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Abstract 

In both the public and private sectors, 
systems engineering analysis studies are used 
to inform a range of decisions, from selecting 
among low level design alternatives to 
conducting high level portfolio management.  
These studies are conducted to help various 
stakeholders make and justify decisions that 
have a lasting effect on a system throughout 
its lifecycle.  The quality of the data used in 
these analyses can have a strong influence on 
the outcome of these decisions.  The research 
described in this paper investigates the 
application of formal methods to architecture 
model quality assessment.  These methods can 
be used to create sets of measures and criteria 
relevant in the systems engineering problem 
domain that can be tailored for different 
events, analytics, and decision points.  Using 
formal methods, stakeholders can decompose 
and express architecture data quality 
expectations unambiguously, and in a way that 
is abstract and independent of tool.  

Introduction 

This paper summarizes the research 
conducted by NPS and CERDEC S&TCD in 
an operationally relevant venue provided by 
Command, Control, Communications, 
Computers, Intelligence, Surveillance, 
Reconnaissance (C4ISR) On The Move 
(OTM) to mathematically express 

architectural elements, relationships, and some 
rules that can be used to develop customizable 
sets of criteria for some hard-to-quantify terms 
often used to characterize architecture models, 
such as “integrated” and “complete”.  In the 
field of software engineering, formal methods 
are extensively used to quantify such terms as 
they apply in the software domain (e.g. 
Darnton 2007).  The use of formal methods is 
less ubiquitously found in systems engineering 
practices, especially in lifecycle phases that 
precede system specification and design, 
where interpretations of the terms can 
especially vary widely among stakeholders.  
The scope of this paper focuses on the 
application of formal methods for defining 
and assessing architecture model quality 
characteristics using example terms found in 
the systems engineering domain1

Problem and Need Statement  

. A formal 
model-based systems engineering method is 
applied using the Vitech CORE systems 
engineering tool schema (Vitech 2004) as an 
experimental reference and tool.  The paper 
concludes with a summary of the concepts and 
next steps to be taken in future work. 

Needs for short term systems engineering 
analysis studies often emerge quickly with 
little time to gather and integrate the needed 
                                                 
1 Note that there is a distinction between assessing the 
quality of a system design, and assessing the quality of 
the data used to model that system.  This research 
focuses on the latter. 
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data to produce recommendations for senior 
leadership that have an empirical foundation.  
Analysis results and corresponding 
recommendations are only as credible as the 
source data that was used to generate them.  
Knowing this, expert analysts often spend 
more time on the chore of gathering and 
organizing source data than conducting the 
analysis itself.  The problem is compounded 
by the short turnaround times required for 
recommendations, often resulting in the 
collection and tailoring of data in a way that is 
optimized for answering the burning analysis 
questions of the day, and the sacrifice of the 
data’s suitability for reuse in future studies 
with differing scopes.  In many cases, the 
quality of the data is not known until problems 
emerge after the effort is complete.  Such 
cases pose the risk of erroneous 
recommendations due to faulty underlying 
data.  Acquisition Programs of Record (PoR), 
Advanced Technology Objectives (ATOs), 
and other longer term programs have more 
time and resources to deal with data quality 
issues, but these larger organizations still 
continue to lack sufficient formalism needed 
to empirically assess their vast quantities of 
data for quality and suitability for use in 
various types of analyses.   Whether a project 
is a 90-day study or a multi-year PoR, reams 
of data are often produced, used, and 
discarded after it has served its immediate 
purpose or when they have otherwise become 
obsolete.   

A capability is needed to enable the 
assessment of architectural models for quality 
and suitability for use (and reuse) in various 
types of analyses.   

Definition of Architecture 

An architecture is defined by the DoD 
Architecture Framework v1.5 as “the structure 
of components, their relationships, and the 
principles and guidelines governing their 
design and evolution over time” (DoDAF v1.5 
2007).  An architecture model is typically 

developed to ensure that the concerns of 
stakeholders are addressed by the system(s) 
under development.  For systems that are 
deployed without going through a formal 
acquisition process, the architecture is often 
retrospectively documented to enable a better 
understanding of the system and its 
relationships to other systems, and how to co-
evolve them.  The research herein applies to 
both types of architecture models. 

An integrated architecture is defined as 
“An architecture consisting of multiple views 
or perspectives (operational view, systems 
view, and technical standards view) that 
facilitates integration and promotes 
interoperability across capabilities and among 
related integrated architectures” (CJCSI 
3170.01G 2009 and DoDI 4630.8 2004).  
DoDAF 2.0 elaborates on this definition, 
defining “integrated” to mean that “data 
required in more than one instance in 
architectural views is commonly understood 
across those views” (DoDAF v2.0 2008).  One 
intended application for this research is the 
formal specification of terms like “integrated” 
to remove ambiguity from a natural language 
definition such as that given above, so that 
architecture assessment activities have a 
scientific, objective, and tool-agnostic 
specification to use. 

An architecture framework “establishes 
terms and concepts pertaining to the content 
and use of architectural descriptions” [IEEE 
1471, 2007].  Architecture frameworks are 
employed to create, communicate consistent 
architecture descriptions.  Some examples of 
frameworks are the Zachman Framework, US 
Department of Defense (DoD) Architecture 
Framework (DODAF), Ministry of Defence 
Architecture Framework (MODAF), and the 
Software Engineering Institute (SEI) Views 
and Beyond Framework.  All frameworks 
embrace the concepts of having views, 
viewpoints, and stakeholders.  All frameworks 
also have the notion of striving for consistency 
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between the views.  The research described in 
this report is independent of framework.  

Quality Attributes of Architecture 
Models 

Independent of tool, framework or format, 
architecture models have certain quality 
aspects associated with them.  Table 1 
illustrates some characteristics of data in 
general that can be applied to data present in 
architecture models.  These characteristics are 
important factors in determining the suitability 
of data for use in analysis and decision 
support.  One might assess architecture data 
against such suitability characteristics, for 
example, to determine the suitability of the 
data’s ability to support an analysis of a given 
scope, or to provide an indication of the 
confidence level that stakeholders should have 
in a data set upon which recommendations and 
decisions will be based.   

The DoDAF includes “completeness”, 
“consistency”, and other qualitative 
characteristics as desirable attributes of an 
architecture model, presenting them as 
principles but providing no specific criteria 
that can be used as a checklist of sorts to 
determine whether in fact an architecture 
model meets the expectations for these 
attributes (DoDAF v1.5 2007).  Qualities such 
as those in Table 1 are often expressed as 
desired system characteristics, and techniques 
are available for associating them with 
quantitative parameters when designing a 
system.  For example, Quality Function 
Deployment (QFD) (Maier 1995, Verma et al. 
1995 and Verma et al. 1998) is a technique 
that maps qualitative stakeholder requirements 
(e.g. flexibility) to quantitative design 
dependent parameters (DDPs) (e.g. number of 
different I/O port types). The system design is 
assessed for the qualitative requirements by 
measuring the values of the associated 
quantitative parameters.  As DDPs are used in 
QFD to guide system design, measurable 

expressions can likewise be used to quantify 
ambiguous stakeholder requirements for 
architecture model elements, attributes, and 
relationships.  More specifically, a set of 
quantitative logical assertions can be 
associated with each qualitative characteristic, 
to formally define (perhaps as a computable 
metric) what exactly is meant by each of these 
natural language terms. Formal methods are 
available to systems engineers for use in 
creating and tailoring unambiguous 
specifications for quality aspects of an 
architecture model. 

Table 1: Example Data Suitability 
Characteristics2

Qualitative 
Characteristic 

  

Natural Language 
Definition 

 The degree to which... 
Completeness …the data requirement is 

met. 
Clarity …the data is clear and 

unambiguous to all (not 
just the authors). 

Stability …the data is stable in the 
face of changing data 
requirements. 

Reusability …the data can be used 
again by others and in 
future events. 

Consistency …the data is consistent 
with other models covering 
the same scope. 

Data 
Portability 

…the data can be 
integrated with data from 
different data models. 

Formal Modeling of Architecture 

An architecture can be modeled informally 
using such tools as viewgraphs, word 
processing documents, drawing tool diagrams, 
and unlinked spreadsheet tables.  Because 
there is no programmed logic linking the data 

                                                 
2 Definitions derived from (West & Fowler, 1999) and 
(Maier & Rechtin, 2002) 
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in and among these tools, opportunities to 
develop inconsistencies in such informally 
modeled architectures exist.  Users of the 
architecture data are continuously engaged in 
the manually intensive effort of carefully 
coordinating the inevitable changes to the 
data.  Capability to perform analyses 
(especially quick ones) is extremely restricted 
because it takes time to describe the data for 
different scenarios and keep the data in 
multiple views synchronized.  To address this 
problem, many commercially available tools 
(INCOSE 2009) have been designed for use 
for architecture development and analysis 
efforts.  These tools address what Fred Brooks 
describes as “accidents” (Brooks 1987), 
advancing the technology available to 
architects for the development of their work 
products.  This research pertains to the 
underlying “essence” of architecting, which is 
tool-agnostic:  how can systems engineers 
formally specify architecture model suitability 
characteristics, and then assess any 
architecture for possession of those 
characteristics? 

Towards this end, formal methods (Wing 
1990), (Luqi & Goguen 1997), (Berry 1998) 
are used in this research to mathematically 
represent some example rules and constraints 
associated with an example architecture model 
quality aspect.  First order logic is used to 
demonstrate how some architectural element 
relationships may be modeled and used in a 
notional data suitability assessment.  The 
larger questions being asked in this research 
are as follows: Can natural language 
architectural principles such as those advised 
in the DoDAF be described more formally, in 
a way that can be used and reused again and 
again?  How can the suitability of data in 
various architecture tools used by systems 
engineers be assessed to support a confidence 
level in an analysis, and in the resulting 
recommendations to decision makers?  How 
can models of systems and system of systems 
(SoS) be assessed as the pace of their growing 

complexity increases?  These are questions 
about the “essence” of systems architecting. 

The formal methods used in this research 
are demonstrated using the Vitech CORE 
systems engineering tool schema, which was 
used to enable convenient experimentation.  
The CORE schema is based on a data model 
that has elements in common with many other 
architecting tools, although these elements 
may be called by different names in different 
tools.  A data model provides a standard for 
use by different organizations and systems so 
that the same data has the same meaning to 
everyone involved.  (Maier & Rechtin 2002) 
describes a data model as that which 
“specifies data that a system retains, and the 
relationships among the data”. 

One can describe a data model in 
structured natural language as a series of 
statements, as follows: 

 
“Architectures are composed of Components.” 
“Components are built from other Components.” 

 
Of course, the terms used in the data 

model must be explicitly defined, since broad 
terms like “component” mean different things 
to different people.   

The same information that is stated in 
natural language above can also be graphically 
conveyed, as in Figure 1.  (More detailed 
graphical notations also exist for representing 
data models (e.g. UML, SySML)).   

 
Figure 1. A simple data model. The boxes are 

elements, and the labeled arrows describe 
relationships among the elements. 

The same information can also be 
conveyed using expressions in first order 
predicate calculus: 
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X = {x |x is an architecture} 
Y = {y |y is a component} 
Composedof (x, y):  x is composed of y 

 
The predicates can be further elaborated 

on with assertions about the quantities of 
elements in the relationship: 

 
 

(All architectures are composed of some 
components.) 

 
Assertions such as the example above can 

be specified as suitability criteria required by 
architectures for use in a given purpose.  For 
example, an analyst can use the above 
expression to unambiguously convey “I can’t 
use this architecture in my particular analysis 
unless it has some components in it.”  This 
condition might be the case if the analyst is 
doing systems level analysis and requires 
more than an operational architecture.  
Together with other expressions, the formal 
expression for containing some components 
may constitute one analyst’s definition of 
“complete”.  This is a simple example – one 
may wish to be more specific about the exact 
components or types of components required 
– but it communicates the idea of using formal 
logic to be very clear about what is needed.  
Following such a method, one could choose 
appropriate criteria based on the intended use 
of the architecture model, and collect them 
together into a formal specification.  For 
instance, a selected set of quantified 
expressions could be used to specify exact 
levels of architecture “maturity” expected 
before a milestone decision point, to specify 
exactly what information is needed to answer 
a given analysis problem, or to establish clear 
and unambiguous criteria for certification of 
an architecture.  Since such formal 
specifications are independent of architecture 
development methodology, programming 
language, and tool, they enable a fundamental 
approach that can be applied in any 

architecture development methodology, 
programming language, or tool capable of 
implementing them.  It is a vehicle for 
stakeholders to be more specific about what 
they fundamentally need, without specifying 
how it should be delivered. 

 
“The essence of mathematics is its freedom.”  

– George Cantor (1845-1918) 

Example Application  

The formal notation used in this research 
can be applied to very practical quick turn 
analysis of actual deployed or deploying 
architectures.  A relevant example is the 
integrated architecture of the C4ISR On The 
Move (OTM) Event ’09 (E09), executed over 
the summer of 2009.  C4ISR OTM E09 
provided a unique venue, actual architecture 
data sets, and SoS-level problems that inspired 
much of this research. One such SoS-level 
problem concerned the tracking and updating 
of architectural data about the E09 systems, 
personnel, schedule, and experiment logistics. 
Informal tools such as viewgraphs, word 
processing documents, drawing tool diagrams, 
and several independent spreadsheet tables 
were used to model the E09 Integrated 
Architecture.  Although the manual 
coordination methods used met the basic 
functional needs of its users, the activity of 
tracking, assigning, and deconflicting 
platforms, equipment, drivers, operators, spare 
parts, and so on, occupied a substantial 
amount of their time.  The level of effort 
needed to keep conflicts from occurring in the 
rapidly changing data was taxing on the 
technical staff, whose primary function was to 
execute critical activities for meeting the E09 
Campaign Goals.  When a conflict did occur 
(such as an airship being committed to two 
different experiments that overlapped in 
schedule), the consequence was costly in time 
and dollars.  To address this issue, PM C4ISR 
OTM is migrating towards the use of an 
integrated database to enable the automated 
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assessment of its data for early indications of 
such scheduling and logistics conflicts.   

One specific example of a high-level 
quality aspect that the PM desires to 
continuously improve is its “Execution 
Readiness”, a quality that is often informally 
discussed and subjectively assessed.  Some of 
the factors that influence how ready its 
architecture model is for virtual and physical 
execution in experimentation are listed in 
Table 2.   

 
Table 2: Sample Measures for Assessing Event 

Execution Efficiency 

Qualitative 
Characteristic 

Natural Language 
Definition 

 The degree to which... 
Component 
Assignment 
Efficiency  

…physical components3

Component 
Availability 

  
are scheduled in a manner 
that makes maximum use 
of them without creating a 
schedule conflict. 
...a physical component is 
on hand and operating 
satisfactorily when needed 
in an experiment. 

Component 
Supportability 

...spare and replacement 
parts for a component are 
on hand when needed in an 
experiment. 

Personnel 
Assignment 
Efficiency 

…participating people are 
scheduled in a manner that 
makes maximum use of 
them without creating a 
schedule conflict. 

Personnel 
Availability 

...a participating person is 
on hand and able to work 
when needed in an 
experiment. 

Range 
Availability  

...a range is open and 
cleared for use when 
needed in an experiment. 

 
 

                                                 
3 e.g. ground vehicles, air assets, radios, routers 

These measures are still qualitative in 
nature, and can be further broken down into 
more quantitative measures.  Table 3 
illustrates sample quantitative measures for 
the first qualitative measure listed in Table 2 
(Component Assignment Efficiency).  The 
values associated with each quantitative 
measure can be used to assess the qualitative 
measure, either independently or together in 
mathematical formulas designed to compute 
high level metrics. 
 

Table 3: Sample Measures for Component 
Assignment Efficiency 

Measure Units 
Number of components with 
no experiment assignment 

# per Event 

Number of experiments with 
no components assigned 

# per Event 

Average length of time 
during an Event for which an 
available component has no 
experiment assignment 

days 

Average length of time 
during an Event for which an 
experiment is missing a 
needed component 

hours 

Total number of component 
conflicts among all 
experiments in the Event 

# per Event 

Average number of 
component conflicts in each 
experiment 

# per 
experiment 

 
For the purposes of this example, a formal 

expression useful for at least one of the 
example measures from Table 3 is presented.  
The expression is written abstractly, to 
illustrate how first-order logic can be used to 
provide a consistent definition for terms used 
across various architectures to define 
measures.  The names of the variables may 
change from one architecture to the next, but 
the logic is the same. 
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The following rules can be used to specify 
the logical definition of a component conflict 
among scheduled experiments: 

 
   

   
Uses(x, c): x uses c 
Conflict(c): c has a conflict 
s: a start date 
e: an end date 
 

 ,   ,   
 

  
 

 
 
This expression essentially states that if 

two different experiments (called 
“Verification Events” in CORE) overlap, and 
these two experiments intend to use the same 
component, then the component in question 
has a scheduling conflict. 

Thus, any experiments (a.k.a. tests or 
events) that are shown in the architecture 
model to use the same components (or some 
other constrained physical resource) during 
the same window of time will be flagged well 
before the conflict actually occurs.  This rule, 
and others like it, can be used to assess the 
suitability of the current set of data for use in 
SoS-level experiment planning activities.  The 
expression is abstract enough to be tailored 
and implemented in any architecture tool with 
the facilities to relate the necessary 
information and execute the script.4

The example above illustrates one set of 
criteria that an architect may use in 
conjunction with others to support assessment 
of a qualitative attribute called “Component 

   

                                                 
4 It should be noted that the expression was written 
without the aid of a model building tool, and that 
additional constraints may capture details that may be 
needed to produce the exact desired result during 
implementation (see future work). 
 

Assignment Efficiency”. More measures (such 
as those in Table 3) would need to be logically 
defined or computed to fully assess 
“Component Assignment Efficiency”, and 
additional measures (such as those in Table 2) 
would need to be defined to assess the higher-
level “Execution Readiness” quality.   

Such specifications can be used by 
systems engineers to build custom checklists 
or automated scripts for checking data sets 
against predefined criteria, tailored to meet 
their definitions of “correctness”, 
“consistency”, “completeness”, “maturity”, 
and other characteristics that can help analysts 
to determine the suitability of the architecture 
for different uses (detailed design, analytics, 
logistics, decision points, etc.).  These rules 
may be generated by the architect, or provided 
by another stakeholder or governance 
authority.   

If an architecture data set fails to meet the 
criteria specified, a report of the failures can 
provide the architect or other stakeholders 
with specific, actionable information for 
improving the model’s quality.  These 
quantitative results could also be mapped to 
the qualitative reds, ambers and greens that 
are often used to provide dashboard-level 
status information to project managers and 
senior leaders, and tracked over time.   

It is important to note that not all rules will 
hold true for all architectures all the time – the 
intent is to tailor the set of rules for the 
architecture model and its expected state of 
maturity.  For example, one may wish to use 
the rule: 

x: a component 
y: an operational node 

 
meaning “For every defined operational node, 
there is at least one component that 
implements it.”   

If the above rule is implemented in an 
architecture modeling tool, instances of 
operational nodes that do not comply can be 
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flagged.  The example rule above would 
ensure that all operational nodes in an 
architecture model are implemented by one or 
more physical components.  Any operational 
nodes that do not have a corresponding 
physical component could be reported so that 
appropriate action can be taken.  However, 
what if this check was applied after the 
operational nodes were modeled, but before 
the corresponding physical components were 
selected and modeled?  It would not be a 
useful rule, since the architecture model is not 
“mature” enough to supply any meaningful 
results for this check.  This rule is too 
restrictive to be imposed early in architecture 
development, but can be a very appropriate 
check to run prior to some decision point 
requiring a physical architecture, at which 
knowledge of operational nodes that have yet 
to be implemented in physical components 
would be important.  It thus makes sense to 
have different collections of rules that apply in 
different phases of architecture development, 
and doing so can be a useful indication of 
architecture “maturity” with respect to specific 
expectations as the architecture advances 
through decision point reviews. 

Conclusions 

This research investigated how formal 
methods can be used by systems engineers 
before detailed system design to specify 
architecture model constraints, and associate 
them with quality characteristics to assess an 
architecture model’s suitability for different 
uses. Using mathematic- and logic- based 
expressions, systems engineers can enable the 
specification of architecture model quality 
requirements independently of solution-
oriented products and tools, thus enabling 
stakeholders to develop an objective set of 
criteria that can be used to assess and 
potentially compare architecture models 
developed by different organizations and 
different tools.  The formal logical expressions 
can be used to unambiguously describe 

architectural elements, their relationships, and 
quantitative constraints that apply to these 
relationships.  The benefits of applying such 
formal methods to systems engineering was 
demonstrated using notional examples as well 
as an example from an actual systems 
engineering program at CERDEC, in 
particular demonstrating their use in assessing 
architecture model suitability for use in 
different types of analyses (e.g. SoS-level 
experiment planning and decision point 
review). 

One of the essential findings that resulted 
from constructing formal logic statements 
about architecture models is that these 
expressions can provide systems engineers 
and integrators of complex systems and SoS 
(such as governments) with the ability to 
create clear, unambiguous, methodology- and 
tool-agnostic sets of criteria or instructions 
that can be tailored for different events, 
analytics, decision points or other uses.  These 
sets of criteria can be used to formally define 
what precisely the government (or other 
customer/stakeholder) means by terms like 
“integrated”, “complete”, “mature”, and other 
quality attributes for which many principles, 
guidelines and policy statements exist in 
natural language, but for which formal 
specifications are largely absent.  Armed with 
formal, objective criteria for architecture 
model quality, stakeholders would have sets of 
tailorable, clear, testable requirements and 
expectations that can be used to assess and 
measure the degree to which architecture 
models comply with expectations for integrity, 
maturity, completeness, and other quality 
attributes over time.  Formal methods can be 
use for setting and validating architecture 
model quality criteria, rather than assuming 
the criteria will implicitly be met by the 
systems engineering process or in the tools 
used in the architecture development and 
validation effort.  Since the rules can be stated 
independently of methodology, tool, and 
programming language, there is no restriction 
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imposed on organizations and companies 
requiring them to change from their preferred 
tools.  Architects and tool vendors could use 
these criteria to conduct pre-assessments of 
their architecture models and increase their 
quality before delivery, formal assessment, or 
use in decision points.  From a vendor’s 
perspective, having definitive criteria from a 
customer could help them develop tools and 
models that better meet customer needs, and 
provide more exact descriptions of (and 
estimates for) “follow-on” work needed to 
close the gap between their current 
architecture model and the objective model 
expected by the customer.   

Among the uninitiated, formal methods have a 
reputation for being expensive, requiring 
special expertise, being time consuming, and 
being cryptic (Bowen and Hinchey 1995).  
The level of investment in their use should be 
set appropriately according to the complexity 
and criticality of the system to which they are 
applied.  In the PM C4ISR OTM example, 
investment in formal methods is being taken 
as a measure to reduce excessive 
experimentation delays, which are costly in 
time and talent.  Increasingly complex systems 
are becoming increasingly difficult to model 
informally. Formal methods provide precise 
and concise specifications (Wing 1990), and 
have promising domain-specific applications 
(Luqi and Goguen 1997) in systems 
engineering analyses, as exemplified in this 
paper.  Formal methods can be used to provide 
some science behind the greens, ambers, and 
reds presented to senior leadership on the state 
of a system’s evolving architecture, giving a 
much earlier, more accurate, more actionable 
indication of trouble.   

Future Work 

The completeness of the specifications and 
assertions written about architecture 
relationships should be validated using a 
model building tool such as Alloy Analyzer 

(Jackson 2006) to help researchers construct a 
more complete set of constraints for potential 
use as criteria for checking that the desired 
conditions hold, and highlight any implicit 
assumptions not documented in the 
specifications.  This type of abstract reasoning 
about architectures fits well with the purpose 
of modeling languages such as Alloy, and has 
potential application in high level languages 
written for architecture development and 
analysis.  To facilitate broader application, the 
expressions should also be abstracted, for 
example, into the vernacular of the DoDAF 
Meta-Model (DM2).  An experiment should 
also be conducted to implement the schedule 
conflict reporting logic for the physical 
components in the C4ISR OTM E09 
integrated architecture.   

This work feeds the early stages of 
author’s PhD research. As the author begins a 
literature review, comments and pointers to 
related work are solicited so that this work can 
be put into context with the efforts of the 
larger systems and software engineering 
communities. 
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