The Effect of Mild Motion Sickness and Sopite Syndrome on Multitasking Cognitive Performance

Matsangas, P.
Monterey, California. Naval Postgraduate School
The Effect of Mild Motion Sickness and Sopite Syndrome on Multitasking Cognitive Performance

LCDR P. Matsangas, Hellenic Navy and Michael E. McCauley, PhD
Motion Sickness and Sopite Syndrome

- **Motion sickness**
 - A general term describing a constellation of symptoms including stomach awareness, yawning, disorientation, drowsiness, facial pallor, cold sweating, nausea and emesis
 - Neural mismatch (or sensory conflict) theory

- **Sopite syndrome** (identified by Graybiel & Knepton, 1976)
 - Another type of motion sickness
 - A symptom-complex characterized by drowsiness and lethargy related to motion sickness
 - Drowsiness; yawning; disinterest/ disinclination to work; lassitude; mood changes; withdrawal; mental depression
 - Independent of nausea & emesis
Human Performance and Hypothesis

- **Typical Human Performance Findings**
 - Cognitive performance not affected by motion per se
 - Severe motion sickness can result in cessation of performance
 - There have been very few studies on multitasking cognitive performance and motion sickness

- **Hypothesis**
 - Mild motion sickness and sopite syndrome deteriorate multitasking cognitive performance
Experimental Design: Groups and Sessions

(N = 39)

1st Experimental Session

Group A

Block Block Block Block Block Block
1 2 3 4 5 6

Motion stimulus

Group B

Block Block Block Block Block Block
1 2 3 4 5 6

Group C

Block Block Block Block Block Block
1 2 3 4 5 6

2nd Experimental Session

Group A

Block Block Block Block Block Block
1 2 3 4 5 6

Group B

Block Block Block Block Block Block
1 2 3 4 5 6

Group C

Block Block Block Block Block Block
1 2 3 4 5 6
Experimental Design: SYNWIN Cognitive Multi-Task

- Counterbalanced (motion)
Results
Symptomatology
Incidence I (MSAQ)

- 23 “Symptomatic” participants
 - At least 1 symptom
- All 16 symptoms are reported
- Symptoms reported per Symptomatic participant
 - M=6.09 symptoms (SD=4.56, MD=5)

Average MSAQ Total per participant in motion conditions
Symptomatology
Incidence II (from MSAQ)

- Gastrointestinal cluster
 - Ready to vomit
 - Sick to the stomach
 - Nauseated
 - Queasy

- Central-related
 - Faint-like,
 - Like spinning
 - Lightheaded
 - Disoriented
 - Dizzy

- Peripheral-related
 - Clammy/cold sweat
 - Hot/warm
 - Sweaty

- Sopite syndrome-related
 - Drowsiness
 - Annoyance/irritation,
 - Fatigue
 - Uneasiness

Symptoms frequency of occurrence in symptomatic participants
Symptomatology, Performance and Session
Symptomatology, performance, and session Scores vs Motion Sickness

Performance vs subjective metrics

<table>
<thead>
<tr>
<th>SYNWIN Scores</th>
<th>All</th>
<th>Experimental Session 1</th>
<th>Experimental Session 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Composite</td>
<td>😕 MSAQ G</td>
<td></td>
<td>😕 MSAQ Total 😕 MSAQ C 😕 SSS</td>
</tr>
<tr>
<td>Memory task</td>
<td>😕 SSS</td>
<td></td>
<td>😕 SSS</td>
</tr>
<tr>
<td>Arithmetic task</td>
<td>😕 MSAQ G</td>
<td>😕 MSAQ Total 😕 MSAQ G 😕 MSAQ P</td>
<td>😕 MSAQ Total 😕 MSAQ S</td>
</tr>
<tr>
<td>Visual task</td>
<td>-</td>
<td>-</td>
<td>😕 MSAQ S</td>
</tr>
<tr>
<td>Auditory task</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Multitasking performance is MAINLY associated with:
• Gastrointestinal symptoms
• Soporific symptoms

Performance scores vs psychophysiological metrics (EGG power)

<table>
<thead>
<tr>
<th>SYNWIN Tasks</th>
<th>All</th>
<th>Experimental Session 1</th>
<th>Experimental Session 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Composite</td>
<td>-</td>
<td></td>
<td>😕 (>4 cpm)</td>
</tr>
<tr>
<td>Memory task</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Arithmetic task</td>
<td>-</td>
<td>-</td>
<td>😕 (>4 cpm)</td>
</tr>
<tr>
<td>Visual task</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Auditory task</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Performance decrement is associated with:
• Shift of gastric power to higher frequencies (tachygastria)

• Average values per participant in motion conditions
• Linear or logarithmic fit
• Regression analysis
Performance vs Motion Sickness

Experimental Session 1

- Composite
- Memory
- Arithmetic
- Visual
- Auditory

Experimental Session 2

- Composite Δ=9%
- Memory Δ=25%
- Arithmetic Δ=13%

• Average values per participant in motion conditions
Between-sessions:
- Performance \(\Delta \) between the end of ES 1 and beginning of ES 2
- This effect was NOT associated with:
 - Motion in ES 1
 - Development of mild motion sickness symptoms in ES 1
Conclusions
Conclusions

Overall

- Multitasking cognitive performance deteriorates even in mildly nauseogenic motion environments
 - Composite -9%, Memory -25%, Arithmetic -13%

- Mild motion sickness does not seem to interfere with the reminiscence effect in a novel cognitive multitasking environment
Conclusions

- **Order effect**
 - ES 1
 - Participants seem to overcome mild motion sickness
 - ES 2
 - Symptomatology takes a toll on performance

- **Probable explanations**
 - **Task involvement/ Task novelty**
 - Mental activity reduces severity (Bos, 2011; Correia & Guedry, 1966; Griffin, 1990)
 - **Self-motivation**
 - Encouragement to suppress symptoms (“cognitive counseling”) (Dobie et al., 1987; Dobie et al., 1989)
Conclusions: Conceptual Modeling I

Symptomatic individuals

Asymptomatic individuals

Multitasking Performance

Time

Severity of symptoms

Nauseogenic motion

Performance decrement

Adaptation

Hypothetical
Conclusions: Conceptual Modeling II

Multitasking Performance

Static

Nauseogenic motion

Asymptomatic individuals

Symptomatic individuals
1st Session

Symptomatic individuals
2nd Session

Practice Effect

Time

Severity of symptoms
Why?

Background

- Simple tasks needing automated responses will suffer less from stress than performance in complex task (Yerkes & Dodson, 1908; van Hiel & Mervielde, 2007)

- Mental tasks decrease motion sickness severity (Bos, 2011; Correia & Guedry, 1966; Graybiel, 1968)

- Postural control, sensory integration, and disorientation require cognitive and attentional resources
Previous research combined with our results suggest that:

Motion sickness acts as a **distractor** by absorbing or denying the use of attentional resources.
The End!

Questions?
Demographics

1. **2 data collection phases**
2. **39 healthy participants**
 - 34 M – 5 F
 - Air Force=4, Army=6, Navy=22, USMC=1, Civilian=4, NOAA=1, Other=1
 - O2 to O5 (O2=4, O3=16, O4=14, O5=1)
3. **Equivalent participant groups in**
 - Demographics
 - Subjective (MSAQ, MISC, SSS, etc)
 - Psychophysiological (SC, ECG, EGG)
 - 33 of SYNWIN metrics
4. **Differences in visual task**
 - Group B resets more frequently than group A
 - Number of resets
 - Reset time
 - Reset position
5. **Inter-session interval**
 - M=6.51d, SD=1.45, MD=7

<table>
<thead>
<tr>
<th>Parameters</th>
<th>M</th>
<th>SD</th>
<th>MD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>35.2</td>
<td>6.02</td>
<td>34</td>
</tr>
<tr>
<td>Height (inches)</td>
<td>69.9</td>
<td>3.56</td>
<td>70</td>
</tr>
<tr>
<td>Weight (pounds)</td>
<td>185</td>
<td>28.2</td>
<td>180</td>
</tr>
<tr>
<td>Body Mass Index (BMI)</td>
<td>26.7</td>
<td>3.84</td>
<td>26.3</td>
</tr>
<tr>
<td>NEO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>16.4</td>
<td>7.59</td>
<td>16</td>
</tr>
<tr>
<td>E</td>
<td>29.9</td>
<td>5.62</td>
<td>29</td>
</tr>
<tr>
<td>O</td>
<td>27.9</td>
<td>6.01</td>
<td>29</td>
</tr>
<tr>
<td>A</td>
<td>31.0</td>
<td>5.12</td>
<td>31</td>
</tr>
<tr>
<td>C</td>
<td>33.8</td>
<td>6.81</td>
<td>34</td>
</tr>
<tr>
<td>MSSQ</td>
<td>17.2</td>
<td>27.7</td>
<td>9.77</td>
</tr>
</tbody>
</table>