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ABSTRACT  

The thesis has two primary objectives. First, it develops a high-

fidelity 6DOF flight dynamics model of a multi-copter UAV, and uses it for the 

design and implementation of the linear attitude controller onboard of an 

industrial quadcopter; both steps are implemented in Simulink. Second, it 

leverages the weakly joint efforts of MathWorks and the open-source community 

to build a software setup that enables rapid control software prototyping. This 

software architecture enables control system design and integration without the 

need for proficiency in embedded coding that typically utilizes high-level 

programming languages like C/C++. The higher impact of the dual objective is in 

advancing methods and tools of verifiable control system design and the 

embedded code generation that simplifies the V&V process. 

The 3DR Iris+ quadrotor, equipped with PX4 “Pixhawk” autopilot, is 

selected as the primary prototyping platform. The autopilot allows for the real-

time execution of an application (attitude controller) that is auto-generated from 

MatLab/Simulink. This makes the Iris+ quadrotor an ideal platform for rapid flight 

control prototyping by using MathWork’s auto code generation capability.  

Ultimately, the developed setup represents a convenient research 

and development tool that natively bridges the gap between the safety-critical 

flight control science and flight experimentation technology by “eliminating” the 

error-prone manual coding of embedded microcontrollers. 
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EXECUTIVE SUMMARY 

The objectives of the thesis are twofold. First, it aims to demonstrate the 

design of a high-fidelity 6DOF model of flight dynamics of a multi-copter and the 

implementation of a control algorithm, both developed in Simulink and integrated 

onto a commercial-off-the-shelf (COTS) quadrotor. Second, the work organizes 

and compiles a disjoint effort of the open source community to build a software 

setup that enables rapid control software prototyping. This rapid 

software development enables the control system design and integration 

without the need of proficiency in high-level programming language like 

C/C++. The higher-level utility of the joint objective is in advancing the methods 

and tools of verifiable control system design and the code generation that lead to 

easy to validate flight experiment. 

As an initial step, the nonlinear 6DoF mathematical model of the quadrotor 

that represents the dynamics of naturally unstable system would need to be 

derived for the simulation of the quadrotor’s motion and flight dynamics in 

Simulink. Subsequently, a linearization of the model and the design of a typical 

linear attitude (like Proportional, Integral and Derivative [PID] controller) was 

performed based on the quadrotor’s mathematical model. Finally, the Simulink-

based model of the attitude controller was used to auto-generate the attitude 

control software application for the COTS autopilot, and its verification 

were performed in an indoor Vicon facility. The flight experiment utilized different 

flight scenarios to outline the performance of the newly developed controller. 

The COTS quadrotor selected for this thesis is the 3DR Iris+ that  

comes with the PX4 Pixhawk autopilot to control its flight. The PX4  

Pixhawk autopilot features an open-source software architecture that  

runs on the Nuttx Real Time Operating System (RTOS), which allows the  

execution of MatLab/Simulink auto generated embedded application on  

the Pixhawk ARM MCU. As a result, the quadrotor mathematical model and  

the linear attitude controller that was developed in Simulink can be  



 xviii 

used on the PX4 autopilot system without the need to directly edit  

embedded software using low-level programing language. This makes the  

Iris+ quadrotor an ideal platform for rapid control prototyping using  

MatLab/Simulink auto coding and validating the design in flight tests. 

Upon successful implementation of the Simulink model on the PX4  

Pixhawk autopilot system, the quadrotor would be subjected to a series  

of flight tests to verify its flight performance using the developed  

attitude controller design. Ultimately, the developed setup represents a 

convenient research and development tool that natively bridges the gap between 

the flight control systems design and flight experimentation by “eliminating” the 

error-prone manual coding for an embedded microcontroller. 

 
 
 
 
 
  



 xix 

ACKNOWLEDGMENTS 

Prior to my postgraduate studies at NPS, I was unfamiliar to the world of 

controls engineering. In light of this, I was very fortunate to be a student in Dr. 

Vladimir Dobrokhodov’s class on basic controls engineering during my first 

quarter in NPS. This class stirred my interest in controls engineering and 

eventually influenced my decision to take up a thesis topic related to this field. I 

could not thank Dr. Vladimir enough for his guidance and mentoring to my 

learning journey in NPS. I would also like to thank Dr. Noel Du Toit for 

generously accepting my request to be the second reader and giving valuable 

advice for this thesis.  

During the process of my thesis research, I had encountered several 

difficulties in implementing the attitude controller designed in Simulink to the 

Pixhawk autopilot. I would like to thank Adam Polak, PX4 autopilot and the 

MathWorks team, who had been infinitely patient with my amateurish queries on 

the software aspect of this thesis. In addition, I also need to thank the 3D 

Robotics support team for providing timely replies to my queries on the Iris+ 

quadrotor and its hardware. 

Lastly, not forgetting the most important person in my life, I would like to 

thank my wife, Emily, for her unwavering support during our stay in Monterey. 

She has been the emotional rock that I can rely on in difficult times during the 

thesis research and never failed to encourage me to push forth courageously in 

the pursuit for knowledge. 

 

  



 xx 

THIS PAGE INTENTIONALLY LEFT BLANK 

 



 1 

I. INTRODUCTION 

A. BACKGROUND 

A quadrotor is an UAV that features two sets of identical propellers that 

are powered by DC brushless motors to provide the required thrust force and 

perform maneuvers when it is in flight. Due to its light-weight configuration and 

inherent instability, quadrotor has better flight maneuverability over fixed wing 

UAV. More importantly, quadrotors have the capabilities to perform VTOL and 

hovering in mid-flight. Along with unprecedented simplicity of the mechanical 

design that eliminates the complexity of the main rotor control of typical 

helicopter, multirotor UAVs become unique in the class of unmanned systems; 

one can think of them as Solid State UAVs. The quadrotor’s unique flight 

characteristics coupled with a cheap price of hardware have increased a number 

of applications in both the military and commercial sectors. 

Indeed, online retail giant Amazon [1] saw the potential of expediting 

delivery order and supplementing manpower shortages through the use of 

quadrotors to fly autonomously and make deliveries to its customers. Quadrotors 

can also be conveniently fitted with high-resolution cameras to provide a 

relatively cheap means for avid photographers and filmmakers alike to capture 

pictures at high altitude without the need to charter a flight during productions. In 

military applications, quadrotor is a popular platform in conducting ISR missions 

especially in urban AO, where quadrotors can be programmed to fly into 

buildings to perform visual mapping and identify potential threats. 

The popularity of the quadrotor extends to the field of amateur hobbyists 

and research laboratories as well. With its small size, VTOL and hovering 

capabilities, research laboratories can easily operate quadrotors in an indoor 

environment. In the recent years, COTS quadrotors such as AR Parrot, 3DR 

Iris+, Vision+ Phantom, etc., have become increasingly popular and relatively 

cheap for UAV researches. However, COTS quadrotors typically come with their 
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own hard-coded software and pre-programmed plant model. Although the 

quadrotor software supports the programming of basic flight functions, significant 

programming in a low-level programming language (e.g. C/C++) is required to 

modify the quadrotor’s autopilot embedded software to perform complex flight 

controls or modify the its mathematical model. 

In academic research, the modeling and simulation software Simulink is 

frequently used in controls engineering courses as a teaching tool to 

demonstrate system modeling and controller designs. However, implementing 

Simulink system model and controller design as embedded software into 

autopilot hardware would require controls engineering students to be versed in 

low-level programming language; not only is this level of breadth and depth rarely 

available, but also the objective of the control systems design is very different 

from the particularities of a specific MCU platform and language implementation. 

Therefore, a process or method to directly implement the system models and 

controller designs developed using Simulink on a quadrotor’s autopilot would be 

an invaluable enabling tool that provides students with an opportunity to test their 

models and designs on an actual hardware. 

Amongst the COTS quadrotors, PX4 open hardware project elaborated in 

[2] has designed the Pixhawk autopilot system that can be programmed using 

the PX4 flight stack software [3]. The PX4 flight stack software runs on the Nuttx 

RTOS and is able to support multiple applications that can be programmed 

individually. More importantly, PX4 is able to support system models and control 

algorithms developed using Simulink without for the need to be proficient in high-

level programming. This capability allows for a research project to rapidly 

progress from the modeling and simulation to implementation phase on the 

actual hardware. 

Therefore, the practical objective of this thesis research is to implement 

the system model and controller design developed in Simulink directly on a 

quadrotor autopilot. The quadrotor selected in this thesis is the 3DR Iris+ [4] that 

comes installed with the PX4 autopilot system. In the first part of this thesis, the 
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mathematical model, EOM and the attitude controller design of the 3DR Iris+ 

quadrotor will be derived and written in the Simulink software. Subsequently, the 

second part of this thesis shall focus on the implementation of the quadrotor’s 

mathematical model and controller design onto the PX4 autopilot. Finally, the 

quadrotor’s model and controller design will be validated through an actual flight 

test in three different flight scenarios. 

B. LITERATURE REVIEW 

As a first step to this thesis research, the modeling and simulation of the 

Iris+ quadrotor must be performed to determine its flight characteristics and 

designing its attitude controllers. The derivations of the dynamics equations for a 

quadrotor model were well elaborated by Boudallah in [5], Beard in [6], Corke in 

[7], Sidea in [8] and Bresciani in [9]. However, the modelling approaches in these 

researches were only applicable for a limited set of quadrotor configurations. 

The Iris+ quadrotor featured a cross-style configuration and therefore, 

modifications to the dynamics equations of the plus-style configuration quadrotor 

were required to obtain the dynamics equations for a quadrotor in cross-style 

configuration. An approach to model a quadrotor in the cross-style configuration 

was elaborated by Partovi in [10] for the X650 quadrotor. This approach was 

suitable and was adopted for the modelling of the Iris+ quadrotor. 

For the rapid prototyping of control designs using Simulink, Lizarraga in 

[11] used the Piccolo autopilot as the hardware and developed an architecture 

that enables the use of Simulink models on flight control systems, instead of 

directly programming the hard-coded software on the flight control systems. More 

recently, Meier presented in [2] the software architecture for the Pixhawk 

autopilot, which allows applications to be developed and installed onboard the 

Pixhawk autopilot.  

As a result Pixhawk autopilot’s versatility, Polak in [12] defined the 

process for building an application for attitude controllers developed in Simulink 

and installing the application on a quadrotor with the Pixhawk autopilot. In 
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addition, Polak worked with MathWorks to develop a PSP [13] for developers to 

make use of the build function in Simulink to generate the C/C++ codes for 

Simulink models and install the models as applications on the Pixhawk autopilot. 

The process that was mutually developed by Polak and MathWorks would be 

further streamlined and used to implement a Simulink attitude controller onboard 

the Iris+ quadrotor.    

C. OVERVIEW OF QUADROTOR TECHNOLOGY 

The airframe of a quadrotor generally consists of two beams that are 

arranged in a cross, or plus, configuration and mounted onto the main body shell 

that contains the electronics and flight computers (see Figure 1). Two sets of 

identical propellers (one set rotates in the Clockwise direction, CW, and the other 

set rotates in the Counter-Clockwise direction, CCW) are installed on DC 

brushless motors mounted on the edges of each beam. 

 

 

Figure 1  Illustration of Quadrotor Airframe in Cross 
Configuration (after [4]). 

 
 

1. Quadrotor Flight Mechanism 

As shown in Figure 1, the two sets of propellers mounted on the quadrotor 

rotate in opposite directions and cancel the net torque acting on the quadrotor. 
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The quadrotor performs maneuvers in flight by sending Pulse Width Modulation 

(PWM) signals to the brushless DC motors to vary the rotational speed of the 

propellers. To lift off from the ground or maneuver vertically, the propellers rotate 

at the same speed to generate a thrust force to overcome the quadrotor’s weight. 

To perform a flight maneuver in the horizontal plane, the quadrotor would need to 

generate a rotating moment by pitching or yawing its body. This is accomplished 

by varying the rotational speed of each set of propeller. 

2. Quadrotor Sensor Systems 

A suite of sensor system is required to provide the quadrotor with position 

and attitude information that are necessary to perform autonomous flights. Most 

recent of all, advances in MEMS inertial sensor technology now allow for a 

lightweight navigation unit to be installed on quadrotors in addition to a GPS unit. 

These sensors provide the quadrotor autopilot with position and attitude 

information during flight. A barometer or laser range finder is also installed 

onboard a quadrotor to provide altitude data. 

3. Advantages and Disadvantages of Quadrotor/Multi-rotor 
Technology 

With the overview of the multi-rotor technology, a quick analysis of its 

advantages and disadvantages was summarized in Table 1. 
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Table 1   Advantages and Disadvantages of Quadrotor. 

Advantage Disadvantages 
VTOL & Hovering Capabilities 
Unlike fixed wing UAV, the unique 
flight mechanism of the quadrotor 
allows it to perform VTOL and 
hovering in flight. These capabilities 
eliminate the need of a landing strip 
or a launch and recovery system.  
 
Agile Maneuverability  
By varying the rotational speed of 
its propellers, the quadrotor is able 
to generate thrust and moments to 
perform sharp turns during flight 
and hover in mid-flight. A fixed wing 
UAV in contrast makes turns with a 
larger turning radius. 
 
Mechanically Simple 
Quadrotor uses propeller blades 
with fixed symmetrical pitch 
propeller blades and consists of 
lesser mechanical components 
compared to conventional 
helicopters. Therefore, quadrotors 
are easy to maintain and cheaper to 
manufacture. 
 

Short Battery Life  
The battery life of most quadrotors 
is approximately 20 minutes and is 
constrained by the charge storage 
capability of Lithium battery; power 
density is the fundamental 
constrain. The short battery life 
reduces the mission duration of the 
quadrotor. 
 
Under-actuated System 
A quadrotor is an under-actuated 
system [14], where multiple 
actuators are used to perform 6 
linear and angular control actions. 
Therefore, if the symmetry of the 
actuators action is damaged, it 
would either no longer be able to 
perform a maneuver or its control 
authority might be compromised.   
 
Low Payload Capability 
The payload limit of a medium sized 
quadrotor (~1.5kg) is typically 
between 0.8 to 1 lbs. Therefore, the 
equipment or load that can be 
carried by quadrotors is not 
substantial.  
 

 

D. THESIS OUTLINE 

The outline of this thesis is summarized as follows: 

Chapter I provides an introduction to quadrotor technology and explains 

the motivation behind this thesis research; it also provides an overview of the 

quadrotor components technology. 

Chapter II presents an overview of the 3DR Iris+ quadrotor technology, the 

Pixhawk autopilot and its software architecture. 
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Chapter III elaborates on the identification of the quadrotor’s configuration 

and the process of deriving its mathematical model and EOM. In addition, the 

frames of reference that are used to describe the quadrotor’s position in space 

and the transformation between the reference frames are also elaborated in this 

chapter. 

Chapter IV describes the equipment and process for measuring the 

physical specifications of the 3DR Iris+ quadrotor. The physical specifications 

include the quadrotor’s mass, lengths of its moment arms, mass moment of 

inertia, and thrust and drag coefficients. 

Chapter V gives an overview of the quadrotor flight control principles and 

the design of the PID controller. In addition, the methodology of tuning the PID 

controller for stable flight is elaborated in this chapter. 

Chapter VI describes the process to implement the PID controller Simulink 

model as an application for the Pixhawk autopilot using the PX4 flight stack. 

Chapter VII presents the analysis of the flight data recorded from the Iris+ 

flight tests and provides formal review of the attitude controller’s performance. 

Chapter VIII draws the conclusion for this thesis and recommends the 

possible areas that can be looked into for future research work.  
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II. 3DR IRIS+ QUADROTOR AND PIXHAWK AUTOPILOT 

This chapter provides an overview of the 3DR Iris+ Quadrotor, Pixhawk 

autopilot hardware and its software architecture. First, this section lists the 

hardware specifications of the Iris+ quadrotor and the Pixhawk Autopilot. The 

next section elaborates on the Pixhawk autopilot software architecture and 

identifies the flight stack software that was used to implement Simulink model to 

the autopilot. 

A. IRIS+ HARDWARE 

The Iris+ is a quadrotor that was designed and built by 3D Robotics (3DR) 

for aerial RC vehicle enthusiasts and hobbyists, and can be fitted with a camera 

to perform aerial photography (see Figure 2). A LiPo 5100mAh battery supplies 

up to 12V to the electronics onboard the Iris+, and the four MN2213 950kV DC 

motors installed on its airframe provide up to 22 minutes of flight time. The 

rotational speed of the four motors generates a thrust force that is sufficient for 

the Iris+ quadrotor to overcome its weight and carry a payload of up to 

400g.  The Iris+ is also equipped with telemetry radio that allows communication 

with the ground station computer wirelessly, providing real-time flight data and 

the ability to fly autonomous missions. 

 

 

Figure 2  3DR Iris+ Quadrotor (from [4]).   
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B. PIXHAWK AUTOPILOT 

The Pixhawk autopilot (see Figure 3) was designed by the PX4 open-

hardware project [15] and combines the Pixhawk Flight Management Unit 

(PX4FMU) and PX4IO into a single component. It features sensor technology 

from ST Microelectronics® and a Cortex M4 microprocessor running the NuttX 

RTOS that allows integrated multi-threading and programming in a Unix/Linux-

like environment. In addition, the NuttX RTOS allows for developers to easily 

implement C/C++ codes onto the Pixhawk autopilot through the building and 

uploading of applications. The complete specifications of the Pixhawk autopilot 

are summarized in Table 2. 

 

 

Figure 3  PX4 Pixhawk Autopilot (from [16]).  
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Table 2   PX4 Pixhawk Hardware Specifications (from [16]). 

Processor 32bit STM32F427 Cortex M4 core with FPU 
168 MHz 
256 KB RAM 
2 MB Flash 
32 bit STM32F103 failsafe co-processor 
 

Sensors ST Micro L3GD20H 16 bit gyroscope 
ST Micro LSM303D 14 bit accelerometer / magnetometer 
Invensense MPU 6000 3-axis accelerometer/gyroscope 
MEAS MS5611 barometer 
 

Interfaces 5x UART (serial ports), one high-power capable, 2x with HW flow 
control 
2x CAN (one with internal 3.3V transceiver, one on expansion 
connector) 
Spektrum DSM / DSM2 / DSM-X® Satellite compatible input 
Futaba S.BUS® compatible input and output 
PPM sum signal input 
RSSI (PWM or voltage) input 
I2C 
SPI 
3.3 and 6.6V ADC inputs 
Internal microUSB port and external microUSB port extension 
 

 

C. PIXHAWK AUTOPILOT SOFTWARE ARCHITECTURE 

The Pixhawk autopilot supports two main flight control software families as 

described in [3], namely the PX4 flight stack and the APM flight stack, which are 

both open source software projects. The architecture and framework of both flight 

control stacks are further elaborated below: 

1. PX4 Flight Control Software 

The PX4 flight control framework described in [2] consists of three main 

layers: PX4 flight stack (containing individual applications such as the flight 

control, state estimation, etc.), PX4 middleware (communications between the 

applications and drivers) and PX4 drivers (architect specific) as shown in Figure 

4. The architecture allows for a modular design since those three layers are 
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naturally separated and can be run independently from each other. In the PX4 

flight stack layer, the flight control and state estimation exist as self-contained 

applications, which can be independently managed at runtime. Therefore, the 

codes that are generated for the Pixhawk autopilot are highly portable and allow 

the Pixhawk autopilot to be used for a variety of autonomous vehicles (e.g., fixed 

wing aerial vehicle, unmanned ground vehicle, etc.). In addition, each application 

connects to other processes and drivers using a Publisher-Subscriber framework 

(see Figure 5), allowing for efficient communication between processes and 

simplifies the process of adding a new application to the system. 

 

 

Figure 4  PX4 Flight Control Framework (after [2]). 
 

 

Figure 5  PX4 Application Framework (from [2]). 
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2. APM Flight Control Framework 

The APM flight control software described in [17] was originally designed 

for the Ardupilot autopilot and was ported as a single application to the PX4 flight 

control architecture. The APM application can be run on any PX4 control board 

(i.e. PX4FMU or Pixhawk autopilot) through the PX4 middleware layer (HAL) in 

the PX4 framework (see Figure 6). When the APM application is selected as the 

flight control stack on the PX4 control board, it will be executed to replace the 

PX4 as the main flight controller stack to control the drivers. Therefore, the APM 

flight control stack functions as a single monolithic application in the PX4 

framework with some internal worker threads to execute slower tasks (e.g., data 

logging) and does behave from the user perspective like the legacy APM 

hardware. 

 

 

Figure 6  APM Flight Control Application in PX4 Framework 
(from [18]). 
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D. FLIGHT STACK SELECTION 

Although the Pixhawk autopilot can adequately support both flight stacks, 

the PX4 flight stack was ultimately chosen as the approach to implement the 

flight controls in this thesis. This is mainly because of potentially greater flexibility 

of the PX4 stack and the fact that MathWorks [19] had attempted to lead the 

open source community effort of bringing the Pixhawk autopilot into academic 

research; the attempt is not finished yet as the PSP initiated by Mathworks is not 

officially released yet as of the date of this writing. The PX4 PSP would provide 

an efficient and convenient means to implement controllers and models designed 

in Simulink onto actual hardware. The key tools of the PX4 PSP that support this 

process are as follows. 

(1) PX4 Simulink Blocks & Examples 

A library of PX4 Simulink blocks were created for the PX4 PSP to interface 

with the Pixhawk autopilot. In addition, examples of the PX4 Simulink model were 

also available in the PX4 PSP that can be used for developing the plant or 

controller of a vehicle. 

(2) PX4 Eclipse 

The PX4 Eclipse provides the platform to build the application from the 

generated C/C++ codes of the Simulink model and download it to the Pixhawk 

autopilot. 

(3) TeraTerm Terminal 

TeraTerm is a serial terminal program that can connect the user’s 

computer to the Pixhawk autopilot to manually run the built-in commands using 

the Nuttx shell. As the Pixhawk autopilot is running on the Nuttx OS, TeraTerm 

offers a convenient means to access the applications on the Pixhawk autopilot 

from a computer operating in Windows OS. 
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III. QUADROTOR MATHEMATICAL MODEL 

This chapter documents the process of deriving the quadrotor 

mathematical model and the development of the equation of motions to describe 

the Iris+’s movement with respect to a reference coordinate frame. The modeling 

of a quadrotor is well described in articles [5], [6], [7], [8], [9] and [10], and were 

used as references for the derivation of the equations found in this chapter. The 

model and equation of motions are important for predicting the positions of the 

Iris+ during flight, and used for the controller design in Chapter IV. The sub-

sections in this chapter are as follow: 

Section A introduces the method in the identification of quadrotor 

configurations. A typical symmetrical quadrotor can be categorized into two main 

configurations: ‘plus’ and ‘cross’ configurations. This section describes the key 

characteristics of both configurations and their flight mechanisms. 

Section B defines the notations used in the quadrotor mathematical 

model. This section identifies and consolidates all the notations that are used to 

ensure consistency in the implementation of the mathematical model to the 

simulation model. 

Section C identifies all the coordinate frames that are used as the 

reference for the quadrotor’s position and movement in space. It is important to 

identify the coordinate frames as the forces acting on the quadrotor are applied 

with reference to different coordinate frames. 

Section D describes the transformation of the quadrotor’s kinematics from 

one reference frame to the other. In addition, the transformation matrix that is 

used for describing the positions, position rates, Euler angles and angular rates 

from one coordinate frame to the other is elaborated in this section. 

Section E describes the quadrotor’s dynamics by identifying the forces 

and moments acting on the quadrotor in the various coordinate frames. As the 

forces and moments are described in different coordinate frames, they cannot be 
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summed directly. Therefore, the transformation method formulated in Section D 

must be used to transform the forces and moments to a single reference 

coordinate frame. 

Section F formulates the complete system of 6DOF EOM in the Iris+ 

quadrotor’s body coordinate frame using the forces and moments defined in the 

previous section. 

A. IDENTIFICATION OF QUADROTOR CONFIGURATION 

A quadrotor consists of four extended arms with four BLDC motors with a 

fixed-pitch propeller (the propellers are labeled from 1 to 4 in the clockwise 

direction) attached to them. The motors are arranged to rotate one pair of 

propellers counter-clockwise and the other pair of propellers in the clockwise 

direction. With the rotation direction of the four propellers, there are two basic 

flight configurations that can be adopted by a quadrotor, namely the plus 

configuration and cross configuration as shown in Figure 7. For a quadrotor in 

the plus configuration to change its attitude (i.e., roll, pitch or yaw), the rotational 

speed for two propellers are varied. However, the quadrotor in cross 

configuration changes its attitude by varying the rotational speed of all four 

propellers. This gives quadrotors in the cross configuration a higher momentum 

and therefore, a better maneuverability performance compared to quadrotors in 

the plus configuration. 
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Figure 7  Quadrotor in Plus (+) and Cross (X) Configurations. 
 

 

1. Plus Configuration Flight Mechanics 

For a quadrotor to adopt a plus configuration, its arms are aligned with the 

quadrotor’s body x-axis and y-axis (arranged in the right hand rule orientation). 

The quadrotor in plus configuration changes the speed of the rotating DC motors 

to perform a translational or rotational maneuver as shown in Figure 8. By 

changing the rotational speed of all four propellers by the same amount, thrust 

(i.e. T) is generated to accelerate the quadrotor along the vertical z-axis. For the 

quadrotor to perform a roll maneuver, the rotational speed of propeller 2 is 

increased and the rotational speed of propeller 4 is reduced to generate a torque 

along the x-axis (i.e. τΦ). The concept is similar for the pitch maneuver, where the 

rotational speed of propeller 1 is increased and the rotational speed of propeller 3 

is reduced to generate a torque along the y-axis (i.e. τθ). Finally, by applying 

different speed to each pair of propellers rotating in the same direction, a torque 

along the z-axis (i.e. τψ) is generated to perform a yaw maneuver. 
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Figure 8  Flight Mechanisms for Quadrotor in Plus 
Configuration. 

 

2. Cross Configuration Flight Mechanism 

Unlike the plus configuration, the body x-axis and y-axis for the quadrotor 

adopting cross configuration are tilted 45o with respect to the quadrotor arms. 

The quadrotor in cross configuration changes the speed of the rotating DC 

motors to perform a translational or rotational maneuver as shown in Figure 9. 

Similar to a quadrotor in plus configuration, the quadrotor in cross configuration 

changes the rotational speed of all four propellers by the same amount, to 

generate a thrust (i.e. T) and accelerates the quadrotor along the vertical z-axis. 

For the quadrotor to perform a roll maneuver, the rotational speed of propellers 3 

and 4 are increased, while the rotational speed of propellers 1 and 2 are reduced 

to generate a torque along the x-axis (i.e. τΦ). The concept is similar for the pitch 

maneuver, where the rotational speed of propellers 1 and 4 are increased, while 

the rotational speed of propellers 2 and 3 are reduced to generate a torque along 
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the y-axis (i.e. τθ). Finally, by applying different rotational speed to the counter 

rotating pair of propellers, a torque along the z-axis (i.e. τψ) is generated to 

perform a yaw maneuver. 

 

Figure 9  Flight Mechanisms for Quadrotor in Cross 
Configuration. 

 

3. Notations for Quadrotor Mathematical Model 

The notations for the quadrotor’s translational and rotational motions are 

summarized in Table 3. 
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Table 3   Notations for Quadrotor Translational & Rotational Motions. 

States Description 
xi Quadrotor position along the x-axis in the inertia frame. 
yi Quadrotor position along the y-axis in the inertia frame. 
zi Quadrotor position along the z-axis in the inertia frame. 

ix   Quadrotor velocity along the x-axis in the inertia frame. 

iy   Quadrotor velocity along the y-axis in the inertia frame. 

iz   Quadrotor velocity along the z-axis in the inertia frame. 

ix   Quadrotor acceleration along the x-axis in the inertia frame. 

iy   Quadrotor acceleration along the y-axis in the inertia frame. 

iz   Quadrotor acceleration along the z-axis in the inertia frame. 
xb Quadrotor position along the x-axis in the body frame. 
yb Quadrotor position along the y-axis in the body frame. 
zb Quadrotor position along the z-axis in the body frame. 
xv Quadrotor position along the x-axis in the vehicle frame. 
yv Quadrotor position along the y-axis in the vehicle frame. 
zv Quadrotor position along the z-axis in the vehicle frame. 
u Quadrotor velocity along the x-axis in the body frame. 
v Quadrotor velocity along the y-axis in the body frame. 
w Quadrotor velocity along the z-axis in the body frame. 
Φ Quadrotor roll angle with reference to inertia frame axis. 
θ Quadrotor pitch angle with reference to inertia frame axis. 
Ψ Quadrotor yaw angle with reference to inertia frame axis. 
p Quadrotor roll rate along the x-axis in the body frame. 
q Quadrotor pitch rate along the y-axis in the body frame. 
r Quadrotor yaw rate along the z-axis in the body frame. 

 

4. Quadrotor Coordinate Frames 

To build the quadrotor’s mathematical model, it is important to first define 

the coordinate frames for describing the quadrotor’s translational and rotational 

motion (i.e., quadrotor six degrees of freedom, 6DOF). The coordinate frames 

that are used in the mathematical model are shown in Figure 10 and further 

elaborated below: 
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a. Inertial Frame, {i} 

The inertial coordinate frame, {i} is a reference fixed frame represented by 

the unit vector, {i} = [xi yi zi]T. The x-axis of the inertial frame is pointed to the 

North, y-axis is pointed to the East and z-axis is pointed to the center of the 

Earth. 

b. Vehicle Frame, {v} 

The vehicle coordinate frame, {v} has its origin fixed to the quadrotor CG 

and is represented by the unit vector, {v} = [xv yv zv]T. The axes of the vehicle 

coordinate frame are aligned to the axes of the inertia coordinate frame and do 

not change even during the quadrotor’s rotational motion. The vehicle coordinate 

frame describes the translational motion of the quadrotor with respect to the 

inertia coordinate frame on the x-y plane. 

c. Body Frame, {b} 

Similar to the {v}, the body coordinate frame, {b} has its origin located at 

the quadrotor’s center of gravity (CG) and is represented by the unit vector, {b} = 

[xb yb zb]T that is rigidly attached to the body and thus, rotates with the body. 

Therefore, the body coordinate frame describes the rotational motion of the 

quadrotor with respect to {v} as shown in Figure 10. The x-axis of the body 

coordinates always point out from the front of the quadrotor and the y-axis points 

to the right of the quadrotor. Finally, the z-axis of the body coordinate frame is 

pointed down completing the right hand coordinate frame. {v} can be rotated 

along the z-axis by the yaw angle, Ψ, along the y-axis by the pitch angle, θ and 

along the x-axis by the roll angle, ϕ. 
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Figure 10  Inertia, Body and Vehicle Coordinate Frames. 
  

 

B. QUADROTOR KINEMATICS 

The quadrotor’s linear and angular positions in the body and inertia frames 

were referenced from [5], [6], [7], [8], [9] and [10]. These equations can be 

expressed in the vector form as: 

 

 
Tb b b bP x y z =     (1) 

 
 

Ti i i iP x y z =    (2) 

 
 ]Tb φ θ ψΛ =     (3) 
 

Similarly, the quadrotor linear and angular velocities in the quadrotor’s 

body frame can be expressed in the vector form as: 

 

 ]TbV u v w=    (4) 
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 ]Tp q rΛ = 

   (5) 
 

1. DCM Rotation Matrix  

The transformation of the quadrotor’s angular motion from the body frame 

to the inertia frame can be described by a rotation matrix, which is also known as 

DCM. The DCM is the combination of a sequence of rotations where the 

quadrotor is first rotated along the z-axis (i.e., yaw), followed by a rotation along 

the y-axis (i.e., pitch) and finally by a rotation along the x-axis (i.e., roll). The 

rotation matrices for the yaw, pitch and roll are multiplied to obtain equation (6):  

 

 b
i

c c s c s
R c s s s c s s s c c c s

c s s s s s s s c c c c

θ ψ ψ θ θ
ψ θ φ ψ φ ψ θ φ ψ φ θ ψ
ψ θ φ ψ φ ψ θ φ ψ φ θ φ

 ⋅ ⋅ − 
 = ⋅ ⋅ − ⋅ ⋅ ⋅ + ⋅ ⋅ 
 ⋅ ⋅ + ⋅ ⋅ ⋅ − ⋅ ⋅ 

  (6) 

 
Where ‘c’ represents cosine and ‘s’ represents sine of the particular angle. 

 

 b b i
iP R P= ⋅   (7) 

 
 

 

b i

b i

b i

x c c s c s x
y c s s s c s s s c c c s y
z c s s s c s s s c c c c z

θ yy  θ θ
y θ φ y φ y θ φ y φ θ φ
y θ φ y φ y θ φ y φ θ φ

   ⋅ ⋅ − 
   ∴ = ⋅ ⋅ − ⋅ ⋅ ⋅ + ⋅ ⋅   
   ⋅ ⋅ + ⋅ ⋅ ⋅ − ⋅ ⋅   

  (8) 

 
As the DCM is orthogonal and its rows/columns are linearly independent, 

the inverse rotation matrix that transforms the quadrotor’s angular motion from 

the body frame to the inertia frame is simply the transpose of the DCM: 
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Ti b

b i

c c c s s s c c s c s s
R R s c s s s c c s s c c s

s c s c c

θ ψ ψ θ φ ψ φ ψ θ φ ψ φ
ψ θ ψ θ φ ψ φ ψ θ φ ψ φ

θ θ φ θ φ

 ⋅ ⋅ − ⋅ ⋅ ⋅ + ⋅ 
 = = ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ − ⋅ 
 − ⋅ ⋅ 

  (9) 

 
 i i b

bP R P= ⋅   (10) 
 

 

i b

i b

i b

x c c c s s s c c s c s s x
y s c s s s c c s s c c s y
z s c s c c z

θ yy  θ φ y φ y θ φ y φ
y θ y θ φ y φ y θ φ y φ

θ θ φ θ φ

   ⋅ ⋅ − ⋅ ⋅ ⋅ + ⋅ 
   = ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ − ⋅   
   − ⋅ ⋅   

  (11) 

 
 

2. Rotation Matrix for Quadrotor Angular Velocities 

The transformation of the quadrotor’s angular velocities from the inertia 

frame to the body frame was referenced from [20] and can be described by the 

following equations: 

 

 
0 0 0
0 0

0

b R R R R R Rφ θ ψ φ θ φω θ
ψ φ

    
    = ⋅ ⋅ + ⋅ +    
        





  (12) 

 
where: ωb = angular velocity of quadrotor in body coordinates, 

 Rϕ = rotation matrix along the x-axis (i.e., roll), 

 Rθ = rotation matrix along the y-axis (i.e., pitch), 

 Rψ = rotation matrix along the z-axis (i.e., yaw). 
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0
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q φ
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

  (13) 
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The transformation of the quadrotor’s angular velocities from the body 

frame coordinate to the inertia frame coordinate can be represented by the 

following equation: 

 

1

0
1 10

s ss c pc c
c s q

rs c
c c

qq φ φφ qq
q φ φ
ψ φ φ

qq

 
    
    = −    
        
 







  (14) 

 

C. QUADROTOR DYNAMICS 

The following assumptions were undertaken in deriving the quadrotor 

dynamics: 

• The quadrotor’s center of gravity coincides with the origin of the 
body frame. 

• The quadrotor is a rigid body. 

• The quadrotor is symmetrical with respect to the x and y-axes as 
described in [5], [6], [7], [8], [9] and [10]. 

• The quadrotor propellers are rigid. 

• The thrust and drag exerted on the quadrotor are proportional to 
the square of the propellers’ angular speed. 

1. Gravitational Forces 

The gravitational force vector acting on the quadrotor’s CG in the inertia 

coordinate frame can be expressed as: 

 
0
0i

GF
m g


= 
 ⋅ 

G
   (15) 

 
where:  m = mass of quadrotor and 

  g = gravitational acceleration. 
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The gravitational force acting on the quadrotor’s CG in the body frame can 

be obtained by multiplying the rotation matrix with the gravitational force vector in 

the inertia coordinate frame: 

 b b i
G i GF R F= ⋅
G G

  (16) 
 

 b
G

mg s
F mg c s

mg c c

θ
θ φ
θ φ

 − ⋅ 
 ∴ = ⋅ ⋅ 
 ⋅ ⋅ 

G
  (17) 

 

2. Gyroscopic Effect 

The rotational motion of the propeller-rotor combination generates a 

gyroscopic effect that acts on the quadrotor in the body coordinate frame. The 

gyroscopic effect is contributed by the rotor’s moment of inertia, the rotor’s 

angular velocity, and the body attitude rate, which can be expressed by equation 

(18): 

 

 
0 0
0 0
1 1

b
rotor b rotor

p
G I I q

r
ω
       
       = × Ω = × Ω       
              

  (18) 

 
where:  ωb is the angular velocity of the quadrotor (body coordinate frame)  

  during the flight,  

 Ώ is the sum of the 4 rotors’ rotational velocities (i.e. Ώ = ω1 + ω2 +  

  ω3 + ω4), 

 Irotor is the rotor moment of inertia given by      

  2 21 1
4 12rotor motor motor prop propI m r m L   = ⋅ + ⋅   

   
, 

 mmotor is the motor mass, 

 rmotor is the motor radius  
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 mprop is the propeller mass and 

 Lprop is the propeller length. 

 

 
0

b
rotor

q
G I p

 
 ∴ = Ω 
  

  (19) 

 
Assuming that the attitude control system performs as expected and 

ideally regulates the angular dynamics to the near hover conditions, the body 

rates of the UAV become close to zero during the flight. Together with constant 

and small value of the moment of inertial of the rotor-propeller combination Irotor, 

the product Gb in the last equation will always be small as long as the roll and 

pitch attitude rates in ωb are regulated to near zero values. Therefore, the 

contribution of the gyroscopic effect to the quadrotor’s total moment is very small 

and can be initially neglected at the first phase of linear control design approach.  

3. Aerodynamic Forces 

The aerodynamic forces acting on the quadrotor during flight are further 

elaborated in the sections below:  

a. Quadrotor Thrust Force 

The thrust from the propellers acting on the quadrotor along the z-axis on 

the body coordinate frame (i.e., zb) can be expressed as: 

 

 ( )2 2 2 2
1 2 3 4

b
TT K ω ω ω ω= − + + +  (20)  

 
 1

b
TT K U= − ⋅   (21) 

 
where:  KT is the propeller thrust coefficient and 

 U1 is the thrust control input for the propellers’ rotation velocity. 
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b. Quadrotor Roll Moment 

The roll moment for the quadrotor along the x-axis on the body coordinate 

frame in plus and cross configurations can be expressed as: 

 

• Plus Configuration 

 2 2
2 4( )T yK lφτ ω ω= ⋅ ⋅ − +   

 
• Cross Configuration 

 2 2 2 2
1 2 3 4( )T yK lφτ ω ω ω ω= ⋅ ⋅ − − + +   

 
 2T yK l Uφτ∴ = ⋅ ⋅   
 
where:  ly is the length of the moment arm on the body y-axis and 

 U2 is the roll control input for the propellers’ rotation velocity. 

 

c. Quadrotor Pitch Moment 

The pitch moment for the quadrotor along the y-axis on the body 

coordinate frame in plus and cross configurations can be expressed as: 

 

• Plus Configuration 

  
 2 2

1 3( )T xK lθτ ω ω= ⋅ ⋅ −  (22)  
  
 

• Cross Configuration 

  
 ( )2 2 2 2

1 2 3 4T xK lθτ ω ω ω ω= ⋅ ⋅ − − +   (23) 
 
  
 3T xK l Uθτ∴ = ⋅ ⋅   (24) 
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where: lx is the length of the moment arm on the body x-axis and 

 U3 is the pitch control input for the propellers’ rotation velocity. 

 

d. Quadrotor Yaw Moment 

The yaw moment for the quadrotor along the z-axis on the body 

coordinate frame in plus and cross configurations are the same and can be 

expressed as: 

  
 ( )2 2 2 2

1 2 3 4DKψτ ω ω ω ω= ⋅ − + −   (25) 
 
 4DK Uψτ∴ = ⋅   (26) 
 
where: KD is propellers’ drag coefficient and 

 U4 is the yaw control input for the propellers’ rotation velocity. 

 

e. Summary of Aerodynamic Forces and Moments  

The relationship between the aerodynamic forces and the propellers’ 

rotational velocity can be represented in matrix form. The matrices for quadrotor 

in plus and cross configurations can be expressed as: 

 

• Plus Configuration 

 

2
1
2
2
2
3
2
4

0 0
0 0

b
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T y T y

T x T x

D D D D

K K K KT
K l K l
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K K K K
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ω
τ ω
τ ω
τ ω

  − − − −   
    − ⋅ ⋅    =    ⋅ − ⋅
    − −        

   (27) 
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• Cross Configuration 
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2
2
2
3
2
4
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K K K KT
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 (28) 

  

D. QUADROTOR EQUATIONS OF MOTION 

With the gravitational force and the quadrotor thrust derived in the 

previous sections, the total force acting on the quadrotor in the body frame is: 

 

 b b b
GF F T∑ = +

G G
  (29) 
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
  (30) 

 
With the quadrotor moments derived in the previous section, the total 

moment experienced by the quadrotor in the body frame can be expressed as: 

 

 bM φ θ ψτ τ τ∑ = + +


  (31) 
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T x T x
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   ⋅ ⋅   


  (32) 

 

Using the force and moment equations derived in the previous sections, 

the quadrotor’s 6DOF EOM can be summarized in equations (35) and (36): 
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IV. DETERMINING IRIS+ PHYSICAL PROPERTIES 

This chapter describes the process and methodology that were used to 

determine the physical properties of the Iris+, which are necessary for the precise 

modeling of its dynamics of motion and its modeling and simulation in Simulink. 

The sections in this chapter are as follow: 

Section A describes the measurement of the quadrotor physical 

specifications. In addition, the equipment that was used in the measurement of 

the Iris+ was also listed in this section. 

Section B describes the method of using a trifilar pendulum to determine 

the Iris+’s mass moment of inertia. 

Section C describes the experimental method that was used to determine 

the Iris+’s propeller properties (i.e., thrust and torque coefficients). 

A. MEASURING QUADROTOR PROPERTIES 

For accurate representation of the quadrotor’s mathematical model, its 

physical properties need to be measured and determined. A measuring tape and 

weighing scale (see Figure 11 and Figure 12) were used as the measuring 

equipment to determine the quadrotor’s weight and length of its moment arms 

along the x and y-axes (see Figure 13). 
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Figure 11  Measuring Tape used in Length Measurements. 
 

 

 

Figure 12  BCS-40 Weighing Scale. 
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Figure 13  Illustration of Iris+ Moment Arms. 
 

 
The results from the measurement of the Iris+ quadrotor’s physical 

specifications are summarized in Table 4. 

Table 4   Measurement of Quadrotor Physical Specifications. 

Measured Quadrotor Physical Specifications 
Mass, including battery (kg) 1.37 

Front Moment Arm Length along x-axis, LxF (m) 0.0923 
Front Moment Arm Length along y-axis, LyF (m) 0.2537 
Back Moment Arm Length along x-axis, LxB (m) 0.13 
Back Moment Arm Length along y-axis, LyB (m) 0.2252 

 
 

B. DETERMINING IRIS+ MASS MOMENT OF INERTIA 

The Iris+ mass moment of inertia can be determined with 2 methods. The 

first method involves an experimental approach that was described in [21] and 

[10], where a trifilar pendulum is used to measure the Iris+ oscillations along 

each of its body axis. Subsequently, the oscillations measured are used to 

compute the Iris+ mass moment of inertia.  
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The second method involves an analytical approach, where each 

component on the Iris+ (e.g., arms, motors, body, etc.) can be approximated as 

regular shapes (i.e., beam or cylinders). The mass moment of inertia for each of 

the regular shapes can be found individually and summed together using the 

parallel axis theorem described in [22] to obtain the mass moment of inertia of 

the Iris+ with respect to its CG.  

Both methods were used to determine the mass moment of inertia for the 

Iris+ and the procedures are elaborated in the next section. Finally, the mass 

moment of inertia obtained using both methods will be compared to determine if 

the differences are significant (i.e., more than 20%).  

1. Experimental Method 

The trifilar pendulum is an established methodology in determining the 

mass moment of inertia of objects with irregular shapes that cannot be calculated 

directly. This methodology was well elaborated in [21] and used to determine the 

Iris+ mass moment of inertia. To determine an irregular shaped object’s mass 

moment of inertia, the trifilar pendulum holding the object is made to rotate along 

the z-axis and the period of a single oscillation is measured over three iterations; 

the mean value was calculated at the end. Subsequently, the period is used to 

calculate the mass moment of inertia of the irregular shaped object. The setup of 

the trifilar pendulum comprises of a disc that is hung from the ceiling with 3 wires 

that are fasten to the disc at an equal distance from each other (see Figure 14). 

Before the mass moment of inertia of the object can be determined with the 

trifilar pendulum, the weight of the disc, its radius and the length of the wire 

would need to be measured first (see Table 6 for the measurement results of the 

experimental setup). 



 37 

 

 

Figure 14  Trifilar Pendulum Setup. 
 

The configuration of the quadrotor’s mass moment of inertia along its 

three principal axes is shown in Figure 15. To determine the quadrotor’s mass 

moment of inertia along any axis (i.e. Ixx, Iyy and Izz), the quadrotor was placed on 

the stand and axis of interest was aligned with the trifilar pendulum’s axis of 

oscillation. The 3 configurations of measuring the quadrotor’s I along the x-axis, 

y-axis and z-axis are shown in Figure 16, Figure 17 and Figure 18 respectively. 

Subsequently, a small angular displacement will be introduced to the trifilar 

pendulum to rotate the stand holding the quadrotor and the period of 10 

rotations/oscillations are measured. The measurement of each period was 
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repeated twice and the total period from the three experimental runs were 

averaged to reduce the effects of experimental random errors. 

 

 

Figure 15  Quadrotor Rotation Axes Configuration. 
 
 

 

Figure 16  Measurement of Mass Moment of Inertia along x-axis. 
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Figure 17  Measurement of Mass Moment of Inertia along y-axis. 
 
 

 

Figure 18  Measurement of Mass Moment of Inertia along z-axis. 
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With the measured period, the quadrotor mass moment of inertia along 

each principal axis can be calculated using equation (37): 

 
2 2

, ,
, , 24

x y z
xx yy zz

W R T
I

Lπ
⋅ ⋅

=
⋅ ⋅

 (37) 

  
where: Ixx,yy,zz = mass moment of inertia of object in x, y or z-axis, 

 T = period of one oscillation in s, 

 W = weight of the disc and quadrotor in kg, 

 R = radius of disc in m, 

 L = length of wire suspending disc from ceiling in m. 

Equation (37) assumes that the weight and the moment of inertial of the 

rotating disk that holds the “irregular” body is negligible, therefore their 

contribution is omitted in (37) for brevity. 

The results from the measurement of the periods along each principal axis 

are summarized in Table 5. Using equation (37), the mass moment of inertia 

along each principal axis was calculated and summarized in Table 6. 

Table 5   Periods of Oscillation in x, y and z Axes. 

 

Table 6   Iris+ Quadrotor Mass Moment of Inertia in x, y and z Axes. 
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2. Analytical Method 

In the analytical method, the individual components of the Iris+ quadrotor 

can be approximated as the shapes shown in Figure 19 and their dimensions are 

shown in Figure 7. The dimensions of each component are measured using the 

measuring tape and weighing scale introduced in Section A. 

 

 

Figure 19  Approximated Shapes and Dimensions for Iris+ 

Table 7   Dimensions of Iris+ Components 

 Mass (kg) Radius, R (m) Height, H (m) Length, L (m) 
Body 0.816 0.1 0.07 - 
Arm 0.0685 - - 0.20 

Motor 0.070 0.015 0.03 - 
Distance between Motor CG 

and Iris+ CG, LM 
- - 0.25 

Distance between Arm CG and 
Iris+ CG, LA 

- - 0.165 

 
The mass moment of inertia for the body and motors can be approximated 

as cylinders, while the mass moment of inertia of the arm can be approximated 

as a beam. Therefore, the mass moment of inertia of the Iris+ quadrotor along 
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the x, y and z axes (i.e. Ixx, Ixx and Ixx) can be found using the parallel axis 

theorem defined in [22] for the approximated shapes, with the following 

equations: 
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  (40) 

 
Substituting the dimensions in Table 7 into the equations (38), (39) and 

(40), the mass moment of inertia of the Iris+ quadrotor along each axis (found 

using the analytical method) is: 

Ixx = 0.0238 kg.m2, 

Iyy = 0.00882 kg.m2, 

Izz = 0.0303 kg.m2. 
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3. Comparison between Experimental and Analytical Methods 

The comparison between the mass moment of inertia obtained using the 

experimental and analytical methods are shown in Table 8. Comparing between 

the results obtained from both methods, the percentage difference in the mass 

moment of inertia are 8.7%, 23.6% and 0.03% for the x, y and z-axes, 

respectively.  

Table 8   Mass Moment of Inertia for Experimental and Analytical 
Methods 

 Experimental (kg.m2) Analytical (kg.m2) Percentage Difference 
Ixx 0.0219 0.0238 8.7% 
Iyy 0.0109 0.00882 23.6% 
Izz 0.0306 0.0303 0.03% 

 

It can be seen from Table 8  that the mass moment of inertia in the x and 

z-axes found using the experimental and analytical methods are relatively small 

(i.e. 8.7% and 0.03% respectively). The difference for the mass moment of inertia 

in the y-axis is more pronounced (i.e. 23.6%) and this could be attributed to the 

overly simplistic representation of the Iris+ distribution of masses. First, the 

spread angle of the front arms (i.e. 120o) is different from the separation of the 

back arms (i.e. 140o) that leads to the difference in separation of masses along x 

and y-axes. Next, the simplified representation of the center-body as a cylinder is 

also a minor contributor to the difference. Nevertheless, the difference between 

the experimental and analytical method for the y-axis is only slightly over 20%. 

Therefore, since the mass moment of inertia found using both methods are of the 

same order of magnitude, the mass moment of inertia that was obtained using 

the experimental method can be used in the Iris+ quadrotor mathematical model. 

 

C. QUADROTOR PROPELLER COEFFICIENTS 

The propellers installed on the Iris+ quadrotor were manufactured by APC 

and have a dimension of 10” by 4.7” in diameter and pitch respectively (see 
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Figure 20). A test stand experiment setup that rotates the propeller at a specified 

speed and measuring the thrust force generated can be used to determine the 

propeller’s thrust coefficient, CT and torque coefficient, CQ. 

 

 

Figure 20  APC 10” by 4.7” Propeller Set (from [23]). 
 

 
The University of Illinois at Urbana-Champaign (UIUC) had performed a 

series of experiments as described in [24] and [25] to determine the performance 

of different small-scale propellers at low Reynolds number. The experimental 

results for the APC propeller of dimension 10” by 4.7” were summarized in Table 

9, while the plots for the thrust and power coefficients against the propeller speed 

are shown in Figure 21 and Figure 22. 
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Table 9   APM (10” x 4.7”) Propeller Thrust & Power Coefficients at 
Different Speed (from [26]). 

Propeller Rotational 
Speed (RPM) 

Propeller Rotational 
Speed (rad/s) 

Thrust 
Coefficient, CT 

Power 
Coefficient, CP 

2377 248.9189 0.1059 0.0431 
2676 280.2301 0.1079 0.0437 
2947 308.6091 0.1079 0.0437 
3234 338.6637 0.1104 0.0444 
3494 365.8908 0.1117 0.0450 
3762 393.9557 0.1143 0.0460 
4029 421.9159 0.1158 0.0466 
4319 452.2846 0.1177 0.0474 
4590 480.6637 0.1200 0.0484 
4880 511.0324 0.1223 0.0494 
5147 538.9926 0.1237 0.0500 
5417 567.2669 0.1252 0.0508 
5715 598.4734 0.1263 0.0513 
5960 624.1297 0.1278 0.0520 
6226 651.9852 0.1286 0.0524 
6226 651.9852 0.1286 0.0531 

 
 

 

Figure 21  Thrust Coefficient vs Propeller Speed Plot (from [26]). 
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Figure 22  Power Coefficient vs Propeller Speed Plot (from [26]). 
 

 
The relationship between the thrust generated by a propeller, Ti and the 

propeller’s rotational velocity, ωi can be expressed in equation (42). Therefore, 

the thrust generated by a propeller can be found if the propeller’s rotational 

speed and coefficient of thrust is known. 

 

 4 4 24i T iT C Dρ π ω= ⋅ ⋅ ⋅ ⋅ ⋅   (41) 
 
 2

i T iT K ω∴ = ⋅   (42) 
 
where: CT = propeller thrust coefficient, 

 ρ = air density, 

 D = propeller diameter, 

 KT = thrust constant representing the product of CT, ρ and D4. 
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The relationship between the torque generated by a propeller, Qi and the 

propeller’s rotational velocity, ωi can be expressed in equation (46) as referenced 

from [25]. Although the torque coefficient, CQ was not determined directly in the 

experiments conducted by UIUC, it is related to the power coefficient, CP shown 

in equation (44). Therefore, the torque generated by a propeller can be found if 

the propeller’s rotational speed and coefficient of power and coefficient torque 

are known. 

 

 5 2 24i Q iQ C Dρ π ω= ⋅ ⋅ ⋅ ⋅ ⋅   (43) 
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 2

i Q iQ K ω∴ = ⋅   (46) 
 
 
where: CQ = propeller torque coefficient, 

 CP = propeller power coefficient, 

 KQ = torque constant representing the product of CP, ρ and D. 
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V. QUADROTOR FLIGHT CONTROL DESIGN 

This chapter presents the process of designing the flight control algorithm 

for the Iris+ quadrotor based on the mathematical model developed in Chapter 

III. The PID controller was chosen as the control technique to stabilize (control 

attitude) the Iris+ model in flight and the method to tune the PID controller is 

elaborated as well in this chapter. The sections in this chapter are as follow: 

Section A provides an overview to the control modeling of the quadrotor 

and the process for controlling the quadrotor to track a planned trajectory. 

Section B gives a brief overview of the PID controller that will be employed 

on the quadrotor model. 

Section C describes the Ziegler-Nichols method that is employed to tune 

the PID controller for the Iris+ attitude and rates control loops. 

A. CONTROL MODELLING OF QUADROTOR 

The control modeling of the Iris+ quadrotor is summarized and presented 

in the block diagram as shown in Figure 23 below. A hierarchical approach that 

was presented in [7] was used to allocate the control bandwidths required by the 

control actions in the block diagram: motor mixer allocation, controller blocks. In 

this approach, higher control bandwidths are allocated to the lower level control 

actions. Therefore, the motor speed allocation receives the highest control 

bandwidth as it is located at the lowest level, while the outer loop controller block 

receives the lowest control allocation, as it is located at the highest level. The 

functions of each block are further elaborated below. 
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Figure 23  Block Diagram of Quadrotor Control Model. 
 

1. Trajectory Generator Block 

In Simulink, the trajectory generator block computes the desired flight 

trajectory that needs to be followed by the quadrotor and generates the set of 

desired positions (i.e., xd, yd and zd) and desired Euler angles (i.e. ϕd, θd and ψd) 

in the inertial coordinate frame for that trajectory. If a Remote Control (RC) is 

used to generate flight command during an actual flight, the trajectory generator 

block will output the desired Euler angles or their rates to the Iris+ quadrotor; the 

choice depends on the control architecture. The desired positions and Euler 

angles are used as inputs for the controller block to stabilize the Iris+ in flight 

during the change in the Iris+ attitude. 

2. Controller Block 

The control of the quadrotor’s position and attitude is accomplished by the 

design of the feedback controller and the method was well documented in [6] and 

[7]. As mentioned in the previous chapters, the quadrotor is an under-actuated 

system. Therefore, to move forward in the ‘x’ direction, the quadrotor must first 

change its attitude by pitching downwards to generate a horizontal force from the 

propellers’ thrusts, while maintaining its altitude. Similarly, in order to move 

laterally in the ‘y’ direction, the quadrotor must change its attitude by rolling to the 

right or left while maintaining its altitude. Therefore, the control equations of the 

quadrotor’s position and attitude channels are shown in equations (47) and (48). 
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The complete derivation of the control equations can be found in Annex A of this 

thesis. 

 

1. Attitude Control Equations 

   
 ( )1, 2,

V
d y I d y VK R y y K yφ  = ⋅ − − ⋅    (47) 

 
 ( )1, 2,

V
d x I d x VK R x x K xθ  = ⋅ − −    (48) 

   
 

where: 𝑅𝑅𝐼𝐼𝑉𝑉 is the rotation matrix that transforms the quadrotor’s position  

  from the inertia to vehicle coordinate frame, 

 K1,x is the proportional gain term for the position in the ‘x’ direction, 

  K2,x is the derivative gain term for the velocity in the ‘x’ direction, 

 K1,y is the proportional gain term for the position in the ‘y’ direction, 

 K2,x is the derivative gain term for the velocity in the ‘y’ direction. 

 
2. Forces and Moments Control Equations 

 , , ,( ) ( ) ( )P roll d m I roll d m D roll d mK K Kφτ φ φ φ φ φ φ= ⋅ − + ⋅ − + ⋅ −    (49) 
 
 ,pitch ,pitch ,pitch( ) ( ) ( )P d m I d m D d mK K Kθt θ θ θ θ θ θ= ⋅ − + ⋅ − + ⋅ −    (50) 
 
 ,yaw ,yaw ,yaw( ) ( ) ( )P d m I d m D d mK K Kyτ yyyyyy     = ⋅ − + ⋅ − + ⋅ −    (51) 
 
 , , D, 0( ) ( ) ( )P z d I z d z dT K z z K z z K z z ω= − + − + − +    (52) 
 

 0 4 T

m g
K

ω ⋅
=

⋅
  (53) 

 
where: KP,roll/pitch/yaw is the proportional gain term for the roll, pitch or yaw  

  angles, 
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 KI,roll/pitch/yaw is the Integral gain term for the roll, pitch or yaw angles, 

 KD,roll/pitch/yaw is the derivative gain term for the roll, pitch or yaw  

  rates, 

 KP,z is the proportional gain term for the position along the z-axis, 

 KI,z is the integral gain term for the position along the z-axis, 

 KD,z is the derivative gain term for the velocity along the z-axis, 

 ω0 is the motor rotational speed required to generate a thrust  

  that is equal to the weight of the quadrotor. 

 

3. Motor Mixer Block 

The motor mixer block computes the required angular speed of each 

propeller in order to generate the thrust force and moments (i.e., Tb, τϕ, τθ, τΨ) to 

perform a maneuver or changing the quadrotor’s attitude in flight. As stated in 

Chapter III, the thrust and moments of the quadrotor are directly proportional to 

the square of the propellers’ angular speed (i.e., ωi
2). The proportional 

relationship between the thrust and moments of the quadrotor and each 

propeller’s angular speed is shown in equation (54), represented by the matrix, 

M. Therefore, to determine the angular speed required for each propeller in order 

to generate the thrust force and moment, the inverse of M is first derived and 

multiplied to the thrust, roll, pitch and yaw moment vector as shown in the 

equation (55). The calculated angular speed for each propeller will be used as an 

input for the quadrotor dynamics block. 

 

 [ ]
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      − ⋅ − ⋅ ⋅ ⋅      = =      ⋅ − ⋅ − ⋅ ⋅
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  (54) 
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  (55) 

 

4. Iris+ Quadrotor Dynamics Block 

The Iris+ dynamics block consists of the 6DOF EOM that was derived in 

Chapter III. The required angular speed for each propeller is provided by the 

motor mixer block to the Iris+ dynamics block as an input and the body response 

is measured by the sensors onboard the Iris+ as the measured position, Euler 

angles and their rates. The measured responses are fed back to the controller 

block and used to determine the error signals for each of the position and Euler 

angle channel. 

B. FLIGHT CONTROLLER IMPLEMENTATION IN SIMULINK 

Using the concept formulated in section A.4 of this chapter for the control 

modeling of the Iris+ quadrotor, a Simulink model was built as shown in Figure 

24. The Simulink model is used to tune the PID controller gains and simulate the 

Iris+ dynamics with the gain values to obtain a first cut flight performance, before 

using the gains for the Pixhawk autopilot. 
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Figure 24  Simulink Model of Iris+ Quadrotor. 
 

 

C. OVERVIEW OF PID CONTROLLER 

The quadrotor model in this thesis uses a PID controller that was 

elaborated in [27], [28] and [29] to stabilize the Iris+ attitude during flight. A PID 

controller consists of three tunable gain values: Proportional gain (i.e. KP), the 

Integral gain (i.e. KI) and the Derivative gain (i.e. KD) as shown in Figure 25. The 

transfer function of a PID controller can be represented by equation (56). 

 

 ( ) I
P D

KG S K K s
s

= + + ⋅   (56) 
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Figure 25  Illustration of System designed with PID Controller. 
 

 
Each gain in the PID controller can be tuned to modify a particular 

transient response parameter of the feedback system (see Figure 26) and the 

effects from increasing each gain value separately is further elaborated below: 

1. Proportional Gain, KP  

The KP value is increased to reduce the time required for the output signal 

to reach the desired signal (i.e., system response time, tr). By increasing the KP 

value alone in the PID controller, a steady-state error can be reduced and 

expected to be between the desired signal and the output signal. In addition, 

setting an overly high KP value will also propagate any inherent disturbance 

signal within the system and cause the system to undergo unstable oscillations. 

2. Integral Gain, KI 

The KI value is increased to eliminate the steady-state error of the 

feedback system. However, as the integral term introduces a pole at the origin of 

an S-plane plot, the system might become increasingly unstable when the KI 

value is increased (i.e., the system will become increasingly oscillatory in the 

steady-state). 
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3. Derivative Gain, KD 

The KD value is increased to reduce the overshoot, MP and the settling 

time, td of the feedback system’s output signal. Although derivative control does 

not affect the steady-state error directly, it introduces damping to the feedback 

system. This would allow the system to use a larger KP value, which would result 

in improvement to the system’s steady-state performance. As described in [27] 

and [20], “derivative control operates on the rate of change of the actuating error 

and not the actuating error itself this mode is never used alone.” Therefore, KD 

gain is generally used in combination with KP and KI control actions. 

 

 

Figure 26  Transient Response for a Feedback System (from 
[20]). 

 

D. IMPLEMENTATION OF PID CONTROLLERS IN ATTITUDE AND 
RATES CHANNEL IN SIMULINK 

With reference to the concept of a PID controller above, the PID controller 

was implemented to the attitude and attitude rate control channels for the Iris+ 

quadrotor in Simulink (see Figure 27 to Figure 32). The PID controllers for the 
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Iris+ Simulink model will be tuned using the method outlined in the next section to 

obtain the optimal PID gains for a stabilize flight performance. 

1. Attitude Controllers  

In linear settings, the outer loop controllers that operate on the Iris+ 

command attitude rates (i.e. comφ , comθ and comψ ) can be obtained by taking the 

difference between the Iris+’s command and measured attitude (i.e., error term, 

eϕ/θ/Ψ(t)) and multiplying it with a proportional gain term (i.e. KP,ϕ/θ/ψ). The 

proportional control law equations for the attitude rates are shown in equations 

(57) through (59) and these equations can be represented in Simulink as shown 

in Figure 27, Figure 28 and Figure 29: 

 

 , ,( ) ( )com P com meas PK K e tφ φ φφ φ φ= − = ⋅   (57) 
 
 , ,( ) ( )com P com meas PK K e tθ θ θθ θ θ= − = ⋅  (58) 
 
 , ,( ) ( )com P com meas PK K e tψ ψ ψψ ψ ψ= − = ⋅   (59) 
 
  

 

Figure 27  Roll Channel Controller. 
 

 

Figure 28  Pitch Channel Controller. 
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Figure 29  Yaw Channel Controller. 
 

2. Attitude Rate Controllers 

In linear settings, the inner loop controller that operates on the Iris+ 

command moments along the x, y and z-axes (i.e. τroll, τpitch and τyaw) can be 

obtained by using the difference between the command attitude rates from 

section 1 and the measured attitude rates from the Iris+ sensors (i.e. measφ , measθ  

and measψ ). Subsequently, the difference between the command and measured 

attitude rates were multiplied with proportional, integral and derivative gains (i.e. 

KP,ϕ/θ/Ψ, KI,ϕ/θ/Ψ and KD,ϕ/θ/Ψ) and summed to shape the controllers’ transient and 

steady state performance. The control equations for the moments are shown in 

equations (60) through (62) and these equations can be represented in Simulink 

as shown in Figure 30, Figure 31 and Figure 32: 

 

 ,
, ,( ) ( ) ( )I

roll com meas com meas com measP d

K dK K
s dt
φ

φ φt φ φ φ φ φ φ= − + − + −


 
        (60) 

 

 ,
, ,( ) ( ) ( )I

pitch com meas com meas com measP d

K dK K
s dt
θ

θ θt θ θ θ θ θ θ= − + − + −


 
        (61) 

 

 ,
, ,( ) ( ) ( )I

yaw P com meas com meas d com meas

K dK K
s dt
y

yy tyyyyyy      = − + − + −

         (62) 
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Figure 30  Roll Moment Controller. 
 

 

Figure 31  Pitch Moment Controller. 
 

 

Figure 32  Yaw Moment Controller. 
 

E. PID CONTROLLER TUNING METHOD 

With the Simulink model developed for the Iris+ and the PID controllers in 

the previous section, a systematic approach would need to be adopted to tune 

the PID controllers and obtain optimal gain values for the Iris+ to attain stabilized 

flight. The Ziegler-Nichols rule elaborated in [27] and [20] for tuning PID 
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controllers was selected as a suitable method for this thesis to determine the 

gains of the Iris+ PID controllers. There are two methods for applying the Ziegler-

Nichols rule: 

1. Ziegler-Nichols First Method 

The first method for applying the Ziegler-Nichols rule involves an 

experiment on the plant or system to obtain the response plot due to a unit step 

command. If the plant or system does not feature an integrator or dominant 

complex conjugate poles, the plant or system’s response plot to a unit step 

response will take the shape of an S curve as shown in Figure 33. Therefore, the 

first method for the Ziegler-Nichols rule is only valid if the response plot takes the 

shape of an S. Since this method is restricted by whether the plant or system 

possess an integrator or dominant complex conjugate poles, the second method 

was used for tuning the PID controller instead. 

 

 

Figure 33  S-Shaped Response Curve to a Unit Step Command 
(from [20]). 

 

2. Ziegler-Nichols Second Method 

The second method for applying the Ziegler-Nichols rule also adopts an 

experimental approach to determine the PID gain values for a plant or system. In 
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this method, the proportional gain for a control loop (each control loop is tuned 

individually) is increased to a critical value where the output of the channel 

exhibits oscillatory behavior. This proportional gain is also known as the critical 

gain value, Kcr that causes the system output to oscillate. The corresponding 

period of Kcr (i.e. Pcr) is determined from the plot of the system output. Using the 

Kcr and Pcr values found, the gains for the PID controller in each loop can be 

found using the relation defined in Table 10. The transfer function for the PID 

controller using the Ziegler-Nichols rule is shown in equation (57). 

Table 10   PID Controller Gains using Ziegler-Nichol Methods (from 
[20]). 

Type of Controller KP TI TD 
Proportional only 0.5Kcr ∞ 0 

Proportional & Integral only 0.45Kcr 1
12

Pcr 
0 

Proportional, Integral & Derivative 0.6Kcr 0.5Pcr 0.125Pcr 
 
   

 1 1(S) K (1 ) 0.6 (1 0.125 )
0.5C P D cr cr

I r

G T s K P s
T s P s

= + + ⋅ = ⋅ ⋅ + + ⋅ ⋅
⋅ ⋅ ⋅

  (63) 

 
Using the second method for the Ziegler-Nichols rule, the gains for the 

PID controller in each control loop were determined individually with the Simulink 

model developed. 
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VI. IMPLEMENTATION OF CONTROLLER ON PIXHAWK 

This chapter presents the process of implementing the Simulink model of 

the PID controller that was developed in Chapter V onboard of the Pixhawk 

autopilot. The outline of this chapter is as follows: 

Section A describes the methods that were considered and selected to 

implement the Simulink model onto the Pixhawk autopilot. 

Section B elaborates on using the attitude controller Simulink model found 

in the PX4 toolchain and the conversion of the model to C/C++ code using the 

Simulink ‘Build’ function. 

Section C describes the process of using the Eclipse software to build the 

Simulink controller model into an application and downloading the application to 

the Pixhawk autopilot. 

A. METHODS TO IMPLEMENT SIMULINK MODEL ON PIXHAWK 

MathWorks had developed the Simulink coder and Embedded coder to 

convert Simulink models to C/C++ codes using the ‘Build’ function in Simulink. 

The C/C++ codes generated can be used to build an application that is 

downloaded to the Pixhawk autopilot using the methods described in [13] or [12]. 

The methods to implement the Simulink model onto the Pixhawk autopilot was 

elaborated with full details in Appendix B. 

B. SETUP OF ATTITUDE CONTROLLER SIMULINK MODEL 

To implement the software development starting at a Simulink model and 

transitioning to the PX4 application that can be run on the autopilot, the PX4 

toolchain and PX4 PSP would first need to be downloaded and installed from 

PX4’s website [30] and MathWorks’ website [19]. The PX4 toolchain and 

Pixhawk PSP comes with a library of PX4 Simulink blocks and the various 

subsystems found in the Iris+ (e.g., controller model, plant model, etc.). As a first 

step in developing the controller for this thesis, the attitude controller Simulink 
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model found in the PX4 Simulink library can be modified to implement the 

architecture of the PID controller designed previously in Chapter V (see Figure 

34). Alternatively, [12] had developed a wrapper code for the Simulink attitude 

controller found in the PX4 Simulink library (see Figure 35) that can be modified 

readily to accept input signals from the sensors found on the Pixahwk autopilot 

and outputs the required PWM for the Iris+ BLDC motors.  

 

 

Figure 34  Attitude Control Simulink Model in PX4 Simulink. 
Example from [13]. 

 

 

Figure 35  Attitude Control Wrapper (from [12]). 
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Using the PID gain values found in Chapter V with the Ziegler-Nichols 

method, the attitude controller Simulink model can be configured to use these 

PID gain values. In addition, the flight dynamics constraints (e.g., saturation limits 

of the control laws, the BLDC motors’ minimum and maximum PWM values, etc.) 

of the Iris+ quadrotor would also need to be updated to match the architecture of 

the newly developed attitude controller model. Finally, the ‘Build’ function in 

Simulink can be used to “auto-generate” the updated attitude controller Simulink 

model into C/C++ codes. 

C. BUILDING PIXHAWK APPLICATION IN PX4 ECLIPSE 

The process of building an application for the Pixhawk autopilot was 

documented in both [13] and [12]. This thesis has combined the essential 

information that are required to build an application for the attitude controller from 

both sources and elaborated on the process in Appendix B.  

Before building the application for the attitude controller, the Iris+ 

quadrotor’s ground station software, QGroundControl would need to be 

downloaded from [31]. The QGroundControl software adopts the Mavlink 

communication protocol to support bi-directional command and control of the 

multi-copter in flight. In addition, it also includes utility function such as the 

calibration of the Iris+ quadrotor’s sensor and interfaces with the Iris+ for logging 

of the flight data.  

The method described in [13] allows the application to be built in Simulink 

directly and downloaded to the Pixhawk autopilot. In contrast, the method used in 

[12] uses the PX4 Eclipse software in the PX4 toolchain to build the application 

from the source code resulted from MathWork’s auto-coding and downloading it 

to the Pixhawk autopilot. The process of using the PX4 Eclipse to build an 

application for the Pixhawk autopilot was summarized with the flow diagram in 

Figure 36. 
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Figure 36  Process of Building and Downloading Application to 
Pixhawk Autopilot (after [16] and [19]). 
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VII. IRIS+ FLIGHT TESTS 

After the Simulink attitude controller application was successfully 

downloaded to the Pixhawk autopilot, a flight test was set up to assess the 

performance of the Iris+. The flight test was carried out in NPS’s Halligan hall 

indoor flight facilities (see Figure 37), which had been setup to fly multi-copter in 

a safe environment.  

 

 

Figure 37  Multi-Copter Indoor Flight Facilities. 
 

A. FLIGHT TEST PROCEDURE 

The main objective of the flight test is to analyze the transient and steady-

state performance of the PID attitude controllers in the roll, pitch and yaw 

channels. The steps for the flight test are further elaborated below: 

• Step 1 

Set up the ground computer to record the flight test data by launching 

QGroundControl and connecting it to the Iris+ quadrotor with the 3DR radio (set 

baud rate to 57,600). In QGroundControl, select the ‘Analyze’ tab on the toolbar 
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and select all the flight data parameters (see Figure 38). Finally, click ‘start 

logging’ in the ‘Analyze’ window to start the flight data recording and save the 

data as a CSV file in the working directory.  

 

 

Figure 38  Location of ‘Analyze’ Tab on QGroundControl. 
 

• Step 2 

Once the ground computer is setup to record the flight data, the motors on 

the Iris+ quadrotor are armed and the copter flies a rectangular trajectory along 

the circumference of the flight facilities, using manual control from the RC 

transmitter. During the flight of the Iris+ quadrotor, roll, pitch and yaw commands 

are transmitted from the RC transmitter to obtain the attitude controller’s 

response. 

• Step 3 

When the Iris+ quadrotor has landed, disarm the motor with the RC 

transmitter and select ‘stop logging’ from the QGroundControl. Develop MATLAB 

scripts to facilitate quick data analysis. Using the flight data recorded in the CSV 
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file, plot the transient and steady-state curves for the Iris+ attitude and rates 

channel. 

B. FLIGHT TEST RESULTS AND ANALYSIS 

A series of flight tests were conducted to determine the transient and 

steady state performance characteristics of the attitude controller onboard the 

Iris+. The resulting plot of the flight data is shown in Figure 39. The red line 

represents the roll magnitude command transmitted by the RC transmitter and 

the blue line represents the magnitude of roll motion measured by the Iris+ 

sensor. In the first flight test, it can be seen from the plot for the roll channel 

exhibits relatively high overshoots throughout the Iris+ flight. 

 

 

Figure 39  Roll Channel Plot for First Flight. 
 

To improve performance characteristics of the transient and steady state 

response of the attitude controller, the PID gains in the roll, pitch and yaw 

channels were tuned. The outcome from the tuning is elaborated in the 

subsequent sections: 

1. Roll and Roll Rate Channels 

The plots of the flight data for the roll and roll rate for the duration of 24.6 

to 26.6s are shown in Figure 40 and Figure 41 respectively; the red line 

represents the roll magnitude command transmitted by the RC transmitter and 

the blue line represents the magnitude of roll measured by the Iris+ sensor. The 
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subplot represents the error between the command and measured roll and roll 

rate magnitudes. 

 

 

Figure 40  Roll and Error Plots. 
 

 

Figure 41  Roll Rate and Error Plots 
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It can be observed that the outer loop roll channel controller is able to 

track the roll command with a slight overshoot (i.e., approximately 15%) in the 

transient phase and exhibits little oscillations in the steady state. The transient 

and steady state performance of the inner loop roll rate channel is similar. 

Therefore, the roll and roll rate channels demonstrate reasonable transient and 

steady state performances to control the Iris+ in flight. 

2. Pitch and Pitch Rate Channels 

The plots of the flight data for the pitch and pitch rate for the duration of 

5.62 to 5.72s are shown in Figure 42 and Figure 43 respectively; the red line 

represents the pitch magnitude command transmitted by the RC transmitter and 

the blue line represents the magnitude of pitch motion measured by the Iris+ 

sensor. The subplot represents the error between the command and measured 

pitch and pitch rate magnitudes. 

 

 

Figure 42  Pitch and Error Plots. 
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Figure 43  Pitch Rate and Error Plots. 
 

It can be observed that the outer loop pitch channel controller is able to 

track the roll command with a slight overshoot (i.e., approximately 10%) in the 

transient phase and exhibits slight oscillations in the steady state. The transient 

and steady state performance of the inner loop pitch rate channel is similar. 

Therefore, the pitch and pitch rate channels demonstrate reasonable transient 

and steady state performances to control the Iris+ in flight. 

 

3. Yaw and Yaw Rate Channels 

The plots of the flight data for the yaw and yaw rate for the duration of 21 

to 22s are shown in Figure 44 and Figure 45 respectively; the red line represents 

the yaw magnitude command transmitted by the RC transmitter and the blue line 

represents the magnitude of pitch motion measured by the Iris+ sensor. The 

subplot represents the error between the command and measured yaw and yaw 

rate magnitudes.  
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Figure 44  Yaw and Error Plots. 
 

 

Figure 45  Yaw Rate and Error Plots 
 

It can be observed that the outer loop yaw channel controller is able to 

track the yaw command with a slight overshoot (i.e., approximately 20%) in the 

transient phase and exhibits slight oscillations in the steady state. The transient 

and steady state performance of the inner loop yaw rate channel is similar. 
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Therefore, the yaw and yaw rate channels demonstrate reasonable transient and 

steady state performances to control the Iris+ in flight. 
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VIII. CONCLUSION AND FUTURE WORKS 

In this thesis, it was shown that the Iris+ quadrotor flight dynamics can be 

represented with a mathematical model in Simulink and be used to design an 

attitude controller to stabilize the Iris+ quadrotor in flight. This thesis also 

demonstrated the successful implementation of a flight attitude controller 

developed using Simulink onboard the Pixhawk autopilot by using the Simulink 

‘Build’ function and the PX4 Eclipse software, while eliminating the need to be 

proficient in high level programming language.  

Therefore, the methods outlined in this thesis provide control engineering 

students with an enabling tool to implement their flight controller design that was 

developed in Simulink directly onto a quadrotor autopilot hardware. The flight 

controller design can subsequently be put through an actual flight test and the 

performance of the flight controller can be readily analyzed with the ground 

control station.  

The groundwork was laid by this thesis to implement a flight controller 

design on actual quadrotor hardware. As a continuation for this thesis, the 

following areas can be considered by students for future research works: 

• Instead of the PID controller used in this thesis, alternatives to the 
controller design (e.g. LQR) can be implemented on the Iris+ 
quadrotor to improve its stability and robustness during the flight. 

• The GPS signal detected by the Iris+ quadrotor within the indoor 
flight facility was not always in good condition. Therefore, the Iris+ 
quadrotor can be integrated to the Vicon motion capture system, 
which is set up in the indoor flight facility to provide multi-copters 
with accurate position and attitude data.  

• The Pixhawk autopilot was used for a COTS quadrotor in this thesis. 
Alternate platforms could be considered and modeled in Simulink 
for use on the Pixhawk autopilots (e.g., fixed wing aircraft, UGV, 
etc.). 
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APPENDIX A.  DERIVATION OF CONTROL EQUATIONS 

The reference in [7] describes that the flight maneuvers of a quadrotor are 

performed by keeping constant or varying the rotational speeds of the propellers. 

For example, to fly forward in the ‘x’ direction, the quadrotor would need to 

perform a pitch down motion to generate a horizontal thrust force in the ‘x’ 

direction. The quadrotor’s flight control in the ‘x’, ‘y’ and ‘z’ directions are further 

elaborated below: 

A. MANEUVER ALONG X-AXIS 

In order for the quadrotor to fly forward along the x-axis in the vehicle 

coordinate frame, it would first need to pitch down to generate a force (i.e. F


)  

that is represented by equation (65). The force can be resolved into the x-

component, xF  which is the force that accelerates the quadrotor forward, and the 

z-component, zF  , which is the upward force that is required to maintain the 

quadrotor in the desired altitude. 
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 (65)  

 

It is assumed that the pitch angle required to generate the thrust for a 

forward flight along the x-axis is sufficiently small. Therefore, the x-component of 

the thrust force can be approximated as: 

 

 xF T s Tθ θ= ⋅ ≈ ⋅   (66) 
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The forward velocity of the quadrotor in the vehicle coordinate frame can 

be controlled with a proportional control law that is shown in equation (67): 

 

 , ( )x f x d VF m K x x= ⋅ −    (67) 
 
where: m is the quadrotor mass, 

 dx  is the desired velocity along the x-axis in the vehicle reference  

  frame, 

 x  is the measured velocity along the x-axis in the vehicle   

  reference frame, 

 ,f xK  is the proportional gain. 

Combining equations (68) and (69) derived for xF  gives the following 

equation: 

 
 , ( )f x d VT m K x xθ⋅ = ⋅ ⋅ −    (68) 
 

 , ( )f x
d d V

m K
x x

T
θ

⋅
∴ = −    (69) 

 

where: dθ  is the desired pitch angle to perform the forward flight along the  

  x-axis. 

In order for the quadrotor to maintain its altitude in forward flight, upward 

thrust generated by the propellers would need to be equal to its weight. 

Therefore, the thrust component, T in equation (69) can be replaced with the 

quadrotor’s weight: 

 

 ( ) ( ), ,f x f x
d d dV V

m K m K
x x x x

T m g
θ

⋅ ⋅
= − = −

⋅
      (70) 
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 , ( )f x
d d V

K
x x

g
θ∴ = −    (71) 

 
Finally, the desired forward velocity of the quadrotor in the inertial 

coordinate frame, dx  is related to the position along the x-axis with the following 

proportional control law: 

 , ( )d P x dx K x x= −   (72) 
 

where: dx  is the desired position of the quadrotor along the x-axis, 

 x  is the measured position of the quadrotor along the x-axis, 

           ,P xK  is the proportional gain. 

Therefore, the desired pitch angle that is required to perform flight forward 

along the x-axis is represented by equation (73): 

 

 ( )1, 2,
V

d x I d x VK R x x K xθ  = ⋅ ⋅ − − ⋅    (73) 
 

where: V
IR  is the rotation matrix that transforms the position from the  

  inertia to vehicle coordinate frame, 

 1,xK  is the proportional gain term for the position, 

  2,xK  is the proportional gain term for the velocity. 

B. MANEUVER ALONG Y-AXIS 

Similar to the derivation of the desired pitch angle for the quadrotor to 

perform a forward flight along the x-axis, the quadrotor would need to roll to a 

desired angle to generate a lateral force, 𝐹𝐹𝑦𝑦 in order to move the quadrotor side 

way along the y-axis. The y-component of the force can be found using the 

rotation matrix for the roll maneuver and is shown in equations (74) and (75): 
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  (75) 

 
It is assumed that the roll angle to perform the lateral flight along the y-

axis is sufficiently small. Therefore, the y-component force can be approximated 

as: 

 yF T s Tφ φ= ⋅ = ⋅   (76) 
 

The lateral velocity of the quadrotor in the vehicle coordinate frame can be 

controlled with a proportional control law as shown in equation (77): 

 

 ( ),y f y d V
F m K y y= ⋅ −    (77) 

 

where: dy   is the desired velocity along the y-axis in the vehicle reference  

  frame, 

 y  is the measured velocity along the y-axis in the vehicle reference 

  frame, 

 and ,f yK   is the proportional gain. 

Combining the equations (76) and (77) derived gives equation (78): 

 

 , ( )f y d VT m K y yf⋅ = ⋅ −    (78) 
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In order for the quadrotor to hover and maintain its altitude, its weight 

would need to be equal to the upward thrust generated. Therefore, the above 

equation becomes: 

   

 ( ) ( ), ,f y f y
d dV V

m K m K
y y y y

T m g
f

⋅ ⋅
= − = −

⋅
      (79) 

 

 ( ),f y
d V

K
y y

g
f∴ = −     (80) 

 
Finally, the desired lateral velocity of the quadrotor in the inertial 

coordinate frame, dy  is related to the position along the y-axis with the following 

proportional control law: 

 , ( )d P y dy K y y= −   (81) 
   

where: dy   is the desired position of the quadrotor along the y-axis, 

  y  is the measured position of the quadrotor along the y-axis, 

 ,P yK  is the proportional gain. 

Therefore, the desired roll angle that is required to effect a lateral motion 

is represented by equation (82): 

 

 ( )1, 2,
V

d y I d y VK R y y K yφ  = − − ⋅    (82) 
 

where: 1, yK  is the proportional gain term for the position along the y-axis, 

  1, yK  is the proportional gain term for the velocity along the y-axis. 

C. MANEUVER ALONG Z-AXIS 

In order for the quadrotor to maneuver along the z-axis, the quadrotor’s 

thrust, T would need to be adjusted according to equation (83). The additive term 
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ω0 is the rotor speed that is required to generate the amount of thrust that equals 

the weight of the Iris+ quadrotor. The additive term results in a feedforward 

controller for the thrust channel, which eliminates the need for high proportional 

gain values (leads to instability) or an integral gain term (leads to slow response 

time). Therefore, the quadrotor’s altitude control can be implemented with a 

proportional, derivative controller as a result of the feedforward term: 

 

 , , 0( ) ( )P z d D z dT K z z K z z ω= − + − +    (83) 
 
 

where: ,P zK   is the proportional gain term for the position along the z-axis, 

  ,D zK  is the derivative gain term for the velocity along the z-axis, 

 0ω  is the motor rotational speed required to generate a thrust that is 

  equal to the weight of the quadrotor. 
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APPENDIX B.  INSTRUCTIONS FOR BUILDING PIXHAWK 
APPLICATION 

There are two methods designed for building an application for Simulink 

models and implementing it on the Pixhawk autopilot, as documented in [13] and 

[12]. This chapter combines the essential information from both documents and 

summarizes the details for building an application/firmware for the Pixhawk 

autopilot. The instructions for building the Pixhawk application are further 

elaborated in the steps below: 

A. SOFTWARE INSTALLATION 

Before beginning with the process of building an application/firmware, the 

Pixhawk toolchain and QGroundControl (Version 2.0.3 beta1) software would 

need to be installed. The step-by-step installation process is summarized below: 

• Step 1 

Ensure that the MATLAB and Simulink installed on your computer meet 

the requirements in Table 11. 

Table 11   Matlab and Simulink Prerequisites (from [13]). 
 

MATLAB & Simulink Requirements 
- Version 2014a or later 
- Contains: 

i) Simulink Coder  
ii) Embedded Coder 
iii) Simulink Aerospace Block Set 

 
 
 

                                            
1 It is important to download QGroundControl version 2.0.3 beta, as the latest version of the 

software does not allow the user to perform sensor calibration after uploading the application onto 
the Pixhawk autopilot. If the latest version of QGroundControl was used instead, an update of the 
Pixhawk autopilot with the latest firmware is required to perform the sensor calibration. Thus, the 
application that was build and uploaded to the Pixhawk would be erased during the firmware 
update.   
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• Step 2 

Go to the website in [30] to install the PX4 toolchain. Choose the 

appropriate toolchain installer based on the Operating System (OS) used on your 

computer (e.g. Windows, Linux, etc.) Download and install the PX4 toolchain for 

the appropriate MATLAB version (e.g. ‘Pixhawk-R2014b-v14_win.exe’) in the 

default root directory (i.e. ‘c:\px4’). 

• Step 3 

Download the USB driver for the Pixhawk toolchain if you are using 

Windows OS from the same website in Step 2. 

• Step 4 

Update the Pixhawk software by choosing ‘PX4 Software Download’ from 

Windows ‘Start’ menu as shown in Figure 46. 

 

Figure 46  Location of PX4 Software Download & Upgrade. 
 

• Step 5 

Once the Pixhawk software is updated, 2 target files would need to be 

built using the ‘PX4 Console’ shown in Figure 46. In the PX4 console, change the 

directory to Firmware by typing ‘cd Firmware’ and hitting enter. 
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• Step 6 

The next step involves the installation of the Pixhawk PSP to Matlab. 

Begin by launching the installation program from the installation folder (i.e., 

pixhawk-R2014a-v14_win-Install.exe) and specify the Matlab and Pixhawk 

toolchain root directory (i.e. ‘c:\’). After the installation is complete, the Pixhawk 

Simulink blocks and MATLAB Pixhawk toolchain BTI functions are available and 

can be copied to any Simulink model for use. 

• Step 7 

Finally, to use the method of building an application outlined in [12], go to 

the website in this reference and download the ‘px4_simulink.zip’ folder. 

Subsequently, extract the contents of the folder to ‘c:\px4\’ (i.e., the installation 

location for the PX4 toolchain). 

B. BUILD ATTITUDE CONTROLLER APPLICATION 

In [13], the process to build the Simulink model to an application can be 

performed in Simulink entirely, while the process in [12] builds the application 

with the PX4 Eclipse software. Both processes for building the application are 

further elaborated below: 

1. Build Application in Simulink 

The step-by-step process to build the application for the Simulink attitude 

controller is as follows: 

• Step 1 

The settings in Simulink would need to be configured before commencing 

with the building of the application. Select the ‘Simulation’ tab on the Simulink 

toolbar and select ‘Model Configuration Parameters’ (see Figure 47). 

Subsequently, select ‘Code Generation’ to set the ‘System Target File’ field to 

ert.tlc and the ‘Target Hardware’ field to Pixhawk PX4. The ‘Toolchain’ field 

should automatically become Pixhawk Toolchain.  



 86 

 

Figure 47  Screen Capture of ‘Model Configuration Parameters’. 
 

After setting up the ‘Code Generation’, select the ‘Signals and Parameters’ 

and check the ‘Inline Parameters’ box as shown in Figure 48. Finally, select the 

‘Coder Target’ and go to ‘Build Options’ to select the ‘Build, Load and Run’ option 

as shown in Figure 49.   
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Figure 48  Screen Capture of ‘Signals and Parameters’. 
 

 

Figure 49  Screen Capture of ‘Coder Target’. 
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• Step 2 

Once the build setting in Simulink is configured, click the ‘Build’ icon on 

the Simulink toolbar as shown in Figure 50. The build status is reflected on a 

pop-up window: diagnostic viewer. Once the build process is completed, connect 

the USB cable from the computer to the Pixhawk autopilot. Finally, click the 

‘Code’ icon on the Simulink toolbar and select ‘PX4 PSP: Upload code to 

PX4FMU’ as shown in. This step will complete the application build process and 

download the application directly to the Pixhawk autopilot. 

 

 

Figure 50  Location of ‘Build’ Icon on Simulink Toolbar. 
 
 

 

Figure 51  Location of ‘Code’ Function on Simulink Toolbar. 
 

• Step 3 

The final step of the build process involves copying the ‘rc.txt’ start-up 

script from the PX4 directory: ‘c:\px4\Firmware\etc’ to the Pixhawk autopilot’s SD 

card. Rename the ‘rc.txt’ file to ‘rc.txt.simulink’ in the SD card’s root directory. 
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Upon the Pixhawk autopilot’s system startup, it will execute the 

px4_simulink_app (i.e., the application that was built in step 2). 

 

2. Build Application using PX4 Eclipse 

The alternate method to build the Simulink attitude controller application 

uses the PX4 Eclipse software. Similar to the first method, the Simulink settings 

for the build function would need to be configured first following steps 1 and 2 

outlined in the first method. The subsequent steps to build the applications are as 

follow: 

• Step 1 

Launch the PX4 Eclipse software and begin to setup by selecting ‘File’ 

from the toolbar and ‘New’. Subsequently, select ‘Makefile Project with Existing 

Code’ as shown in Figure 52. Once the window for a new project is launched, 

select ‘c:\px4\firmware’ as the folder by using the browse function and select 

‘Cross GCC’ as shown in Figure 53. 

 

 

Figure 52  Setup for Application Build in Eclipse. 
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Figure 53  Create New Project in Eclipse. 
 

• Step 2 

 Once the setup in Step 1 is completed, create the following targets in the 

‘Firmware’ folder by clicking on the ‘Make Target’ icon (see Figure 54): 

• ‘archives’ 

• ‘all’ 

• ‘distclean’ 

• ‘clean’ 

• ‘upload px4fmu-v1_default’ (if using PX4FMU) or ‘upload px4fmu-
v2_default’ (if using Pixhawk) 
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Figure 54  Build Targets for Application in Eclipse. 
 

• Step 3 

Check that the targets created in the previous step appear in the 

workspace on the right of Eclipse’s window as shown in Figure 54. Subsequently, 

build the following targets one after the other by right clicking on the target and 

select ‘Build Target’: 

• ‘distclean’ 

• ‘archives’ 

• ‘all’ 

The progress of the build process can be monitored under the ‘Console’ 

tab at the bottom of the Eclipse Window as shown in Figure 54. It should be 

noted that the build for each target should be completed before proceeding to 

build the next target. 

• Step 4 

Once the build for the targets in the previous section is completed, the 

application is ready to be downloaded to the Pixhawk autopilot. Double click on 
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the ‘upload px4fmu-vX_default’ target. Once the console tab displays the status 

message ‘Loaded firmware for upload px4fmu-vX_default, waiting for 

bootloader…’, connect the USB cable from your computer to the Pixhawk 

autopilot and allow the build target process to complete.  

• Step 5 

Remove the SD card from the Pixhawk autopilot and delete all the data 

from the SD card before returning it to the Pixhawk autopilot. Subsequently, 

launch the QGroundControl software and connect it to the Pixhawk pilot (using 

USB cable or the 3DR radio). Perform sensor calibration for the Iris+ by going to 

the ‘Configuration’ tab on the toolbar and selecting ‘sensor calibration’. 

• Step 6 

Finally, disconnect the Pixhawk autopilot from QGroundControl and 

remove the SD card from the Pixhawk autopilot. Subsequently, copy the ‘rc.txt’ 

script from the PX4 directory: ‘c:\px4\Firmware\etc’ to the Pixhawk autopilot’s SD 

card. Rename the ‘rc.txt’ file to ‘rc.txt.simulink’ in the SD card’s root directory. 

Upon the Pixhawk autopilot’s system startup, it will execute the 

px4_simulink_app. 

C. UPDATE TO SIMULINK ATTITUDE CONTROLLER MODEL 

For the application build process used by [12], the process of updating the 

Simulink attitude controller model is as follows: 

• Step 1 

Open the Simulink attitude controller model and set the Simulink 

workspace to ‘c:\px4\Firmware\src\modules\simulink_app\’. After the changes are 

applied to the Simulink attitude controller model, click on the ‘Build’ function in 

Simulink. 

• Step 2 

Open PX4 Eclipse and build the application by selecting the target ‘all’. It 

is no longer required to build the targets for ‘distclean’ and ‘archives’ unless the 

source code of the model was modified. 
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• Step 3 

Finally, upload the application by selecting the target ‘upload px4fmu-

v2_default’. Once the console tab displays the status message ‘Loaded firmware 

for upload px4fmu-vX_default, waiting for bootloader…’, connect the USB cable 

from your computer to the Pixhawk autopilot and allow the build target process to 

complete. 

D. VERIFICATION OF SIMULINK APPLICATION ON PIXHAWK 
AUTOPILOT 

To verify that the Simulink attitude controller application was correctly 

downloaded to the Pixhawk autopilot, connect the Iris+ to the TeraTerm terminal 

using the 3DR radio and setting the baud rate to 57,600. 

In TeraTerm terminal, hit the ‘enter’ key once and type in ‘?’ into the ‘nsh’ 

field. This step will display all the applications that are currently installed onboard 

the Pixhawk autopilot. Check that the item ‘px4_simulink_app’ can be found in 

the list of applications.  

 
 

 

 

 

 

 

 

 



 94 

THIS PAGE INTENTIONALLY LEFT BLANK  



 95 

APPENDIX C.  TELEMETRY CONNECTION SETUP AND 
TROUBLESHOOTING 

The Pixhawk autopilot establishes communication link to a computer 

running the QGroundControl software using the 3DR radio as shown in Figure 

55. 

 

Figure 55  Illustration of 3DR Radio Set (from [32]). 
 

A. SETTING UP 3DR RADIO 

The setup of the 3DR radio is relatively straight forward and can be 

completed in the following steps: 

• Step 1 

Connect the battery to the Iris+ quadrotor. Subsequently, insert the 3DR 

radio to the computer and run the QGroundControl software. The 

QGroundControl should detect the 3DR radio once it is inserted into the 

computer and automatically assign it a COM port number. 

• Step 2  

In the QGroundControl, select the COM port detected and set the baud 

rate to 57,600 in the top right corner of the window as shown in Figure 56. Click 

on the connect button and the Iris+ will be connected to QGroundControl. 
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Figure 56  Setting COM Port and Baud Rate.  
 

B. TROUBLESHOOTING 3DR RADIO 

In the event that the connection between the Iris+ and 3DR radio fails, the 

following should be undertaken to troubleshoot the connection problem: 

1. Check Baud Rates 

The baud rate for 3DR radio connection with the Iris+ quadrotor should 

always be set as 57,600 and not 115,200 (which is used for direct wired serial 

connection between the Pixhawk autopilot and the QGroundControl). 

2. Check Radio Settings 

If the correct COM port and baud rate were selected on QGroundControl 

and connection with Iris+ still cannot be established, download the 3DR Radio 

Configuration Utility software [33]. Subsequently, plug the ground station’s 3DR 

Radio to the computer and run the 3DR Radio Configuration software; make sure 

that the serial cable is unplugged and there is no serial stream entering the radio. 

Select the load settings tab and 3DR radio’s parameters should populate the 

section below the tabs (see Figure 57). Finally, connect the computer with the 

COM Port and 
Baud Rate Fields 
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3DR radio installed onboard the Iris+ (see Figure 58) using the USB cable 

provided and select the load settings tab. The parameters provided should be the 

same as the ground station’s 3DR radio. If there are parameters that are 

different, amend the values accordingly to the ground station’s parameters and 

select the save settings tab. 

 

Figure 57  Screen Capture of 3DR Radio Configuration Window. 
 

 

Figure 58  Installation Location of 3DR Radio on Iris+. 

3DR Radio 
on Iris+ 
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