
Calhoun: The NPS Institutional Archive
DSpace Repository

Theses and Dissertations 1. Thesis and Dissertation Collection, all items

2015-09

Implementation of Simulink controller design
on Iris+ quadrotor

Fum, Wei Zhong
Monterey, California: Naval Postgraduate School

http://hdl.handle.net/10945/47258

Copyright is reserved by the copyright owner.

Downloaded from NPS Archive: Calhoun

NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited

IMPLEMENTATION OF SIMULINK CONTROLLER
DESIGN ON IRIS+ QUADROTOR

by

Wei Zhong Fum

September 2015

Thesis Advisor: Vladimir Dobrokhodov
Second Reader: Noel Du Toit

THIS PAGE INTENTIONALLY LEFT BLANK

 i

REPORT DOCUMENTATION PAGE Form Approved OMB
No. 0704–0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time
for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and completing
and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington headquarters Services,
Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-
4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington, DC 20503.
1. AGENCY USE ONLY
(Leave blank)

2. REPORT DATE
September 2015

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE
IMPLEMENTATION OF SIMULINK CONTROLLER DESIGN ON IRIS+
QUADROTOR

5. FUNDING NUMBERS

6. AUTHOR(S) Fum, Wei Zhong
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND
ADDRESS(ES)

N/A

10. SPONSORING /
MONITORING AGENCY
REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not
reflect the official policy or position of the Department of Defense or the U.S. Government. IRB Protocol
number ____N/A____.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

The thesis has two primary objectives. First, it develops a high-fidelity 6DOF flight dynamics model of
a multi-copter UAV, and uses it for the design and implementation of the linear attitude controller onboard of
an industrial quadcopter; both steps are implemented in Simulink. Second, it leverages the weakly
joint efforts of MathWorks and the open-source community to build a software setup that enables rapid
control software prototyping. This software architecture enables control system design and integration
without the need for proficiency in embedded coding that typically utilizes high-level programming languages
like C/C++. The higher impact of the dual objective is in advancing methods and tools of verifiable control
system design and the embedded code generation that simplifies the V&V process.

The 3DR Iris+ quadrotor, equipped with PX4 “Pixhawk” autopilot, is selected as the primary prototyping
platform. The autopilot allows for the real-time execution of an application (attitude controller) that is auto-
generated from MatLab/Simulink. This makes the Iris+ quadrotor an ideal platform for rapid flight control
prototyping by using MathWork’s auto code generation capability.

Ultimately, the developed setup represents a convenient research and development tool that natively
bridges the gap between the safety-critical flight control science and flight experimentation technology by
“eliminating” the error-prone manual coding of embedded microcontrollers.

14. SUBJECT TERMS
quadrotor, 6DOF modeling, rapid control software prototyping, control algorithms

15. NUMBER OF
PAGES

125
16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION
OF ABSTRACT

Unclassified

20. LIMITATION
OF ABSTRACT

UU
NSN 7540–01-280-5500 Standard Form 298 (Rev. 2–89)
 Prescribed by ANSI Std. 239–18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

IMPLEMENTATION OF SIMULINK CONTROLLER DESIGN ON IRIS+
QUADROTOR

Wei Zhong Fum
Civilian, Defence Science and Technology Agency, Singapore

B.Eng, Nanyang Technological University, Singapore, 2008

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN MECHANICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
September 2015

Approved by: Vladimir Dobrokhodov
Thesis Advisor

Noel Du Toit
Second Reader

Garth V. Hobson
Chair, Department of Mechanical and Aerospace
Engineering

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

The thesis has two primary objectives. First, it develops a high-

fidelity 6DOF flight dynamics model of a multi-copter UAV, and uses it for the

design and implementation of the linear attitude controller onboard of an

industrial quadcopter; both steps are implemented in Simulink. Second, it

leverages the weakly joint efforts of MathWorks and the open-source community

to build a software setup that enables rapid control software prototyping. This

software architecture enables control system design and integration without the

need for proficiency in embedded coding that typically utilizes high-level

programming languages like C/C++. The higher impact of the dual objective is in

advancing methods and tools of verifiable control system design and the

embedded code generation that simplifies the V&V process.

The 3DR Iris+ quadrotor, equipped with PX4 “Pixhawk” autopilot, is

selected as the primary prototyping platform. The autopilot allows for the real-

time execution of an application (attitude controller) that is auto-generated from

MatLab/Simulink. This makes the Iris+ quadrotor an ideal platform for rapid flight

control prototyping by using MathWork’s auto code generation capability.

Ultimately, the developed setup represents a convenient research

and development tool that natively bridges the gap between the safety-critical

flight control science and flight experimentation technology by “eliminating” the

error-prone manual coding of embedded microcontrollers.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION .. 1
A. BACKGROUND .. 1
B. LITERATURE REVIEW ... 3
C. OVERVIEW OF QUADROTOR TECHNOLOGY 4

1. Quadrotor Flight Mechanism ... 4
2. Quadrotor Sensor Systems ... 5
3. Advantages and Disadvantages of Quadrotor/Multi-

rotor Technology .. 5
D. THESIS OUTLINE ... 6

II. 3DR IRIS+ QUADROTOR AND PIXHAWK AUTOPILOT 9
A. IRIS+ HARDWARE ... 9
B. PIXHAWK AUTOPILOT .. 10
C. PIXHAWK AUTOPILOT SOFTWARE ARCHITECTURE 11

1. PX4 Flight Control Software .. 11
2. APM Flight Control Framework 13

D. FLIGHT STACK SELECTION ... 14

III. QUADROTOR MATHEMATICAL MODEL .. 15
A. IDENTIFICATION OF QUADROTOR CONFIGURATION 16

1. Plus Configuration Flight Mechanics 17
2. Cross Configuration Flight Mechanism 18
3. Notations for Quadrotor Mathematical Model 19
4. Quadrotor Coordinate Frames ... 20

a. Inertial Frame, {i} .. 21
b. Vehicle Frame, {v} .. 21
c. Body Frame, {b} ... 21

B. QUADROTOR KINEMATICS .. 22
1. DCM Rotation Matrix .. 23
2. Rotation Matrix for Quadrotor Angular Velocities 24

C. QUADROTOR DYNAMICS ... 25
1. Gravitational Forces ... 25
2. Gyroscopic Effect ... 26
3. Aerodynamic Forces .. 27

a. Quadrotor Thrust Force ... 27
b. Quadrotor Roll Moment ... 28
c. Quadrotor Pitch Moment 28

 viii

d. Quadrotor Yaw Moment ... 29
e. Summary of Aerodynamic Forces and

Moments ... 29
D. QUADROTOR EQUATIONS OF MOTION 30

IV. DETERMINING IRIS+ PHYSICAL PROPERTIES 33
A. MEASURING QUADROTOR PROPERTIES 33
B. DETERMINING IRIS+ MASS MOMENT OF INERTIA 35

1. Experimental Method ... 36
2. Analytical Method ... 41
3. Comparison between Experimental and Analytical

Methods ... 43
C. QUADROTOR PROPELLER COEFFICIENTS 43

V. QUADROTOR FLIGHT CONTROL DESIGN .. 49
A. CONTROL MODELLING OF QUADROTOR 49

1. Trajectory Generator Block .. 50
2. Controller Block .. 50
3. Motor Mixer Block ... 52
4. Iris+ Quadrotor Dynamics Block 53

B. FLIGHT CONTROLLER IMPLEMENTATION IN SIMULINK 53
C. OVERVIEW OF PID CONTROLLER .. 54

1. Proportional Gain, KP ... 55
2. Integral Gain, KI ... 55
3. Derivative Gain, KD ... 56

D. IMPLEMENTATION OF PID CONTROLLERS IN ATTITUDE
AND RATES CHANNEL IN SIMULINK .. 56
1. Attitude Controllers .. 57
2. Attitude Rate Controllers ... 58

E. PID CONTROLLER TUNING METHOD 59
1. Ziegler-Nichols First Method ... 60
2. Ziegler-Nichols Second Method 60

VI. IMPLEMENTATION OF CONTROLLER ON PIXHAWK 63
A. METHODS TO IMPLEMENT SIMULINK MODEL ON

PIXHAWK ... 63
B. SETUP OF ATTITUDE CONTROLLER SIMULINK MODEL 63
C. BUILDING PIXHAWK APPLICATION IN PX4 ECLIPSE 65

VII. IRIS+ FLIGHT TESTS .. 67

 ix

A. FLIGHT TEST PROCEDURE ... 67
B. FLIGHT TEST RESULTS AND ANALYSIS 69

1. Roll and Roll Rate Channels .. 69
2. Pitch and Pitch Rate Channels .. 71
3. Yaw and Yaw Rate Channels ... 72

VIII. CONCLUSION AND FUTURE WORKS .. 75

APPENDIX A. DERIVATION OF CONTROL EQUATIONS 77
A. MANEUVER ALONG X-AXIS ... 77
B. MANEUVER ALONG Y-AXIS ... 79
C. MANEUVER ALONG Z-AXIS ... 81

APPENDIX B. INSTRUCTIONS FOR BUILDING PIXHAWK
APPLICATION ... 83
A. SOFTWARE INSTALLATION ... 83
B. BUILD ATTITUDE CONTROLLER APPLICATION 85

1. Build Application in Simulink .. 85
2. Build Application using PX4 Eclipse 89

C. UPDATE TO SIMULINK ATTITUDE CONTROLLER MODEL 92
D. VERIFICATION OF SIMULINK APPLICATION ON PIXHAWK

AUTOPILOT .. 93

APPENDIX C. TELEMETRY CONNECTION SETUP AND
TROUBLESHOOTING ... 95
A. SETTING UP 3DR RADIO .. 95
B. TROUBLESHOOTING 3DR RADIO ... 96

1. Check Baud Rates .. 96
2. Check Radio Settings ... 96

LIST OF REFERENCES ... 99

INITIAL DISTRIBUTION LIST .. 103

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

LIST OF FIGURES

Figure 1 Illustration of Quadrotor Airframe in Cross Configuration (after
[4]). .. 4

Figure 2 3DR Iris+ Quadrotor (from [4]). .. 9

Figure 3 PX4 Pixhawk Autopilot (from [16]). .. 10

Figure 4 PX4 Flight Control Framework (after [2]). 12

Figure 5 PX4 Application Framework (from [2]). .. 12

Figure 6 APM Flight Control Application in PX4 Framework (from [18]). 13

Figure 7 Quadrotor in Plus (+) and Cross (X) Configurations. 17

Figure 8 Flight Mechanisms for Quadrotor in Plus Configuration. 18

Figure 9 Flight Mechanisms for Quadrotor in Cross Configuration. 19

Figure 10 Inertia, Body and Vehicle Coordinate Frames. 22

Figure 11 Measuring Tape used in Length Measurements. 34

Figure 12 BCS-40 Weighing Scale. ... 34

Figure 13 Illustration of Iris+ Moment Arms. .. 35

Figure 14 Trifilar Pendulum Setup. .. 37

Figure 15 Quadrotor Rotation Axes Configuration. .. 38

Figure 16 Measurement of Mass Moment of Inertia along x-axis. 38

Figure 17 Measurement of Mass Moment of Inertia along y-axis. 39

Figure 18 Measurement of Mass Moment of Inertia along z-axis. 39

Figure 19 Approximated Shapes and Dimensions for Iris+ 41

Figure 20 APC 10” by 4.7” Propeller Set (from [23]). 44

Figure 21 Thrust Coefficient vs Propeller Speed Plot (from [26]). 45

Figure 22 Power Coefficient vs Propeller Speed Plot (from [26]). 46

Figure 23 Block Diagram of Quadrotor Control Model. 50

Figure 24 Simulink Model of Iris+ Quadrotor. .. 54

Figure 25 Illustration of System designed with PID Controller. 55

Figure 26 Transient Response for a Feedback System (from [20]). 56

Figure 27 Roll Channel Controller. .. 57

Figure 28 Pitch Channel Controller. ... 57

Figure 29 Yaw Channel Controller. .. 58

 xii

Figure 30 Roll Moment Controller. ... 59

Figure 31 Pitch Moment Controller. ... 59

Figure 32 Yaw Moment Controller. .. 59

Figure 33 S-Shaped Response Curve to a Unit Step Command (from
[20]). .. 60

Figure 34 Attitude Control Simulink Model in PX4 Simulink. Example
from [13]. ... 64

Figure 35 Attitude Control Wrapper (from [12]). ... 64

Figure 36 Process of Building and Downloading Application to Pixhawk
Autopilot (after [16] and [19]). .. 66

Figure 37 Multi-Copter Indoor Flight Facilities. .. 67

Figure 38 Location of ‘Analyze’ Tab on QGroundControl. 68

Figure 39 Roll Channel Plot for First Flight. ... 69

Figure 40 Roll and Error Plots. .. 70

Figure 41 Roll Rate and Error Plots ... 70

Figure 42 Pitch and Error Plots. ... 71

Figure 43 Pitch Rate and Error Plots. .. 72

Figure 44 Yaw and Error Plots. .. 73

Figure 45 Yaw Rate and Error Plots .. 73

Figure 46 Location of PX4 Software Download & Upgrade. 84

Figure 47 Screen Capture of ‘Model Configuration Parameters’. 86

Figure 48 Screen Capture of ‘Signals and Parameters’. 87

Figure 49 Screen Capture of ‘Coder Target’. ... 87

Figure 50 Location of ‘Build’ Icon on Simulink Toolbar. 88

Figure 51 Location of ‘Code’ Function on Simulink Toolbar. 88

Figure 52 Setup for Application Build in Eclipse. ... 89

Figure 53 Create New Project in Eclipse. .. 90

Figure 54 Build Targets for Application in Eclipse. .. 91

Figure 55 Illustration of 3DR Radio Set (from [32]). 95

Figure 56 Setting COM Port and Baud Rate. .. 96

Figure 57 Screen Capture of 3DR Radio Configuration Window. 97

Figure 58 Installation Location of 3DR Radio on Iris+. 97

 xiii

LIST OF TABLES

Table 1 Advantages and Disadvantages of Quadrotor. 6

Table 2 PX4 Pixhawk Hardware Specifications (from [16]). 11

Table 3 Notations for Quadrotor Translational & Rotational Motions. 20

Table 4 Measurement of Quadrotor Physical Specifications. 35

Table 5 Periods of Oscillation in x, y and z Axes. 40

Table 6 Iris+ Quadrotor Mass Moment of Inertia in x, y and z Axes. 40

Table 7 Dimensions of Iris+ Components ... 41

Table 8 Mass Moment of Inertia for Experimental and Analytical
Methods ... 43

Table 9 APM (10” x 4.7”) Propeller Thrust & Power Coefficients at
Different Speed (from [26]). ... 45

Table 10 PID Controller Gains using Ziegler-Nichol Methods (from [20]). 61

Table 11 Matlab and Simulink Prerequisites (from [13]). 83

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 xv

LIST OF ACRONYMS AND ABBREVIATIONS

3DR 3D Robotics
6DOF 6 Degree of Freedom
AO Area of Operations
BLDC Brushless Direct Current
CG Center of Gravity
COTS Commercial off the Shelf
CSV Comma Separated Values
DCM Direction Cosine Matrix
EOM Equations of Motion
HAL Hardware Abstraction Layer
ISR Intelligence, Surveillance and Reconnaissance
LiPo Lithium Polymer
LQR Linear Quadratic Regulator
MCU Micro Controller Unit
MEMS Micro Electro-Mechanical System
PID Proportional, Integral and Derivative
PSP Pilot Support Package
PWM Pulse Width Modulation
PX4FMU Pixhawk Flight Management Unit
PX4IO Pixhawk Input Output Board
RC Remote Control
RTOS Real Time Operating System
UAV Unmanned Aerial Vehicle
UGV Unmanned Ground Vehicle
VTOL Vertical Take-off and Landing

 xvi

THIS PAGE INTENTIONALLY LEFT BLANK

 xvii

EXECUTIVE SUMMARY

The objectives of the thesis are twofold. First, it aims to demonstrate the

design of a high-fidelity 6DOF model of flight dynamics of a multi-copter and the

implementation of a control algorithm, both developed in Simulink and integrated

onto a commercial-off-the-shelf (COTS) quadrotor. Second, the work organizes

and compiles a disjoint effort of the open source community to build a software

setup that enables rapid control software prototyping. This rapid

software development enables the control system design and integration

without the need of proficiency in high-level programming language like

C/C++. The higher-level utility of the joint objective is in advancing the methods

and tools of verifiable control system design and the code generation that lead to

easy to validate flight experiment.

As an initial step, the nonlinear 6DoF mathematical model of the quadrotor

that represents the dynamics of naturally unstable system would need to be

derived for the simulation of the quadrotor’s motion and flight dynamics in

Simulink. Subsequently, a linearization of the model and the design of a typical

linear attitude (like Proportional, Integral and Derivative [PID] controller) was

performed based on the quadrotor’s mathematical model. Finally, the Simulink-

based model of the attitude controller was used to auto-generate the attitude

control software application for the COTS autopilot, and its verification

were performed in an indoor Vicon facility. The flight experiment utilized different

flight scenarios to outline the performance of the newly developed controller.

The COTS quadrotor selected for this thesis is the 3DR Iris+ that

comes with the PX4 Pixhawk autopilot to control its flight. The PX4

Pixhawk autopilot features an open-source software architecture that

runs on the Nuttx Real Time Operating System (RTOS), which allows the

execution of MatLab/Simulink auto generated embedded application on

the Pixhawk ARM MCU. As a result, the quadrotor mathematical model and

the linear attitude controller that was developed in Simulink can be

 xviii

used on the PX4 autopilot system without the need to directly edit

embedded software using low-level programing language. This makes the

Iris+ quadrotor an ideal platform for rapid control prototyping using

MatLab/Simulink auto coding and validating the design in flight tests.

Upon successful implementation of the Simulink model on the PX4

Pixhawk autopilot system, the quadrotor would be subjected to a series

of flight tests to verify its flight performance using the developed

attitude controller design. Ultimately, the developed setup represents a

convenient research and development tool that natively bridges the gap between

the flight control systems design and flight experimentation by “eliminating” the

error-prone manual coding for an embedded microcontroller.

 xix

ACKNOWLEDGMENTS

Prior to my postgraduate studies at NPS, I was unfamiliar to the world of

controls engineering. In light of this, I was very fortunate to be a student in Dr.

Vladimir Dobrokhodov’s class on basic controls engineering during my first

quarter in NPS. This class stirred my interest in controls engineering and

eventually influenced my decision to take up a thesis topic related to this field. I

could not thank Dr. Vladimir enough for his guidance and mentoring to my

learning journey in NPS. I would also like to thank Dr. Noel Du Toit for

generously accepting my request to be the second reader and giving valuable

advice for this thesis.

During the process of my thesis research, I had encountered several

difficulties in implementing the attitude controller designed in Simulink to the

Pixhawk autopilot. I would like to thank Adam Polak, PX4 autopilot and the

MathWorks team, who had been infinitely patient with my amateurish queries on

the software aspect of this thesis. In addition, I also need to thank the 3D

Robotics support team for providing timely replies to my queries on the Iris+

quadrotor and its hardware.

Lastly, not forgetting the most important person in my life, I would like to

thank my wife, Emily, for her unwavering support during our stay in Monterey.

She has been the emotional rock that I can rely on in difficult times during the

thesis research and never failed to encourage me to push forth courageously in

the pursuit for knowledge.

 xx

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. INTRODUCTION

A. BACKGROUND

A quadrotor is an UAV that features two sets of identical propellers that

are powered by DC brushless motors to provide the required thrust force and

perform maneuvers when it is in flight. Due to its light-weight configuration and

inherent instability, quadrotor has better flight maneuverability over fixed wing

UAV. More importantly, quadrotors have the capabilities to perform VTOL and

hovering in mid-flight. Along with unprecedented simplicity of the mechanical

design that eliminates the complexity of the main rotor control of typical

helicopter, multirotor UAVs become unique in the class of unmanned systems;

one can think of them as Solid State UAVs. The quadrotor’s unique flight

characteristics coupled with a cheap price of hardware have increased a number

of applications in both the military and commercial sectors.

Indeed, online retail giant Amazon [1] saw the potential of expediting

delivery order and supplementing manpower shortages through the use of

quadrotors to fly autonomously and make deliveries to its customers. Quadrotors

can also be conveniently fitted with high-resolution cameras to provide a

relatively cheap means for avid photographers and filmmakers alike to capture

pictures at high altitude without the need to charter a flight during productions. In

military applications, quadrotor is a popular platform in conducting ISR missions

especially in urban AO, where quadrotors can be programmed to fly into

buildings to perform visual mapping and identify potential threats.

The popularity of the quadrotor extends to the field of amateur hobbyists

and research laboratories as well. With its small size, VTOL and hovering

capabilities, research laboratories can easily operate quadrotors in an indoor

environment. In the recent years, COTS quadrotors such as AR Parrot, 3DR

Iris+, Vision+ Phantom, etc., have become increasingly popular and relatively

cheap for UAV researches. However, COTS quadrotors typically come with their

 2

own hard-coded software and pre-programmed plant model. Although the

quadrotor software supports the programming of basic flight functions, significant

programming in a low-level programming language (e.g. C/C++) is required to

modify the quadrotor’s autopilot embedded software to perform complex flight

controls or modify the its mathematical model.

In academic research, the modeling and simulation software Simulink is

frequently used in controls engineering courses as a teaching tool to

demonstrate system modeling and controller designs. However, implementing

Simulink system model and controller design as embedded software into

autopilot hardware would require controls engineering students to be versed in

low-level programming language; not only is this level of breadth and depth rarely

available, but also the objective of the control systems design is very different

from the particularities of a specific MCU platform and language implementation.

Therefore, a process or method to directly implement the system models and

controller designs developed using Simulink on a quadrotor’s autopilot would be

an invaluable enabling tool that provides students with an opportunity to test their

models and designs on an actual hardware.

Amongst the COTS quadrotors, PX4 open hardware project elaborated in

[2] has designed the Pixhawk autopilot system that can be programmed using

the PX4 flight stack software [3]. The PX4 flight stack software runs on the Nuttx

RTOS and is able to support multiple applications that can be programmed

individually. More importantly, PX4 is able to support system models and control

algorithms developed using Simulink without for the need to be proficient in high-

level programming. This capability allows for a research project to rapidly

progress from the modeling and simulation to implementation phase on the

actual hardware.

Therefore, the practical objective of this thesis research is to implement

the system model and controller design developed in Simulink directly on a

quadrotor autopilot. The quadrotor selected in this thesis is the 3DR Iris+ [4] that

comes installed with the PX4 autopilot system. In the first part of this thesis, the

 3

mathematical model, EOM and the attitude controller design of the 3DR Iris+

quadrotor will be derived and written in the Simulink software. Subsequently, the

second part of this thesis shall focus on the implementation of the quadrotor’s

mathematical model and controller design onto the PX4 autopilot. Finally, the

quadrotor’s model and controller design will be validated through an actual flight

test in three different flight scenarios.

B. LITERATURE REVIEW

As a first step to this thesis research, the modeling and simulation of the

Iris+ quadrotor must be performed to determine its flight characteristics and

designing its attitude controllers. The derivations of the dynamics equations for a

quadrotor model were well elaborated by Boudallah in [5], Beard in [6], Corke in

[7], Sidea in [8] and Bresciani in [9]. However, the modelling approaches in these

researches were only applicable for a limited set of quadrotor configurations.

The Iris+ quadrotor featured a cross-style configuration and therefore,

modifications to the dynamics equations of the plus-style configuration quadrotor

were required to obtain the dynamics equations for a quadrotor in cross-style

configuration. An approach to model a quadrotor in the cross-style configuration

was elaborated by Partovi in [10] for the X650 quadrotor. This approach was

suitable and was adopted for the modelling of the Iris+ quadrotor.

For the rapid prototyping of control designs using Simulink, Lizarraga in

[11] used the Piccolo autopilot as the hardware and developed an architecture

that enables the use of Simulink models on flight control systems, instead of

directly programming the hard-coded software on the flight control systems. More

recently, Meier presented in [2] the software architecture for the Pixhawk

autopilot, which allows applications to be developed and installed onboard the

Pixhawk autopilot.

As a result Pixhawk autopilot’s versatility, Polak in [12] defined the

process for building an application for attitude controllers developed in Simulink

and installing the application on a quadrotor with the Pixhawk autopilot. In

 4

addition, Polak worked with MathWorks to develop a PSP [13] for developers to

make use of the build function in Simulink to generate the C/C++ codes for

Simulink models and install the models as applications on the Pixhawk autopilot.

The process that was mutually developed by Polak and MathWorks would be

further streamlined and used to implement a Simulink attitude controller onboard

the Iris+ quadrotor.

C. OVERVIEW OF QUADROTOR TECHNOLOGY

The airframe of a quadrotor generally consists of two beams that are

arranged in a cross, or plus, configuration and mounted onto the main body shell

that contains the electronics and flight computers (see Figure 1). Two sets of

identical propellers (one set rotates in the Clockwise direction, CW, and the other

set rotates in the Counter-Clockwise direction, CCW) are installed on DC

brushless motors mounted on the edges of each beam.

Figure 1 Illustration of Quadrotor Airframe in Cross
Configuration (after [4]).

1. Quadrotor Flight Mechanism

As shown in Figure 1, the two sets of propellers mounted on the quadrotor

rotate in opposite directions and cancel the net torque acting on the quadrotor.

 5

The quadrotor performs maneuvers in flight by sending Pulse Width Modulation

(PWM) signals to the brushless DC motors to vary the rotational speed of the

propellers. To lift off from the ground or maneuver vertically, the propellers rotate

at the same speed to generate a thrust force to overcome the quadrotor’s weight.

To perform a flight maneuver in the horizontal plane, the quadrotor would need to

generate a rotating moment by pitching or yawing its body. This is accomplished

by varying the rotational speed of each set of propeller.

2. Quadrotor Sensor Systems

A suite of sensor system is required to provide the quadrotor with position

and attitude information that are necessary to perform autonomous flights. Most

recent of all, advances in MEMS inertial sensor technology now allow for a

lightweight navigation unit to be installed on quadrotors in addition to a GPS unit.

These sensors provide the quadrotor autopilot with position and attitude

information during flight. A barometer or laser range finder is also installed

onboard a quadrotor to provide altitude data.

3. Advantages and Disadvantages of Quadrotor/Multi-rotor
Technology

With the overview of the multi-rotor technology, a quick analysis of its

advantages and disadvantages was summarized in Table 1.

 6

Table 1 Advantages and Disadvantages of Quadrotor.

Advantage Disadvantages
VTOL & Hovering Capabilities
Unlike fixed wing UAV, the unique
flight mechanism of the quadrotor
allows it to perform VTOL and
hovering in flight. These capabilities
eliminate the need of a landing strip
or a launch and recovery system.

Agile Maneuverability
By varying the rotational speed of
its propellers, the quadrotor is able
to generate thrust and moments to
perform sharp turns during flight
and hover in mid-flight. A fixed wing
UAV in contrast makes turns with a
larger turning radius.

Mechanically Simple
Quadrotor uses propeller blades
with fixed symmetrical pitch
propeller blades and consists of
lesser mechanical components
compared to conventional
helicopters. Therefore, quadrotors
are easy to maintain and cheaper to
manufacture.

Short Battery Life
The battery life of most quadrotors
is approximately 20 minutes and is
constrained by the charge storage
capability of Lithium battery; power
density is the fundamental
constrain. The short battery life
reduces the mission duration of the
quadrotor.

Under-actuated System
A quadrotor is an under-actuated
system [14], where multiple
actuators are used to perform 6
linear and angular control actions.
Therefore, if the symmetry of the
actuators action is damaged, it
would either no longer be able to
perform a maneuver or its control
authority might be compromised.

Low Payload Capability
The payload limit of a medium sized
quadrotor (~1.5kg) is typically
between 0.8 to 1 lbs. Therefore, the
equipment or load that can be
carried by quadrotors is not
substantial.

D. THESIS OUTLINE

The outline of this thesis is summarized as follows:

Chapter I provides an introduction to quadrotor technology and explains

the motivation behind this thesis research; it also provides an overview of the

quadrotor components technology.

Chapter II presents an overview of the 3DR Iris+ quadrotor technology, the

Pixhawk autopilot and its software architecture.

 7

Chapter III elaborates on the identification of the quadrotor’s configuration

and the process of deriving its mathematical model and EOM. In addition, the

frames of reference that are used to describe the quadrotor’s position in space

and the transformation between the reference frames are also elaborated in this

chapter.

Chapter IV describes the equipment and process for measuring the

physical specifications of the 3DR Iris+ quadrotor. The physical specifications

include the quadrotor’s mass, lengths of its moment arms, mass moment of

inertia, and thrust and drag coefficients.

Chapter V gives an overview of the quadrotor flight control principles and

the design of the PID controller. In addition, the methodology of tuning the PID

controller for stable flight is elaborated in this chapter.

Chapter VI describes the process to implement the PID controller Simulink

model as an application for the Pixhawk autopilot using the PX4 flight stack.

Chapter VII presents the analysis of the flight data recorded from the Iris+

flight tests and provides formal review of the attitude controller’s performance.

Chapter VIII draws the conclusion for this thesis and recommends the

possible areas that can be looked into for future research work.

 8

THIS PAGE INTENTIONALLY LEFT BLANK

 9

II. 3DR IRIS+ QUADROTOR AND PIXHAWK AUTOPILOT

This chapter provides an overview of the 3DR Iris+ Quadrotor, Pixhawk

autopilot hardware and its software architecture. First, this section lists the

hardware specifications of the Iris+ quadrotor and the Pixhawk Autopilot. The

next section elaborates on the Pixhawk autopilot software architecture and

identifies the flight stack software that was used to implement Simulink model to

the autopilot.

A. IRIS+ HARDWARE

The Iris+ is a quadrotor that was designed and built by 3D Robotics (3DR)

for aerial RC vehicle enthusiasts and hobbyists, and can be fitted with a camera

to perform aerial photography (see Figure 2). A LiPo 5100mAh battery supplies

up to 12V to the electronics onboard the Iris+, and the four MN2213 950kV DC

motors installed on its airframe provide up to 22 minutes of flight time. The

rotational speed of the four motors generates a thrust force that is sufficient for

the Iris+ quadrotor to overcome its weight and carry a payload of up to

400g. The Iris+ is also equipped with telemetry radio that allows communication

with the ground station computer wirelessly, providing real-time flight data and

the ability to fly autonomous missions.

Figure 2 3DR Iris+ Quadrotor (from [4]).

 10

B. PIXHAWK AUTOPILOT

The Pixhawk autopilot (see Figure 3) was designed by the PX4 open-

hardware project [15] and combines the Pixhawk Flight Management Unit

(PX4FMU) and PX4IO into a single component. It features sensor technology

from ST Microelectronics® and a Cortex M4 microprocessor running the NuttX

RTOS that allows integrated multi-threading and programming in a Unix/Linux-

like environment. In addition, the NuttX RTOS allows for developers to easily

implement C/C++ codes onto the Pixhawk autopilot through the building and

uploading of applications. The complete specifications of the Pixhawk autopilot

are summarized in Table 2.

Figure 3 PX4 Pixhawk Autopilot (from [16]).

 11

Table 2 PX4 Pixhawk Hardware Specifications (from [16]).

Processor 32bit STM32F427 Cortex M4 core with FPU
168 MHz
256 KB RAM
2 MB Flash
32 bit STM32F103 failsafe co-processor

Sensors ST Micro L3GD20H 16 bit gyroscope
ST Micro LSM303D 14 bit accelerometer / magnetometer
Invensense MPU 6000 3-axis accelerometer/gyroscope
MEAS MS5611 barometer

Interfaces 5x UART (serial ports), one high-power capable, 2x with HW flow
control
2x CAN (one with internal 3.3V transceiver, one on expansion
connector)
Spektrum DSM / DSM2 / DSM-X® Satellite compatible input
Futaba S.BUS® compatible input and output
PPM sum signal input
RSSI (PWM or voltage) input
I2C
SPI
3.3 and 6.6V ADC inputs
Internal microUSB port and external microUSB port extension

C. PIXHAWK AUTOPILOT SOFTWARE ARCHITECTURE

The Pixhawk autopilot supports two main flight control software families as

described in [3], namely the PX4 flight stack and the APM flight stack, which are

both open source software projects. The architecture and framework of both flight

control stacks are further elaborated below:

1. PX4 Flight Control Software

The PX4 flight control framework described in [2] consists of three main

layers: PX4 flight stack (containing individual applications such as the flight

control, state estimation, etc.), PX4 middleware (communications between the

applications and drivers) and PX4 drivers (architect specific) as shown in Figure

4. The architecture allows for a modular design since those three layers are

 12

naturally separated and can be run independently from each other. In the PX4

flight stack layer, the flight control and state estimation exist as self-contained

applications, which can be independently managed at runtime. Therefore, the

codes that are generated for the Pixhawk autopilot are highly portable and allow

the Pixhawk autopilot to be used for a variety of autonomous vehicles (e.g., fixed

wing aerial vehicle, unmanned ground vehicle, etc.). In addition, each application

connects to other processes and drivers using a Publisher-Subscriber framework

(see Figure 5), allowing for efficient communication between processes and

simplifies the process of adding a new application to the system.

Figure 4 PX4 Flight Control Framework (after [2]).

Figure 5 PX4 Application Framework (from [2]).

 13

2. APM Flight Control Framework

The APM flight control software described in [17] was originally designed

for the Ardupilot autopilot and was ported as a single application to the PX4 flight

control architecture. The APM application can be run on any PX4 control board

(i.e. PX4FMU or Pixhawk autopilot) through the PX4 middleware layer (HAL) in

the PX4 framework (see Figure 6). When the APM application is selected as the

flight control stack on the PX4 control board, it will be executed to replace the

PX4 as the main flight controller stack to control the drivers. Therefore, the APM

flight control stack functions as a single monolithic application in the PX4

framework with some internal worker threads to execute slower tasks (e.g., data

logging) and does behave from the user perspective like the legacy APM

hardware.

Figure 6 APM Flight Control Application in PX4 Framework
(from [18]).

 14

D. FLIGHT STACK SELECTION

Although the Pixhawk autopilot can adequately support both flight stacks,

the PX4 flight stack was ultimately chosen as the approach to implement the

flight controls in this thesis. This is mainly because of potentially greater flexibility

of the PX4 stack and the fact that MathWorks [19] had attempted to lead the

open source community effort of bringing the Pixhawk autopilot into academic

research; the attempt is not finished yet as the PSP initiated by Mathworks is not

officially released yet as of the date of this writing. The PX4 PSP would provide

an efficient and convenient means to implement controllers and models designed

in Simulink onto actual hardware. The key tools of the PX4 PSP that support this

process are as follows.

(1) PX4 Simulink Blocks & Examples

A library of PX4 Simulink blocks were created for the PX4 PSP to interface

with the Pixhawk autopilot. In addition, examples of the PX4 Simulink model were

also available in the PX4 PSP that can be used for developing the plant or

controller of a vehicle.

(2) PX4 Eclipse

The PX4 Eclipse provides the platform to build the application from the

generated C/C++ codes of the Simulink model and download it to the Pixhawk

autopilot.

(3) TeraTerm Terminal

TeraTerm is a serial terminal program that can connect the user’s

computer to the Pixhawk autopilot to manually run the built-in commands using

the Nuttx shell. As the Pixhawk autopilot is running on the Nuttx OS, TeraTerm

offers a convenient means to access the applications on the Pixhawk autopilot

from a computer operating in Windows OS.

 15

III. QUADROTOR MATHEMATICAL MODEL

This chapter documents the process of deriving the quadrotor

mathematical model and the development of the equation of motions to describe

the Iris+’s movement with respect to a reference coordinate frame. The modeling

of a quadrotor is well described in articles [5], [6], [7], [8], [9] and [10], and were

used as references for the derivation of the equations found in this chapter. The

model and equation of motions are important for predicting the positions of the

Iris+ during flight, and used for the controller design in Chapter IV. The sub-

sections in this chapter are as follow:

Section A introduces the method in the identification of quadrotor

configurations. A typical symmetrical quadrotor can be categorized into two main

configurations: ‘plus’ and ‘cross’ configurations. This section describes the key

characteristics of both configurations and their flight mechanisms.

Section B defines the notations used in the quadrotor mathematical

model. This section identifies and consolidates all the notations that are used to

ensure consistency in the implementation of the mathematical model to the

simulation model.

Section C identifies all the coordinate frames that are used as the

reference for the quadrotor’s position and movement in space. It is important to

identify the coordinate frames as the forces acting on the quadrotor are applied

with reference to different coordinate frames.

Section D describes the transformation of the quadrotor’s kinematics from

one reference frame to the other. In addition, the transformation matrix that is

used for describing the positions, position rates, Euler angles and angular rates

from one coordinate frame to the other is elaborated in this section.

Section E describes the quadrotor’s dynamics by identifying the forces

and moments acting on the quadrotor in the various coordinate frames. As the

forces and moments are described in different coordinate frames, they cannot be

 16

summed directly. Therefore, the transformation method formulated in Section D

must be used to transform the forces and moments to a single reference

coordinate frame.

Section F formulates the complete system of 6DOF EOM in the Iris+

quadrotor’s body coordinate frame using the forces and moments defined in the

previous section.

A. IDENTIFICATION OF QUADROTOR CONFIGURATION

A quadrotor consists of four extended arms with four BLDC motors with a

fixed-pitch propeller (the propellers are labeled from 1 to 4 in the clockwise

direction) attached to them. The motors are arranged to rotate one pair of

propellers counter-clockwise and the other pair of propellers in the clockwise

direction. With the rotation direction of the four propellers, there are two basic

flight configurations that can be adopted by a quadrotor, namely the plus

configuration and cross configuration as shown in Figure 7. For a quadrotor in

the plus configuration to change its attitude (i.e., roll, pitch or yaw), the rotational

speed for two propellers are varied. However, the quadrotor in cross

configuration changes its attitude by varying the rotational speed of all four

propellers. This gives quadrotors in the cross configuration a higher momentum

and therefore, a better maneuverability performance compared to quadrotors in

the plus configuration.

 17

Figure 7 Quadrotor in Plus (+) and Cross (X) Configurations.

1. Plus Configuration Flight Mechanics

For a quadrotor to adopt a plus configuration, its arms are aligned with the

quadrotor’s body x-axis and y-axis (arranged in the right hand rule orientation).

The quadrotor in plus configuration changes the speed of the rotating DC motors

to perform a translational or rotational maneuver as shown in Figure 8. By

changing the rotational speed of all four propellers by the same amount, thrust

(i.e. T) is generated to accelerate the quadrotor along the vertical z-axis. For the

quadrotor to perform a roll maneuver, the rotational speed of propeller 2 is

increased and the rotational speed of propeller 4 is reduced to generate a torque

along the x-axis (i.e. τΦ). The concept is similar for the pitch maneuver, where the

rotational speed of propeller 1 is increased and the rotational speed of propeller 3

is reduced to generate a torque along the y-axis (i.e. τθ). Finally, by applying

different speed to each pair of propellers rotating in the same direction, a torque

along the z-axis (i.e. τψ) is generated to perform a yaw maneuver.

 18

Figure 8 Flight Mechanisms for Quadrotor in Plus
Configuration.

2. Cross Configuration Flight Mechanism

Unlike the plus configuration, the body x-axis and y-axis for the quadrotor

adopting cross configuration are tilted 45o with respect to the quadrotor arms.

The quadrotor in cross configuration changes the speed of the rotating DC

motors to perform a translational or rotational maneuver as shown in Figure 9.

Similar to a quadrotor in plus configuration, the quadrotor in cross configuration

changes the rotational speed of all four propellers by the same amount, to

generate a thrust (i.e. T) and accelerates the quadrotor along the vertical z-axis.

For the quadrotor to perform a roll maneuver, the rotational speed of propellers 3

and 4 are increased, while the rotational speed of propellers 1 and 2 are reduced

to generate a torque along the x-axis (i.e. τΦ). The concept is similar for the pitch

maneuver, where the rotational speed of propellers 1 and 4 are increased, while

the rotational speed of propellers 2 and 3 are reduced to generate a torque along

 19

the y-axis (i.e. τθ). Finally, by applying different rotational speed to the counter

rotating pair of propellers, a torque along the z-axis (i.e. τψ) is generated to

perform a yaw maneuver.

Figure 9 Flight Mechanisms for Quadrotor in Cross
Configuration.

3. Notations for Quadrotor Mathematical Model

The notations for the quadrotor’s translational and rotational motions are

summarized in Table 3.

 20

Table 3 Notations for Quadrotor Translational & Rotational Motions.

States Description
xi Quadrotor position along the x-axis in the inertia frame.
yi Quadrotor position along the y-axis in the inertia frame.
zi Quadrotor position along the z-axis in the inertia frame.

ix Quadrotor velocity along the x-axis in the inertia frame.

iy Quadrotor velocity along the y-axis in the inertia frame.

iz Quadrotor velocity along the z-axis in the inertia frame.

ix Quadrotor acceleration along the x-axis in the inertia frame.

iy Quadrotor acceleration along the y-axis in the inertia frame.

iz Quadrotor acceleration along the z-axis in the inertia frame.
xb Quadrotor position along the x-axis in the body frame.
yb Quadrotor position along the y-axis in the body frame.
zb Quadrotor position along the z-axis in the body frame.
xv Quadrotor position along the x-axis in the vehicle frame.
yv Quadrotor position along the y-axis in the vehicle frame.
zv Quadrotor position along the z-axis in the vehicle frame.
u Quadrotor velocity along the x-axis in the body frame.
v Quadrotor velocity along the y-axis in the body frame.
w Quadrotor velocity along the z-axis in the body frame.
Φ Quadrotor roll angle with reference to inertia frame axis.
θ Quadrotor pitch angle with reference to inertia frame axis.
Ψ Quadrotor yaw angle with reference to inertia frame axis.
p Quadrotor roll rate along the x-axis in the body frame.
q Quadrotor pitch rate along the y-axis in the body frame.
r Quadrotor yaw rate along the z-axis in the body frame.

4. Quadrotor Coordinate Frames

To build the quadrotor’s mathematical model, it is important to first define

the coordinate frames for describing the quadrotor’s translational and rotational

motion (i.e., quadrotor six degrees of freedom, 6DOF). The coordinate frames

that are used in the mathematical model are shown in Figure 10 and further

elaborated below:

 21

a. Inertial Frame, {i}

The inertial coordinate frame, {i} is a reference fixed frame represented by

the unit vector, {i} = [xi yi zi]T. The x-axis of the inertial frame is pointed to the

North, y-axis is pointed to the East and z-axis is pointed to the center of the

Earth.

b. Vehicle Frame, {v}

The vehicle coordinate frame, {v} has its origin fixed to the quadrotor CG

and is represented by the unit vector, {v} = [xv yv zv]T. The axes of the vehicle

coordinate frame are aligned to the axes of the inertia coordinate frame and do

not change even during the quadrotor’s rotational motion. The vehicle coordinate

frame describes the translational motion of the quadrotor with respect to the

inertia coordinate frame on the x-y plane.

c. Body Frame, {b}

Similar to the {v}, the body coordinate frame, {b} has its origin located at

the quadrotor’s center of gravity (CG) and is represented by the unit vector, {b} =

[xb yb zb]T that is rigidly attached to the body and thus, rotates with the body.

Therefore, the body coordinate frame describes the rotational motion of the

quadrotor with respect to {v} as shown in Figure 10. The x-axis of the body

coordinates always point out from the front of the quadrotor and the y-axis points

to the right of the quadrotor. Finally, the z-axis of the body coordinate frame is

pointed down completing the right hand coordinate frame. {v} can be rotated

along the z-axis by the yaw angle, Ψ, along the y-axis by the pitch angle, θ and

along the x-axis by the roll angle, ϕ.

 22

Figure 10 Inertia, Body and Vehicle Coordinate Frames.

B. QUADROTOR KINEMATICS

The quadrotor’s linear and angular positions in the body and inertia frames

were referenced from [5], [6], [7], [8], [9] and [10]. These equations can be

expressed in the vector form as:

Tb b b bP x y z =  (1)

Ti i i iP x y z =  (2)

]Tb φ θ ψΛ =  (3)

Similarly, the quadrotor linear and angular velocities in the quadrotor’s

body frame can be expressed in the vector form as:

]TbV u v w=  (4)

 23

]Tp q rΛ = 

 (5)

1. DCM Rotation Matrix

The transformation of the quadrotor’s angular motion from the body frame

to the inertia frame can be described by a rotation matrix, which is also known as

DCM. The DCM is the combination of a sequence of rotations where the

quadrotor is first rotated along the z-axis (i.e., yaw), followed by a rotation along

the y-axis (i.e., pitch) and finally by a rotation along the x-axis (i.e., roll). The

rotation matrices for the yaw, pitch and roll are multiplied to obtain equation (6):

 b
i

c c s c s
R c s s s c s s s c c c s

c s s s s s s s c c c c

θ ψ ψ θ θ
ψ θ φ ψ φ ψ θ φ ψ φ θ ψ
ψ θ φ ψ φ ψ θ φ ψ φ θ φ

 ⋅ ⋅ − 
 = ⋅ ⋅ − ⋅ ⋅ ⋅ + ⋅ ⋅ 
 ⋅ ⋅ + ⋅ ⋅ ⋅ − ⋅ ⋅ 

 (6)

Where ‘c’ represents cosine and ‘s’ represents sine of the particular angle.

 b b i
iP R P= ⋅ (7)

b i

b i

b i

x c c s c s x
y c s s s c s s s c c c s y
z c s s s c s s s c c c c z

θ yy θ θ
y θ φ y φ y θ φ y φ θ φ
y θ φ y φ y θ φ y φ θ φ

   ⋅ ⋅ − 
   ∴ = ⋅ ⋅ − ⋅ ⋅ ⋅ + ⋅ ⋅   
   ⋅ ⋅ + ⋅ ⋅ ⋅ − ⋅ ⋅   

 (8)

As the DCM is orthogonal and its rows/columns are linearly independent,

the inverse rotation matrix that transforms the quadrotor’s angular motion from

the body frame to the inertia frame is simply the transpose of the DCM:

 24

Ti b

b i

c c c s s s c c s c s s
R R s c s s s c c s s c c s

s c s c c

θ ψ ψ θ φ ψ φ ψ θ φ ψ φ
ψ θ ψ θ φ ψ φ ψ θ φ ψ φ

θ θ φ θ φ

 ⋅ ⋅ − ⋅ ⋅ ⋅ + ⋅ 
 = = ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ − ⋅ 
 − ⋅ ⋅ 

 (9)

 i i b

bP R P= ⋅ (10)

i b

i b

i b

x c c c s s s c c s c s s x
y s c s s s c c s s c c s y
z s c s c c z

θ yy θ φ y φ y θ φ y φ
y θ y θ φ y φ y θ φ y φ

θ θ φ θ φ

   ⋅ ⋅ − ⋅ ⋅ ⋅ + ⋅ 
   = ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ − ⋅   
   − ⋅ ⋅   

 (11)

2. Rotation Matrix for Quadrotor Angular Velocities

The transformation of the quadrotor’s angular velocities from the inertia

frame to the body frame was referenced from [20] and can be described by the

following equations:

0 0 0
0 0

0

b R R R R R Rφ θ ψ φ θ φω θ
ψ φ

    
    = ⋅ ⋅ + ⋅ +    
        





 (12)

where: ωb = angular velocity of quadrotor in body coordinates,

 Rϕ = rotation matrix along the x-axis (i.e., roll),

 Rθ = rotation matrix along the y-axis (i.e., pitch),

 Rψ = rotation matrix along the z-axis (i.e., yaw).

1 0
0
0

b

p s
q c c s
r s c c

q φ
ω φ q φ q

φ q φ ψ

  − 
  ∴ = = ⋅   
  − ⋅    







 (13)

 25

The transformation of the quadrotor’s angular velocities from the body

frame coordinate to the inertia frame coordinate can be represented by the

following equation:

1

0
1 10

s ss c pc c
c s q

rs c
c c

qq φ φφ qq
q φ φ
ψ φ φ

qq

 
    
    = −    
        
 







 (14)

C. QUADROTOR DYNAMICS

The following assumptions were undertaken in deriving the quadrotor

dynamics:

• The quadrotor’s center of gravity coincides with the origin of the
body frame.

• The quadrotor is a rigid body.

• The quadrotor is symmetrical with respect to the x and y-axes as
described in [5], [6], [7], [8], [9] and [10].

• The quadrotor propellers are rigid.

• The thrust and drag exerted on the quadrotor are proportional to
the square of the propellers’ angular speed.

1. Gravitational Forces

The gravitational force vector acting on the quadrotor’s CG in the inertia

coordinate frame can be expressed as:

0
0i

GF
m g


= 
 ⋅ 

G
 (15)

where: m = mass of quadrotor and

 g = gravitational acceleration.

 26

The gravitational force acting on the quadrotor’s CG in the body frame can

be obtained by multiplying the rotation matrix with the gravitational force vector in

the inertia coordinate frame:

 b b i
G i GF R F= ⋅
G G

 (16)

 b
G

mg s
F mg c s

mg c c

θ
θ φ
θ φ

 − ⋅ 
 ∴ = ⋅ ⋅ 
 ⋅ ⋅ 

G
 (17)

2. Gyroscopic Effect

The rotational motion of the propeller-rotor combination generates a

gyroscopic effect that acts on the quadrotor in the body coordinate frame. The

gyroscopic effect is contributed by the rotor’s moment of inertia, the rotor’s

angular velocity, and the body attitude rate, which can be expressed by equation

(18):

0 0
0 0
1 1

b
rotor b rotor

p
G I I q

r
ω
       
       = × Ω = × Ω       
              

 (18)

where: ωb is the angular velocity of the quadrotor (body coordinate frame)

 during the flight,

 Ώ is the sum of the 4 rotors’ rotational velocities (i.e. Ώ = ω1 + ω2 +

 ω3 + ω4),

 Irotor is the rotor moment of inertia given by

 2 21 1
4 12rotor motor motor prop propI m r m L   = ⋅ + ⋅   

   
,

 mmotor is the motor mass,

 rmotor is the motor radius

 27

 mprop is the propeller mass and

 Lprop is the propeller length.

0

b
rotor

q
G I p

 
 ∴ = Ω 
  

 (19)

Assuming that the attitude control system performs as expected and

ideally regulates the angular dynamics to the near hover conditions, the body

rates of the UAV become close to zero during the flight. Together with constant

and small value of the moment of inertial of the rotor-propeller combination Irotor,

the product Gb in the last equation will always be small as long as the roll and

pitch attitude rates in ωb are regulated to near zero values. Therefore, the

contribution of the gyroscopic effect to the quadrotor’s total moment is very small

and can be initially neglected at the first phase of linear control design approach.

3. Aerodynamic Forces

The aerodynamic forces acting on the quadrotor during flight are further

elaborated in the sections below:

a. Quadrotor Thrust Force

The thrust from the propellers acting on the quadrotor along the z-axis on

the body coordinate frame (i.e., zb) can be expressed as:

 ()2 2 2 2
1 2 3 4

b
TT K ω ω ω ω= − + + + (20)

 1

b
TT K U= − ⋅ (21)

where: KT is the propeller thrust coefficient and

 U1 is the thrust control input for the propellers’ rotation velocity.

 28

b. Quadrotor Roll Moment

The roll moment for the quadrotor along the x-axis on the body coordinate

frame in plus and cross configurations can be expressed as:

• Plus Configuration

 2 2
2 4()T yK lφτ ω ω= ⋅ ⋅ − +

• Cross Configuration

 2 2 2 2
1 2 3 4()T yK lφτ ω ω ω ω= ⋅ ⋅ − − + +

 2T yK l Uφτ∴ = ⋅ ⋅

where: ly is the length of the moment arm on the body y-axis and

 U2 is the roll control input for the propellers’ rotation velocity.

c. Quadrotor Pitch Moment

The pitch moment for the quadrotor along the y-axis on the body

coordinate frame in plus and cross configurations can be expressed as:

• Plus Configuration

 2 2

1 3()T xK lθτ ω ω= ⋅ ⋅ − (22)

• Cross Configuration

 ()2 2 2 2

1 2 3 4T xK lθτ ω ω ω ω= ⋅ ⋅ − − + (23)

 3T xK l Uθτ∴ = ⋅ ⋅ (24)

 29

where: lx is the length of the moment arm on the body x-axis and

 U3 is the pitch control input for the propellers’ rotation velocity.

d. Quadrotor Yaw Moment

The yaw moment for the quadrotor along the z-axis on the body

coordinate frame in plus and cross configurations are the same and can be

expressed as:

 ()2 2 2 2

1 2 3 4DKψτ ω ω ω ω= ⋅ − + − (25)

 4DK Uψτ∴ = ⋅ (26)

where: KD is propellers’ drag coefficient and

 U4 is the yaw control input for the propellers’ rotation velocity.

e. Summary of Aerodynamic Forces and Moments

The relationship between the aerodynamic forces and the propellers’

rotational velocity can be represented in matrix form. The matrices for quadrotor

in plus and cross configurations can be expressed as:

• Plus Configuration

2
1
2
2
2
3
2
4

0 0
0 0

b
T T T T

T y T y

T x T x

D D D D

K K K KT
K l K l

K l K l
K K K K

φ

θ

y

ω
τ ω
τ ω
τ ω

  − − − −   
    − ⋅ ⋅    =    ⋅ − ⋅
    − −        

 (27)

 30

• Cross Configuration

2
1
2
2
2
3
2
4

b
T T T T

T y T y T y T y

T x T x T x T x

D D D D

K K K KT
K l K l K l K l

K l K l K l K l
K K K K

φ

θ

y

ω
τ ω
τ ω
τ ω

  − − − −   
    − ⋅ − ⋅ ⋅ ⋅    =    ⋅ − ⋅ − ⋅ ⋅
    − −        

 (28)

D. QUADROTOR EQUATIONS OF MOTION

With the gravitational force and the quadrotor thrust derived in the

previous sections, the total force acting on the quadrotor in the body frame is:

 b b b
GF F T∑ = +

G G
 (29)

1 1

0
0b

T T

mg s mg s
F mg c s mg c s

mg c c K U mg c c K U

θ θ
θ φ θ φ
θ φ θ φ

− ⋅ − ⋅     
     ∑ = ⋅ ⋅ + = ⋅ ⋅     
     ⋅ ⋅ − ⋅ ⋅ ⋅ − ⋅     


 (30)

With the quadrotor moments derived in the previous section, the total

moment experienced by the quadrotor in the body frame can be expressed as:

 bM φ θ ψτ τ τ∑ = + +


 (31)

2 2

3 3

4 4

T y T y
b

T x T x

D D

K l U K l U
M K l U K l U

K U K U

⋅ ⋅ ⋅ ⋅   
   ∑ = ⋅ ⋅ = ⋅ ⋅   
   ⋅ ⋅   


 (32)

Using the force and moment equations derived in the previous sections,

the quadrotor’s 6DOF EOM can be summarized in equations (35) and (36):

 31

1

b
b

b

b T

x mg s
F m y mg c s

z mg c c K U

θ
θ φ

θ φ

− ⋅   
   ∑ = = ⋅ ⋅   
   ⋅ ⋅ − ⋅   








 (33)

2

3

4

T y
b

T x

D

p K l U
M I q K l U

r K U

⋅ ⋅   
   ∑ = = ⋅ ⋅   
   ⋅   








 (34)

1

1b

b

b T

x mg s
y mg c s

m
z mg c c K U

θ
θ φ

θ φ

− ⋅   
   = ⋅ ⋅   
   ⋅ ⋅ − ⋅   







 (35)

2

3

4

1 T y

T x

D

p K l U
q K l U

I
r K U

⋅ ⋅   
   ∴ = ⋅ ⋅   
   ⋅   







 (36)

 32

THIS PAGE INTENTIONALLY LEFT BLANK

 33

IV. DETERMINING IRIS+ PHYSICAL PROPERTIES

This chapter describes the process and methodology that were used to

determine the physical properties of the Iris+, which are necessary for the precise

modeling of its dynamics of motion and its modeling and simulation in Simulink.

The sections in this chapter are as follow:

Section A describes the measurement of the quadrotor physical

specifications. In addition, the equipment that was used in the measurement of

the Iris+ was also listed in this section.

Section B describes the method of using a trifilar pendulum to determine

the Iris+’s mass moment of inertia.

Section C describes the experimental method that was used to determine

the Iris+’s propeller properties (i.e., thrust and torque coefficients).

A. MEASURING QUADROTOR PROPERTIES

For accurate representation of the quadrotor’s mathematical model, its

physical properties need to be measured and determined. A measuring tape and

weighing scale (see Figure 11 and Figure 12) were used as the measuring

equipment to determine the quadrotor’s weight and length of its moment arms

along the x and y-axes (see Figure 13).

 34

Figure 11 Measuring Tape used in Length Measurements.

Figure 12 BCS-40 Weighing Scale.

 35

Figure 13 Illustration of Iris+ Moment Arms.

The results from the measurement of the Iris+ quadrotor’s physical

specifications are summarized in Table 4.

Table 4 Measurement of Quadrotor Physical Specifications.

Measured Quadrotor Physical Specifications
Mass, including battery (kg) 1.37

Front Moment Arm Length along x-axis, LxF (m) 0.0923
Front Moment Arm Length along y-axis, LyF (m) 0.2537
Back Moment Arm Length along x-axis, LxB (m) 0.13
Back Moment Arm Length along y-axis, LyB (m) 0.2252

B. DETERMINING IRIS+ MASS MOMENT OF INERTIA

The Iris+ mass moment of inertia can be determined with 2 methods. The

first method involves an experimental approach that was described in [21] and

[10], where a trifilar pendulum is used to measure the Iris+ oscillations along

each of its body axis. Subsequently, the oscillations measured are used to

compute the Iris+ mass moment of inertia.

 36

The second method involves an analytical approach, where each

component on the Iris+ (e.g., arms, motors, body, etc.) can be approximated as

regular shapes (i.e., beam or cylinders). The mass moment of inertia for each of

the regular shapes can be found individually and summed together using the

parallel axis theorem described in [22] to obtain the mass moment of inertia of

the Iris+ with respect to its CG.

Both methods were used to determine the mass moment of inertia for the

Iris+ and the procedures are elaborated in the next section. Finally, the mass

moment of inertia obtained using both methods will be compared to determine if

the differences are significant (i.e., more than 20%).

1. Experimental Method

The trifilar pendulum is an established methodology in determining the

mass moment of inertia of objects with irregular shapes that cannot be calculated

directly. This methodology was well elaborated in [21] and used to determine the

Iris+ mass moment of inertia. To determine an irregular shaped object’s mass

moment of inertia, the trifilar pendulum holding the object is made to rotate along

the z-axis and the period of a single oscillation is measured over three iterations;

the mean value was calculated at the end. Subsequently, the period is used to

calculate the mass moment of inertia of the irregular shaped object. The setup of

the trifilar pendulum comprises of a disc that is hung from the ceiling with 3 wires

that are fasten to the disc at an equal distance from each other (see Figure 14).

Before the mass moment of inertia of the object can be determined with the

trifilar pendulum, the weight of the disc, its radius and the length of the wire

would need to be measured first (see Table 6 for the measurement results of the

experimental setup).

 37

Figure 14 Trifilar Pendulum Setup.

The configuration of the quadrotor’s mass moment of inertia along its

three principal axes is shown in Figure 15. To determine the quadrotor’s mass

moment of inertia along any axis (i.e. Ixx, Iyy and Izz), the quadrotor was placed on

the stand and axis of interest was aligned with the trifilar pendulum’s axis of

oscillation. The 3 configurations of measuring the quadrotor’s I along the x-axis,

y-axis and z-axis are shown in Figure 16, Figure 17 and Figure 18 respectively.

Subsequently, a small angular displacement will be introduced to the trifilar

pendulum to rotate the stand holding the quadrotor and the period of 10

rotations/oscillations are measured. The measurement of each period was

 38

repeated twice and the total period from the three experimental runs were

averaged to reduce the effects of experimental random errors.

Figure 15 Quadrotor Rotation Axes Configuration.

Figure 16 Measurement of Mass Moment of Inertia along x-axis.

 39

Figure 17 Measurement of Mass Moment of Inertia along y-axis.

Figure 18 Measurement of Mass Moment of Inertia along z-axis.

 40

With the measured period, the quadrotor mass moment of inertia along

each principal axis can be calculated using equation (37):

2 2

, ,
, , 24

x y z
xx yy zz

W R T
I

Lπ
⋅ ⋅

=
⋅ ⋅

 (37)

where: Ixx,yy,zz = mass moment of inertia of object in x, y or z-axis,

 T = period of one oscillation in s,

 W = weight of the disc and quadrotor in kg,

 R = radius of disc in m,

 L = length of wire suspending disc from ceiling in m.

Equation (37) assumes that the weight and the moment of inertial of the

rotating disk that holds the “irregular” body is negligible, therefore their

contribution is omitted in (37) for brevity.

The results from the measurement of the periods along each principal axis

are summarized in Table 5. Using equation (37), the mass moment of inertia

along each principal axis was calculated and summarized in Table 6.

Table 5 Periods of Oscillation in x, y and z Axes.

Table 6 Iris+ Quadrotor Mass Moment of Inertia in x, y and z Axes.

 41

2. Analytical Method

In the analytical method, the individual components of the Iris+ quadrotor

can be approximated as the shapes shown in Figure 19 and their dimensions are

shown in Figure 7. The dimensions of each component are measured using the

measuring tape and weighing scale introduced in Section A.

Figure 19 Approximated Shapes and Dimensions for Iris+

Table 7 Dimensions of Iris+ Components

 Mass (kg) Radius, R (m) Height, H (m) Length, L (m)
Body 0.816 0.1 0.07 -
Arm 0.0685 - - 0.20

Motor 0.070 0.015 0.03 -
Distance between Motor CG

and Iris+ CG, LM
- - 0.25

Distance between Arm CG and
Iris+ CG, LA

- - 0.165

The mass moment of inertia for the body and motors can be approximated

as cylinders, while the mass moment of inertia of the arm can be approximated

as a beam. Therefore, the mass moment of inertia of the Iris+ quadrotor along

 42

the x, y and z axes (i.e. Ixx, Ixx and Ixx) can be found using the parallel axis

theorem defined in [22] for the approximated shapes, with the following

equations:

()

()

2
2 2

2 2
2 2

2 2 22

4 2() 4()
2

4 2
4 12

4
12 2 4 12

xx motor motor yF motor yB arms arms body

motor motor
motor yF motor yB

body bodyarm
arm

LI I m L m L I m I

m r m h m L m L

m R m Hm L Lm

 = + ⋅ + ⋅ + + ⋅ + 
 

 ⋅ ⋅
= + + ⋅ + ⋅ 

 
   ⋅ ⋅⋅  + + ⋅ + +           

 (38)

()

()

2
2 2

2 2
2 2

2 2 22

4 2() 4()
2

4 2
4 12

4
12 2 4 12

yy motor motor xF motor xB arms arms body

motor motor
motor xF motor xB

body bodyarm
arm

LI I m L m L I m I

m r m h m L m L

m R m Hm L Lm

 = + ⋅ + ⋅ + + ⋅ + 
 

 ⋅ ⋅
= + + ⋅ + ⋅ 

 
   ⋅ ⋅⋅  + + ⋅ + +           

 (39)

()()22

22
2 2 2

4() 4

4 4
2 12 2

zz motor motor M arm arm A body

bodymotor arm
motor M arm A

I I m L I m L I

m Rm r mm L L m L

= + ⋅ + + +

 ⋅ ⋅  = + ⋅ + ⋅ + ⋅ +           

 (40)

Substituting the dimensions in Table 7 into the equations (38), (39) and

(40), the mass moment of inertia of the Iris+ quadrotor along each axis (found

using the analytical method) is:

Ixx = 0.0238 kg.m2,

Iyy = 0.00882 kg.m2,

Izz = 0.0303 kg.m2.

 43

3. Comparison between Experimental and Analytical Methods

The comparison between the mass moment of inertia obtained using the

experimental and analytical methods are shown in Table 8. Comparing between

the results obtained from both methods, the percentage difference in the mass

moment of inertia are 8.7%, 23.6% and 0.03% for the x, y and z-axes,

respectively.

Table 8 Mass Moment of Inertia for Experimental and Analytical
Methods

 Experimental (kg.m2) Analytical (kg.m2) Percentage Difference
Ixx 0.0219 0.0238 8.7%
Iyy 0.0109 0.00882 23.6%
Izz 0.0306 0.0303 0.03%

It can be seen from Table 8 that the mass moment of inertia in the x and

z-axes found using the experimental and analytical methods are relatively small

(i.e. 8.7% and 0.03% respectively). The difference for the mass moment of inertia

in the y-axis is more pronounced (i.e. 23.6%) and this could be attributed to the

overly simplistic representation of the Iris+ distribution of masses. First, the

spread angle of the front arms (i.e. 120o) is different from the separation of the

back arms (i.e. 140o) that leads to the difference in separation of masses along x

and y-axes. Next, the simplified representation of the center-body as a cylinder is

also a minor contributor to the difference. Nevertheless, the difference between

the experimental and analytical method for the y-axis is only slightly over 20%.

Therefore, since the mass moment of inertia found using both methods are of the

same order of magnitude, the mass moment of inertia that was obtained using

the experimental method can be used in the Iris+ quadrotor mathematical model.

C. QUADROTOR PROPELLER COEFFICIENTS

The propellers installed on the Iris+ quadrotor were manufactured by APC

and have a dimension of 10” by 4.7” in diameter and pitch respectively (see

 44

Figure 20). A test stand experiment setup that rotates the propeller at a specified

speed and measuring the thrust force generated can be used to determine the

propeller’s thrust coefficient, CT and torque coefficient, CQ.

Figure 20 APC 10” by 4.7” Propeller Set (from [23]).

The University of Illinois at Urbana-Champaign (UIUC) had performed a

series of experiments as described in [24] and [25] to determine the performance

of different small-scale propellers at low Reynolds number. The experimental

results for the APC propeller of dimension 10” by 4.7” were summarized in Table

9, while the plots for the thrust and power coefficients against the propeller speed

are shown in Figure 21 and Figure 22.

 45

Table 9 APM (10” x 4.7”) Propeller Thrust & Power Coefficients at
Different Speed (from [26]).

Propeller Rotational
Speed (RPM)

Propeller Rotational
Speed (rad/s)

Thrust
Coefficient, CT

Power
Coefficient, CP

2377 248.9189 0.1059 0.0431
2676 280.2301 0.1079 0.0437
2947 308.6091 0.1079 0.0437
3234 338.6637 0.1104 0.0444
3494 365.8908 0.1117 0.0450
3762 393.9557 0.1143 0.0460
4029 421.9159 0.1158 0.0466
4319 452.2846 0.1177 0.0474
4590 480.6637 0.1200 0.0484
4880 511.0324 0.1223 0.0494
5147 538.9926 0.1237 0.0500
5417 567.2669 0.1252 0.0508
5715 598.4734 0.1263 0.0513
5960 624.1297 0.1278 0.0520
6226 651.9852 0.1286 0.0524
6226 651.9852 0.1286 0.0531

Figure 21 Thrust Coefficient vs Propeller Speed Plot (from [26]).

 46

Figure 22 Power Coefficient vs Propeller Speed Plot (from [26]).

The relationship between the thrust generated by a propeller, Ti and the

propeller’s rotational velocity, ωi can be expressed in equation (42). Therefore,

the thrust generated by a propeller can be found if the propeller’s rotational

speed and coefficient of thrust is known.

 4 4 24i T iT C Dρ π ω= ⋅ ⋅ ⋅ ⋅ ⋅ (41)

 2

i T iT K ω∴ = ⋅ (42)

where: CT = propeller thrust coefficient,

 ρ = air density,

 D = propeller diameter,

 KT = thrust constant representing the product of CT, ρ and D4.

 47

The relationship between the torque generated by a propeller, Qi and the

propeller’s rotational velocity, ωi can be expressed in equation (46) as referenced

from [25]. Although the torque coefficient, CQ was not determined directly in the

experiments conducted by UIUC, it is related to the power coefficient, CP shown

in equation (44). Therefore, the torque generated by a propeller can be found if

the propeller’s rotational speed and coefficient of power and coefficient torque

are known.

 5 2 24i Q iQ C Dρ π ω= ⋅ ⋅ ⋅ ⋅ ⋅ (43)

2

P
Q

CC
π

= (44)

 2 24
2

P
i i

CQ ρ π ω
π

= ⋅ ⋅ ⋅ ⋅ (45)

 2

i Q iQ K ω∴ = ⋅ (46)

where: CQ = propeller torque coefficient,

 CP = propeller power coefficient,

 KQ = torque constant representing the product of CP, ρ and D.

 48

THIS PAGE INTENTIONALLY LEFT BLANK

 49

V. QUADROTOR FLIGHT CONTROL DESIGN

This chapter presents the process of designing the flight control algorithm

for the Iris+ quadrotor based on the mathematical model developed in Chapter

III. The PID controller was chosen as the control technique to stabilize (control

attitude) the Iris+ model in flight and the method to tune the PID controller is

elaborated as well in this chapter. The sections in this chapter are as follow:

Section A provides an overview to the control modeling of the quadrotor

and the process for controlling the quadrotor to track a planned trajectory.

Section B gives a brief overview of the PID controller that will be employed

on the quadrotor model.

Section C describes the Ziegler-Nichols method that is employed to tune

the PID controller for the Iris+ attitude and rates control loops.

A. CONTROL MODELLING OF QUADROTOR

The control modeling of the Iris+ quadrotor is summarized and presented

in the block diagram as shown in Figure 23 below. A hierarchical approach that

was presented in [7] was used to allocate the control bandwidths required by the

control actions in the block diagram: motor mixer allocation, controller blocks. In

this approach, higher control bandwidths are allocated to the lower level control

actions. Therefore, the motor speed allocation receives the highest control

bandwidth as it is located at the lowest level, while the outer loop controller block

receives the lowest control allocation, as it is located at the highest level. The

functions of each block are further elaborated below.

 50

Figure 23 Block Diagram of Quadrotor Control Model.

1. Trajectory Generator Block

In Simulink, the trajectory generator block computes the desired flight

trajectory that needs to be followed by the quadrotor and generates the set of

desired positions (i.e., xd, yd and zd) and desired Euler angles (i.e. ϕd, θd and ψd)

in the inertial coordinate frame for that trajectory. If a Remote Control (RC) is

used to generate flight command during an actual flight, the trajectory generator

block will output the desired Euler angles or their rates to the Iris+ quadrotor; the

choice depends on the control architecture. The desired positions and Euler

angles are used as inputs for the controller block to stabilize the Iris+ in flight

during the change in the Iris+ attitude.

2. Controller Block

The control of the quadrotor’s position and attitude is accomplished by the

design of the feedback controller and the method was well documented in [6] and

[7]. As mentioned in the previous chapters, the quadrotor is an under-actuated

system. Therefore, to move forward in the ‘x’ direction, the quadrotor must first

change its attitude by pitching downwards to generate a horizontal force from the

propellers’ thrusts, while maintaining its altitude. Similarly, in order to move

laterally in the ‘y’ direction, the quadrotor must change its attitude by rolling to the

right or left while maintaining its altitude. Therefore, the control equations of the

quadrotor’s position and attitude channels are shown in equations (47) and (48).

 51

The complete derivation of the control equations can be found in Annex A of this

thesis.

1. Attitude Control Equations

 ()1, 2,

V
d y I d y VK R y y K yφ  = ⋅ − − ⋅  (47)

 ()1, 2,

V
d x I d x VK R x x K xθ  = ⋅ − −  (48)

where: 𝑅𝑅𝐼𝐼𝑉𝑉 is the rotation matrix that transforms the quadrotor’s position

 from the inertia to vehicle coordinate frame,

 K1,x is the proportional gain term for the position in the ‘x’ direction,

 K2,x is the derivative gain term for the velocity in the ‘x’ direction,

 K1,y is the proportional gain term for the position in the ‘y’ direction,

 K2,x is the derivative gain term for the velocity in the ‘y’ direction.

2. Forces and Moments Control Equations

 , , ,() () ()P roll d m I roll d m D roll d mK K Kφτ φ φ φ φ φ φ= ⋅ − + ⋅ − + ⋅ −  (49)

 ,pitch ,pitch ,pitch() () ()P d m I d m D d mK K Kθt θ θ θ θ θ θ= ⋅ − + ⋅ − + ⋅ −  (50)

 ,yaw ,yaw ,yaw() () ()P d m I d m D d mK K Kyτ yyyyyy = ⋅ − + ⋅ − + ⋅ −  (51)

 , , D, 0() () ()P z d I z d z dT K z z K z z K z z ω= − + − + − +  (52)

 0 4 T

m g
K

ω ⋅
=

⋅
 (53)

where: KP,roll/pitch/yaw is the proportional gain term for the roll, pitch or yaw

 angles,

 52

 KI,roll/pitch/yaw is the Integral gain term for the roll, pitch or yaw angles,

 KD,roll/pitch/yaw is the derivative gain term for the roll, pitch or yaw

 rates,

 KP,z is the proportional gain term for the position along the z-axis,

 KI,z is the integral gain term for the position along the z-axis,

 KD,z is the derivative gain term for the velocity along the z-axis,

 ω0 is the motor rotational speed required to generate a thrust

 that is equal to the weight of the quadrotor.

3. Motor Mixer Block

The motor mixer block computes the required angular speed of each

propeller in order to generate the thrust force and moments (i.e., Tb, τϕ, τθ, τΨ) to

perform a maneuver or changing the quadrotor’s attitude in flight. As stated in

Chapter III, the thrust and moments of the quadrotor are directly proportional to

the square of the propellers’ angular speed (i.e., ωi
2). The proportional

relationship between the thrust and moments of the quadrotor and each

propeller’s angular speed is shown in equation (54), represented by the matrix,

M. Therefore, to determine the angular speed required for each propeller in order

to generate the thrust force and moment, the inverse of M is first derived and

multiplied to the thrust, roll, pitch and yaw moment vector as shown in the

equation (55). The calculated angular speed for each propeller will be used as an

input for the quadrotor dynamics block.

 []

2 2
1 1
2 2
2 2
2 2
3 3
2 2
4 4

b
T T T T

T y T y T y T y

T x T x T x T x

D D D D

K K K KT
K l K l K l K l

M
K l K l K l K l

K K K K

φ

θ

y

ω ω
τ ω ω
τ ω ω
τ ω ω

  − − − −     
      − ⋅ − ⋅ ⋅ ⋅      = =      ⋅ − ⋅ − ⋅ ⋅
      − −            

 (54)

 53

 []

2
1
2

12
2
3
2
4

bT

M φ

θ

ψ

ω
τω
τω
τω

−

  
  
  ∴ =   
  

      

 (55)

4. Iris+ Quadrotor Dynamics Block

The Iris+ dynamics block consists of the 6DOF EOM that was derived in

Chapter III. The required angular speed for each propeller is provided by the

motor mixer block to the Iris+ dynamics block as an input and the body response

is measured by the sensors onboard the Iris+ as the measured position, Euler

angles and their rates. The measured responses are fed back to the controller

block and used to determine the error signals for each of the position and Euler

angle channel.

B. FLIGHT CONTROLLER IMPLEMENTATION IN SIMULINK

Using the concept formulated in section A.4 of this chapter for the control

modeling of the Iris+ quadrotor, a Simulink model was built as shown in Figure

24. The Simulink model is used to tune the PID controller gains and simulate the

Iris+ dynamics with the gain values to obtain a first cut flight performance, before

using the gains for the Pixhawk autopilot.

 54

Figure 24 Simulink Model of Iris+ Quadrotor.

C. OVERVIEW OF PID CONTROLLER

The quadrotor model in this thesis uses a PID controller that was

elaborated in [27], [28] and [29] to stabilize the Iris+ attitude during flight. A PID

controller consists of three tunable gain values: Proportional gain (i.e. KP), the

Integral gain (i.e. KI) and the Derivative gain (i.e. KD) as shown in Figure 25. The

transfer function of a PID controller can be represented by equation (56).

 () I
P D

KG S K K s
s

= + + ⋅ (56)

 55

Figure 25 Illustration of System designed with PID Controller.

Each gain in the PID controller can be tuned to modify a particular

transient response parameter of the feedback system (see Figure 26) and the

effects from increasing each gain value separately is further elaborated below:

1. Proportional Gain, KP

The KP value is increased to reduce the time required for the output signal

to reach the desired signal (i.e., system response time, tr). By increasing the KP

value alone in the PID controller, a steady-state error can be reduced and

expected to be between the desired signal and the output signal. In addition,

setting an overly high KP value will also propagate any inherent disturbance

signal within the system and cause the system to undergo unstable oscillations.

2. Integral Gain, KI

The KI value is increased to eliminate the steady-state error of the

feedback system. However, as the integral term introduces a pole at the origin of

an S-plane plot, the system might become increasingly unstable when the KI

value is increased (i.e., the system will become increasingly oscillatory in the

steady-state).

 56

3. Derivative Gain, KD

The KD value is increased to reduce the overshoot, MP and the settling

time, td of the feedback system’s output signal. Although derivative control does

not affect the steady-state error directly, it introduces damping to the feedback

system. This would allow the system to use a larger KP value, which would result

in improvement to the system’s steady-state performance. As described in [27]

and [20], “derivative control operates on the rate of change of the actuating error

and not the actuating error itself this mode is never used alone.” Therefore, KD

gain is generally used in combination with KP and KI control actions.

Figure 26 Transient Response for a Feedback System (from
[20]).

D. IMPLEMENTATION OF PID CONTROLLERS IN ATTITUDE AND
RATES CHANNEL IN SIMULINK

With reference to the concept of a PID controller above, the PID controller

was implemented to the attitude and attitude rate control channels for the Iris+

quadrotor in Simulink (see Figure 27 to Figure 32). The PID controllers for the

 57

Iris+ Simulink model will be tuned using the method outlined in the next section to

obtain the optimal PID gains for a stabilize flight performance.

1. Attitude Controllers

In linear settings, the outer loop controllers that operate on the Iris+

command attitude rates (i.e. comφ , comθ and comψ) can be obtained by taking the

difference between the Iris+’s command and measured attitude (i.e., error term,

eϕ/θ/Ψ(t)) and multiplying it with a proportional gain term (i.e. KP,ϕ/θ/ψ). The

proportional control law equations for the attitude rates are shown in equations

(57) through (59) and these equations can be represented in Simulink as shown

in Figure 27, Figure 28 and Figure 29:

 , ,() ()com P com meas PK K e tφ φ φφ φ φ= − = ⋅ (57)

 , ,() ()com P com meas PK K e tθ θ θθ θ θ= − = ⋅ (58)

 , ,() ()com P com meas PK K e tψ ψ ψψ ψ ψ= − = ⋅ (59)

Figure 27 Roll Channel Controller.

Figure 28 Pitch Channel Controller.

 58

Figure 29 Yaw Channel Controller.

2. Attitude Rate Controllers

In linear settings, the inner loop controller that operates on the Iris+

command moments along the x, y and z-axes (i.e. τroll, τpitch and τyaw) can be

obtained by using the difference between the command attitude rates from

section 1 and the measured attitude rates from the Iris+ sensors (i.e. measφ , measθ

and measψ). Subsequently, the difference between the command and measured

attitude rates were multiplied with proportional, integral and derivative gains (i.e.

KP,ϕ/θ/Ψ, KI,ϕ/θ/Ψ and KD,ϕ/θ/Ψ) and summed to shape the controllers’ transient and

steady state performance. The control equations for the moments are shown in

equations (60) through (62) and these equations can be represented in Simulink

as shown in Figure 30, Figure 31 and Figure 32:

 ,
, ,() () ()I

roll com meas com meas com measP d

K dK K
s dt
φ

φ φt φ φ φ φ φ φ= − + − + −


 
      (60)

 ,
, ,() () ()I

pitch com meas com meas com measP d

K dK K
s dt
θ

θ θt θ θ θ θ θ θ= − + − + −


 
      (61)

 ,
, ,() () ()I

yaw P com meas com meas d com meas

K dK K
s dt
y

yy tyyyyyy = − + − + −

       (62)

 59

Figure 30 Roll Moment Controller.

Figure 31 Pitch Moment Controller.

Figure 32 Yaw Moment Controller.

E. PID CONTROLLER TUNING METHOD

With the Simulink model developed for the Iris+ and the PID controllers in

the previous section, a systematic approach would need to be adopted to tune

the PID controllers and obtain optimal gain values for the Iris+ to attain stabilized

flight. The Ziegler-Nichols rule elaborated in [27] and [20] for tuning PID

 60

controllers was selected as a suitable method for this thesis to determine the

gains of the Iris+ PID controllers. There are two methods for applying the Ziegler-

Nichols rule:

1. Ziegler-Nichols First Method

The first method for applying the Ziegler-Nichols rule involves an

experiment on the plant or system to obtain the response plot due to a unit step

command. If the plant or system does not feature an integrator or dominant

complex conjugate poles, the plant or system’s response plot to a unit step

response will take the shape of an S curve as shown in Figure 33. Therefore, the

first method for the Ziegler-Nichols rule is only valid if the response plot takes the

shape of an S. Since this method is restricted by whether the plant or system

possess an integrator or dominant complex conjugate poles, the second method

was used for tuning the PID controller instead.

Figure 33 S-Shaped Response Curve to a Unit Step Command
(from [20]).

2. Ziegler-Nichols Second Method

The second method for applying the Ziegler-Nichols rule also adopts an

experimental approach to determine the PID gain values for a plant or system. In

 61

this method, the proportional gain for a control loop (each control loop is tuned

individually) is increased to a critical value where the output of the channel

exhibits oscillatory behavior. This proportional gain is also known as the critical

gain value, Kcr that causes the system output to oscillate. The corresponding

period of Kcr (i.e. Pcr) is determined from the plot of the system output. Using the

Kcr and Pcr values found, the gains for the PID controller in each loop can be

found using the relation defined in Table 10. The transfer function for the PID

controller using the Ziegler-Nichols rule is shown in equation (57).

Table 10 PID Controller Gains using Ziegler-Nichol Methods (from
[20]).

Type of Controller KP TI TD
Proportional only 0.5Kcr ∞ 0

Proportional & Integral only 0.45Kcr 1
12

Pcr
0

Proportional, Integral & Derivative 0.6Kcr 0.5Pcr 0.125Pcr

 1 1(S) K (1) 0.6 (1 0.125)
0.5C P D cr cr

I r

G T s K P s
T s P s

= + + ⋅ = ⋅ ⋅ + + ⋅ ⋅
⋅ ⋅ ⋅

 (63)

Using the second method for the Ziegler-Nichols rule, the gains for the

PID controller in each control loop were determined individually with the Simulink

model developed.

 62

THIS PAGE INTENTIONALLY LEFT BLANK

 63

VI. IMPLEMENTATION OF CONTROLLER ON PIXHAWK

This chapter presents the process of implementing the Simulink model of

the PID controller that was developed in Chapter V onboard of the Pixhawk

autopilot. The outline of this chapter is as follows:

Section A describes the methods that were considered and selected to

implement the Simulink model onto the Pixhawk autopilot.

Section B elaborates on using the attitude controller Simulink model found

in the PX4 toolchain and the conversion of the model to C/C++ code using the

Simulink ‘Build’ function.

Section C describes the process of using the Eclipse software to build the

Simulink controller model into an application and downloading the application to

the Pixhawk autopilot.

A. METHODS TO IMPLEMENT SIMULINK MODEL ON PIXHAWK

MathWorks had developed the Simulink coder and Embedded coder to

convert Simulink models to C/C++ codes using the ‘Build’ function in Simulink.

The C/C++ codes generated can be used to build an application that is

downloaded to the Pixhawk autopilot using the methods described in [13] or [12].

The methods to implement the Simulink model onto the Pixhawk autopilot was

elaborated with full details in Appendix B.

B. SETUP OF ATTITUDE CONTROLLER SIMULINK MODEL

To implement the software development starting at a Simulink model and

transitioning to the PX4 application that can be run on the autopilot, the PX4

toolchain and PX4 PSP would first need to be downloaded and installed from

PX4’s website [30] and MathWorks’ website [19]. The PX4 toolchain and

Pixhawk PSP comes with a library of PX4 Simulink blocks and the various

subsystems found in the Iris+ (e.g., controller model, plant model, etc.). As a first

step in developing the controller for this thesis, the attitude controller Simulink

 64

model found in the PX4 Simulink library can be modified to implement the

architecture of the PID controller designed previously in Chapter V (see Figure

34). Alternatively, [12] had developed a wrapper code for the Simulink attitude

controller found in the PX4 Simulink library (see Figure 35) that can be modified

readily to accept input signals from the sensors found on the Pixahwk autopilot

and outputs the required PWM for the Iris+ BLDC motors.

Figure 34 Attitude Control Simulink Model in PX4 Simulink.
Example from [13].

Figure 35 Attitude Control Wrapper (from [12]).

 65

Using the PID gain values found in Chapter V with the Ziegler-Nichols

method, the attitude controller Simulink model can be configured to use these

PID gain values. In addition, the flight dynamics constraints (e.g., saturation limits

of the control laws, the BLDC motors’ minimum and maximum PWM values, etc.)

of the Iris+ quadrotor would also need to be updated to match the architecture of

the newly developed attitude controller model. Finally, the ‘Build’ function in

Simulink can be used to “auto-generate” the updated attitude controller Simulink

model into C/C++ codes.

C. BUILDING PIXHAWK APPLICATION IN PX4 ECLIPSE

The process of building an application for the Pixhawk autopilot was

documented in both [13] and [12]. This thesis has combined the essential

information that are required to build an application for the attitude controller from

both sources and elaborated on the process in Appendix B.

Before building the application for the attitude controller, the Iris+

quadrotor’s ground station software, QGroundControl would need to be

downloaded from [31]. The QGroundControl software adopts the Mavlink

communication protocol to support bi-directional command and control of the

multi-copter in flight. In addition, it also includes utility function such as the

calibration of the Iris+ quadrotor’s sensor and interfaces with the Iris+ for logging

of the flight data.

The method described in [13] allows the application to be built in Simulink

directly and downloaded to the Pixhawk autopilot. In contrast, the method used in

[12] uses the PX4 Eclipse software in the PX4 toolchain to build the application

from the source code resulted from MathWork’s auto-coding and downloading it

to the Pixhawk autopilot. The process of using the PX4 Eclipse to build an

application for the Pixhawk autopilot was summarized with the flow diagram in

Figure 36.

 66

Figure 36 Process of Building and Downloading Application to
Pixhawk Autopilot (after [16] and [19]).

 67

VII. IRIS+ FLIGHT TESTS

After the Simulink attitude controller application was successfully

downloaded to the Pixhawk autopilot, a flight test was set up to assess the

performance of the Iris+. The flight test was carried out in NPS’s Halligan hall

indoor flight facilities (see Figure 37), which had been setup to fly multi-copter in

a safe environment.

Figure 37 Multi-Copter Indoor Flight Facilities.

A. FLIGHT TEST PROCEDURE

The main objective of the flight test is to analyze the transient and steady-

state performance of the PID attitude controllers in the roll, pitch and yaw

channels. The steps for the flight test are further elaborated below:

• Step 1

Set up the ground computer to record the flight test data by launching

QGroundControl and connecting it to the Iris+ quadrotor with the 3DR radio (set

baud rate to 57,600). In QGroundControl, select the ‘Analyze’ tab on the toolbar

 68

and select all the flight data parameters (see Figure 38). Finally, click ‘start

logging’ in the ‘Analyze’ window to start the flight data recording and save the

data as a CSV file in the working directory.

Figure 38 Location of ‘Analyze’ Tab on QGroundControl.

• Step 2

Once the ground computer is setup to record the flight data, the motors on

the Iris+ quadrotor are armed and the copter flies a rectangular trajectory along

the circumference of the flight facilities, using manual control from the RC

transmitter. During the flight of the Iris+ quadrotor, roll, pitch and yaw commands

are transmitted from the RC transmitter to obtain the attitude controller’s

response.

• Step 3

When the Iris+ quadrotor has landed, disarm the motor with the RC

transmitter and select ‘stop logging’ from the QGroundControl. Develop MATLAB

scripts to facilitate quick data analysis. Using the flight data recorded in the CSV

 69

file, plot the transient and steady-state curves for the Iris+ attitude and rates

channel.

B. FLIGHT TEST RESULTS AND ANALYSIS

A series of flight tests were conducted to determine the transient and

steady state performance characteristics of the attitude controller onboard the

Iris+. The resulting plot of the flight data is shown in Figure 39. The red line

represents the roll magnitude command transmitted by the RC transmitter and

the blue line represents the magnitude of roll motion measured by the Iris+

sensor. In the first flight test, it can be seen from the plot for the roll channel

exhibits relatively high overshoots throughout the Iris+ flight.

Figure 39 Roll Channel Plot for First Flight.

To improve performance characteristics of the transient and steady state

response of the attitude controller, the PID gains in the roll, pitch and yaw

channels were tuned. The outcome from the tuning is elaborated in the

subsequent sections:

1. Roll and Roll Rate Channels

The plots of the flight data for the roll and roll rate for the duration of 24.6

to 26.6s are shown in Figure 40 and Figure 41 respectively; the red line

represents the roll magnitude command transmitted by the RC transmitter and

the blue line represents the magnitude of roll measured by the Iris+ sensor. The

 70

subplot represents the error between the command and measured roll and roll

rate magnitudes.

Figure 40 Roll and Error Plots.

Figure 41 Roll Rate and Error Plots

 71

It can be observed that the outer loop roll channel controller is able to

track the roll command with a slight overshoot (i.e., approximately 15%) in the

transient phase and exhibits little oscillations in the steady state. The transient

and steady state performance of the inner loop roll rate channel is similar.

Therefore, the roll and roll rate channels demonstrate reasonable transient and

steady state performances to control the Iris+ in flight.

2. Pitch and Pitch Rate Channels

The plots of the flight data for the pitch and pitch rate for the duration of

5.62 to 5.72s are shown in Figure 42 and Figure 43 respectively; the red line

represents the pitch magnitude command transmitted by the RC transmitter and

the blue line represents the magnitude of pitch motion measured by the Iris+

sensor. The subplot represents the error between the command and measured

pitch and pitch rate magnitudes.

Figure 42 Pitch and Error Plots.

 72

Figure 43 Pitch Rate and Error Plots.

It can be observed that the outer loop pitch channel controller is able to

track the roll command with a slight overshoot (i.e., approximately 10%) in the

transient phase and exhibits slight oscillations in the steady state. The transient

and steady state performance of the inner loop pitch rate channel is similar.

Therefore, the pitch and pitch rate channels demonstrate reasonable transient

and steady state performances to control the Iris+ in flight.

3. Yaw and Yaw Rate Channels

The plots of the flight data for the yaw and yaw rate for the duration of 21

to 22s are shown in Figure 44 and Figure 45 respectively; the red line represents

the yaw magnitude command transmitted by the RC transmitter and the blue line

represents the magnitude of pitch motion measured by the Iris+ sensor. The

subplot represents the error between the command and measured yaw and yaw

rate magnitudes.

 73

Figure 44 Yaw and Error Plots.

Figure 45 Yaw Rate and Error Plots

It can be observed that the outer loop yaw channel controller is able to

track the yaw command with a slight overshoot (i.e., approximately 20%) in the

transient phase and exhibits slight oscillations in the steady state. The transient

and steady state performance of the inner loop yaw rate channel is similar.

 74

Therefore, the yaw and yaw rate channels demonstrate reasonable transient and

steady state performances to control the Iris+ in flight.

 75

VIII. CONCLUSION AND FUTURE WORKS

In this thesis, it was shown that the Iris+ quadrotor flight dynamics can be

represented with a mathematical model in Simulink and be used to design an

attitude controller to stabilize the Iris+ quadrotor in flight. This thesis also

demonstrated the successful implementation of a flight attitude controller

developed using Simulink onboard the Pixhawk autopilot by using the Simulink

‘Build’ function and the PX4 Eclipse software, while eliminating the need to be

proficient in high level programming language.

Therefore, the methods outlined in this thesis provide control engineering

students with an enabling tool to implement their flight controller design that was

developed in Simulink directly onto a quadrotor autopilot hardware. The flight

controller design can subsequently be put through an actual flight test and the

performance of the flight controller can be readily analyzed with the ground

control station.

The groundwork was laid by this thesis to implement a flight controller

design on actual quadrotor hardware. As a continuation for this thesis, the

following areas can be considered by students for future research works:

• Instead of the PID controller used in this thesis, alternatives to the
controller design (e.g. LQR) can be implemented on the Iris+
quadrotor to improve its stability and robustness during the flight.

• The GPS signal detected by the Iris+ quadrotor within the indoor
flight facility was not always in good condition. Therefore, the Iris+
quadrotor can be integrated to the Vicon motion capture system,
which is set up in the indoor flight facility to provide multi-copters
with accurate position and attitude data.

• The Pixhawk autopilot was used for a COTS quadrotor in this thesis.
Alternate platforms could be considered and modeled in Simulink
for use on the Pixhawk autopilots (e.g., fixed wing aircraft, UGV,
etc.).

 76

THIS PAGE INTENTIONALLY LEFT BLANK

 77

APPENDIX A. DERIVATION OF CONTROL EQUATIONS

The reference in [7] describes that the flight maneuvers of a quadrotor are

performed by keeping constant or varying the rotational speeds of the propellers.

For example, to fly forward in the ‘x’ direction, the quadrotor would need to

perform a pitch down motion to generate a horizontal thrust force in the ‘x’

direction. The quadrotor’s flight control in the ‘x’, ‘y’ and ‘z’ directions are further

elaborated below:

A. MANEUVER ALONG X-AXIS

In order for the quadrotor to fly forward along the x-axis in the vehicle

coordinate frame, it would first need to pitch down to generate a force (i.e. F


)

that is represented by equation (65). The force can be resolved into the x-

component, xF which is the force that accelerates the quadrotor forward, and the

z-component, zF , which is the upward force that is required to maintain the

quadrotor in the desired altitude.

0 0

0 1 0 0 0
0

c s T s
F

s c T T c

θ θ θ

θ θ θ

⋅     
     = =     
     − ⋅     


 (64)

 0
x

y

z

F T s
F
F T c

θ

θ

⋅   
   ∴ =   
   ⋅   

 (65)

It is assumed that the pitch angle required to generate the thrust for a

forward flight along the x-axis is sufficiently small. Therefore, the x-component of

the thrust force can be approximated as:

 xF T s Tθ θ= ⋅ ≈ ⋅ (66)

 78

The forward velocity of the quadrotor in the vehicle coordinate frame can

be controlled with a proportional control law that is shown in equation (67):

 , ()x f x d VF m K x x= ⋅ −  (67)

where: m is the quadrotor mass,

 dx is the desired velocity along the x-axis in the vehicle reference

 frame,

 x is the measured velocity along the x-axis in the vehicle

 reference frame,

 ,f xK is the proportional gain.

Combining equations (68) and (69) derived for xF gives the following

equation:

 , ()f x d VT m K x xθ⋅ = ⋅ ⋅ −  (68)

 , ()f x
d d V

m K
x x

T
θ

⋅
∴ = −  (69)

where: dθ is the desired pitch angle to perform the forward flight along the

 x-axis.

In order for the quadrotor to maintain its altitude in forward flight, upward

thrust generated by the propellers would need to be equal to its weight.

Therefore, the thrust component, T in equation (69) can be replaced with the

quadrotor’s weight:

 () (), ,f x f x
d d dV V

m K m K
x x x x

T m g
θ

⋅ ⋅
= − = −

⋅
    (70)

 79

 , ()f x
d d V

K
x x

g
θ∴ = −  (71)

Finally, the desired forward velocity of the quadrotor in the inertial

coordinate frame, dx is related to the position along the x-axis with the following

proportional control law:

 , ()d P x dx K x x= − (72)

where: dx is the desired position of the quadrotor along the x-axis,

 x is the measured position of the quadrotor along the x-axis,

 ,P xK is the proportional gain.

Therefore, the desired pitch angle that is required to perform flight forward

along the x-axis is represented by equation (73):

 ()1, 2,
V

d x I d x VK R x x K xθ  = ⋅ ⋅ − − ⋅  (73)

where: V
IR is the rotation matrix that transforms the position from the

 inertia to vehicle coordinate frame,

 1,xK is the proportional gain term for the position,

 2,xK is the proportional gain term for the velocity.

B. MANEUVER ALONG Y-AXIS

Similar to the derivation of the desired pitch angle for the quadrotor to

perform a forward flight along the x-axis, the quadrotor would need to roll to a

desired angle to generate a lateral force, 𝐹𝐹𝑦𝑦 in order to move the quadrotor side

way along the y-axis. The y-component of the force can be found using the

rotation matrix for the roll maneuver and is shown in equations (74) and (75):

 80

1 0 0 0 0
0 0
0

F c s T s
s c T T c
φ φ φ
φ φ φ

     
     = = ⋅     
     − ⋅     


 (74)

0x

y

z

F
F T s
F T c

φ
φ

   
   = ⋅   
   ⋅   

 (75)

It is assumed that the roll angle to perform the lateral flight along the y-

axis is sufficiently small. Therefore, the y-component force can be approximated

as:

 yF T s Tφ φ= ⋅ = ⋅ (76)

The lateral velocity of the quadrotor in the vehicle coordinate frame can be

controlled with a proportional control law as shown in equation (77):

 (),y f y d V
F m K y y= ⋅ −  (77)

where: dy is the desired velocity along the y-axis in the vehicle reference

 frame,

 y is the measured velocity along the y-axis in the vehicle reference

 frame,

 and ,f yK is the proportional gain.

Combining the equations (76) and (77) derived gives equation (78):

 , ()f y d VT m K y yf⋅ = ⋅ −  (78)

 81

In order for the quadrotor to hover and maintain its altitude, its weight

would need to be equal to the upward thrust generated. Therefore, the above

equation becomes:

 () (), ,f y f y
d dV V

m K m K
y y y y

T m g
f

⋅ ⋅
= − = −

⋅
    (79)

 (),f y
d V

K
y y

g
f∴ = −  (80)

Finally, the desired lateral velocity of the quadrotor in the inertial

coordinate frame, dy is related to the position along the y-axis with the following

proportional control law:

 , ()d P y dy K y y= − (81)

where: dy is the desired position of the quadrotor along the y-axis,

 y is the measured position of the quadrotor along the y-axis,

 ,P yK is the proportional gain.

Therefore, the desired roll angle that is required to effect a lateral motion

is represented by equation (82):

 ()1, 2,
V

d y I d y VK R y y K yφ  = − − ⋅  (82)

where: 1, yK is the proportional gain term for the position along the y-axis,

 1, yK is the proportional gain term for the velocity along the y-axis.

C. MANEUVER ALONG Z-AXIS

In order for the quadrotor to maneuver along the z-axis, the quadrotor’s

thrust, T would need to be adjusted according to equation (83). The additive term

 82

ω0 is the rotor speed that is required to generate the amount of thrust that equals

the weight of the Iris+ quadrotor. The additive term results in a feedforward

controller for the thrust channel, which eliminates the need for high proportional

gain values (leads to instability) or an integral gain term (leads to slow response

time). Therefore, the quadrotor’s altitude control can be implemented with a

proportional, derivative controller as a result of the feedforward term:

 , , 0() ()P z d D z dT K z z K z z ω= − + − +  (83)

where: ,P zK is the proportional gain term for the position along the z-axis,

 ,D zK is the derivative gain term for the velocity along the z-axis,

 0ω is the motor rotational speed required to generate a thrust that is

 equal to the weight of the quadrotor.

 83

APPENDIX B. INSTRUCTIONS FOR BUILDING PIXHAWK
APPLICATION

There are two methods designed for building an application for Simulink

models and implementing it on the Pixhawk autopilot, as documented in [13] and

[12]. This chapter combines the essential information from both documents and

summarizes the details for building an application/firmware for the Pixhawk

autopilot. The instructions for building the Pixhawk application are further

elaborated in the steps below:

A. SOFTWARE INSTALLATION

Before beginning with the process of building an application/firmware, the

Pixhawk toolchain and QGroundControl (Version 2.0.3 beta1) software would

need to be installed. The step-by-step installation process is summarized below:

• Step 1

Ensure that the MATLAB and Simulink installed on your computer meet

the requirements in Table 11.

Table 11 Matlab and Simulink Prerequisites (from [13]).

MATLAB & Simulink Requirements
- Version 2014a or later
- Contains:

i) Simulink Coder
ii) Embedded Coder
iii) Simulink Aerospace Block Set

1 It is important to download QGroundControl version 2.0.3 beta, as the latest version of the

software does not allow the user to perform sensor calibration after uploading the application onto
the Pixhawk autopilot. If the latest version of QGroundControl was used instead, an update of the
Pixhawk autopilot with the latest firmware is required to perform the sensor calibration. Thus, the
application that was build and uploaded to the Pixhawk would be erased during the firmware
update.

 84

• Step 2

Go to the website in [30] to install the PX4 toolchain. Choose the

appropriate toolchain installer based on the Operating System (OS) used on your

computer (e.g. Windows, Linux, etc.) Download and install the PX4 toolchain for

the appropriate MATLAB version (e.g. ‘Pixhawk-R2014b-v14_win.exe’) in the

default root directory (i.e. ‘c:\px4’).

• Step 3

Download the USB driver for the Pixhawk toolchain if you are using

Windows OS from the same website in Step 2.

• Step 4

Update the Pixhawk software by choosing ‘PX4 Software Download’ from

Windows ‘Start’ menu as shown in Figure 46.

Figure 46 Location of PX4 Software Download & Upgrade.

• Step 5

Once the Pixhawk software is updated, 2 target files would need to be

built using the ‘PX4 Console’ shown in Figure 46. In the PX4 console, change the

directory to Firmware by typing ‘cd Firmware’ and hitting enter.

 85

• Step 6

The next step involves the installation of the Pixhawk PSP to Matlab.

Begin by launching the installation program from the installation folder (i.e.,

pixhawk-R2014a-v14_win-Install.exe) and specify the Matlab and Pixhawk

toolchain root directory (i.e. ‘c:\’). After the installation is complete, the Pixhawk

Simulink blocks and MATLAB Pixhawk toolchain BTI functions are available and

can be copied to any Simulink model for use.

• Step 7

Finally, to use the method of building an application outlined in [12], go to

the website in this reference and download the ‘px4_simulink.zip’ folder.

Subsequently, extract the contents of the folder to ‘c:\px4\’ (i.e., the installation

location for the PX4 toolchain).

B. BUILD ATTITUDE CONTROLLER APPLICATION

In [13], the process to build the Simulink model to an application can be

performed in Simulink entirely, while the process in [12] builds the application

with the PX4 Eclipse software. Both processes for building the application are

further elaborated below:

1. Build Application in Simulink

The step-by-step process to build the application for the Simulink attitude

controller is as follows:

• Step 1

The settings in Simulink would need to be configured before commencing

with the building of the application. Select the ‘Simulation’ tab on the Simulink

toolbar and select ‘Model Configuration Parameters’ (see Figure 47).

Subsequently, select ‘Code Generation’ to set the ‘System Target File’ field to

ert.tlc and the ‘Target Hardware’ field to Pixhawk PX4. The ‘Toolchain’ field

should automatically become Pixhawk Toolchain.

 86

Figure 47 Screen Capture of ‘Model Configuration Parameters’.

After setting up the ‘Code Generation’, select the ‘Signals and Parameters’

and check the ‘Inline Parameters’ box as shown in Figure 48. Finally, select the

‘Coder Target’ and go to ‘Build Options’ to select the ‘Build, Load and Run’ option

as shown in Figure 49.

 87

Figure 48 Screen Capture of ‘Signals and Parameters’.

Figure 49 Screen Capture of ‘Coder Target’.

 88

• Step 2

Once the build setting in Simulink is configured, click the ‘Build’ icon on

the Simulink toolbar as shown in Figure 50. The build status is reflected on a

pop-up window: diagnostic viewer. Once the build process is completed, connect

the USB cable from the computer to the Pixhawk autopilot. Finally, click the

‘Code’ icon on the Simulink toolbar and select ‘PX4 PSP: Upload code to

PX4FMU’ as shown in. This step will complete the application build process and

download the application directly to the Pixhawk autopilot.

Figure 50 Location of ‘Build’ Icon on Simulink Toolbar.

Figure 51 Location of ‘Code’ Function on Simulink Toolbar.

• Step 3

The final step of the build process involves copying the ‘rc.txt’ start-up

script from the PX4 directory: ‘c:\px4\Firmware\etc’ to the Pixhawk autopilot’s SD

card. Rename the ‘rc.txt’ file to ‘rc.txt.simulink’ in the SD card’s root directory.

 89

Upon the Pixhawk autopilot’s system startup, it will execute the

px4_simulink_app (i.e., the application that was built in step 2).

2. Build Application using PX4 Eclipse

The alternate method to build the Simulink attitude controller application

uses the PX4 Eclipse software. Similar to the first method, the Simulink settings

for the build function would need to be configured first following steps 1 and 2

outlined in the first method. The subsequent steps to build the applications are as

follow:

• Step 1

Launch the PX4 Eclipse software and begin to setup by selecting ‘File’

from the toolbar and ‘New’. Subsequently, select ‘Makefile Project with Existing

Code’ as shown in Figure 52. Once the window for a new project is launched,

select ‘c:\px4\firmware’ as the folder by using the browse function and select

‘Cross GCC’ as shown in Figure 53.

Figure 52 Setup for Application Build in Eclipse.

 90

Figure 53 Create New Project in Eclipse.

• Step 2

 Once the setup in Step 1 is completed, create the following targets in the

‘Firmware’ folder by clicking on the ‘Make Target’ icon (see Figure 54):

• ‘archives’

• ‘all’

• ‘distclean’

• ‘clean’

• ‘upload px4fmu-v1_default’ (if using PX4FMU) or ‘upload px4fmu-
v2_default’ (if using Pixhawk)

 91

Figure 54 Build Targets for Application in Eclipse.

• Step 3

Check that the targets created in the previous step appear in the

workspace on the right of Eclipse’s window as shown in Figure 54. Subsequently,

build the following targets one after the other by right clicking on the target and

select ‘Build Target’:

• ‘distclean’

• ‘archives’

• ‘all’

The progress of the build process can be monitored under the ‘Console’

tab at the bottom of the Eclipse Window as shown in Figure 54. It should be

noted that the build for each target should be completed before proceeding to

build the next target.

• Step 4

Once the build for the targets in the previous section is completed, the

application is ready to be downloaded to the Pixhawk autopilot. Double click on

 92

the ‘upload px4fmu-vX_default’ target. Once the console tab displays the status

message ‘Loaded firmware for upload px4fmu-vX_default, waiting for

bootloader…’, connect the USB cable from your computer to the Pixhawk

autopilot and allow the build target process to complete.

• Step 5

Remove the SD card from the Pixhawk autopilot and delete all the data

from the SD card before returning it to the Pixhawk autopilot. Subsequently,

launch the QGroundControl software and connect it to the Pixhawk pilot (using

USB cable or the 3DR radio). Perform sensor calibration for the Iris+ by going to

the ‘Configuration’ tab on the toolbar and selecting ‘sensor calibration’.

• Step 6

Finally, disconnect the Pixhawk autopilot from QGroundControl and

remove the SD card from the Pixhawk autopilot. Subsequently, copy the ‘rc.txt’

script from the PX4 directory: ‘c:\px4\Firmware\etc’ to the Pixhawk autopilot’s SD

card. Rename the ‘rc.txt’ file to ‘rc.txt.simulink’ in the SD card’s root directory.

Upon the Pixhawk autopilot’s system startup, it will execute the

px4_simulink_app.

C. UPDATE TO SIMULINK ATTITUDE CONTROLLER MODEL

For the application build process used by [12], the process of updating the

Simulink attitude controller model is as follows:

• Step 1

Open the Simulink attitude controller model and set the Simulink

workspace to ‘c:\px4\Firmware\src\modules\simulink_app\’. After the changes are

applied to the Simulink attitude controller model, click on the ‘Build’ function in

Simulink.

• Step 2

Open PX4 Eclipse and build the application by selecting the target ‘all’. It

is no longer required to build the targets for ‘distclean’ and ‘archives’ unless the

source code of the model was modified.

 93

• Step 3

Finally, upload the application by selecting the target ‘upload px4fmu-

v2_default’. Once the console tab displays the status message ‘Loaded firmware

for upload px4fmu-vX_default, waiting for bootloader…’, connect the USB cable

from your computer to the Pixhawk autopilot and allow the build target process to

complete.

D. VERIFICATION OF SIMULINK APPLICATION ON PIXHAWK
AUTOPILOT

To verify that the Simulink attitude controller application was correctly

downloaded to the Pixhawk autopilot, connect the Iris+ to the TeraTerm terminal

using the 3DR radio and setting the baud rate to 57,600.

In TeraTerm terminal, hit the ‘enter’ key once and type in ‘?’ into the ‘nsh’

field. This step will display all the applications that are currently installed onboard

the Pixhawk autopilot. Check that the item ‘px4_simulink_app’ can be found in

the list of applications.

 94

THIS PAGE INTENTIONALLY LEFT BLANK

 95

APPENDIX C. TELEMETRY CONNECTION SETUP AND
TROUBLESHOOTING

The Pixhawk autopilot establishes communication link to a computer

running the QGroundControl software using the 3DR radio as shown in Figure

55.

Figure 55 Illustration of 3DR Radio Set (from [32]).

A. SETTING UP 3DR RADIO

The setup of the 3DR radio is relatively straight forward and can be

completed in the following steps:

• Step 1

Connect the battery to the Iris+ quadrotor. Subsequently, insert the 3DR

radio to the computer and run the QGroundControl software. The

QGroundControl should detect the 3DR radio once it is inserted into the

computer and automatically assign it a COM port number.

• Step 2

In the QGroundControl, select the COM port detected and set the baud

rate to 57,600 in the top right corner of the window as shown in Figure 56. Click

on the connect button and the Iris+ will be connected to QGroundControl.

 96

Figure 56 Setting COM Port and Baud Rate.

B. TROUBLESHOOTING 3DR RADIO

In the event that the connection between the Iris+ and 3DR radio fails, the

following should be undertaken to troubleshoot the connection problem:

1. Check Baud Rates

The baud rate for 3DR radio connection with the Iris+ quadrotor should

always be set as 57,600 and not 115,200 (which is used for direct wired serial

connection between the Pixhawk autopilot and the QGroundControl).

2. Check Radio Settings

If the correct COM port and baud rate were selected on QGroundControl

and connection with Iris+ still cannot be established, download the 3DR Radio

Configuration Utility software [33]. Subsequently, plug the ground station’s 3DR

Radio to the computer and run the 3DR Radio Configuration software; make sure

that the serial cable is unplugged and there is no serial stream entering the radio.

Select the load settings tab and 3DR radio’s parameters should populate the

section below the tabs (see Figure 57). Finally, connect the computer with the

COM Port and
Baud Rate Fields

 97

3DR radio installed onboard the Iris+ (see Figure 58) using the USB cable

provided and select the load settings tab. The parameters provided should be the

same as the ground station’s 3DR radio. If there are parameters that are

different, amend the values accordingly to the ground station’s parameters and

select the save settings tab.

Figure 57 Screen Capture of 3DR Radio Configuration Window.

Figure 58 Installation Location of 3DR Radio on Iris+.

3DR Radio
on Iris+

 98

THIS PAGE INTENTIONALLY LEFT BLANK

 99

LIST OF REFERENCES

[1] Amazon Prime air. (n.d.). Amazon. [Online]. Available:
http://www.amazon.com/b?node=8037720011. Accessed Mar. 5, 2015.

[2] L. Meier, D. Honegger and M. Pollefeys, “PX4: A node-based

multithreaded open source robotics framework for deeply embedded
platforms,” in ICRA (Int. Conf. on Robotics and Automation), Seattle, WA,
2015.

[3] L. Meier. (n.d.). Software choice for Pixhawk hardware, PX4 autopilot.

[Online]. Available: https://pixhawk.org/choice. Accessed Mar. 9, 2015.

[4] 3DR Product, Iris+. (n.d.). 3D Robotics. [Online]. Available:

https://store.3drobotics.com/products/iris. Accessed Mar. 10, 2015.

[5] S. Bouabdallah, “Design and control of quadrotors with application to

autonomous flying,” M.S. thesis, Dept. Sci and Eng., EPFL, Lausanne,
Switzerland, 2007.

[6] W. R. Beard. (2008, Oct. 3). Quadrotor dynamics and control. [Online].

Available: http://rwbclasses.groups.et.byu.net/lib/exe
/fetch.php?media=quadrotor:beardsquadrotornotes.pdf

[7] P. Corke, Robotics, Vision and Control. Berlin: Springer, 2013, pp. 79–90.

[8] A. G. Sidea, R. Y. Brogaard, N. A. Andersen and O. Ravn, “General model

and control of an n rotor helicopter,” in J. Phys.: Conf., Series 570, 2014.
pp. 052004.

[9] T. Bresciani, “Modelling, identification and control of a quadrotor

helicopter,” M.S. thesis, Dept. Automatic Control, Lund Univ., Lund,
Sweden, 2008.

[10] A. R. Partovi, Z. Y. K. Ang, H. Lin and G. Cai, “Development of a cross

style quadrotor,” in AIAA Guidance, Navigation, and Control Conf.,
Minneapolis, MN, 2012, pp. 2012-4780.

[11] I. L. Mariano, V. Dobrokhodov, H. G. Elkaim, R. Curry and I. Kaminer,

“Simulink based hardware-in-the-loop simulator for rapid prototyping of
UAV control algorithms,” in AIAA Infotech@Aerospace Conf., Seattle, WA,
pp. 2009-1843.

 100

[12] A. Polak. (2014, Jan. 21). PX4 development kit for Simulink. [Online].
Available: http://polakiumengineering.org/px4-development-kit-for-
simulink/

[13] S. Kuznicki and D. Lee. (2015, Apr. 22). Pixhawk Pilot Support Package

(PSP) user guide, MathWorks, [Online]. Available:
https://www.mathworks.com/hardware-support/forms/pixhawk-downloads-
conf.html?confirmation_page

[14] A. A. Mian and W. Daobo, “Nonlinear flight control strategy for an

underactuated quadrotor aerial robot,” in IEEE Intl. Conf., Sanya, China,
2008. pp. 938–942.

[15] L. Meier. (n.d.). PX4 overview, PX4 autopilot. [Online]. Available:

http://www.pixhawk.org/start. Accessed Mar. 3, 2015.

[16] 3DR product, Pixhawk autopilot. (n.d.). 3D Robotics. [Online]. Available:

https://store.3drobotics.com/products/3dr-pixhawk. Accessed Mar. 15,
2015.

[17] APM open source autopilot. (n.d.). Adrupilot. [Online]. Available:

http://dev.ardupilot.com/wiki/license-gplv3/. Accessed Mar. 20, 2015.

[18] M. Torres. (2015, Mar. 10). Autonomous drones architecture - initial

proposal. [Online]. Available: http://www.slideshare.net/mariohct/drones-
architecture

[19] Pixhawk support. (n.d.). MathWorks. [Online]. Available:

https://www.mathworks.com/hardware-support/forms/pixhawk-
downloads.html. Accessed May. 20, 2015.

[20] "Performance specifications," class notes for Missile Flight and Control,

Dept. of Mechanical and Aerospace Engineering, Naval Postgraduate
School, Monterey, CA, spring 2015.

[21] H. Cyril and A. G. Piersol, Harris’s Shock and Vibration Handbook, vol. 5,

New York: McGraw-Hill, 2002, p. 38.

[22] A. Ugural and S. Fenster, Advanced Mechanics of Materials and Applied

Elasticity, 5th ed. Upper Saddle River, NJ: Prentice Hall, 2012. pp 645–
652.

[23] 3DR product, Iris+ propellers. (n.d.). 3D Robotics. [Online]. Available:

https://store.3drobotics.com/products/iris-plus-propellers. Accessed Jun.
10, 2015.

 101

[24] J. B. Brandt and M. S. Selig, “Propeller performance data at low Reynolds

numbers,” in 49th AIAA Aerospace Sciences Meeting, Orlando, 2011. pp.
2011-1255.

[25] R. W. Deters, G. K. Ananda and M. S. Selig, “Reynolds number effects on

the performance of small-scale propellers,” in 32nd AIAA Applied
Aerodynamics Conf., Atlanta, GA, 2014. pp. 2014-2151.

[26] G. Anada. (2015, Feb. 03). UIUC propeller data site. [Online]. Available:

http://m-selig.ae.illinois.edu/props/volume-1/propDB-volume-1.html

[27] K. Ogata, Modern Control Engineering, 5th ed. Upper Saddle River, NJ:

Prentice Hall, 2010. pp. 567–595.

[28] S. D. Hanford, L.N. Long, J.F. Horn, “A small semi-autonomous rotary-

wing unmanned air vehicle,” presented at AIAA InfoTech@Aerospace
Conf., Washington, DC, 2005.

[29] S. Bouabdallah, A. Noth and R. Siegwart, “PID vs LQR control techniques

applied to an indoor micro quadrotor,” in IEEE/RSJ Intl. Conf. on Intelligent
Robots and Systems, Sendai, Japan, 2004, pp. 2451–2456.

[30] L. Meier. (n.d.). PX4 toolchain installation, PX4 autopilot. [Online].

Available: http://www.pixhawk.org/dev/toolchain_installation. Accessed
May. 20 2015.

[31] QGroundControl download. (n.d.). QGroundControl. [Online]. Available:

http://qgroundcontrol.org/downloads. Accessed May. 20, 2015.

[32] 3DR product: 3DR radio. (n.d.). 3D Robotics. [Online]. Available:

https://store.3drobotics.com/products/3dr-radio-set. Accessed July. 19,
2015.

[33] DIY drones forum. (n.d.). DIY drones. [Online]. Available:

http://diydrones.com/forum/topics/3dr-radios-will-not-connect-for-initial-
setup. Accessed Aug. 6, 2015.

 102

THIS PAGE INTENTIONALLY LEFT BLANK

 103

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
 Ft. Belvoir, Virginia

2. Dudley Knox Library
 Naval Postgraduate School
 Monterey, California

	NAVAL
	POSTGRADUATE
	SCHOOL
	I. INTRODUCTION
	A. BACKGROUND
	B. Literature review
	C. overview of quadrotor technology
	1. Quadrotor Flight Mechanism
	2. Quadrotor Sensor Systems
	3. Advantages and Disadvantages of Quadrotor/Multi-rotor Technology

	D. thesis outline

	II. 3DR Iris+ Quadrotor and Pixhawk Autopilot
	A. iris+ hardware
	B. Pixhawk autopilot
	C. pixhawk autopilot software architecture
	1. PX4 Flight Control Software
	2. APM Flight Control Framework

	D. Flight stack selection
	(1) PX4 Simulink Blocks & Examples
	(2) PX4 Eclipse
	(3) TeraTerm Terminal

	III. quadrotor mathematical model
	A. identification of quadrotor configuration
	1. Plus Configuration Flight Mechanics
	2. Cross Configuration Flight Mechanism
	3. Notations for Quadrotor Mathematical Model
	4. Quadrotor Coordinate Frames
	a. Inertial Frame, {i}
	b. Vehicle Frame, {v}
	c. Body Frame, {b}

	B. Quadrotor Kinematics
	1. DCM Rotation Matrix
	2. Rotation Matrix for Quadrotor Angular Velocities

	C. Quadrotor Dynamics
	1. Gravitational Forces
	2. Gyroscopic Effect
	3. Aerodynamic Forces
	a. Quadrotor Thrust Force
	b. Quadrotor Roll Moment
	c. Quadrotor Pitch Moment
	d. Quadrotor Yaw Moment
	e. Summary of Aerodynamic Forces and Moments

	D. Quadrotor equations of motion

	IV. Determining Iris+ physical properties
	A. Measuring Quadrotor PROPERTIEs
	B. determining iris+ mass moment of inertia
	1. Experimental Method
	2. Analytical Method
	3. Comparison between Experimental and Analytical Methods

	C. Quadrotor propeller coefficients

	V. quadrotor flight control design
	A. control modelling of quadrotor
	1. Trajectory Generator Block
	2. Controller Block
	3. Motor Mixer Block
	4. Iris+ Quadrotor Dynamics Block

	B. flight controller Implementation in simulink
	C. Overview of pid controller
	1. Proportional Gain, KP
	2. Integral Gain, KI
	3. Derivative Gain, KD

	D. Implementation of pid controllers in attitude and rates channel in simulink
	1. Attitude Controllers
	2. Attitude Rate Controllers

	E. PID Controller tuning method
	1. Ziegler-Nichols First Method
	2. Ziegler-Nichols Second Method

	VI. Implementation of controller on pixhawk
	A. Methods to implement simulink model on pixhawk
	B. Setup of attitude controller simulink model
	C. building pixhawk application in px4 eclipse

	VII. iris+ Flight tests
	A. Flight test procedure
	B. Flight test results and Analysis
	1. Roll and Roll Rate Channels
	2. Pitch and Pitch Rate Channels
	3. Yaw and Yaw Rate Channels

	VIII. conclusion and future works
	appendix A. Derivation of control equations
	A. Maneuver along x-axis
	B. maneuver along y-axis
	C. maneuver along z-axis

	Appendix b. instructions for building pixhawk application
	A. software installation
	B. build attitude controller application
	1. Build Application in Simulink
	2. Build Application using PX4 Eclipse

	C. Update to simulink attitude controller model
	D. Verification of simulink application on pixhawk autopilot

	appendix c. telemetry connection setup and troubleshooting
	A. setting up 3dr radio
	B. troubleshooting 3dr radio
	1. Check Baud Rates
	2. Check Radio Settings

	List of references
	INitial distribution list

