly!
DFXML (Digital Forensics XML) is an XML language for annotating digital forensics artifacts.

- Source media
- Acquisition date
- Location
- Person

- Tool name
- Source code
- Compile environment
- Runtime environment

- What was found
- Where found
 e.g.:
 - Files
 - Email addresses
 - JPEGs
 ...

<dfxml>

DATA3

<dfxml>

2013

<dfxml>

TOOL3

<dfxml>

S
DFXML provides metadata and provenance tracking.

There’s lots of structured data to represent:

- File names, locations, MAC times, etc.
- Which program processed the data:
 - *Which version; where compiled, compiler flags, etc.*
 - *Where it was run, how long it took, etc.*

Originally programs kept this information in many different places:

- SleuthKit “body” file; Log files; Etc.

DFXML is a single, unified way of keeping all of this information.

- Arose out of personal need.
- Decided that it would be better not to reinvent a storage format.
- XML has broad support than other formats; tools for GB-sized objects
- Easiest way to get support for DFXML: add it to open source programs.
- Working now to merge DFXML with MITRE’s CyBox
example: <creator>

<creator version='1.0'>
 <program>BULK_EXTRACTOR</program>
 <version>1.1.0_beta8</version>
 <build_environment>
 <compiler>GCC 4.2</compiler>
 <compilation_date>2011-11-19T23:27:21</compilation_date>
 <library name="afflib" version="3.6.9"/>
 <library name="libewf" version="20100805"/>
 </build_environment>
 <execution_environment>
 <cpuid>
 <identification>GenuineIntel</identification>
 <family>6</family>
 <clflush_size>64</clflush_size>
 <nproc>16</nproc>
 <L1_cache_size>262144</L1_cache_size>
 </cpuid>
 <command_line>src/bulk_extractor -o dell1 4DellCPI.E01</command_line>
 <uid>501</uid>
 <username>simsong</username>
 <start_time>2011-11-20T04:34:27Z</start_time>
 </execution_environment>
</creator>
A “file” is a set of 0 or more bytes and metadata.

- File name, size, and hash codes.
- Physical Location on the disk.
- Provenance

Can be on a disk, in a hash set, sent over a network, in an archive,...

```xml
<fileobject>
  <filename>casper/filesystem.manifest-desktop</filename>
  <filesize>32672</filesize>
  <inode>651</inode>
  <meta_type>1</meta_type>
  <mode>511</mode>
  <nlink>1</nlink>
  <uid>0</uid>
  <gid>0</gid>
  <mtime>2008-12-29T01:33:32Z</mtime>
  <atime>2008-12-28T05:00:00Z</atime>
  <crttime>2008-12-29T01:33:32Z</crttime>
  <byte_runs>
    <byte_run file_offset='0' fs_offset='5577728' img_offset='5609984' len='32672'/>
  </byte_runs>
  <hashdigest type='md5'>bd1b0831fcba1f22eff2238da96055b6</hashdigest>
  <hashdigest type='sha1'>7e072af67f8d989cc85978487b948048ac3c7234</hashdigest>
</fileobject>
```
A TCP flow is a file with `<tcpflow>` information.

```xml
<fileobject>
  <filename>074.125.019.104.00080-192.168.001.102.50955</filename>
  <filesize>2792</filesize>
  <tcpflow startime='2008-10-06T13:54:54.638913Z'
    endtime='2008-10-06T13:54:54.638913Z'
    src_ipn='74.125.19.104'
    dst_ipn='192.168.1.102'
    packets='6'
    srcport='80' dstport='50955'
    family='2' out_of_order_count='3' />
</fileobject>

<fileobject>
  <filename>192.168.001.102.50955-074.125.019.104.00080</filename>
  <filesize>655</filesize>
  <tcpflow startime='2008-10-06T13:54:54.621853Z'
    endtime='2008-10-06T13:54:54.621853Z'
    src_ipn='192.168.1.102'
    dst_ipn='74.125.19.104'
    packets='7'
    srcport='50955' dstport='80'
    family='2' out_of_order_count='0' />
</fileobject>
```

The `<filename>` is where the file’s bytes are in the file system.
DFXML — the XML is the least important part.

Primary advantages:
• Non-experts can do forensics with tools that generate DFXML

Unexpected benefits:
• Makes it easier to replicate work — invoking command line in the XML
• Provides documentation to students
• N-version tool testing (use multiple tools to generate the same DFXML)

Challenges and alternatives
• XML is verbose / inefficient; JSON is trendy
• Information could be stored in a SQLite database.
• Some users could benefit from provenance but don’t need <fileobject>s
To spur use, we created libraries and added them to open source tools.

- Created C++ and Python libraries for efficient generation & reading of DFXML
  ```
  xreport.add_DFXML_creator(PACKAGE_NAME,PACKAGE_VERSION);
  xreport.push("configuration");
  xreport.xmlout("threads",num_threads);
  xreport.push("scanners");
  ```

- Added DFXML support to hashdeep and photorec.
- Produced useful tools that require DFXML to operate
- Added example DFXML to Forensics Wiki
- Reached out to other projects with similar goals (MITRE CyBOX)

At the present time:
- We are using DFXML in our research
- DFXML makes it faster to do build, test and validate tools
 —*We learned an important site was using a 6-year-old C compiler*...

DFXML is a research tool, but no longer a research subject.
Digital forensics makes digital evidence available for legal decisions.

Preparation: policy, training & tools

Collect & preserve evidence

Extract preserved data

Analysis

Reporting & Testimony

<dfxml>
In conclusion...

Digital forensics — Hard problems that look easy

• We cover the entire stack (bits → OS & Apps→ supercomputers → Internet)
• We cover most domains of computer science (security; visualization; HLT)

Real Data Corpus — research with real data.

• It’s hard to get and work with real data
• Technical and legal issues
 — legal issues are more difficult

Provenance tracking with DFXML

• Good technology isn’t enough
• Need, usability, and cost drive adoption

Contact Information:
Simson L. Garfinkel <simsong@acm.org>