
Calhoun: The NPS Institutional Archive
DSpace Repository

Theses and Dissertations 1. Thesis and Dissertation Collection, all items

1996-09

New motion planning and real-time
localization methods using proximity for
autonomous mobile robots

Wahdan, Mahmoud A.
Monterey, California. Naval Postgraduate School

https://hdl.handle.net/10945/8737

Downloaded from NPS Archive: Calhoun

NAVAL POSTGRADUATE SCHOOL
Monterey, California

DISSERTATION

NEW MOTION PLANNING AND REAL-TIME
LOCALIZATION METHODS USING PROXIMITY FOR

AUTONOMOUS MOBILE ROBOTS

by

Mahmoud A. Wahdan

September 1996

Thesis Advisor: Yutaka Kanayama

Approved for public release; distribution is unlimited.

Thesis
W217565

REPORT DOCUMENTATION PAGE
Form Approved

OMH No. 0704-0I8X

Public reporting burden lor this collection ol information is estimated to average 1 hour per response, including the time reviewing instructions, searching existing data sources
gathering and maintaining the data needed, and completing and reviewing the collection ol information Send comments regarding this burden estimate or any other aspect ot this

collection of information, including suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204. Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Proiect (0704-0188), Washington, DC 20503

1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE

September 1996
3. REPORT TYPE AND DATES COVERED

Doctoral Dissertation

4. TITLE AND SUBTITLE

NEW MOTION PLANNING AND REAL-TIME LOCALIZATION
METHODS USING PROXIMITY FOR AUTONOMOUS MOBILE
ROBOTS

6. AUTHOR(S)

Mahmoud A. Wahdan

5.

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

Naval Postgraduate School

Monterey, CA 93943-5000

9. SPONSORING/ MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/ MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

The views expressed in this dissertation are those of the author and do not reflect the official policy or

position of the Department of Defense or the United States Government.

12a. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

One of the most difficult theoretical problems in robotics-motion planning for rigid body robots-

must be solved before a robot can perform real-world tasks such as mine searching and processing. This

dissertation proposes a new motion planning algorithm for an autonomous robot, as well as the method and

results of implementing this algorithm on a real vehicle.

This dissertation addresses the problem of safely navigating an autonomous vehicle through free space

of a two dimensional, world model with polygonal obstacles from a start configuration (position/

orientation) to a goal configuration using smooth motion under the structure of a layered motion planning

approach. The approach proposes several new concepts, including v-edges and directed v-edges, and

divides the motion planning problem of a rigid body vehicle into two subproblems: (i) finding a global path

using Voronoi diagrams and for a given start and goal configurations planning an optimal global path; the

planned path is a sequence of directed v-edges, (ii) planning a local motion from the start configuration,

using the aforementioned global path. The problem of how to design a safe and smooth path, is effectively

solved by the steering function method and proximity. Another problem addressed here is how to make a

smooth transition when the vehicle gets closer to an intersection of two distinct boundaries.

14. SUBJECT TERMS

Robotics, autonomous vehicles, global path planning, local motion planning,

steering function, polygon tracking, self localization.

17. SECURITY CLASSIFICATION

OF REPORT

Unclassified

18. SECURITY CLASSIFICATION

OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION

OF ABSTRACT

Unclassified

15. NUMBER OF PAGES

16. PRICE CO*an

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std 239-18

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

1 3. This dissertation also presents a robust algorithm for the vehicle to continually eliminate its positional

uncertainty while executing missions. This functionality is called self-localization which is an essential

component of model-based navigation for indoor applications. This algorithm is based on the two-

dimensional transformation group. Through this method, the robot can minimize its positional uncertainty,

make safe and reliable motions, and perform useful tasks in a partially known world.

All of the proposed algorithms were implemented on an autonomous mobile robot Yamabico-11 to

confirm our theoritical algorithms.

SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED

Approved for public release; distribution is unlimited

NEW MOTION PLANNING AND REAL-TIME LOCALIZATION METHODS
USING PROXIMITY FOR AUTONOMOUS MOBILE ROBOTS

Mahmoud A. Wahdan
Colonel, Egyptian Army

B.S., Military Technical College, Egypt, 1977

M.S., Cairo Universty, Egypt, 1990

DOCTOR OF PHILOSOPHY IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
September 1996

/ r I \ P

DUDLEY KNOX LIBRARY
NAVAL POSTGRADUATE SCHOOL

ABSTRACT ^terey ca 93943-5101

One of the most difficult theoretical problems in robotics-motion planning for

rigid body robots-must be solved before a robot can perform real-world tasks such

as mine searching and processing. This dissertation proposes a new motion planning

algorithm for an autonomous robot, as well as the method and results of implementing

this algorithm on a real vehicle.

This dissertation addresses the problem of safely navigating an autonomous

vehicle through free space of a two dimensional, world model with polygonal obstacles

from a start configuration (position/orientation) to a goal configuration using smooth

motion under the structure of a layered motion planning approach. The approach

proposes several new concepts, including v- edges and directed v-edges, and divides the

motion planning problem of a rigid body vehicle into two subproblems: (i) finding

a global path using Voronoi diagrams and for a given start and goal configurations

planning an optimal global path; the planned path is a sequence of directed v-edges,

(ii) planning a local motion from the start configuration, using the aforementioned

global path. The problem of how to design a safe and smooth path, is effectively

solved by the steering function method and proximity. Another problem addressed

here is how to make a smooth transition when the vehicle gets closer to an intersection

of two distinct boundaries.

This dissertation also presents a robust algorithm for the vehicle to continually

eliminate its positional uncertainty while executing missions. This functionality is

called self-localization which is an essential component of model-based navigation for

indoor applications. This algorithm is based on the two-dimensional transformation

group. Through this method, the robot can minimize its positional uncertainty, make

safe and reliable motions, and perform useful tasks in a partially known world.

All of the proposed algorithms were implemented on an autonomous mobile

robot Yamabico-11 to confirm our theoritical algorithms.

VI

TABLE OF CONTENTS

I. INTRODUCTION 1

A. BACKGROUND 1

B. PROBLEM STATEMENT 4

1. Definitions 4

2. Problem Description 7

3. Assumptions 8

C. PREVIOUS WORK 8

1. Motion Planning 8

a. Roadmap and Cell Decomposition Methods 8

b. Potential Field Methods 9

c. Other Methods 10

2. Self-Localization 11

D. ORGANIZATION OF DISSERTATION 13

II. LAYERED MOTION PLANNING 15

A. INTRODUCTION 15

B. MOTION PLANNER STRUCTURE 16

1. Mission Planner 16

2. World Model 16

3. Global Path Planner 17

4. Local Motion Planner 18

5. Self- Localization Module 18

C. METHODOLOGY 19

III. POLYGONS, SUBPOLYGONS AND IMAGES 21

A. GENERAL DEFINITIONS 21

B. POLYGON 23

C. SUBPOLYGONS 31

vn

D. THE ROBOT'S SPACE 34

E. IMAGES . 36

1. Visibility from Point to Polygon 37

2. Type of an Image from a Point to a Convex Polygon ... 41

3. The Image Type Algorithm 44

a. Proof of Correctness of the Algorithm 46

b. Analysis of the Worst-Case Time Complexity of

the Algorithm 47

F. FINDING AN IMAGE ON A NONCONVEX POLYGON ... 48

IV. PATH CLASS REPRESENTATION USING VORONOI DIA-

GRAMS 51

A. PATH CLASSES 52

B. THE LOCUS APPROACH TO PROXIMITY PROBLEMS: V-

ORONOI DIAGRAM 54

1. Definitions 54

2. Voronoi Diagram of Polygon 55

C. POLYGONAL WORLD AND PATH CLASSES 58

1. Directed v-edge 59

2. Canonical Paths and Directed v-edges Sequences 62

3. Connectivity Graph 66

4. Path Class Representation 68

5. Finding the Best Path Class 70

6. Following the Path Class 71

D. PATH CLASSES AND SUBPOLYGONS 72

E. ADVANTAGES OF PATH CLASS REPRESENTAION USING

DIRECTED V-EDGES SEQUENCES 78

V. POLYGON TRACKING MOTION 81

A. PROBLEM STATEMENT 81

Vlll

B. GENERAL CONCEPTS OF THE STEERING FUNCTION . . 83

C. CLEARANCE DEFINITION 86

D. COMPARING PATH ALTERNATIVES 87

1. Safety Cost Function 88

2. Smoothness Cost Function 89

E. COMBINING STEERING FUNCTIONS 90

F. EDGE-CONVEX VERTEX TRACKING 91

G. CONVEX VERTEX TRACKING 96

H. EDGE-CONCAVE VERTEX TRACKING 100

I. SIMULATION RESULT ANALYSIS 104

VI. SAFE LOCAL MOTION PLANNING WITH SMOOTHING 115

A. PROBLEM STATEMENT 115

B. SAFETY CLEARANCE CONCEPT 116

C. GENERALIZED SAFETY COST FUNCTION 117

D. PLANNING APPROACH 118

E. THE USEFULNESS OF DIRECTED V-EDGES SEQUENCE

TO LOCAL MOTION PLANNING 121

F. DIFFERENT TYPES OF POLYGON TRACKING IN DIRE-

CTED V-EDGES SEQUENCE 123

G. LOCAL MOTION PLANNING ALGORITHM 129

H. SIMULATION RESULT ANALYSIS 135

VII. SELF LOCALIZATION USING MODEL-SONAR FEATURE -

CORRESPONDENCE 147

A. INTRODUCTION 147

B. GOAL AND FEATURES OF SELF LOCALIZATION METHOD 148

C. TWO DIMENSIONAL TRANSFORMATION 150

1. Definitions 150

D. LINEAR FEATURE EXTRACTION 152

IX

1. Calculation of Global Sonar Return 152

2. Generalized Least Squares Linear Fitting 154

E. PRINCIPLES OF REDUCING UNCERTAINTY 155

F. SELF LOCALIZATION ALGORITHM 156

1. Position Information of Natural Landmarks 159

2. Position Estimation of Natural Landmarks by Sonar and

Odometry 160

3. Odometry Correction 161

VIII. IMPLEMENTATION OF LOCAL MOTION PLANNING AND
SELF LOCALIZATION ALGORITHMS 163

A. GEOMETRIC MODEL OF A ROBOT'S WORLD 163

1. World Model Data Structure 163

2. Path Class Data Structure 165

3. Image Data Structure 165

B. POLYGON TRACKING EXPERIMENTAL RESULTS 166

C. LOCAL MOTION PLANNING EXPERIMENTAL RESULTS . 166

D. SELF LOCALIZATION EXPERIMENTAL RESULTS 167

1. Single Landmark Experiment 167

IX. YAMABICO-11 HARDWARE AND SOFTWARE ARCHITEC-

TURE 175

A. HARDWARE SYSTEM OF YAMABICO-11 175

1. IV-SPARC-33 CPU 175

2. SONARS 178

a. Sonar Grouping 179

b. Sonar Range Calculation 180

c. Sonar Interrupt Control 181

B. MML-11 SOFTWARE ARCHITECTURE 181

1. System Architecture 182

2. Interrupt-driven Subsystems 183

3. RealTime Operating System 183

4. User Program 183

5. MOTION CONTROL ARCHITECTURE . 184

6. Motion Control Subsystem „ 185

C. MML-11 LANGUAGE SPECIFICATION 186

1. Data Structures 187

2. User Function Specification 189

X. CONCLUSIONS 199

XI. FUTURE RESEARCH 201

APPENDIX A. NORMALIZING ANGLES 203

APPENDIX B. LEAST SQUARES LINEAR FITTING 205

APPENDIX C. USER PROGRAM EXAMPLES 209

LIST OF REFERENCES 217

INITIAL DISTRIBUTION LIST ... 223

XI

Xll

LIST OF TABLES

I. Relation between smoothness and safety cost function values for

polygon tracking (I) 104

II. Relation between smoothness and safety cost function values for

polygon tracking (II) 105

III. Relation between smoothness and safety cost function values for

polygon tracking (III) 105

IV. Relation between smoothness and safety cost function values for

polygon tracking (IV) 105

V. Relation between smoothness and safety cost function values for

polygon tracking (V) 106

VI. Relation between smoothness and safety cost function values for

motion planning (I) 136

VII. Relation between smoothness and safety cost function values for

motion planning (II) 137

VIII. Relation between smoothness and safety cost function values for

motion planning (III) 137

IX. Relation between smoothness and safety cost function values for

motion planning (IV) 138

X. Relation between smoothness and safety cost function values for

motion planning (V) 138

XI. Relation between smoothness and safety cost function values for

motion planning (VI) 139

XII. Representation of path class data structure 165

XIII. Representation of image data structure 165

XIV. Odometry error correction (30 cm/sec) 168

XV. Average odometry error correction (30 cm/sec) 168

xin

XVI. Sonar position 188

xiv

LIST OF FIGURES

1. Robot's world space 5

2. A world and paths 6

3. Layered motion planning structure 16

4. Motion planner/execution architecture 17

5. Simple and non-simple polygon (I) 24

6. Simple and non-simple polygon (II) 24

7. Direction between Two Points 26

8. Interior and exterior angle of a simple polygon 26

9. Convex and concave simple polygons 27

10. Convex set „ 28

1 1

.

Cross product of vectors . 28

12. Using the cross product to determine how consecutive line seg-

ments I^uT. and vTv^ turn at a point v\ 29

13. Interior and exterior of a simple polygon 31

14. Concave polygon 32

15. Subpolygons decomposition of concave polygon 33

16. Concave polygon and its subpolygons (I) 33

17. Concave polygon and its subpolygons (II) 34

18. Robot's world space 35

19. Image on object 36

20. Images on world 37

21. Visibility from point p to convex polygon B (I) 38

22. Classifications of vertex t>, of polygon B with respect to a seg-

ment pvi 38

23. Visibility from point p to convex polygony B (II) 40

24. Image of point p lies on an edge of convex polygon B 42

xv

25. Image of point p lies on vertex t>, of convex polygon B 43

26. Image type 44

27. Correctness of image type algorithm 47

28. Image of a point p on cw concave polygon B 48

29. Image of a point p on ccw concave polygon B 48

30. A world and paths 52

31. Images on a polygon 56

32. Voronoi diagram of a ccw polygon 56

33. Voronoi diagram of a cw polygon (I) 57

34. Voronoi diagram of a cw polygon (II) 57

35. Polygonal world 58

36. Voronoi diagram of polygonal world (I) 59

37. Voronoi diagram of polygonal world (II) 60

38. Defining directed v-edge for the same directed boundaries {ccw

polygons) 61

39. Defining directed v-edge for different directed boundaries (cw

and ccw) 61

40. Paths and canonical paths 62

41. Interpretation of canonical path as directed v-edges sequence . . 64

42. Directed v-edges sequence (I) 65

43. Directed v-edges sequence (II) 66

44. Basic connectivity graph of a polygonal world (I) 67

45. Basic connectivity graph of a polygonal world (II) 67

46. Polygonal world (I) 68

47. Augmented connectivity graph of a polygonal world (I) 69

48. Polygonal world (II) 70

49. Augmented connectivity graph of a polygonal world (II) 71

xvi

50. Problem 1: initial orientation of a vehicle is different from the

direction of a motion 73

51. Problem 2: directed v-edge of a concave polygon 73

52. Problem 3: Voronoi diagram of polygonal world consisting of

two polygons (ccw polygon inside cw polygon boundary) 74

53. Solution of probelm 1: Voronoi diagram of a subpolygonal world 74

54. Basic connectivity graph of a subpolygonal world 75

55. Augmented connectivity graph of a subpolygonal world 75

56. Solution of problem 2: up and down directed v-edges (I) 76

57. Solution of problem 2: up and down directed v-edges (II) 77

58. Solution of problem 3: world and augmented connectivity graph 79

59. Directed v-edges sequence (left turn is required) 80

60. Directed v-edges sequence (no turn is required) 80

61. ccw tracking direction 82

62. cw tracking direction 82

63. Block diagram for polygon tracking 83

64. Geometrical concepts of steering function 85

65. Robot's safety clearance (I) 86

66. Non-linear safety clearance function 87

67. Robot's safety clearance (II) 88

68. First and second images 90

69. ccw tracking in Edge-Convex Vertex Tracking Mode 92

70. cw tracking in Edge-Convex Vertex Tracking Mode 93

71. Calculate safety clearance function of ccw tracking 94

72. Calculate safety clearance function of cw tracking 95

73. Different trajectories corresponding to their safety cost function

values in Edge-Convex Vertex Tracking Mode 96

74. ccw tracking of Vertex Tracking Mode 97

xvii

75. cw tracking of Vertex Tracking Mode 98

76. Different trajectories corresponding to their safety Cost Func-

tion Values in Vertex Tracking Mode . 100

77. ccw tracking in Edge-Concave Vertex Tracking Mode 101

78. cw tracking in Edge-Concave Vertex Tracking Mode 102

79. Different trajectories corresponding to their safety Cost Func-

tion Values in Edge-Concave Vertex Tracking Mode 103

80. Different Trajectories of ccw Motion Corresponding to their Safety

Cost Function Values for ccw polygon (I) 107

81

.

Different Trajectories of ccw Motion Corresponding to their Safety

Cost Function Values for ccw polygon (II) 108

82. Different Trajectories of ccw Motion Corresponding to their Safety

Cost Function Values for ccw polygon (III) 109

83. Different Trajectories of cw Motion Corresponding to their Safety

Cost Function Values for ccw polygon (IV) 110

84. Different Trajectories of ccw Motion Corresponding to their Safety

Cost Function Values for ccw polygon (V) Ill

85. Different Trajectories of cw Motion Corresponding to their Safety

Cost Function Values for cw polygon (VI) 112

86. Different Trajectories of cw Motion Corresponding to their Safety

Cost Function Values for ccw polygon (VII) 113

87. Block diagram for motion planning 116

88. Tracking with exact Voronoi boundary 116

89. Safety clearance 117

90. Tracking with safety clearance 117

91. Safe and unsafe paths 119

92. Discontinuity where two distinct Voronoi boundary intersect . . 120

93. Both left and right images are on edges 121

xvm

94. Directed v-edges sequence to local motion planning (left turn is

required) 122

95. Directed v-edges sequence to local motion planning (no turn is

required) 123

96. Left and right current and next polygons are not identical in

directed v-edges sequence E 124

97. Left current and next left polygons are identical but right current

and next right polygons are not identical in directed v-edges

sequence E (I) 125

98. Left current and next left polygons are identical but right current

and next right polygons are not identical in directed v-edges

sequence E (II) 125

99. Left current and next left polygons are identical but right current

and next right polygons are not identical in directed v-edges

sequence E (III) 126

100. Left current and next left polygons are identical but right current

and next right polygons are not identical in directed v-edges

sequence E (IV) 126

101. Left current and next left polygons are not identical but right

current and next right polygons are identical in directed v-edges

sequence E (I) 127

102. Left current and next left polygons are not identical but right

current and next right polygons are identical in directed v-edges

sequence E (II) 127

103. Left current and next left polygons are not identical but right

current and next right polygons are identical in directed v-edges

sequence E (III) 128

xix

104.

105.

106.

107.

108.

109.

110.

111.

112.

113.

114.

115.

116.

117.

118.

119.

120.

121.

122.

123.

124.

125.

126.

127.

128.

129.

Left current and next left polygons are not identical but right

current and next right polygons are identical in directed v-edges

sequence E (IV)

Left turn is required (1)

Left turn is required (II) .

Right turn is required (I)

Right turn is required (II)

No turn is required (I)

No turn is required (II)

No turn is required (III)

No turn is required (IV)

No turn is required (V)

World of motion planning

(I).

(II)

(III)

(IV)

(V)

(VI)

Motion Planning and Execution result

Motion Planning and Execution result

Motion Planning and Execution result

Motion Planning and Execution result

Motion Planning and Execution result

Motion Planning and Execution result

Positioning of rigid body robot as configuration

Sonar configuration in global coordinate ...

Least square linear fitting procedure

Robot's localization error (I) . .

Object configurations

Robot's localization error (II)

Global position of sonar return

Matching algorithm
,

Real-time localization correction ,

128

131

131

132

132

133

133

134

134

135

136

140

141

142

143

144

145

148

153

154

156

157

158

160

162

162

xx

130. Representation of world data structure 164

131. Yamabico-11 Polygon Tracking and Execution Result (I) 169

132. Yamabico-11 Polygon Tracking and Execution Result (II) 170

133. Yamabico-11 Local Motion Planning and Execution Results (I) . 171

134. Yamabico-11 Local Motion Planning and Execution Result (II) . 172

135. Yamabico-11 Local Motion Planning and Execution Result (III) 173

136. Odometry Correction Experimental using Single Landmark ... 174

137. Autonomous mobile robot, Yamabico-11 176

138. Block diagram of Yamabico-11 hardware architecture 177

139. Yamabico-11 ultrasonic sonar configuration 178

140. Yamabico-11 sonar hardware architecture 179

141. MML-11 software conceptual architecture 182

142. MML-11 motion control software architecture 184

143. A configuration represents a line or a circle 190

144. The line tracking function 193

145. The backward line tracking with stopping function 194

146. The backward line tracking with no stopping function 194

147. Fitted line 206

148. End points 208

xxi

XX11

ACKNOWLEDGMENTS

For four long years I have devoted myself to seeking the truth in the sea of

knowledge at the Naval Postgraduate School. If I was successful in achieving this

goal, my own effort was not the only factor. There were many people behind this

endeavor. They deserve my appreciation.

First and foremost, I would like to present my gratitude to my sister Nadia

Wahdan. She went through and shared all my frustration and excitement during

these years. Without her encouragement and unconditional support, I wouldn't have

accomplished this work.

I also wish to express my deepest gratitude to Professor Yutaka Kanayama

whose support, guidance, and enthusiasm have been a constant inspiration to me. His

door was always open for me and for any other student needing help. His patience

and positive attitude were invaluable to this research.

I am deeply indebted to my committee for their patience and wisdom. The

comments of Professor Thomas Wu and Professor Cynthia Irvine regarding my writ-

ing and scientific approach were exceptionally helpful. Professor Xiaoping Yun pro-

vided valuable comments on the overall layout of this dissertation and made insightful

suggestions to improve my understanding of the robotic field. Professor Craig Ras-

mussen generously provided me with badly needed mathematical guidance as well as

proofreading the manuscript numerous times. From my deepest heart, I would like

to thank Professor Fariba Fahroo for her support and encouragement in hard times.

With her support and help, I achieved the highest goal in my whole life.

I appreciate the continuous encouragement and support of the members of

the Yamabico research group, Khaled Morsy (Egypt), Ed Mays (USA), and Vasilios

Karamanlis (Greece).

I would like to thank my best friends Nabil Khalil, Ashraf Mamdouh and his

wife, and Khaled Morsy and his wife for their positive attitude before and after my

xxm

final defense. This gave me lots of courage in preparing for my defense. Best wishes

to all.

xxiv

I. INTRODUCTION

A. BACKGROUND
Answering the question "Where am I?" is one of the most elementary tasks

for any natural or artificial creature moving through the real world in a goal-oriented

fashion. Not only human beings but also animals solve this problem easily and with

astonishing accuracy by combining visual, acoustic, and other kinds of perceptions,

with vague knowledge about the traveled distance, and spatial knowledge which was

gathered and memorized at previous times. To understand and model the mecha-

nisms underlying this skill is one of the challenges for researchers and engineers who

want to build autonomous mobile robot vehicles. In the field of robotics, the ultimate

goal is to design an autonomous robot that is artificially intelligent. Recent advances

in computer processing speed have encouraged the development of increasingly capa-

ble mobile robot platforms. Making progress toward autonomous robots is of major

practical interest in a wide variety of application domains including manufacturing,

construction, waste managemnent, space exploration, undersea work, assistance for

the disabled, and medical surgery [49]. Due to the characteristics of reprogrammabil-

ity and multifunctionality, robots have been used in factories to perform a variety of

tasks including material handling, welding, painting, assembly, etc. In addition, it is

expected that by the end of this century robots will be able to perform very complex

tasks such as construction and maintenance in factories and households [45]. The

popular trend in current military applications is to accomplish the required mission

with a minimum loss of life. Consequently, many government-sponsored efforts are

underway to build systems for fighting fires, handling ammunition, transporting ma-

terial, conducting underwater search and inspection operations, mine searching and

other dangerous tasks now performed by humans [20].

Many of the above tasks require motion of the robot in order to carry out any

task. Thus there is a problem known as the motion planning problem. Although

the research in robot motion planning can be traced back to the late 1960's, most

of the theoretical breakthroughs and practical understandings of the issue have been

achieved only in the last decade, and much of the problem is still outstanding. The

problem of motion planning for rigid body robots has been considered one of the most

difficult theoretical problems in robotics and, obviously, must be solved for a robot

to perform real-world tasks such as mine searching and processing. The difficulty of

motion planning can best be summarized by J. C. Latombe [49] as follows:

At first glance motion planning looks relatively simple, since humans

deal with it with no apparent difficulty in their everyday lives. In fact, as

is also the case with perception, the elementary operative intelligence that

people use unconsciously to interact with their environment . . . turns out to

be extremely difficult to duplicate using a computer-controlled robot. It is

true that some naive methods can produce apparently impressive results, but

the limitations of these methods quickly become obvious. The unaware reader

will be surprised by the amount of nontrivial mathematical and algorithmic

techniques that are necessary to build a reasonably general and reliable motion

planner.

The level of complexity of the problem of motion planning again depends on

how the robot is being modeled and what physical constraints are imposed on it.

Motion planning rather than path planning is used, because vehicles considered

here are not points, but rigid bodies. In path planning, the result is a series of

positions which must be followed by the vehicle. In motion planning, not only is

position important, but also the orientation of the vehicle are important as it follows

a path.

For an autonomous vehicle, planning motions that avoid known and unknown

objects in its environment is the most fundamental functionality. Given an arbitrary

mission, for instance, mine searching and clearance, motion planning is an inevitable

subproblem that needs to be solved.

Generating collision-free motion of acceptable quality is one of the main con-

cerns in robotics. A typical robot presents an arm manipulator with a fixed base op-

erating in three-dimensional space, or a mobile vehicle operating in two-dimensional

space, or a combination of the two. Whatever form it takes, the robot is expected

to move purposely and safely in an often complex environment filled with known or

unknown obstacles.

Central to the success of robotic systems is the availability of intelligent robot

planning systems. With such a system, a robot accepts a goal statement or a task

specification (instead of the details of the robot actions) and then it can generate a

sequence of robot-level operations. By following these operations, the goal can be

accomplished.

The general motion planning problem for a system of autonomous vehicles

can be stated as follows: Given (1) an initial state of the vehicles, (2) a desired final

state of the vehicles, and (3) any constraints on allowable motions, find a collision-

free motion of the vehicles from the initial state to the final state that satisfies the

constraints.

Also, for a mobile robot, maintaining exact position information poses a ma-

jor problem. A key capability of a mobile robot operating in an indoor environment

is localization, i.e. determination of its current position and orientation (posture).

Automated guided vehicles, as used for transportation tasks in factories, still need a

network of physical guidelines buried in, or attached to, the floor [17]. Recent devel-

opments permit leaving the guideline for short maneuvers, for example at crossings

or docking stations. Increased flexibility can be achieved by free-navigating vehicles

using dead-reckoning and artificial or natural landmarks for localization. Results of

related techniques are reported in [15, 19].

Because of its simplicity and low cost, dead-reckoning is the most common-

ly used localization technique. However, because of error accumulation in dead-

reckoning systems, posture errors grow without bound unless they are reduced by

reference measurements. For this purpose, passive sensors like cameras [46] as well

as active sensors like sonar [51] and infrared imaging systems [12] have been applied.

Natural landmarks, such as walls and edges, or artificial landmarks, such as corner

cubes and retro-reflective strips are used as absolute references.

Navigation which is a fundamental requirement of autonomous mobile robots,

can be broadly separated into two distinct approaches: reference and dead reckoning.

Reference guidance refers to navigation with respect to a coordinate frame based on

visible external landmarks. Dead reckoning refers to navigation based on odometry,

inertial guidance, or some other "self-contained" sensing. Dead reckoning usually

provides the vehicle with an estimate of its position. Its disadvantage is that the po-

sition error grows without bound unless an independent reference is used periodically

to reduce the error. Reference guidance has the advantage that position errors are

bounded, but detection of external references or landmarks and real-time position fix-

ing may not always be possible. Clearly, dead reckoning and reference navigation are

complementary and combinations of the two approaches can provide very accurate

positioning systems.

Starting from the premise that coping with uncertainty is the most crucial

problem a mobile robot must face, we can conclude that the robot must have the

following basic capabilities:

• Sensory interpretation: The robot must be able to determine its relation-

ship to the environment by sensing. A wide variety of sensing technologies are

available: odometry; ultrasonic; infrared and laser range sensing; and monoc-

ular, binocular, and trinocular vision have all been explored. The difficulty is

in interpreting these data, that is, in deciding what the sensor signals tell us

about the external world.

• Reasoning: The robot must be able to decide what actions are required to

achieve its goal(s) in a given environment. This may involve decisions ranging

from what paths to take to what sensors to use.

B. PROBLEM STATEMENT

1. Definitions

This subsection defines a list of terms and concepts used throughout this dis-

sertation.

B,

Free Space

Figure 1. Robot's world space

Let 7Z denote the set of real numbers. The environment for the motion plan-

ning task of this dissertation is a two-dimensional plane Tt2 on which a global Carte-

sian coordinate system is defined.

Let B\,- — ,Bn be fixed objects (simple polygons) distributed in V? . These

B{S are called obstacles.

A world W is a set of n simple polygonal obstacles,

W = {B ,Bu ---,Bn }, n>0

where Bo is the outermost polygonal boundary, B\ ,
• • • Bn are polygonal obstacles

inside the boundary, and no pair of polygons intersects or touches.

The free space free(W) is the inside of Bo minus the union of the n polygons

contained in Bq. In other words, the free space is the complement of the union of all

polygons in W. We call the free space, together with the set of polygons, the robot's

world (Figure 1).

We consider path / to be directed curve with natural direction from /(0) to

/(l). A path f in W is a continous function

/ : [0, 1] -» free(W)

with /(O) ^ /(l)- The two points /(0) and f(l) are called its endpoints, and the

path joins them. If they are distinct, we usually denote /(0) as a start S and /(l) as

a goal G (Figure 2).

Figure 2. A world and paths

Let q denote the robot's configuration. The robot's configuration q is denned

by

q = (j>,9,k)

where p, 6 and k are its position, orientation, and curvature respectively. The con-

figuration defined in this dissertation is normally used to describe the robot's instan-

taneous status, either stationary or moving. This configuration is especially useful

for specifying a path. For instance, if we use q = (p, 0, k) to specify a line, this line

passes through the point at position p and with orientation 9. When the curvature

element is k = 0, it is specifying a straight line, otherwise it is a curve.

The motion of the robot is subject to nonholonomic kinematic constraints,

That is, the robot is able to perform both forward and reverse motion but not sideways

motion:

• A finite curvature limitation of motion represented by the maximum curvature

(/cmaI) that the vehicle can take.

• A finite rate of change of curvature limitation of smooth motion represented

by the maximum rate of change of curvature ((^)mai).
1

2. Problem Description

The purpose of this research is to investigate fundamental theories for navi-

gation to construct an autonomous mobile robots for military and industrial appli-

cations. This dissertation is an investigation of one aspect of this goal: the problem

of motion planning which allows an autonomous robot to plan its own motion in a

known and static two-dimensional environment. Here it is desired to safely navigate

an autonomous vehicle through free space using smooth motions.

We consider that the motion planning problem for a rigid body robot must

be divided into at least two subproblems: a global path planning problem and a local

motion planning problem. The first is the problem of finding the best path class in

terms of homotopy [26]. In that sense, this level is an abstract portion of the whole

problem. The second is the problem of finding the best motion when a path class is

defined by the first subproblem. We call this method layered motion planning.

The problem statements specifically addressed herein are the following:

1

.

How do we best represent the path class to make local motion planning easier?

2. How do we find a safe local motion planning algorithm?

3. How do we find a robust real-time positional-uncertainty elimination (self-

localization) algorithm?

Following theoretical analysis, algorithm design, and simulation, we will im-

plement the resulting algorithms on the autonomous self-contained mobile vehicle

Yamabico-11 for testing and evaluation.

1 This limitation is applicable only when we are interested in smooth motion in which the robot is

not supposed to stop when moving along a path. If the robot is allowed to stop before maneuvering,

then this limitation does not exist and the robot is able to follow any Kmax-constrained path so long

as there is tangential continuity anywhere on the path.

3. Assumptions

The following assumptions are used throughout this dissertation:

• The world W is polygonal.

• Although the robot will be operating in a three-dimensional environment, it is

assumed that the model reflects the projection of the obstacles onto the plane

of the floor on which the robot moves.

• The vehicle and all objects in the robot's world are rigid bodies.

• The obstacles do not intersect or touch each other.

• The robot has complete knowledge of the environment in which it is operating.

However, the use of external references to guide its motion other than the

physical characteristics of the walls will not be used.

• All obstacles in the environment are stationary.

• All obstacles faces are perpendicular to the plane in which the robot moves.

This assumption is required to assure a good sensor return from all objects.

C. PREVIOUS WORK
1. Motion Planning

Several concepts and theories have been developed which may lead to solving

the motion planning problem. The "classical" approaches to motion planning can be

divided in the following three classes: roadmap methods, cell decomposition methods,

and potential field methods. We will briefly introduce these approaches and summarize

them below. For a thorough discussion of these approaches see [49, 32].

a. Roadmap and Cell Decomposition Methods

Let W denote the space of all configurations for the robot, and let

free(W) be the robot's free configuration space, i.e., the subset of W in which the

robot does not intersect any obstacles. The roadmap approach (or skeleton approach)

consists of capturing the connectivity of free(VV) in the form of a network of one-

dimensional curves, the roadmap, lying in free(W). After a roadmap p has been

constructed, the path planning is reduced to connecting the start and goal configu-

rations to p, and searching p for a path.

The principle of the cell decomposition approach is to decompose the

robots free configuration space free(W) into a collection of non-overlapping regions

(cells), whose union is (exactly or approximately) free(W). This cell decomposition is

then used for constructing the connectivity graph G which represents the adjacency

relation among the constructed cells. Every node in G corresponds to a cell, and two

nodes are connected by an edge if and only if their corresponding cells are adjacent.

The path planning is then performed by finding a path in G from the node corre-

sponding to the start cell (the cell containing the start configuration) to the node

corresponding to the goal cell (the cell containing the goal configuration).

We see that both the roadmap approach as well as the cell decom-

position approach consists of constructing a global data structure that can later be

used for solving one or more motion planning problems. A strong point of both ap-

proaches is that cell-decomposition and roadmap algorithms are typically complete,

i.e., whenever a path exists a path will be found. There are two serious drawbacks:

1. The computations of the data structures tend to be very expensive in both

time and memory, and

2. They do not seem to be suitable for robots with non-holonomic constraints

such as car-like robots or multi-body mobile robots.

b. Potential Field Methods

In the potential field approach, no data structure is built. Globally

the idea is that the robot (represented by a configuration in configuration space) is

treated as a particle under the influence of an artificial potential field whose variations

are expected to reflect the "structure" of the free configuration space free(W). The

potential field is typically defined by a function / : W —> % that is a weighed sum

of an attractive potential, pulling the robot towards the goal configuration, and a

number of repulsive potentials, pushing the robot away from the obstacles. The

motion planning is performed by repeatedly computing the most promising direction

of motion and moving in this direction by some step size.

A typical problem with potential field methods is that the robot can

become stuck in a local minimum of the potential field. That is, the robot reaches a

configuration q where the (weighted) sum over all the potentials is equal to the null-

vector. Recently, much progress has been made in defining good potential functions

with few local minima, and efficient techniques have been developed for escaping

from local minima. Currently there exist practical potential-field planners for robots

with many degrees of freedom, as well as for some types of non-holonomic robots

(see for example [3]). So it seems that the potential-field approach does not have

the disadvantages of the former approaches. A major drawback of the potential-field

approach, though, is that the concept is unsuitable for learning problems (no start and

goal configurations are specified, and the objective is to compute a data-structure,

which can later used for queries with arbitrary start and goal configurations), due to

the fact that every goal configuration defines a distinct potential field.

c. Other Methods

Several other methods were developed by Lozano-Perez to handle rigid

body robots as point robots. The configuration space approach is considered as one

of global motion planning using the concept of the vehicle configuration (x,y,0) [53].

The idea is to transform the problem of planning the motion of a dimensioned object

into the problem of planning the path of a point robot by mapping the obstacles from

the physical work space into the configuration space. However, it is known that the

computation time for the configuration space approach is larger and also it is difficult

to incorporate nonholonomic constraints into the searching algorithm.

Barraquand and Latombe present a method in which the entire con-

figuration space is discrete. A dynamic search in the discrete configuration space

uses the number of maneuvers as a cost function is considered. Methods of this type

possess conflicts between accuracy and computational costs [2].

10

Laumond extended the basic motion planning problem defined by La-

tombe [49] to the case of a point robot with kinematic constraints. He developed a

method to break down the planning problem into two phases. In the first phase, the

problem is solved by finding a collision-free path while ignoring the orientations of

robot's start and goal configurations. Then, in second phase, the path is transformed

into a topologically equivalent collision-free path using arcs and tangent line segments.

The number of reversals in the path is not limited and the path involving reversals is

not smooth [50].

A closely related research direction is to develop algorithms for motion

planning using the border concept [47, 9]. Drawbacks of the border approach are

several:

• This concept is unsuitable if the shape of the regions is not always simple (as

in non convex region).

• The decomposition is not unique.

• The optimum number of borders is still a question.

• This task becomes unduely complex for dynamic environments.

The other global motion planning and local motion planning ideas can

be found in other research reports. Some of these focus on motion planning for

manipulators [33, 42] and others provide general ideas [23, 32, 65].

2. Self-Localization

Several approaches have been developed relating to robust and precise naviga-

tion for an autonomous mobile vehicle using model-sonar based navigation. We will

briefly introduce these approaches and summarize them below.

In [14], a method for reducing uncertainty using sonar data interpretation and

Kalman filtering is proposed. Line fitting with the sonar data is used.

A technique to estimate the positional and orientational errors and a method

to reset them is described in [66].

11

The problem of landmark tracking over sequences of stereo image pairs is

studied in [56, 48]. Both approaches develop multivariate Gaussian error models for

the triangulation errors occurring when depth is inferred from stereo images. Kalman

filters are used to reduce the uncertainty in the vehicle position as well as in the

position of the observed objects.

Use of an Approximate Transformation (AT) framework for robot localization

with sonar data is described in [18]. Fifteen ultrasonic range finding transducers

arranged in a circular array are used to build dense two-dimensional maps based

upon empty and occupied volumes in a cone in front of the sensor.

Rule-based matching of line segments which are extracted from sonar data

with precompiled line models of indoor environments is suggested in [16].

In [12], a fast, robust matching algorithm which determines the congruence be-

tween range data points (derived from an infrared range-finder) and a two-dimensional

map of its environment is investigated.

The localization system of a free-navigating mobile robot is described in [30].

The absolute position and orientation of the vehicle by matching verticle plannar

surfaces extracted from a 3D-laser-range-image with corresponding surfaces predicted

from a 3D-environmental model are determined. Continuous localization is achieved

by fusing single-image localization and dead-reckoning data by means of a statistical

uncertainty evolution technique.

The robot "RAMUS" uses an a priori map of the environment for mobile

robot localization [29]. This environment is cluttered with unknown obstacles and

an environmental model is built from ultrasonic readings using clustering to discard

false echos.

In [10], a robot automatically maps an office building environment and then

smoothly navigates through this environment at a speed of 78 cm per second.

12

D. ORGANIZATION OF DISSERTATION
The dissertation is organized as follows.

Chapter II discusses the approach used in this dissertation and contrasts it

with previous work in the field of autonomous mobile robot motion planning.

Chapter III presents definitions and concepts of polygons and subpolygons.

Also, it describes the algorithm of determing image type of any point in a free space

on a convex polygon.

Chapter IV describes the theory of a free-space decomposition using Voronoi

diagrams. It presents a method to symbolically represent the path classes using a

polygonal world.

Chapter V describes how to track any polygon. It describes the algorithm for

polygon tracking. It reports the results as implemented on the simulator.

Chapter VI discusses local motion planning in detail. It presents the analysis of

the local motion planning tools to be used in this dissertation. It gives a description of

the algorithm for planning the robot's motion. It reports the results as implemented

on the simulator.

Chapter VII presents the theory of self-localization. It introduces an algorithm

for robot odometry correction.

Chapter VIII reports the results of local motion planning algorithm as im-

plemented on an autonomous mobile robot system Yamabico-11 and discusses the

implications and consequences of the results. Also, it gives a detailed explanation

of an experimental results of applying positional uncertainty elimination in real time

using Yamabico-11.

Chapter IX introduces the hardware of the Naval Postgraduate School au-

tonomous mobile robot Yamabico-11. It describes the design of a robotic software

system - Model-Based Mobile robot Language (MML).

Chapter X describes recommendations for future research.

Chapter XI summarizes the major contributions of this dissertation.

13

Appendix A provides a normalization definition.

Appendix B introduces a least square linear fitting method.

14

II. LAYERED MOTION PLANNING

A. INTRODUCTION
Motion planning is one of the most important areas of robotics research. The

complexity of the motion-planning problem has hindered the development of practical

algorithms. Not all robotic systems plan the robot's motion in a deliberate fashion.

In fact, there exists a wide variety of motion planners including: no plan/no model, a

flexible plan, and a rigid, unalterable plan. Many different methods have been devel-

oped for motion planning. These methods are variations of a few general approaches:

road map, cell decomposition, potential field and mathematical programming [49, 32].

Some of them is widely applicable, whereas others solve only a narrow range of motion

planning problems. Unfortunately, none of them is complete in the sense of practi-

cal applicability for solving the motion planning problem defined in this dissertation.

For example, the robot's motion in the area of the start or goal configuration is more

restricted and requires more deliberative planning. Not all robotics systems proposed

for motion planning are developed to address this consideration. Also, nonholonomic

constraints and kinematic constraints have not taken into consideration in many ap-

proaches. Furthermore, most research in motion planning, although theoretically

valuable, is not practically useful. For these reasons, we propose a new approach

where the motion planning problem for a rigid body robot is attacked through a

method called layered motion planning. The layered motion planning problem uses

global path planning and local motion planning to solve the original motion planning

problem. As the layered motion planning is divided into two parts, the first one (path

class determination) is solved by the global path planner, while the second part (path

class navigation) is handled by the local motion planning. The global path planner

finds the optimal path class in terms of homotopy [26]. In that sense, this level is

an abstract portion of the whole problem. The second is the problem of finding the

optimal motion when a global path plan is defined by the first planner. Figure 3

15

shows the layered motion planning structure.

Layered Motion Planning

Global Path Planner Local Motion Planner

Path Class Determination Path Class Navigation

Figure 3. Layered motion planning structure

B. MOTION PLANNER STRUCTURE
The motion-planner structure of the system provides the framework in which

each of the above parts interact. Figure 4 provides a depiction of the structure of the

motion planner used in Yamabico-11. The motion planner has a layered structure.

It consists of a mission planner, a global path planner, a local motion planner and a

self-localization module.

1. Mission Planner

The highest level in the framework is mission planner. The mission plan-

ner uses knowledge-based inference engines to convert abstract goals into geometric

goals and mobility constraints. In this level, high levels of abstraction and long-term

memory are used. This level is not a focus of this dissertation.

2. World Model

The world model contains information used by the global path planner and

local motion planner. This information is used by the global path planner in con-

structing a global path plan. Also, lower levels (local motion planner) use that in-

16

Global Path Planner

Path Class Description

Local Motion Planner

i
Motion
System

Sonar
System

Figure 4. Motion planner/execution architecture

formation to carry out the global path plan. This information serves as a basis for

real-time decision process of the local motion planner.

3. Global Path Planner

The global path planner is related to the most abstract aspect of the motion

planning problem in robotics, i.e., the connectivity of geometrical objects. It uses the

idea of the Voronoi diagram to represent the path class. It starts with decomposition

of the free space of the given polygonal world. Then a connectivity graph is built

and searched to determine the required path class. This path class represented by

a sequence of left and right polygons called a directed v-edges sequence, E, which

specifies the direction of a possible path for the robot. This path class plays an

important role in local motion planning. The details of global path planning will be

discussed in Chapter IV.

17

4. Local Motion Planner

The local motion planner is responsible for following the global path as closely

as possible without violating any kinematic, dynamic, or holonomic constraints. So,

the task of the local motion planner is to produce a smooth collision-free motion

for the robot. The local motion planner is responsible for the following: selecting

and initiating a steering function control rule, executing the resultant motion, and

monitoring to ensure that the plan is proceeding. The steering function and the

principle of the left and right images of the given path class are powerful notions used

to find solutions in this layer. This method was implemented first on a simulator,

then on the autonomous mobile robot Yamabico-11. This problem is very important

in this dissertation because self-localization is executed while robot moving. The local

motion planning will be discussed more deeply in Chapters V, VI.

5. Self-Localization Module

A mobile robot can be assisted in its navigation tasks by providing it with a

priori knowledge about the environment in which it will navigate, usually called a

world model or a map. One of the issues to be addressed in using a stored model as

an aid in mobile robot navigation is that of estimating the position and orientation of

the robot with respect to the model. Once the robot accurately estimates its location

within the model, other navigation tasks can be performed. Most mobile robots are

equipped with A key capability of an autonomous mobile robot operating in an indoor

environment is localization, i.e. determination of its current position and orientation.

The usual method for position estimation of a wheeled autonomous mobile robot is

odometry or dead reckoning. However, it has a problem of gradual error accumulation

when the robot moves long distances. Unlike the errors in robot manipulators, this

problem is crucial in navigation because vehicles' localization errors determined by

odometry may be increased indefinitely until the vehicle is not able to move safety.

We assume that the vehicle

1. has a geometric model of the static portions of an indoor world,

18

2. possesses a dead-reckoning capability,

3. executes model-based navigation through these two capabilities, and

4. has sonic sensors.

So, the purpose of the self-localization is to find a robust algorithm so that the vehicle

can continually eliminate its positional uncertainty while execting missions. Through

this method, the robot can minimize its positional uncertainty, can make safe and

reliable motions, and can perform useful tasks in a partially-known world. Thus,

self-localization is an essential component of model-based navigation for indoor ap-

plications. Self-localization will be discussed in detail in Chapter VII.

C. METHODOLOGY
Summarizing, the approach taken in this dissertation will provide a unified

approach to the motion planning problem for autonomous vehicles using proximity.

It includes descriptions of the following:

1. An image type of a point in free space on a convex polygon algorithm (Chap-

ter III).

2. A path class representation using polygonal world and Voronoi diagram (Chap-

ter IV).

3. A safe local motion planning algorithm (Chapter V, VI).

4. A robust real-time positional-uncertainty elimination (self-localization) algo-

rithm (Chapter VII).

After theoretical analysis, algorithm design, and simulation, we implement the re-

sulting algorithms on the autonomous mobile vehicle Yamabico-11 for testing and

evaluation.

19

20

III. POLYGONS, SUBPOLYGONS AND
IMAGES

Before discussing motion planning, we need to give precise meaning to the

concepts that provide the basis for this dissertation. This chapter presents definitions

and concepts associated with polygons and subpolygons. Afterwards, a discussion of

an algorithm which finds an image of a point in free space on polygon is presented.

We will restrict the discussion in this chapter to the Euclidean Plane E 2
.

A. GENERAL DEFINITIONS
A point p is represented as a pair of coordinates (x,y) in E 2

. Given two

distinct points p\ and p2 in E 2
, the linear combination

api + (1 — a)p2 oc £ 7£

is a line in E2 where TZ is the set of real numbers. If, in the expression ap\ + (1 — ct)p2 ,

we add the condition < a < 1, we obtain the convex combination of pi and p2 , i.e.,

aPl 4- (1 - a)p2 {a 6 11, < a < 1).

This convex combination describes a line segment joining the two points p\ and p2

[59]. Normally this segment is denoted as p\p2 .

A topology [67] on a set S is a collection T of subsets of S (called open sets)

having the following properties:

1. The empty set and set S are in T.

2. The union of elements in an arbitrary subcollection of T is in T.

3. The intersection of elements in a finite subcollection of T is in T.

Definition: A metric (or distance function) [67] on a set S is a function d: S x S —* 71

that satisfies the following conditions:

21

1. Positive definiteness: d(x,y) > for all i,j/E5, and d(x,y) = if and only

if x = y.

2. Symmetry: d(x,y) = d(y,x) for all x,y £ S.

3. Triangle inequality: d(x,z) < d(x,y) + d(y,z) for all i,j/,zG S.

A metric space (S,d) is a set S together with a metric on it. If there is no

ambiguity, the metric space can be referred to simply as S. A space S is connected if

it is not the union of two disjoint, nonempty open sets. Intuitively, this means that

S can best be viewed as "one piece", and is in some sense indecomposible. A related

idea, and one which is more suitable to our purpose is that of path connectedness

[25, 60].

Let x and X\ E S. A path /in S from xo to x\ is a continuous function

/: [0,1] — S

such that /(0) = xo and /(l) = X\. We say that S is path connected if for every pair

of points Xo and xi in 5, there exists a path between them. Additionally, if a space

is path connected, then it is also connected [25, 60].

Two characterizations of sets which are needed for later definitions are whether

a set is open or closed, and whether a set is bounded or unbounded. A set is closed

if and only if it contains its boundary (in other words, if and only if it contains all

its limit points). Additionally, the complement of a closed set is open, which implies

that a set is open if and only if it contains none of its boundary points. Since, a set

may contain only a portion of its boundary, it may be neither open nor closed. We

give the definition of a bounded set by using the intuitive notion of distance. A set

is bounded if the distance between any two of its members is finite. A set that is not

bounded is said to be unbounded [43, 60].

Finally, we introduce the concept of a hole. The Jordan Curve Theorem states

that a simple closed curve J in the Euclidean plane separates the plane into two

open connected sets with J as their common boundary. Exactly one of these open

22

connected sets (the "inner region") is bounded [13]. We define a hole to be one of

the open connected sets. We say that the hole is ccw if it is bounded, and cw if it is

unbounded. Sometimes it may be useful to consider the hole along with its boundary,

but generally we refer to them separately.

B. POLYGON
Given n > 3 points vi, — -,vn in the plane, in a certain order, we obtain a

n-sided polygon or n-gon by connecting each point to the next, and the last to the

first, with a line segment. The points Vi are the vertices and the segments V{V{+ i are

the sides or edges of the polygon. Therefore, polygon, B, is denned as:

B = {v1 ,v2,--',vn }, n > 3

When n = 3 we have a triangle, when n = 4 we have a quadrangle or quadrilateral, and

so on [67]. A polygon is represented as a sequence rather than a set of points because

the order in which the points are given is very important. Changing the order, even

without changing the points themselves, may result in a different polygon. In this

dissertation, we will follow a convention that a vertex with the minimum x-coordinate

among all the vertices is taken as the first vertex in B. If there is more than one vertex

which has the same x-coordinate, we take the one with the least y-coordinate as the

first one among them.

Now, how we define how to determine the next or previous vertex from the

current one.

Definition: A simple polygon [67] is one whose corresponding path does not intersect

itself; this means that

1

.

no consecutive edges are on the same line, in other words, any three consecutive

points in the sequence are not colinear and

2. no two edges intersect (except that consecutive edges intersect at the common
vertex).

23

For example, Figure 5a and 5b show two simple quadrilaterals while 5c is not simple.

Another example is shown in Figure 6. We will treat only simple polygons.

(a) (b) (c)

Figure 5. Simple and non-simple polygon (I)

(a) Simple (b) Non-simple

Figure 6. Simple and non-simple polygon (II)

Definition: The next function <p : B —> B is defined as:

vt'+i if \ <i <n — 1

VM =
V\ if i = n

(III.1)

The meaning of <p(v) is the "next vertex" of v in B. For example, in Figure 5a, the

next of Vi is V2 and the next of v4 is V\.

Proposition III.l The function ip : B — B is a one-to-one corresponding or a

bijection.

24

Proof. The function <p is one-to-one and onto. It is one-to-one since the function

takes on distinct values. It is onto since all elements of the codomain are images of

elements in the domain. Hence, <p is a bijection. D

Proposition III. 2 : Let the function ip be a one-to-one corresponding from the set

B to the set B. The inverse function <p~ l
: B —» B exists and is a one-to-one

corresponding also.

Proof. If a function <p is not a one-to-one corresponding, we cannot define an inverse

function of <p. When ip is not a one-to-one corresponding, either it is not one-to-one

or it is not onto. If ip is not one-to-one, some element Vj in the codomain is the image

of more than one element in the domain. If <p is not onto, for some element Vj in the

codomain, no element v, in the domain exists for which <p(v{) = Vj. Consequently,

if <p is not a one-to-one corresponding, we cannot assign to each element Vj in the

codomain a unique element v; in the domain such that (p(v{) = Vj (because for some

Vj there is either more than one such v, or no such u,-).

The meaning of c^
_1

is the "previous vertex" of v. For example, in Figure 5 - part

(a), the previous vertex of v\ is v4 .

When we refer to the angle at a vertex v* we have in mind the interior angle.

We denote this angle by /?,-. In any n-gon, the sum of the interior angles equals

2(n— 2) x 90°; for example, the sum of the angles of a triangle is 180°. The complement

of Vi is the exterior angle at that vertex. We denote this angle by Si (see Figure 8).

Let ty(vi,<p(vi)) represent the direction from Vi to <p(vi).

Definition: Given two distinct points, p\ = (xi,t/i) and p2 = (#2,^/2) (Figure 7). we

define a direction function ^(pi,!^) as

V(pijp2) = atan2(y2 - J/i, x2 - x x)

25

y

&,!*)

->- X

Figure 7. Direction between Two Points

The exterior angle, <§,, at V{ is the angle between one side and the extension of the

adjacent side related to v, [67] (see Figure 8).

Si = $ (V{vi,<p{vi)) - tfforty,-),!;,-))

¥(v
2 , v

3) ^

Figure 8. Interior and exterior angle of a simple polygon

26

Note that the difference between the directions is normalized to fall within [— 7r,7r].

(the function <S> is defined in "APPENDIX. NORMALIZING ANGLES").

Definition: A vertex u, on a simple polygon is said to be a convex vertex if <$, > 0. If

Si < 0, A vertex V{ is said to be concave vertex.

2 ^

(a) Convex Simple Polygon (b) Concave Simple Polygon

Figure 9. Convex and concave simple polygons

For example, in Figure 9, in part (a), the vertex v2 is convex because 62 > 0. In part

(b), the vertex v$ is concave because S2 < 0.

Definition: A domain D in E2
is convex if , for any two points p\ and p2 in D, the

segment pTpi is entirely contained in D (Figure 10(a)). It can be shown that the

intersection of convex domains is a convex domain.

Definition: A simple polygon is a convex polygon if all of its vertices are convex

(Figures 9(a), 10(a)), otherwise it is nonconvex polygon (Figures 9(b), 10(b)).

Now, how we can represent any convex or nonconvex polygon. Before doing

this, we will define three important predicates, ccw (counterclockwise), cw (clockwise)

27

(a) Convex (b) Not convex

Figure 10. Convex set

and col (colinear). Consider vectors u = (xi,yi)
T and v = (x2 ,y2)

T
, shown in

Figure 11(a). The cross product u x v can be interpreted as the signed area of the

parallelogram formed by the points (0,0), u, v, and u + v = (xi + a^J/i + 2/2)- An

equivalent, but more useful, definition gives the cross product as the determinant of

a matrix. 1

u + V

<0>0)

(0,0)

cvt

(a) (b)

Figure 1 1 . Cross product of vectors

U X V =
X\ £2

x\V2 - x 2 yi

—V X u (III.2)

Actually, the cross product is a three-dimensional concept. It is a vector that is perpendicular

to both u and v according to the "right-hand rule" and whose magnitude is \x1y2 — X22/1 1. Here,

however, it will prove convenient to treat the cross product simply as the value xit/2 — *22/i-

28

If u x v is positive, then u is clockwise from v with respect to the origin (0, 0); if this

cross product is negative, then u is counterclockwise from v. Figure 11(b) shows the

clockwise and counterclockwise regions relative to a vector u. A boundary condition

arises if the cross product is zero; in this case, the vectors are collinear, pointing in

either the same or opposite directions [11].

counterclockwise clockwise

(a) (b)

Figure 12. Using the cross product to determine how consecutive line segments VoV\

and V\V2 turn at a point v\

To determine whether a directed segment vtfU^ is clockwise or counterclockwise

from a directed segment v^U\ with respect to their common endpoint vo, we simply

translate to use v as the origin (see Figure 12). That is, we let Vi — vo denote the

vector u' = (ari,yi), where x[= Xi — x and y[= y1 — y , and we define V2 — vo

similarly. We then compute the cross product

(v2 - v) x (vi - v) = (x 2 - x)(t/i - y)
- (zi - x)(y2 - y)

If the sign of this cross product is negative, then vtfU^ is counterclockwise from vovi',

if positive, it is clockwise. The above discussion is very useful for all results related

to the area of the polygon.

The area of a polygon whose vertices V{ have coordinates (xi, y,-), for 1 < i < n,

is the "signed" value of

area(B) = -{x xy2 - x2yi) H 1- -(xn_!yn - xnyn_i) + -{xnyx - x x yn),

1
n

29

where in the summation we take X{+ i
= x\ and y;+1 —y\. In particular, for a triangle

B = {vu v2 ,v3 } = {(xu yi),(x2 ,y2),(x3,y3)}, let vectors u = (x l ,y 1)

T
, v = (x 2 ,y2)

T

and w = (x3,y3)

T
. the "signed" area is denned as

x1 yi 1

X 2 2/2 1

x3 V3 1

= -^{x\y2 - x 2 y\ + x 2y3 - x3y2 + x3yx - x xy3)

I,
x= -(u X V + V X w + w x u)

= 2^X2 ~ Xi)fe ~ y*) ~ (
X3 ~ xi)(y* - yi)\

Proposition III.3 For any triangle B,

(I) If A > 0, B is ccw and area of B is equal to A.

(II) IfA < 0, B is cw and area of B is equal to |A|.

(III) If A = 0, B is col and area ofB = 0.

Proof. By using Eq. III.2,

A = -(u x v -f v x w + w x u)

(III.3)

X\ x 2

-r

x 2 x3

+
X3 Xi

V\ V2 Mi V3 V3 J/1

The sign of A gives us the result.

Definition: A convex polygon is a polygon whose ordered list of vertices produces a

counterclockwise (ccw) boundary loop. An nonconvex polygon is a polygon whose

ordered list of vertices produces a clockwise (cw) directed boundary loop (see Fig-

ure 13).

A simple polygon partitions the plane into two disjoint regions, the interior

(bounded) and the exterior (unbounded) that are separated by the polygon (Jordan

curve theorem) [13].

30

Exterior

free(B)

Interior

Im(B)

(a) ccw Polygon (b) cw Polygon

Figure 13. Interior and exterior of a simple polygon

Definition: The set of points in the plane enclosed by a simple polygon forms the

interior of the polygon, denoted mt(B), the set of points on the polygon itself forms

its boundary , denoted B, and the set of points surrounding the polygon forms its

exterior, denoted free(B) (see Figure 13).

Therefore, 'mt(B) is defined as the set of points to the left of the boundary and free(B)

is defined as the set of points to the right of the boundary. We classify each simple

polygon into one of two kinds, ccw or cw, depending on how its free side defined:

1. for a ccw polygon, iree(B) is defined as its exterior, and

2. for a cw polygon, free(2?) is defined as its interior.

Definition: The convex hull of a set of points S in E2
is the boundary of the smallest

convex domain in E 2 containing S [59].

C. SUBPOLYGONS
Let B — {v\, v2 ,

• • •

, vn }, n > 3 be a polygon. It is desired to decompose B into

smaller pieces, called subpolygons. If the polygon is convex, i.e., if all the vertices are

convex (see Figure 9(a)), we stipulate that the polygon B itself is a unique subpolygon

in B. If B is nonconvex (see Figure 14), i.e., if there is at least one concave vertex

in B, the polygon can be broken up into one or more subpolygons. In that case,

31

Figure 14. Concave polygon

the first vertex in the subsequence of vertices denning a subpolygon is a concave

vertex. The subsequence continues until it encounters another concave vertex, which

become the last vertex in the subpolygon's denning subsequence. For example, in

Figure 14, V3 is the first concave vertex (63 < 0) and v4 is the last concave vertex in

the this subsequence. Figure 15 shows the decomposition of the conacave polygon B

in Figure 14. Note that B (Figure 14), which is a nonconvex polygon, consists of four

subpolygons Ti,T2,T3 and T4 .

Definition: A subsequence

T = {vj,Vj+li ->,Vk-i,vk}, j<k

of

B = {vu v2,- >«„}, n > 3

is said to be a subpolygon of B, if T satsifies the following conditions:

1. Vj and Vk are concave, and

2. all the verices Vj+\, • • • , Vk-\ are convex.

32

'6 V,

(3)

(2)
(4)

Figure 15. Subpolygons decomposition of concave polygon

where Vj and Vk are said to be the end-vertices of the subpolygon T.

n

V ,, V

(1)

(a)

»
6*__»j

(2) (3)

(b)

v« v„

(4)

Figure 16. Concave polygon and its subpolygons (I)

Figure 16 is another example of decomposition of a polygon into subpolygons. The

end-vertices of T are disconnected except in the case where the subpolygon consists

of only two vertices (see Figure 15). There is a special case where there is only one

33

concave vertex Vi in B. In this case,

T = {vi,vi+1 ,
•,ut-}

is the unique subpolygon. In other word, the nonconvex polygon B consists of only

one subpolygon T. For example, in Figure 17, vertex v3 is the only concave vertex in

B where the polygon B consists of only one subpolygon T (B = T).

Figure 17. Concave polygon and its subpolygons (II)

The following lemma is the result of the previous discussion of subpolygons.

Lemma III.l Any nonconvex polygon B is uniquely divided into a finite number of

subpolygons (Ti, T2, • • • , Tn) in keeping with the order of occurrences of vertices in

B. Each convex vertex in B belongs to one and only one subpolygon.

D. THE ROBOT'S SPACE
We use polygonal models to represent the vehicle's 2D world VV. Polygons

are considered to be holes or obstacles for robots in this world. We assume that a

world W is encircled by an outermost polygonal boundary (cw polygon) and has n

polygonal obstacles inside the boundary (ccw polygons).

Definition: A world W is a finite set

W = {£ ,£i, •••,£„}, n>0

34

of polygons which satisfies the following conditions:

1. B is (ctu polygon),

2. B\, • • Bn are ccw polygons, and

3. for any i,j with < i < j < n,

free(BiyC\free{Bj)
c = ^

where Sc denotes the complement of a set S.

A robot can work only in the free space free(W) of this world. The free space

of W is the inside of Bq minus the union of the other n polygons' inside. In other

words, the free space is the complement of the union of all the polygons. We call the

free space, together with the set of polygons, the robot's world (Figure 18).

^S cw Polygon

n • .

-Pa

1111111111111:1 h
:•::•:•:-:

:•.;:•::•:

:
:

:

:
:
:
:
:
x

:
:
:
:
:
:
:
:
:
:
:
:v:

:
:
:
:
:
:
:
:
:
:

:

:
:

'

:
:

:

:
:
:
:

.

:
,
;
:

:

x:'
:
-:': :

ccw Polygons \

Free Space ik^^^
£>>?: /vs_—¥

••:'-:'::

.

.

.

'

' .

Figure 18. Robot's world space

Definition: In a given world W, the free space and interior of W are defined as follow:

free(W) = f] free(Bi)

= K2 -W
n

int(W) = |J int(Bi)

i=o

35

Furthermore, we consider the boundary of a polygon to be directed curve

which when traversed, puts the polygon to the left. This directed boundary naturally

defines the neighbors of a vertex to be the next vertex, and the previous vertex.

E. IMAGES
We assume a global two-dimensional Cartesion coordinate system in a plane

E 2
. Given two distinct points p\ = (#i,t/i) and P2 = (22,2/2) m E2

•>
The Euclidean

distance d(pi,p2) between them is defined as:

d(pl ,p2)
= yj{x x - x 2)

2 + (yi - Vi)
2 (III.4)

Assume that there is an object o in a plane. An object might be a point, a

line, an open line segment, a polygon, or other set of points. The shortest distance

d(p, o) between a point p and an object o is defined as follows:

d(p,o) = min d(p, px)
PlfcO

Eq. III. 5 generalizes the function d defined by Eq. III. 4.

(III.5)

w
/ im(p, o)

Figure 19. Image on object

Definition: A point p\ in o which satisfies d(p,pi) — d(p,o) is said to be an image of

p on o and is denoted by im(p,o) (Figure 19).

36

If a world VV has more than one object, an image im(p, W) is defined as the

image im(p,Oi) such that d(p,Oi) is the minimum over all objects in W (Figure 20).

/ im(p, o
2)

im(p, Oj)| /
i /
1/

Mk:i

n im(p, o,

)

Figure 20. Images on world

Suppose that a vehicle's position in the free space is known. It has its left

and right images on the obstacles (polygons). The image may be on an edge or on

a vertex of a convex polygon. We shall try to solve the following problem: given a

point p in free space and a convex polygon B, determine whether the image from p

to B is on an edge or on a vertex of B. In the following subsections, we describe our

solution to this problem.

1. Visibility from Point to Polygon

Assume that we are given a convex polygon B — (i?i, • • • , vn) and a point p 6

free(i?). The significant notion for our purpose is the following classification of each

vertex ut
- of B with respect to the segment pvl. Each vertex of B is said to be visible,

invisible, cw-tangential, or ccw-tangential (we should add with respect to segment pvi,

but we shall normally imply this qualification) (see Figure 21).

Definition: Let Bbea convex polygon, and let a point p 6 {ree(B).

37

ccw-tangential

iy P

/ cw -tangential

Figure 21. Visibility from point p to convex polygon B (I)

• A vertex v, is tangential from point p if the two vertices adjacent to u,- lie on

the same side of the line containing pvl.

• A vertex vi is visible if the segment pvl does not intersect the interior of B and

the two vertices adjacent to V{ lie on opposite sides of the line containing pvl.

• A vertex vi is invisible if the segment pvl intersects the interior of B.

-* p -• p

(a) invisible
V -• p

(c) visible

(b) cw and ccw tangential

Figure 22. Classifications of vertex u, of polygon B with respect to a segment pvl

38

Figure 22 shows the classifications of a vertex V{ of polygon B with respect to a

segment pvl.

Let cw-tangential(p,Vi, B) denote that vertex V{ of B is clockwise tangential

with respect to the segment pvl, ccw-tangential(p, Vi, B) denote that vertex V{ of B is

counterclockwise tangential with respect to the segment pvl, visible(p,Vi, B) denote

that vertex V{ of B is visible with respect to the segment pvl, and invisible(p,Vi, B)

denote that vertex V{ of B is invisible with respect to the segment pvl. It is now easy

to establish the following lemma.

Lemma III. 2 Given a convex polygon B and a point p £ free(B), the vertex V{ is

one of the following four types:

cw-tangential (p, V{, B) = ~ ccw (p, »,-, y>~
1

(«,-)) A ~ ccw [p, Vi,<p(vi)) (III.6)

ccw -tangential (p, V{, B) = ~ cw (p, Vi,(p~* (u,)J A ~ cw (p, u,-,<^(u,)) (HI. 7)

visible(p,V{,B) = ccw (p, v
t
-,c

1

0~ i

(u,-)J A cw (p,Vi,ip(vi)) (III. 8)

invisible(p,Vi,B) = cw (p, u,-, c/?(v,-)) A ccw (p,Vi,(p~
J

(u,)J (III. 9)

Proof.

For the first part (Eq. III.6), V{ is cw tangential if the two vertices adjacent

to v^ ip' 1^) and ip(vi), lie on the same side of the line containing pvl. we have the

following three cases.

• case 1: cw (p, v,, <p~ l
{vi)) A cw (p, v,-, </?(u*'))

If pvl and Viip~
l
(vi) make a right turn at ut-, p</?

-1
(i;,) is clockwise from pvj,

and pvl and Vi<p(vi) make a right turn at u,-, p<£>(vt) is clockwise from pvl, then

Vi is cw-tangential.

• case 2: co/ (p, u^, (^
_1

(v,)) A cw (p, v,, </>(fj))

If p, i;,- , and y?
1
(ut-) are collinear and pvi and vnp(v{) make a right turn at i;,,

p<p{vi) is clockwise from pvj, then vt
- is cw-tangential.

39

• case 3: cw (p, u,-,t/?
1
(vl)) A col (p, v,-,(£>(t> t))

If pv7 and vt^
-1

(v;) make a right turn at t;,-, p^p~ l
(vi) is clockwise from jw7,

and p,V{, and y(v,-) are collinear, then V{ is cw-tangential.

This gives a proof of Eq. III. 6. in other words, V{ is cw-tangential from p (see Fig-

ures 21, 22).

The second part (Eq. III. 7) is proven similarly.

For the third part (Eq. III. 8), since the two vertices adjacent to Vi lie on the

opposite side of the line containing pvi and pvi does not intersect the interior of B,

therefore pv{ and u,-y>
-1

(v,-) make a left turn at ut-,
pip~ l

(vi) is counterclockwise from

pvi, and pvi and v,-y?(ui) make a right turn at u,-, py>(vi) is clockwise from pU;. This

gives a proof of Eq. III.8 (see Figure 21, Figure 22).

For the last part (Eq. III.9), since pvi intersects the interior of B, therefore pvi

and u,</?
-1 (m) make a right turn at Vi, p, </?

-1
(vt) is clockwise from pvi, and pvi and

V{(p(vi) make a left turn at ut-, p^{vi) is counterclockwise from pv{. This gives a proof

of Eq. III.9 (see Figure 21, Figure 22). D

Figure 23. Visibility from point p to convex polygony B (II)

40

For example, in Figure 23, vertex v\ is cw-tangential, vertex v2 is visible, vertex v4 is

ccw-tangential and vertex v-r is invisible.

2. Type of an Image from a Point to a Convex Poly-

gon

Let B denote a convex polygon with n vertices. Let a point p € iree(B). The

image of p may be on an edge or a vertex of convex polygon. If an image of p is on

an edge, the image moves when p moves slightly. However, if the image of p is on a

vertex, it does not move when p moves slightly. The following theorem determines

the image occurs either on an edge or on a vertex.

Theorem III.l Let B = {vi, ,vn } be a convex polygon, and let p be a point in

free(B) and define 0,0\, and 02 by

e = *(v,-,v?(^)) + |,

e2 = y(P,<p{vi)).

Let vertex Vj be cw-tangential from point p. There exists a vertex V{ (i = j or i ^ j)

such that the image of p on B is of one of the following two types.

(I) U
(9, > 0) A (02 < 0) (111.10)

then the image lies on an edge Vi<p(yi) of polygon B,

(ty If

01 <0 A (02 <0) (III.ll)

then the image of p is on a vertex v of polygon B.

41

v* cw-tangential

cw-tangential \

v

Figure 24. Image of point p lies on an edge of convex polygon B

Proof.

Consider two straight lines, one joining p with v, and the other joining p and

¥>{vi)- The orientations of these two lines are $i and 92 respectively. Also, denote

by a the orientation from V{ to <p(vi) and by 9 = a + | the perpendicular from p to

vnp(vi).

For the first part of the proof (Eq. III. 10), let pim be the intersection of two

lines whose orientations are a and 9 (see Figure 24). Assume that the hypothesis of

Eq. III. 10 is true. Since 9\ > 0, then ppim and pim Vi make a left turn at ptrn . Also,

62 < 9, then ppim and Pimf(vi) make a right turn at p,m . It follows that pim is visible

from p by lemma III. 2. This means that t?,- and ip(vi) are on opposite sides of pim .

Therefore, p,-m lies on the boundary of B. In other words, pt
-m lies on an edge Vi(p(v{)

of B.

42

cw-tangential
cw-tangential

a

Figure 25. Image of point p lies on vertex v, of convex polygon B

For the second part (Eq. III.ll), assume that the hypothesis of Eq. III. 11 is

true, we have the following three cases (see Figure 25).

• Case 1: 0j < A02 <

Since 6 > ls and > 2 . Therefore the image of p does not lie on the edge

V{(f(vi). But 0i < 2 , since ip(vi) ls ^ne next vertex to V{. Then t>,- is a closed

point from p. Therefore, the image of p is a vertex V{.

• Case 2: 0i = A 2 <

Since = 0i and > 02, then the image of p does not lie on the edge vnp(v{).

But 0i < 2 , since <f(vi) is the next vertex to v,. Then v; is a closed point from

p. Therefore, the image of p is a vertex V{.

• Case 3: 0i < A 2 =

Since > 0i and = 2 , then the image of p does not lie on the edge vnp{vi).

But 0i < 2 , since <p{vi) 1S ^ne next vertex to v,. Then <p(v{) is a closed point

from p. Therefore, the image of p is a vertex <p(vi).

43

This gives a proof of Eq. III.ll. in other words, pim occurs on a vertex of B.

Since there are no vertices in the interior of a convex polygon B, then by

Theorem III.l we obtain the following corollary.

Corollary III.l For any point p £ free(B) and a convex polygon B, there exists only

one image from p to a convex polygon B.

3. The Image Type Algorithm

Convex Polygon B

Point p

Find Convex Image

Algorithm

Image Type (Edge or Vertex)

*• Vertex v

*• Orientation from p to image

Closed Distance

Figure 26. Image type

We now describe the construction of an algorithm for image type. The block

diagram for finding image type is shown in Figure 26. The inputs are a convex

polygon B and a point p € free(B). The outputs are an image type (vertex type or

edge type), a vertex t>,-, the orientation from p to its image, and the closed distance

from p to the image. For a vertex type image, vertex Vi is the image of p on B, but

for an edge type image, the image of p on B lies on an edge vnp(v{). In pseudo-code

the method is as follows:

44

Convex_Image(p, B)

Input: point p (6 free(B))

convex polygon B =
(
vj ,

• • • , vn)

Output: image image type (vertex-type or edge-type)

vertex v

orient (the orientation from p to image)

closed (the distance from p to image)

begin

1. v := first-vertex(B)

2. *** find clockwise tangential(v) ***

3. while (~ ccw(p,v
y
(p~ 1 (v))A ~ ccw(p, v,tp(v)))

4. v = ip(v)

5. *** find image type ***

6. while(l)

7. * = *(«,¥>(«)) + §
8. e1

= ^{P,v)

9. 92 = Ht(p,<p{v))

10. if ((0i <6) A {62 <$))
11. then

12. image.type = VERTEX
13. image.posi = v

14. image.orient = 6\

15. image.closed = Compute_Euclidean_Distance(p, v)

16. else

17. if((0!>0) A (02 <0))
18. then

19. image.type = EDGE
20. image.posi = v

21. image.orient = 6

22. image.closed = Compute_Dist(p, v)

23. else

24. v = <,c(t>)

25. return image

end

The algorithm simply loops until the image is reached (line 25). First, the

algorithm loops until cw-tangential vertex is reached (lines 3-4). Hence, in each loop

45

(line 6), we check the condition for vertex type (line 10). If the condition is not

satisfied, the condition for edge type is checked (line 17). Also, if it is not satisfied,

we take the next vertex (line 24). We continue in this process until one of the above

conditions (line 10 or line 17) is satisfied.

The subroutine Compute_Euclidean_Distance computes the distance be-

tween two points (see Eq. III.4). The subroutine Compute_Dist computes the clos-

est distance from p to its image which lies on an edge. The subroutine for Com-

pute_Dist is as shown below.

ComputeJDistQo, v)

Input: point p (E free(B))

v first vertex of edge where the image on it

Output: closed the closet distance from p to image

begin

1. area = Compute_A.rea_Triangle(p, u, <p(v))

2. dist = Compute_Euclidean_Distance(t>,</?(t;))

3. closed = ^gf
4. return closed

end

The subroutine Compute_Area_Triangle computes the area of triangle (see

Eq. III.3).

a. Proof of Correctness of the Algorithm

To prove the correctness of the above algorithm, we want to show that

the algorithm always returns an image structure when the while-loop in line 6 is

executed. In other words, the while-loop in line 6 is never executed forever.

Assume that Vi is the starting vertex of polygon B (Figure 27). Since

i>3 is cw-tangential, the while-loop in line 3 returns v = v3 . It follows that, at the

beginning of the while-loop in line 6, v will be checked to determine the image type.

46

cw-tangential

ccw-tangential

Figure 27. Correctness of image type algorithm

If the conditions in lines 10 and 17 are not satisfied, we take the next vertex, as shown

in line 24. In the worst-case, we continue in this process until vertex v = u. Vertex

v is ccw-tangential, but the condition in line 10 will be satisfied ($i < 6 A $2 < 0).

It follows that the algorithm returns the image type of point p as vertex type and

vertex v. This proves that the while-loop in line 6 is always terminated.

b. Analysis of the Worst-Case Time Complexity of the Al-

gorithm

The operations in lines 1, 4, and 7-25 each takes 0(1) time. The loop

from lines 3 through 4 will be taken 0{n) time in the worst-case. The loop from lines

6 through 25 will be taken 0(n) time in the worst-case. The overall running time of

the algorithm is 0(n).

47

F. FINDING AN IMAGE ON A NONCONVEX POLY-
GON

urE

liui

im2

«
etai TsiN

9 -3
„

s'4

6
im4

;i

im3

Ira4

Figure 28. Image of a point p on cw concave polygon B

Figure 29. Image of a point p on ccw concave polygon B

Suppose we have an outermost nonconvex cw polygonal boundary (Figure 28)

or nonconvex ccw polygon obstacle inside the boundary (Figure 29). Let a point p E

hee(B). In the case of an outermost nonconvex cw polygon, there is more than one

image. The image always lies on an edge of B. In the case of nonconvex cctt; polygon,

there may be one or more images depending upon the position of the robot. The

48

image may be one of the vertices of B or it may lie on an edge of B. We have the

following observations. First, the image may be behind the vehicle. For instance,

in Figure 28, p,m3 and p,m4 are behind the vehicle. In this case, this can not be an

image.

The following remark illustrates how we can know whether the image is behind

a vehicle. Let 9 denote a vehicle's heading (the direction from p) and let ^(p,pjm)

denote the direction from p to pim .

Remark III.l Given a nonconvex polygon B and a point p £ free(B).

(I) U
|$(0-*(p,#m))|<! (IH.12)

then the image of p is usable.

(II) U
\<j>(e-yfa Pim))\ > l

then the image of p is behind the vehicle.

The second observation, for the usable image (Eq. III. 12). The following re-

mark illustrates how we can know if the image is on the right, left or front of the

vehicle.

Remark III.2 The real image is of one of the following three types.

(I) If

$(0-V(p,piTn))>0

then the image of p is on the right of the vehicle.

(II) U
<t>(0-V(p,piTn))<O

49

then the image of p is on the left of the vehicle.

(Ill) If

*(0-¥(p,j*m)) = O

then the image of p is on the front of the vehicle.

To summarize: in the case of a nonconvex polygon, we conclude that

1. We need an another algorithm to find the image(s).

2. We need another data structure for the image. In this case, we may have one

or more images. Therefore, we need an array of image structures. The size of

this array is the maximum numbers of images.

3. If the initial orientation, 9, of the vehicle is in the opposite direction to the

desired motion of the vehicle, then we cannot use lemma III.l to reject the

image which lies behind the robot.

According to above, the use of subpolygons when the world has nonconvex

polygons will let us use the same algorithm for convex polygons (see Subsection 3)

and the same data structure for image (see Chapter VIII).

50

IV. PATH CLASS REPRESENTATION
USING VORONOI DIAGRAMS

The global path planning problem is the problem of finding the optimum path

class to connect given start and goal configurations. The idea of Voronoi diagrams

plays an important role in solving this problem. This chapter presents a method to

symbolically represent the path classes in a polygonal world. It is developed with

the objective of providing useful information to the local motion planning, with an

emphasis on safely navigating through free space with smooth motions. The dis-

cussion and analysis given in this chapter are related to one of the most important

aspects of the motion planning problem in robotics, i.e., the connectivity of geomet-

rical objects. The motivation of this approach arises from the following observation.

Steering-function control rules exist for line, circle and parabola tracking, as well as

for two lines, two points, and vertex tracking (see Chapter VI). Parallels exist be-

tween these rules and physical obstacles from which the sensors obtain returns when

the robot travels down an office corridor. A vehicle moving in hallways recognizes the

left and right walls. This traversal path can be described in terms of left and right

obstacles. Since closer obstacles present the most immediate threat to the robot's

safety, then we should be most concerned with these. This will also aid in focus-

ing the attention of sensors on those obstacles. The Voronoi boundary gives us the

idea that the motion will be considered safer if it stays further away from obstacles.

The motivation behind this method is to try to link the path class definition to the

major obstacles of the world that the robot sensors would use. Prior to examining

this method, background information on path classes and Voronoi diagrams will be

addressed. Second, the path class representation using directed v-edges squence is

developed as a decomposition for use with a local motion planner. Third, the short

comings of using a polygonal world, and their solution using the idea of subpolygons,

will be discussed. Last, the advantages of using the path class representation using

51

the directed v-edges sequence are presented.

A. PATH CLASSES
A path f in a world W is a continuous function

/:[0,l]-/ree(W)

with /(0) 7^ /(l)- We consider a path / to be a directed curve with natural direction

from /(0) to /(l). The two points /(0) and /(l) are called its endpoints and we say

that the path joins them. We usually denote /(0) as a start S and /(l) as a goal G.

Figure 30 is an example of a world with three ccw polygons Bi,B2 and B3 , one cw

polygon Bq, and paths from 5 to G.

Figure 30. A world and paths

It is clear that, in any connected space, the set of paths between any two

points is infinite. In order to simplify the problem of choosing a path, we want to

group paths that are, in some sense, alike. Before we give a formal definition, we

present an intuitive idea of what makes two paths similar. In Figure 30, we see that

paths /i and /2 are somewhat similar in that they both go to right of Bi,B2 and B3.

Another observation is that there is no polygon between them. Notice, however, that

52

B\ and jE?2 are between j\ and /3 . Based on these observations, we might conclude

that /i and /2 should be grouped together, and also /3 and /4 , but /5 should be in a

group by itself. The relation of homotopy provides a formal method for making these

groupings [13].

Consider two paths in the robot's world, say / and g, with common endpoints.

We say that / is homotopic to g, written f — g, provided there is a continuous function

H : [0, 1] x [0, 1] -* free(W)

which satisfies these equations:

H(t,0) = f(t) Vt€[0,l]

H(t,l) = g(t) V*6[0,l]

H{0,s) = /(0) = g(0) tee [0,1]

H(l,s) = /(l) = g(l) V5 G[0,1].

In other words, H is a function that allows us to continuously deform one path into

the other without crossing an obstacle, with both endpoints fixed. Furthermore,

homotopy defines an equivalence relation on the set of paths which partitions them

into a collection of homotopy classes or path classes [13]. We will use this relation to

reduce the problem of path selection by considering a finite set of path classes rather

than an infinite set of paths. In Figure 30, /i = /2 and f3 = f4 .

The concept of homotopy class or path class is essential in motion planning

[26]. Consider typical missions for an autonomous vehicle such as

• Given start and goal configurations, a vehicle finds the best path class and

executes a motion in the path class,

• A vehicle is hugging right (or left) walls,

• A vehicle is browsing randomly in the free area,

• A vehicle is following a walking person, or

• A vehicle is looking for an office that has the light on.

53

In each of these missions, one path class is found through some algorithm. We consider

the problem of how to symbolically represent path classes. In order to symbolically

represent path classes and to make the navigation task easier, one of the following

methods can be used to decompose the world W:

1. Borders (see [36, 47])

2. Generalized Voronoi diagram (we will discuss this method in this cxhapter)

3. Shortest paths

B. THE LOCUS APPROACH TO PROXIMITY PROB-
LEMS: VORONOI DIAGRAM
Proximity or closeness is one of the most essential concepts in robotics. This

concept, for instance, is related to safe motion of a robot in a given environment. In

a simple hallway, its "center line" has the obvious meaning. A Voronoi boundary is

a generalized version of a center line in a complex geometrical configuration. Our

interest in this dissertation is in using the idea of Voronoi diagram to simplify the

planning of collision-^ree paths for a robot among obstacles. The Voronoi diagram, as

usually defined, is a strong deformation retract of free space so that free space can be

continuously deformed onto the diagram. This means that the diagram is complete

for path planning, i.e., searching the original space for paths can be reduced to a

search on the diagram. Reducing the dimension of the set to be searched usually

reduces the time complexity of the search. Secondly, the diagram leads to robust

paths, i.e., paths that are maximally clear of obstacles.

1. Definitions

Assume there are n > 1 different polygons in a world W:

W = {Bir --,Bn] n>\

Definition: The Voronoi region V{B{) of polygon B{ in W is the the set of points

whose images are on it.

54

Definition: The union of all region boundaries is called the Voronoi diagram of a

world.

V(W) = |J V(Bi) Ki<n

Definition: The boundary of the Voronoi regions is called Voronoi boundary. There-

fore the Voronoi boundary of a world is the set of points that have at least two images

on distinct objects.

Definition: The common boundary of two Voronoi regions is a Voronoi edge.

Definition: Two Voronoi edges meet at a Voronoi vertex; such a point has three or

more nearest neighbors in the world W.

We know that

1. the Voronoi boundary of two points is a line,

2. the Voronoi boundary of two lines is one or two lines, and

3. the Voronoi boundary of a point and a line is a parabola.

For more details, see [36, 59, 44]. In the following subsection, we are going to show

the Voronoi diagram of a world W consisting of a polygon.

2. Voronoi Diagram of Polygon

We consider a world W that has only one ccw polygon B. An image im(p, B)

of a point p € free(B) to B is the closest point from p on B. The image is a vertex

on B or on an open edge e in B (an open edge does not include both endpoints) (see

Figure 31). In this case, a polygon is regarded as the union of vertices and open

edges.

Each point p 6 free(B) can be characterized by whether the image im(p, B)

is one of the vertices of B or on any edge of B. The Voronoi region of a vertex,

55

im(p, , B)

Figure 31. Images on a polygon

such as V(v-i) in Figure 32, is said to be vertex type, and that of an open segment,

such as V{e\) in Figure 32, is said to be edge type. Suppose p is the position of a

moving vehicle. Then its image moves when p is in an edge type region, but the

image does not move when p is in a vertex region. This fact is important in local

motion planning. An example of the Voronoi diagram of a ccw polygon is shown in

Figure 32. In this polygon, there are five vertices and five edges, and hence there are

ten Voronoi regions.

V(v,)

V(e
5) %

y(v,
) ;

V(vJ

3 V^)

X V(vJ

V(e,) /
V*\ V(e,r

/ V(v
2

) ^
/

Figure 32. Voronoi diagram of a cctu polygon

56

If a world W consists of cw polygon B, its Voronoi diagram is shown in Fig-

ure 33. Another example is shown in Figure 34. For a concave vertex v, its Voronoi

region V(v) is the empty set.

V>. V(e,) / h

V(e
4) V(

6l)
"\v<%)

Figure 33. Voronoi diagram of a cw polygon (I)

directrix of parabola 1

directrix of;;

parabola 2

Figure 34. Voronoi diagram of a cw polygon (II)

57

C. POLYGONAL WORLD AND PATH CLASSES
B

•S: :

':

:

:

:

t:

B; B
a

^>fc . '•::;.; j.*"
'

^S^: WJT
^*s^>^

f|

Figure 35. Polygonal world

Consider a world W which consists of a finite number of polygons n, i.e.,

W = {£ ,£i, ••-,£„}, n>0,

where Bo is a ciu polygon, and ccw polygons B\, • • •

, Bn are considered to be obstacles

for the robot (see Figure 35).

For a point p E free(W;

), the distance d(p, B{) from p to a polygon Bt
- is defined

in Eq. III. 5. The Voronoi region V(Bi) of a polygon B{ in W is defined as

V(Bi) = {p E/ree(W)
|

{Vj)\{i±jM < j < n) -» [rf(p,^) < <*(/>,£;)]]} (IV.l)

For instance, Eq. IV.l means that any point within free(VV) has its image on the

two polygons. The Voronoi diagram of world W consisting of three polygons is

shown in Figure 36. The Voronoi boundaries of W shown in Figure 36 consists of

line segments and parabolic arcs. Note that the intersection where three or more of

Voronoi boundary segments meet is called a v-node. A Voronoi boundary segment(s)

between two v-nodes is called a v-edge. For example, there are two v-nodes and three

v-edges as shown in Figure 36.

58

Figure 36. Voronoi diagram of polygonal world (I)

Each undirected v-edge £ is the boundary of two Voronoi regions, V(B,-) and

V(Bj). We denote an undirected v-edge £ by

t = [Bi : BJ,

where [Bi : BJ and [Bj : B,] are considered the same. For example, in Figure 36, the

undirected v-edge between the two v-nodes vi and V2 is £ = [B\ : B2] or £ = [B2 : BJ.

In Figure 36, there are three undirected v-edges [B\ : Bo], [B\ : B2], and [B2 : Bo].

Another example is shown in Figure 37. In this example, a world W consists of five

polygons B ,Bi,B2, B$ and B4 . There are five v-nodes and eight undirected v-edges

\BX : Bo], [Bx : B2], [B2 : Bo], [B2 : B3], [ft : BJ, [B4 : flb], [B3 : BJ, and [B3 : Bb].

1. Directed v-edge

Each undirected v-edge is the boundary of two Voronoi regions, V(B{) and

V(Bj). In this case,

[J% : BJ = [B7 : BJ.

Now, we consider the directed v-edge. Once the directed v-edge is given, the

concepts of left and right images take on meaning. This will aid in using the world

59

Figure 37. Voronoi diagram of polygonal world (II)

data to capture the spatial relationship between the objects in the world. We have

two types of directed boundaries:

1. Directed boundaries of two polygons are the same (ccw):

There are two opposite directions on an undirected v-edge [Bi : Bj]. One
direction goes ccw with Bi and cw with Bj. The other direction goes cw with

Bi and ccw with Bj (see Figure 38).

2. Directed boundaries of two polygons are different (ccw and cw):

There are two opposite directions on an undirected v-edge [Bi : Bj]. One
direction goes ccw with Bi and cw with Bj. The other direction goes cw with

Bi and ccw with Bj (see Figure 39).

Now, we denote directed v-edge £ by

i = IBi/Bj],

where Bi and Bj refer to the left and right polygons respectively. It is clear that

[Bi/Bj] and [Bj/Bi] are not the same. Although the assignment of left and right is

60

Figure 38. Defining directed v-edge for the same directed boundaries (ccw polygons)

arbitrary, it is fixed for all times once set. For consistency in this dissertation, left

and right polygons will be the first and second terms in directed v-edges, respectively.

The following is the result of the previous discussion of directed v-edge.

Lemma IV. 1 In a polygonal world W, where W is encircled by an outermost cw
polygonal boundary and has n (n>\) ccw polygonal obstacles inside the boundary, a

directed v-edge consists of two different polygons.

wXwWvXvXw:-:-:-: ;:•:-::-::-:-:::-:::'::-:-:•;-:::-:•::-::-:::•:•:-:;-::-::::

Figure 39. Defining directed v-edge for different directed boundaries {cw and ccw)

61

2. Canonical Paths and Directed v-edges Sequences

Figure 40. Paths and canonical paths

A robot can work only in the free space, free(W). A path f in a world Wis a

continuous function

/:[0,l]->/ree(W) (IV.2)

Consider the problem of finding a path from a start configuration, S, to a goal

configuration, G in a polygonal world W (see Figure 40, where ccw polygons B\ and

B2 are considered as obstacles for robot in this world and a world has one cw polygon

B)- It is desired to connect the start configuration, 5, to the goal configuration, G,

using a continuous, smooth path. There are infinitely many distinct paths connecting

S and G. However, actually, we need to compare only paths which satisfy a special

property.

Definition: A path II is called a canonical path if there exists a sequence of directed

62

v-edges such that

n = 5,6 ... tk s9 k>i, (iv.3)

where

• the right hand side of Eq. IV.3 is the concatenation of k + 2 subpaths,

• the subpath s s is the shortest path from S to £1,

• £1 * * • £k is the sequence of directed v-edges, and

• the subpath sg is the shortest path from &. to G.

For example, in Figure 40,

II = s.lB^BoftBi/B^/BsftBo/Bs]*,.

The following is the result of the previous discussion of the canonical path.

Lemma IV. 2 : For a given W , S , and G, a canonical path II is the only one among
all the paths in a homotopy class which satisfies the following conditions:

1. the subpath connecting S to first directed v-edge is the shortest one,

2. sequential pieces from one directed v-edge to the next, and

3. the subpath connecting the last directed v-edge to G is the shortest one.

Proposition IV. 1 ; For a given W, S, and G, for paths f\ and f2 in a homotopy

class, if fi —* IIi and /2 —* II2 then IIi = 112.

Proof. Assume that the hypothesis is true. Since fj and IIi are homotopic, there is a

continous function H which transforms f\ into IIi. Also, there is a continous function

H which transforms f2 into II2. By Lemma IV. 2, there is only one canonical path II

among all paths in a homotopy class. It follows that 111 = 112.

Definition: A directed v-edges sequence H is a finite sequence of directed v-edges such

that no subsequence of [Bi/Bj] [Bj/Bi] is a part of it.

63

Figure 41. Interpretation of canonical path as directed v-edges sequence

By definition, if II is a canonical path, then II = s 5 S sg (See Figure 41), where

H is £1 • • •
fib-

Several examples of directed v-edges sequences are illustrated in Figures 42

and 43. For example, the directed v-edges sequences for the above figures are as

follows:

E = [BJBtAlBi/BJlBi/BsllBo/Ba] (Figure 42)

E = [B1/B][B4/Bo][B3/B }
(Figure 43)

Proposition IV.2 ; In a homotopy class, for all paths /i and f2 , f\ = f2 if and

only ifE-L = E2 .

Proof.

First prove the sufficiency. Assume Si = H2. If Hi = H2, each path has a

sequence of the same directed v-edges. Furthermore, in a homotopy class, both paths

have the same left and right polygons. Each path is a concatenation of pieces. These

64

Figure 42. Directed v-edges sequence (I)

pieces connect the start configuration to the first directed v-edge in H. the sequential

pieces from one directed v-edge to the next, and the last directed v-edge to the goal

configuration. We can easily construct H to transform f\ into /2 piece by piece

without running over any obstacles. The transformation, H, is the composition of

the sequences of the transformations shown. Hence, the paths are homotopic.

To prove the necessity, assume f\ = /2 . We are given a path f\. Consider

a directed v-edges sequence Hj of f\. Since /i and /2 are homotopic, there is a

continuous function H which transforms f\ into /2 . Since H(s,t) is a continous

function, each directed v-edge £, which has left and right polygons, continuously

concatenates with the next £ over sasi moves when transforming /i into /2 . However,

there is no way in which /2 can eliminate, insert or repeat any £ other than in the

monotonic sequence of f\. H(s,t) can neither destroy existing nor create any new £,

because H(s,t) 6 free(W) and H(s,t) is continuous. Therefore Hi = E2 . d

From above, we can conclude that

65

Figure 43. Directed v-edges sequence (II)

1. A directed v-edges sequence S is unique for paths which are not nomotopic.

2. A directed v-edges sequence E is a symbolic representation.

In Chapter VI, we will show that the advantage of using directed v-edges

sequence E for local motion planning.

3. Connectivity Graph

We make the following observations about the world in Figure 36. Three

Voronoi boundary segments intesect in one node (v-node). There is one line segment

between two v-nodes (v-edge). Each v-node operates in both directions, and no

v-node has a v-edge to itself.

Definition: A basic connectivity graph G = (V, E) consists of V, a nonempty set of

v-nodes, and E, a set of unordered pairs of distincts elements of V called undirected

v-edges. Consequently this figure can be modeled using a basic connectivity graph,

66

consisting of vertices which represent v-nodes, and undirected edges, which represent

undirected v-edges, where each edge connects two distinct vertices.

IB,:B] [B
2
:B]

Figure 44. Basic connectivity graph of a polygonal world (I)

[B
2
:B] CB,:BL]

[Bi:B] [B 4 :B]

Figure 45. Basic connectivity graph of a polygonal world (II)

67

The basic connectivity graphs generated by the world in Figures 36 and 37 are

shown in Figures 44 and 45.

Now we will explain how to represent a path class (see subsection 4).

4. Path Class Representation

Figure 46. Polygonal world (I)

Consider the problem of finding a path from a start configuration, S, to a

goal configuration, G in a polygonal world W (Figure 46). It is desired to connect

the start configuration, 5, to the goal configuration, G, using a continuous, smooth

path. In Figure 46, there are four different path classes. Consider the problem of

how to symbolically represent each path class. A method based on directed v-edges is

presented. Given start and goal configurations, we add two new nodes, S and G, to the

basic connectivity graph to obtain an augmented connectivity graph. The augmented

connectivity graph generated by the world in Figure 46 is shown in Figure 47. In

Figure 47, there are four different path classes. In its most general form, a path class,

7r, is symbolically represented by a sequence of directed v-edges. For instance, four

typical path classes in Figure 47 are represented by:

it, = lBo/B,][Bo/Bt]

68

Figure 47. Augmented connectivity graph of a polygonal world (I)

tt2 = [Bo/Bt] [Bg/Bt]
[B2/B]

7T3 = [B1 /B][B1 /B2][Bo/B2]

tt4 = [B1 /B][B2/B]

Another example is shown in Figure 48. The augmented connectivity graph generated

by the world in Figure 48 is shown in Figure 49. In Figure 49, there are twelve different

path classes which connect S with G:

7Ti = [Bo/Bt] [B /B2 [Bo IBs]

7T2 = [Bo/Bj] [B /B2 [B3/B2 [B3/B4]
[Bs/Bo]

*3 = [Bo/Bj] [Bo/B2 [B3/B2 [B4 /B1][B4 /B][B3/B]

7T4 = [B /Bl]\B2 /Bl \
[B2/Bs [Bo/B3 }

7T5 = [B /B1][B2 /B1]
[Bs/B4]

[B3 /Bo]

7T6 = [Bo/BjJlBz/Bt] [B4/B1] [B4 /B]
[Bs/Bo]

7T7 = [B1 /B][B1 /B4]
[Bt/Bz] [Bo/Bt] [B0/B3]

69

::•:•::•:•;•:•:•:•:•:•:::•:-:•::•:•:•:•::-:•:•:•:•

Figure 48. Polygonal world (II)

tt8 = [B1 /Bo][B1 /B4)[B2/B3){Bo/B3]

tt9 = [BJ /Bo][B1 /B4][Bs/B4][Bs/B]

tio = [B1 /Bo][B4 /Bo][B3/B]

tii = [B1 /Bo][B4 /Bo][B4/Bs]lBs/Bs][Bo/Bs]

tt12 = [B1 /Bo][B4 /Bo][BJBs][B1 /B2)[Bo/B2}[Bo/B3]

5. Finding the Best Path Class

In this subsection we outline how to find the best path class. Finding the

best path class from start configuration, 5, to goal configuration, G, in the world

is transformed into the minimum cost path finding problem from S to G in the

augmented connectivity graph. The augmented connectivity graph uses a weighted

edge whose value depends upon the mission-based cost function associated with the

v-edge. For instance, a cost for the edge is defined as the energy (or time) for the

vehicle to make a motion from one v-node Vi to another v-node Vj. This cost not

only reflects the distance, but the turns needed to make the motion. It may also

70

[B
2 /BU

[B /BJ

Figure 49. Augmented connectivity graph of a polygonal world (II)

reflect the safety (i.e., if the region is narrow, the cost is high). Dijkstra's algorithm,

or a All-pairs shortest paths, can be perfectly applied to this global motion planning

problem. As its result, the best path class in terms of a sequence of directed v-edges

is obtained. The computation time is 0((n + m)log n) using a priority queue, where

n and m are the numbers of v-nodes and the number of the directed v-edges in the

augmented connected graph respectively. Once the path class is found, it is passed

to a routine which ensures the vehicle will follow the path class to reach the goal.

6. Following the Path Class

Once the path class is found, it is passed to a routine which ensures that

the vehicle will follow the path class to reach the goal. The choice of the mission

type ultimately affects which steering function (for steering function definition, see

Chapter V) is used to guide the vehicle. For example, one mission is to travel down

71

the center of a hallway and remain at a user-specified distance from the corners when

executing a turn into another corridor.

D. PATH CLASSES AND SUBPOLYGONS
The objective of path classes using polygonal world is to provide useful in-

formation for local motion planning. The directed v-edges sequences, H, of a world

W which consists of a finite number of polygons n is independent of the position of

the vehicle inside the free(W). For example, in Figure 50, suppose the path class

7r = \Bil

B

]
[B2/B0] and the start configuration of the vehicle are given as shown.

Also, we know any point within free(VV) has its left and right images on the two

polygons. We proved in Chapter III that there is only one image of a point which

lies in free space to a convex polygon and more than one image for a non convex

polygon. When representing the path class using a polygonal world, we have the

following disadvantages:

1. In Figure 50, B\ and B2 are ecu; convex polygons and a Bo is cw nonconvex

polygon. When the vehicle navigates the given path 7T, left image is zm3 and

its right images are im\ and im2 . Since the start orientation of the vehicle is

0, as shown in Figure 50, the right images are im,\ and ira4 , but irri2 is behind

the vehicle.

2. If there is ccw horse-shoe polygon in the world, how can we know which image

is on the left and which is on the right on the same polygon (see Figure 51)?

In this case, £ = [B{ : £?,-].

3. We can not construct the connectivity graph if a world W consists of two poly-

gons Bo and B\, where W is encircled by an outermost cw polygonal boundary

Bo and has one ccw polygonal obstacle B\ inside the boundary (Figure 52),

since every v-node of the connectivity graph is the common intersection of

three or more Voronoi boundary segments.

Due to the above shortcomings, we need more information when we represent the

path classes in order to simplify local motion planning. The use of the subpolygons

(see Chapter III) will solve the above problems and give more information for the

local motion planning task.

72

SS8S85SH :fi.
:*m(<(f$((:

Figure 50. Problem 1: initial orientation of a vehicle is different from the direction

of a motion

Consider the same world W in Figure 36. The nonconvex polygon B can

be broken into four subpolygons Boo, #oi,#02> an<^ ^°3 (see Figure 53). The basic

connectivity graph generated by the world in Figure 53 is shown in Figure 54. There

are six v-nodes (vi, • • • , V&) and seven undirected v-edges:

[B\ : Boo], [B\ : JBqi], [Bt : Bos], [B2 '. B i], [B2 : B02], [B2 : B03, [B\ : B2].

m

[BjrB,]

left & right I
images on the

same polygon

Figure 51. Problem 2: directed v-edge of a concave polygon

73

Figure 52. Problem 3: Voronoi diagram of polygonal world consisting of two polygons

(ccw polygon inside cw polygon boundary)

Now, assume that a start configuration, 5, and a goal configuration, G, are

given in free(VV) (see Figure 53). The augmented connectivity gTaph generated by

this world is shown in Figure 55. In Figure 55, there are four different path classes

represented by a directed v-edges sequences as follows:

7Ti = [Boo/Bi] [Bos/B^ [B s/B2]
[B02/B2]

7r2 = [Boo/Bi] [Bos/Bi] [B2 /B1]
[B2/B i] [B2/B02]

D
<8

Figure 53. Solution of probelm 1: Voronoi diagram of a subpolygonal world

74

[Bi%] [B :BJ

o

[B
2 ^2]

-0
[B,:^] [B

2 :V

Figure 54. Basic connectivity graph of a subpolygonal world

^3 — [Bi/Boo] [Bj/Boi] [Bj/B2]
[B03/B2] [B02/B2]

7!"4 = [B1/B00] [Bt/Boi] [B2 /Boi] [B2/B02]

As a result, the use of subpolygons solves the problem when the start orien-

tation of the vehicle is different from the direction of the motion. In other words,

path classes represented by subpolygons possesses more information for local motion

[B^/Bj [B n,/B, 1

[Boi/Bi 1
[Bm/BJ

Figure 55. Augmented connectivity graph of a subpolygonal world

75

planning than do those represented by polygons.

Br

: '
"tn -

'
:

Figure 56. Solution of problem 2: up and down directed v-edges (I)

Now, we will discuss how we can solve the problem of a horseshoe-shaped

polygon in the world. In Figure 51, polygon B\ is decomposed into subpolyogons Bu

and Bn (see Figure 56). In Figure 56,

£n = {v3 ,
v4 }

and

B12 = {v4 , u5 , v6 , v7i v8 , wi, v2 , v3] (IV.4)

are two subpolygons.

Another example is shown in Figure 57. Polygon B\ is decomposed into four

subpolyogons Bu , Bu, #13, and Bi4 where:

Bu = K, ^5}

B\2 = {*>5, ve }

#13 = K, v7]

B\\ = W, *>8, , vA } (IV.5)

76

m$
B n?

xX::;X:X:XxX;:vX:

B
14

:
:
:
:
:
:
:
:
:
:

:'x :x:

V
s H* 6

B
oo

: :-.i 1

B
11

1Z B
13

!H
V

*
11

% = [Bl4D ^MU 1

\
7

v
i

B
02

B
01

Figure 57. Solution of problem 2: up and down directed v-edges (II)

We have the following observations. In Eq. IV.4 (Figure 56), The first and last

vertices of subpolygon B\ 2 are v4 and v3 respectively. The right image is on the edge

whose first vertex is v4 (v4(f(v4)). The left image is on the edge whose second vertex is

^3 (^"H^)^)- In Eq. IV.5 (Figure 57), The first and last vertices of subpolygon £?i 4

are V7 and v4 respectively. The right image is on the side whose first vertex is v7 . The

left image is on the side whose second vertex is v4 . According to above observations,

we have the following definition:

Definition: If left and right images are on the same subpolygon, then the directed

v—edge is defined as follows:

£ = [BiD/Biu]

or

(= [Biu/BiD]

77

where Bus is subpolygon i associated with its first vertex and BiD is subpolygon i

associated with its last vertex.

For instance, in Figure 56,

£ = [B12D/B12U]

where B\2D is the left side of subpolygon B\ 2 (subpolygon B12 and last vertex V3)

and B12U is the right side of subpolygon Bx2 (subpolygon B\2 and first vertex v4).

In Figure 57,

6 = [Bwd/Bwu]

where B^d is the left side of subpolygon B\ 4 (subpolygon B\4 and last vertex v4)

and B14U is the right side of subpolygon B^ 4 (subpolygon B\ 4 and first vertex vr).

The problem of constructing a connectivity graph when a world W consists

of only two polygons Bo and B\ is solved by using the idea of subpolygons (see

Figure 58). In Figure 58, there are two different path classes:

id = [Boi/BrflBoo/BAlBos/B,]

K2 = [Bi I B01] [Bj IB02] [Bi IBos]

E. ADVANTAGES OF PATH CLASS REPRESENTAION
USING DIRECTED V-EDGES SEQUENCES
There are several advantages. They include:

1. A unique representation of a path class. In other words, this representation is

unambiguous since a directed v-edge is defined by the "closest" two obstacle

features.

For example, in Figure 59, the directed v-edges sequence H is

Z=[B1 /Bo][B1/B4][B2/B3][Bo/B3}.

In directed v-edge £ = [B1/B4], the directed boundaries of Bx and B2 are the

same (ccw). The path direction goes ccw with left polygon B\ and cw with

right polygon B4 , then a left turn is required.

78

ATgg

G
•

\
V3v

y [Bi%]

Bw
18,:%,]^V </ »,:%]

vV^
P, =%, 1

\ 2

/ •

/ s

B r

[B^/BJ

tBoo/Bj \ [Bi^J

tBo,/B,]

Figure 58. Solution of problem 3: world and augmented connectivity graph

In Figure 60, the directed v-edges sequence E is

E=[Bl/B }{B4/B][B3/Bo}.

In directed v-edge £ = [B4/B0], the directed boundaries of B2 and Bq are

different (ccw and cw). The path direction goes ccw with left polygon B4 and

ctu with right polygon Bo, and no turn is required.

2. It is an exact free space decomposition, so that if a path exists, the local

motion planning should be able to find it.

3. It simplifies the planning of collision-free paths for a robot among obstacles

once the directed v-edge sequence in which the robot is located is identified.

4. The local motion planning problem becomes simpler if a path class representing

by directed v-edge sequence is given.

79

Figure 59. Directed v-edges sequence (left turn is required)

Figure 60. Directed v-edges sequence (no turn is required)

80

V. POLYGON TRACKING MOTION

This chapter addresses an approach to the tracking of polygons. This new

method is based on the fact that obstacles are present in the working environment

and they exhibit edges and corners (vertices). When a vehicle is moving, it recognizes

its images on these obstacles and we can know the distance between the vehicle and

those obstacles using a function called steering function, which takes data such as

the distances, directions to its image on the boundary, and the desired curvature (the

concept of steering function will be discussed in Section B). Therefore, it is possible

for a vehicle to travel in the free space along the outer boundaries of obstacles and

to keep a certain safety clearance (safety clearance function is defined in Section C).

Since keeping a clearance from objects is important in polygon tracking motion, the

robot will travel along a polygon's outer edges with clearance required. But when a

vertex is eventually met, the robot needs to change its orientation to keep following

the object. While the robot is changing its heading orientation, it is traveling past the

vertex of a polygon, trying to keep the required clearance from the object so that it can

continue to perform the same motion when an edge is available again. This Chapter

proposes a few measurements which can be used in order to choose among several

alternative paths (see Section D). The problem of how to make smooth motion when

the vehicle gets close to the intersection of two distinct segments will be discussed in

Section E. We have three different tracking techniques:

1. Edge-Convex Vertex Tracking (see Section F),

2. Convex Vertex Tracking (see Section G), and

3. Edge-Concave Vertex Tracking (see Section H).

A. PROBLEM STATEMENT
Given a ccw (cw) polygon B, the initial configuration q = (p, 0, ac) of a vehicle

(p, 9, and k are its position, orientation and curvature respectively), a safety clearance

81

Figure 61. ccw tracking direction

do > 0, and path direction (ccw or cw) (see Figures 61 and 62), we are trying to find

a path of the vehicle starting from q (Figure 63) satisfying the following conditions:

1. Its path curvature is continuous, and

2. The total safety cost of the path is minimized (see Section D).

Figure 62. cw tracking direction

82

w

»

Polygon Tracking *

»

B (ccw/cw)

9 start

Path

Safety Clearance (d)

Path Direction (ccw/cw)

Figure 63. Block diagram for polygon tracking

B. GENERAL CONCEPTS OF THE STEERING FUNC-
TION
The mathematical framework that is used while working with steering func-

tions is now described. First, only curves in the two-dimensional plane are considered,

using the Euclidean space E2
as the work space. A path will be described by a curve

C which is a function of path length, s. By the fundamental existence and uniqueness

theorem for plane curves, if k(s) is an arbitrary continuous function on a closed inter-

val [a, 6], then there exists one and only one curve C for which k(s) is the curvature

and 5 is a natural parameter along C. Hence, the curve is completely and uniquely

described by the initial position, orientation, and curvature k [27, 31, 63].

Second, a vehicle's configuration q is defined as

q(s) = (p(s),9(s),K(s)) (v.i)

where p(s), 9(s) and k(s) are its position, orientation, and curvature.

Each non-holonomic vehicle has two degrees of freedom: the translational

speed v and rotational speed uo. Since a non-holonomic robot's heading orientation is

always equal to the trajectory's tangent orientation, the vehicle's rotational speed u is

equal to kv, where k is the path curvature (because u = dO/dt = (d$/ds)(ds/dt) = nv,

where t is time and s is the traveling length of the robot). Therefore, the smooth

motion planning of a robot vehicle is designing (/c, v) or (u, v) as functions of t or s.

This control model with curvature is useful for vehicles with any kinematics [35].

83

In a real vehicle's path, it is well-known that the vehicle heading direction

and the curvature must be continous [37]. The local motion planning problem is

therefore the problem of how to control the curvature k. One obvious method is to

compute the curvature directly as a function of the geometrical constraints and the

mission. However, one drawback of this method is that when some of the input has

a discontinuity from the previous value, the output k also tends to be discontinuous.

As widely known, rigid body motion with a discontinuous curvature function is not

physically realizable. Curvature continuity is essential in the local motion planning

because a discontinuity in vehicle acceleration may cause wheel slippage which will

add to odometery errors. In order to solve this problem, we take the derivative of

the curvature dn/ds instead of the curvature k itself as a control variable. As long as

dn/ds takes on a finite value, the curvature continuity is guaranteed and the trajectory

becomes smooth. Therefore, the "optimal" function / in an equation

for a rigid body vehicle is called a steering function, where E is the current environ-

ment, M the mission, and q the vehicle configuration. After computing this value

dn/ds = /, the curvature k is updated through the incremental movement As. As

long as / is the value of finite, a vehicle's trajectory obtained is "smooth" in the

sense that the tangent orientation, curvature and derivative of curvature exist on ev-

ery point on the trajectory. In this mathematical model, we understand the vehicle's

curvature is not rapidly changed, hence, we include k in the vehicle's configuration

as shown in Eq. V.l. We adopt the following general form for the steering function

that works in all situations we have applied:

dn— = -(aAK + bA9 + cAd) (V.2)

= -(o(k - Kd) + b(0 - ed) + cAd),

where a, 6, and c are positive constants. Also, k is the path curvature, 6 the vehicle's

heading (which is equal to the path tangential direction), Kd the desired curvature,

84

and Oj the desired heading direction. This steering function can be applied to various

motion planning situations. The definitions of /c^ , 64, and Ad are defined according to

situations as we will see in the Sections F, G, and H. The meanings of these variables,

Aac, A0, and Ad, are as follows:

1. Ak is the difference between the current vehicle's curvature k and the desired

curvature kj.

2. A9 is the difference between the current vehicle's orientation 6 and the desired

orientation 0d-

3. Ac? is the difference between the current and desired positions and is a signed

number. For instance, if the robot is tracking a directed reference path, Ad is

the signed distance from the vehicle position to the directed path.

reference path

image point (x, y)

Figure 64. Geometrical concepts of steering function

Figure 64 illustrates the geometric concepts involved with a steering function

used to follow a reference path. The closest point on the reference path from the

robot's configuration is called the image point. A signed distance value, Ac?, is used

to represent the shortest distance between the robot's current configuration and the

image located in the reference path. The sign of Ad depends on the robot's position

relative to the reference path. When Ad > 0, the robot is to the left of the reference

85

path and when Ad < 0, the robot is to the right of the reference path. Therefore, Ad

is a signed distance indicating how far the robot is located from a reference path.

For details on the steering function and an argument as to why the steering

function works, see [36].

C. CLEARANCE DEFINITION

safety clearance

Figure 65. Robot's safety clearance (I)

In this dissertation, we take safety as the single characteristic of motions to be

optimized. The polygon tracking problem is the one of planning a motion for a vehicle

to track a flat wall in parallel to it with a given safety clearance (see Figure 65). If the

distance between the robot and polygon is less than this safety clearance, the robot

must try to make the distance to the left/right boundaries greater than this safety

clearance using non-linear safety clearance function g(d) (see Figure 66).

Definition: the clearance d\ is defined as the distance from the robot's outside edge

of the wheels to the object (Figure 67).

If d\ is supplied by sensors instead of as information extracted from the model, the

clearance d\ indicates how far the object is from the sensor.

86

g(d)

n

-**d

Figure 66. Non-linear safety clearance function

Definition: the robot's safety clearance d is defined by

do = d\ + -width,

where width is the robot's width. See Figure 67.

(V.3)

Definition: Let d be the distance between the robot and polygon. The safety clearance

function g(d) is defined by

9(d) =
d — do if d < do

oth

(V.4)

erwise

where g : 1Z —> 71 is a nonlinear function defined as in Figure 66.

D. COMPARING PATH ALTERNATIVES
Currently, a quantitative technique for comparing alternative paths is needed.

Our problem is: to compare two or more alternative paths in order to select the best

87

wheel

i—._
safety clearance d

r
center of the robot

clearance d
x

<i

width

Figure 67. Robot's safety clearance (II)

one. Only a few attributes may be used to describe a path. These attributes in-

clude length, smoothness and safety. Path safety is the most important property, and

path smoothness is desirable to ameliorate odometry errors and to decrease travel

time along the path due to the ability to use higher velocities on paths with lower

curvatures. Based on the stipulated mission parameters, the cost function for path

comparison may be found. By evaluating the penalties associated with path at-

tributes, the path which minimizes the cost function can be chosen as the best of the

alternative paths for a given mission.

1. Safety Cost Function

Generally, path safety is a function of the distance of the vehicle to an obstacle.

As the distance decreases, the safety decreases. The safest path is one in which the

distance to the obstacle is maximum. In many cases, a vehicle should not approach

closer to the obstacle than the given safety range. A path is unsafe if the distance to

the obstacle is less than or equal to zero.

One way of planning safer paths is to maintain a constant clearance for every

point on a path [57, 54]. However, the constant clearance method is still not ideal for

two reasons:

88

1. when the vehicle is moving in a tight space, a smaller clearance may be tol-

erated. On the other hand, when the vehicle is moving in a wider space, a

larger clearance may be required in order to move the vehicle faster and to

ease positional control.

2. the initial position of the vehicle may be with null clearance.

Another approach is using a cost for safety [64]. Here, the cost of a path is

defined as the sum of costs for its length and for its safety. The safety component

of the cost is a function of the integration of the distance between a point on a path

and the center line. Therefore, this algorithm does not give any solution if the area

is not delimited by a center line or by a Voronoi boundary.

In this dissertation, we use the following approach. A path in free space is a

pair (si,/) consisting of a positive real number Si and a continuous function /. The

length of path from the point p(0) to a point p(s) along a path(si,/) is equal to s if

< s < s\. Let 7(p) denote the distance between a point p to a polygon B. Let p(s)

denote a vehicle position at s on the path. The total safety cost of a path(si,/) is

given by a positive cost function T : 1Z —> 1Z defined by

r= [
Sl

h(p(s))-d
]

2
ds, (V.5)

Jo

Generally, a path farther from obstacles is safer, but tends to be longer. There-

fore, we need to strike a balance between smoothness and safety of a path. There is

a positive parameter a in the steering function, which controls the smoothness of the

resultant trajectory. If a smaller a is used, the trajectory becomes sharper and the

path becomes safer, and if a larger a is used, the trajectory becomes smoother and

the path becomes more dangerous. As the smoothness parameter a becomes large,

the path converges to the smoothest path. Thus, we obtain a class of paths with

different weight between safety and smoothness in an equivalent class.

2. Smoothness Cost Function

Smoothness of path is essential for mobile robot navigation because unsmooth

motions may cause slippage of wheels which degrades the robot's dead reckoning

89

ability. A path that does not posses tangential or curvature continuity surely is not

smooth. These types of paths will not be allowed as alternative paths due to the

severity of the lack of smoothness. In order to control smoothness of paths, we define

the cost of a path for smoothness. A unit cost for smoothness at a point p(s) on

a path is proposed as the square of the derivative of its curvature [37]. The total

smoothness cost of a path is given by a positive cost function E : 7Z — 1Z defined by

=-f (£)'* (V.6)

E. COMBINING STEERING FUNCTIONS
:¥:¥:WS

Left Image

I

/b
t

Second Right Image

First Right Image

Figure 68. First and second images

The new problem to be solved in this dissertation is that of how to achieve a

smooth motion when the vehicle gets close to the intersection of two distinct subpaths

(for instance from a line segment to a circle segment). In order to solve this problem,

we will watch second images in the forward portion of a left or right boundary, and

will make a smooth motion by evaluating the steering function using not only the

left/right first images, but the left/right second images too (see Figure 68). That is, we

evaluate two steering functions with the first and the second images and take a value

by combining these two function results. Thus, resulting paths will be "smoothed"

using an appropriate smoothness a.

90

First, let the weighting functions lo-[and u>2 are defined as:

(V.7)u>i = exp

u)2 = exp
a

(V.8)

where d\ and d2 are the distance between p and its first left (right) and second left

(right) images respectively. These weighting functions are dimensionless.

If a second image is far from the vehicle, the effect of its steering function is

very small. When a second image gets closer, its steering function effect increases.

We evaluate two steering functions with the first and the second images and take a

value by combining these two function results by using the above weighting functions.

For instance, consider a situation where the first left image occurs on an edge of left

obstacle and the first and second right images occur on an edge of the right obstacle(s)

also. Let //, fr \, and /r2 denote the steering functions of the left, first, and second

right images respectively. By combining the first and second right steering functions,

we obtain

where fT is right steering function obtained by combining fTi and fr2 .

Now, the steering function / for left and right images is obtained by

F. EDGE-CONVEX VERTEX TRACKING
While an image of a vehicle's position occurs on an edge of polygon and the

vehicle is trying to keep itself away from the edge with a safety distance do, it is

following an edge of the polygon. We say that the vehicle in Edge—Convex Vertex

Tracking Mode. The vehicle has two distinct images p,m i = (a?»mi> J/«mi) and ptm2 =

(z»m2,y«m2) and the vehicle looks at ptm \ and pim2 as the first and second images

respectively (see Figures 69, 70). Because an edge is a straight line, the vehicle

91

is supposed to track a directed straight line. By applying the steering function in

Eq. V.2, we will evaluate two steering functions for the first and second images and

take a new steering function value by combining these two function results using

Eqs. V.7,V.8 and V.9. Now, we will explain how to formulate ^ , the steering function,

in Eq. V.2 for each image.

First Image

d

Second Image

Figure 69. ccw tracking in Edge-Convex Vertex Tracking Mode

Let the current configuration of a vehicle be defined as

q = (p,0,«), (V.10)

where p, 8 and k describe the robot's current position, orientation, and curvature,

respectively.

For the first image pim \, the variables /c^i, 0^, and d\ in the steering function

(Eq. V.2) can be computed as follows.

The desired curvature of the edge is zero because we assume the edge is flat

like a line.

Kdl = 0.

92

Second Image

e

/V
P

First Image

Figure 70. cw tracking in Edge-Convex Vertex Tracking Mode

Let ^(p, pim\) denote the orientation from p to p,m i. The desired orientation

#i is evaluated as following:

1. If the image of p on the edge is on the right of the vehicle (Figure 70), then

Ox = *(p, Piml) + |.

2. If the image of p on the edge is on the left of the vehicle (Figure 69), then

0i =*{p, ftmi)-|.

The distance, d\, is the signed distance from the vehicle position p to its image

Pim\. This signed distance satisfies the condition that d\ < if the edge is on the

vehicle's left side while d\ > if the edge is on the vehicle's right side. In Chapter III,

Section E, we showed how to evaluate the distance between any point in free space

to its image on an obstacle d\. By Eq. V.4, we calculate the safety clearance function

g(d\) as follows:

93

1. if the image of p on the edge is on the right of the vehicle (Figure 72), then

g(di) =
d\ — do if d\ < do

otherwise

2. if the image of p on the edge is on the left of the vehicle (Figure 71), then

g(di) =
d x + do if \di |

< d

otherwise

iml

*^_ d
^ "2

"^ r

im2

Figure 71. Calculate safety clearance function of ccw tracking

Thus the steering function in Eq. V.2 becomes

fr = -(a K + b(0 -BJ + cgfa)).

For the second image p,m 2, the variables /c</2 , #2» and d2 in the steering function

(Eq. V.2) can be computed similarly (see Figures 69, 70).

The desired curvature /c^2 is

Kd2 = 0. (V.ll)

The desired orientation 92 is evaluated as following:

94

Figure 72. Calculate safety clearance function of cw tracking

1. If the image of p on the edge is on the right of the vehicle (Figure 70), then

a
02 = 0] .

2

2. If the image of p on the edge is on the left of the vehicle (Figure 69), then

where 6\ is the desired orientation of the first image and a is the exterior angle induced

at pim2, the second image, (see Figure 69, 70).

Similarly, we compute the distance, d2 , and safety clearance function, g{d2),

as

1. If the image of p on the edge is on the right of the vehicle (Figure 72), then

g(di) =
d2 — do if ^2 < ^o

otherwise

2. If the image of p on the edge is on the left of the vehicle (Figure 71), then

g(d2)
= d2 + dQ if \d2 1

< d

otherwise

95

Thus for the second image, the steering function in Eq. V.2 becomes

/a = - (a k + 6(0 - 62) + cg(d2)) .

Now, by combining fi and /2 using Eqs. V.7,V.8 and V.9, we obtain the total

steering function value while the robot is in Edge-Convex Vertex Tracking Mode:

Figure 73 shows some numerical simulation results. The following simulation

results are obtained using different smoothness values. The effect of using distinct

values of smoothness with a = 5, 10,20 and 40 is clearly shown in the figure. As a

increases, the safety cost function defined in Eq. V.5 increases.

d

cr = 5

a= 10

<t = 40

Figure 73. Different trajectories corresponding to their safety cost function values in

Edge-Convex Vertex Tracking Mode

G. CONVEX VERTEX TRACKING
When the vehicle is coming to the end of an edge, an image of the vehicle's

position occurs on a vertex of polygon. In this case, to keep the desired safety

clearance from the polygon, the vehicle needs to turn around the vertex in a circular

motion taking the vertex as its center and safety distance d as its radius. Here the

vehicle is defined to be in Vertex Tracking Mode. In this mode, the vehicle has one

96

image ptm = (x,-m ,
y,-m), and the vehicle looks at ptm on its left or right as the first

and second images (see Figures 74, 75). We will evaluate two steering functions for

the first and second images and take a new steering function value by combining

these two function results using Eqs. V.7,V.8 and V.9. Now, we will explain how to

formulate ^j, the steering function, in Eq. V.2 for each image.

First Image

Second Image

Figure 74. ccw tracking of Vertex Tracking Mode

For the first image p,m , the variables ac^i, 0j, and dl in steering function

(Eq. V.2) can be computed as follows.

The desired curvature is the circle's radius d because the vehicle needs to turn

around the vertex in a circular motion taking the vertex as its center.

Kd\ = l/d . (V.12)

97

e

First Image

Second Image

v

Figure 75. cw tracking of Vertex Tracking Mode

Let ^(p, pim) denote the orientation from p to p,m . The desired orientation 0]

is evaluated as following:

1. If the image of p on the vertex is on the right of the vehicle (Figure 75), then

Oi =*(p, pim) + ^

2. If the image of p on the vertex is on the left of the vehicle (Figure 74), then

The distance, d\, is the signed distance from the vehicle position p to its image

1. If the image of p on the vertex is on the right of the vehicle (Figure 75), then

d\ = y(p-* - Pxm-x) 2 + {p.y - Pim-y)
2

-

98

2. If the image of p on the vertex is on the left of the vehicle (Figure 74), then

d x
= -\J(p.x - p tm-x)

2
-f {p.y - pim -y)

2
-

The safety clearance function g(di) is calculated as following:

1. If the image of p on the vertex is on the right of the vehicle, then

(J\ \ d\ — d if di < d
9{(tl) -

\ otherwise

2. If the image of p on the vertex is on the left of the vehicle, then

(A \ Mi + ^o if Mi I < ^o
9[lj ~

\ otherwise

Thus the steering function in Eq. V.2 becomes

h = - («(« ~ ka) + b{9 -0 X) + cg(d x))

.

For the second image ptm , the varaibles «<f2 ? ^2, and c?2 in the steering function

(Eq. V.2) have another meaning (see Figures 74, 75).

The desired curvature Kd2 is zero. In this case, we assume that pim is on the

edge p~v, where v is <p(pim).

Kd2 = 0.

The desired orientation 2 is evaluated as following:

2 = *(p,m,u).

The distance c?2 and safety clearance function ^(c/2) are the same as the first

image.

Thus for the second image, the steering function in Eq. V.2 becomes

/a = -(a#c + &(0-0a) + C0(«M).

99

By combining the above two steering function values /i and /2 using Eqs. V.7,V.8

and V.9, we obtain the total steering function value while the robot is in vertex track-

ing mode:

Figure 76 hows some numerical simulation results. The following simulation

results are obtained using different smoothness values. The effect of using distinct

values of smoothness with a = 5, 10 and 20 is clearly shown in the figure. As a

increases, the safety cost function defined in Eq. V.5 increases.

d

1> = 5

X /> = 20

Figure 76. Different trajectories corresponding to their safety Cost Function Values

in Vertex Tracking Mode

H. EDGE-CONCAVE VERTEX TRACKING
Suppose a vehicle is heading to a concave vertex (Figures 77, 78). While the

vehicle is trying to keep itself away from the edge with a safety distance do, it is

following an edge of the polygon. The image of a vehicle's position always lies on

an edge. We say that the vehicle is in Edge-Concave Vertex Tracking Mode. The

vehicle has two distinct images plml = (ztml , t/tml) and pirn2 = {x iTn2,yim2) such that

the vehicle looks at p,ml and p;m2 as the first and second images, respectively (see

100

Figure 77. ccw tracking in Edge-Concave Vertex Tracking Mode

Figures 77, 78). Because an edge is a straight line, the vehicle is supposed to track a

directed straight line. By applying the steering function in Eq. V.2, we will evaluate

two steering functions for the first and second images and take a value by combining

these two function results using Eqs. V.7,V.8 and V.9. Now, we will explain how to

formulate j
5

, the steering function, in Eq. V.2 for each image.

For both images, we compute the variables «:<*, 6d, and d in steering function

(Eq. V.2) as follows.

For the first image p,m i,

Kd \ = 0.

• If the image of p on the edge is on the right of the vehicle (Figure 77), then

7T

0, = *(p, JWl) + ~,

g(d,) =
d\ — do if d\ < do

otherwise

• If the image of p on the edge is on the left of the vehicle (Figure 77), then

0i =*(P, Pimi)-|,

101

Figure 78. cw tracking in Edge-Concave Vertex Tracking Mode

g(di) =

For the second image p,m2,

di + d if \di
|
< d

otherwise

Kd2 = 0.

• If the image of p on the edge is on the right of the vehicle (Figure 77), then

n
2 = V(p, p,m2)+2>

i j \ _ J ^2 — do if d2 < d

otherwise

• If the image of p on the edge is on the left of the vehicle (Figure 77), then

2 = V(P, P,m 2)-^,

g(d2)
= d2 + d if \di\ < d

otherwise

Thus

/, = -(oK+iffl-^+C^,)),

f2 = -(a/t +^-^ + c^)),

102

where /j and f2 are the steering functions of the first and second images, respectively.

By combining /] and f2 using Eqs. V.7,V.8 and V.9, we obtain the total

steering function value:

UJ\ + L02 U>\ + U)2

Figure 79 shows the result of different trajectories. If a increase, the safety cost

function defined in Eq. V.5 increases.

q

i 1
w

\

a = 40

a = 20
Va = 10

"0

Y

Figure 79. Different trajectories corresponding to their safety Cost Function Values

in Edge-Concave Vertex Tracking Mode

103

I. SIMULATION RESULT ANALYSIS
In this section, several numerical simulation results are demostrated.

In Figures 80, 81 and 82, the vehicle is supposed to track a ccw polygon with

ccw direction, where its initial configuration qo = ((63,450), — 7r/2, 0) and the safety

clearance d = 80. The effect of using distinct values of smoothness with a = 5, 10, 20,

and 40 is clearly shown in these figures. From this simulation, we found that there is a

close relationship between the smoothness a and the safety cost function T. In order

to minimize T to obtain safer motion, a smaller a should be used, and hence, bigger

curvature is obtained. Therefore, slower-motion execution is needed. On the other

hand, if less safe motions are allowed, a larger a makes the trajectories smoother, and

hence, smaller curvatures will be used. Therefore, faster motion execution is possible.

But, in this case, the safety cost function T will increase. Table I shows the values for

both safety cost function T and smoothness cost function E corresponding to different

values of a.

a safety cost function value T smoothness cost function value E
5 23.7225 0.03262

10 33.9674 0.00181

20 45.5073 0.00027

40 54.1786 0.00008

Table I. Relation between smoothness and safety cost function values for polygon

tracking (I)

In Figure 83, the vehicle is supposed to track a ccw polygon with cw direction,

where its initial configuration 90 = ((63, 350), 7r/2, 0) and the safety clearance do = 80.

The effect of using distinct values of smoothness with a = 10, and 40 is shown in this

figure. Table II shows the values for both safety cost function Y and smoothness cost

function E corresponding to different values of a.

Another example is shown in Figure 84. The vehicle is supposed to track a ccw

polygon with ccw direction, where its initial configuration q = ((103,450), — 7r/2,0)

and the safety clearance do = 80. The effect of using distinct values of smoothness

104

a safety cost function value T smoothness cost function value E
10 33.9674 0.00181

40 54.1786 0.00008

Table II. Relation between smoothness and safety cost function values for polygon

tracking (II)

with a = 5, 10,20, and 40 is shown in this figure. Table III shows the values for both

safety cost function Y and smoothness cost function E corresponding to different

values of a.

a safety cost function value T smoothness cost function value E
5 41.6822 0.00834

10 44.3815 0.00118

20 49.8532 0.00025

40 54.7353 0.00008

Table III. Relation between smoothness and safety cost function values for polygon

tracking (III)

In Figure 85, the vehicle is supposed to track a cw polygon with cw direction,

where its initial configuration qo = ((60,500), — 7r/2,0) and the safety clearance d =

80. The effect of using distinct values of smoothness with a = 10,20, and 40 is

shown in this figure. Table IV shows the values for both safety cost function T and

smoothness cost function E corresponding to different a.

a safety cost function value T smoothness cost function value E

10 22.0447 0.00275

20 33.0122 0.00027

40 57.2302 0.00003

Table IV. Relation between smoothness and safety cost function values for polygon

tracking (IV)

The example in Figure 86 shows the result of the trajectory if the polygon is not

rectlinear. This means that our algorithm is applicable to any polygon, the vehicle

is supposed to track a ccw polygon with cw direction, where its initial configuration

q = ((63,350),7r/2,0) and the safety clearance d = 80. The effect of using distinct

105

values of smoothness with a = 10, 20, and 40 is shown in this figure. Table V shows the

values for both safety cost function T and smoothness cost function E corresponding

to different a.

a safety cost function value T smoothness cost function value E
10 42.7962 0.00154

20 56.5925 0.00029

40 64.3274 0.00008

Table V. Relation between smoothness and safety cost function values for polygon

tracking (V)

The polygon tracking algorithm was also implemented on Yamabico after being

successfully developed on a simulator (see Chapter VIII).

106

s
\

I

f /

1/

1

\.

\:

\

a = 5

a = 10

. /
s

Figure 80: Different trajectories of ccw motion corresponding to their safety cost function values

for ccw polygon (I)

107

/
/

/

;
/.

/:

:'•' q
:'•' ?
!•'

/

i /

i /

ii

x
'('

i

d —*-

a = 10

a = 20

Figure 81: Different trajectories of ccw motion corresponding to their safety cost function values

for ccw polygon (II)

108

f

if
I- I.

i
/:

i
/

i :/
A -»
"U >

a = 40

a = 20

Figure 82: Different trajectories of ccw motion corresponding to their safety cost function values

for ccw polygon (III)

109

a = 40

\

\

\
s

a = 10

Figure 83: Different Trajectories of cw Motion Corresponding to their Safety Cost Function Values

for ccw Polygon (IV)

110

(7 = 5
\

A

q

i

i

i

i

n

ti

[i

11

r.i

\:\

\\

v.\

w

d

a 40

. \> A.

sr

a = 10

a = 20

/ /

Figure 84: Different trajectories of ccw motion corresponding to their safety cost function values

for ccw polygon (V)

111

q

;\

•

\

i

M
v,

l •::

1

;i

i

.

:

:

:

i

:':

a = 40

\

J

I

o = 20

1

•i

1

Ve^o = 10

5<.
)

r

J_

Figure 85: Different trajectories of cw tracking corresponding to their safety cost function values

for cw polygon (VI)

112

i
III

V

III

\ \

\

\ «

/

/

V a =10
a = 20

a = 40

Figure 86: Different trajectories of cw motion corresponding to their safety cost function values for

ccw polygon (VII)

113

14

VI. SAFE LOCAL MOTION PLANNING
WITH SMOOTHING

This chapter addresses an approach to local motion planning. This approach

provides the fundamental concepts to be used in local motion planning of this dis-

sertation. The path class represented by a directed v-edges sequence (Chapter IV)

provides information for rough robot navigation. The problem of finding the optimal

motion in the path class is called the local motion planning. This problem is very

important in this dissertation because self-localization is executed while the vehicle is

moving. How do we define the optimality? In this dissertation, we take safety as the

one property characteristic of motions to be optimized. Thus, the task of local motion

planning is to produce the safest motion in a given path class with smooth motions

where both safety and smoothness must be made precise. In Section A, we state

the local motion planning problem. Sections B and C describe the safety clearance

approach and the generalized safety cost function respectively. In Section D, The

concept of local motion planning approach is presented. Sections E and F discuss the

usefulness of directed v-edges sequence to local motion planning. In Section G, the

local motion planning algorithm is described.

A. PROBLEM STATEMENT
We are given a world, W; a path class represented by directed v-edges sequence

E; an initial configuration q = (p,0,m) of a vehicle (p, 0, and k are its position,

orientation and curvature respectively); and a safety clearance d (> 0) (see Section B

in Chapter V) (Figure 87). The problem of local motion planning is to plan a safe

motion for a rigid body robot in a given path class, with smooth motions which avoids

collisions with obstacles in the environment and satisfying the following conditions:

1. Its path curvature is continuous, and

2. The total safety cost of the path is minimized (see Section C).

115

World Model (W)

9 start

Safety Clearance (dj)

Path Class (7t)

Motion Planning Path

Figure 87. Block diagram for motion planning

B. SAFETY CLEARANCE CONCEPT
—?

Figure 88. Tracking with exact Voronoi boundary

In this dissertation, we take safety as the single characteristic of motions to

be optimized. The vehicle is supposed to move through a region lying between two

distinct given images p\ = (x\,yi) and p2 — {^2^2)1 in such a way that the vehicle

looks at pi and P2 °n its left and right, respectively. When the left and right images

are on an edge of the world boundary, the vehicle tries to make the distances to

the left and right boundaries equal; in other words, its trajectory is eventually on

the directed bisector of the two images (Voronoi boundary). But tracking the exact

Voronoi boundary is not an appropriate approach (see Figure 88). We can loosen

the strict Voronoi boundary tracking requirement in order to reduce the frequency

of lateral transitions. One method is that the vehicle keeps safety clearance from

the left/right boundaries (see Figure 89). If the distance between the robot and its

left/right boundaries is less than this safety clearance, the robot must try to make the

distance to the left/right boundaries greater than this safety clearance using the safety

116

clearance function g{d) (see Eq. V.4). Figure 90 shows that using safety clearance d

and safety clearance function g(d) do not cause lateral motion of the vehicle.

safety clearance safety clearance

safety area

for a robot

Figure 89. Safety clearance

L>-
i i ; ;

.

d
o

1

~l
I

Figure 90. Tracking with safety clearance

C. GENERALIZED SAFETY COST FUNCTION
In Chapter V Section D, we discussed the concept of the safety cost function

if we have only one polygon. Now, we will generalize this definition.

Consider a world W that consists of a finite number of polygons Bo, B\ ,
• • • , Bn ,

i.e.,

W = {£ , £,,-•-,£„}, ">0,

117

where VV has one cw polygon B and the n ccw polygons B\,- • • , Bn are considered

to be obstacles for the robot. A path in free space is a pair (si,/) consisting of a

positive real number s^ and a continuous function /. The length of path from the

point p(0) to a point p(s) along a path(si,/) is equal to s if < s < S\. Let 7(7?, Bt)

denote the distance between a point p to a polygon B
t

. Let p(s) denote a vehicle

position at s on the path. The total safety cost of a path(si,/) is given by a positive

cost function r : 7Z —> 7Z defined by

T= r [min 7(71(5), Bi)-d] ds, (VIA)

where do is the robot's safety clearance (see Eq. V.3.

Generally, a path farther from obstacles is safer, but it tends to be longer.

Therefore, we need to strike a balance between smoothness and safety of a path. There

is a positive parameter, <r, in the steering function, which controls the smoothness of

the resultant trajectory. If a smaller a is used, the trajectory becomes sharper and

the path becomes safer, and if a larger a is used, the trajectory becomes smoother

and the path becomes more dangerous. As the smoothness parameter a becomes

large, the path converges to the smoothest path. Thus, we obtain a class of paths

with different weight between safety and smoothness in an equivalent class.

D. PLANNING APPROACH
The global path class is the input to local motion planning. It provides useful

information in directing the robot to accomplish its mission. The task of local motion

planning is to provide a smooth, collision-free motion for the robot, based on the

global path class generated by the global path planner. Because the safety of an

autonomous vehicle navigation is determined by the clearance between the vehicle

and obstacles. Path safety is a function of the distance from the robot to an obstacle.

As the distance decreases, the safety decreases. The safest path is one in which the

distance to the obstacle is maximized. In many cases, a robot should not approach

closer to the obstacle than a given safety range (see Figure 91).

118

Unsafe Path Safe Path

Figure 91. Safe and unsafe paths

Because a Voronoi boundary is the set of points locally maximizing the clear-

ance from obstacles, safety is maximized on such a boundary. Unfortunately, the

naive plan of just tracking the Voronoi boundary does not work, because:

1. A Voronoi boundary may have discontinuity in either its tangential direction

or its curvature. It is known that a nonholonomic rigid body robot cannot

track such a reference path. For example, in Figure 92, there is a discontinuity

in its curvature when there is a transition from a line segment to a parabolic

arc. Also, there is a discontinuity in its tangential direction when there is a

transition from a parabolic arc to another.

2. It is time-consuming and, actually, is not necessary to compute the Voronoi

boundary and to track it.

3. A complex data structure is needed to represent Voronoi boundaries.

4. This task becomes unduely complex for dynamic environments.

However, the Voronoi boundary gives us the idea that the motion will be considered

safer if it stays further away from objects.

Instead of tracking the Voronoi boundary, the vehicle tries to make the dis-

tances to the left and right boundaries using a steering function which uses data such

as the distances, directions to left and right images, and the desired curvature.

119

curvature
discontinuity^

tangential

discontinuity curvature discontinuity

Figure 92. Discontinuity where two distinct Voronoi boundary intersect

The new problem to be solved in this dissertation is how to achieve a smooth

motion when the vehicle gets closer to an intersection of two distinct segments (for

instance from a line segment to a circle segment). In order to solve this problem,

we will use the fact that the proximity relation changes at such an intersection (see

Figure 93). Therefore, we will watch second images in the forward portion of a left or

right boundary, and will make a smooth motion by evaluating the steering function

using not only the left/right first images, but the left/right second images too. That

is, when a second image gets closer, we evaluate two steering functions with the first

and the second images and take a value by mixing these two function results. Thus,

resultant motion paths will be "smoothed" using an appropriate smoothness a. The

120

smoothjiess a is parameter in the steering function, which controls the smoothness of

the resultant trajectory. If a smaller a is used,, the trajectory becomes sharper, and

if a larger a is used, the trajectory becomes smoother. For more details, see [36].

Left Image

WWWtWWfPWWW

Second Right Image

First Right Image

Figure 93. Both left and right images are on edges

As a summary of the above, the safe motion planning is done by the general

algorithm stated above. We will confirm the validity of the method of using the left

and right images for tracking the smoothed path. Also, we need to find a robust

algorithm for making smooth motion from one boundary segment to another. A

striking advantage of this method is that is effective in more dynamic environments.

This method may be useful even in unknown worlds as well, because the images can

be taken by sensors instead of information extraction from the model.

E. THE USEFULNESS OF DIRECTED V-EDGES SE-
QUENCE TO LOCAL MOTION PLANNING
This section describes how the directed v-edges sequence H is useful for local

motion planning. Once the global plan represented by directed v-edges sequence is

found, it is passed to a routine which ensures the vehicle will follow the global plan

in order to reach the goal. Beacuse the directed v-edge £ is defined by the two closest

polygons, these polygons are used for the selection of the features which are used to

121

Figure 94. Directed v-edges sequence to local motion planning (left turn is required)

calculate the desired control values. For example, in Figure 94, the directed v-edges

sequence "E is defined as

Z = [B1/B][B1/B4][B2/B3][B /B3]
(VI.2)

In Eq. VI.2, the first directed v-edge is £1 = [B\/

B

). This mean that, the vehicle

recognizes B\ and Bq as the left and right obstacles respectively. Although the start

orientation of the vehicle is different from the direction of the motion as shown in

Figure 94, the vehicle steers in the direction of motion since B\ is the left obstacle.

In the second directed v-edge, £2 = [Bi/B4], the vehcile recognizes B4 as the right

obstacle. Then the vehicle will make left turn.

On the other hand, does the following directed v-edges sequence H produce

another motion?

E = [B,/B)[B4/Bo)[B3/Bo] (VI.3)

In the second directed v-edge, £2 = [B4 /

B

], the vehicle recognizes B4 as the left

obstacle (see Figure 95). Then no turn is required.

122

B
(

Figure 95. Directed v-edges sequence to local motion planning (no turn is required)

From the above, we can conclude that a directed v-edges sequence is useful for

both local motion planning and global path planning.

F. DIFFERENT TYPES OF POLYGON TRACKING IN
DIRECTED V-EDGES SEQUENCE
The essential idea is based on the fact that obstacles present in the working

environment and when a vehicle is moving, it recognizes the left and right images on

these obstacles. Therefore, it is possible for a vehicle to travel in the free space along

obstacles's outer boundary and to keep certain safety clearance.

When a vehicle is moving, it recognizes not only the left/right images, but

also left/right second images. Therefore, we will watch second images in the forward

portion of a left or right boundary, and we will evaluate the steering function using

not only the left/right first images, but the left/right second images too. Because

path class is defined by a directed v-edges sequence "E and each directed v-edge £ is

defined by the two closest polygons (subpolygons), these polygons are used for the

123

selection of the features which are used to calculate the steering function values. We

have the following types of tracking:

• The left and right polygons (subpolygons) in current and next directed v-edge

are not identical (see Figures 96).

• The left polygons (subpolygons) in current and next directed v-edge are iden-

tical, but the right polygons (subpolygons) in current and next directed v-edge

are not identical (see Figures 97, 98, 99, 100).

• The left polygons (subpolygons) in current and next directed v-edge are not

identical, but the right polygons (subpolygons) in current and next directed

v-edge are identical (see Figures 101, 102, 103, 104).

First Left Image

First Right Image

.---*X Second Left Image

Second Right Image

B,

Figure 96. Left and right current and next polygons are not identical in directed

v-edges sequence H

124

Second Left Image

First Left Image

First Right Image G>
Second Right Image

B,

Figure 97. Left current and next left polygons are identical but right current and

next right polygons are not identical in directed v-edges sequence !E (I)

Second Left Image

First Left Image

First Right Image

\
Second Right Image

Figure 98. Left current and next left polygons are identical but right current and

next right polygons are not identical in directed v-edges sequence E! (II)

125

Second Right Image o First Right Image

Second Left Image
First Left Image

\y

Figure 99. Left current and next left polygons are identical but right current and

next right polygons are not identical in directed v-edges sequence E (III)

Second Right Image

Second Left Image

First Left Image

First Right Image

B,

Figure 100. Left current and next left polygons are identical but right current and

next right polygons are not identical in directed v-edges sequence E (IV)

126

Second Right Image

Second Left Image

B.

First Right Image

First Left Image

B,

Figure 101. Left current and next left polygons are not identical but right current

and next right polygons are identical in directed v-edges sequence "E (I)

Second Right Image

B,

Second Left Image First Right Image

First Left Image

Figure 102. Left current and next left polygons are not identical but right current

and next right polygons are identical in directed v-edges sequence H (II)

127

B
,

B
2

First Left Image •^
^
„-•*"' Second L

Lt>'""
First Right Image ! Second Right Image

B
3

Figure 103. Left current and next left polygons are not identical but right current

and next right polygons are identical in directed v-edges sequence El (III)

First Left Image

First Right Image

Second Right Image

Vx

Second Left Image

B,

Figure 104. Left current and next left polygons are not identical but right current

and next right polygons are identical in directed v-edges sequence 5 (IV)

128

G. LOCAL MOTION PLANNING ALGORITHM
The previous section analyzed the different types of polygon tracking possible

in a directed v-edges sequence. We summarize that analysis into motion rules based

on the type of polygon tracking (see Chapter V). The rule selection is based on the

current and next directed v-edge in the directed v-edges sequence H.

1. If both the current and next left polygons in the directed v-edges sequence E
are ccw and they are identical and both the current and next right polygons

in E are cw (ccw) and they are not identical, then a left turn is required. In

this case, both the current and next left images are identical and the direction

of tracking left polygon is ccw but the current and next right images are not

identical and the direction of tracking both right polygons is cw. For example,

in Figure 105, the sequence E is given as

E = [B2/B][B2/B1],

and in Figure 106, E is given as

E = [BXIBZ}[BXIB2}.

2. If both the current and next left polygons in the directed v-edges sequence E
are cw (ccw) and they are not identical and both the current and next right

polygons in E are ccw and they are identical, then a right turn is required.

In this case, both the current and next left images are not identical and the

direction of tracking both left polygons is ccw but the current and next right

images are identical and the direction of tracking right polygon is cw. For

example, in Figure 107, the sequence E is given as

E=[Bl /B2){B /B2],

and in Figure 108, E is given as

E=[B3/B2)[B1 /B2].

3. If both the current and next left polygons in the directed v-edges sequence E
are cw and they are not identical and both the current and next right polygons

in E are ccw (cw) and they are identical, then no turn is required and we follow

the right side of the corridor. In this case, both the current and next left images

are not identical and the direction of tracking both left polygons is ccw but

the current and next right images are identical and the direction of tracking

right polygon is cw. For example, in Figure 109, the sequence E is given as

E=[B,/B3}[B2/B3l

129

and in Figure 110, H is given as

E = [B3/B][B2/B).

4. If both the current and next left polygons in the directed v-edges sequence

E are ccw (cw) and they are identical and both the current and next right

polygons in E are ccw and they are not identical, then no turn is required

and we follow the left side of the corridor. In this case, both the current and

next left images are identical and the direction of tracking left polygon is ccw

but the current and next right images are not identical and the direction of

tracking both right polygons is cw. For example, in Figure 111, the sequence

E is given as

H = [B3/B2][B3/Bi],

and in Figure 112, E is given as

Z = [B /B2][B /B3].

5. If both the current and next left polygons in the directed v-edges sequence

E are ccw and they are not identical and both the current and next right

polygons in E are ccw and they are not identical, then no turn is required and

we follow the left (right) side of the corridor. In this case, both the current

and next left images are not identical and the direction of tracking both left

polygons is ccw but the current and next right images are not identical and the

direction of tracking both right polygons is cw. For example, in Figure 113,

the sequence E is given as

E = [B,/B3][B2/B4 }.

130

Second Left Image

B,

First Left Image

First Right Image-

Second Right Image

B,

Figure 105. Left turn is required (I)

Second Left Image

First Left Image

First Right Image

Second Right Image

Figure 106. Left turn is required (II)

131

Second Right Image

B,

Second Left Image

c
B.

^ First Right Image

First Left Image

B,

Figure 107. Right turn is required (I)

Second Right Image

B,

,0
B.

Second Left Image ^VT^\ Fu*

st **&* Image

First Left Image

/

B,

Figure 108. Right turn is required (II)

132

-c*

First Left Image

First Right Image^

\
Second Left Image

Second Right Image

Figure 109. No turn is required (I)

First Left Image

First Right Image

Second Right Image

Second Left Image l

B,

Figure 110. No turn is required (II)

133

7
Second Right Image

"<S
Second Left Image i

i

t

First Right Image

First Left Image

\/

Figure 111. No turn is required (III)

Second Right Image

Second Left Image

First Left Image

>«* -

First Right Image

Figure 112. No turn is required (IV)

134

First Left Image

First Right Image

B
.

B
2

r'f
i

i Nv- *""*"" ^ Second Left Image

^" Second Right Image1

1

""*-*--,

"*~~*i

B
3

B
4

Figure 113. No turn is required (V)

H. SIMULATION RESULT ANALYSIS
In this section, several numerical simulation results are shown.

Consider the problem of finding a path from a start configuration, 5", to a goal

configuration, G in a polygonal world W (Figure 114). It is desired to connect the

start configuration, S, to the goal configuration, C7, using a continuous, smooth path.

There are four different path classes. Each path class is symbolically represented by

directed v-edges sequence.

*i - [BA /Bo] [B4/B5]
[B2/B5]

[B3/B5]

*2 = [B4/B)[Bs/Bo}[Bs/B3}{B,/B2]

n3 = [B /B4]
[Bi/B*] [B2/B4]

[B2/B5]

tt4 = [B /B4]
\B,IB4]

[B2/B4]
[B5/B4]

[B5/B]
[B5/B3][B5/B2]

In Figure 1 15, the initial configuration of the vehicle is qo = ((90, 450), — 7r/2, 0)

and safety clearance is d = 80. The path class representing by the directed v-edges

sequence is given as

tt 1
= [B4/B]

[B4/B5]
[B2/B5]

[B3x/B5]

Table VI shows the values for both safety cost function T and smoothness cost function

£ corresponding to different a. The effect of using distinct values of smoothness with

135

Figure 114. World of motion planning

a = 5, 10,20, and 40 is clearly seen. From this simulation, we found that there is a

close relationship between the smoothness a and the safety cost function T. In order

to minimize T to obtain safer motion, a smaller a should be used, and hence, bigger

curvature is obtained. Therefore, slower-motion execution is needed. On the other

hand, if less safe motions are allowed, a larger a makes the trajectories smoother, and

hence, smaller curvatures will be used. Therefore, faster motion execution is possible.

But, in this case, the safety cost function Y will increase.

a safety cost function value V smoothness cost function value £
5 37.7319 0.08189

10 48.1742 0.00511

20 58.7558 0.00049

40 67.5781 0.00007

Table VI. Relation between smoothness and safety cost function values for motion

planning (I)

136

In Figure 1 16, the initial configuration of the vehicle is q = ((90, 450), —7r/2, 0)

and the safety clearance is do — 80. The path class representing by the directed

v-edges sequence is given as

*2 = [BaIBo] [Bb /Bo] [B5/B3]
[B5/B2]

Table VII shows the values for both safety cost function T and smoothness cost

function £ corresponding to different a.

a safety cost function value T smoothness cost function value E

5 55.0527 0.45522

10 57.6073 0.00207

20 60.8893 0.00022

40 66.3729 0.00003

Table VII. Relation between smoothness and safety cost function values for motion

planning (II)

In Figure 117, the initial configuration of the vehicle is q = ((90,350), 7r/2,0)

and the safety clearance is d = 80. The path class representing by the directed

v-edges sequence is given as

7T3 = [Bo/Ba] [BiIBa \
[B2/B4]

[B2/B5]

Table VIII shows the values for both safety cost function T and smoothness cost

function S corresponding to different a.

a safety cost function value T smoothness cost function value E
5 33.0391 0.06152

10 37.4319 0.00313

20 45.1034 0.00027

40 53.0906 0.00003

Table VIII. Relation between smoothness and safety cost function values for motion

planning (III)

In Figure 118, the initial configuration of the vehicle is q = ((90,350), 7r/2,0)

and the safety clearance is d = 80. The path class representing by the directed

137

v-edges sequence is given as

7T4 = [BofB4]
[B,/B4]

[B2/B4]
[B5/B4]

[B5/B]
[B5/B3}[B5/B2]

Table IX shows the values for both safety cost function T and smoothness cost function

S corresponding to different a.

a safety cost function value V smoothness cost function value £

5 61.9985 0.11397

10 68.9123 0.00733

20 78.6803 0.00083

40 89.3738 0.00013

Table IX. Relation between smoothness and safety cost function values for motion

planning (IV)

Another example is shown in Figure 119. The vehicle is supposed to track the

following path class where its initial configuration q = ((90,450), —7r/2,0) and the

safety clearance do = 80.

tt = [B4/B]
[B4/B5]

[B4/B2]
[B4/Bx]

[B4/B]
[B4/B5]

[B4/B2]
[B4 /

'£,]

The effect of using distinct values of smoothness with a — 5, 10,20, and 40 is shown

in Table X.

a safety cost function value Y smoothness cost function value E
5 48.9584 0.18851

10 69.2488 0.01303

20 74.3775 0.00126

40 77.5919 0.00018

Table X. Relation between smoothness and safety cost function values for motion

planning (V)

The example in Figure 120 shows the result when a vehicle is browsing ran-

domly in the free space. The vehicle tracks the following path class where its initial

configuration q = ((90, 120),7r/2,0) and the safety clearance d = 80.

ir = [Bo/Bs] [B4/Bs]
[B4/B2]

[B4 /B,] [B4/B]
[B5/B]

[B5/B3]

[Bs/B2]
[B4/B2]

[B4 /B,} [B4/B)
[B5/B]

[B5/B3]

138

The effect of using distinct values of smoothness with a = 5, 10,20, and 40 is shown

in Table XI.

a safety cost function value T smoothness cost function value S

5 63.0592 0.18534

10 72.8446 0.01213

20 84.4241 0.00061

40 91.6753 0.00015

Table XI. Relation between smoothness and safety cost function values for motion

planning (VI)

The local motion planning algorithm was also implemented on Yamabico after

being successfully developed on a simulator (see Chapter VIII).

139

Bi

Be

a

\i
i

i

B,

\ a = 40 / = 20

V^ - y s ___

\

\
\\

Bh
1

.

:i
//

//

ft

B3

Figure 115: Motion planning and execution result (I)

140

Figure 116: Motion planning and execution result (II)

141

Bi

a = 20

B4

Br B2

Ba

B3

Figure 117: Motion planning and execution result (III]

142

Figure 118: Motion planning and execution result (IV)

143

Ei

Br

. B4

a = 40 ° = 20

rrrnTT^̂ — #2

#3

Figure 119: Motion planning and execution result (V)

144

B,

Br /
a = 20

B4

B2

B3

Figure 120: Motion planning and execution result (VI)

145

146

VII. SELF LOCALIZATION USING
MODEL-SONAR FEATURE

CORRESPONDENCE

A. INTRODUCTION
A mobile robot can be assisted in its navigation tasks by providing it with a

priori knowledge about the environment in which it will navigate, usually called a

world model or a map. One of the issues to be addressed in using a stored model as

an aid in mobile robot navigation is that of estimating the position and orientation of

the robot with respect to the model. Once the robot accurately estimates its location

within the model, other navigation tasks can be performed. Most mobile robots are

equipped with wheel encoders that can estimate the robot's relative position at every

instant. A key capability of an autonomous mobile robot operating in an indoor

environment is localization, i.e. determination of its current position and orientation.

The usual method for position estimation of a wheeled autonomous mobile robot

is odometry or dead reckoning. However, due to wheel slippage and quantization

effects, these estimates of the robot's position contain errors. These errors accrue

and can grow limitlessly as the robot moves, causing the position estimate to become

increasingly uncertain. So, most mobile robots use additional forms of sensing, such

as sonar to aid the position estimation process.

In order to effectively use the stored world model of the environment and the

sensor data, it is necessary to establish correspondence between the sensory obseva-

tions and the model information. To deal with this problem, the robot should observe

its surroundings and recognize landmarks with its external sensors.

We assume that the vehicle

1. has a geometric model of the static portions of an indoor world,

2. possesses the dead-reckoning capability,

3. executes model-based navigation through these two capabilities, and

147

4. has sonic sensors.

This chapter introduces an algorithm for self localization. The method used

here is based on the two dimensional transformation and least squares linear fitting

algorithm [36, 40]. The theory of two dimensional transformation groups [4, 24, 39]

is a powerful tool to deal with the positional error evaluation. It is used to calcu-

late the robot's position and motion in a two dimensional region. Feature extraction

from sensory data is a basis for model—based navigation of mobile robots. This com-

putationally efficient method allows to correct localization error in real-time. Two

dimensional transformation and least square fitting are not a new concept, but using

them makes self localization more amenable to human understanding.

B. GOAL AND FEATURES OF SELF LOCALIZATION
METHOD

1

y
V Y
o *v

Figure 121. Positioning of rigid body robot as configuration

A rigid-body robot has three degrees of freedom in its positioning: its posi-

tion pv (corresponding to xv and yv) and heading 9V (we call the position-heading

pair configuration) (Figure 121). A useful vehicle must have dead reckoning ability

to maintain the current vehicle configuration using its wheels' incremental motions.

148

However, errors in the configuration obtained by dead-reckoning accumulate over

time. It is known that the uncertainty in the position pv is represented by an ellipse.

Our goal is

1. to find a robust algorithm for the vehicle to continually eliminate its positional

uncertainty so that the uncertainty ellipse and the directional uncertainty will

be reset to a point using the geometrical model of the world and sonars in real

time, and

2. to implement this algorithm using the autonomous self-contained mobile ve-

hicle Yamabico-11 for testing and evaluation.

The proposed algorithm and the implementation method have the following

features:

1. They use a two-dimensional abstract geometric model of the indoor environ-

ment.

2. They use ultrasonic sensors and least squares fitting algorithm to sense the

transformations of immobile known edges in the environment.

3. They match a sensed edge transformation landmark against the corresponding

edge transformation in the model.

4. Odometry correction is done whenever a side-locking sonar scans a known

object at an angle nearly normal to its surface. Since this event takes place

relatively frequently in a normal indoor environment, the vehicle's location

error does not increase indefinitely. Thus, the vehicle's safe motion and correct

sensor data interpretation are guaranteed.

5. In the implementation of this algorithm on Yamabico-11, the localization cor-

rection task is superimposed in real-time on the current vehicle's main mission.

No extra motion or extra time is needed.

6. This algorithm for odometry correction is vehicle-independent.

Through this method, the robot can minimize its positional uncertainty, can

make safe and reliable motions, and can perform useful tasks in a partially-known

world. Thus, self-localization is actually an essential component of model-based nav-

igation for indoor applications.

C. TWO DIMENSIONAL TRANSFORMATION
In the field of robot manipulators, three-dimensional homogeneous transfor-

mation algebra has widely been used in analysis and design [58, 53]. Likewise, we

need a framework for analyzing motions of two-dimensional rigid bodies. One obvi-

ous method is the two-dimensional version of the homogeneous transformations. This

approach has, however, one drawback: the orientation of a rigid body is not explicitly

represented. Since placement in a place is simpler than that in a space, there might

exist a simpler and more efficient algebra for this purpose.

Two dimensional transformation groups [36] have the same advantage as three-

dimensional homogeneous transformations, i.e., translation and rotation are described

in a single mathematical structure. The major differences between two-dimensional

transformation groups and three-dimensional homogeneous transformations include

1. The vehicle orientation is explicity represented and a transformation in this

system keeps the full orientation information beyond the range of [— 7r,7r].

2. The composition function and inverse function are the only two functions

needed to solve all problems related to two-dimensional discrete motion anal-

ysis problems.

3. It does not have a point of singularity, one of the drawbacks of the homo-

geneous transformations. As a result, the inverse function is defined for any

transformation.

The analysis of localization errors described in Section D would not be possible

without this theory.

1. Definitions

Let 1Z denote the set of all real numbers.

Definition: A transformation, q, is defined by

/ \x

y

150

where x,y,6 € 71.

The set of all transformations is denoted by T. For example, (3, l,7r/3)
T £

T. Obviously, a transformation q is interpreted as a two dimensional coordinate

transformation from the global Cartesian coordinate system T§ to another coordinate

system T

.

Definition: The transformation group (T, o) consists of the set T of transformations,

where

T = {(x,y,9)
T\x,y,$£n}

and the binary operator (composition function), o, is defined as follows:

Let q x = {xu yu 6 1)

T
, q2 = {x 2 ,y 2 ,02)

T e (^°)> then

q x
oq2 =

x x + £2 cos #i — y2 sin #i

yn + x 2 sin 0! + r/2 cos X

#1+02

The interpretation of q\ o g2 in the domain of two-dimensional coordinate transfor-

mations is the composition of the coordinate transformations qx and q2 .

Definition: The inverse q
l
of a given transformation q = (a;,y,0) is defined as:

—1 cos — 2/ sin

«-* = a: sin — y cos

-0

For more details, see [4, 24, 36]

151

D. LINEAR FEATURE EXTRACTION

1. Calculation of Global Sonar Return

We consider an autonomous mobile vehicle on which a reference transformation

is defined. The reference transformation is a point with orientation attached on

vehicle's body. The current transformation,

°c =

(\
x c

Vc

<
0C

.

describes the robot's current position and orientation in the global frame in

terms of the reference transformation. This transformation qc also defines the local

robot coordinate system. Furthermore, we assume a sensor is mounted on the vehicle

and its local positioning is described in the local vehicle coordinate system. For

instance, if a sensor is mounted at the reference transformation, its transformation is

(0, 0, 0,). The transformation,

x sQ

<7s0 = VsO

describes the sensor's position and orientation in the local coordinate system. This

sensor's transformation qs in the global coordinate system is the composite transfor-

mation of qc and q3o, i.e.,

qs = qc °qso- (VII.l)

Therefore, if the robot moves, the current transformation qc changes, and hence, so

does the sensor's transformation qs by Eq. VII.l. If the combination of the robot's

transformation qc and the local transformation qso of the sensor is appropriate, the ray

scans objects in the vehicle's environment to give a set of points of Eq. VII.l. Thus a

simple range sensor can obtain an envelope of objects in the robot's environment. This

operation is called scanning. A scan is not attainable without sensor (vehicle) motions.

152

For example, let the robot's configuration in the global coordinate system be qc =

(80, 40, 7r/4)
T

, and the sonar's configuration on the vehicle be q30 = (0, —20.5, —ir/2)T .

The sonar's configuration in the global coordinate (Figure 122), qs , is:

I
80 ^ I

<]s = 40

tt/4

]
[

94.5 \

-20.5 = 25.5

-tt/2
J {

-*(*
j

sonar(x
s , ys)

sonar return = 30

Figure 122. Sonar configuration in global coordinate

There might be an argument that if there are multiple sensors on a robot,

multiple range data can be obtained at one time which could also describe the envelope

of obstacles. Although this is theoretically correct, the quality of data is not as good

as that of data through a single sensor, because it is practically impossible to adjust

multiple sensors to have the same sensitivity in amplitude and orientation. One of

the most important elements in this method is in that the same sensor is used for a

sequence of positional data. This data set is used for the least squares fit algorithm

given in subsection 2.

153

Although a scan is used in combination with various types of motions, two

types of scanning, translational scanning and rotational scanning, are most common.

Translational scanning is a mode of scanning in which the vehicle makes forward

motion using a side range finder to scan lateral objects. In rotational scanning, the

vehicle rotates about its center using a sensor to scan objects radially.

2. Generalized Least Squares Linear Fitting

In addition to simple range and point position data, we desire more abstract

features of objects, especially linear features, from a set of positional data [22, 40].

This is accomplished in reverse fashion, i.e. we presume the data we are receiving

belongs to such a set and continuously modify a descriptive line segment to a best

fit of the data using a least squares fitting algorithm. This line segment continues to

grow until the incoming data or certain measures of the line segment indicate that

the line segment should be ended and a new one started.

vehicle
global sonar returns

that fall in this strip

are added to line

segment
sonar

beam
line segment built by

linear fitting

global sonar

returns

projected line segment •

Figure 123. Least square linear fitting procedure

We want to extract a linear feature from a set of points obtained by a scan. We

will use a least-squares linear fitting method. In "APPENDIX. LEAST SQUARES

LINEAR FITTING", we review some definitions about the least squares fit method

[28]. Linear fitting of global sonar data for a given sonar is performed in order to

extract line segments representing the sonar reflecting surface in robot's world space.

154

The linear fitting algorithm examines each individual global sonar return (this data

set is obtained by Eq. VII. 1), and determines if it can be fitted to the current line

segment. When ten or more points fall onto a straight line (with a user's selected

tolerance), the linear fitting algorithm builds a line segment for a particular sonar.

Linear fitting continues as long as sonar returns fall onto the line segment under

construction. Linear fitting is terminated when one global sonar return fails to fall

onto the projected line segment being constructed (Figure 123).

E. PRINCIPLES OF REDUCING UNCERTAINTY
The operational conditions in this context are

1. the vehicle knows its estimated configuration through dead reckoning,

2. the vehicle knows the geometrical relation of the world and the proximity

information related,

3. the vehicle knows the local configuration of every sonar, and hence, knows,

knows its global configuration, and

4. we have actual data from sensors, whose characteristics are known.

Therefore, if the vehicle's dead-reckoning is correct, we can consistently inter-

pret the sensor data. However, if there is any error in the vehicle dead-reckoning,

some inconsistency in the sensor data interpretation will be recognized. By compar-

ing the information pieces (2), (3), and (4), we will be able to evaluate the error of

dead-reckoning and can reduce the uncertainty. This is the basic principle of self-

localization.

Typically, we consider three situations where the positional uncertainty can

be reduced.

1. A sonar obtains a range value against a wall at an approximately right angle

or against a concave corner. In this case, we have "one degree of constrants,"

and the vehicle's x coordinate, y coordinate, or a linear combination of both

can be corrected. By this process, the uncertainty ellipse of positions becomes

a line segment. We generally cannot reduce uncertainty in the vehicle heading

by this information.

155

2. If the robot moves along a wall, its side sonar scans the wall at a right angle.

In this case, by applying a linear fitting algorithm (see Figure 123), the robot

obtains a line segment, which contains "two degrees of constraints." Therefore,

the vehicle's x and 6, for instance, can be corrected. Through this operation,

the uncertainty ellipse becomes a line segment and the uncertainty in the

vehicle heading becomes one point.

3. If the wall ends in the previous situation, we obtain a line segment with an

endpoint (see Figure 123). That information contains the full "three degrees

of constraints," and we can make a correction of the whole vehicle configura-

tion. Through this operation, the uncertainty ellipse becomes a point and the

uncertainty in the vehicle heading becomes one point.

It is crucial in this method that these operations (1), (2), or (3) are frequently

executed so that the dead-reckoning error is always kept small and the robot never

misses correct matching between a feature obtained by a sonar and one in the geo-

metric model. Also, in order to make this self-localization possible, the linear fitting

process must be done on the robot's on-board software system in real-time.

F. SELF LOCALIZATION ALGORITHM

global

O

Figure 124. Robot's localization error (I)

Using a two dimensional transformation and linear fitting method, we are now

in a position to formulate an algorithm for estimating the position of a robot vehicle.

156

Let qv be the vehicle's actual (true) configuration and q(its estimated config-

uration by localization. If there is no localization error, qt
= qv . Otherwise, there is a

difference between where the vehicle "thinks" it is (q t) and where the vehicle "really"

is (qv)
(Figure 124). In order to deal with the relation between the two configurations,

We propose to define an error configuration e such that

€ o qv = q t (VII.2)

i.e., this robot believed its world is e, which is different from the real (global) co-

ordinate system. If qv and qt are determined, then the error configuration can be

calculated by

t = * <lv

1
-

For example, if qv = (100,0,0)
T and qt

= (101,0,0)
T

,
then

c = Qc o qv
1 =

(

100
f

101

l

1

(-l\
=

{ ° J { ° J { ° J

Note that, qt
= (1,0, 0)

T
is correct if it is interpreted as a local configuration in e.

o

object A

sensing

*• j obje<oobject B

Figure 125. Object configurations

157

object A

Figure 126. Robot's localization error (II)

The positioning of not only a vehicle but also that of any object in the envi-

ronment may be described by a configuration. Associated with each object is its local

coordinate system; its configuration in this world is described using this local frame

of reference (Figure 125). We assume there is an object B\ whose actual configu-

ration is g (Figure 126). Assume that a sensor, mounted on the vehicle, senses the

configuration on an object in the environment. The sensor's capability is assumed to

be ideal. That is, the vehicle is able to sense the relative configuration of an object

with respect to its own local configuration qt with an infinite precision. Let g(be

the configuration sensed by the vehicle. Therefore, gt may be superimposed with the

error contained in the localization vehicle configuration qt . Therefore, the relation

between g and gt is

eog = gt
. (VII.3)

Since the error configurations e in Eqs. VII.2 and VII.3, are the same, we can find

the actual vehicle's configuration qv by

q = e oq
t

= (& o g'1)' 1
o qt

-l= 9 o g, oq
t (VII.4)

158

assuming q t , g and g c are known (g is given as the knowledge of the world for the

robot).

Eq. VII.4 gives a formal way to evaluate the actual configuration qv of the vehicle

using a model and sensors, where

1. qv is the vehicle's actual configuration, which is unknown,

2. g is the actual configuration of an object in the environment, which is obtained

from an environment model,

3. q t
is the localization configuration, which is known but contains an error e,

and

4. gt is the observed configuration of the object, which is also known and may
have some error because this observation is made by the ideal sensor on board,

using localization configuration q t as a point of reference.

Next Subsections 1 and 2 show how to evaluate the actual configuration of an object

g and the observed configuration of the object gt .

For example, if qt
= (1, 1, tt/2)

t
,#(

= (1,2,tt/2)
t

,
and g = (2,4,0)

T
, then

e = gt ° 9
-l

(
l

) f

2

]

V
2 4 =

7T

\ 2) ,°j
7T

^ 2 /

, and

(5
N
-1

f
' 1

(x\
O 1

= 4

K
*/2,

K
*n> v°>

qv = e
1 oq

t
=

To validate the self-localization algorithm, we implemented the algorithm on

the autonomous mobile vehicle Yamabico-11 (see Chapter VIII).

1. Position Information of Natural Landmarks

When we project a three dimensional world onto a two dimensional plane,

a vertical plane is projected to a straight edge. There are numerous edges in an

environment as a part of a wall or a part of furniture. We consider some of those

edges as landmarks for navigational purposes.

159

Let e be an edge with endpoints p\ and p2 . We can define a configuration

ge = (p\,0e)
with it. The orientation 6e is equal to the orientation from p\ to p2 -

Thus we can obtain the actual configuration g = ge in Eq. VII. 4 for an edge e.

2. Position Estimation of Natural Landmarks by
Sonar and Odometry

sonar(x
s , yg)

sonar return = 30

(x
g

, yg
)= (136.6,-17)

O 80

Figure 127. Global position of sonar return

Obtaining the configuration gt for the edge e using a sonar is accomplished as

follows. We propose translational scanning including the general least square linear

fitting algorithm for obtaining the observed configuration gt for the edge e using a

sonar (see Subsection 2 of Section D).

First, during a vehicle's translational motion, assume a sonar obtains a range

value d by a sonar whose instantaneous configuration is q9o = (x 3 ,ya ,63)

T
(see Fig-

ure 122). The sonar's configuration in the global coordinate, Eq. VII. 1, is a composi-

tion of the vehicle odometry configuration qc and the sonar local configuration qso in

robot-local coordinates. In this context, the sonar configuration includes odometry

error. An estimate of the position of a point p on an object that generated a sonar

160

return in the global coordinate system is

p = (x s + dcos 9s ,ys + ds'm 6S)

For example, if the sonar return is 30 cm and the sonar's configuration in the global

coordinate is qs = (94.5,25.5, — 7r/4)
T

, the global position (xg , yg) of sonar return (see

Figure 127) is given by

x
g
= 94.5 + 30 * cos(-tt/4) = 136.8

yg = 25.5 + 30 * sin(-7r/4) = -17

By knowing where each sonar is on the vehicle (see Table XVI in Chapter IX) and

knowing the vehicle's position, we can consistently determine the object's location

relative to the robot's world.

The second step is to calculate the moments up to the second order at each

new incoming value. With these moments, the equation of the line L = {r,a) (where

a and r are the orientation and length of a normal against L from the origin (0,0))

with the least squares fit and the best estimates of the endpoints of L can be obtained

(See "APPENDIX. LEAST SQUARES LINEAR FITTING").

The final important step is to determine if the new incoming point should be

included in the group of points representing a line.

When one session of the linear fitting process ends, this process returns a pair

of endpoints (pi,/>2) as a result. Obtaining the observed object configuration gt is

done in the same manner as described in previous Subsection 2.

3. Odometry Correction

Assume a situation in which the vehicle knows its actual configuration qv and

the vehicle is moving. When the landmarks are located in the environment and the

robot can detect a landmark, the observed segment configuration gt is obtained. If

there is a difference between the observed segment configuration gt and the actual

landmark edge configuration g (see Figure 128), the robot can correct its estimated

161

Figure 128. Matching algorithm

position before the error accumilates to be large. For example, in Figure 129, the

vehicle believes it is at qt , which is on the specified directed path it. Actually, though,

the vehicle is at qv and was going to move on a wrong trajectory. Odometry correction

is made by simply substituting the odometry configuration with qv . This causes the

odometry configuration to be the true one, and therefore, lets the control algorithm

recognizes the non zero distance between the vehicle's configuration and the directed

path it. This control algorithm then pulls the vehicle back on track (Figure 129) [38].

q actual vehicle configuration

q localization vehicle configuration

Figure 129. Real-time localization correction

162

VIII. IMPLEMENTATION OF LOCAL
MOTION PLANNING AND SELF
LOCALIZATION ALGORITHMS

This chapter describes how to implement the local motion planning algorithm.

The chapter will cover each of these in the following sequence. First, the data struc-

tures used to represent the world are presented. Second, The experimental results

conducted by Yamabico-11 using the MML-11 software system of polygon tracking

and local motion planning algorithms will be presented. Third, experimental results

of application of self-localization algorithm on an autonomous mobile robot system

Yamabico-11 using sonars and natural landmarks will be discussed.

A. GEOMETRIC MODEL OF A ROBOT'S WORLD
This section describes the data structures used to represent the world and the

path classes. We propose to represent the robot's world by specifying the vertices

of the polygonal holes. Each hole, then, becomes an ordered list of vertices such

that traversing the list corresponds to traversing the hole's boundary with the free

space on the right. In other words, vertices of ccw holes (polygons) are ordered

counter-clockwise, while vertices of cw holes are ordered clockwise. Since information

is commonly needed about a vertex's neighbors, the specific data structure used for

implementation must be able to efficiently identify its next and previous vertices.

Storing the vertices in a doubly linked list is one alternative.

1. World Model Data Structure

The data structures required include a world structure used to hold information

concerning the polygons that make up the world, a subpolygon table to define the

subpolygons.

The world, illustrated in Figure 130, is represented as a linked list of polygons,

where each polygon is a double linked list of its vertices. Access to the world is gained

163

world

polygon 1 -* polygon 2 polygon 3 * ••• polygon n <D

Subpolygon Table

Y Begin End

1

...

n

Figure 130. Representation of world data structure

through a pointer to one of the polygons on the list. As the vertices are read, the

subpolygons of each polygon are created. The vertex structure contains the identity of

the vertex, the coordinates of each vertex, and whether or not the vertex is a convex

vertex.

The Subpolygon Table provides a means of finding all vertices which are con-

tained in a given subpolygon. This data structure is an array which holds a pointer to

the first and last vertex in the subpolygon (see Figure 130). Given that the identity

of the subpolygon is known, it is used to find the image on the subpolygon. If a

subpolygon is convex, then the first and last vertex are identical.

164

2. Path Class Data Structure

For a path / in a world W, the "path class", 7r, is represented by a directed

v-edges sequence E. This data structure is an array of structures containing a left

and right subpolygon identification (see Table XII).

Left Subpolygon Right Subpolygon

T, T1
j

...

T1 m T1 n

Table XII. Representation of path class data structure

3. Image Data Structure

An image structure contains the identity of the feature type (i.e., edge or

vertex) which contains the image point, pointer to vertex u, (in vertex type, vertex

V{ is one of the vertices of B but in edge type, the image lies on edge v,-</?(v,-)), the

orientation from a point p to an image, and the closest distance from a point p to its

image (see Table XIII). Following each motion cycle of the vehicle, image is updated.

Image Structure

Object Type Containing Image (Vertex or Edge)

Pointer to a vertex v

Orientation

Closest Distance

Table XIII. Representation of image data structure

165

In Table XIII, Object Type is integer type which indicates image type. The

type of orientation and closed distance from a point p to its image are double.

B. POLYGON TRACKING EXPERIMENTAL RESULTS
The polygon tracking algorithms described in Chapter V have been imple-

mented in MML-11 (see Chapter IX), and tested on experimental robot Yamabico-11.

The results show that the algorithms are practical for the robot motion planning and

motion control.

In Figures 131, the vehicle is supposed to track a ccw polygon with ccw di-

rection, where its initial configuration qo = ((63,450), — 7r/2,0), the safety clearance

d = 80, the speed v = 30cm/sec, and the value of smoothness, a = 20.

The example in Figure 132 shows the result of the trajectory if the polygon

is not rectlinear. This means that our algorithm is sufficiently general for arbitrary

polygons. The vehicle is supposed to track a ccw polygon with ccw direction, where

its initial configuration q — ((90,450), —7r/2,0), the safety clearance d = 80, the

speed v = 30cm/sec, and the value of smoothness, a = 20.

C. LOCAL MOTION PLANNING EXPERIMENTAL RE-
SULTS
Most of the motion planning algorithms described in this dissertation have

been implemented in MML-11 (see Chapter IX), and tested on Yamabico-11. As

above, the results show that the tested algorithms are applicable to the robot motion

planning and motion control. The example in Figure 133 shows the result of different

trajectories for the following path class.

7T = [B4/Bo][B4/Bs][B2/B5[B3/Bs].

The initial configuration is <7o = ((63,450), —7r/2, 0), the safety clearance is do = 80,

the speed is v = 30cm/ sec, and the value of smoothness is a = 20,30.

166

In Figure 134, the vehicle's initial configuration is q — ((63,450), — 7r/2,0),

the safety clearance is d = 80, the speed is v — 30cm/sec, the value of smoothnessis

a = 20 and the path class is

7T = [B4/B }[B4/B5][B4/B2][B4/Bl][B4/B }[B4/B5).

The example in Figure 135 shows the result when a vehicle is browsing ran-

domly in the free space. The vehicle tracks the following path class where its initial

configuration is q = ((90, 120), 7r/2,0), the safety clearance is d = 80, and the speed

is v — 30cm/sec. The path class is

tt = [Bo/Bs] [B4/B5]
[B4/B2]

[B4/Bx]
[B4/B]

[B5/B }
[B5/B3]

{Bb/Bi} [B4/B2]
[B4 /B,\ [B4/B]

[B5/B]
[B5/B3).

D. SELF LOCALIZATION EXPERIMENTAL RESULTS
To validate the self localization algorithm (see Section F in Chapter VII), we

implemented the algorithm on the autonomous mobile vehicle Yamabico-11. The set

of odometry-correction-related functions were incorporated into the MML function

library (see Chapter IX).

In the following subsection, we explain one experiment to verify the funda-

mental correctness of the algorithm.

1. Single Landmark Experiment

In this experiment, a single racetrack path with a single landmark was used.

Yamabico moves repeatedly around this racetrack path which is composed of three

separate path elements. Yamabico is programmed to make an odometry correction

once per lap using a single landmark. In each lap of this racetrack path execution, the

odometry correction is performed and the error configuration e is recorded. The re-

sulting robot motion after applying odometry correction code is shown in Figure 136.

Table XIV shows the raw experimental data obtained for the robot traveling ten laps

at 30 cm/sec. Notice that the results show the error configurations for each lap are

167

small and nearly equal. This provides evidence that Yamabico's motion control and

localization functions are precise and that the self localization algorithm is working

as desired.

Lap X

(cm)
y

(cm)

e

(radians)

6

(degree)

1 2.80471 0.24929 -0.00024 -0.01376

2 0.69485 0.42072 -0.00286 -0.16395

3 1.00984 0.42923 -0.00137 -0.07897

4 0.13315 0.29099 -0.00244 -0.14047

5 -0.89826 0.46305 -0.00444 -0.25449

6 0.58927 0.49313 -0.00075 -0.04326

7 -0.05586 0.10672 -0.00190 -0.10898

8 0.46601 0.36223 -0.00084 -0.04867

9 0.21211 0.95825 -0.00917 -0.05254

10 0.28372 0.19450 -0.00070 -0.04016

Table XIV. Odometry error correction (30 cm/sec)

The average of the error configuration over ten laps at speed of 30 cm/sec is

shown in Table XV.

Ax
(cm)

Ay
(cm)

A6
(radians)

A0
(degree)

0.52395 0.39659 -0.00247 -0.09451

Table XV. Average odometry error correction (30 cm/sec)

168

Figure 131: Yamabico-11 polygon tracking and execution result (I)

169

Figure 132: Yamabico-11 polygon tracking and execution result (II)

170

Figure 133: Yamabico-11 local motion planning and execution results (I'

171

#1

B.6

/ a

/ B4

a = 20 /

Bb

Bi

B3

Figure 134: Yamabico-11 local motion planning and execution result (II)

172

Figure 135: Yamabico-11 local motion planning and execution result (III)

173

landmark

start

Figure 136: Odometry correction experimental using single landmark

174

IX. YAMABICO-11 HARDWARE AND
SOFTWARE ARCHITECTURE

This Chapter introduces the hardware and software of the robot—Yamabico-

11 which was used to test most of our algorithms experimentally.

A. HARDWARE SYSTEM OF YAMABICO-11
Yamabico-ll (see Figure 137) is an experimental, wheeled untethered indoor

mobile robot for AI and robotics research. It has been developed at the Naval Post-

graduate School (NPS) over the last several years. However, the vehicle is a result of

Dr. Yutaka Kanayama's long history of autonomous robotics research at the Univer-

sity of Electro-Communications, the University of Tsukuba, Stanford University, and

the University of California at Santa Barbara [38, 41]. Its main CPU board consists

of the SPARC microprocessor with a 16 Mbyte RAM storage and is mounted on a

VME bus. Besides that, the system includes a dual-axis controller for two motors

and two shaft encoders, a tailor-made sonar board, and a serial communication board

are also mounted on the VME bus. One lap-top computer is used for a real-time

input/output device. The size is 60(W) by 60(L) by 70(H) centimeters. It weighs

about 60 Kilograms. A differential drive kinematic architecture is used for the wheel

system. Two 35 watt DC motors with shaft encoders are used with 1/24 gear boxes.

Twelve 40KHz sonars and one CCD camera are mounted on board. Its power source

consists of two 12- volt car batteries. When object code is downloaded from a UNIX

system, the vehicle operates as an untethered (self-contained) autonomous robot. The

Yamabico-ll hardware architecture is illustrated in Figure 138.

1. IV-SPARC-33 CPU
The Ironies IV-SPARC-33 is a single processor, VMEbus Interface, CPU board.

It contains a 25 MHz SPARC Integer Unit, a Floating Point Unit, and a Cache Con-

troller and Memory Management Unit. The card installed in Yamabico has 64 Kbytes

175

Figure 137. Autonomous mobile robot, Yamabico-11

176

User

Macintosh Power Book

VME BUS

1

UNIX

System

Serial

Board

Image

Board

Sonar

Board

Dual

Axis

Controller

SPARC

CPU

t * t
CCD

Camera

Ultrasonic

sonar

(12)

Motor

Controller

Shaft Encoder

Wheela
Figure 138. Block diagram of Yamabico-11 hardware architecture

of cache, and 16 Mbytes of 80ns DRAM. It provides two RS-232 serial I/O ports, two

programmable timers, and seven user-definable LEDs.

The Ironies SPARC board contains 16 Mbytes of physical memory, yet provides

32 bit addresses (4 GBytes). This 4 GBytes address space is logically divided into

several regions. The three most important regions are the Local DRAM, Region 3,

and Local I/O (see [34]).

Internal interrupts are those generated on the CPU board. The two most

important are the Timer 1 and Timer 2 interrupts. Timer 1 can be set to provide

interrupts at 50, 100, or 1000 hz. Currently, MML11 uses Timer 1 to provide the 10ms

(100 Hz) motion control interrupt. Timer 2 provides a broader range of interrupts,

and is currently unused.

External interrupts are those generated off the CPU board. The most impor-

177

tant are from the quad serial boards, and the sonar board, which are handled through

the 7 VMEbus Interrupt Request lines.

2. SONARS

n

Forward

10

Figure 139. Yamabico-11 ultrasonic sonar configuration

Yamabico's sonar hardware is extremely efficient because a dedicated sonar

board with a microprocessor controls the sonar sensors [61]. Yamabico's main central

processing unit is interrupted only when data becomes available from the sonar array.

The sonar system provides user interface functions that control Yamabico's array of

sonar range finders. At any point within a user's program, any of the twelve sonars

may be enabled or disabled. This allows the user to operate a given sonar only when

necessary for a particular application.

Yamabico employs twelve Nippon Ceramic T40-16/R40-16 ultrasonic sonars,

operating at 40 KHz and distributed around the periphery of the robot at 30 de-

gree increments as shown in (Figure 139), approximately 35 cm above the floor [52].

178

Each sensor is actually a pair of transducers, one to transmit the ultrasonic pulse

and another to receive the echo. The self-contained sonar system runs on a VME

motherboard and interfaces with the Yamabico-11's Central Processing Unit (CPU)

via the VME bus. The sonar hardware design gives a range gate of 409 cm and a

range resolution of 1 mm [55].

a. Sonar Grouping

<>
2 O
8 O-
11 O

Driver

Board

1

Sensor

Data

Control

Signals

6 O
4 O
7 O
5 O

Driver

Board

2

1 O
3 O
9 O
10 O

Driver

Board

3

COMMAND

STATUS

Data

Registers

Sonar Control

Daughter Card

BIM

VME Mother Card

mm,

£

B

U

s

Figure 140. Yamabico-11 sonar hardware architecture

In order to reduce sampling time, the twelve ultrasonic sonars were

divided into three logical groups, with four sensors in each group. The sonars of a

logical group are all pulsed simultaneously and thus reduce the sampling time by

a factor of four as compared to individual firing of the sonars. Group consists

of sonars 0, 2, 5 and 7; group 1 of sonars 1, 3, 4, and 6; group 2 of sonars 8, 9,

10 and 11; and group 3 is a virtual group which consists of four permenent test

values [61]. The axis of each sonar is oriented at 30 degree angles from its neighbors.

Ranging is done on a group basis to prevent mutual interference. Additionally, the

sonars are physically grouped in order to distribute the electrical load over the driver

179

boards evenly and thus minimize any electrical transients associated with operation

of the sonar (Figure 140). The physical grouping connects sonars 0, 2, 8 and 11 to

driver/amplifier board 1; sonars 4, 5, 6 and 7 to board 2; and sonars 1, 3, 9 and 10

to board 3. The reader will note that pairs of sonars from logical groups are assigned

to physical groups, for example, sonar and 2 from logical group are assigned to

physical group (driver/amplifier board) 1.

b. Sonar Range Calculation

The sonar transducers operate at a constant frequency of 40 KHz. Since

Yamabico's programmed maximum range is 409 cm, a sonar pulse width is 1 ms and

the speed of sound in air is 340 m/sec, the maximum round trip time can be calculated

as follows:

. . . 409 cm
round trip time = : X 2y

34000 cm/sec

This round trip time is the period during which a valid echo may be received and

is referred to as the receive gate. This interval is derived by division of the sonar

system's 2 MHz clock to ensure that the receiver is not falsely triggered by a direct

path reception from it's adjacent transmitter. We opt to disable the receiver until the

transimit pulse is complete. This will have the disadvantage of setting a minimum

range equal to half the distance sound would travel in the time of a transmit pulse.

The minimum range can be computed as follows:

minimum range = 34000 cm/sec x 1 msec x 0.5 = 17 cm

The minimum range lies approximately 9 cm outside the periphery of the robot. In

order to allow the measurement of the objects up to the periphery of the robot, the

pulse width was decreased to 0.5 msec thus reducing the minimum range to 8.5 cm.

However, additional time was needed to accommodate switching and setting within

the circuitry; therefore, in actual practice, the minimum range is set by firmware to

9.6 cm [61].

180

c. Sonar Interrupt Control

The sonar control board is actually a daughtercard which rides on a

VME bus mothercard. The mothercard carries address decoders, bus drivers and

interrupt control circuitry in the Bus Interface Module (BIM).

When the sonar has completed a ranging cycle an interrupt request is

provided to the BIM. The BIM's control register holds information which determines

whether an interrupt is to be generated or not, and if so which interrupt level is to be

generated. Presuming an interrupt is generated, when the correct acknowledgment

returns on the address lines the BIM's vector register provides the vector table entry

where the central processor may find the vector to the interrupt handler. The correct

interrupt level, the interrupt enable bit and interrupt vector are loaded to the BIM

during software initialization.

B. MML-11 SOFTWARE ARCHITECTURE
The Model based Mobile-robot Language MML is the driving force behind

the robot [38, 41]. MML is a portable library of functions written in the ANSI C lan-

guage in the UNIX environment. The library supports locomotion functions, sensor

functions and other I/O functions. Currently, its eleventh version, called MML-11,

is under development.

All software routines on the robot were developed and downloaded to the robot

via RS232 at a baud rate of 19200. The system consists of a kernel (including the

MML functions) and a user program. Once a user program is downloaded and is

triggered to execute, all operations are autonomous.

From the robot control point of view, MML-11 is a programmable software

system for mobile robot operation. The main procedure of the system conducts all

necessary initializations for both hardware and software. After the initializations are

done, a user program is called. Besides the main procedure, MML-11 mainly consists

of the motion control subsystem and the sonar control subsystem.

181

For user application programming convenience, the system provides a set of

well-defined functions called user functions as the interface between the user and

the the system. The user functions are categorized into four modules:

• Operating System Module,

• Motion Planning Module,

• Motion Control Module, and

• Sonar Control Module.

1. System Architecture

Operating System

Module Initialization

i

i

i

i

i

i

i

i

1Motion Planning

Module

'i
User Program

Motion Control

Module
i

i

i

i

Sonar Control

Module

i

Termination

Function Library System Main Body

Interrupting Request *• i

!

Function Supf Sonar Control Motion Control»ort *

Sequential Execution ^ Subsy stenn Subsystem

Figure 141. MML-11 software conceptual architecture

This software is developed with a special architecture which incorporates a

sequential structure and an interrupt-driven structure. The system initialization and

the user application program are executed sequentially in the main procedure of the

system. The motion control and sonar control subsystems are periodically called for

182

execution via interrupt requests for the required motion control and/or sonar control

operation. The MML-11 software architecture is shown in (Figure 141).

2. Interrupt-driven Subsystems

There are three primary tasks that may be running at any given time. The

motion control subsystem is the highest priority task, performing all motion control

computations and translating them into low-level wheel controls. It is designed to

interrupt other tasks every 10 msec. The next highest priority task is the sonar control

subsystem, which processes all incoming sonar returns and generates line segments

from individual sonar returns from obstacles if required. It issues an interrupt request

every 50 msec. The lowest level priority, but still a basic, task is the user program.

This part of the system feeds both immediate and sequential commands to the motion

control subsystem through a command queue. All higher priority tasks interrupt the

tasks with lower priorities to gain the CPU control. The design of MML-1 1 subsystems

will be described in the following sections.

3. RealTime Operating System

The Yamabico-11 onboard CPU, IV-SPARC 33, provides no standard operat-

ing system functions but a small set of libraries for console I/O. All other operating

system primitives, such as interrupt handling, memory management, data formatting

and logging must be provided by the MML system.

4. User Program

In this software, the robot's motion is instructed by the user program, which

sends commands to the motion control system and/or sonar control system. However,

motion planning - and control - specific concepts are hidden from the user. Only those

defined as user functions are allowed to be considered by the user program. Sonar data

is available to the user in either a raw or processed format via user sonar functions.

In "APPENDIX. USER PROGRAM EXAMPLES", we give a sample user program.

The MML-11 user function specifications will be described in Section C.

183

5. MOTION CONTROL ARCHITECTURE

User Program

Immediate Sequential

CommandsCommands

(Foregrourid Process) V

Irjstru^itoo Buffer

(Background Process)

Motion Control Subsystem

Figure 142. MML-11 motion control software architecture

The motion control must be repeatedly performed in a short period. It is

difficult to impose this control in user's program. As we design an interrupt-driven

software system, the foreground job and background job concepts are introduced

into MML-11 motion control software. In MML-11, the motion control mechanism

is designed in such a way that the execution of user program is somewhat separated

from motion control. This allows the user being able to program applications by using

simple functions. The user program is considered the foreground process which sends

either immediate or sequential commands to the system. The robot motion control

task conducted by motion control subsystem is considered the background process

which performs motion control to acheive the motion instruction it gains control at a

184

frequency of 10 msec. The immediate commands in the user program will be executed

immediately, while the sequential commands will be enqueued to a buffer called the

instruction buffer waiting for execution sequentially. The motion control subsystem

fetches an instruction sequentially. When the execution of one instruction is finished,

the control subsystem picks and executes another instruction from the buffer until

the buffer is empty. The motion control architecture is illustrated in Figure 142.

6. Motion Control Subsystem

Motion control subsystem, named MotionSysControl, is the foreground pro-

cess of the entire system. It is designed to compute all data necessary for motion con-

trol by interrupting system main procedure (or user program) every 10 msec. When

the interrupt request is granted, this subsystem gains the control of CPU. It actually

acts as an interrupt service routine.

MotionSysControl performs following computations for the robot motion con-

trol in order to accomplish its mission.

• Measure the distance traveled, As, in a cycle by the reading robot's left and

right shaft encoders.

• Compute the orientation changes, A6.

• Localize current configuration, q.

• Compute commanded linear and rotational velocity, Vl,Vw , for next cycle.

• Translate commanded velocity into control signals, PWM, for driving motors.

• Transition point simulation to decide whether to read next instruction.

By reading the robot's left and right shaft encoders, the process can measure

the distance traveled. Computations of distance traveled and orientation changes

are done in order by a module with outputs As and Ad. These data will be used

by localization module to compute robot's current configuration. The current con-

figuration q is needed for motion rule module to compute commanded linear and

rotational wheel velocities, Vl,K,, for next cycle. These velocities are translated in

185

left and right PWMs as signals to drive corresponding motors. The last step in Mo-

tionSysControl is to determine whether to start transitioning to the next path. If it

decides to transition, the next motion commanded in the instruction buffer will be

read and followed.

C. MML-11 LANGUAGE SPECIFICATION
In this section, we describe the design of user functions which will be used

as interface between user and MML-11 software. The specifications of functions for

motion control, sonar control and geometric calculation are presented. Some of the

basic data structures which will be used to describe the functions are presented also.

The user functions are categorized into following subsets:

• Geometric functions,

• Motion planning functions,

• Motion control functions, including sequential functions and immediate func-

tions,

• Sonar control functions, and

• Self localization functions.

The geometric functions simply "define" some utility functions for algebraic

manipulation of geometric variables. The motion planning functions provide the user

with simple interface functions to build a world model and to conduct motion plan-

ning when given a specific mission. The motion control functions include sequential

functions and immediate functions. The sequential functions define a set of motion

control commands that are stored in a buffer when they are used in the user program

and are executed sequentially as the robot's background tasks. The immediate func-

tions define the commands which take effect immediately when they are executed in

a user's program. The sonar control functions are the functions used to control sonar

operation and to obtain sonar data.

186

1. Data Structures

• Point

The POINT structure is used to describe a position in a two-dimensional

cartesion coordinate system. The structure includes a double X and a double

Y.

• Configuration

The CONFIGURATION is the standard structure for describing location

and direction for an object. It consists of Posit, with type of POINT, which

identifies an objects position in two-dimensional cartesion coordinates. An-

other element is Theta of type double that describe's the object's orientation

in relation to the X coordinate. Finally, there is another double called Kappa
that represents the curvature of an object's path.

• Path Element

The PATH-ELEMENT data structure is used to describe and store the

various types of movements. This data structure consists of config which is

of type CONFIGURATION. It holds the configuration of the path that the

robot is to follow. PATH-ELEMENT also contains pathType, which is of

type PATH-TYPE. A PATH-TYPE is a data structure used to identify the

various paths that are available to the robot. It consists of the mode which is

of type MODE and class which is of type CLASS. Type MODE is an enu-

meration type that gives a name to each path that the robot follows. Presently,

the modes that are available include NOMODE, ENDMODE, STOPMODE,
PATHMODE, ROTATEMODE, KSPIRALMODE, PCMODE and FOLLOW-
MODE. Type CLASS, which is also an enumeration type, is used to name and

categorize the various path mode types. The list of classes include NOCLASS,
LINECLASS, CIRCLECLASS, BLINECLASS, NBLINECLASS, CCWLEFT,
CCWRIGHT, CWLEFT and CWRIGHT.

• Velocity

The VELOCITY structure is used to describe a velocity. The data structure

is made up of two doubles that represent the linear and rotational elements of

velocity. They are appropriately named Linear and Rotational, respectively,

in the VELOCITY structure.

187

Sonar Number SonarPosit.X SonarPosit.Y SonarTheta

0.0 -0.5

1 -23.0 13.1 5tt/6

2 -22.6 -1.0 7T

3 24.7 -14.6 -tt/6

4 13.4 21.3 tt/3

5 0.0 20.6 tt/2

6 -12.6 -21.3 -2tt/3

7 0.0 -20.5 -tt/2

8 -13.4 21.3 2tt/3

9 -23.5 -14.9 -5tt/6

10 12.1 -21.3 -tt/3

11 25.2 14.1 tt/6

12 0.0 0.0

13 1.5708 21.5 1.5708

14 4.7124 21.5 4.7124

15 0.0 0.0

Table XVI. Sonar position

• Sonar Table

The sonar table SONARD contains not only the new range (d) of type dou-

ble and the old range (dO) of type double but the robot's position at the time

of the range (posit.X, posit.Y of type POINT and t) of type double and

the global coordinates corresponding to that range and position (global.

X

and global.Y) of type POINT. The sonar table also contains the position of

the individual sonar relative to the robot's coordinate system (SonarPosit

of type POINT, the euclidean distance from robot center to sonar center and

SonarTheta of type double, the angle from the robot's x-axis to the sonar

center) of type double. Table XVI shows where each sonar on the vehicle.

The sonar table also contains two flags which guide the operation of the sonar

system. These are fitting, with type of integer, which indicates linear fitting

requests and update, with type of integer, which inform the sonar system

of the presence of new data in d. An array of sixteen of these structures is

formed, and is then indexed by sonar number.

• Segment Descriptors

The segment structure (SEGMENT_RES) contains all the data necessary to

188

completely describe a line segment. This includes an integer to represent the

sonar which recorded the segment, the number of data points thus far included

in the line segment (mOO) and real numbers to record the endpoints (start.

X

and start.Y, end.X and end.Y), the angle and length of a normal to the

segment from the origin (alpha and r), the length of the line segment. This

structure is arranged in a two dimensional array. One index is the number of

the sonar from which the segment is derived; the other index holds an inte-

ger (0 through 29). This segment list can hold the 30 most recent segments

described by a given sonar. It is presumed that any navigation program will

not require more history than these thirty segments; if so, the second index of

segment list can be increased.

• Sonar Data Logs

The sonar data logs are arrays to which the user program writes data during

it's execution. These logs are converted to ASCII strings at the completion of

the user program and those strings are in turn transferred to the host when all

data are ready to down load. There are three types of data logs: the raw data,

the global data and the segment data. For each log type, there is correspond-

ing data file. The filenames created on the host will depend upon the type

of logging performed and the sonar number. The tracing frequency is used to

specify how many sonar cycles are skipped before data is logged. A value of

1 or less causes the logging to occur with each cycle. The raw data records

the range and the robot's position and orientation at the time of the range.

The global data records the range and global x and y values for sonar returns.

The segment data records line segments in the form of segment descriptors

previously described.

2. User Function Specification

1. Geometric Functions

• Define Configuration

Synopsis: CONFIGURATION defineConfig(x, y, theta, kappa)

Parameters: double x\

double y;

double theta;

double kappa;

Description:

When passed the values that define a configuration (x, y, theta, kappa), this

function allocates and assigns a configuration. It returns a configuration.

The configuration can be used to represent a path which is either a line or

189

a circle. If the configuration is defined with curvature zero, i.e. k = 0.0,

it specifies a straight line passing through the point (x,y) with orientation

0. If its curvature is greater than zero, i.e. kappa > 0.0, the path is a

counterclockwise circle. If kappa < 0.0, then the path is a clockwise circle.

Figure 143 illustrates theses concepts.

kappa > 0.0 (counterclockwise)

P = (x,y)
kappa = 0.0 (straight line)

kappa < 0.0 (clockwise)

Figure 143. A configuration represents a line or a circle

• Inverse

Synopsis: CONFIGURATION inverse^)

Parameters: CONFIGURATION q;

Description:

The purpose of this function is to calculate the inverse of a given configu-

ration such that: q * q~ l = e.

• Compose

Synopsis:

Parameters:

Description:

CONFIGURATION compose^, ?2)

CONFIGURATION qi ;

CONFIGURATION q2 \

The purpose of this function is to calculate the composition of two con-

figurations. Specifically, the function takes parameter q\ and composes it

with parameter q2 to calculate and return the composed value.

• Circular Arc

Synopsis:

Parameters:

Description:

CONFIGURATION CircleArc(/, alpha)

double /;

double alpha;

190

Given a tangential orientation alpha and the arc length / in a curve, this

function computes its configuration in the local coordinate system. In the

case of motion control, length would actually be As and alpha would be

A9. The function can be called to determine the configuration after an

incremental move in the local coordinate system of the original configura-

tion.

• Euclidean Distance

Synopsis: double euDis(pl,p2)

Parameters: POINT pi;

POINT p2;

Description:

This function computes the Euclidean distance between two given points.

• Normalize

Synopsis: double norm(theta)

Parameters: double theta\

Description:

This function returns a normalized angle in the range [— 7r,7r].

2. Motion Planning Functions

• Create World Model

Synopsis: void createPolyModelQ
Description:

This function builds a world of polygons. It will generate the set of data

which is needed in planning robot's motion.

• Image

Synopsis: Image convexImage(p, B, direction)

Parameters: POINT p;

int B;

int direction;

Description:

This function finds the image of a given point p in free space on a polygon

B. The parameter direction indicates the direction ccw or cw. The output

of this function is structure containing the identity of the feature type

(edge or vertex) which contains the image point, pointer to vertex ut , the

orientation from a point p to an image, and the closest distance from a

point p to its image(see Table XIII in Chapter VIII).

191

• Polygon Tracking

Synopsis: void polygonTrackingQ

Description:

The purpose of this function is to indicate the direction of tracking a poly-

gon (ccw or cw). This function sets the value of the current path element

in motion control to the path element passed in as a parameter.

• Polygon Planning

Synopsis: VELOCITY FollowRule(ac£ua/, commanded)

Parameters: VELOCITY actual;

VELOCITY commanded;

Description:

This function returns the robot's linear and rotational velocities to follow

a polygon in ccw or cw direction.

• Motion Tracking

Synopsis: void motionTracking()

Description:

The purpose of this function is to set the value of the current path element

in motion control to the path element passed in as a parameter.

• Local Motion Planning

Synopsis: VELOCITY LocalMPRule(ac£im/, commanded)

Parameters: VELOCITY actual;

VELOCITY commanded;

Description:

This function generates the motion instructions along the path. Those

instructions will be taken to drive the robot until it stops.

Motion Control Sequential Functions

The sequential functions define a set of motion control commands which are

stored in a buffer that acts as an interface between user and robot. When the

user program is being executed, commands of this type included in the user

program do not take effect immediately instead they are loaded in buffer as

motion instructions. The motion control system reads the instructions from

the top of the buffer sequentially and controls the robot's motion accordingly.

The specifications of those functions are listed below.

192

• Tracking a line

Synopsis: void line(</)

Parameters: CONFIGURATION q;

Description:

The function defines a command that orders the robot to follow the line

or circle specified by the configuration q. If the robot's last configuration

before the command is executed is not on the track of the line specified,

the robot uses the steering function to transfer to the line with a smooth
motion. Figure 144 illustrates robot's behavior when executing line(<?)

with a straight line q.

vehicle

Figure 144. The line tracking function

• Tracking the Line form its Back and Stopping

Synopsis: void bline(^)

Parameters: CONFIGURATION q;

Description:

This function defines a command that orders the robot to track the line

specified by the configuration q from its back. If the robot's image is on

the back half of the line, the robot tracks the line as function line()x and

stops when its image reaches the configuration. If the robot's image falls

on the forward part of the line initially, the robot would not move (see

Figure 145).

• Tracking the Line form its Back and no Stopping

Synopsis: void nbline(g)

Parameters: CONFIGURATION q;

Description:

This function is similar to the backward line function, bline(), except the

vehicle does not stop at the configuration q. The vehicle may transition

to another path element after reaching the configuration q if another path

element command follows. To stop the vehicle, the stop() function must

follow it (see Figure 146).

193

vehicle

The robot would noc

move in this case

Figure 145. The backward line tracking with stopping function

vehicle

Figure 146. The backward line tracking with no stopping function

• Set Robot's Configuration

Synopsis: void setRobotConfig(^)

Parameters: CONFIGURATION q;

Description:

This function sets robot's configuration to a given configuration q.

4. Motion Control Immediate Functions

• Set Path Element

Synopsis: void setPathElement(pa</i)

Parameters: PATH.ELEMENT path;

Description:

This function sets the value of the current path element in motion control

to the path element passed in as a parameter.

• Set Robot's Configuration Immediately

Synopsis: void setRobotConfiglmm(g)
Parameters: CONFIGURATION q;

Description:

194

This function sets robot's configuration to a given configuration q imme-
diately.

• Get Path Element

Synopsis: PATFLELEMENT getPathElementQ
Description:

This function retrieves the current path element in motion control module.

• Set Robot's Linear Speed Immediately

Synopsis: void setLinVelImm(.spee</)

Parameters: double speed;

Description:

This function sets the robot's linear velocity immediately.

• Set Sigma Immediately

Synopsis: void setSigmaImm(5^ma)
Parameters: double sigma;

Description:

This function sets the robot's sigma which control the sharpness of its

trajectory when the robot is turning.

• Set Total Distance Traveled Immediately

Synopsis: void setTotalDistanceImm(cfo\s£ance)

Parameters: double distance;

Description:

This function sets the total distance travelled by the robot to the value

passed as a parameter.

• Get Total Distance Traveled Immediately

Synopsis: void getTotalDistancelmmQ
Description:

This function returns the total distance travelled by the robot.

• Stop Immediately

Synopsis: void stopImm()
Description:

This function stops the robot immediately with the current acceleration

rate until the speed reaches 0.

195

• Logging Motion Data

Synopsis: void Motionlog(Filename, Frequency, BufferSize)

Parameters: char Filename;

int Frequency;

int BufferSize;

Description:

This function prepares the tracing system to log motion data. Tracing is

automatically turned on after this function is called. The Filename speci-

fies a file name that will be used to store data when the data is uploaded to

the host. Frequency specifies how many motion cycles are skipped before

data is logged.

5. Sonar Control Functions

• Enable Sonar

Synopsis: void EnableSonar(5onar./Vum6er)

Parameters: int SonarNumber;
Description:

This function enables sonar with SonarNumber. More precisely, it enables

the sonar group that contains SonarNumber, which causes all the sonars

in that group to echo-range and write data to the data registers on the

sonar control board.

• Disable Sonar

Synopsis: void DisableSonar(5onar7Vum6er)

Parameters: int SonarNumber;

Description:

This function removes SonarNumber from the enabled_sonars list. If

SonarNumber is the only enabled sonar from it's group, then the group is

disabled as well and will stop echo ranging. This has benefit of shortening

the ping interval for other groups that remain enabled.

• Get Sonar Returns

Synopsis: double Son&r(SonarNumber)
Parameters: int SonarNumber;
Description:

This function returns the distance (cm) sensed by SonarNumber ultrasonic

sensor. If no echo is received, an INFINITY (999999.0) is returned. If the

distance is less than 10 cm, then a is returned.

196

• Calculate Global

Synopsis: void CalculateGlobal(Sonar./Vum&er)

Parameters: int SonarNumber;

Description:

This function calculates the global x and y coordinates for the range value

and robot configuration in the sonar table. The results are stored in the

sonar table.

• Enable Linear Fitting

Synopsis: void EnableLinearFitting(5onar./Vura&er)

Parameters: int SonarNumber;
Description:

This function causes the background system to gather data points from

SonarNumber and form them into line segments.

• Disable Linear Fitting

Synopsis: void DisableLinearFitting(Sonar7Vum&er)

Parameters: int SonarNumber;
Description:

This function causes sonar system to cease forming line segments.

• Logging Sonar Data

Synopsis: void SonarLog(Freq, BSize, SonarNumber, LogType)

Parameters: int Freq;

int BSize;

int SonarNumber;
int LogType;

Description:

This function prepares the tracing system to log sonar data. The tracing

Freq specifies how many sonar cycles are skipped before data is logged. A
value of 1 or less causes the logging to occur each cycle. The BSize specifies

how many bytes of storage to allocate to save the data. If a value of is

specified, a default size is used. The SonarNumber specifies the sonar you

wish to log. The LogType specifies the type of logging performed. There

are three types.

- SONAR_RAW logs only new sonar data.

- SONAR_GLOBAL logs global sonar data.

- SONAR_SEGMENT logs segment data.

- SONAR_ALL logs all three types of data.

197

Tracing is automatically turned on after this call. The filenames created

on the host will be depend on the type of logging performed and the sonar

number. For example, if logging were initiated using:

SonarLog(0, 0, 3, SONAR_SEGMENT)

then the filenemes SEGMENT.3 will be created on the host.

6. Self Localization Functions

• Wait Segment

Synopsis: void WaitSegment(5onarNumber)
Parameters: int SonarNumber;

Description:

This function is busy waiting until the line segment being built is com-

pleted.

• Get Segment Configuration

Synopsis: CONFIGURATION GetSegmentConfig()
Description:

This function returns the observed configuration of the object after applied

the linear fitting algorithm.

• Match

Synopsis: int Match(qsegment
,
qmodel)

Parameters: CONFIGURATION qsegment;

CONFIGURATION qmodel;

Description:

This function compares between observed segment qsegment and model

wall segment qmodel.

• Odometry Correction

Synopsis: void CorrectOdometryError^se^meni, qmodel)

Parameters: CONFIGURATION qsegment;

CONFIGURATION qmodel;

Description:

This function corrects the vehicle's odometry error if there is a difference

between where the vehicle thinks it is and where the vehicle really is.

198

X. CONCLUSIONS

This dissertation addressed new motion planning and real time localization

methods using proximity under the structure of a layered planning approach. This

approach divides the planning task into global path planning and local motion plan-

ning. Three major contributions to the field of robotics were made from the reseach

conducted in this dissertation. The first is the development of the theory of homotopic

decompositions which solves the problem of homotopic class representation using a

Voronoi diagram. A homotopic decomposition captures the topology of the world in

terms of homotopy classes. A global path planner was able to deliver a plan repre-

senting a distinct homotopy class making it available for the local motion planning,

which is responsible for executing the global path plan. Second, the safe local motion

planning algorithm is the first steering function algorithm to provide a theoritical

and a practical solution to safe motion planning problem, a great step in promoting

motion planning in the real world. The effectiveness of the method of using the left

and right polygons was confirmed. The problem making a smooth motion when the

vehicle gets close to an intersection of two distinct boundaries was solved. A striking

advantage of this method is that this is effective in more dynamic environments. This

method may be useful even in unknown worlds as well, because the images on the

polygons can be taken by sensors instead of through information extraction from the

model. Third, a transparent method of robust real-time positional-uncertainty elim-

ination (self localization) was described. The problem of gradual error accumulation

when the robot moves long distances was solved. This method is a simple application

of group theory that requires very little computational overhead.

Another contribution was The description of a geometrical algorithm for find-

ing images in real-time for safe motion planning.

The algorithms targeted for Yamabico-11 were first developed on a simulator

then successfully transported to the real robot.

199

200

XI. FUTURE RESEARCH

This chapter presents a few topics for future research in the several areas

related to the topics covered herein.

Configuration-to-configuration motion planning is a most difficult planning

problem. It must be addressed in final parking maneuvers. There is clearly a need to

solve the final motion planning problem [47, 9].

The path planner uses the geometrical constraints of the environment and

kinematic and dynamic constraints of the robot to provide the global reference path

plan. This layer optimizes the cost function of the mission using the known part of

the environment. In a partially-known static environment, this optimal path will be

achieved only if there is no interaction of the robot with the unknown portion of the

environment, a highly unlikely event. Nonetheless, the global path will serve to guide

the actions of the local planner when faced with unforeseen obstacles. However, a well

defined theory exactly describing how to avoid the previously unknown but recently

detected obstacle still requires much work [40, 6, 1,5, 7, 8, 62].

It is impossible to absolutely guarantee collision avoidance in a dynamic envi-

ronment. Moreover, it is almost pointless to specify optimal trajectories in a dynamic

environment, since the data become obsolete with time. As the information becomes

older, it becomes less reliable. Systems which build detailed reconstructions of the

environment from sensor data suffer from delays due to information processing times.

Therefore, the representation of the known and recently discovered environment fea-

tures must be made efficiently available to modules that have short reaction time

requirements. The representation is vital in integrating higher-level plan objectives

with local behavior decision processes and in minimizing the loss of information when

unforeseen obstacles arise. There seems to be no single algorithm to handle all pos-

sible cases in a dynamic environment. Consequently, the use of multiple algorithms,

multiple sensors, and multiple responses seems to provide the most likely chance of

201

successfully achieving a goal. Future research is needed to determine what informa-

tion is relevant to achieve a goal and what details of the information are necessary

to utilize sensors and actuators effectively? In a dynamic environment, path plans

should serve as an aid to the selection of appropriate motion, rather than constraints

upon that selection in many of the cases [21].

The large repertoire of behaviors and strategies used by the local motion plan-

ner may require a variety of sensing capabilities. A vision processing system would

also aid in obstacle avoidance maneuvers at a distance beyond the current range of

the ultrasonic sensors.

202

APPENDIX A. NORMALIZING ANGLES

Generally, testing whether an angle between two directions is positive or neg-

ative gives us an idea on the relation between the two directions. However, in some

situations, a simple subtraction operation does not work. For example, if 0j = ^ and

$2 = -f
2
-, the angle a between them becomes

3tt 3tt 3tt
a = do — 0i = =

4 4 2

However, this angle is naturally considered as a | left turn rather than a 4? right

turn. To handle this situation, we use the normalization function $: 71 —* [— 7T,7r].

For instance,

and

4>(7r) = $(-7r) = 7T

Definition: The normalization function $ is formally defined by the following condi-

tions:

1. For any angle a € 7£,

2. For any angle a £ 1Z,

— 7T < $(a) < 7T

a = $(a) mod 2n

The normalization function 4>: 7£ —* [— ic, n] can be defined using a recursive definition:

$(a) = <

<J>(a — 27r) if a > 7t

$(a + 27r) if a < -7r

a otherwise

203

204

APPENDIX B. LEAST SQUARES LINEAR
FITTING

Let

R= {pi,---,Pn} - { (an, y\),..., {Xn,yn)}

be a set of n points, We obtain the moments rrijk of R with < j, k < 2; j
: + k < 2.

n

1=1

Notice that mQ0 = n. The centroid C is given by

/m 10 m i\
C = I , 1 = (/ix ,^y)Vm o m00 /

The secondary moments around the centroid are given by

n m?o

n

m00

m 10m iMn = y^(a:,- - fix){yi ~ Vy) = rnu -
i~\ moo

Af02 = 2(y,- ~ fiy)
2 = rnQ2 -

m01

,=1 moo

We adopt the parametric representation of a line with constants r and a. If a point

p = (x,y) satisfies an equation

a: cos a + y sin a = r, (B.l)

then the point p is on a line L whose normal has an orientation a and whose distance

from the origin is r (Figure 147). This representation has a striking advantage as

opposed to the usual method of using a formula y = f(x), because the former method

has no difficulty in expressing lines that are perpendicular to the X axis. Note that

two axes X and Y are symmetric in the plane. The signed distance (or residual) <!>,

from point p, = (a:;, yi) to the line L = (r,a) is

Si = Xi cos a + yx
sin a — r. (B.2)

205

X

Figure 147. Fitted line

Therefore, the sum of the squares of all the residuals is

n

S = ^((licosa + yis'ma) — r)

i=i

Since the line which best fits the set of points is supposed to minimize 5", the optimum

line (r, a) must satisfy

dS _ dS

dr da
=

Thus,

dS

dr

n

= —2y^((x, cos a -f yi sin a) — r)

t=i

= 2
(
r \J2 l

)
~ (S**) cosa ~ \52 yi

)

sina

= 2(r m o — "^io c°s oc — rnoi sin a) =

and

m 10 m i

r = cos a -\ sin a = fix cos a + [j,y sin a
moo Woo

(B.3)

where r may be negative. Substituting r in Eq. B.l by Eq. B.3, we obtain

— = 2^((x
t
- px) cos a + {yi- iiy

)sm a) y-{x t
-

fix) sina + {y t - fiy) cos a)
t=i

206

71

~ 2]l((^' - Vy)
2 - (

x«
- Vx)

2

)
sin a cos a

n

+ 2 Yl(x i
~ /0(*/« - fiy){cos

2 a - sin
2
a)

t=i

= {M02 - M2o) sin 2a + 2Mn cos 2a =

Therefore

2a = atan2(-2M„, M02 - M20) (B.4)

Note that, by Eq. B.4, 2a G [— 7r,7r], and then a € [— 7r/2, 7r/2]. Eqs. B.3 and B.4 are

the solutions to the least squares problem.

Now, we do some pre-filterring of the data in order to remove points from the

data stream which are clearly not colinear with the existing points of set R. When a

new input p = (z, y) is given to this algorithm, we can compute how far it is located

from the previously obtained line L (Eq. B.2). The distance is

6 = x cos a -f y sin a — r.

If |^| is greater than a given threshold value, we finish the line-fitting task to complete

the line segment and to start a new segment with this last point.

Since the residual £, of a point pi = (x t , yt) is

Si = Xi cos a + y, sin a — r,

the projection, p\ of the point pi onto the major axis is

p\ = (xi — 6, cos a, y, — Si sin a).

We will use p\ and p'
n as estimates of the endpoints of the line segment L obtained

from the set of data points R (Figure 148).

207

Figure 148. End points

208

APPENDIX C. USER PROGRAM EXAMPLES

Function : user()

Purpose : For Model Based Motion Planning Demo.

Parameters: void

Returns : void

Comments : Aug. 20, 1996 Mahmoud Wahdan

include "user.h"

#define FREQUENCY 50

void userlO
void user2()

void user3()

void user4()

void user()

{

int selection;

printf("\n Enter 1 for racetrack without localization correction.");

printf("\n Enter 2 for racetrack with localization correction");

printf("\12 Enter 3 for POLYGON TRACKING");

printf("\12 Enter 4 for LOCAL MOTION");

printf("\n\n The choice is: ");

selection = GetlntO;

switch (selection)

{

case 1

:

userlO ;

break;

case 2

:

user2()

;

break;

case 3:

user3()

;

209

break;

case 4:

user4()

;

break;

default

:

break;

}

}

Function : userl()

Purpose : racetrack without localization correction

Parameters: void

Returns : void

Comments : Aug. 20, 1996 Mahmoud Wahdan

void userl()

{

CONFIGURATION start;

CONFIGURATION reference.path;

CONFIGURATION deltal, delta2, delta3;

int laps;

int lap.count = 0;

start = defineConfig(77.0, 512.0, HPI, 0.0);

deltal = defineConfig(225.0, 0.0, 0.0, 0.0);

delta2 = def ineConf ig(-325.0, -100.0, -PI, 0.0);

delta3 = def ineConf ig(-100.0, -100.0, -PI, 0.0);

reference.path = start

;

setLinVelImm(35.0)

;

setSigmaImm(30.0)

;

setRobotConf iglmm(start)

;

printf("\n Enter desired number of laps. ")

;

laps=GetInt()

;

210

while (lap.count < laps)

{

reference_path = compose (&reference_path, ftdeltal)

;

nbline(reference.path)

;

reference_path = compose (&reference_path, &delta2)

;

nbline(reference.path)

;

reference.path = compose (&reference_path, &delta3)

;

if (lap_count == (laps-1))

bline(reference_path)

;

else

nbline(reference.path)

;

++lap_count

;

}

Function : user2()

Purpose : racetrack with localization correction

Parameters: void

Returns : void

Comments : Aug. 20, 1996 Mahmoud Wahdan
^*t ******************************* **************/

void user2()

{

CONFIGURATION start;

CONFIGURATION reference.path;

CONFIGURATION deltal , delta2, delta3;

CONFIGURATION qsegment

;

CONFIGURATION qmodel;

int laps;

int lap_count = 0;

int match.seg;

211

start = defineConfig(77.0, 512.0, HPI, 0.0);

deltal = def ineConf ig(225.0, 0.0, 0.0, 0.0);

delta2 = def ineConf ig(-325.0, -100.0, -PI, 0.0);

delta3 = def ineConf ig(-100.0, -100.0, -PI, 0.0);

qmodel = def ineConf ig(0.0, 612.14, -HPI, 0.0);

setLinVelImm(30.0)

;

setSigmaImm(30 . 0)

;

reference_path = start;

setRobotConf iglmm(start)

;

Mot ionLog (NULL, FREQUENCY, 0)

;

EnableSonar(S270)

;

EnableLinearFitting(S270)

;

printf("\n Enter desired number of laps. ")

;

laps=GetInt()

;

while (lap.count < laps)

{

reference_path - compose (&reference_path, ftdeltal)

;

nbline(reference_path)

;

while(l)

WaitSegment (S270)

;

qsegment = GetSegmentConfigO

;

match_seg Match (qsegment , qmodel);

printf("\n match.seq = */,d", match_seg) ;

if (match_seg == -1)

break;

printf("\n qmodel .Posit .X = 7,f ", qmodel .Posit .X)

printf("\n qmodel .Posit .Y = */,f ", qmodel .Posit .Y)

printf ("\n qmodel. Thet a = '/,f " , qmodel .Theta*RAD)

printf("\n qsegment .Posit .X = */,f" .qsegment .Posit .X)

;

212

printf("\n qsegment .Posit .Y = '/.f" , qsegment .Posit .Y)

;

printf("\n qsegment .Thet a = */,f ", qsegment .Theta*RAD)

;

CorrectOdometryError (qsegment
, qmodel)

;

reference_path = compose (&reference_path, &delta2)

;

nbline(reference_path)

;

reference.path = compose (&reference_path, &delta3)

;

if(lap_count == (laps-1))

bline(reference_path)

;

else

nbline(reference.path)

;

++lap_count

;

}

waitMotionEndO
;

DisableLinearFitting(S270)

;

}

J**

Function : user3()

Purpose : polygon tracking

Parameters: void

Returns : void

Comments : Aug. 20, 1996 Mahmoud Wahdan
^**** ************************************* ******/

void user3()

{

double sigma, speed, clearance ;

CONFIGURATION q;

createPolyModelO ;

213

printf ("\nlnput desired speed: ");

speed = GetRealO;
setLinVellmm(speed)

;

printf ("\nlnput desired clearance: ")
;

clearance = GetRealO;
setClearancelmm (clearance)

;

printf ("\nlnput desired smoothness: ")

;

sigma = GetRealO;
setSigmalmm(sigma)

;

Mot ionLog (NULL, Frequency, 0)

;

q = defineConf ig(90.0, 450.0, -HPI, 0.0);

setRobotConf iglmm(q)

;

polygonTrackingO ;

}

Function : user4()

Purpose : For Polygon Tracking motion

Parameters: void

Returns : void

Comments : Aug. 20, 1996 Mahmoud Wahdan

void user4()

{

double sigma, speed, clearance
;

CONFIGURATION q;

PATH.ELEMENT path;

createPolyModel()
;

printf ("\nlnput desired speed: ")

;

speed = GetRealO;
setLinVellmm(speed)

;

214

printf ("\nlnput desired clearance: ")
;

clearance = GetRealO;
setClearancelmm (clearance)

;

printf ("\nlnput desired smoothness: ")

;

sigma = GetRealO;
setSigmalmm(sigma)

;

Mot ionLog (NULL, FREQUENCY, 0);

q = defineConfig(90.0, 450.0, -HPI , 0.0);

setRobotConf iglmm(q)

;

motionTrackingO
;

}

215

216

LIST OF REFERENCES

R. C. Arkin. The impact of cybernetics on the design of a mobile robot system: A
case study. IEEE Transactions on System, Man, and Cybernetics, 20:1245-1257,

1990.

J. Barraquand and J. C. Latombe. On non-holonomic mobile robots and optimal

maneuvering. Proc. of the ^ih IEEE International Symposition on Intelligent

Control, Albany, NY, 1989.

J. Barraquand and J. C. Latombe. Robot motion planning: A distributed rep-

resentation approach. Internat. J. Robot. Res., 10:2628-649, 1991.

4] N. Bloch. Abstract Algebra with Applications. Prentice Hall, 1987.

51 R. A. Brooks. A robust layered control system for a mobile robot. IEEE Journal

of Robotics and Automation, Vol. RA-2 N 1, 1986.

C. E. Buckley. The application of continuum methods to path planning. Ph.D.

Dissertation, Stanford University, CA, August 1985.

J. Budenske and M. Gina. Achieving goals through interaction with sensors and

actuators. Proceedings of the IEEE International Conference on Robotics and

Automation, pages 903-908, 1992.

J. Budenske and M. Gina. Why is it so difficult for a robot to pass through

a doorway. Proceedings of the IEEE International Conference on Robotics and

Automation, pages 3124-3129, 1994.

C. L. Chuang. Layered safe motion planning for autonomous vehicles. Ph.D.

Dissertation, Naval Postgraduate School, Monterey, California, September 1995.

10] J. Connell. Sss: A hybrid architecture applied to robot navigation. Proc. IEEE
Conf. Robotics and Automation, pages 2719-2725, 1992.

11] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms.

The MIT Press, 1990.

12] I. Cox. Blanche - an experiment in guidance and navigation of an autonomous

robot vehicle. IEEE Transactions on Robotics and Automation, 7:193-204, 1991.

13] F. H. Croom. Basic Concepts of Algebraic Topology. Springer-Verlag, 1978.

14] J. L. Crowley. World modeling and position estimation for a mobile robot using

ultrasonic ranging. Proc. of IEEE International Conf. on Robotics and Automa-

tion, Scottsdale, Arizona, pages 674-680, May 1989.

217

15] F. Dierks. Freie Navigation Autonomer Fahrzeuge, In: P. Levi, T. Briiunl, eds.,

Autonome Mobile Systeme 1994- Springer- Verlag, Berlin, 1994.

161 M. Drumheller. Mobile robot localization using sonar. Tech. Report A. I.Memo
826, MIT, A I Laboratory, Cambridge, MA, 1985.

171 R- Hollier (ed.). Automated Guided Vehicle Systems. Springer-Verlag, Berlin,

1987.

181 A. Elfes. Sonar-based real-world mapping and navigation. IEEE Journal of

Robotics and Automation, RA-3(3), pages 674-680, 1987.

191 J- Evans, B. Krishnamurthy, B. Barrows, and T. Skewis. Handling real-world

motion planning: A hospital transport robot. IEEE Control Systems Magazine,

12:15-20, 1992.

20] H. Everett and E. Stitz. Survey of Collision Avoidance and Ranging Sensors

for Mobile Robots. Naval Command, Control and Ocean Surveillance Center,

Technicle Note 1194, Update 1, December 1992.

211 R. J- Firby. Adaptive execution in complex dynamic worlds. Ph.D. Dissertation,

Yala University, CT, May 1989.

22l C. Floyd, Y. Kanayama, and C. Magrino. Underwater obstacle recognition using

a low-resolution sonar. Proc. Seventh International Symposium on Unmanned
Untethered Submersible Technology, September 1991.

23] T. Fraichard and C. Laugier. Path-velocity decomposition revisited and applied

to dynamics trajectory planning. IEEE int. Conf. on Robotics and Automation,

pages 40-45, 1993.

24] J. B. Fraleigh. A First Course in Abtract Algebra. Addison-Wesley Pub., 1993.

25] T. W. Gamelin and R. E. Greene. Introduction to Topology. Saunders College

Pub., 1983.

261 B. Gray. Homotopy Theory: An Introduction to Algebraic Topology. The Aca-

demic Press, 1975.

27] V. Guillemin and A. Pollack. Differential Topology. Prentic Hall, 1974.

28] I. Guttman and S. S. Wilkes. Introduction to Engineering Statistics. John Wiley

x Sons, Inc., New York, 1965.

[29] A. Holenstein, M. Muller, and E. Badreddin. Mobile robot localization in struc-

tured environment cluttered with obstacles. IEEE Conf. of Robotics and Au-

tomation, pages 2576-2582, May 1992.

218

[30] J. Horn and G. Schmidt. Continuous localization for long-range indoor navigation

of mobile robots. IEEE International Conf. On Robotics and Automation, pages

387-394, 1995.

[31

[32

[33

[34

[35

[36

[37

[38

[39

[40

[41

[42

[43

C. Hsiung. A First Course in Differential Geometry. John Wiley and Sons, 1981.

Y. K. Hwang and N. Ahuja. Gross motion planning - a survey. ACM Computing

Surveys, Surv., 24(3), pages 3219-291, 1992.

Y. K. Hwang, P. C. Chen, A. A. Maciejewski, and D. D. Neidigk. A global motion

planner for curve-tracing robots. IEEE int. Conf. on Robotics and Automation,

pages 2-7, 1994.

Inc. Ironies. IV-SPARC-25A/33A VMEbus Single Board Super Computer and

Multiprocessing Engine— User's Manual. Ironies, Inc., New York, 1992.

Y. Kanayama. Two dimensional wheeled vehicle kinematics. IEEE Int. Conf
on Robotics and Automation, in San Diego, California, pages 3079-3084, May
1994.

Y. Kanayama. Introduction to theoretical robotics. Lecture Notes of the Ad-

vanced Robotics Course, Department of Computer Science, Naval Postgraduate

School, 1996.

Y. Kanayama and B. I. Hartman. Smooth local path planning for autonomous

vehicles. IEEE int. Conf. on Robotics and Automation, pages 1265-1270, 1989.

Y. Kanayama, K. Kimura, F. Miyazaki, and T. Noguchi. A stable tracking

control method for an autonomous mobile robot. IEEE int. Conf. on Robotics

and Automation, pages 1315-1317, 1988.

Y. Kanayama, D. L. MacPherson, and G. W. Krahn. Two dimensional trans-

formations and its application to vehicle motion control and analysis. Proc.

of International Conf. on Robotics and Automation, in Atlanta, Georgia, pages

13-18, May 1993.

Y. Kanayama and T. Noguchi. Spatial learning by an autonomous mobile robot

with ultrasonic sensors. University of California Santa Barbara Dept. of Comp.

Sci. Technical Report TRCS89-06, February 1989.

Y. Kanayama and M. Onishi. Locomotion functions for a mobile robot language,

mml. IEEE int. Conf. on Robotics and Automation, pages 1110-1115, 1991.

0. Khatib. Teal-time obstacle avoidance for manipulators and mobile robots.

International Journal of Robotics Research, 5:90-98, September 1986.

J. R. Kirkwood. An Introduction to Analysis. PWS-KENT Pub. Company, 1989.

219

[44] R. Klein. Concrete and Abstract Voronoi Diagrams, Lecture Notes in Computer

Science. Springer-Verlag, 1987.

[45] T. M. Knasel. Mobile robotics - state of the art review. International Journal

of Robotics Research, 1, 1986.

[46] A. Kosaka and A. Kak. Fast vision-guided mobile robot navigation using model-

based reasoning and prediction of uncertainties. Proc. 1992 IEEE/RSJ Int. Conf.

on Intelligent Robots and Systems, Raleigh, North Carolina, pages 2177-2186,

1992.

[47] J. G. Kovalchik. Layered Motion Planning for Autonomous Mobile Robots using

Free Space Decomposition and Steering Functions. Ph.D. Dissertation, Naval

Postgraduate School, Monterey, California, 1995.

[48] D. J. Kriegman, E. Triendl, and T.O. Binford. Stereo vision and navigation

in building for mobile robots. IEEE Trans, on Robotics and Automation, 5(6),

December 1989.

[49] J. C. Latombe. Robot Motion Planning. Kluwer Academic Publishers, 1991.

[50] L. Laumond. Feasible trajectory for mobile robots with kinematic and environ-

ment constraints. Proc. of the International Conf. on Intelligent Autonomous

Systems, Amsterdam, The Netherlands, pages 346-354, 1986.

[51] J. Leonard and H. Durrant-Whyte. Mobile robot localization by tracking ge-

ometric beacons. IEEE Transactions on Robotics and Automation, 7:376-382,

1991.

[52] J. T. Lochner. Analysis and Improvement of an Ultrasonic Sonar System on an

Autonomous Mobile Robot. Master Thesis, Naval Postgraduate School, Monterey,

California, 1994.

[53] T. Lozano- Perez. Spatial planning: A configuration space approach. IEEE
Transaction on Computers, 32:108-119, 1983.

[54] T. Lozano- Perez and M. A. Wesley. An algorithm for planning collision-free

paths among polyhedral obstacles. Comm. ACM, 22:165-175, 1979.

[55] D. L. Macpherson. Automated Cartography by an Autonomous Mobile Robot

using Ultrasonic Range Finders. Ph.D. Dissertation, Naval Postgraduate School,

Monterey, California, 1993.

[56] L. Matthies and S. A. Shafer. Error modeling in stereo navigation. IEEE Journal

of Robotics and Automation, RA-3(3), pages 239-1.548, 1987.

220

[57] H. M. Moravec. Obstacle Avoidance and Navigation in the Real World by a

Seeing Robot Rover. Stanford AI Lab Memo AIM-340, 1980.

[58] R. P. Paul. Robot Manipulators: Mathematics, Programming, and Control. The
MIT Press, 1984.

[59] F. P. Preparata and M. I. Shamos. Computational Geometry: An Introduction.

Springer- Verlag, 1985.

[60] K. A. Ross. Elementary Analysis: The Theory of Calculus. Springer-Verlag,

1980.

[61] S. R. Sherfey. A Mobile Robot Sonar System. Master Thesis, Naval Postgraduate

School, Monterey, California, 1991.

[62] T. Skewis and V. Lumelsky. Experiments with a mobile robot operating in a clut-

tered unknown environment. Proceedings of the IEEE International Conference

on Robotics and Automation, pages 1482-1482, May 1992.

[63] M. Spivak. A Comprehensive Introduction to Differential Geometry, Vol 1 and

2. Publish or Perish, Inc., Berkeley, CA, 1979.

[64] S. H. Suh and K. G. Shin. A variational dynamic programming approach to

robot-path planning with a distance-safety criterion. IEEE Journal of Robotics

and Automation, 4:334-349, 1988.

[65] F. Vacherand. Fast local path planner in certainty grid. IEEE int. Conf on

Robotics and Automation, pages 2132-2137, 1994.

[66] Y. Watanabe and S. Yuta. Position estimation of mobile robots with internal and

external sensors using uncertainty evolution technique. Proc. of IEEE Interna-

tional Conf. on Robotics and Automation, Scottsdale, Arizona, pages 2011-2016,

May 1990.

[67] D. Zwillinger. Standard Mathematical Tables and Formulae. CRC Press, 1996.

221

222

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center

8725 John J. Kingman Road., Ste 0922

Ft. Belvoir, VA 22060-6218

2. Dudley Knox Library

Naval Postgraduate School

411 Dyer Rd.

Monterey, CA 93943-5101

3. Chairman, Code CS
Department of Computer Science

Naval Postgraduate School

Monterey, CA 93943-5101

4. Professor Yutaka Kanayama, Code CS/Ka
Department of Computer Science

Naval Postgraduate School

Monterey, CA 93943-5101

5. Professor C. Thomas Wu, Code CS/Wq
Department of Computer Science

Naval Postgraduate School

Monterey, CA 93943-5101

6. Professor Cynthia Irvine, Code CS/Ir

Department of Computer Science

Naval Postgraduate School

Monterey, CA 93943-5101

7. Professor Craig Rasmussen, Code MA/Ra
Department of Mathematics

Naval Postgraduate School

Monterey, CA 93943-5101

8. Professor Fariba Fahroo, Code MA/Ff
Department of Mathematics

Naval Postgraduate School

Monterey, CA 93943-5101

223

9. Professor Xiaoping Yun, Code ECE/Yu
Department of Electrical and Computer Engineering

Naval Postgraduate School

Monterey, CA 93943-5101

10. Professor Chirs Frenzen, Code MA/Fr
Department of Mathematics

Naval Postgraduate School

Monterey, CA 93943-5101

11. Professor Harold Fredricksen, Code MA/Fs
Department of Mathematics

Naval Postgraduate School

Monterey, CA 93943-5101

12. LTC. Nabil Khalil, Code ECE/Ph
Department of Electrical and Computer Engineering

Naval Postgraduate School

Monterey, CA 93943-5101

13. Maj. Khaled Morsy, Code CS/Ph
Department of Computer Science

Naval Postgraduate School

Monterey, CA 93943-5101

14. Maj. Ashraf Mamdouh, Code ECE/Ph
Department of Electrical and Computer Engineering

Naval Postgraduate School

Monterey, CA 93943-5101

15. Egyptian Military Attache

2308 Tracy Place NW
Washington, DC 20008

16. Egyptian Armament Authority - Training Department

c/o American Embassy (Cairo, Egypt)

Office of Military Cooperation

Box 29 (TNG)
FPO, NY 09527-0051

17. Military Technical College (Egypt)

c/o American Embassy (Cairo, Egypt)

Office of Military Cooperation

Box 29 (TNG)
FPO, NY 09527-0051

224

18. Military Research Center (Egypt)

c/o American Embassy (Cairo, Egypt)

Office of Military Cooperation

Box 29 (TNG)
FPO, NY 09527-0051

19. COL. Mahmoud Wahdan (Egypt)

5 El-Shrif Street//Roxy Cario//Egypt

225

DUDLEY KNOX LIBRARY

NAVAL POSTGRADUATE SCHOOL

MONTEREY CA 93943-5101

DUDLEY KNOX LIBRARY

3 2768 00327036 4

