
Calhoun: The NPS Institutional Archive
DSpace Repository

Faculty and Researchers Faculty and Researchers' Publications

2012-10-10

Formal methods for architecture model
assessment in systems engineering

Giammarco, Kristin.

https://hdl.handle.net/10945/14783

Downloaded from NPS Archive: Calhoun

8th Conference on Systems Engineering Research
March 17-19, 2010, Hoboken, NJ

Paper #1569270961

Formal Methods for Architecture Model Assessment in
Systems Engineering

Kristin Giammarco
Naval Postgraduate School

Department of Systems Engineering
Monterey, CA

Abstract

In both the public and private sectors,
systems engineering analysis studies are used
to inform a range of decisions, from selecting
among low level design alternatives to
conducting high level portfolio management.
These studies are conducted to help various
stakeholders make and justify decisions that
have a lasting effect on a system throughout
its lifecycle. The quality of the data used in
these analyses can have a strong influence on
the outcome of these decisions. The research
described in this paper investigates the
application of formal methods to architecture
model quality assessment. These methods can
be used to create sets of measures and criteria
relevant in the systems engineering problem
domain that can be tailored for different
events, analytics, and decision points. Using
formal methods, stakeholders can decompose
and express architecture data quality
expectations unambiguously, and in a way that
is abstract and independent of tool.

Introduction

This paper summarizes the research
conducted by NPS and CERDEC S&TCD in
an operationally relevant venue provided by
Command, Control, Communications,
Computers, Intelligence, Surveillance,
Reconnaissance (C4ISR) On The Move
(OTM) to mathematically express

architectural elements, relationships, and some
rules that can be used to develop customizable
sets of criteria for some hard-to-quantify terms
often used to characterize architecture models,
such as “integrated” and “complete”. In the
field of software engineering, formal methods
are extensively used to quantify such terms as
they apply in the software domain (e.g.
Darnton 2007). The use of formal methods is
less ubiquitously found in systems engineering
practices, especially in lifecycle phases that
precede system specification and design,
where interpretations of the terms can
especially vary widely among stakeholders.
The scope of this paper focuses on the
application of formal methods for defining
and assessing architecture model quality
characteristics using example terms found in
the systems engineering domain1

Problem and Need Statement

. A formal
model-based systems engineering method is
applied using the Vitech CORE systems
engineering tool schema (Vitech 2004) as an
experimental reference and tool. The paper
concludes with a summary of the concepts and
next steps to be taken in future work.

Needs for short term systems engineering
analysis studies often emerge quickly with
little time to gather and integrate the needed

1 Note that there is a distinction between assessing the
quality of a system design, and assessing the quality of
the data used to model that system. This research
focuses on the latter.

CSER 2010

522

data to produce recommendations for senior
leadership that have an empirical foundation.
Analysis results and corresponding
recommendations are only as credible as the
source data that was used to generate them.
Knowing this, expert analysts often spend
more time on the chore of gathering and
organizing source data than conducting the
analysis itself. The problem is compounded
by the short turnaround times required for
recommendations, often resulting in the
collection and tailoring of data in a way that is
optimized for answering the burning analysis
questions of the day, and the sacrifice of the
data’s suitability for reuse in future studies
with differing scopes. In many cases, the
quality of the data is not known until problems
emerge after the effort is complete. Such
cases pose the risk of erroneous
recommendations due to faulty underlying
data. Acquisition Programs of Record (PoR),
Advanced Technology Objectives (ATOs),
and other longer term programs have more
time and resources to deal with data quality
issues, but these larger organizations still
continue to lack sufficient formalism needed
to empirically assess their vast quantities of
data for quality and suitability for use in
various types of analyses. Whether a project
is a 90-day study or a multi-year PoR, reams
of data are often produced, used, and
discarded after it has served its immediate
purpose or when they have otherwise become
obsolete.

A capability is needed to enable the
assessment of architectural models for quality
and suitability for use (and reuse) in various
types of analyses.

Definition of Architecture

An architecture is defined by the DoD
Architecture Framework v1.5 as “the structure
of components, their relationships, and the
principles and guidelines governing their
design and evolution over time” (DoDAF v1.5
2007). An architecture model is typically

developed to ensure that the concerns of
stakeholders are addressed by the system(s)
under development. For systems that are
deployed without going through a formal
acquisition process, the architecture is often
retrospectively documented to enable a better
understanding of the system and its
relationships to other systems, and how to co-
evolve them. The research herein applies to
both types of architecture models.

An integrated architecture is defined as
“An architecture consisting of multiple views
or perspectives (operational view, systems
view, and technical standards view) that
facilitates integration and promotes
interoperability across capabilities and among
related integrated architectures” (CJCSI
3170.01G 2009 and DoDI 4630.8 2004).
DoDAF 2.0 elaborates on this definition,
defining “integrated” to mean that “data
required in more than one instance in
architectural views is commonly understood
across those views” (DoDAF v2.0 2008). One
intended application for this research is the
formal specification of terms like “integrated”
to remove ambiguity from a natural language
definition such as that given above, so that
architecture assessment activities have a
scientific, objective, and tool-agnostic
specification to use.

An architecture framework “establishes
terms and concepts pertaining to the content
and use of architectural descriptions” [IEEE
1471, 2007]. Architecture frameworks are
employed to create, communicate consistent
architecture descriptions. Some examples of
frameworks are the Zachman Framework, US
Department of Defense (DoD) Architecture
Framework (DODAF), Ministry of Defence
Architecture Framework (MODAF), and the
Software Engineering Institute (SEI) Views
and Beyond Framework. All frameworks
embrace the concepts of having views,
viewpoints, and stakeholders. All frameworks
also have the notion of striving for consistency

523

between the views. The research described in
this report is independent of framework.

Quality Attributes of Architecture
Models

Independent of tool, framework or format,
architecture models have certain quality
aspects associated with them. Table 1
illustrates some characteristics of data in
general that can be applied to data present in
architecture models. These characteristics are
important factors in determining the suitability
of data for use in analysis and decision
support. One might assess architecture data
against such suitability characteristics, for
example, to determine the suitability of the
data’s ability to support an analysis of a given
scope, or to provide an indication of the
confidence level that stakeholders should have
in a data set upon which recommendations and
decisions will be based.

The DoDAF includes “completeness”,
“consistency”, and other qualitative
characteristics as desirable attributes of an
architecture model, presenting them as
principles but providing no specific criteria
that can be used as a checklist of sorts to
determine whether in fact an architecture
model meets the expectations for these
attributes (DoDAF v1.5 2007). Qualities such
as those in Table 1 are often expressed as
desired system characteristics, and techniques
are available for associating them with
quantitative parameters when designing a
system. For example, Quality Function
Deployment (QFD) (Maier 1995, Verma et al.
1995 and Verma et al. 1998) is a technique
that maps qualitative stakeholder requirements
(e.g. flexibility) to quantitative design
dependent parameters (DDPs) (e.g. number of
different I/O port types). The system design is
assessed for the qualitative requirements by
measuring the values of the associated
quantitative parameters. As DDPs are used in
QFD to guide system design, measurable

expressions can likewise be used to quantify
ambiguous stakeholder requirements for
architecture model elements, attributes, and
relationships. More specifically, a set of
quantitative logical assertions can be
associated with each qualitative characteristic,
to formally define (perhaps as a computable
metric) what exactly is meant by each of these
natural language terms. Formal methods are
available to systems engineers for use in
creating and tailoring unambiguous
specifications for quality aspects of an
architecture model.

Table 1: Example Data Suitability
Characteristics2

Qualitative
Characteristic

Natural Language
Definition

 The degree to which...
Completeness …the data requirement is

met.
Clarity …the data is clear and

unambiguous to all (not
just the authors).

Stability …the data is stable in the
face of changing data
requirements.

Reusability …the data can be used
again by others and in
future events.

Consistency …the data is consistent
with other models covering
the same scope.

Data
Portability

…the data can be
integrated with data from
different data models.

Formal Modeling of Architecture

An architecture can be modeled informally
using such tools as viewgraphs, word
processing documents, drawing tool diagrams,
and unlinked spreadsheet tables. Because
there is no programmed logic linking the data

2 Definitions derived from (West & Fowler, 1999) and
(Maier & Rechtin, 2002)

524

in and among these tools, opportunities to
develop inconsistencies in such informally
modeled architectures exist. Users of the
architecture data are continuously engaged in
the manually intensive effort of carefully
coordinating the inevitable changes to the
data. Capability to perform analyses
(especially quick ones) is extremely restricted
because it takes time to describe the data for
different scenarios and keep the data in
multiple views synchronized. To address this
problem, many commercially available tools
(INCOSE 2009) have been designed for use
for architecture development and analysis
efforts. These tools address what Fred Brooks
describes as “accidents” (Brooks 1987),
advancing the technology available to
architects for the development of their work
products. This research pertains to the
underlying “essence” of architecting, which is
tool-agnostic: how can systems engineers
formally specify architecture model suitability
characteristics, and then assess any
architecture for possession of those
characteristics?

Towards this end, formal methods (Wing
1990), (Luqi & Goguen 1997), (Berry 1998)
are used in this research to mathematically
represent some example rules and constraints
associated with an example architecture model
quality aspect. First order logic is used to
demonstrate how some architectural element
relationships may be modeled and used in a
notional data suitability assessment. The
larger questions being asked in this research
are as follows: Can natural language
architectural principles such as those advised
in the DoDAF be described more formally, in
a way that can be used and reused again and
again? How can the suitability of data in
various architecture tools used by systems
engineers be assessed to support a confidence
level in an analysis, and in the resulting
recommendations to decision makers? How
can models of systems and system of systems
(SoS) be assessed as the pace of their growing

complexity increases? These are questions
about the “essence” of systems architecting.

The formal methods used in this research
are demonstrated using the Vitech CORE
systems engineering tool schema, which was
used to enable convenient experimentation.
The CORE schema is based on a data model
that has elements in common with many other
architecting tools, although these elements
may be called by different names in different
tools. A data model provides a standard for
use by different organizations and systems so
that the same data has the same meaning to
everyone involved. (Maier & Rechtin 2002)
describes a data model as that which
“specifies data that a system retains, and the
relationships among the data”.

One can describe a data model in
structured natural language as a series of
statements, as follows:

“Architectures are composed of Components.”
“Components are built from other Components.”

Of course, the terms used in the data

model must be explicitly defined, since broad
terms like “component” mean different things
to different people.

The same information that is stated in
natural language above can also be graphically
conveyed, as in Figure 1. (More detailed
graphical notations also exist for representing
data models (e.g. UML, SySML)).

Figure 1. A simple data model. The boxes are

elements, and the labeled arrows describe
relationships among the elements.

The same information can also be
conveyed using expressions in first order
predicate calculus:

525

X = {x |x is an architecture}
Y = {y |y is a component}
Composedof (x, y): x is composed of y

The predicates can be further elaborated

on with assertions about the quantities of
elements in the relationship:

(All architectures are composed of some
components.)

Assertions such as the example above can

be specified as suitability criteria required by
architectures for use in a given purpose. For
example, an analyst can use the above
expression to unambiguously convey “I can’t
use this architecture in my particular analysis
unless it has some components in it.” This
condition might be the case if the analyst is
doing systems level analysis and requires
more than an operational architecture.
Together with other expressions, the formal
expression for containing some components
may constitute one analyst’s definition of
“complete”. This is a simple example – one
may wish to be more specific about the exact
components or types of components required
– but it communicates the idea of using formal
logic to be very clear about what is needed.
Following such a method, one could choose
appropriate criteria based on the intended use
of the architecture model, and collect them
together into a formal specification. For
instance, a selected set of quantified
expressions could be used to specify exact
levels of architecture “maturity” expected
before a milestone decision point, to specify
exactly what information is needed to answer
a given analysis problem, or to establish clear
and unambiguous criteria for certification of
an architecture. Since such formal
specifications are independent of architecture
development methodology, programming
language, and tool, they enable a fundamental
approach that can be applied in any

architecture development methodology,
programming language, or tool capable of
implementing them. It is a vehicle for
stakeholders to be more specific about what
they fundamentally need, without specifying
how it should be delivered.

“The essence of mathematics is its freedom.”

– George Cantor (1845-1918)

Example Application

The formal notation used in this research
can be applied to very practical quick turn
analysis of actual deployed or deploying
architectures. A relevant example is the
integrated architecture of the C4ISR On The
Move (OTM) Event ’09 (E09), executed over
the summer of 2009. C4ISR OTM E09
provided a unique venue, actual architecture
data sets, and SoS-level problems that inspired
much of this research. One such SoS-level
problem concerned the tracking and updating
of architectural data about the E09 systems,
personnel, schedule, and experiment logistics.
Informal tools such as viewgraphs, word
processing documents, drawing tool diagrams,
and several independent spreadsheet tables
were used to model the E09 Integrated
Architecture. Although the manual
coordination methods used met the basic
functional needs of its users, the activity of
tracking, assigning, and deconflicting
platforms, equipment, drivers, operators, spare
parts, and so on, occupied a substantial
amount of their time. The level of effort
needed to keep conflicts from occurring in the
rapidly changing data was taxing on the
technical staff, whose primary function was to
execute critical activities for meeting the E09
Campaign Goals. When a conflict did occur
(such as an airship being committed to two
different experiments that overlapped in
schedule), the consequence was costly in time
and dollars. To address this issue, PM C4ISR
OTM is migrating towards the use of an
integrated database to enable the automated

526

assessment of its data for early indications of
such scheduling and logistics conflicts.

One specific example of a high-level
quality aspect that the PM desires to
continuously improve is its “Execution
Readiness”, a quality that is often informally
discussed and subjectively assessed. Some of
the factors that influence how ready its
architecture model is for virtual and physical
execution in experimentation are listed in
Table 2.

Table 2: Sample Measures for Assessing Event

Execution Efficiency

Qualitative
Characteristic

Natural Language
Definition

 The degree to which...
Component
Assignment
Efficiency

…physical components3

Component
Availability

are scheduled in a manner
that makes maximum use
of them without creating a
schedule conflict.
...a physical component is
on hand and operating
satisfactorily when needed
in an experiment.

Component
Supportability

...spare and replacement
parts for a component are
on hand when needed in an
experiment.

Personnel
Assignment
Efficiency

…participating people are
scheduled in a manner that
makes maximum use of
them without creating a
schedule conflict.

Personnel
Availability

...a participating person is
on hand and able to work
when needed in an
experiment.

Range
Availability

...a range is open and
cleared for use when
needed in an experiment.

3 e.g. ground vehicles, air assets, radios, routers

These measures are still qualitative in
nature, and can be further broken down into
more quantitative measures. Table 3
illustrates sample quantitative measures for
the first qualitative measure listed in Table 2
(Component Assignment Efficiency). The
values associated with each quantitative
measure can be used to assess the qualitative
measure, either independently or together in
mathematical formulas designed to compute
high level metrics.

Table 3: Sample Measures for Component
Assignment Efficiency

Measure Units
Number of components with
no experiment assignment

per Event

Number of experiments with
no components assigned

per Event

Average length of time
during an Event for which an
available component has no
experiment assignment

days

Average length of time
during an Event for which an
experiment is missing a
needed component

hours

Total number of component
conflicts among all
experiments in the Event

per Event

Average number of
component conflicts in each
experiment

per
experiment

For the purposes of this example, a formal

expression useful for at least one of the
example measures from Table 3 is presented.
The expression is written abstractly, to
illustrate how first-order logic can be used to
provide a consistent definition for terms used
across various architectures to define
measures. The names of the variables may
change from one architecture to the next, but
the logic is the same.

527

The following rules can be used to specify
the logical definition of a component conflict
among scheduled experiments:

Uses(x, c): x uses c
Conflict(c): c has a conflict
s: a start date
e: an end date

 , ,

This expression essentially states that if

two different experiments (called
“Verification Events” in CORE) overlap, and
these two experiments intend to use the same
component, then the component in question
has a scheduling conflict.

Thus, any experiments (a.k.a. tests or
events) that are shown in the architecture
model to use the same components (or some
other constrained physical resource) during
the same window of time will be flagged well
before the conflict actually occurs. This rule,
and others like it, can be used to assess the
suitability of the current set of data for use in
SoS-level experiment planning activities. The
expression is abstract enough to be tailored
and implemented in any architecture tool with
the facilities to relate the necessary
information and execute the script.4

The example above illustrates one set of
criteria that an architect may use in
conjunction with others to support assessment
of a qualitative attribute called “Component

4 It should be noted that the expression was written
without the aid of a model building tool, and that
additional constraints may capture details that may be
needed to produce the exact desired result during
implementation (see future work).

Assignment Efficiency”. More measures (such
as those in Table 3) would need to be logically
defined or computed to fully assess
“Component Assignment Efficiency”, and
additional measures (such as those in Table 2)
would need to be defined to assess the higher-
level “Execution Readiness” quality.

Such specifications can be used by
systems engineers to build custom checklists
or automated scripts for checking data sets
against predefined criteria, tailored to meet
their definitions of “correctness”,
“consistency”, “completeness”, “maturity”,
and other characteristics that can help analysts
to determine the suitability of the architecture
for different uses (detailed design, analytics,
logistics, decision points, etc.). These rules
may be generated by the architect, or provided
by another stakeholder or governance
authority.

If an architecture data set fails to meet the
criteria specified, a report of the failures can
provide the architect or other stakeholders
with specific, actionable information for
improving the model’s quality. These
quantitative results could also be mapped to
the qualitative reds, ambers and greens that
are often used to provide dashboard-level
status information to project managers and
senior leaders, and tracked over time.

It is important to note that not all rules will
hold true for all architectures all the time – the
intent is to tailor the set of rules for the
architecture model and its expected state of
maturity. For example, one may wish to use
the rule:

x: a component
y: an operational node

meaning “For every defined operational node,
there is at least one component that
implements it.”

If the above rule is implemented in an
architecture modeling tool, instances of
operational nodes that do not comply can be

528

flagged. The example rule above would
ensure that all operational nodes in an
architecture model are implemented by one or
more physical components. Any operational
nodes that do not have a corresponding
physical component could be reported so that
appropriate action can be taken. However,
what if this check was applied after the
operational nodes were modeled, but before
the corresponding physical components were
selected and modeled? It would not be a
useful rule, since the architecture model is not
“mature” enough to supply any meaningful
results for this check. This rule is too
restrictive to be imposed early in architecture
development, but can be a very appropriate
check to run prior to some decision point
requiring a physical architecture, at which
knowledge of operational nodes that have yet
to be implemented in physical components
would be important. It thus makes sense to
have different collections of rules that apply in
different phases of architecture development,
and doing so can be a useful indication of
architecture “maturity” with respect to specific
expectations as the architecture advances
through decision point reviews.

Conclusions

This research investigated how formal
methods can be used by systems engineers
before detailed system design to specify
architecture model constraints, and associate
them with quality characteristics to assess an
architecture model’s suitability for different
uses. Using mathematic- and logic- based
expressions, systems engineers can enable the
specification of architecture model quality
requirements independently of solution-
oriented products and tools, thus enabling
stakeholders to develop an objective set of
criteria that can be used to assess and
potentially compare architecture models
developed by different organizations and
different tools. The formal logical expressions
can be used to unambiguously describe

architectural elements, their relationships, and
quantitative constraints that apply to these
relationships. The benefits of applying such
formal methods to systems engineering was
demonstrated using notional examples as well
as an example from an actual systems
engineering program at CERDEC, in
particular demonstrating their use in assessing
architecture model suitability for use in
different types of analyses (e.g. SoS-level
experiment planning and decision point
review).

One of the essential findings that resulted
from constructing formal logic statements
about architecture models is that these
expressions can provide systems engineers
and integrators of complex systems and SoS
(such as governments) with the ability to
create clear, unambiguous, methodology- and
tool-agnostic sets of criteria or instructions
that can be tailored for different events,
analytics, decision points or other uses. These
sets of criteria can be used to formally define
what precisely the government (or other
customer/stakeholder) means by terms like
“integrated”, “complete”, “mature”, and other
quality attributes for which many principles,
guidelines and policy statements exist in
natural language, but for which formal
specifications are largely absent. Armed with
formal, objective criteria for architecture
model quality, stakeholders would have sets of
tailorable, clear, testable requirements and
expectations that can be used to assess and
measure the degree to which architecture
models comply with expectations for integrity,
maturity, completeness, and other quality
attributes over time. Formal methods can be
use for setting and validating architecture
model quality criteria, rather than assuming
the criteria will implicitly be met by the
systems engineering process or in the tools
used in the architecture development and
validation effort. Since the rules can be stated
independently of methodology, tool, and
programming language, there is no restriction

529

imposed on organizations and companies
requiring them to change from their preferred
tools. Architects and tool vendors could use
these criteria to conduct pre-assessments of
their architecture models and increase their
quality before delivery, formal assessment, or
use in decision points. From a vendor’s
perspective, having definitive criteria from a
customer could help them develop tools and
models that better meet customer needs, and
provide more exact descriptions of (and
estimates for) “follow-on” work needed to
close the gap between their current
architecture model and the objective model
expected by the customer.

Among the uninitiated, formal methods have a
reputation for being expensive, requiring
special expertise, being time consuming, and
being cryptic (Bowen and Hinchey 1995).
The level of investment in their use should be
set appropriately according to the complexity
and criticality of the system to which they are
applied. In the PM C4ISR OTM example,
investment in formal methods is being taken
as a measure to reduce excessive
experimentation delays, which are costly in
time and talent. Increasingly complex systems
are becoming increasingly difficult to model
informally. Formal methods provide precise
and concise specifications (Wing 1990), and
have promising domain-specific applications
(Luqi and Goguen 1997) in systems
engineering analyses, as exemplified in this
paper. Formal methods can be used to provide
some science behind the greens, ambers, and
reds presented to senior leadership on the state
of a system’s evolving architecture, giving a
much earlier, more accurate, more actionable
indication of trouble.

Future Work

The completeness of the specifications and
assertions written about architecture
relationships should be validated using a
model building tool such as Alloy Analyzer

(Jackson 2006) to help researchers construct a
more complete set of constraints for potential
use as criteria for checking that the desired
conditions hold, and highlight any implicit
assumptions not documented in the
specifications. This type of abstract reasoning
about architectures fits well with the purpose
of modeling languages such as Alloy, and has
potential application in high level languages
written for architecture development and
analysis. To facilitate broader application, the
expressions should also be abstracted, for
example, into the vernacular of the DoDAF
Meta-Model (DM2). An experiment should
also be conducted to implement the schedule
conflict reporting logic for the physical
components in the C4ISR OTM E09
integrated architecture.

This work feeds the early stages of
author’s PhD research. As the author begins a
literature review, comments and pointers to
related work are solicited so that this work can
be put into context with the efforts of the
larger systems and software engineering
communities.

References

Berry, D. “Formal Methods: The Very Idea,
Some Thoughts About Why They Work
When They Work”, Proceedings of the
1998 ARO/ONR/NSF/ARPA Monterey
Workshop on Engineering Automation for
Computer Based Systems, Monterey CA,
Oct. 1998, pp. 9-18.

Bowen, J. and Hinchey, M. “Seven More
Myths of Formal Methods”, IEEE
Software, 12(4), July 1995, pp. 34-41.

Brooks, Frederick P., "No Silver Bullet:
Essence and Accidents of Software
Engineering," Computer, Vol. 20, No. 4
(April 1987) pp. 10-19.

CJCSI 3170.01G, "Joint Capabilities
Integration and Development System.”
Retrieved September 17, 2009, from
http://www.dtic.mil/cjcs_directives/

530

Darnton, Geoffrey, “Problem Statement
Language/Problem Statement Analyzer”,
http://www.pslpsa.com/index_orig.htm,
Copyright Geoffrey Darnton 2001-2007

DoDAF v1.5, DoD Architecture Framework,
version 1.5, April 23, 2007.

DoDAF v2.0, DoD Architecture Framework,
version 2.0, December 24, 2008.

DoDI 4630.8, "Procedures for Interoperability
and Supportability of Information
Technology (IT) and National Security
Systems (NSS).” Retrieved December 1,
2009, from
http://www.dtic.mil/whs/directives/corres/
html/463008.htm

IEEE 1471, “Systems and software
engineering — Recommended practice for
architectural description of software-
intensive systems”. ISO/IEC 42010
International Standard, First Edition, July
15, 2007.

INCOSE SE Tools Database, Retrieved on
December 1, 2009 from
http://www.incose.org/ProductsPubs/prod
ucts/toolsdatabase.aspx

Jackson, Daniel, Software Abstractions:
Logic, Language and Analysis. The MIT
Press, April 7, 2006.

Luqi and Goguen J., “Formal Methods:
Promises and Problems”, IEEE Software,
Vol.14, Jan. 1997, pp. 73-85.

Maier, M. and Rechtin, E. The Art of System
Architecting, 2nd Edition, CRC Press,
LLC, 2002

Maier, Mark, “Quantitative QFD for System
Engineering”, 1995, Retrieved September
17, 2009 from
http://www.casde.iitb.ac.in/springschool/A
ppendixG.pdf

Verma, Dinesh, Chilakapati, Rajesh and
Blanchard, Benjamin S., “Quality
Function Deployment (QFD): Integration
of Logistics Requirements into
Mainstream System Design”, Proceedings
of the SOLE Symposium, August 1995.

Verma, Dinesh; Chilakapati, Rajesh and
Fabrycki, Wolter J. “Analyzing a Quality
Function Deployment (QFD) Matrix: An
Expert System-Based Approach to
Identify Inconsistencies and
Opportunities”. Journal of Engineering
Design, 1998.

Vitech Corporation, Schema of the CORE
5.1.5 tool, 2004

West, M. and Fowler, J. “Developing High
Quality Data Models”, Version 2.0, Issue
2.1, European Process Industries STEP
Technical Liaison Executive, 1999

Wing, J., “A Specifier’s Introduction to
Formal Methods”, IEEE Computer, 23(9),
Sept. 1990, pp. 8-24.

Biography

Kristin Giammarco is a Lecturer of
Systems Engineering at the Naval
Postgraduate School. She holds an M.S. in
Systems Engineering from NPS and a B.E. in
Electrical Engineering from Stevens Institute
of Technology. At the time of this
publication, she is a doctoral candidate in
Software Engineering at NPS, researching the
application of formal methods to architecture
and systems engineering analysis.

Special thanks go to Valerie de Leon,
CERDEC Space & Terrestrial
Communications Directorate (S&TCD), as
well as to Jason Sypniewski and Kathy
Ahmad, PM C4ISR OTM, for their
enthusiastic support of this research.

531

	Abstract
	Introduction
	Problem and Need Statement
	Definition of Architecture
	Quality Attributes of Architecture Models
	Formal Modeling of Architecture
	Example Application
	Conclusions
	Future Work
	References
	Biography

