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ABSTRACT 

Wireless distributed microsensor systems offer reliable monitoring and control of 

a myriad of applications ranging from machine state and perimeter security to 

nuclear/chemical/biological and other military applications.  Historically, batteries have 

supplied power to mobile, embedded, and ultra-low power microsensors.  While there are 

many obvious short-term advantages of using batteries, they do have a long-term 

negative environmental impact.  An alternative to batteries exists in harnessing the 

ambient energy surrounding the system and subsequently converting it into electrical 

energy.  Once a long-established concept, energy harvesting offers an inexhaustible 

replacement for batteries.  Energy-harvesting systems scavenge power from optical, 

acoustic, thermal, and mechanical energy sources.  The proliferation of and advances in 

wireless technology, particularly wireless sensor nodes and mobile electronic devices, has 

increased the volume of energy harvesting research as of late.  This thesis reviews the 

principles of the state of the art in energy harvesting systems.   We focus on generating 

electrical power from mechanical energy in a vibrating environment due to its dominant 

scalability.  We explore microelectromechanical systems (MEMS), including 

electromagnetic, electrostatic, and piezoelectric transduction.  Further, power 

management, trends, suitable applications, and possible future developments are 

discussed.   
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I. INTRODUCTION: OVERVIEW OF PROBLEM AND 
MOTIVATION  

A. MOBILE DEVICES AND WIRELESS SENSOR NETWORKS 

1. Finite Power 

The third wave of computing is marked by the shift from mainframe (first wave) 

and personal computing (second wave) to what the late Mark Weiser coined ubiquitous 

computing.  A subset of this third wave entails embedded peripheral devices such as 

actuators, sensors, energy sources, and antennas.  These wireless sensor network 

components promise improved utilization of resources, contextual awareness, security, 

and safety.  However, ubiquitous computing and wireless sensor networks present 

potential concerns about our current reliance on batteries for power.   

Chemical cell development has been unable to keep pace with other advances 

related to ubiquitous computing, as denoted by Figure 1. 

 

 

Figure 1.   Relative Advances in Energy Density of Li-Ion Batteries Versus Areal 
Density of HDD and Transistor Density [From 1] 
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The dearth of battery development is not due to lack of interest.  In 1999, the 

German government committed $1.7 million to stand-up the Fraunhofer Institute for 

Reliability and Micro-integration.  The institute sought to develop cheaper and more 

efficient lithium-based batteries [2].  Regardless of perceived successes, this initiative 

failed to provide a means for divorcing wireless sensor networks from a physical link to 

the world.   

No advances in chemical cell technology will completely eliminate its inherent 

physical limitation of finite power.  As such, finite power dominates design 

considerations of all battery-operated wireless sensor nodes and mobile devices.  Despite 

energy efficient protocols and system partitioning [3], this dependency requires that 

batteries of a wireless microsystem be recharged or replaced.  Consequently, the user 

becomes quite aware of embedded technology that Mark Weiser intended to disappear 

from the human conscious.  As wireless microsystems continue to grow in ubiquity, so 

too will battery density and labor costs.  Equally, if not more important, the 

environmental impact of discarding potentially millions of coin-size and bigger batteries 

becomes irreversible.   

2. Need for Infinite Power 

Wireless sensor nodes and mobile electronic devices are increasingly becoming 

the obvious choice for remote data collection and context recognition.  Applications for 

these microsystems extend well beyond monitoring temperature, location, material 

fatigue and chemical detection.  These systems play a particularly vital role in biomedical 

electronics and wearable computing.  This development has not been lost on the 

Department of Defense (DoD).  The U.S. Army and MIT partnered in 2002 to create the 

Institute for Soldier Nanotechnologies (ISN).   One area of research focuses on creating a 

non-invasive biosensor that not only automates blood analysis but medicinal delivery.  In 

2007, the U.S. Navy sought development of a miniature vibration mechanical energy 

harvester to power remote corrosion monitoring sensors on ships and aircraft.  Indeed, the 

DoD is well aware of the potential for wireless microsystems.  Like their civilian 
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counterparts, the DoD discerns tomorrow’s necessity for distributed sensing and 

ubiquitous computing that is free from tethered power.  

Figure 2 offers a decisive comparison of vibration-based and solar energy versus 

conventional battery power.  The darkest shade depicts exclusively vibration-based 

energy while the lesser shaded region represents both indoor and direct photovoltaic 

energy generation.  It is possible to deduce from this figure that design consideration 

should include the projected lifetime of the electronic application.  If the design is to be 

utilized for only a few years, one could argue that batteries provide the simplest and most 

adaptable power source.  However, the availability of adequate environmental light 

energy demands consideration as a solution.  Nonetheless, should the projected lifetime 

extend beyond several years and light energy is not readily available, other domains of 

energy harvesting become attractive solutions. 

 

 

Figure 2.   Comparison of Power Densities [From 4] 

Advances in integrated circuit (IC) fabrication coupled with novel network 

protocols have resulted in breaking below the milliwatt threshold for powering wireless 

microsensor nodes [3].  Inherently, the microsensor’s transmission power limits its 

effective range significantly when compared to a wireless macrosensor.  As a result, 

microsensor nodes form a dense topology transmitting data no more than 10 meters.  



4 

 

The problem of powering potentially dense networks of nodes becomes 

substantive when considering the expected global ubiquity of wireless sensor networks.     

Sheer volume disqualifies the procurement and placement of disposable and recyclable 

batteries. Moreover, environmental implications force the consideration of alternative 

power sources [5]. 

B. PROBLEM DESCRIPTION  

The objective of this thesis is to identify the energy harvesting technologies best 

suited for military applications in the domain of wireless network sensors and mobile 

devices.  Candidates for this technology include light, sound, thermal gradients and 

vibration energy scavenging methods.  While this thesis does not pinpoint a single energy 

domain and harvesting method to satisfy the problem, likely candidates in all energy 

domains are proposed based on application and environment.    

C. THESIS FORMAT 

In the succeeding chapter, this thesis provides a thorough history of energy 

harvesting methods.  The fundamentals of energy harvesting methods in optical, acoustic, 

thermal, and mechanical energy domains are examined.  While we do not provide an 

exhaustive comparison, a broad cross section is offered.    

Chapter II provides a broad survey encompassing the state-of-the-art advances in 

light, sound, thermal gradients and vibration energy scavenging methods.  Chapter III 

highlights viable energy harvesting candidates for strong consideration by both civilian 

and DoD researchers. 

Chapter IV presents information beyond the conversion of energy.  Energy 

harvesting systems must also provide power conditioning, storage, and management.  

Techniques and principles in these three areas are explored.  An algorithm for ensuring 

energy is readily available in a non-deterministic environment offers a management 

strategy for all harvesting methods.   
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Finally, Chapter V concludes with a summary of the presented research and 

potential for future work.  An in-depth look at real-world applications offers insight into 

tomorrow’s emerging technologies.  The reader is left with a solid appreciation for the 

potential for energy harvesting at the micro-level. 
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II. HISTORY OF ENERGY HARVESTING  

“Because the average power consumption of a wireless sensor network node is 

expected to be very low, on the order of 50 µW or less, unconventional power sources 

become plausible alternatives” [6].  By harvesting energy or scavenging power, the 

environment surrounding the wireless sensor network can be turned into an infinite and 

immediate unconventional power source.  Numerous technologies exist that might enable 

the micro-sensor node to harness ambient energy.  The most fundamental of these energy 

domains (e.g., optical, acoustic, thermal, and mechanical) are considered in this chapter.  

While we do not provide an exhaustive comparison, a broad cross section is offered.  

A. OPTICAL ENERGY 

Solar energy is derived from the radiant light or heat emitted by the sun.  Solar 

radiation represents the most readily available renewable energy source on the planet.  Of 

the 174 PW (174x1015 watts) that reach the Earth’s upper atmosphere, approximately half 

penetrates to the surface of the Earth [7].   In 2005, the average global consumption of 

power was 15 TW (15x1012 watts) [8].   It does not require a trained eye to deduce that 

the sun provides far more power than the world could ever use in the near future.  

Depending on the method in which solar radiation is harnessed, solar technologies 

are generally classified as either active or passive solar.  Any use of solar energy that 

does not include conversion to a different energy domain is considered passive solar 

energy.  One of the more dominant active solar technologies is in the field of 

photovoltaics (PV).  Roughly translated, photovoltaic means “light-electricity.”  PV 

utilizes a solar module to couple the photoelectric effect that converts sunlight into a 

direct current.  The mechanisms for this process are referred to as solar cells or PV 

arrays. 

First recorded by French Scientist Edmund Becquerel in 1839, the photovoltaic 

effect is a simple physical process in which photons from absorbed light excite the 

electrons of a metallic or semiconductor material [9].  This excitation causes the electron 
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to move from its molecular position.  The result is a change of potential, which inherently 

induces a current.  Figure 3 demonstrates the dynamics of the induced electric field that is 

created by the junction of two slightly different semiconductor materials. 

 

 

Figure 3.   Schematic of Photoelectric Effect [From 10] 

As Figure 3 illustrates, one of the layers is an "n-type" semiconductor.  Its name 

connotes an abundance of electrons, which resultantly leads to a negative electrical 

charge on the entire layer.  The other layer is a "p-type" semiconductor.  The “p-type” 

semiconductor gets its positive property from a doping technique.  An electron-seeking 

material (dopant) is introduced to the weakly bound outer electrons of the semiconductor.  

The dopant atom accepts the semiconductor’s electron thereby forming a “hole” that acts 

as a positive charge [11].  These holes are free to float throughout the silicon lattice. 

While both semiconductors maintain electrical neutrality, the presence of dopants 

causes n-type silicon to exhibit an excess of electrons and p-type silicon an excess of 

holes. Combining the p-type and n-type semiconductors together in extremely close 

contact incites an equilibrium process at the p-n junction.  The process is marked by a 

diffusion of electrons and holes across a space charge region as depicted in Figure 4. 
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Figure 4.   A P-N Junction in Thermal Equilibrium with Zero Bias Voltage Applied. 
Under the Junction, Plots for the Charge Density, the Electric Field, and the 

Voltage are Reported.  [From 12] 

The resultant congregation of positive charge at the n-type boundary and negative 

charge at the p-type boundary induces an electric field at the space charge region.  It is 

this electric field that produces a current and thus legitimizes the photovoltaic effect as a 

suitable candidate for an unconventional power source. 

It was not until the revolutionary development of Albert Einstein’s Quantum 

Theory in the early 1900s that Becquerel’s observation was truly understood [13].  

Advances in photoelectric technology by Goldman and Brodsky (1914), Shottky and 

Mott (1930s), Audobert and Stora (1932), Chapin, Fuller, and Pearson (1954), led to 

improved transduction conversion efficiencies using silicon, cadmium sulfide, and 

germanium.  During the 1950s, research and development funded by institutions such as 
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Bell Labs led to efficiencies up to 11%.  Due to an average cost of $1,000/watt, most 

early photovoltaic applications were limited to satellites [14].  

Currently, the market average for solar panel energy conversion is between 12-

18% [15].  This leads to a power generation potential of 15mW/cm2.  While this power 

density is promising, effectively harnessing solar radiation is predicated on strict 

parameters such as direct exposure at near normal angles.  PV arrays are adequate for 

consumer electronics such as calculators, wristwatches, and radios.  However, design 

limitations are further complicated when scaled down to the micro-level.  Although a 1 

cm2 PV array is capable of powering an electrostatic MEMS [16], this technology has 

shown no growth or implementation since demonstrated 14 years ago.  

Secondary solar resources, such as biomass, wind, hydroelectricity, and wave 

power are not reviewed in this study.  Literature pertaining to research on current form 

factors necessary for these technologies is limited for wireless sensor networks. 

B. ACOUSTIC ENERGY 

Acoustic energy sources may use the energy in sound waves to actuate a MEMS 

electromagnetic transducer.  Most acoustic energy harvesters utilize some variant of an 

electromechanical Helmholtz resonator.  The German Physicist Hermann von Helmholtz 

built his acoustic resonator during the 1850s for acoustic analysis.  The Helmholtz 

resonator contains a hollow sphere of gas (usually ambient air) connected to the 

environment by an opening or port.  Acoustic input excites the air molecules at the port 

of the resonator.  The elastic nature of the air molecules inside the cavity causes 

undulation as the internal acoustic pressure attempts to reach equilibrium.  Figure 5 

depicts a generic schematic of the Helmholtz resonator. 
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Figure 5.   Schematic of Helmholtz Resonator [From 17] 

A conceptual rendition of an electromagnetic Helmholtz resonator is offered in 

Figure 6.  Located opposite from the port of the Helmholtz resonator is a piezoelectric 

backplate.  Piezoelectrics will be discussed thoroughly in the latter half of the mechanical 

section of this chapter.  The backplate is actuated by acoustic cavity pressure in a 

sinusoidal fashion.  Acoustic energy is converted first to mechanical energy as the 

backplate is deformed.  Subsequently, mechanical to electrical transduction occurs due to 

molecular strain of the piezoelectric.  
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Figure 6.   Electromechanical Helmholtz Resonator [From18] 

Acoustic energy harvesting experiments by [19] indicate a power density of 

0.34μW/cm2 for an acoustic input of 149 dB.  Improved fabrication could potentially 

achieve a power density of 250μW/cm2 at 149 dB.  While the results show no scaling 

advantage to miniaturization, the smaller form factor makes this energy harvesting 

technique an enabling technology for wireless sensor networks.  As most acoustic energy 

harvesters rely on piezoelectrics as a coupling agent, the underlying effect will be 

discussed in more detail later in this thesis.  

C. THERMAL ENERGY 

Ambient temperature differentials may also provide a prospective energy source 

for scavenging.  This differential is converted into electricity through a physical 

phenomenon known as the thermoelectric effect.  This effect is an aggregate of three 

distinct phenomena, the Seebeck effect, the Peltier effect, and the Thompson effect. 

1. Seebeck Effect 

The Seebeck effect was coined by Estonian-German physicist Thomas Johann 

Seebeck.  He noticed the presence of an electromagnetic field (EMF) when two metals of 

different temperatures were joined in a complete loop.  The voltage induced was on the 

order of several microvolts per Kelvin.  
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2. Peltier Effect 

Jean-Charles-Athanase Peltier noticed the reverse of the Seebeck effect when a 

voltage is applied across two dissimilar metallic junctions.  Peltier observed that one of 

the junctions increases in temperature whereas the other decreases [20].  The temperature 

flux is directly proportional to the magnitude of the current flowing across the closed 

circuit.  As the laws of reversible thermodynamics apply, power densities for the Peltier 

effect are similar to the Seebeck effect.  

3. Thompson Effect 

A homogeneous material of different temperatures along its length emits or 

absorbs heat when subjected to electric current.  The British physicist [21] William 

Thompson observed this effect in 1854 . 

4. Thermoelectric Generation 

These three thermoelectric effects provide the mechanisms by which thermal 

energy is converted into electrical energy.  Optimal efficiencies degrade based on three 

non-idealities: parasitic thermal conduction, electrical resistance, and thermal non-

uniformity [22].  Nonetheless, NASA successfully implemented thermoelectric 

generators to power systems on the Voyager.  Miniaturization has seen success in micro-

fabricated thermoelectric products such as those currently offered by the watchmakers of 

Seiko.  State of the art thermoelectric power densities currently render 50 µW/cm2 at a 

temperature difference of 5-K [23].  The last ten years have shown a significant increase 

in micro-fabricated thermoelectric generator research.  While thermoelectric MEMS 

generators have a very promising future, current low energy conversion efficiency and 

high cost dissuade candidacy of this energy domain at this time [24].  

D. MECHANICAL ENERGY 

Mechanical, or vibration, energy generation relies on an environment where a 

power-scavenging device is subjected to external, preferably sinusoidal, vibrations, such 
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as walking or a running engine.  In such a case, the oscillation generates electricity by 

utilizing either mechanical strain or relative displacement inside the scavenging system 

[25].  Micro-scale scavenging systems for vibration energy are based on either force 

driven or free motion (inertial) microgenerators.  The former system is not pursued in this 

thesis.  

Inertial generators are comprised of a suspended inertial proof mass m, which 

displaces z(t) relative to a frame as displayed in Figure 7.  

 

 

Figure 7.   Model of Inertial Generator[From 26] 

It is the frame that is actually subjected to external excitation and undergoes 

absolute displacement y(t).  The range of displacement z(t) may be either positive or 

negative depending upon the direction of acceleration.  Work is done in opposition to the 

damping force f(z).  This damping force f(z) is implemented using a transduction 

mechanism and naturally opposes any relative motion.  Kinetic energy is converted to  
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electrical energy through this transduction mechanism.  This thesis focuses on the three 

main transduction mechanisms: piezoelectric, electromagnetic, and electrostatic 

transduction. 

1. Inertial Generator Operating Principle 

Motion-to-electric energy conversion occurs in seven dynamic steps as shown in 

Figure 8.  Vibration-based mechanical energy is applied in the form of a coupling force.  

This coupling force either deforms a piezoelectric or accelerates a proof mass.  The 

resultant energy is the work performed by the coupling force.  This energy is stored in the 

generator prior to transduction.  

 

Figure 8.   Energy Flow in MEMS Generator 

The mechanical energy resident in the generator then undergoes an electro-

mechanical conversion through transduction.  A transduction force counteracts 

deformation or acceleration of the input coupling element.  This dampening energy 

loosely equals the work done by the transduction force.  Note, in a piezoelectric material, 

both input coupling and transduction may occur within the same element.  
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2. Piezoelectric Effect 

As early as 1880, two French brothers, Pierre and Jacques Curie, noted a surface 

charge on crystals of certain minerals when mechanically stressed [27].  The scientific 

community realized the potential of the discovery and coined the phenomenon after the 

Greek word “piezein,” meaning to squeeze or press.  Logically, “piezoelectricity” 

connotes electricity derived from pressure.  A year after the Curie brothers presented the 

direct piezoelectric effect to the Academy of Sciences, physicist Gabriel Lippmann used 

the principles of fundamental thermodynamics to mathematically deduce the converse 

piezoelectric effect.  Within a short period of time, the Curie brothers successfully 

demonstrated the converse piezoelectric effect.  

It was not until 1917 that the first serious application for piezoelectric materials 

was realized.  Paul Langevin and fellow French co-workers utilized both direct and 

converse piezoelectric effects to emit and detect underwater sounds waves.  Their sonar 

transducer made from piezoelectric crystals lead to the field of ultrasonics and 

hydrostatics [27].  

Piezoelectric material use proliferated throughout both World Wars in 

technologies such as microphones and accelerometers.  During World War II, research by 

the United States, Japan, and the former Soviet Union advanced development of 

piezoelectric materials with extremely high dielectric (insulator) constants.  These 

research efforts lead to the discovery of piezoelectric ceramics and polymers.  

Piezoelectric ceramics consists of perovskite crystals.  The structures reside in 

two distinct crystallographic forms as shown Figure 9.  Above a critical temperature 

known as the Curie temperature, each perovskite crystal morphs into a simple cubic 

structure with no dipole moment.  
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Figure 9.   Crystalline Structure of Piezoelectric Ceramic Before and After Polarization 
[From 28] 

Conversely, below the Curie temperature, tetragonal symmetry of the perovskite 

crystal exhibits a dipole moment.  “Domains” are formed by regions of adjoining dipoles 

sharing local alignment.  This arrangement yields an aggregate dipole moment in the 

domain.  The resultant orientation of the net polarization is initially random.  Subjecting 

the material to a strong DC electrical field at elevated temperatures orients the polar 

domains.  The polarization remains as the temperature is reduced.  This “poling process,” 

as illustrated in Figure 10, results in the material exhibiting macroscopic piezoelectric 

properties.  

 

 

Figure 10.   Poling of Piezoelectric (PZT) Material [From 29] 
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Domains aligned with an applied electric field elongate at the expense of those 

domains not aligned with the applied electric field.  The piezoelectric operates as an 

actuator as electrical energy is converted into mechanical energy.  This transduction 

mechanism is reversible.  As demonstrated by the Curie brothers, mechanical 

compression or tension applied along the direction of or perpendicular to the dipoles 

produces an electric field through charge separation.  When operated in this fashion, the 

piezoelectric material acts as a sensor; mechanical energy is converted into electrical 

energy.  

Creative applications in piezoelectric energy harvesting were researched by both 

Massachusetts Institute of Technology and the University of Pittsburgh in the 1990s [30].  

Discerning that humans exert roughly 130 percent of their bodyweight while walking, 

designers sought to capture the energy released at the foot strike through piezoelectrics.  

Even with poor electromechanical conversion efficiency, as much as 8.3mW was 

realized.  

Research has yet to completely eradicate the fatigue and stress inherent with the 

electromechanical interactions of the crystal structures.  However, metallic layering and 

improved processing techniques have been shown to mitigate these factors [31].  State of 

the art design is currently able to harness as much as 30mW of power [32].  

Piezoelectrics will continue to be a viable candidate for actuating, sensing, and harvesting 

energy at the micro-scale level due to its innate ability to detect even the smallest 

vibrations.  

3. Electromagnetic Effect 

The union between electricity and magnetism has been observed by sailors ever 

since the magnetic compass assisted in nautical navigation.  Hermann Melville noted the 

phenomenon in a chapter titled “The Needle” in the literary classic Moby-Dick [33].  As 

lighting storms approached, Sailors noticed erratic behavior with their compass needles.  
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In 1600, the English scientist and physician William Gilbert published De 

Magnete. The work elucidates the magnetic properties of the Earth and proposed 

magnetism and electricity as two distinct effects [34].  Properties of electricity were 

clarified by experiments of Benjamin Franklin.  In 1747, Franklin proposed that electric 

charge was comprised of an attractive and repulsive electric force [35].  

The first hint of true electromagnetic cognizance was evinced by an Italian lawyer 

and amateur physician named Gian Domenico Romagnosi.  In 1802, Romagnosi cited a 

physical link between an induced current and magnetism [36].  However, credit for the 

actual discovery of electromagnetism was awarded 18 years later to the Danish scientist 

Hans Christian Oersted.  Upon observing the deflection of a compass needle when near 

an electric current, Oersted successfully explained the fundamental relationship between 

electricity and magnetism [37].  

Building upon Oersted’s discovery that electric current produced a magnetic field, 

England’s Michael Faraday formulated the principle of electromagnetic induction.  In 

1831, Faraday empirically proved that electric current could be produced through the 

motion of a magnetic field [38].  The adroit mathematician from Scotland, James 

Maxwell, unified preceding developments up to 1864 into an accurate theory of 

electromagnetism known as Classical Electromagnetism.  Maxwell established a set of 

mathematical equations to accurately describe electromagnetic fields [39]. 

Conventional macroscale electrical generators are primarily based on 

electromagnetic transduction.  This form of transduction realizes power generation 

through Faraday’s Law of Induction.  Figure 11 provides a general schematic for the 

basic operating principle of the electromagnetic transducer.  
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Figure 11.   Electromagnetic Transduction Principle Operation [From 40] 

Voltage v(t) is induced by a change in the magnetic environment.  This change is 

manifested in a variety of techniques such as magnetic field strength fluctuation, drawing 

coils in and out of magnetic field, and rotating the coils relative to the magnetic field.  

The voltage produces a current i(t) whose own magnetic field opposes change.  The 

strength of this inertial magnetic field is represented by an opposing force f(t).  The 

mechanical work done against this force is reflected in heat (resistance R) and stored 

energy (inductance I).  

Most electromagnetic energy harvesters today implement a damper using the 

same principles described by Faraday’s Law of Induction and Figure 11.  Scaling this 

transduction mechanism to the micro level introduces key practical considerations.  The 

small geometries inherent in MEMS generators make the rapid flux changes required by 

strong damping forces complicated to attain.  Moreover, the number of coil turns 

achievable in a MEMS device is limited.  Enumerating each technological advance in 

electromagnetic transduction exceeds the scope of this thesis.  However, revolutionary 

exploits in energy harvesting methods will be discussed in detail under literature review. 

4. Electrostatic Effect 

In electrostatic generators, two bodies are charged with equal and opposite 

magnitude (+q and -q).  As evinced by Figure 12, an electric field generates capacitive 
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attraction forces that can be resolved about the three Cartesian directions.  Mechanical 

forces may be employed to work in opposition to these capacitive attraction forces. 

 

Figure 12.   Potential Motion Directions of a Charged Mobile Plate when Attracted by 
Three Fixed Cartesian Wall-Plates [From 40] 

Effectively, electrostatic generators are mechanically variable capacitors.  

Charging of the capacitor is performed by an external charge.  In this case, the 

microgenerator acts as an electrostatic actuator as electrical energy is converted to 

mechanical motion.  Alternatively, external excitation evokes relative motion along the 

Cartesian axes, which translates to a capacitive change.  In this mode, the system 

performs as a sensing metric.  

Electrostatic actuation and sensing appeal to microgenerators due to the inherent 

rapid response, sensitivity, accuracy, and relative fabrication costs of the system.  Many 

MEMS devices utilize electrostatic-force principles in a single direction of motion.  

Figure 13 demonstrates the attractive nature of two oppositely charged plates along a 

single axis.  The question remains as to how movement can be fixed.  
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Figure 13.   Attractive Force Generated by Electric Field [From 40] 

The popular approach for isolating movement along a single axis is to position the 

mobile capacitive body symmetrically between two balanced forces.  Figure 14 offers a 

two-dimensional schematic showing how the forces along one of the Cartesian axis 

cancel each other.  Thus, only the remaining unbalanced force is subject to movement. 

 

Figure 14.   Single Axis Isolation Through Symmetry [From 40] 

This concept logically extends three-dimensionally by again balancing forces 

symmetrically along the out-of-phase-plane.  

Base excitation may cause movement along the in-phase plane.  Figure 15 

provides a model for the principle of operation behind electrostatic transduction. 
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Figure 15.   Electrostatic Transducer Constant Charge Operating Principle  
[From 41] 

This parallel plate structure is subject to variable separation.  However, the system 

maintains constant overlap in that the horizontal component of z(t) remains zero.  As 

electric field strength f(t) is directly proportional to the constant charge v(t), the electric 

field E(t) energy density is independent of the changes in plate proximity.  A greater 

force in opposition to the capacitive attractive force (base excitation) results in plate 

separation.  As a result, the energy expended to perform this mechanical work is stored as 

potential energy in the electrical field E(t). 

MEMS applications are unsuitable for a single pair of charged bodies.  In order to 

amass the requisite energy, multiple pairs are employed in a comb-like configuration.  

Figures 16 and 17 offer a schematic of this concept in both planar and rotary 

configurations, respectively. 

 

Figure 16.   Planar Electrostatic Transduction [From 42] 
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Figure 17.   Rotary Electrostatic Transduction [From 40] 

Electrostatic transducers possess a unique disadvantage compared to other 

transduction mechanisms.  The need for capacitors requires a precharge, or priming, 

voltage in order to function properly.  Studies have shown the presence of electrets, such 

as employed for use in microphones and telephones, buried in a dielectric layer may offer 

a permanent charge [42]. 

In conclusion, a myriad of technologies exist that might potentially enable an 

ultra-low power electronic device to operate autonomously on ambient energy.  Optical, 

acoustic, thermal, and mechanical energy domains are introduced to evince their 

practicality within this thesis’s problem set.  While not an exhaustive comparison, a 

broad cross section of fundamentals offers a classification in terms of scalability and 

usability.  The successive chapter will advance this classification by specifically 

highlighting advantages and disadvantages of each energy domain in terms of micro-

scale technologies. 
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III. LITERATURE REVIEW 

The previous chapter provides a historical overview of four major energy 

harvesting techniques (optical, acoustic, thermal, and mechanical).  Of these, optical is 

the most mature technology.  However, because of issues in scalability, it may not be the 

premier candidate for energy harvesting microsystems.  The following chapter reviews 

key advances in research and the state-of-the-art in energy harvesting.  The last section of 

this chapter highlights breakthroughs in mechanical energy harvesting.  We focus on 

vibration-based electromechanical energy conversion because of its candidacy at the 

micro-level.  

A. OPTICAL ENERGY 

Lee et al. (1995) offer a 1 cm2 solar cell array matched for electrostatic MEMS 

capable of providing power with an upper voltage potential of 150 V and currents in the 

nA to µA range.  The team used a hydrogenated amorphous silicon (a-Si:H) to optimize 

their solar array design.  Each cell is comprised of a triple layer of P-N junctions coupled 

with a-Si:H to achieves open circuit voltages of 1.8-2.3 V.  One hundred of these single 

cells (total area of 1 cm2) interconnected in series produces 150 V and 2.8 µA [16]. 

In Third Generation Photovoltaics (2002), Green argues that second generation 

solar arrays have realized their maximum potential at 40% efficiency.  Green offers a 

third generation thin-film technology capable of approaching the thermodynamic solar 

conversion limit of 93%.  The text describes options involving parallel configurations of 

tandem cells to reach higher efficiencies [43]. 

In a paper submitted to the IEEE Conference on Local Computer Networks 

(2003), a team from the Free University of Berlin proposes algorithms utilizing solar-

aware routing.  By adding the solar status of each node as a parameter, route determining 

algorithms reduced overall power consumption associated with the passing of packets 

when compared to traditional shortest path algorithms [44]. 
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Li and Chou (2004) submit load matching (maximum point tracking) as a key to 

solar power conversion efficiency.  Their strategy consisted of identifying the optimal 

runtime load, sunlight condition, and solar panel efficiency curves.  A power manager 

tracks these parameters to yield the maximum power achievable for the profile.  Using 

the load matching strategy, power utilization is improved by 132% compared to 

traditional solar powered systems.  [45]. 

Raghunathan et al. (2005) develop a mote (Crossbow) plug-in to autonomously 

manage energy harvesting and storage.  As Li mentioned above, Raghunathan et al. cite 

the importance of a harvesting aware power manager.  Their design, coined the 

Heliomote Board, incorporates such a manager to achieve efficiency levels between 80-

84% for the operating range of the 802.15.4 device [46]. 

B. ACOUSTIC ENERGY 

Horowitz et al. (2002) employ an electromechanical Helmholtz resonator with a 

piezoelectric backplate to reclaim the energy in an acoustic field.  Their proof of concept 

entailed self-powered electret microphone calibration.  Laser measured diaphragm 

displacement coupled with cavity pressure modeled power flow.  Conversion efficiency 

was estimated at 11% and 37% for mechanical to piezoelectric and piezoelectric to 

electret load, respectively.  The authors suggest efficiency could be improved with more 

complex converter schemes [47]. 

Horowitz et al. (2006) furthers his research in the field of acoustic energy 

harvesting by micromachining a Helmholtz resonator with piezoelectric backplate.  

Empirical results support a power density of 0.34 µW/cm2 at 149 dB.  Most of Horowitz 

applications are towards aircraft engine nacelles [19]. 

C. THERMAL GRADIENT ENERGY 

Kiely et al. (1991) from the University of Wales propose fabricating a 

thermoelectric generator using polycrystalline thermoelements on a quartz substrate.  

Utilizing silicon integrated circuit technology, the team was able to reduce overall 
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construction costs while preserving electrical properties similar to a single crystal.  

According to test results, a 10-fold decrease in the substrate thermal conductivity is 

realized [48]. 

Wu et al. (1996) analyzed waste-heat thermoelectric power generators.  The team 

modeled a real waste-heat thermoelectric generator accounting for both internal and 

external irreversibility.  Joulean loss and conduction heat transfer constituted internal 

irreversibility.  External irreversibility was caused by temperature differentials between 

junctions.  Using these factors, the team was better able to predict power and efficiency 

compared to an ideal thermoelectric generator.  Results supported the need for new 

thermoelectric materials and power module designs [49]. 

Stordeur et al. (1997) use advanced thermoelectric compound semiconductor thin 

films to increase power output from the nW range to µW performance.  Under a 

temperature differential of 20 K, prototypes achieve a power output of 20 µW and 4 V.  

However, upper limits were reached at around 60 µW [50]. 

Damaschke (1997) introduces a DC-DC converter circuit optimized at the low-

voltage and low-power region.  His circuit is attached to a bismuth telluride 

thermoelectric module operating within a 20-oC temperature differential.  The 

combination achieves an upper limit power output of 131 mW and 5 V.  More, his low 

budget prototype performs at 76% of the maximum available power [51]. 

Stark and Stordeur (1999) introduce a Low Power Thermoelectric Generator 

(LPTG) capable of a power output up to 23.5 µW and 4.2 V at temperature differentials 

of 20 K.  Their LPTG is based on bismuth telluride technology with decreased substrate 

thickness and increased film thickness [52]. 

Zhang et al. (2001) propose, build, and implement a micromachined 

thermoelectric generator containing a catalytic combustion chamber.  Tiny chambers 

ignite hydrogen and air to power each Polysilicon-Pt thermocouple.  Thermocouples then 

achieve around 1 µW of output power.  Temperature differentials approaching 800 K 

produce up to 10 µW of power per thermocouple [53]. 
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Douseki et al. (2003) demonstrate that the heat from a hand or water is capable of 

short-range wireless transmission.  Their demonstration is realized through a switch-

capacitor (SC) type CMOS/SOI DC-DC converter and micromachined thermoelectric 

module.  The author elucidates the difficulty with operating thermoelectric generators at 

temperatures that lead to negative polarity.  To counter this limitation, Douseki employs a 

converter coupled with a SC capable of always positive power output [54]. 

Nolas et al. (2006) review recent developments of new concepts and materials 

concerning low thermoelectric conductivity.  Their survey spans from nanostructure to 

non-microscopic size.  They found that improved structural engineering potentially leads 

to more efficient electron and phonon transport in bulk materials.  Changing band 

structures, energy levels, and electron state density of superlattices improves energy 

conversion of charged carriers at the quantum level.  They conclude that while new 

materials offer high potentials, conventional glass/electron-crystal materials require more 

scientific efforts before being dismissed [55]. 

Yang and Caillat (2006), inspired by NASA’s utilization of thermoelectric waste-

energy in space systems, sought to recover some portion of the 70% of combustion 

energy lost in conventional automobile engines.  Decades ago, NASA developed 

radioisotope thermoelectric generators to support space vehicle applications.  A 

schematic of the radioisotope thermoelectric generator used in the Galileo mission is 

provided in Figure 18. 
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Figure 18.   Radioisotope Thermoelectric Generator [From 56] 

The radioisotope thermoelectric generator utilizes the aforementioned Seebeck 

effect.  Radioactive decay of an isotope, such as plutonium-238, releases heat that is then 

converted to electricity through a thermoelectric converter.  The subsequent 

electromagnetic force is used to provide reliable heat and electricity to operate 

components and science instruments.  Yang and Caillat coupled this technology with 

Chrysler’s 1954 attempt to introduce a thermoelectric climate-control system to propose 

automotive thermoelectric generation.  Immediate benefits include the elimination of 

parasitic loads on the engine drive train as well as replacing current refrigerant-centric 

systems with a solid state, reversible air conditioning system [56]. 

Sodano et al. (2007) offer significant advantages of thermoelectric generators 

over piezoelectric generators in the context of wireless technology.  Their proof of 

concept is illustrated using only the convective (passive) heat transfer of a thermocouple 

to charge an 80 mAh and 300 mAh nickel metal hydride battery.  Their approach is 

predicated on a miniature greenhouse device to harness the thermal energy from solar 

radiation [57]. 
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D. MECHANICAL ENERGY 

One of the earliest documented experiments in piezoelectric power harvesting was 

performed by Häsler et al. (1984).  They designed and implemented a piezoelectric 

mechano-electrical generator to power implants such as insulin pumps, glucose sensors, 

and magnetic valves.  Noting thorax displacement during breathing, their design 

consisted of anchoring a tube between two parallel ribs such that respiratory fixing and 

contracting strained two stacked piezoelectric sheets within the tube.  Figure 19 illustrates 

a cross sectional diagram of their design. 

 

Figure 19.   Piezoelectric Mechano-Electrical Transduction Mechanism  
[From 58] 

Simulations achieved an upper power limit of 20 µW based on a 15% power 

conversion efficiency.  Experiments on a dog’s lateral thorax region supported a peak at 

17 µW.  The deviation from expected levels may have been linked to the decrease of 

displacement from the anticipated 2% to an actual 0.5%.  Häsler et al. deem the design 

insufficient to power implanted devices requiring at least 1 mA of power [58]. 

Schmidt et al. (1992) propose a piezoelectric polymer wind generator.  The team 

predicts that electrical resonance, coupled with piezoelectric material losses, theoretically 

achieve a power output of order 100 W/cm3.  The basic piezoelectric methods are 
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employed using bimorphs under wind-driven mechanical oscillation.  Assuming a wind 

power plant does not exceed an overhead cost of $1000/kW, the team offers their 

technology could be mass-produced within budget.  This is based on the piezoelectric 

polymer representing no more than 10% of plant costs [59]. 

Starner et al. (1996) predicted over 10 years ago that ubiquitous computing would 

cut the tether of the battery.  They reviewed numerous power generation methods using 

the human body.  Experiments included capturing body heat at the neck, respiration 

through masks, and blood pressure via an intravascular turbine.  In conclusion, power 

generation through limb free-motion produced the most potential for powering wearable 

computing [60]. 

Williams and Yates (1996) use the General Resonance Generator Theory to 

derive a set of equations to represent the upper power limit of electromagnetic MEMS.  It 

is understood that inertial-based generators perform as second-order, spring-mass 

systems.  Figure 20 illustrates a simple example of such a system with seismic mass m 

undulating from a spring of stiffness k. 

 

Figure 20.   Model of Linear Inertial Generator [From 61] 

Energy loss within the system is represented by the damping coefficient, cT.  The 

damping coefficient is a combination of parasitic loss, cp, and electrical energy, ce, 
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generated by the transduction mechanism.  The inertial frame surrounding these 

components is excited by an external sinusoidal vibration given by  

 ( ) sin( ),y t Y t  (1) 

where Y is the amplitude of vibration. Upon external resonant excitation, the seismic 

mass moves out of phase with the inertial frame and results in a net displacement, z(t).  In 

order to mathematically describe this motion, two assumptions must be established.  

First, the external vibration’s source must be significantly greater in magnitude than the 

seismic mass.  Second, external excitation must be harmonic and infinite.  Thus, the 

movement of the generator does not affect the vibration source.  Derived from the 

dynamic forces on the mass, the differential equation of motion is  

 
.. . ..

( ) ( ) ( ) ( ),m z t d z t kz t m y t     (2) 

where y(t) denotes the displacement of the inertial frame.   The succeeding equations are 

based on the principle that energy is extracted from the relative displacement between the 

inertial frame and seismic mass. The steady-state solution for the seismic mass is 

provided by 
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where  is the phase angle expressed as 
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The harmonic frequency of the system, ωn, given as 

 ,n

k

m
   (5) 

must equal the excitation frequency in order to achieve maximum power.  Because of the 

characteristics of the system, both the mass and the mass-spring damper are subject to the 

force expressed as 
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( )F m y t   (6) 

Williams and Yates describe the transfer of instantaneous power from the mass, p(t), as 

the multiplication of the magnitude of force on the mass and the velocity of the mass, or: 

 
.. . .

( ) ( ) ( ) ( ) .p t m y t y t z t     
 (7) 

Mechanical energy is transferred to electrical energy by means of an electrical 

transducer.  As mentioned earlier, the energy extracted by this transduction mechanism 

combined with parasitic loss constitute the damping coefficient.  The net electrical power 

dissipated (generated) within the damper is expressed as 
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where ζT represents the total damping ratio given as 

 .
2

T
T

n

c

m



  (9) 

The properties of equation (8) imply that power generation is not affected by 

transducer type.  Moreover, the equation offers that power dissipated (generated) is 

directly proportional to the cube of the vibration frequency.  That said, very low external 

excitation frequencies may not suffice.  The authors assert that the primary design 

limitation on the power output of an electromagnetic generator is its size.  Specifically, 

device size resultantly limits the magnitude of its seismic mass and displacement 

potential.  That said, an electromagnetic MEMS generator is suitable for embedded 

systems with a low power requirement.  External excitation may range from a few tens to 

hundreds of hertz.  Williams and Yates stopped short of actually fabricating a prototype.      

[61]. 

Umeda et al. (1996) investigate electrical power generation using piezoelectric 

transduction.  Their experiment includes measuring the relationship between mechanical 
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impact energy and the resultant electrical energy after a steel ball stimulates a 

piezoelectric vibrator.  The authors propose a statistically equivalent model to analyze the 

electromechanical coupling coefficient, mechanical loss, and dielectric loss of the 

vibrator to ultimately yield the transformation efficiency.  The model also attempts to 

optimize the load resistance [62]. 

A year later, Umeda et al. (1997) present theoretical and experimental results of a 

piezoelectric prototype based on their earlier efforts.  In this work, the generator’s 

oscillating output voltage is rectified.  A capacitor provides a source for storing the 

resultant rectified voltage.  The authors provide an equivalent circuit model to simulate 

the capacitance and pre-charge of the capacitor.  Their prototype ostensibly achieved a 

maximum efficiency above 35% [63]. 

Kimura (1998) was issued a patent protecting the production of a piezoelectric 

generator.  A piezoelectric plate produces an AC voltage that is subsequently rectified by 

means of a Schottky diode.  Kimura finally stores the rectified electric potential in a 

capacitor.  Kimura claims his battery-free device could be used as an earthquake alarm.  

Accordingly, an earthquake of requisite magnitude would displace the piezoelectric 

plates enough to impart an electromagnetic force.  The resultant electromagnetic wave 

then emits a signal to actuate an alarm [64]. 

Kymissis et al. (1998) investigate three MEMS generators placed in a shoe for the 

purpose of environmental energy harvesting.  Two of the devices possess a piezoelectric 

material.  The first piezoelectric device attempts to capture the energy released where the 

sole of the shoe bends.  As illustrated in Figure 21, the stave is shaped as an elongated 

hexagon utilizing a piezoelectric bimorph. 
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Figure 21.   Piezoelectric Bimorph Stave for Insole [From 65] 

The second device, displayed in Figure 22, focuses energy capture at the heel 

strike.  The team selects a piezoelectric unimorph developed at NASA. 

 

Figure 22.   Piezoelectric Unimorph Heel Insert [From 65] 

Figure 23 illustrates the third device in which the team elegantly adapts a standard 

electromagnetic generator to be employed under rotational load. 
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Figure 23.   Rotary Electromagnetic Generator [From 65] 

After thorough testing and comparison, a prototype is fabricated to broadcast a 

digital RFID.  Although the rotary electromagnetic device achieved twice the power 

generation compared to the two piezoelectric devices, integration of the system proved to 

be the most difficult of all systems.  Both piezoelectric devices offer quasi-seamless 

incorporation into a shoe and generate power at the 10 mW threshold [65]. 

Goldfarb and Jones (1999) analyze the efficiency of power generation with regard 

to a piezoelectric stack.  One might predict that maximum power generation is realized at 

the stack’s structural resonance.  However, the team’s analytic model suggests that peak 

power is achieved several orders of magnitude below resonance.  Moreover, their model 

implies that the energy captured in the piezoelectric stack is returned to mechanical 

energy as opposed to completing the transfer to electrical energy.  Analytic results from 

the model are substantiated through experiments.  The team ultimately concludes that the 

efficiency of the transduction mechanism is predicated on the magnitude of the input 

force [66]. 

Jansen and Stevels (1999) performed work to satisfy a requirement posed by the 

Industrial Design Engineering of Delft University of Technology in The Netherlands: For 

what products and how can human power be a viable alternative to batteries in portable 
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consumer products?  The team primarily considers human engagement of muscles as 

potential power harvesting sources.  Human powered systems based on pushing, 

squeezing, turning, and pedaling are investigated [67]. 

Allen and Smits (2000) offer a feasibility study of utilizing the Karman vortex to 

induce oscillations of a piezoelectric membrane coined “eel.”  The Karman vortex, or 

eddies, are illustrated along with the eel in Figure 24. 

 

Figure 24.   Schematic of Oscillating Piezoelectric Membrane Inside Eddies  
[From 68] 

The team introduced an object into a fluid laminar flow field in order to create 

unsteady conditions marked by eddies.  Placing the piezoelectric eel along these eddies 

resulted in capacitive buildup [68]. 

Ramsey and Clark (2001) provide a design study investigating the possibility of 

using a piezoelectric membrane (1 cm2) to collect power for an in vivo MEMS 

application.  The team successfully loads two piezoelectric plates of differing modes.  

The 33-mode plate intrinsically offers more power output due to the volume of material.  

However, the 31-mode operates better in environments similar to the human body and 

thus provides better conversion efficiency.  Ultimately, the 31-mode was shown to 

harness power for MEMS applications in the µW range for continuous power and the 

mW range for intermittent power [69]. 

Elvin et al. (2001) propose that the proliferation of wireless sensors coupled with 

the decreasing power demand of integrated circuits naturally leads to environmental 

sources of unconventional power.  They analyze a self-powered strain energy sensor 

within the scope of wireless transmission.  Experiments with a composite piezoelectric 
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beam characterize the wireless sensor response to mechanical strain.  Figure 25 shows an 

analog power harvesting circuit in which a half-diode bridge connects to the capacitor 

responsible for charge. 

 

Figure 25.   Half Bridge Power Harvester with Leakage Resistance [From 70] 

The resistor accounts for the voltage leakage intended in the design.  A radio 

frequency transmitter may adequately constitute this leakage.  The team experimentally 

verifies the strain sensor’s dependence on both frequency and magnitude of the applied 

load.  Although the team does not offer potential power densities, they submit that loads 

between 10 and 20 N suffice to transmit a signal over a distance of 2 meters at 1 MHz.  

This supports the claim that sensors can collect enough energy from the environment to 

transmit over a wireless link [70]. 

Departing from the trend of piezoelectric research, Meninger et al. (2001) model 

and design a 2163 µm x 2554 µm electrostatic MEMS application capable of achieving 

over 8 µW of power.  The team is able to attain this upper limit by optimizing controller 

integrated circuits such as power switch sizing and capacitance.  Moreover, an ultra-low 

power delay locked loop-based system is shown to successfully achieve a steady-state 

lock to the frequency of vibration [71]. 

Sterken et al. (2002) also discuss electrostatic generators utilizing charged 

electrets.  Unlike Meninger et al., this team employs a duty cycle of 100% as opposed to 

time periods of no electrostatic conversion.  The result is 100 µW at 1,200 Hz for micro-

machined capacitors displaced at 20 µm.  Another difference in their design is the use of 

an electret to avoid the need for a pre-charge [72]. 

Ottman et al. (2002) propose a method for optimizing vibrational energy 

harvesting through piezoelectric transduction.  A step-down DC-DC converter governs 
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power levels to the electric load.  The team experimentally confirms their theory that the 

optimal duty cycle becomes constant as the excitation frequency increases.  This 

phenomenon greatly simplifies operation of the step-down converter.  Ultimately, the 

converter enables a 325% increase in harvested power.  Their design achieved 30.66 mW 

of power [32]. 

Sodano et al. (2003) consider the power levels of a few milliwatts too small for 

practical applications.  They prefer to use two piezoelectric designs to charge a nickel 

metal hydride battery.  Although this re-introduces the battery tether, the ability to 

recharge the battery autonomously preserves the spirit of this thesis.  The first model 

consists of a traditional monolithic piezoelectric plate that proves superior due to its 

ability to charge various sizes of rechargeable batteries to within 90% capacity.  A Macro 

Fiber Composite (MFC) recently designed at NASA Langley Research Center constitutes 

the second harvesting device.  While the interdigitated electrodes prove more flexible 

than traditional piezoelectric material, the MFC produces high voltage at low power 

levels.  This results in current levels too low to charge the rechargeable batteries of 

interest.  The piezoelectric device also proves more advantageous over traditional random 

input signal recharging [73]. 

Continuing with General Resonant Generator Theory, Beeby et al. (2007) extend 

Williams and Yates (1996) mathematical analysis of maximum power.  As mentioned, 

maximum power is achieved when the device is excited at harmonic frequency.  During 

such instances, net power dissipation may be given as 
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Excitation acceleration magnitude, A, given by 
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may be substituted in equation (10) to render 
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Beeby et al. express a transduction mechanism’s upper extractable power limit in 

terms of parasitic and transducer damping ratios as 
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Extractable power is maximized when both parasitic, p , and transducer, e ,damping 

ratios are equivalent  p e  .  Small amounts of parasitic damping are inevitable and 

may even be utilized to govern z(t).  Based on the above mathematical analysis, the 

researchers offer new insight into design considerations for inertial generators.  

Maximum power is predicated on both generator frequency and damping thresholds.  

These two characteristics must be designed specifically for the application of interest.  

Too great of an excitation frequency could potentially lead to nonlinear performance and 

force the generator out of resonance.  As power is inversely proportional to the harmonic 

frequency of the generator one can deduce that the lowest natural frequency is the most 

desirable.  Not only does this maximize power but preserves linear behavior [25]. 

 The chapter highlights noteworthy advances in the field of energy harvesting.  

Disadvantages and advantages for light, sound, thermal gradient, and vibration-based 

power scavenging is discussed.  The overall opinion from the literature presented is that 

each domain must be assessed individually in pursuit of the premium method of 

transduction.  However, vibration-based power generation is ostensibly the most 

adaptable and ubiquitous ambient energy source available for ultra-low power electronic 

devices.  For a more exhaustive review of research, the reader is invited to refer to 

Sodano et al. [74] and Anton and Sodano’s [75] 2007 review of research published more 

recently.  Figure 26 displays many of the noteworthy advances mentioned in this section.   
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Figure 26.   Energy Harvesting Taxonomy 
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IV. POWER CONDITIONING, STORAGE AND MANAGEMENT 

The previous chapter offers notable achievements in the field of energy 

harvesting.  While a single energy harvesting technique will not suffice to meet the 

requirements of all microsystems, each technique must take into consideration power 

conditioning, storage, and management.   

A. POWER CONDITIONING 

Power conditioning is a technique for manipulating the load delivered to an 

electrical device.  To date, the majority of research in micro-scale energy harvesting 

focuses on the transduction process while power conditioning is simply reduced to a 

resistive load.  Nonetheless, power conditioning must not be overlooked in the design 

process.  Its demand for thorough consideration is three-fold.  First, the unprocessed 

power from the transduction process will rarely be directly compatible with the electronic 

device’s load.  Ottman et al. cite the importance of impedance matching for power 

transfer optimization [32].  Second, input impedance must concur with the input vibration 

if the extracted input energy is to be maximized [76].  Third, for intermittent energy 

sources or load sources imparting burst behavior of relatively high energy demand, 

energy storage devices offer an uninterrupted power supply. 

Figure 27 illustrates the output voltage, modeled as an alternating current (AC), of 

most piezoelectric, electromagnetic and electrostatic micro-generators. 

 

Figure 27.   Model of AC Output of Microgenerator [From 77] 



44 

 

One technique for conditioning the voltage in order to ensure compatibility with 

electronic applications is by incorporating a rectifier.  Because photovoltaic and 

thermoelectric generators produce predominantly positive potentials, this conditioning 

technique is not necessary. 

A full bridge rectifier consisting of four standard diodes converts the AC voltage 

into a potential usable by most electronics.  Figure 28 provides an illustration of the 

conditioning circuitry used to render this positive potential. 

 

Figure 28.   Full Bridge Diode Rectifier [From 77] 

It is worth noting that a real diode is not a perfect conductor.  As such, it imposes 

a forward voltage drop thus making the output voltage slightly less that the input voltage.  

Figure 29 portrays this deviation from an ideal diode with perfect conductivity. 
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Figure 29.   Voltage Output Rendered by Full Bridge Diode Rectifier [From 77] 

B. POWER STORAGE 

Harvested energy availability is predominantly nondeterministic.  This 

characteristic demands the presence of an energy buffer to satisfy load requirements at all 

times.  Kansal et al. [78] introduce the term “Energy-Neutral Operation” to describe a 

usage mode in which an electronic application’s level of performance is infinitely 

supported by the energy harvesting system.  Obviously, this system would be subject to 

hardware failure but the focus is on severing the tether of battery power.  In order to 

evaluate the requirements for the metric coined energy-neutral operation, power from the 

energy source, Ps(t), and energy consumer, Pc(t), must be abstracted.  According to 

Kansal et al. [78], energy sources may be categorized into the following: 

 Uncontrolled but predictable: Such an energy source cannot be controlled 

to yield energy at desired times but its behavior can be modeled to predict 

the expected availability at a given time within some error margin 

 Uncontrolled and unpredictable: Such an energy source cannot be 

controlled to generate energy when desired and yields energy at times that 

are not easy to predict using commonly available modeling techniques or 

when the prediction model is too complex for implementation in an 

embedded system 

 Fully controllable: Energy can be generated when desired. 
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 Partially controllable: Energy generation may be influenced by system 

designers or users but the resultant behavior is not fully deterministic. 

The energy consuming activity, or load, being supported may be represented by a 

sensor node.  The consumption profile of this load may be nondeterministic as 

subsystems independently execute various application layer activities such as sampling, 

transmitting, and receiving. 

Considering power output from the energy source and load at the same instant in 

time, it is possible to model and analyze the energy conservation in three physical 

conditions.  Each condition will provide limits on Ps(t) and Pc(t) thus ensuring an energy-

neutral mode of operation.  Kansal et al. [78] define these three conditions as: 

 Harvesting system with no energy storage: Energy extracted from the 

transduction mechanism is directly consumed by the load.  No energy 

buffer exists.  The condition for this harvesting scenario may be expressed 

as 

 ( ) ( )s cP t P t  (14) 

Any energy received at times when ( ) ( )s cP t P t  is wasted.  Also, 

when ( ) ( )s cP t P t , the energy, ( ) ( )s cP t P t , is wasted.   

 Harvesting system with ideal energy buffer: Often, the energy profiles for 

generation and consumption may vary enough to warrant a storage 

mechanism.  This scenario presents an ideal energy buffer in which any 

volume of energy may be stored for an indefinite amount of time.  No 

leakage occurs.  For this case, the following expression should be satisfied 

for all non-negative values of T: 

 00 0
( ) ( ) [0, )

T T

c sP t dt P t dt B T       (15) 

where B0 is the initial energy stored in the ideal energy buffer.  The 

authors note that equation (14) suffices to ensure equation (15) but not 

necessary. 
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 Harvesting system with non-ideal energy buffer: Obviously, the previous 

two scenarios represent extremes and may not be practical.  This final 

condition provides a more practical scenario where an ultracapacitor acts 

as an energy buffer.  Keeping with the nature of capacitors, the energy 

storing mechanism is limited in storage capacity and subject to charging 

efficiency, η, is always less than one.  Finally, some fraction of energy is 

lost due to leakage.  The resultant conditions are expressed with the 

rectifier function, [x]+, being x when greater or equal to zero, else zero: 

 

 
         0 0 0 0

0

[0, )

T T T

s c c s leakB P t P t dt P t P t dt P t dt

T


 

           
  

    (16) 

 

where Pleak(t) is the leakage power for the energy buffer.  Equation (16) 

does not account for the depth of the energy buffer.  The following 

expression considers energy buffer depth: 
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    (17) 

where B represents the energy buffer [76]. 

These conditions are generalizations of Ps and Pc.  In order to express a more 

practical relationship between Ps, Pc, and B, it is necessary to derive the requirements for 

the mode presented earlier, energy-neutral operation.  Parameters to model 

characterizations for Ps(t) include average rate of energy generation and variability.  

Similarly, Pc(t) may be characterized by considering average rate of energy consumption 

and variability.  One approach to characterize these parameters is to modify the token 

bucket quality of service algorithm established by Shenker et al. (1997) to smooth out the 

“burstiness” of data injected into a network [79].  Extending this model from simply 

policing peak rate, average rate, and burst size, one may bound both the minimum and 
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maximum energy generation (or consumption) of a harvesting system.  Kansal et al. offer 

expressions that sufficiently characterize these parameters: 

A non-negative, continuous and bounded function P(t) is said to be a ( , 

1, 2) function if, and only if, for any value of finite positive real 

numbers τ and T, the following are satisfied: 
 

1( )
T

P t dt T



 


         (18) 

 

2( )
T

P t dt T



 


         (19) 

 
This model may be used for an energy source or a load.  For instance, if 

the harvested energy profile Ps(t) is said to be a ( , 1, 2) function, then 

the average rate at which energy is available for long durations becomes 

1 and the burstiness is bounded by 1 and 2.  Similarly, suppose Pc(t) 

is modeled as a ( , 1, 2) function [78]. 

C. POWER MANAGEMENT 

One of the greatest differences between battery powered devices and energy 

harvesting devices is that the former’s design imperative is to minimize energy 

consumption [80] or maximize battery lifecycle while meeting performance 
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requirements.  Concerning energy harvesting devices, though rate of availability may be 

limited, the long-term availability of energy is potentially infinite.  Thus, energy-

harvesting devices possess unique design considerations that must account for persistent 

operation.  The immediate requirement that must be addressed is how to ensure the lower 

bound of energy generation satisfies the upper bound of energy consumption in such a 

manner that energy is not wasted.  One solution is to introduce a power management 

system to mediate the profiles of energy generation and consumption.  Traditional power 

management algorithms for conventional devices simply need information concerning 

available energy from the battery.  Such an algorithm will not suffice for energy 

harvesting systems. 

The ultimate goal of an energy harvesting system power manager is to prevent the 

system from shutting down due to lack of power.  To achieve this goal, the power 

management strategy must encompass three computations [78].  The first computation 

instantiates the energy generation model.  This model uses previous energy source 

profiles to predict future profiles. 

 
~ ~

( ) ( 1) (1 ) ( )x i x i x i      (20) 

Where x(i) represents the energy generated during time interval, i.  Equation (20) 

provides the historical average of energy during i. α is a weighting factor less than one 

that decreases impact of older time intervals.  This prediction model is based on an 

exponentially weighted moving average.  

The second computation determines the optimal duty cycle based on the predicted 

energy from the first computation.  Define the sets A and N as: 

 

 { | ( ) 0}s cA i P i P    (21) 

 { | ( ) 0}s cN i P i P    (22) 

Set A represents time intervals of energy available whereas N represents non-availability.  

Energy under allocated is given as: 
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Energy over allocated is given as: 
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The energy deficiency, L, invokes a reduction in duty cycles to meet performance 

optimization.  To drive L to zero, uniformly decrease duty cycles by δ: 
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 (25) 

where |A| is the set cardinality operator. 

The third computation adapts the duty cycle to meet the predicted energy from the 

second computation.  This step is imperative, as actual energy availability may not be 

known a priori.  Equations (24) and (25) are based on predicted values.  The power 

management system must be able to adapt duty cycles based on actual energy availability 

to ensure energy-neutral operation.  Excess energy, X, may be defined as 

 

'

' '

( ) ( )

.1
( ) ( ) ( ) ( ) ( ) 1

s s

s s s s

P i P i

X
P i P i D i P i P i



 
              

 (26) 

The first term denotes the energy differential when the power generated is greater than 
the power consumed, ' ( )s cP i P .  The second condition represents a dearth of available 

environmental energy, ' ( )s cP i P .  In this case, the energy buffer is accounted for using 

the efficiency factor, η. 
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A new quantity is required to account for power usage when the duty cycle is 
changed through the adaption mentioned in the third computation [78].  Define a quantity 

R(j, ) as follows: 

 ( , ) 1
( ) 1

c

c
s

P

R j P
P j






 

 
         

   

 (27) 

The first condition of equation (27) is satisfied if the power consumed during time 

interval, j, is greater than the power consumed, ' ( )s cP j P .  On the other hand, if power 

generated is less than or equal to power consumed, ' ( )s cP i P , the second condition is 

met.  The underlying premise of the third computation is to transfer any surplus of energy 

to the energy buffer for use by future duty cycles with a dearth of available energy.  A 

dynamic duty cycle adaption algorithm, which follows, created by Kansal et al. (2007) 

attempts to perform this calculation at the end of every duty cycle to ensure energy-

neutral operation [78].     

 
Iteration: At each time slot do: 
if X > 0 
   Psorted =  Ps{1,…,Nw} sorted in ascending order. 
   Q := indices of Psorted. 
   for k = 1 to |Q| 

       if Q(k)  I //slot is in the past 

           continue 
       if R(Q(k), Dmax –D(Q(k))) < X 
             D(Q(k)) = Dmax 
             X = X – R(j, Dmax – D(Q(k))) 
       else 
            //X is insufficient to increase duty cycle to Dmax  
            if Ps(Q(k)) > Pc  
               D(Q(k)) = D(Q(k)) + X/Pc  
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               else  

                   D(Q(k)) = D(Q(K)) + 
 / ( ( ))(1 1/ )c s

X

P P Q k  
 

if X < 0 
   Psorted = Ps{1,…,Nw} sorted in descending order.   
   Q := indices of Psorted.      
   for k = 1 to |Q| 

      if Q(k)  i or D(Q(K))  Dmin     

               continue 
      if R(Q(k)), Dmin – D(Q(k)) > X   
            D(Q(k)) = Dmin        
            X = X – R(j, Dmin –D(Q(k)))  
      else 
          if Ps(Q(k)) > Pc    
              D(Q(k)) = D(Q(k)) + X/Pc 
          else 

              D(Q(k)) = D(Q(K)) + 
 / ( ( ))(1 1/ )c s

X

P P Q k  
 

D. CHAPTER SUMMARY 

In conclusion, research in micro-scale energy harvesting predominantly focuses 

on the transduction process.  Power conditioning is essentially ignored and represented as 

little more than a resistive load in the harvesting system.  Because most of the output 

power from vibration-based microgenerators is an AC voltage, energy harvesting systems 

will most often require rectification for compatibility with practical electronic devices.  

This requirement demands more attention than a simple resistive load.   

The nondeterministic property of rate of energy availability necessitates the 

presence of an energy buffer to satisfy load requirements at all times.  While rate of 

availability may not be known a prior, it is logical to assume the long-term availability of 

energy as potentially infinite.  With this characteristic of persistence in mind, a 

management system is required to mediate the profiles of energy generation and 

consumption. 
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V. CONCLUSION 

A. QUOD ERAT FACIENDUM  

1. Powering the Third Wave 

Years ago, personal computers helped distribute computing beyond the 

mainframe.  Today, embedded systems and mobile devices usher in the third wave of 

computing as technology migrates away from the desktop paradigm.  The capabilities of 

these ubiquitous microsystems are profound.  However, potential is hampered by their 

reliance on conventional power sources.      

Batteries are often the default power source when mains power is unavailable.  

Many types of electrochemical cells exist throughout the world.  One of the many 

advantages batteries have over mains power is the significant reduction in hardware 

costs.  However, electrochemical cells pose disadvantages that become rather serious 

when the battery is miniaturized.   

One of the serious design limitations for battery operated electronic devices is 

finite lifetime.  This characteristic requires that batteries be either recharged or replaced.  

Battery and labor costs become quite significant as electronic devices proliferate in 

ubiquity.  In addition, depending on the application and development, it may not be safe 

to reach the devices once they are deployed.  Additionally, the environmental impact of 

discarding potentially millions of electrochemical batteries demands serious concern.   

Ironically, infinite energy sources pervade the environment around all electronic 

devices.  It is currently possible to energize ultra-low power devices with ambient energy 

domains such as light, sound, thermal gradients, and vibration.  Compared to 

conventional electrochemical batteries, these energy sources do not saturate the earth 

with waste, and may also be safer than the physical handling needed to change batteries.  

Further, they do not require hours of maintenance and inspection.   
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Current disadvantages of energy harvesting include inconsistent, low, and 

capricious levels of available power.  However, research in industry and the academic 

community promises to minimize these shortfalls in time. 

2. Existing Real World Applications 

Today’s warfighters already utilize autonomous, wireless microsystems to collect 

and control superior situational awareness through constant surveillance.  These 

embedded and remotely distributed systems offer persistent power in the field of 

surveillance, wireless personal area network (WPAN), and structure analysis.    

a. Surveillance  

Self-powered, remote wireless sensor networks currently improve tactical 

awareness and facilitate quick response.  These remote data collection microsystems 

utilize thermal, acoustic, optical and mechanical energy-harvesting systems.  The DoD 

and the Department of Homeland Security both utilize energy harvesting technologies in 

unattended ground and marine sensors.  These systems are based on mesh networks 

consisting of a large volume of nodes (sensors) that fuse single event data to reduce false 

alarms and calculate intruder trajectory.  Unmanned aerial vehicles (UAV) and 

autonomous underwater vehicles (AUV) currently use energy harvesting microsystems to 

strengthen force protection.         

b. WPAN   

The Office of Naval Research (ONR) and the Defense Advanced Research 

Projects Agency (DARPA) have provided funding since 1993 for micro-energy 

harvesting initiatives focused on powering wireless personal area networks.  In the near 

future, body worn energy harvesters will offer wearable authentication and location 

determining devices to the warfighter.  The long duration power offered to these devices 

will significantly extend the operating life of the applications. 
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c. Structure Analysis   

Energy harvesting systems are currently used to power strain sensors for 

both civilian and military structures.  In the civilian sector, self-powered, ultra-low power 

microsensors provide years of uninterrupted monitoring of industrial HVAC systems.  

The DoD currently uses strain-induced energy converters to screen the physical condition 

of critical parts on ships and aircraft.     

3. The Road Ahead 

Photovoltaic energy harvesters are currently the most mature of harvesting 

technologies.  Although commercially established on the macro-scale, light availability 

potentially limits practicality on the micro-scale level.  Of the energy sources offered in 

the thesis, no single energy harvesting method disqualifies all others through 

overwhelming advantages.  The decision to use a specific energy harvesting method 

depends largely upon the environment and deployment.   

For instance, an unattended ground sensor (UGS) or unattended marine sensor 

(UMS) could operate indefinitely if supplied with power from the sun.  Also, one could 

argue that an energy harvesting system utilizing a thermoelectric microgenerator would 

be a desirable candidate for powering a GPS chip in an environment conducive to 

temperature differentials of at least 5 degrees.  The hoods of high mobility multipurpose 

wheeled vehicles (HMMVW) operating in the mountains of Afghanistan measure 

temperature differentials as high as 20 degrees.       

Thermal gradient energy harvesting is not limited to mechanized systems; skin 

temperature may provide the necessary temperature differential to power microsystems.  

Along the lines of human-worn microsystems, vibrations from human activity may 

provide additional ambient energy for scavenging power.  In an environment with regular 

frequency, such as walking, all three transduction mechanisms (piezoelectric, 

electrostatic, and electromagnetic) offer viable solutions for energy reclamation.              
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Acoustic energy harvesting, although limited in research, offers potential for 

capturing the pressure waves that sound energy travels along.  Horowitz’s design [47] 

could be extended beyond powering the liner for suppression of engine noise in turbofan 

engine nacelles.  With proven systems already scaled down to centimeter dimensions, 

these acoustic energy harvesters could capture the ambient noise of military aircraft to 

power a helmet’s embedded intercom communication system.   

Advances in integrated circuits continue to lower the power consumption of both 

military and civilian electronic devices.  Coupled with the proliferation of mobile devices 

and wireless sensor networks, the prospect of completely severing the tether of 

conventional electrochemical batteries grows increasingly attractive.  Today, ultra-low 

power electronic devices are available for microgenerators utilizing energy harvesting 

systems.  The choice of energy harvesting method depends upon the environment and 

situation.  In the very near future, candidacy will extend to other electronic devices still 

tethered to conventional electrochemical batteries.  The need for the military to look at 

energy harvesting systems as an unconventional power source is clear. 

B. RECOMMENDATIONS FOR FUTURE RESEARCH 

Energy harvesting presents an ideal power candidate for distributed wireless 

micro-systems because of its characteristic to provide power indefinitely.  True, the 

domain of energy harvesting extends far beyond electromechanical energy conversion.   

It is the author’s opinion that there exists an expansive range of both civilian and military 

applications that could greatly benefit from vibration-based micro-generators.  As such, 

further research on efficient power processing for MEMS generators is needed.   

In particular, inertial electromagnetic micro-generators pose significant 

complexity due to inherent low input voltage thresholds and irregular, non-sinusoidal 

output.  Active tuning to resonant frequency deserves further research.  Currently, 

optimization is achieved by designing the micro-generator based on an input frequency 

known a priori.       
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Piezoelectric converters offer tremendous potential in micro-scale energy 

harvesting.  However, more research must be done concerning fatigue characteristics and 

scalability towards implementation on a silicon chip.  To realize the latter, efforts must be 

made to improve the thin-film PZT process.   

Energy Harvesting technologies necessitate development in order to realize self-

powered, ultra-low power distributed microsystems.  The current research offered in this 

thesis demonstrates that the environment offers immediate sources of power to operate 

wireless sensor nodes and mobile devices.  Nonetheless, no single ambient energy source 

currently provides the optimal solution for all applications.  Therefore, energy harvesting 

solutions must continue to be researched, developed, and tested.  Further, a combination 

of harvesting techniques, chosen based on the targeted deployment environment, provides 

the most viable path to a reliable, sustainable renewable energy source.   
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