The Effect of Mild Motion Sickness and Sopite Syndrome on Multitasking Cognitive Performance

Matsangas, P.
Monterey, California. Naval Postgraduate School

http://hdl.handle.net/10945/44386
The Effect of Mild Motion Sickness and Sopite Syndrome on Multitasking Cognitive Performance

Lcdr P. Matsangas, Hellenic Navy and Michael E. McCauley, PhD
Motion Sickness and Sopite Syndrome

- **Motion sickness**
 - A general term describing a constellation of symptoms including stomach awareness, yawning, disorientation, drowsiness, facial pallor, cold sweating, nausea and emesis
 - Neural mismatch (or sensory conflict) theory

- **Sopite syndrome** (identified by Graybiel & Knepton, 1976)
 - Another type of motion sickness
 - A symptom-complex characterized by drowsiness and lethargy related to motion sickness
 - Drowsiness; yawning; disinterest/ disinclination to work; lassitude; mood changes; withdrawal; mental depression
 - Independent of nausea & emesis
Human Performance and Hypothesis

- **Typical Human Performance Findings**
 - Cognitive performance not affected by motion per se
 - Severe motion sickness can result in cessation of performance
 - There have been very few studies on multitasking cognitive performance and motion sickness

- **Hypothesis**
 - Mild motion sickness and sopite syndrome deteriorate multitasking cognitive performance
Experimental Design:
Groups and Sessions
(N = 39)

<table>
<thead>
<tr>
<th>1(^{st}) Experimental Session</th>
<th>2(^{nd}) Experimental Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>Block Block Block Block Block Block</td>
<td>Block Block Block Block Block Block</td>
</tr>
<tr>
<td>Group A 1, 2, 3, 4, 5, 6</td>
<td>Group A 1, 2, 3, 4, 5, 6</td>
</tr>
<tr>
<td>Motion stimulus</td>
<td>Motion stimulus</td>
</tr>
<tr>
<td>Block Block Block Block Block Block</td>
<td>Block Block Block Block Block Block</td>
</tr>
<tr>
<td>Group B 1, 2, 3, 4, 5, 6</td>
<td>Group B 1, 2, 3, 4, 5, 6</td>
</tr>
<tr>
<td>Block Block Block Block Block Block</td>
<td>Block Block Block Block Block Block</td>
</tr>
<tr>
<td>Group C 1, 2, 3, 4, 5, 6</td>
<td>Group C 1, 2, 3, 4, 5, 6</td>
</tr>
</tbody>
</table>
Experimental Design: SYNWIN Cognitive Multi-Task

- Counterbalanced (motion)
Results
Symptomatology
Incidence I (MSAQ)

- 23 “Symptomatic” participants
 - At least 1 symptom
- All 16 symptoms are reported
- Symptoms reported per Symptomatic participant
 - $M=6.09$ symptoms ($SD=4.56$, $MD=5$)

Average MSAQ Total per participant in motion conditions
Symptomatology
Incidence II (from MSAQ)

- **Gastrointestinal cluster**
 - Ready to vomit
 - Sick to the stomach
 - Nauseated
 - Queasy
- **Central-related**
 - Faint-like,
 - Like spinning
 - Lightheaded
 - Disoriented
 - Dizzy
- **Peripheral-related**
 - Clammy/cold sweat
 - Hot/warm
 - Sweaty
- **Sopite syndrome-related**
 - Drowsiness
 - Annoyance/irritation,
 - Fatigue
 - Uneasiness
Symptomatology, Performance and Session
Symptomatology, performance, and session Scores vs Motion Sickness

Performance vs subjective metrics

<table>
<thead>
<tr>
<th>SYNWIN Scores</th>
<th>All</th>
<th>Experimental Session 1</th>
<th>Experimental Session 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Composite</td>
<td>¬ MSAQ G</td>
<td></td>
<td>¬ MSAQ Total ¬ MSAQ C ¬ SSS</td>
</tr>
<tr>
<td>Memory task</td>
<td>¬ SSS</td>
<td></td>
<td>¬ SSS</td>
</tr>
<tr>
<td>Arithmetic task</td>
<td>¬ MSAQ G</td>
<td>¬ MSAQ Total ¬ MSAQ G ¬ MSAQ P</td>
<td>¬ MSAQ Total ¬ MSAQ S</td>
</tr>
<tr>
<td>Visual task</td>
<td>-</td>
<td>-</td>
<td>¬ MSAQ S</td>
</tr>
<tr>
<td>Auditory task</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Multitasking performance is MAINLY associated with:
- Gastrointestinal symptoms
- Soporific symptoms

Performance scores vs psychophysiological metrics (EGG power)

<table>
<thead>
<tr>
<th>SYNWIN Tasks</th>
<th>All</th>
<th>Experimental Session 1</th>
<th>Experimental Session 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Composite</td>
<td>¬</td>
<td></td>
<td>¬ (>4 cpm)</td>
</tr>
<tr>
<td>Memory task</td>
<td>-</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>Arithmetic task</td>
<td>-</td>
<td>¬</td>
<td>¬ (>4 cpm)</td>
</tr>
<tr>
<td>Visual task</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Auditory task</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Performance decrement is associated with:
- Shift of gastric power to higher frequencies (tachy gastria)

Average values per participant in motion conditions
- Linear or logarithmic fit
- Regression analysis
Performance vs Motion Sickness

Experimental Session 1

- Average values per participant in motion conditions

Experimental Session 2

- Composite Δ=9%
- Memory Δ=25%
- Arithmetic Δ=13%
Skill Acquisition & Reminiscence

- Between-sessions
 - Performance Δ between the end of ES 1 and beginning of ES 2
 - This effect was NOT associated with:
 - Motion in ES 1
 - Development of mild motion sickness symptoms in ES 1
Conclusions
Conclusions
Overall

- Multitasking cognitive performance deteriorates even in mildly nauseogenic motion environments
 - Composite -9%, Memory -25%, Arithmetic -13%

- Mild motion sickness does not seem to interfere with the reminiscence effect in a novel cognitive multitasking environment
Conclusions

- **Order effect**
 - ES 1
 - Participants seem to overcome mild motion sickness
 - ES 2
 - Symptomatology takes a toll on performance

- **Probable explanations**
 - Task involvement/Task novelty
 - Mental activity reduces severity (Bos, 2011; Correia & Guedry, 1966; Griffin, 1990)
 - Self-motivation
 - Encouragement to suppress symptoms (“cognitive counseling”) (Dobie et al., 1987; Dobie et al., 1989)
Conclusions: Conceptual Modeling I

Symptomatic individuals

Asymptomatic individuals

Nauseogenic motion

Performance decrement

Adaptation

Hypothetical

Severity of symptoms

Multitasking Performance

Time

Static
Conclusions: Conceptual Modeling II

Symptomatic individuals
2nd Session

Asymptomatic individuals

Multitasking Performance

Practice Effect

Time -->

Severity of symptoms -->

Nauseogenic motion

Symptomatic individuals
1st Session

Symptomatic individuals
2nd Session
Why?

Background

- Simple tasks needing automated responses will suffer less from stress than performance in complex tasks (Yerkes & Dodson, 1908; van Hiel & Mervielde, 2007)

- Mental tasks decrease motion sickness severity (Bos, 2011; Correia & Guedry, 1966; Graybiel, 1968)

- Postural control, sensory integration, and disorientation require cognitive and attentional resources
Why II?

- Previous research combined with our results suggest that:

 Motion sickness acts as a **distractor** by absorbing or denying the use of attentional resources.

![Diagram showing the relationship between attentional resources, cognitive tasks, and motion sickness.](image)
The End!

Questions?
Demographics

- 2 data collection phases
- 39 healthy participants
 - 34 M – 5 F
 - Air Force=4, Army=6, Navy=22, USMC=1, Civilian=4, NOAA=1, Other=1
 - O2 to O5 (O2=4, O3=16, O4=14, O5=1
- Equivalent participant groups in
 - Demographics
 - Subjective (MSAQ, MISC, SSS, etc)
 - Psychophysiological (SC, ECG, EGG)
 - 33 of SYNWIN metrics

Differences in visual task
- Group B resets more frequently than group A
 - Number of resets
 - Reset time
 - Reset position

Inter-session interval
- M=6.51d, SD=1.45, MD=7

<table>
<thead>
<tr>
<th>Parameters</th>
<th>M</th>
<th>SD</th>
<th>MD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>35.2</td>
<td>6.02</td>
<td>34</td>
</tr>
<tr>
<td>Height (inches)</td>
<td>69.9</td>
<td>3.56</td>
<td>70</td>
</tr>
<tr>
<td>Weight (pounds)</td>
<td>185</td>
<td>28.2</td>
<td>180</td>
</tr>
<tr>
<td>Body Mass Index (BMI)</td>
<td>26.7</td>
<td>3.84</td>
<td>26.3</td>
</tr>
<tr>
<td>NEO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>16.4</td>
<td>7.59</td>
<td>16</td>
</tr>
<tr>
<td>E</td>
<td>29.9</td>
<td>5.62</td>
<td>29</td>
</tr>
<tr>
<td>O</td>
<td>27.9</td>
<td>6.01</td>
<td>29</td>
</tr>
<tr>
<td>A</td>
<td>31.0</td>
<td>5.12</td>
<td>31</td>
</tr>
<tr>
<td>C</td>
<td>33.8</td>
<td>6.81</td>
<td>34</td>
</tr>
<tr>
<td>MSSQ</td>
<td>17.2</td>
<td>27.7</td>
<td>9.77</td>
</tr>
</tbody>
</table>