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ABSTRACT 

This research was part of an ongoing program studying the concept of multi-material 

dielectrics (MMD) with dielectric constants much higher than homogenous materials.  

MMD described in this study have dielectric constants six orders of magnitude greater 

than the best single materials.  This is achieved by mixing conductive particles with an 

insulating surface layer into a composite matrix phase composed of high surface area 

ceramic powder and aqueous electrolyte.  Specifically examined in this study was 

micron-scale nickel powder treated in hydrogen peroxide (H2O2) loaded into high surface 

area alumina powder and aqueous boric acid solution.  This new class of dielectric, 

composite electrolyte dielectrics (CED), is employed in an electrostatic capacitor 

configuration and demonstrated dielectric constant of order 1010 at approximately 1 Volt.   

Additionally, it is demonstrated that treated nickel can be loaded in high volume 

fractions in the CED configuration.  Prior studies of composite capacitors indicated a 

general limitation due to shorting.  This results from the onset of percolation due to 

excess loading of conductive phases.  Insulated particles described herein are successfully 

loaded up to 40% by volume, far above typical percolation thresholds.  Simple models 

are presented to explain results. 
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I. INTRODUCTION 

A. SUMMARY OF FINDINGS 

This research is part of a program to explore the dielectric properties of multi-

material dielectrics (MMD).  It is hypothesized that such materials can have dielectric 

constants orders of magnitude greater than homogeneous material. A particular variant of 

MMD studied herein, composite electrolyte dielectrics (CED), demonstrated extremely 

high dielectric constants, of the order 1010 operating at greater than 1 V.  This result is 

notably many orders of magnitude higher than any other reported result for relative 

permittivity of a single material.   

The devices produced using this particular MMD configuration were 

demonstrated to have consistent capacitor-like behavior, with multiple stable charge and 

discharge cycles in a parallel plate electrostatic configuration.  This new general class of 

CED is composed of conductive particles with an insulating surface layer embedded in a 

matrix of high surface area powder wetted with aqueous acidic or basic solution.  It is 

additionally demonstrated that this new class of dielectric material retains exceptional 

relative permittivity at loading fractions traditionally considered in excess of the 

percolation threshold.  Specifically in this study, composites are loaded up to 40% 

conductive particle loading by volume. 

This initial work focuses on a single sub-class of this novel dielectric material.  

Specifically, micron-scale nickel powders are treated with hydrogen peroxide (H2O2) and 

embedded in high surface area alumina powder wetted with aqueous solution of boric 

acid.  Critical parameters of dielectric constant and operating voltage appear to be a 

function of several relevant variables including metal particle volume loading, dielectric 

thickness, and degree of metal particle surface treatment. 

Operating voltage remains a significant performance limitation.  Specifically, 

consistent dielectric properties were not observed in excess of approximately 1 V.  

Higher voltages bleed off of CED capacitors almost immediately.  However, there is 
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reason to believe that other CED material compositions could achieve superior operating 

voltages without sacrificing superior capacitance. 

Potential solutions for compact and inexpensive energy storage in a variety of 

applications motivate continued investigation.  At present, a recognized benchmark is to 

design a capacitor with energy density of 1 J/cm3 or greater.  This result of this research 

achieved approximately 2% of this objective.  However, over the course of one year, this 

study achieved approximately a factor of 75 increase in energy density.  Alternate 

component materials and new compositions suggest rich potential for further 

improvement. 

B. BACKGROUND THEORY AND MOTIVATION 

Capacitance is defined as the ability of an object to store electrical charge.   The 

governing expression which relates the voltage potential (V) between objects of charge 

+q and –q, defines the capacitance (C), as 

 
qC
V

= . Equation 1 

Electrical capacitors are devices that exist in several different forms and are used 

in a variety of applications including filter circuits and energy storage.  The foundational 

concept of this device is the storage of charge via an electric field in the space between 

two conducting electrodes according to Equation 1.   After the charging power source is 

disconnected, the energy remains stored until an electric circuit is completed between the 

electrodes.  The stored energy can then be delivered to the circuit load.  The capacitance 

of a device can generally be calculated as a function of geometry and constituent 

materials.  Electrodes are traditionally separated by a non-conducting material known as 

a dielectric.  Dielectrics have a characteristic property that determines their capacity to 

store charge under the influence of an electric field.  This parameter is referred to as the 

relative permittivity, or dielectric constant, of a material.  The capacitance of a simply 

configured electrostatic device with two parallel conducting plates separated by dielectric 

material can be expressed as  
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 0 R
AC
d

ε ε=  , Equation 2 

where ε0 is the permittivity of free space and εR is the dielectric constant.  The area of the 

plate surface is A and the distance between plates occupied by dielectric is d.  It follows 

from Error! Reference source not found. that in order to maximize capacitance of a 

simply configured device, dielectric constant and surface area must be maximized while 

minimizing conductor separation.  These performance concerns, along with 

considerations for cost, durability, operating voltage, and frequency, inform the design of 

capacitors for specific functions.  

There are many uses for capacitors that require different attributes.  Capacitors 

can be used for rapid energy delivery to provide running current or starting surges for 

electric motors, or provide pulse power for high energy laser systems.  Other applications 

include signal rectification, which consists of converting source alternating current (AC) 

power to smooth direct current (DC) power for electronic devices [1].  The nature of 

capacitive energy storage and power delivery could be a pivotal aspect of future smart 

grid concepts [2]–[3].  The energy density of present capacitors must be improved for 

practical applications in energy storage. 

Realizing the employment of capacitors for energy storage is the overall goal of 

this work in novel dielectric materials.  This is not a typical application of capacitors, as 

they are inferior to chemical batteries in terms of energy density. Hence, capacitors are 

generally restricted to applications requiring rapid power delivery and fast charging [4].  

Capacitors are superior to batteries in these applications as a result of the inherent limits 

of chemical batteries regarding high power delivery.  The rate of energy released by a 

battery is dependent on ionic flux kinetics.  Chemical reactions are the mechanism of 

energy release in batteries, and are restricted by rates of ionic diffusion.  Conversely, 

capacitors store energy in an electric field and can consequently release that energy 

nearly instantaneously.   

The energy stored in the electric field of a capacitor is expressed as 

  , Equation 3 



 4 

where C is the capacitance and V is the voltage.  As capacitance is directly proportional 

to dielectric constant, and energy varies as voltage squared, selecting an appropriate 

dielectric material is paramount in maximizing energy density.  The objectives of 

maximizing voltage and dielectric constant while minimizing volume are constrained by 

an inherent limitation of capacitors known as dielectric breakdown.  Breakdown occurs 

when the applied potential exceeds the limit of the non-conductive dielectric to 

sufficiently prevent shorting between the electrodes.  Resistance to breakdown is referred 

to as breakdown strength or dielectric strength [5].  These factors point to the critical 

attributes of a suitable dielectric material for energy storage applications, namely a high 

relative permittivity and high dielectric strength.  Examples of some common dielectric 

materials are listed in Table 1 with respective dielectric constants (εR), breakdown 

strengths (S), and theoretical energy densities (Wmax/Vol).  Improved energy density 

along with superior power delivery could allow capacitors to rival batteries in 

applications such as automotive and electronics power supplies, or energy storage 

systems for dynamic renewable energy sources. 
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Table 1.   Common Dielectric Material Characteristic Parameters.From [6]. 

Clean, renewable energy sources are a worldwide topic of emphasis.  One of the 

challenges hindering broader employment of these systems is the unstable nature of the 

power output.  Unlike traditional power generation schemes, solar, wind, tidal, and other 

similar sources don’t produce energy in a constant predictable fashion.  This requires 

adaptation of energy storage and distribution infrastructure systems to effectively 

integrate these dynamic sources [7]–[9].  Supercapacitors have begun to bridge the gap 

into energy storage and delivery for specific applications such as mass transit and 

industrial machinery. With short duration loading and fast charge and discharge 

dynamics, these applications are well-suited for capacitive energy storage systems [10].  

The potential for a durable, inexpensive, stable, and fast charging energy storage solution 

beyond chemical batteries motivates further study. 

C. CAPACITOR TECHNOLOGIES 

Advances in capacitor performance are based on combinations of specialized 

configurations and material developments.  Capacitor technology has evolved to meet 
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demands in different applications via a range of alternate configurations.  Each alternate 

configuration may offer specific improved characteristics, but suffer from other inherent 

limitations.  The wide variety of capacitor types leads to a high degree of specialization 

according to application.  Specifications of capacitance, voltage, energy density, power 

density, cycle lifetime, and temperature stability contribute to determine the most 

appropriate class of device for each application.   Figure 1 illustrates the configurations of 

standard electrostatic, electrolytic, and double-layer capacitors.  

 
Figure 1.  Diagram of Different Capacitor Configurations (After [11]) 

1. Electrolytic Capacitors  

Electrolytic capacitors couple a non-conducting dielectric to a layer of electrolyte 

that acts as one electrode.  This configuration improves practical specific capacitance and 

energy density, but results in other disadvantages.  These naturally polarized devices 

suffer from higher equivalent series resistance, shortened operating life, temperature 

sensitivity, and can only operate in one polar orientation [12]–[13].  Typically 

constructed from aluminum or tantalum, electrolytic capacitors use a thin oxide layer on 

one parallel plate as the dielectric element with an electrolytic spacer acting as an ion 

conductor to the opposite electrode.  The spacer may be soaked in liquid electrolyte, or 

consist of solid electrolyte material.  Using solid organic semiconductive electrolyte, 

aluminum lead-type electrolytic capacitors can be rated for 2200 µF at 30 V [14].  

Composite conducting polymers are also employed as solid electrolyte to improve 

leakage performance and temperature and frequency characteristics [15]. 
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2. Supercapacitors 

Supercapacitors, or electric double-layer capacitors (EDLC), capitalize on high 

surface area materials employed as electrodes wetted by an ion-conducting electrolyte 

solution.  This configuration provides for two different modes of charge storage, namely 

double-layer capacitance and pseudocapacitance [16].  As a result, supercapacitors have 

become commercially viable devices with superior specific capacitance.  Continuing 

research into high surface area carbon structure electrodes and advanced electrolyte 

chemistries has yielded specific capacitance values of 250 F/g [17] and specific energy of 

80 Wh/kg [18].  Further experimental work into electrodes coated with active oxide 

materials has produced specific capacitance of 600 F/g [19].  Alternative arrangements of 

three-dimensional structures of Ba0.65Sr0.35TiO3 (BST)/NiSi2/silicon microchannel plates 

(MCP) have yielded specific capacitance of 792 F/g with low loss over hundreds of 

cycles [20].  However, the double-layer arrangement suffers from limited operating 

voltages across individual cells [4]. Studies varying electrolyte composition and electrode 

material have improved on this parameter, but devices remain limited to less than 

approximately 4 V [18], [21].  The implementation of electric conducting polymers 

(ECP) as electrodes also seeks to address the performance issues of supercapacitors at 

higher voltage [22]–[23].  One possible means to improve operating voltage is to connect 

multiple cells in series, with the net voltage equal to the sum of the individual cell 

voltages.  However, this results in a net reduction in capacitance because the capacitances 

of devices connected in series add as inverses.   Supercapacitors are also relatively 

expensive to produce and often require advanced materials processing techniques to 

fabricate electrodes of high surface area and current capacity.   

3. Alternate Configurations 

Non-conducting ferroelectric ceramics are the present state of the art in dielectric 

materials.  Barium titanate (BaTiO3) is the best of this class and may have a dielectric 

constant of the order 104 [24]–[26].  However, the dielectric constant has strong 

dependence on the form, purity, and synthesis of the material and observed values are 

often significantly lower than the best reported.  A novel approach incorporates high-
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dielectric constant materials into all-solid-state supercapacitor configurations.  BaTiO3 

films can be employed as electrolytes with an effective dielectric constant on the order of 

2,000, resulting in capacitance of 2 µF/cm2 [27].  These materials suffer from high 

dielectric loss however, and further investigation addresses coating individual particles 

with low dielectric loss silica glass phases using advanced spark plasma sintering.  

Dielectric permittivity greater than 105 has been reported by this method [28].  In lower 

cost applications or those requiring greater stability, materials such as paper, glass, or 

polyethylene may be sufficient with dielectric constants less than 10 [11], [29]. 

The configuration of supercapacitors is not strictly analogous to electrostatic 

capacitors, and therefore the concept of an effective dielectric constant in a 

supercapacitor is not obvious as presented by Equation 2.  This is discussed in the theory 

of volumetric capacitance behavior of supercapacitors [30].  Unlike electrostatic 

capacitors that demonstrate performance linear with electrode surface area and dielectric 

constant, supercapacitors tend to behave linearly with electrolyte ionic conductivity [27] 

and can achieve volumetric capacitance inconsistent with the relationship of Equation 2 

[30]. 

A different configuration employing ceramics with high relative permittivity is 

the multi-layer ceramic capacitor (MLCC).  This technology has been particularly 

successful in integrated circuit applications by achieving high capacitance and reliability 

in a small footprint [31].  Additionally, this concept has been adapted for larger energy 

storage applications but remains commercially unproven [32]–[33]. 

Another approach to achieving an effective balance of high capacitance and 

energy density is the development of supercapacitor-battery hybrids.  These may include 

singular devices which employ an EDLC type positive electrode with a lithium ion 

battery type negative electrode, or a combined system with a supercapacitor bank in 

parallel with a typical lithium ion battery or similar fuel cell.   The former configuration 

has achieved an energy density of 147 Wh/kg and power density of 150 W/kg, or energy 

density of 86 Wh/kg and power density of 2587 W/kg [34].  The latter configuration is 

shown to provide significant improvement in power supply lifetime and pulsed-power 

performance compared to individual battery or capacitor systems [35]. 
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D. ADVANCED DIELECTRIC MATERIALS 

Material processing to improve dielectric constants presents a rich opportunity for 

study with the potential to advance the suitability of capacitors as efficient energy storage 

devices.  One focus area centers on the inclusion of conductive elements in a non-

conducting ceramic matrix.  Specific examples include loading nickel particles into 

BaTiO3 [36] or carbon nanotubes into barium zirconate titanate [37] to improve the bulk 

dielectric constant compared to the ceramic. Three-phase composites have also been 

studied, combining BaTiO3 and carbon nanotubes with polymers to achieve dielectric 

constant on the order of 5,000 with improved stability and loss characteristics [38].  

Metals and other conductors theoretically have high relative permittivity, but their 

utilization in dielectrics is hindered by the propensity to form an electrical shorting path 

between electrodes.   

This behavior is a classic example of percolation theory, which describes the 

change in bulk parameters of a heterogeneous composite as an additive conducting phase 

is loaded into a non-conducting matrix phase.  As the conducting phase is loaded above a 

certain volumetric threshold, the bulk composite takes on the conductive properties of the 

additive as opposed to the matrix.  Once the elements of the conductive phase form a 

continuous string or cluster with sufficient contact between elements, an electrical or 

thermal shorting path is created.  This behavior has been studied extensively with a 

variety of theoretical modeling strategies [39]–[42].   

Theoretical models of metal-ceramic composite dielectrics predict increasing bulk 

relative permittivity up to the percolation threshold, and expect shorting behavior above 

the threshold.  Some theoretical work suggests a singularity at the percolation threshold. 

It is predicted that dielectric constant will exhibit divergent behavior at the value of 

maximum loading before the onset of uninterrupted conductivity [43]–[44].  The existing 

body of work on metal-composite dielectrics does not describe loading fractions far in 

excess of the percolation threshold for electrical applications.  One theoretical treatment 

proposes a relation for effective dielectric constant of composites of insulating particles 

with percolative characteristics, namely the dielectric constant of the inclusion is 

significantly greater than that of the matrix [45].  This theory addresses the full range of 
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volumetric loading and eliminates the singularity at the percolation threshold, but the 

experimentation addresses only optical properties.    

E. FOCUS OF PRESENT STUDY 

The founding theory for this study asserts that the principal characteristic of 

dielectric materials is that they should be polarizable under the influence of an electric 

field [46]–[47].  More specifically, the material should permit a redistribution of charge 

when an external influence is applied, such as the electrical potential from the parallel 

plates of a capacitor.  While dielectric material is fundamentally constrained by the 

requirement to insulate against shorting, it must be recognized that the most polarizable 

materials are generally electrical conductors.  It follows that consideration of conductive 

materials as a class of dielectrics suggests potentially significant advantages.  Hence, a 

hypothesis is advanced that a conductive particle with an electrically insulated surface 

should be a superior dielectric material.  The objective of this study was to further 

validate that construct. 

1. Preceding Investigation  

Prior to the study described herein, an investigation was initiated to validate the 

concept of using insulated metal particles as capacitor dielectrics [48].  Phillips and 

Scanlan measured the capacitance of various combinations of conductive particles and 

insulating layers using basic meters.  Exceptional dielectric constants were initially 

observed and shown in Table 2, but the materials proved impractical when examined as 

dielectrics in basic capacitor configurations.  Apparent charge leakage limited operation 

to only small fractions of a volt.  This reveals a key limitation of measuring capacitance 

with basic meters.  Specifically, the method generally uses low amplitude current square 

wave signals to charge and discharge the capacitor, and is therefore only appropriate at 

very low voltage and capacitance.   
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Table 2.   Multi-Material Dielectric Data Observed in Preceding Investigation. 

From [48]. 

To mitigate charge leakage, a two-layer system was developed.  An electrolyte 

layer was added to one electrode with a second layer of insulated metal particles loaded 

into melted wax.  The polarized orientation prevents net flow of charge through the 

capacitor.  The geometry of the resulting electrolytic capacitor is depicted in Figure 2.  

The electrolyte layer consisted of a high surface area acid (HSA) powder, namely boric 

acid solution in high surface area alumina powder.  This configuration was successful in 
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arresting leakage current, and demonstrated exceptional capacitance with dielectric 

constant greater than 106 at voltages less than 3 V.     

 
Figure 2.  Predecessor Composite Capacitor in Electrolytic Configuration with (A) 

aluminum electrodes, (B) HSA electrolyte, and (C) insulated conductor 
particles in wax. From [48]. 

Careful control studies were undertaken to gain insight into the mechanism of this 

remarkable capacitance.  An unanticipated result of these tests was exceptional natural 

capacitance of the electrolyte, independent of the primary dielectric layer. The dielectric 

constant is observed to be on the order of 108 at approximately 0.7 V.  There is no known 

theory to describe this result, specifically that a simple electrolyte consisting of high 

surface area powder wetted with acid solution should have unprecedented relative 

permittivity.   

2. Present Objective 

In this work, further examination of MMD characteristics was conducted on a 

particular variant.  One example of insulated metal particles derived from the previous 

work was employed. Micron-scale nickel powder is treated with H2O2 to create an 

insulating oxide layer, and is loaded into a matrix of electrolyte material to form an 

electrostatic capacitor dielectric.  This geometry is termed a composite electrolyte 

dielectric (CED). 
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A similar concept is reported using nano-sized silver particles coated in alumina 

and doped in polyimide to form composite thin films, achieving a dielectric constant of 

greater than 25 in that configuration [49].  Rather than use nano-sized particles for thin 

film applications, this study seeks to employ the resulting composite with exceptional 

dielectric constant for capacitive energy storage. 

The effect on dielectric constant is studied as metal particles are incrementally 

loaded, including in excess of percolation limits.  Loading of metal particles into the 

dielectric matrix aims to improve capacitance and energy density of an electrostatic 

capacitor.  The general CED capacitor geometry is depicted in Figure 3.  Pieces of 

Grafoil, a carbon-based foil sheet material, is used as a convenient purely conductive 

platform to deposit the dielectric material for electrical testing between external 

aluminum electrodes. 

 
Figure 3.  Diagram of CED Capacitor Geometry 
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II. EXPERIMENTAL METHODS 

A. EXPERIMENTAL SETUP 

Standard multimeters generally have a capacitance setting and are nominally able 

to measure the capacitance of standard circuit elements.  Typically, this is accomplished 

using high frequency square wave signals at very low voltage in order to measure 

capacitance on the order of nano- or picofarads.  This measurement does not provide a 

complete understanding of the capacitive behavior of a material.  To more completely 

understand dielectric material properties, charge and discharge kinetics must be 

investigated.  This is particularly true for novel materials with very high capacitance. 

To measure capacitance generically, a device is connected in parallel with a DC 

voltage source and a resistor in a standard resistor/capacitor (RC) discharge circuit as 

shown in Figure 4. 

 
Figure 4.   Diagram of Experimental Discharge Circuit 

A DC voltage bias is applied to charge the capacitor for a defined time interval, 

then the switch is repositioned and the capacitor discharges through the load resistor [50].  

Voltage drop across the circuit is measured by a voltmeter connected in parallel.  The 

voltage drop in a RC circuit during discharge is expressed as 
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t

RCV t V e
−

= .  Equation 4 

It follows from Equation4 that a plot of ln(V/V0) vs. t has slope (-1/RC).  Given 

the value of the discharge resistor and the capacitor geometry, the dielectric constant can 

be calculated according to Equation 2.  Figure 5 is an example of a characteristic 

discharge plot from an experiment conducted with the circuit depicted in Figure 4 using a 

commercial 100 µF capacitor.  The capacitor is shown in Figure 6.  Using a multimeter, 

the capacitance of the commercial capacitor was measured as 109 µF. 

 
Figure 5.  Commercial Capacitor Example Discharge Characteristic Plot 
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Figure 6.  Commercial Capacitor 

The constant slope of the discharge characteristic is indicative of constant 

capacitance over the entire range of voltage during the discharge.  The vertical axis 

represents a logarithmic display of the ratio of measured voltage to initial voltage.  As a 

result, actual voltage is not strictly represented on the plot.  A flatter slope indicates a 

slower discharge, and therefore higher capacitance.  Figure 7 is an example discharge 

plot of an aforementioned electrolyte layer without addition of metal particles.   
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Figure 7.  Electrolyte Capacitor Example Discharge Characteristic Plot 

The initial drop in discharge voltage is non-linear on the log plot, and 

unremarkable in terms of capacitance.  The subsequent linear region better represents a 

constant capacitance at lower voltage, and its slope is the characteristic parameter 

measured in this study. 

B. EXPERIMENTAL PROCESS 

To arrive at an optimal capacitor configuration incorporating the insulated 

composite dielectric material, a series of experiments was conducted for the first phase of 

this study.  Subsequent experiments were designed to validate the capacitive behavior of 

the CED configuration.  This validation was accomplished by performing repeated charge 

and discharge cycles using a modified test circuit shown in Figure 8.  This modified 

circuit configuration allows monitoring of the capacitor voltage during charge and 

discharge through repeated cycles.  The charge characteristics are determined using 
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Error! Reference source not found., which defines the voltage of the capacitor during 

charge.  This calculation is analogous to the determination of discharge characteristics 

from Equation 4. 

 0( ) (1 )
t

RCV t V e
−

= −  Equation 5 

 
Figure 8.  Diagram of Experimental Charge/Discharge Circuit 

1. Variables and Controls 

Variables examined in the first phase of study include dielectric layer thickness, 

metal particle volumetric loading, and degree of metal particle treatment.  Initial control 

variables include electrolyte matrix composition, capacitor geometry, metal particle 

treatment process, charge time and voltage, and load resistance.  Some variables, such as 

charge time and load resistance, have been previously investigated leading up to this 

study.  Initial results generally failed to yield definitive impact on performance, and 

therefore these variables were established as controls for independent optimization 
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portions of this investigation.  Specifically, convenient values were selected for charge 

voltage, charge time, and load resistance for each series of independent tests.  

The impact of load resistance, and therefore current draw and supply, was re-

examined in the verification phase of testing.  Additional adjustments to the dielectric 

composition were also explored in the later testing phase to further examine how the 

impact of metal particle loading is related to the presence of the other composite 

constituents.   

2. Materials and Equipment 

The materials employed in this study consist of aluminum oxide powder (Alfa 

Aesar, γ-phase, 99.97%, 3 micron APS Powder, S.A. 80-120 m2/g, CAS 1344-28-1), 

boric acid powder (BDH, 99.5% H3BO3, CAS 10043-35-3), nickel powder (Alfa Aesar, -

100 mesh, 99+%, CAS 7440-02-0), and H2O2 (Sigma-Aldrich, 30 wt% in H2O, CAS 

7722-84-1).  The primary test platform was a National Instruments ELVIS II electronics 

prototyping board implemented with LabView 2011 software.  An additional multimeter, 

Agilent U1252A, was used for independent parameter verification.  Capacitors were 

constructed for testing in a custom test jig consisting of two aluminum electrodes fitted 

into a plastic cylindrical containment, depicted in Figure 9.  The test jig diameter is 5.042 

cm, or approximately two inches.  Based on this cross-sectional area, approximately 4 

mL of material produces a dielectric thickness of approximately 2 mm when placed in the 

jig for testing.  

 
Figure 9.  Capacitor Test Jig 
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Disks of Grafoil, a conductive graphite-based foil similar to products provided by 

GrafTech International Ltd., were cut from sheet and used as a platform to deposit the 

dielectric material. This additionally helps to ensure effective electrical contact in the test 

jig, as illustrated in Figure 3.  The Grafoil sheet is approximately 0.76 mm in thickness 

and is portrayed in Figure 10.   

 
Figure 10.  Grafoil Sheet and Cut Disk 

To control the pressure applied to the dielectric during capacitor testing, 250 g of 

weight was placed on top of the capacitor test jig.  This was achieved with a fabricated 

stainless steel collar and flask filled with water placed on the top electrode.  The 

arrangement is shown in Figure 11. 
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Figure 11.  Capacitor Test Jig Weight Arrangement 

3. Dielectric Composition 

a. High Surface Area Acid (HSA) Electrolyte 

The HSA electrolyte is composed of a mixture of alumina and boric acid 

powders in a ten to one ratio by weight.  Dry powders are combined by hand to produce a 

homogenous mixture.  A sufficient amount of distilled water was added to achieve a 

pasty consistency.  The desired consistency was derived from the need for the dielectric 

material to be workable or spreadable, but not too soft to support a structurally stable 

capacitor in the test jig.  This balance was achieved with one milliliter of water for each 

gram of alumina in the HSA electrolyte mixture.  The mixture was combined manually 

with a small laboratory spatula for deposition on Grafoil disks.  The dielectric material 

was spread evenly to achieve complete coverage of the Grafoil disk with a layer of 

uniform thickness.  This HSA electrolyte matrix composition was maintained as a 

standard through the first phase of experimentation.  The preparation process is shown in 

Figure 12. 
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Figure 12.  HSA Electrolyte Capacitor Preparation Process 

b. Metal Particle Surface Treatment 

To generate the insulating surface layer on the nickel particles, the metal 

powder is thoroughly wetted with H2O2.  The relative amounts are not required to be 

specific, as the powder is soaked with excess liquid just to the point of standing liquid 

over the powder in a beaker.  Approximately 50 g of nickel is wetted with approximately 

15 mL of H2O2 in a 150 mL beaker and swirled for uniform mixing.  The wetted powder 

is illustrated in Figure 13.   
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Figure 13.  Nickel Powder wetted with H2O2 

The liquid was allowed to evaporate off at room temperature until the 

powder was completely dried.  After approximately 24 hours, the powder was manually 

stirred to aid in drying.  Complete dryout is generally achieved in 48 to 72 hours with 

intermittent stirring every 24 hours.  The treated powder is shown in Figure 14, before 

and after stirring and completely dried.  No change in mass is noted after completion of a 

treatment process.  This process comprises one surface treatment, and was repeated to 

achieve the required number of treatments.   
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Figure 14.  Nickel Powder Surface Treatment Drying Process 

To verify the effect of the surface treatment process, resistance checks 

were performed on beds of untreated and treated powders.  A voltage divider circuit was 

established according to Figure 15, and the capacitor test jig filled with 4 mL of nickel 

powder to form a 2 mm thick bed.  A DC voltage bias was applied, and the resistance of 

the powder bed measured.  The resistance of the powder was checked in series with a 

99.2 kΩ resistor with DC voltages from 0 V to 4 V in increments of 0.5 V.   
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Figure 15.  Diagram of Voltage Divider Circuit 

The powder was also examined using scanning electron microscopy 

(SEM) with energy dispersive X- ray spectroscopy (EDS) and X-ray diffraction (XRD).  

These characterization methods are used in addition to electrical testing to ascertain the 

effect of the H2O2 treatment process on the nickel powder.  The results of these analyses 

are presented in Chapter IV. 

c. Composite Dielectric Construction 

To create the CED dielectric, treated or untreated nickel powder was 

added to the dry powder HSA mixture.  Again, dry powders are combined by hand to 

create a homogenous mixture before adding distilled water to achieve the desired 

consistency for spreading.  The amount of water added varied according to nickel 

loading, and was primarily determined by trial and error.  Higher nickel loadings require 

more water to achieve the desired consistency for sufficient workability.  Volumetric 
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loading of nickel into HSA is varied to observe the influence of the percolation threshold 

on dielectric performance.  The composite dielectric preparation process is shown in 

Figure 16. 

 
Figure 16.  Composite Dielectric Capacitor Preparation Process 

4. Design of Experiments 

A methodology was employed to sequentially optimize individual factors.  The 

resulting best configuration from each test series was used as the control for the follow-

on series, so that only one factor was varied in each series.  This approach initially 

presumes that the factors of thickness, surface treatment, and metal particle loading are 

primarily independent.  This is likely not the case and alternative compositions must be 

revisited based on the results of this analysis.  All tests were conducted using the 

discharge circuit shown in Figure 4.  

a. Thickness 

The first series of tests addressed the thickness of the dielectric, using the 

HSA electrolyte as the control composition.  Four thicknesses were tested based on 
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convenient workable quantities.  Capacitors were charged for 16 minutes at 6 V and 

discharged through a load resistor of 528 kΩ.  For subsequent tests, the charging voltage 

and resistance are reduced based on observed operating voltage and to limit test run 

times. 

b. Loading with Untreated Nickel 

The next series of tests was designed to find the best volumetric loading 

using untreated nickel powder.  This loading level with the highest dielectric constant 

was used as the control during the next test series to determine the best level of metal 

particle surface treatment.  This test also demonstrated the observed percolation threshold 

for this configuration of nickel powder loaded into HSA electrolyte matrix.   Untreated 

nickel powder was loaded volumetrically in increments of 10% until the impact of 

percolation was verified, and 5% increments to find the maximum dielectric constant 

achievable before the onset of percolation.  Capacitors were charged for 16 min at 4 V 

and discharged through a resistor of 99.2 kΩ. 

c. Treatments at Best Loading 

The next series of tests uses the best volumetric loading determined in the 

previous test series to determine the best number of metal particle surface treatments.  

Nickel powder was treated with H2O2 as described previously, and powders of increasing 

treatments were used to create CED capacitors for testing.  Treatments increased until a 

drop-off in performance was observed with increasing treatment.  Capacitors were 

charged for 16 minutes at 4 V and discharged through a resistor of 99.2 kΩ. 

d. Loading with Treated Nickel 

The final test series revisits volumetric loading using the treatment level 

resulting from the previous series.  Treated nickel powder was loaded volumetrically in 

10% increments until performance deteriorated.  Capacitors were charged for 16 minutes 

at 4 V and discharged through a resistor of 99.2 kΩ. 
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5. Verification of Capacitor Behavior 

After determination of the best composite capacitor configuration by using RC 

circuit discharge tests, the resulting product must be verified to behave like a 

capacitor.  Specifically, the component should be subjected to charge and discharge 

cycles to verify consistency and characteristics.  This was accomplished using the 

charge and discharge circuit shown in Figure 8.  Capacitors were charged with 4 V 

and cycled with a 99.2 kΩ resistor.   

Additionally, smaller load resistances should be used to verify the capability to 

deliver power quickly, a key attribute of capacitors compared to batteries.  This is 

accomplished by performing charge and discharge cycles through resistors of 20.2 kΩ 

and 2.67 kΩ.  Capacitors are charged with 4 V.   

6. Revisited Parameters and Alternate Compositions 

Upon selecting and verifying a CED configuration, additional parameters were 

revisited.  The influence of dielectric thickness is reevaluated using the composite 

dielectric structure.  The influence of charging voltage is also considered, as informed by 

the results of previous tests. 

Because variables were treated independently, many possible combinations of 

number of treatments and volume loadings were not tested.  Additionally, using dielectric 

constant as the parameter for optimization neglects other important factors.  Operating 

voltage is a key performance aspect, and was considered alongside dielectric constant 

when selecting the best configuration.  However, the stability of the individual responses 

should also be addressed.  Characteristic charge and discharge curves showed a high 

degree of variability in capacitance over the operating voltage range.  An alternate 

compositions was examined for the impact on response stability and voltage.  

Specifically, a CED capacitor is produced using potassium hydroxide (KOH) as the 

aqueous electrolyte instead of boric acid. 
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III. RESULTS 

A. COMPOSITE DIELECTRIC OPTIMIZATION  

1. Thickness 

This test series was designed to determine empirically if the dielectric constant is 

a function of the thickness of the dielectric.  In this first test series, capacitors without any 

nickel were charged for 16 minutes at 6 V and discharged through a load resistor of 528 

kΩ.  The specific parameters of the tested capacitors are shown in Table 3, and the 

discharge characteristic curves are shown in Figure 17.  The operating voltage is taken as 

the maximum voltage at which the device begins to exhibit constant capacitance.  This 

series was also valuable in establishing the impact of nickel particle loading on dielectric 

performance.  

Composition Dielectric 
Thickness 
(d) 

Initial Discharge 
Voltage (V0 ) 

Dielectric 
Constant (εR) 

Operating 
Voltage 

3 g alumina 

0.3 g boric acid 

3 mL H20 

1.47 mm 2.20 V 1.81E9 0.7 V 

4 g alumina 

0.4 g boric acid 

4 mL H20 

2.46 mm 2.16 V 5.78E8 0.8 V 

5 g alumina 

0.5 g boric acid 

5 mL H20 

2.87 mm 1.85 V 4.44E8 0.9 V 

 8 g alumina 

0.8 g boric acid 

8 mL H20 

4.13 mm 2.18 V 4.43E8 0.8 V 

Table 3.   Electrolyte Dielectric Thickness Test Data  
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Figure 17.  Discharge of Electrolyte Capacitors of Varying Thickness 

This test series suggests that thickness is a factor in determining the dielectric 

constant.  The thinnest dielectric resulted in a factor of two improvement in dielectric 

constant over the next thinnest.  However, the physical constraints of constructing the 

capacitors also influence the optimal layer thickness.  In order to ensure a dielectric layer 

of reasonably uniform thickness and complete coverage of the Grafoil disk, the minimum 

thickness produced in this test series is not consistently achievable.  This is particularly 

true after introducing metal particles for the composite construction.  The outcome of this 

test series informs follow on experiments in that it suggests the thinnest achievable layer 

is preferred. 
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2. Loading with Untreated Nickel 

This test series was designed to establish a percolation threshold for loading of 

untreated nickel powder into the electrolyte dielectric matrix.  It was hypothesized, based 

on the previously discussed theory, that at some loading in excess of this threshold, the 

individual metal particles should form a continuous chain from one electrode to the other.  

This circumstance should be evidenced by a precipitous drop-off in capacitive 

performance.  Additionally, this test series will establish the preferred volume loading to 

be held constant when analyzing different surface treatment levels.  The specific 

parameters of the tested capacitors are shown in Table 4, and the discharge characteristic 

curves are shown in Figure 18. 

In the preceding tests of this study, as well as many investigative and 

familiarization tests, the maximum voltage observed across the capacitor did not exceed 3 

V.  Therefore, the charging voltage was reduced from 6 V to 4 V for the remainder of 

tests.  Also, based on the very high capacitances, and consequently long test run times, 

the load resistance was reduced from 528 kΩ to 99.2 kΩ. 
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Nickel 
Volume 
Loading 

Composition Dielectric 
Thickness (d) 

Initial Discharge 
Voltage (V0 ) 

Dielectric 
Constant (εR) 

Operating 
Voltage 

10% 13.5 mL alumina (2.8 g) 
0.28 g boric acid 
1.5 mL nickel 
3.5 mL H20 

2.01 mm 1.81 V 6.01E8 1.19 V 

20% 12 mL alumina (2.4 g) 
0.24 g boric acid 
3 mL nickel 
3.5 mL H20 

1.93 mm 1.75 V 5.34E9 1.17 V 

25% 11.25 mL alumina (2.2 g) 
0.22 g boric acid 
3.75 mL nickel 
3.5 mL H20 

1.88 mm 1.69 V 5.25E9 1.15 V 

30% 10.5 mL alumina (2.2 g) 
0.22 g boric acid 
4.5 mL nickel 
3.5 mL H20 

2.06 mm 0.91 V 2.04E8 0.55 V 

40% 9 mL alumina (1.8 g) 
0.18 g boric acid 
6 mL nickel 
3.5 mL H20 

1.91 mm 0.70 V 8.23E6 0.70 V 

Table 4.   Untreated Nickel Composite Dielectric Volumetric Loading Test Data  
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Figure 18.  Discharge of CED Capacitors with Varying Untreated Nickel Loading 

The discharge characteristics show the influence of the percolation threshold at 

loading of 30% or higher.  While the observed dielectric constant seems to remain very 

high, the initial discharge voltage was less than 1 V.  As a result, the operating voltage for 

constant capacitance is very low and this result is not considered significant. Seeking to 

further define the volume loading associated with percolative behavior, a 25% volume 

load test is conducted.  This test also showed stable performance, comparable to the 20% 

volume load.  However, the 20% volume load did exhibit slightly higher voltage, and the 

constituent volumes are more convenient to measure.  Consequently, 20% volume load is 

established as the control loading for the surface treatment test series. 
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3. Metal Particle Surface Treatment 

This test series is designed to determine the preferred number of surface 

treatments for nickel powder embedded in the HSA matrix.  All capacitors were produced 

with 20% volume loading of treated or untreated nickel powder.  The composition was 

constant, consisting of: 

• 12 mL alumina (2.5 g) 

• 0.25 g boric acid 

• 3 mL untreated or treated nickel powder 

• 3.5 mL H20. 

The specific parameters of the tested capacitors are shown in Table 5, and the 

discharge characteristic curves are shown in Figure 19. 

Surface 
Treatments 

Dielectric 
Thickness (d) 

Initial Discharge 
Voltage (V0 ) 

Dielectric 
Constant (εR) 

Operating 
Voltage 

0 1.93 mm 1.75 V 5.34E9 1.17 V 

1 1.85 mm 1.90 V 5.26E9 1.17 V 

2 2.29 mm 1.82 V 1.16E10 1.30 V 

3 2.21 mm 1.87 V 5.20E9 1.25 V 

4 2.77 mm 1.82 V 6.80E9 1.21 V 

Table 5.   Varying Surface Treatments with 20% Volume Nickel Load Test Data  
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Figure 19.  Discharge of CED Capacitors with Varying Treatments of Nickel Powder at 

20% Volume Load 

This test series showed that at 20% volume load, a range of treatments produced a 

reasonably consistent response.  The capacitor using nickel powder subjected to two 

treatments was the only example of notably superior performance.  Specifically, it 

showed the highest operating voltage, and the only observed instance of dielectric 

constant greater than 1010.  The discharge characteristic is also remarkably stable for 

greater than 5,000 seconds.  The result is a capacitance of 89.5 mF at 1.30 V in a volume 

of 4.57 cm3.  Based on this dielectric constant, thickness, and operating voltage, the 

energy density is 0.017 J/cm3.   

4. Loading with Treated Nickel 

This test series is designed to determine if treated nickel can be loaded in higher 

volume fractions than untreated nickel and produce a superior dielectric constant.  All 
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capacitors were constructed with nickel powder subjected to two H2O2 surface 

treatments.  The specific parameters of the tested capacitors are shown in Table 6, and the 

discharge characteristic curves are shown in Figure 20. 
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Nickel 
Volume 
Loading 

Composition Dielectric 
Thickness (d) 

Initial Discharge 
Voltage (V0 ) 

Dielectric 
Constant (εR) 

Operating 
Voltage 

10% 13.5 mL alumina (2.8 g) 
0.28 g boric acid 
1.5 mL treated nickel 
3.5 mL H20 

1.88 mm 1.78 V 2.25E9 1.16 V 

20% 12 mL alumina (2.5 g) 
0.25 g boric acid 
3 mL treated nickel 
3.5 mL H20 

2.29 mm 1.82 V 1.16E10 1.30 V 

30% 10.5 mL alumina (2.2 g) 
0.22 g boric acid 
4.5 mL treated nickel 
3.5 mL H20 

2.26 mm 1.72 V 5.27E9 1.25 V 

40% 9 mL alumina (1.8 g) 
0.18 g boric acid 
6 mL treated nickel 
4 mL H20 

2.21 mm 1.75 V 7.86E9 1.26 V 

50% 7.5 mL alumina (1.7 g) 
0.17 g boric acid 
7.5 mL treated nickel 
4.3 mL H20 

2.11 mm 0.64 V (No measurable result) 

Table 6.   Twice Treated Nickel Composite Dielectric Volumetric Loading Test Data 
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Figure 20.  Discharge of CED Capacitors with Varying 2x Treated Nickel Loading 

The result of this test series showed that nickel subjected to surface treatment can 

in fact be loaded in excess of the previously demonstrated percolation threshold with no 

observed drop in performance.  The capacitor with 40% nickel load demonstrated a 

particularly high capacitance, close to that observed with the best 20% nickel load 

capacitor.  As shown in the rescaled plot of Figure 21, the 40% load capacitor actually 

performs comparably to the 20% load capacitor for approximately 1500 seconds.  The 

dielectric constant over this limited initial linear portion of the discharge is 1.11E10 at 

1.25 V.  It is also clear that the initial operating voltage for capacitors constructed with 

treated nickel particles does not decrease at higher volume loadings.  This is in contrast to 

observations from capacitors constructed with untreated nickel. 
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Figure 21.  Discharge Characteristic Curves for 20% and 40% Volume Load with 2x 

Treated Nickel 

While this shows remarkable performance of a CED capacitor loaded with 

treated nickel above the previous threshold limit, the 20% loaded capacitor is the 

configuration with the best and most stable performance.  Hence, this configuration was 

selected as the subject for verification of capacitive behavior in follow on testing.  In 

support of this selection, the dielectric constant, voltage, and thickness results are 

accounted for by calculating the energy density for each discharge test.  Energy density, 

EC/Vol, is determined by combining Equations 2 and 3 with the definition of cylindrical 

volume according to Equation 6. 
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The observed energy density associated with each discharge test is shown in 

Figure 22.  Previously unmentioned duplicate test results are also shown in the Figure 

and can be reviewed in the Appendix.  It can be seen that the 20% volume load with 

twice treated nickel was clearly the superior result in terms of energy density. 

 
Figure 22.  Energy Density Summary of CED Capacitor Discharge Tests by Nickel 

Treatment and Volume Load 

B. VERIFICATION OF CAPACITOR BEHAVIOR 

1. Charge and Discharge Cycling 

The circuit shown in Figure 8 was used to conduct capacitor charge and discharge 

cycles.  To validate the test method, the previously described commercial 100 µF 

capacitor is tested with a charge voltage of 10 V and cycled with a 99.2 kΩ resistor.  The 
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resulting voltage response is shown in Figure 23.  This typical “shark-fin” curve shape is 

consistent with the expected response for a capacitor in a charge/discharge cycle. 

 
Figure 23.  Charge/Discharge cycle of Commercial 100 µF Capacitor 

A CED capacitor is then tested in the same manner.  Using the selected dielectric 

configuration of 20% volume load with twice treated nickel powder, the capacitor is 

charged with 4 V and cycled through a 99.2 kΩ resistor.  The dielectric thickness, d, is 

measured as 1.80 mm.  The resulting voltage response is shown in Figure 24. 
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Figure 24.  Charge/Discharge Cycle of 20% Volume Load 2x Treated Nickel CED 

Capacitor 

This result shows the general agreement between the shape of the voltage cycle 

curves of the commercial capacitor and the CED capacitor.  Notable are the differences in 

voltage and time scales.  Both capacitors failed to reach the full charging voltage, but the 

CED capacitor was far more limited and reaches less than 25% of the applied potential.  

However, noting the difference in time scales, the capacitance of the CED capacitor is 

vastly superior.   

It is also notable that the methods employed to achieve high capacitance are very 

different.  The commercial capacitor is designed on the basis of employing a low-

permittivity dielectric material and capitalizing on high surface area and remarkably thin 

separation.  The CED is orders of magnitude thicker, but achieves remarkable 

capacitance based on the high dielectric constant of the MMD.  This suggests that a CED 

fabricated to a very thin dimension could achieve even greater capacitance. 
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The charge and discharge portions are separated and analyzed to extract the 

capacitance and dielectric constant according to Equations 4 and 5.  Plotting example 

charge and discharge characteristics from the commercial capacitor should ideally show 

two lines with equal slope.  This would represent equal constant capacitance, since the 

series resistance is the same during charge and discharge.  As shown in Figure 25, the 

discharge characteristic is more stable with nearly constant capacitance.  The charge 

characteristic shows more variability at the beginning and end of the charge cycle.  

However, superimposing the two curves in Figure 26 demonstrates that the average 

capacitance is comparable over the majority of the cycle.  The discharge is represented by 

the right axis and the charge by the left axis.  The calculated capacitance of 138 µF shows 

reasonable agreement with the labeled rating and multimeter measurement.  The result of 

this analysis generally suggests that it is preferable to measure capacitance during 

isolated discharge, but observing charge characteristics is also beneficial for consistency 

and verification. 
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Figure 25.  Charge and Discharge Characteristics of 100 µF Commercial Capacitor 
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Figure 26.  Combined Charge/Discharge Characteristics of Commercial 100 µF Capacitor 

The charge and discharge characteristic curves for the CED capacitor voltage 

cycle are similarly separated and analyzed.  The individual curves are shown in 

Figure 27. 
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Figure 27.  Charge and Discharge Characteristics of 20% Volume Load with 2x Treated Nickel CED Capacitor 
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It is also important to note that the representation of voltage for each curve is 

inverted.  Specifically, on the charge curve voltage goes up with time, and on the 

discharge curve voltage goes down with time.  It was observed that during charging, both 

initially at low voltage and ultimately near the maximum voltage, the capacitance 

represented by the slope is highly variable.  The highest and most constant capacitance 

occurred from approximately 1,000 to 8,000 seconds, representing voltage from 0.72 V to 

0.88 V.  This correlates to a dielectric constant of 3.7E9 over that range. 

The discharge curve appears to demonstrate more stable capacitance, but the 

initial non-linear region encompasses most of the voltage range.  At 2,000 seconds, the 

capacitor has discharged from the maximum 0.90 V down to 0.33 V.  Constant 

capacitance is not demonstrated until relatively low voltage during cycling.  Considering 

the discharge from initiation up to 8,000 seconds, the overall equivalent dielectric 

constant translates to 4.1E9.  Considering only the linear region from 2,000 to 8,000 

seconds, the dielectric constant is 5.6E9.  These values differ by less than 50%, and are 

clearly consistent within an order of magnitude. 

Superimposing the two curves in Figure 28 confirms that capacitance is 

comparable between charge and discharge, as the curves are relatively parallel in the 

linear regions.  It is also notable that the charge characteristics become very noisy as the 

capacitor reaches ultimate voltage.  The characteristic curve falls away toward vertical in 

the limit, as there is no subsequent voltage change once the capacitor is fully charged.  

This condition is consistent across all of the charge characteristics. 
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Figure 28.  Combined Charge/Discharge Characteristics of 20% Volume Load with 2x 

Treated Nickel CED Capacitor 

2. Current Delivery 

Lower resistances were used to verify capacitor performance.  To obtain higher 

currents, lower series resistance was employed during charge and discharge.  The first 

resistor, measured as 2.67 kΩ by multimeter, was tested with the commercial 100 µF 

capacitor in the cycling circuit shown in Figure 8 with applied voltage of 10 V.  Due to 

the low time constant, the voltage sampling rate was increased to 10 Hz for two 

charge/discharge cycles.  The voltage response is shown in Figure 29.   
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Figure 29.  Charge/Discharge Cycles of Commercial 100 µF Capacitor through 2.67 kΩ 

Unlike testing with the larger 99.2 kΩ resistor, the commercial capacitor was fully 

charged to equal the applied voltage.  Capacitive behavior was also verified to be 

observable with the lower load resistance using a faster sampling rate.  The charge and 

discharge characteristic curves are separated and analyzed for the first cycle and shown in 

Figure 30. 
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Figure 30.  Combined Charge/Discharge Characteristics of Commercial 100 µF Capacitor 

through 2.67 kΩ 

The capacitance, as represented by the slope of the curves, was comparable during 

charge and discharge.  The capacitance was measured as 139 µF, demonstrating 

consistency in the measurement method with different load resistances.  The response is 

also relatively stable compared to the longer cycles with larger resistance. 

Next, the results of testing a CED capacitor with 20% volume load of twice 

treated nickel powder using the 2.67 kΩ resistor are considered.  The CED capacitor was 

charged with 4 V and the dielectric thickness, d, was measured as 1.98 mm.  The voltage 

response is shown in Figure 31.   
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Figure 31.  Charge/Discharge Cycle of 20% Volume Load with 2x Treated Nickel CED 

Capacitor through 2.67 kΩ 

Interestingly, the capacitor quickly charged up to a higher voltage than observed 

using the larger 99.2 kΩ resistor.  However, even with continued charging for an 

additional hour, the capacitor failed to reach half the charging voltage.  Characteristic 

curves were derived for the discharge and the initial 250 seconds of the charge.  The 

characteristic curves in Figure 32 show very inconsistent capacitance during both charge 

and discharge. 
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Figure 32.  Charge and Discharge Characteristics of 20% Volume Load with 2x Treated Nickel CED Capacitor through 2.67 kΩ 
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No meaningful capacitance or dielectric constant can be extracted from this result.  

The charge characteristic is decidedly non-linear, and the discharge only achieves linear 

behavior at an insignificant voltage.  Superimposing the charge and discharge curves in 

Figure 33 also shows the disparity in overall capacitance as indicated by the difference in 

time constant.  The discharge lasted over five times as long as the charge. 

 
Figure 33.  Combined Charge/Discharge Characteristics of 20% Volume Load with 2x 

Treated Nickel CED Capacitor through 2.67 kΩ 

Considering these inconsistencies, the resistance of 2.67 kΩ was assessed to be 

too low for use in this experiment.  Notably, the low resistance did result in higher 

voltage on charging.  This was observed with the CED and commercial capacitors.  

However, the non-linear behavior on both charge and discharge and the disparity in time 

constant necessitate evaluation of another resistance.   
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A resistor measured as 20.2 kΩ by multimeter was employed to further evaluate 

the cycling behavior.  The commercial capacitor was tested first, charged with 10 V, to 

observe the impact of the resistance on ultimate voltage.  As seen in Figure 34, the 

capacitor charged up to a higher voltage than observed with the 99.2 kΩ resistor, but not 

to the full charging voltage as seen with the 2.67 kΩ resistor. 

 
Figure 34.  Charge/Discharge Cycles of Commercial 100 µF Capacitor through 20.2 kΩ 

This influence of charging current on the ultimate voltage is not understood.  It is 

apparent that the capacitor charged up to near its ultimate voltage in less than 

approximately 15 seconds.  At that time, the voltage was approximately 97% of its final 

value, and the subsequent minute of charging has little impact.  This limited voltage 

behavior was also observed with the CED capacitor, so it is significant that the same 

phenomenon was witnessed with the commercial capacitor  
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The characteristic curves from the second charge/discharge cycle are shown in 

Figure 35.  This shows a particularly variable capacitance, especially during charge.  The 

capacitance was measured from the first 12 seconds of the discharge resulting in a value 

of 140 µF.  This was again consistent with measurements from previous tests.  The 

results of measuring capacitance from individual phases of the cycling experiments 

appear to be consistent, but the stability of the responses clearly suffers when compared 

to pure discharge tests.  This is particularly true for lower resistances. 

 
Figure 35.  Combined Charge/Discharge Characteristics of Commercial 100 µF Capacitor 

through 20.2 kΩ 

A CED capacitor was also analyzed by charge and discharge cycling with 20.2 

kΩ resistance and applied voltage of 4 V.  The capacitor is constructed with 20% volume 

load of twice treated nickel and the dielectric thickness, d, is 1.88 mm.  The voltage 

response for three charge/discharge cycles is shown in Figure 36. 
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Figure 36.  Charge/Discharge Cycles of 20% Volume Load with 2x Treated Nickel CED 

Capacitor through 20.2 kΩ 

The capacitor charged to a higher voltage than that tested with the 99.2 kΩ 

resistor, but lower than the 2.67 kΩ resistor.  This trend was also observed with the 

commercial capacitor.  The characteristic curves for the three charges and discharges are 

shown in Figure 37.   
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Figure 37.  Combined Charge/Discharge Characteristics of 20% Volume Load with 2x 

Treated Nickel CED Capacitor through 20.2 kΩ 

These characteristics are clearly more stable than those in Figure 33 resulting 

from the test with a 2.67 kΩ resistor.  There is also strong consistency among the three 

cycles.  The charge characteristics have long linear regions with good capacitance.  The 

discharge characteristics present a gentle curvature, and only achieve reasonable linearity 

at relatively low voltages.  While capacitance is not strictly constant throughout the cycle, 

meaningful parameters can be derived from the curves by considering best linear fits over 

relevant regions.  Resulting dielectric constants with associated applicable voltage ranges 

were extracted from the curves and shown in Table 7.  
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 Operating Voltage 
Range 

Dielectric Constant 
(εR) over Operating 
Voltage 

Dielectric 
Constant (εR)  over 
Entire Range 

Charge 1 1.09 – 1.28 V 3.11E9 2.79E9 

Charge 2 1.15 – 1.35 V 2.25E9 2.00E9 

Charge 3 1.19 – 1.36 V 2.75E9 2.33E9 

Discharge 1 0.44 – 0.16 V 3.87E9 4.88E9 

Discharge 2 0.64 – 0.26 V 3.52E9 5.57E9 

Discharge 3 0.69 – 0.26 V 4.23E9 5.70E9 

Table 7.   Charge and Discharge Data for 20% Volume Load with 2x Treated Nickel 
CED Capacitor Cycled with 20.2 kΩ Resistor 

The positive result from this test is considered a reasonable validation of 

capacitive behavior for the CED configuration.  The capacitor demonstrated consistent, 

repeatable performance over multiple charge and discharge cycles with remarkable 

dielectric constant.  This general behavior was observed to hold for multiple values of 

resistance, although consistency and stability suffered at low resistance. 

3. Other Factors Revisited 

a. Thickness 

The dielectric thickness, d, was observed to have an impact on dielectric 

constant when tested with the HSA electrolyte matrix, and was therefore examined in the 

CED configuration.  Section A.1 of this chapter demonstrates that the thinnest dielectrics 

exhibit the best performance with regard to dielectric constant and voltage.  Additionally, 

thinner dielectrics are decidedly advantageous when specifically considering energy 

density.  As shown previously in Equation 6, energy density has an inverse square 

dependence on dielectric thickness, d. 

An especially thin CED capacitor was fabricated to revisit this factor in a 

charge/discharge cycling test.  The composition was 20% volume load with twice treated 
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nickel and the dielectric thickness was 1.35 mm.  The capacitor was charged with 4 V.  

The voltage response is shown for two cycles in Figure 38. 

 
Figure 38.  Charge/Discharge Cycles of 20% Volume Load with 2x Treated Nickel Thin 

CED Capacitor through 20.2 kΩ 

The ultimate voltage is comparable to that observed with the standard 

dielectric thickness using the same 20.2 kΩ resistor, and the overall curve appears 

similar.  The characteristic curves for charges and discharges are shown in Figure 39. 
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Figure 39.  Combined Charge/Discharge Characteristics of 20% Volume Load with 2x 

Treated Nickel Thin CED Capacitor through 20.2 kΩ 

The results seem comparable to those from the standard CED capacitor.  

The specific parameters extracted from the characteristic curves are shown in Table 8. 
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 Operating Voltage 

Range 

Dielectric Constant 

(εR) over Operating 

Voltage 

Dielectric Constant 

(εR) over Entire 

Range 

Charge 1 1.10 – 1.30 V 2.14E9 1.16E9 

Charge 2 1.08 – 1.34 V 1.45E9 1.00E9 

Discharge 1 0.66 – 0.32 V 3.21E9 3.51E9 

Discharge 2 0.71 – 0.37 V 3.47E9 6.23E9 

Table 8.   Charge and Discharge Data for 20% Volume Load with 2x Treated Nickel 
Thin CED Capacitor Cycled with 20.2 kΩ Resistor 

This result shows that this decrease in thickness does not have an 

appreciable impact on the dielectric constant or operating voltage in the CED 

configuration subjected to charge/discharge cycling.  Producing thinner dielectrics is also 

more practically challenging.  Therefore, it was assessed that dielectrics of approximately 

2 mm thickness are thin enough for this study. 

Alternatively, a thicker dielectric layer was evaluated in the CED 

configuration.  Constructed from the same relative composition, the dielectric was 

produced with 16 mL of HSA powder (3.5 g of alumina and 0.35 g of boric acid), 4 mL 

of twice treated nickel powder, and 5 mL of H2O.  The resulting dielectric thickness, d, 

was 2.90 mm.  The capacitor was charged with 4 V, and cycled with the 20.2 kΩ resistor.  

The capacitor was subjected to two cycles similar to those for the standard and thin 

dielectrics, with a charge time of approximately 30 minutes.  The capacitor was then 

allowed to fully discharge and submitted to a third cycle with a longer charge of 

approximately 45 minutes.  The voltage response is shown in Figure 40. 
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Figure 40.  Charge/Discharge Cycles of 20% Volume Load with 2x Treated Nickel Thick 

CED Capacitor through 20.2 kΩ 

The ultimate voltage and overall appearance of the curve is similar to 

other cycle tests conducted with the 20.2 kΩ resistance.  The separated charge and 

discharge characteristics are shown in Figure 41.   
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Figure 41.  Combined Charge/Discharge Characteristics of 20% Volume Load with 2x 

Treated Nickel Thick CED Capacitor through 20.2 kΩ 

The results once again seem comparable to those from the standard and 

thin CED capacitors.  The specific parameters extracted from the characteristic curves are 

shown in Table 9. 
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 Operating Voltage 

Range 

Dielectric Constant 

(εR) over Operating 

Voltage 

Dielectric 

Constant (εR) over 

Entire Range 

Charge 1 1.13 – 1.34 V 4.19E9 2.24E9 

Charge 2 1.23 – 1.40 V 3.25E9 1.91E9 

Charge 3 1.25 – 1.43 V 5.24E9 2.94E9 

Discharge 1 0.70 – 0.25 V 3.95E9 3.69E9 

Discharge 2 0.79 – 0.26 V 4.92E9 5.29E9 

Discharge 3 0.83 – 0.29 V 6.78E9 6.59E9 

Table 9.   Charge and Discharge Data for 20% Volume Load with 2x Treated Nickel 
Thick CED Capacitor Cycled with 20.2 kΩ Resistor 

A modest but consistent improvement in dielectric constant and voltage is 

observed with increasing thickness.  However, the increase in dielectric thickness reduces 

any net gain in energy density.  The influence of dielectric constant on energy density is 

not as sensitive as thickness or voltage.  Therefore, order of magnitude improvements in 

dielectric constant are generally required to achieve a conclusive result.   

Recall that when considering only the HSA electrolyte as dielectric, the 

dielectric constant was inversely related to the dielectric thickness.  In the CED 

configuration, the opposite trend is observed.  The basis of this behavior is not 

understood.  It is suspected that thicker composite dielectrics would mitigate the 

propensity for percolation if constituent nickel particles were not uniformly and 

completely insulated.  However, this does not suggest lesser performance for thinner 

layers without excessive metal loading. 

Although a trend is observed, the magnitude of the difference in dielectric 

constant is unremarkable.  Hence the standard of approximately 2 mm is maintained as 

the objective dielectric thickness.  It is also noteworthy that the dielectric thickness is 

subject to fairly wide variation.  For all capacitors constructed to this standard objective 
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thickness using 15 mL of dry powder, the mean is 2.07 mm with a standard deviation of 

0.23 mm, or approximately 11%.  The practical difficulty associated with manually 

producing dielectric layers of strictly consistent and uniform thickness complicates 

precise control of this variable.   

To summarize the impact of the various parameters on the capacitor energy 

density, Figure 42 shows the results for each cycle test using the 20% volume load twice 

treated nickel CED.  The data is plotted with respect to thickness, with resistance 

indicated by color and charge or discharge indicated by symbol.  Accounting for 

dielectric constant, maximum operating voltage, and dielectric thickness, the energy 

density is shown to be relatively consistent across the range of thicknesses.  The thinnest 

dielectric appears to be consistently preferable, and measurements of charge cycles are 

typically superior to those of discharge cycles.  The lowest resistance of 2.67 kΩ 

produced a dramatic negative effect, primarily due to the non-linearity of the response 

and inability to measure capacitance at relevant voltage.  The other two resistance values 

of 20.2 kΩ and 99.2 kΩ demonstrated roughly consistent results for capacitor energy 

density. 
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Figure 42.  Energy Density Summary of Cycle Tests for 20% Volume Load 2x Treated 

Nickel CED Capacitors 

b. Voltage 

This study supposed charging voltage to be primarily inconsequential to 

capacitive performance in the described testing scenarios.  Essentially, the only criteria is 

that the charging voltage be great enough to ensure that observed operating voltage is in 

fact the maximum achievable in that configuration.  However, a precipitous initial 

voltage drop is observed across the range of all discharge tests and CED capacitors never 

fully reach the applied voltage in charging cycles.  All composite capacitors were charged 

with 4 V, but observed maximum capacitor voltage never exceeded 2 V. 

Based on this observation, a discharge test was conducted using lower 

charging voltage.  The capacitor was charged with 1 V, which was typically observed to 

be within the operating voltage range.  The dielectric thickness was 1.98 mm and was 

composed with 20% volume load of twice treated nickel.  The test was conducted using 

the circuit shown in Figure 4 with a resistance of 20.2 kΩ.  The objective of the test was 

thin (1.34 mm) standard (2 mm) thick (2.9 mm)
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016
en

er
gy

 d
en

si
ty

 (J
/c

m
3 )

capacitor thickness

Energy Density Summary of 20% Volume Load 2x Treated Nickel CED Capacitors

 

 
charge 99 kΩ
discharge 99 kΩ
discharge 2 kΩ
charge 20 kΩ
discharge 20 kΩ



 69 

to observe whether the discharge continues to exhibit an abrupt initial drop in voltage.  

The resulting discharge characteristic is shown in Figure 43.   

 
Figure 43.  Discharge Characteristic of 20% Volume Load with 2x Treated Nickel CED 

Capacitor (1V charging with 20.2 kΩ) 

This result shows that the initial voltage drop before stable capacitance is 

relatively limited.  The entirety of the discharge is considered linear, and the measured 

dielectric constant is 5.12E9 at the full charging voltage of 1 V.  The limited voltage does 

noticeably affect the resultant energy density, which is calculated to be 5.78E-3 J/cm3.   

A charge/discharge cycle is also performed in the circuit shown in Figure 

8 with applied potential of 1 V and a 20.2 kΩ resistor.  The result is shown in Figure 44, 

and demonstrates significant inconsistency over two cycles.  The first charge is very 

short, as is the second discharge.  The ultimate voltage is significantly lower than the 

applied voltage. 
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Figure 44.  Charge/Discharge Cycles of 20% Volume Load with 2x Treated Nickel CED 

Capacitor (1 V charging through 20.2 kΩ) 

The charge and discharge characteristics are shown in Figure 45.  The plot 

confirms that the capacitance observed for each of the charge and discharge cycles is 

notably inconsistent.  Additionally, even when charging voltage is less than the typical 

operating range, the capacitor still experiences an initial abrupt drop in voltage during 

discharges before achieving stable capacitance.  Charges also do not reach stable 

capacitance until well into the cycle.  This effect of initial instability is more pronounced 

than in the discharge-only test.  The combined effect of the lower charging voltage and 

initial lagging response results in insignificant operating voltages in the constant 

capacitance regions. 
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Figure 45.  Combined Charge/Discharge Characteristics of 20% Volume Load with 2x 

Treated Nickel CED Capacitor (1 V charging through 20.2 kΩ) 

The disparity in performance between discharge and cycling tests is not 

understood.  Comparing the results from all discharges, including those within cycle 

tests, the examples from discharge only tests have consistently higher operating voltages 

and generally more linear responses.  Cycling tests are informative for examination of 

capacitive behavior, but complicate the measurement of capacitance and dielectric 

constant. 

4. Alternate Composition 

This test examined the influence of electrolyte composition on the performance of 

the CED capacitor.  An electrolyte of aqueous 1 M KOH is used instead of boric acid 

powder and water.  The dielectric thickness, d, is 1.65 mm and the composition consists 

of: 
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• 12 mL alumina (2.5 g) 

• 3 mL 2x treated nickel powder 

• 3.5 mL 1 M KOH. 

The 20% volume load with twice treated nickel CED capacitor is subjected to a 

standard discharge test using a load resistor of 20.2 kΩ.  The capacitor is charged with 4 

V for 16 minutes.  The resulting discharge characteristic is shown in Figure 46.  

 
Figure 46.  Discharge of 20% Volume Load with 2x Treated Nickel CED Capacitor with 

KOH Electrolyte  

It can be seen that the initial discharge is significant before the achievement of 

stable capacitance.  The discharge characteristic is stable at low voltage, with a 

reasonably constant slope.  The parameters of the discharge are shown in Table 10. 
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Composition Dielectric 
Thickness (d) 

Initial Discharge 
Voltage (V0 ) 

Dielectric 
Constant (εR) 

Operating 
Voltage 

12 mL alumina  
(2.5 g) 
3 mL treated nickel 
3.5 mL KOH 

1.65 mm 1.81 V 2.10E10 0.74 V 

Table 10.   CED Capacitor with 20% Volume Load Twice Treated Nickel and KOH 
Electrolyte Discharge Test Data  

It can be seen that while the initial voltage was reasonably high compared with 

other compositions, the operating voltage was very low.  The dielectric constant was the 

highest observed, but the low operating voltage makes the result less significant.  The 

resulting energy density is 0.019 J/cm3. 

Next, the same capacitor was examined by charge and discharge cycling.  Using 4 

V charging voltage and a 20.2 kΩ resistor, the capacitor was subjected to two cycles.  

The voltage response is shown in Figure 47.   
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Figure 47.  Charge/Discharge Cycles of 20% Volume Load with 2x Treated Nickel KOH 

Electrolyte CED Capacitor through 20.2 kΩ 

It can be seen that the ultimate voltage of the capacitor is very limited.  The CED 

capacitors using boric acid electrolyte generally failed to reach 25% of the charging 

voltage, but this iteration is even more restricted.  The capacitor never reaches a voltage 

of 0.7 V when charged through the resistor.  The separated charge and discharge 

characteristics are shown in Figure 48 and the parameters measured from the cycles are 

shown in Table 11. 
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Figure 48.  Combined Charge/Discharge Characteristics of 20% Volume Load with 2x 

Treated Nickel KOH Electrolyte CED Capacitor through 20.2 kΩ 

The charge and discharge characteristic curves are stable, with relatively little 

initial lag in reaching a constant capacitance.  Also of note, both charge curves exhibit a 

distinctive corner in the characteristic coinciding with a voltage of approximately 0.57 V.  

The cause of this abrupt shift in capacitance is not understood, but was consistent over 

both charges at the same voltage.   
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 Operating Voltage 

Range 

Dielectric Constant 

(εR) over Operating 

Voltage 

Dielectric Constant 

(εR) over Entire 

Range 

Charge 1 0.60 – 0.68 V 6.42E9 4.91E9 

Charge 2 0.58 – 0.67 V 5.50E9 4.42E9 

Discharge 1 0.56 – 0.31 V 4.89E10 3.91E10 

Discharge 2 0.54 – 0.38 V 6.19E10 4.40E10 

Table 11.   Charge and Discharge Data for 20% Volume Load with 2x Treated Nickel 
KOH Electrolyte CED Capacitor Cycled with 20.2 kΩ Resistor 

The data show that the dielectric constants for dielectrics using KOH electrolyte 

are consistently higher than those dielectrics with boric acid.  However, the voltage is 

also notably lower. 
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IV. CHARACTERIZATION 

A. X-RAY DIFFRACTION (XRD) 

1. Method Description 

X-Ray diffraction (XRD) is used to determine the crystal structure of a specimen.  

This can be used to determine composition of a material by comparing the measured 

parameters of the specimen crystal structure with a database of known materials.  The 

process of XRD analysis consists of passing current through an X-ray tube to a metal 

source.  As inner valence electrons of the metal source are knocked out, outer valence 

electrons drop to a lower energy level and X-ray radiation is emitted.  X-rays are directed 

to irradiate the sample specimen, and are diffracted according to the arrangement of 

crystallographic planes in the sample.  The number of diffracted X-rays is counted across 

a range of diffraction angles, or 2-θ angles.  The resulting spectrum indicates the 

crystallographic orientation and structure spacing and can be correlated with known 

compositions. 

A Philips 1830 Analytical X-ray Diffractometer is used for this study.  The X-ray 

tube uses a copper source with primary Kα wavelength of 1.54 Å.  The range of 2-θ angle 

studied is from 25 to 90 degrees.  The step size increment is 0.02 degrees, and the time at 

each step is one second.  The nickel powder samples are placed on a low-background 

silicon plate to prevent interference in the range of analysis.  The current is set to 30 mA 

and the voltage is set to 35 kV. 

2. Analysis 

The nickel powder surface treatment with H2O2 is intended to create an insulating 

oxide layer.  In order to characterize the resulting treated nickel particles and ascertain 

the existence of the insulating surface layer, XRD analysis was used to examine nickel 

powder before and after varying levels of H2O2 surface treatment.  The spectrum result 

from the untreated nickel powder is shown in Figure 49.  Using X’Pert HighScore 

analysis software, the spectrum is determined to match conclusively with nickel, with no 

significant impurities. 
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Figure 49.  XRD Spectrum for Untreated Nickel Powder 

Figure 50 shows the resulting spectra from one, two, and four times treated nickel 

superimposed with the untreated nickel.  It is clear that there is no detectable difference in 

the crystal structure or composition of the different powders.   
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Figure 50.  Superimposed XRD Spectra for Untreated, 1x, 2x, and 4x Treated Nickel 

Powder 

Additionally, Figure 51 shows the spectrum for the twice treated nickel powder 

along with blue lines indicating the expected peaks associated with nickel oxide.  This 

result demonstrates that the H2O2 surface treatment process does not generate an oxide 

phase in sufficient quantity to be detectable by XRD. 
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Figure 51.  XRD Spectrum for 2x Treated Nickel with Indication of Expected Nickel 

Oxide Peaks 

B. SCANNING ELECTRON MICRSOCOPY (SEM) 

1. Method Description 

Scanning Electron Microscopy (SEM) is used to image and examine a sample at 

high magnification.  A field emission gun is mounted in a column above the sample 

chamber and generates an electron beam, which is incident on the specimen.  The beam is 

generated at a specified energy level determined by an applied voltage potential, 

primarily 20 kV for this study.  The beam is controlled and directed by a series of lenses 

and electromagnetic coils and is focused on the sample.  Incident electrons are scattered, 

diffracted, or transmitted upon reaching the sample. Scattered electrons are collected and 

used to generate images of the sample surface.   
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Secondary electrons are also ejected from sample atoms upon incidence of the 

generated beam, which results in the generation of X-ray radiation as higher-energy 

electrons assume lower-energy states.  The energy of these generated X-rays is specific to 

the source element from which they originated.  The resulting spectrum of X-ray counts 

and their energies can therefore be used to determine the material composition of the 

sample.  This process is referred to as energy dispersive X-ray spectroscopy (EDS). 

In addition to using an electron beam for imaging and analysis, a focused ion 

beam (FIB) can also be used.  Gallium ions are produced by using a tungsten filament to 

ionize a pool of liquid gallium.  The ions produce a beam with application of a voltage 

potential and are focused with the same lenses and coils used for the electron beam.  The 

gallium ions impact the surface of the sample and can mill away material with nano-scale 

control.  This allows single particles to be cross-sectioned for analysis of surface layers 

and internal compositions.  Varying applied voltage and current controls the energy and 

number of ions produced in the process, and therefore permits precision milling of the 

sample. 

2. Analysis 

a. Imaging 

The first step in the SEM analysis comprised obtaining images of the 

untreated nickel powder to gain an appreciation for particle characteristics and size.  

Figure 50 shows a representative image of the untreated nickel powder at 500x 

magnification.  It can be seen that the particle size is inconsistent.  Smaller individual 

particles have diameters on the order of 10 µm, while there are many larger apparent 

conglomerate structures with diameters on the order of 150 µm. 
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Figure 52.  SEM Image of Untreated Nickel Powder (500x) 

Higher magnification images are collected to examine the nature of the 

particle structure and surface.  Figure 53 shows a representative image of the untreated 

nickel powder at 5kx magnification.  It shows the general shape of the conglomerate 

particle structures that are seemingly composed of assemblies of the smaller individual 

spherical particles with sharp protruding ridges. 
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Figure 53.  SEM Image of Untreated Nickel Powder (5kx) 

Comparable images are collected for particles with varying levels of 

surface treatment.  Figures 54 and 55 are examples of the once treated nickel powder at 

500x and 5kx magnifications.  It can be seen in the wide-angle image that overall 

appearance of the powder has not significantly changed.  Large conglomerations are still 

present, although the largest of these appear smaller than the largest conglomerations in 

the untreated powder.  The largest assemblies observed have diameters on the order of 

100 µm.   
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Figure 54.  SEM Image of 1x Treated Nickel Powder (500x) 

The closer view in Figure 55 seems to indicate an interesting effect of the 

H2O2 surface treatment.  Namely, the particle ridge protrusions appear somewhat rounded 

or softened compared to those seen in the untreated powder.   
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Figure 55.  SEM Image of 1x Treated Nickel Powder (5kx) 

The most noticeable difference between the untreated and treated particles 

is only evident at higher magnifications.  Carefully examining the texture of the particle 

surfaces shows that the roughness of the particle surface is influenced by the H2O2 

treatment.  Figure 56 shows images of untreated and once treated particles at 80kx 

magnification. 
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Figure 56.  SEM Images of (top) Untreated and (bottom) 1x Treated Nickel Powder 

(80kx) 
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This trend is further examined with increasing levels of H2O2 treatment.  
There is some indication of increased surface roughness with increasing treatment, but 
not as significant or consistent as the impact of the first treatment.  Figure 57 shows 
images of particles after two through five treatments at 80kx magnification.   

 
Figure 57.  SEM Images of Nickel Powders (A) 2x Treated, (B) 3x Treated, (C) 4x 

Treated, (D) 5x Treated. (80kx) 

b. Energy Dispersive X-ray Spectroscopy (EDS) 

In addition to imaging, EDS is performed on the particles of varying 
treatment.  Spectrums are collected over a 100 second period from an image at 30kx 
magnification.  The resulting spectrum for the untreated nickel powder is shown in Figure 
58.  Using EDAX Genesis software with Peak Identification, the constituent elements are 
determined and labeled.  It can be seen that nickel is the dominant constituent, with carbon 
and oxygen peaks practically absent.  The source images are displayed in the inset. 
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Figure 58.  EDS Spectrum of Untreated Nickel Particle (30kx) 

For comparison, a spectrum is also collected from untreated powder at 1kx 

magnification.  Shown in Figure 59, this spectrum shows more noticeable carbon and 

oxygen peaks collected from the wider background, specifically the carbon tape that is 

used to mount the powder sample. 
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Figure 59.  EDS Spectrum of Untreated Nickel Powder (1kx) 

To assess whether an insulating oxide layer is formed on the metal 

particles, EDS spectra are collected from treated particles.  Figure 60 shows the spectrum 

collected from once treated nickel powder.  It can be seen there is no discernible 

difference from the spectrum shown in Figure 58 from the untreated powder, with no 

appreciable oxygen peak. 
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Figure 60.  EDS Spectrum of 1x Treated Nickel Particle (30kx) 

Increasing levels of surface treatment additionally have no impact on the 

EDS analysis result.  Figure 61 shows the spectra collected from twice treated and four-

times treated particles.  Similarly, there is no detectable oxygen peak and the spectra are 

practically identical to the untreated powder.  As with XRD, EDS is unable to definitively 

detect the presence of an insulating oxide layer on the nickel particles.   
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Figure 61.  EDS Spectra of (top) 2x Treated and (bottom) 4x Treated Nickel Particles 

(30kx) 
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c. Focused Ion Beam (FIB) 

In order to more directly examine the impact of surface treatment, FIB 

milling was used to cross-section individual powder particles.  Twice treated nickel 

powder produces the best results in composite dielectrics and shows evidence of 

substantial surface roughening by SEM imaging.  Thus, the twice treated powder was 

selected for analysis by FIB sectioning and comparison to untreated powder. 

The FIB milling is accomplished by sectioning individual representative 

particles from the untreated and twice treated powder SEM samples.  The first pass was 

performed with application of 30 kV and 2 nA to mill for a depth of 4 µm.  A second 

polishing pass was performed with application of 30 kV and 200 pA to mill an additional 

1 µm for a net depth of 5 µm.   

The resulting sectioned particle of untreated powder is shown in Figure 62 

at a magnification of 5kx.  Some internal grain structure is visible on the polished 

surface.  The protruding ridges seem to be extensions of individual grains in a 

particularly uniaxial direction, which is notably off angle from the vertical cutting 

direction.  
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Figure 62.  SEM Image of Untreated Nickel Powder after FIB Sectioning (5kx) 

A closer look shows the seamless transition between the polished cut 

surface and the textured outer particle surface.  Figure 63 shows the edge of the sectioned 

particle at 30kx magnification. 
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Figure 63.  SEM Image of Untreated Nickel Powder after FIB Sectioning (30kx) 

The sectioned particle of twice treated nickel powder is shown in Figure 

64.  The same long uniaxial grain alignment is observed leading to protruding surface 

ridges.  There is no obvious indication of a unique surface layer encapsulating the 

particle. 
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Figure 64.  SEM Image of 2x Treated Nickel Powder after FIB Sectioning (5kx) 

 Figure 65 further examines the edge of the particle surface and polished 

cut face.  At 30kx and 80kx magnification, there is also no indication of a uniquely 

structured surface layer. 
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Figure 65.  SEM Images of 2x Treated Nickel Powder after FIB Sectioning (30kx top, 

80kx bottom) 
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After sectioning of the treated particle, EDS spot analysis is conducted to 
compare the spectra collected from the core and the surface of the particle.  This process 
provides another observation of the absence of any compositionally unique surface layer.  
The resulting spectra are shown in Figure 66. 

 
Figure 66.  EDS Spectra from FIB Sectioned 2x Treated Particle (top) Core and (bottom) 

Surface (5kx) 
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In summary, efforts by XRD, SEM imaging, EDS, and FIB sectioning 

were unable to identify the existence of an insulating oxide layer on the nickel particles.  

Despite this negative result from characterization techniques, there is a measurable 

difference in treated and untreated powders both in terms of resistance and dielectric 

performance. 

C. RESISTANCE 

As described is Chapter II, Section B.3.b with the voltage divider circuit shown in 

Figure 15, resistance checks are performed on untreated and treated nickel powders.  The 

measured resistance and applied voltage results for powders of varying treatment are 

shown in Figure 67 on a log plot.  Each powder is measured at least three times in the 

voltage divider circuit and the values are averaged for each applied voltage.  The 

complete results are included in the Appendix. 

 
Figure 67.  Resistance of Nickel Powder with Varying Levels of H2O2 Surface Treatment 
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It can be seen that the untreated powder exhibits low resistance, less than 100 kΩ 

on average across the range of applied voltage.  After one, two, and three treatments, the 

powder consistently exhibits resistance of at least 1 MΩ.  Notably after a fourth 

treatment, the resistance drops off to approximately 400 kΩ.  This effect suggests that 

excess treatments may lead to breakdown or spalling of any supposed insulating layer. 

D. SUMMARY 

A range of characterization efforts were not able to definitively establish the 

existence of an insulating oxide layer.  The specific impact of the H2O2 surface treatment 

process is not well-known.  SEM imaging revealed indications of particle surface 

roughening.  Tellingly, resistance measurements demonstrated the remarkable insulating 

capacity of nickel powder after just one H2O2 surface treatment.  The impact of surface 

treatment is also demonstrated in the ability to load treated nickel particles in higher 

volume fractions in composite capacitor dielectrics. 
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V. DISCUSSION 

A. OBSERVATIONS AND APPLICATION 

There are a number of notable findings in this study.  First, it was shown that 

dielectric constants achievable by using the MMD method can be orders of magnitude 

greater than those of single material dielectrics.  Second, a new CED configuration of the 

MMD concept was developed.  Third, this class of composite dielectric was shown to 

have exceptional dielectric constant, but suffered from limited maximum voltage.  

Fourth, it was shown that obstacles associated with loading percolation-limited 

conductive particles in high volume fractions can be overcome.  Furthermore, it is 

suggested that although the concept of loading conducting, high-permittivity particles 

into dielectrics is established, the physics associated with composite dielectric behavior 

near the percolation threshold is not well understood. 

The application of the treated metal particle MMD concept is observed in the 

measured dielectric constant.  A CED composed of a wetted mixture of alumina, boric acid, 

and treated nickel powders demonstrated a dielectric constant on the order of 1010.  The 

capacitor is verified to function consistently over multiple cycles at voltages around 1 V.    

B. UNPRECEDENTED DIELECTRIC CONSTANTS 

The single material with the highest observed dielectric constant is BaTiO3, with 

reported values of order 104 depending on purity and grain size [24]–[26].  In contrast, 

dielectric constants of 1010 are demonstrated by MMD materials in the CED 

configuration examined in this study.  The performance was verified by repeated voltage 

cycling of capacitors.  This finding is consistent with the hypothesis that surface-

insulated conductive materials should be superior capacitor dielectrics. 

It is further emphasized that the devices produced herein are not supercapacitors, 

but standard electrostatic capacitors.  Supercapacitors leverage extreme electrode surface 

areas to produce exceptional capacitance.  Therefore, they can exhibit increasing 

capacitance with greater volume and thickness.  This is not true with electrostatic 

capacitors that behave according to Equation 2.  Specifically, capacitance is inversely 
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related to dielectric thickness.  This behavior is consistent with the CED capacitors 

produced in this study. 

These observations support the validity of the dramatic primary finding of this 

study: Multi-material dielectrics in the CED configuration have dielectric constants 

orders of magnitude greater than any observed in single materials. 

C. OPERATING VOLTAGE LIMITATIONS 

Operating voltages of the MMD-CED dielectrics are a significant limitation to the 

net energy density and practicality of these devices.  Particularly during charge and 

discharge cycling, capacitors demonstrated a restrictive limitation in ultimate voltage.  In 

isolated discharge tests, the operating voltage was limited to approximately 1.3 V.  

During charge and discharge cycling, discharge operating voltages were limited to 

approximately 0.8 V.  In all cases in this study, the ultimate voltage on CED capacitors 

was less than 2 V.  The limitation in operating voltage is similar to that observed in 

supercapacitors associated with the breakdown of electrolyte. 

1. Voltage Limits in MMD 

It should be considered if the root cause of the observed voltage limitation is 

inherent to MMD materials.  Specifically, is the exceptional relative permittivity of the 

dielectric material inherently limited to operation below some voltage threshold?  It is 

hypothesized here that the voltage limitation is the result of other constituent elements of 

the composite.  In particular, it is argued that in the CED configuration, the discharge 

occurs through the liquid electrolyte phase rather than the MMD component.  Thus, the 

voltage limit should be a function of electrolyte chemistry and capacitor thickness, 

implying higher voltages and energy densities are achievable. 

A series of observations support the concept of discharge occurring through the 

liquid electrolyte phase.  First, the voltage limit was impacted by the use of an alternate 

electrolyte.  Employing KOH as the aqueous electrolyte limited the maximum operating 

voltage to approximately 0.7 V, while capacitors with boric acid electrolyte operated with 

high permittivity up to approximately 1.3 V.  This is evidenced in Tables 5, 10, and 11.  
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The impact of electrolyte chemistry on operating voltage is well documented in 

supercapacitors, and remains a research focus area [4], [18], [21].  Second, the voltage 

limit appears to be related to the dielectric layer thickness.  Although not specifically 

evaluated in this study, the general trend is noticeable in the data from Tables 7, 8, and 9 

that the operating voltage tends to increase with increasing dielectric thickness.  This 

suggests the discharge limit is a function of the voltage gradient, which is supported by 

the dependence of breakdown voltage on the electrolyte resistivity [51]. 

It is important to point out that while it is suggested that increasing dielectric 

thickness could lead to increased operating voltage, this does not directly result in 

increased energy density.  This concept was previously discussed in Chapter III, Section 

B.3.a and illustrated in Equation 6.  Specifically, energy density is proportional to the 

voltage squared, and inversely proportional to thickness squared.  Therefore, any gain in 

voltage must outpace increases in thickness. 

2. Dielectric Loss and Relaxation 

The initial drop in voltage on discharge for all capacitors tested could be related to 

the concepts of dielectric loss or dielectric relaxation.  In an ideal capacitor, all of the 

energy added and stored in the electric field can be recovered.  In reality, all of this 

energy is not fully recoverable.  These factors are well documented in AC capacitor 

applications.   

Dielectric loss is related to the energy that is lost to dielectric heating during 

switching of applied electric field polarity as charges must overcome opposition in their 

displacement through the dielectric.  This factor is related to the equivalent series 

resistance (ESR) of a capacitive element and is a function of the complex nature of 

permittivity [52]–[53]. 

Similarly, dielectric relaxation refers to the delay observed before a constant 

dielectric constant is reached upon switching the polarity of an applied electric field.  

This factor is also related to the complex definition of permittivity [52]–[53]. 
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This study considered only performance in DC circuits.  It is suspected that upon 

initial switching in charging and discharging, the influence of dielectric loss or relaxation 

is particularly pronounced with the CED capacitor.  A full frequency analysis is required 

to characterize the ESR of a CED capacitor and determine the influence of complex loss 

or relaxation on the observed dielectric constant.   

It is also interesting to note that the commercial capacitor demonstrated non-ideal 

performance aspects.  Specifically, during charging cycles the capacitor did not fully 

reach the applied charging voltage as shown in Figures 23 and 34.  Additionally, the 

charge and discharge characteristics shown in Figure 35 demonstrate significant non-

linearity.  These points reinforce that even standard commercial capacitors regularly 

exhibit non-ideal behavior. 

D. IMPLICATIONS FOR A THEORETICAL MODEL 

A model of the MMD-CED configuration must be consistent with a number of 

observations from experimental results, including: 

• unprecedented dielectric constants of the electrolyte capacitors without 
nickel loading, 

• orders of magnitude increase in dielectric constant observed with the 
addition of metal particles, both treated and untreated, 

• limited maximum voltage, 

• the impact of electrolyte on the observed maximum voltage, 

• the relation between dielectric thickness and observed maximum voltage, 
and 

• the finding that metal particle addition increases the observed operating 
voltage. 

A qualitative appreciation for these observations is presented in the following 

model.  Further work will be required to develop a fuller, more rigorous construct.   

It is theorized that various mechanisms of capacitance are active in the CED.  One 
of these mechanisms is the previously described high polarizability of conductive 
material that permits a thorough redistribution of charge within individual metal particles.  
This supports the definitive increase in dielectric constant observed with the addition of 
nickel powder to the CED.  A second mechanism which may be active is a kind of 
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double-layer capacitance similar to that observed in electrochemical systems.  
Specifically, high surface area alumina powder used as the base dielectric ceramic matrix 
provides a large available surface area for engagement of charged particles in the 
electrolyte material.  Hydroxyl charge groups present on the surface of the alumina 
particles are available to hydrogen ions in the acid electrolyte.  This arrangement permits 
formation of dipoles at the surface of the alumina particles, and may account for the 
remarkable capacitance observed in the pure electrolyte dielectrics noted in Table 3. The 
geometry is illustrated in Figure 68.   

 
Figure 68.  Model of Alumina Particle with Dipole Pair  

However, these hydrogen ions in the electrolyte composite also present a potential 

path for charge break down with sufficient applied potential.  Alumina and metal 

particles do not completely occupy the volume of the dielectric.  Space between these 

particles can be filled with aqueous electrolyte, permitting the flow of charged ions 

through the acid between electrodes.  This concept is depicted in Figure 69, with metal 

particles omitted for clarity. 
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Figure 69.  Model of Charge Flow Through Dielectric Electrolyte 

This postulated model of charge storage indicates that limited operating voltage 

may be inherent to the use of aqueous electrolyte in the dielectric matrix.  Specifically, 

the propensity of charges to flow through the aqueous phase of the dielectric medium is a 

function of the strength of the electric field, and hence the applied voltage and thickness 

of the layer.  Increasing the thickness of the layer with constant applied voltage would 

decrease the strength of field, and consequently the migration of charged ions.  It follows 

that an increased operating voltage would be permitted before breakdown.   

Limited operating voltage is a challenge also faced by supercapacitors, as 

discussed in Chapter I, Section C.2.  The implementation of more stable electrolytes 

operating in excess of 3 V has been a significant avenue for performance improvement in 
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that technology [21], [54].  Alternate electrolyte chemistry or a different configuration of 

composite dielectric that does not include aqueous electrolyte may similarly improve 

voltage and energy density in MMD designs. 

E. METAL PARTICLE INSULATING SURFACE LAYER 

The increased volume loading of insulated particles in the CED was a significant 

finding.  It is shown that by a simple surface treatment process, the resistance of metal 

powders can be increased by at least an order of magnitude.  Essentially, a bed of 

conductive nickel powder can be made into an insulating material by a simple soak in 

H2O2.  The existence of any insulating surface oxide layer could not be verified by 

various characterization efforts and there is no observable change in mass or density of 

the metal powder.  Only through direct resistance measurement is the existence of the 

insulating layer confirmed.  This observation suggests that the insulating layer must be 

very thin, possibly less than 100 atomic layers.  There is indication that the surface 

treatment has an impact on the surface texture of the metal particles. 

The difference in performance between CED capacitors constructed with 

insulated and conductive particles validates the significance of this finding.  Capacitors 

produced with dielectrics containing untreated, conductive nickel particles were not 

functional at volume fractions above 25%.  Constructing capacitors with treated powders 

permits metal particle volume loading of at least 40%.  This effect is not fully explored in 

this study.  The original objective of maximizing dielectric constant and energy density 

led to the observation of functional capacitor dielectrics with high metal volume 

fractions.  However, the upper bound of this observation is not captured in this study.  

High volume fractions are not tested over a range of surface treatments. 

F. SUMMARY 

In summary, this study accomplishes validation of the CED concept and examines 

specific factors influencing capacitor performance.  Previously unreported dielectric 

constants are observed and conductive particles are loaded in high volume fractions in a 

composite dielectric.  However, the capacitors suffer from limited operating voltages and 
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appear particularly susceptible to complex loss behavior.  A concept model is postulated 

for the mechanisms of charge storage and voltage limitations. 
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VI. RECOMMENDED FUTURE WORK 

Continuation of this research could take several directions.  One aspect suggesting 

further consideration is the examination of alterative variants of insulated conducting 

particles.  Particularly of interest based on parallel investigations is the suitability of 

carbon particles coated in tetraethyl orthosilicate (TEOS) to create an insulating silica 

layer [55]. 

Another aspect for study is to focus on improving the voltage limitation by 

adjusting the composition of the matrix phase.  The relative composition and selected 

constituent chemicals were held mostly constant for this study.  Alternate investigations 

of the acid or base solution used in the electrolyte, and its relative amount with respect to 

the base ceramic powder, should be continued.  Organic electrolytes with established 

higher breakdown voltages should lead to increases in operating voltage and energy 

density.  Alternate ceramics could also be considered to capitalize on higher relative 

permittivity in the dielectric matrix phase.  Loading insulated conductive particles into 

BaTiO3 powder is an interesting prospective concept. 

The relationship between the dielectric thickness and breakdown voltage should 

also be refined.  Certainly a thinner dielectric is preferable for energy density and 

capacitance, but not if the voltage limit is strictly tied to the dielectric thickness. 

More intentional consideration of high volume loading also justifies further study.  

This study demonstrated that insulated metal particles can be loaded into the electrolyte 

matrix in volume fractions up to 40%.  Determining the upper bound of this effective 

volume loading and the factors which influence that limit would comprise a significant 

result. 

A dedicated study of oxidizing surface treatments could also support this concept.  

This study demonstrated that the described H2O2 surface treatment succeeded in 

insulating the nickel powder, but the specific mechanism is not understood.  Varying the 

parameters of the surface treatment process and application of additional characterization 

methods could inform a more optimal particle treatment regimen. 
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APPENDIX 

A. DUPLICATE CAPACITOR TESTING 

The results shown in Table 10 are duplicate tests not previously described in this 

study.  The corresponding energy densities are represented on Figure 22. 
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Nickel Volume 
Loading 
(Treatment) 

Composition Dielectric 
Thickness (d) 

Initial Discharge 
Voltage (V0 ) 

Dielectric 
Constant (εR) 

Operating 
Voltage 

20% 
(untreated) 

12 mL alumina (2.4 g) 
0.24 g boric acid 
3 mL treated nickel 
3.5 mL H20 

1.73 mm 1.69 V 3.56E9 1.10 V 

20% 
(3x treated) 

12 mL alumina (2.5 g) 
0.25 g boric acid 
3 mL treated nickel 
3.5 mL H20 

2.39 mm 1.76 V 4.23E9 1.19 V 

20% 
(2x treated) 

12 mL alumina (2.5 g) 
0.25 g boric acid 
3 mL treated nickel 
3.5 mL H20 

2.18 mm 1.85 V 5.34E9 1.25 V 

20% 
(2x treated) 

12 mL alumina (2.5 g) 
0.25 g boric acid 
3 mL treated nickel 
3.5 mL H20 

1.98 mm 1.50 V 2.84E9 1.08 V 

20% 
(1x treated) 

12 mL alumina (2.5 g) 
0.25 g boric acid 
3 mL treated nickel 
3.5 mL H20 

2.11 mm 1.62 V 3.38E9 1.20 V 

30% 
(2x treated) 

10.5 mL alumina (2.2 g) 
0.22 g boric acid 
4.5 mL treated nickel 
3.5 mL H20 

1.98 mm 1.77 V 5.07E9 1.24 V 

40% 
(2x treated) 

9 mL alumina (1.8 g) 
0.18 g boric acid 
6 mL treated nickel 
3.9 mL H20 

1.85 mm 0.82 V (No measurable result) 

40% 
(3x treated) 

9 mL alumina (1.8 g) 
0.18 g boric acid 
6 mL treated nickel 
3.9 mL H20 

2.03 mm 1.69 V 5.63E9 1.26 V 

Table 12.   Duplicate CED Capacitor Discharge Test Results 



 113 

B. RESISTANCE TESTING 

The values shown in Tables 13 through 17 are voltages recorded by conducting 

resistance checks using the voltage divider circuit shown in Figure 15. All values are 

recorded in volts.   Each table contains results from a specific level of surface treatment.  

Each series of voltage measurement is repeated several times and recorded in respective 

columns.  Particularly, in Table 13, eight iterations are conducted due to higher 

variability in the result. 

 

Vapplied Vpowder 

0 0.026 0.024 0.234 0.210 0.002 0.318 0.293 0.158 

0.5 0.035 0.033 0.317 0.288 0.003 0.442 0.406 0.221 

1 0.072 0.068 0.618 0.565 0.006 0.884 0.814 0.440 

1.5 0.106 0.101 0.890 0.826 0.009 1.305 1.200 0.648 

2 0.141 0.134 1.145 1.074 0.012 1.721 1.564 0.850 

2.5 0.173 0.166 1.367 1.290 0.015 2.118 1.919 1.040 

3 0.204 0.199 1.592 1.500 0.018 2.498 2.263 1.220 

3.5 0.236 0.233 1.720 1.683 0.020 2.855 2.575 1.398 

4 0.267 0.264 1.900 1.857 0.023 3.206 2.886 1.527 

Table 13.   Resistance Check Voltage Measurements for Untreated Nickel Powder 
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Vapplied Vpowder 

0 0.345 0.342 0.344 

0.5 0.482 0.475 0.479 

1 0.980 0.964 0.974 

1.5 1.475 1.444 1.466 

2 1.984 1.928 1.970 

2.5 2.477 2.386 2.458 

3 2.973 2.826 2.947 

3.5 3.469 3.246 3.436 

4 3.974 3.667 3.930 

Table 14.   Resistance Check Voltage Measurements for 1x Treated Nickel Powder 

Vapplied Vpowder 

0 0.330 0.329 0.328 

0.5 0.460 0.459 0.458 

1 0.929 0.927 0.926 

1.5 1.390 1.385 1.383 

2 1.854 1.847 1.844 

2.5 2.297 2.289 2.283 

3 2.732 2.722 2.716 

3.5 3.151 3.151 3.143 

4 3.577 3.575 3.567 

Table 15.   Resistance Check Voltage Measurements for 2x Treated Nickel Powder 
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Vapplied Vpowder 

0 0.342 0.344 0.343 

0.5 0.479 0.479 0.480 

1 0.976 0.976 0.978 

1.5 1.470 1.470 1.474 

2 1.976 1.976 1.983 

2.5 2.468 2.468 2.477 

3 2.961 2.960 2.973 

3.5 3.454 3.454 3.469 

4 3.955 3.954 3.974 

Table 16.   Resistance Check Voltage Measurements for 3x Treated Nickel Powder 

Vapplied Vpowder 

0 0.340 0.245 0.342 

0.5 0.427 0.337 0.476 

1 0.850 0.656 0.966 

1.5 1.254 0.945 1.449 

2 1.655 1.223 1.942 

2.5 2.022 1.468 2.417 

3 2.379 1.695 2.890 

3.5 2.720 1.915 3.359 

4 3.056 2.120 3.828 

Table 17.   Resistance Check Voltage Measurements for 4x Treated Nickel Powder 
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