
Calhoun: The NPS Institutional Archive
DSpace Repository

Theses and Dissertations 1. Thesis and Dissertation Collection, all items

2001-09

Design and evaluation of a digital flight
control system for the Frog Unmanned Aerial Vehicle

Flood, Christopher H.
Monterey, California. Naval Postgraduate School

https://hdl.handle.net/10945/1661

This publication is a work of the U.S. Government as defined in Title 17, United
States Code, Section 101. Copyright protection is not available for this work in the
United States.

Downloaded from NPS Archive: Calhoun

NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS

Approved for public release; distribution is unlimited

DESIGN AND EVALUATION OF A DIGITAL FLIGHT
CONTROL SYSTEM FOR THE FROG UNMANNED

AERIAL VEHICLE

by

Christopher H. Flood

September 2001

 Thesis Advisor: Isaac I. Kaminer
 Second Reader: Oleg Yakimenko

 i

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including
the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and
completing and reviewing the collection of information. Send comments regarding this burden estimate or any
other aspect of this collection of information, including suggestions for reducing this burden, to Washington
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
September 2001

3. REPORT TYPE AND DATES COVERED
Aeronautical Engineers Thesis

4. TITLE AND SUBTITLE: Design and Evaluation of a Digital Flight Control
System for the FROG Unmanned Aerial Vehicle
6. AUTHOR(S) Flood, Christopher H.

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING /
MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

The importance of unmanned aerial vehicles (UAVs) to current and future military operations cannot be understated.
This rapidly developing field requires the ability to quickly develop and evaluate advanced control concepts. The FROG UAV
serves as a test bed for advanced control and sensor projects at the Naval Postgraduate School. Previous control system
projects have made use of a low performance electromechanical autopilot onboard the UAV. This autopilot imposed
significant limitations on the responsiveness of the FROG. This project developed and tested an off board digital flight control
system for use in lieu of the previous electromechanical device.

The digital flight controller was developed using the MatrixX rapid prototyping system and a previously validated
dynamic model of the FROG. Surrogate flight control servo actuators were characterized in the laboratory and added to the
plant model. Classic inner / outer loop controllers were developed for yaw damping and speed, altitude and heading control.
The system was then successfully demonstrated with hardware in the loop in the lab. The FROG was then instrumented and a
command uplink latency of 170 ms was discovered. This introduced excessive phase lag into the system, which drove the
flight controllers unstable. An alternate serial uplink method was developed and tested which reduced the command latency to
76 ms however the remaining phase lag resulted in limit cycle oscillation. Laboratory tests indicated that the current flight
controller could withstand a maximum of 50 ms command path delay; without modification.

15. NUMBER OF
PAGES

130

14. SUBJECT TERMS Manned Aerial Vehicles, UAV, Frog UAV, Digital Flight Controller

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION
OF ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

The importance of unmanned aerial vehicles (UAVs) to current and future military

operations cannot be understated. This rapidly developing field requires the ability to quickly

develop and evaluate advanced control concepts. The FROG UAV serves as a test bed for

advanced control and sensor projects at the Naval Postgraduate School. Previous control

system projects have made use of a low performance electromechanical autopilot onboard the

UAV. This autopilot imposed significant limitations on the responsiveness of the FROG. This

project developed and tested an off board digital flight control system for use in lieu of the

previous electromechanical device.

The digital flight controller was developed using the MatrixX rapid prototyping system

and a previously validated dynamic model of the FROG. Surrogate flight control servo

actuators were characterized in the laboratory and added to the plant model. Classic

inner/outer loop controllers were developed for yaw damping and speed, altitude and heading

control. The system was then successfully demonstrated with hardware in the loop in the lab.

The FROG was then instrumented and a command uplink latency of 170 ms was discovered.

This introduced excessive phase lag into the system, which drove the flight controllers

unstable. An alternate serial uplink method was developed and tested which reduced the

command latency to 76 ms however the remaining phase lag resulted in limit cycle oscillation.

Laboratory tests indicated that the current flight controller could withstand a maximum of 50

ms command path delay; without modification.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION..1

II. FROG UAV SYSTEM ...3
A. DESCRIPTION OF THE AIRPLANE..3
B. FROG RAPID FLIGHT TEST PROTOTYPING SYSTEM5

1. MATRIXX Rapid Prototyping System...6
2. AC-104 Controller Configuration ..8
3. Command Uplink ...9
4. Sensor Downlink ..12
5. Electromagnetic Interference..14

C. NPS INERTIAL MEASUREMENT UNIT ...15
1. Sensor Description ...15
2. Embedded Micro Controller Development19

a. 3DM Tattletale Program...22
b. GPS TattleTale Program ..24

D. CROSSBOW ATTITUDE HEADING REFERENCE SET27
1. Hardware Description ...27
2. Timing Performance ..30
3. AHRS Noise Output...41

III. DIGITAL FLIGHT CONTROLLER ..43
A. SERVO TEST SET CHARACTERIZATION ..43
B. DIGITAL FLIGHT CONTROLLER DESIGN ..50

1. Design Methodology and Performance Criteria50
2. Yaw Damper...52
3. Altitude Controller...54
4. Heading Controller..56
5. Airspeed Controller ...58
6. Control Mode Coupling ...60

C. FROG CONTROL SERVOS ..61
1. FROG Servo Configuration and Instrumentation..........................61
2. Control Surface Position Calibration...64
3. FROG Servo Dynamics ...70
4. FROG Digital Flight Controller Performance73

D. ALTERNATE COMMAND UPLINK...74

IV. CONCLUSIONS AND RECOMMENDATIONS...79
A. CONCLUSIONS ..79
B. RECOMMENDATIONS...79

APPENDIX A. NPS IMU OPERATING SOFTWARE ..81
A. 3DM TATTLETALE OPERATING CODE...81
B. 3DMIO.H ..90

 viii

C. DATA3DM.H..93
D. PWM.H ...94
E. GPS TATTLETALE OPERATING CODE..95
F. GPSPARSE.H...99
G. GPSDATA.H ..108
H. ATODDDATA.H..109

APPENDIX B. CROSSBOW AHRS NOISE ANALYSIS ..111

LIST OF REFERENCES ..113

INITIAL DISTRIBUTION LIST...115

 ix

LIST OF FIGURES

Figure 2.1. FROG UAV. ..3
Figure 2.2. FROG UAV 3 View Drawing. ...4
Figure 2.3. FROG Engine Configuration. ..4
Figure 2.4. FROG Rapid Flight Test Prototyping System. ..6
Figure 2.5. AC-104 Real-Time Controller. ..8
Figure 2.6. AC-104 Interface Layout. ..9
Figure 2.7. Futaba FP-9ZAP Digital Proportional Radio Control.10
Figure 2.8. FROG Master/Slave Transmitter Arrangement. ..10
Figure 2.9. Futaba Receiver to Servo Connections from Ref. [1]...................................12
Figure 2.10. NPS IMU Downlink Architecture. ..13
Figure 2.11. Crossbow AHRS Downlink Architecture. ...14
Figure 2.12. BEI GyrochipTM Rate Gyro ..16
Figure 2.13. 3DM 3-Axis Orientation Sensor. ..18
Figure 2.14. Humphrey VG-34-0201-2 Vertical Gyroscope. ..18
Figure 2.15. TattleTale Model 8 Micro-Controller. ...20
Figure 2.16. FROG Onboard Computer Functional Architecture after Ref. [2].21
Figure 2.17. Crossbow AHRS400CA-100 Attitude Heading Reference System.27
Figure 2.18. Crossbow AHRS System Architecture. ...28
Figure 2.19. Gyroview Software User Interface. ...31
Figure 2.20. Gyroview Real-Time Data Display Capability. ...32
Figure 2.21. Gyroview Flight Test Data (Level Figure-8 Maneuver).33
Figure 2.22. Gyroview Flight Test Data (Level Figure-8 Maneuver).34
Figure 2.23. AHRS Angle Mode Serial Output Signal. ...35
Figure 2.24. AHRS Continuous/Angle Mode Serial Output. ...35
Figure 2.25. AHRS Polled / Angle Mode Serial Output Response Variation.36
Figure 2.26. AHRS Polled/Angle Mode Response - 20 Hz Polling Rate.37
Figure 2.27. AHRS Polled/Angle Mode Response - 30 Hz Polling Rate.38
Figure 2.28. AHRS Polled/Angle Mode Response - 60 Hz Polling Rate.39
Figure 2.29. AHRS Continuous/Scaled Sensor Mode Serial Output.40
Figure 2.30. AHRS Polled / Scaled Sensor Mode Serial Output Response Variation.41
Figure 3.1 Servo Test Set. ...44
Figure 3.2. Control Systems Laboratory Hardware in the Loop System.45
Figure 3.3. SystemBuild Servo Dynamics Test System...46
Figure 3.4. Servo Test System Calibration GUI. ...47
Figure 3.5. TS-75 Servo Response to 10° STEP Input. ...48
Figure 3.6. Second Order Model of TS-75 Servo. ...48
Figure 3.7. RealSim Speed Controller GUI. ..49
Figure 3.8. TS-75 Response to Increasing Speed Controller Feedback.50
Figure 3.9. FROG SystemBuild Flight Controller Model. ...51
Figure 3.10. RealSim Flight Controller Display. ...52
Figure 3.11. Yaw Damper SystemBuild Block Diagram. ..53

 x

Figure 3.12. Yaw Damper Response (Simulated Actuators). ..53
Figure 3.13. FROG Yaw Damper Performance with TS-75 Actuators.54
Figure 3.14. Altitude Controller SystemBuild Block Diagram. ...55
Figure 3.15. Altitude Controller Response with TS-75 Servos..56
Figure 3.16. Heading Controller System Build Block Diagram. ...57
Figure 3.17. Heading Controller Response With Simulated Actuators.57
Figure 3.18. Heading Controller Response with TS-75 Servos. ..58
Figure 3.19. Speed Controller SystemBuild Block Diagram. ..59
Figure 3.20. Speed Controller Response with TS-75 Servos. ..59
Figure 3.21. Longitudinal Control Mode Coupling. ..60
Figure 3.22. Lateral-Directional Control Mode Coupling. ..61
Figure 3.23. FROG Elevator Servo Configuration. ..63
Figure 3.24. Series 150 Subminiature Position Transducer. ..64
Figure 3.25. The FROG Command Uplink Signal Path. ..65
Figure 3.26. Laser Installation for Cont rol Surface Deflection Measurement.67
Figure 3.27. Cylindrical Laser Target. ...67
Figure 3.28 Laser Position Indicator Spot on Angle Scale. ..68
Figure 3.29. FROG Aileron Position Command versus D/A Output Value.69
Figure 3.30. FROG Aileron String Pot Output versus Position. ..69
Figure 3.31. FROG Servo Response Delay. ...71
Figure 3.32. TS-75 Servo Test Set Response Delay. ...72
Figure 3.33. FROG Servo-based Speed Controller Performance.73
Figure 3.34. Flight Controller with 170 ms Delay. ..74
Figure 3.35. FP-R309DPS Receiver Output Signal. ..75
Figure 3.36. Flight Controller Performance with 75 ms Delay. ...77
Figure 3.37. Servo Phase Lag with 75 ms Command Delay. ...78

 xi

LIST OF TABLES

Table 2.1. FROG UAV Physical Characteristics. ...5
Table 2.2. NPS IMU Sensor Performance Limits...19
Table 2.3. NPS IMU Downlink Data List...22
Table 2.4. 3DM Magnetometer & Accelerometer Data Format.23
Table 2.5. TattleTale Downlink Message Characteristics. ...27
Table 2.6. Sensor Mode Serial Data Parameters...29
Table 3.1. FROG Control Servo Configuration. ...62
Table 3.2. FROG Servo Gains. ...72
Table 3.3. FP-309DPS Pulse Width Response to FP-9ZAP Controller Commands.76

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

ACKNOWLEDGMENTS

I would like to thank my wife, Tina. Without your steadfast support, limitless patience

and countless scarifies I would never have completed this work. This thesis is as much yours

as it is mine. To my son, Kevin, I give my thanks. You have been a great help to your mother

and me and have shown maturity far beyond your years. I hope you remember this time in

Monterey fondly. To Scott and Brian, who are too young to understand why Daddy has to go

back to work after diner, I can play now.

I would also like to thank my advisor, Dr. Isaac Kaminer, for the guidance, and

freedom to learn. You have shown me that the mark of an educated man is more than the mere

facts he knows but instead is the manner in which he reasons.

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

1

I. INTRODUCTION

The importance of unmanned aerial vehicles (UAVs) to current and future

military operations cannot be understated. This rapidly developing field requires the

ability to quickly develop and evaluate advanced control concepts. The FROG UAV

serves as a test bed for advanced control and sensor projects at the Naval Postgraduate

School. Previous control system projects have made use of a low performance

electromechanical autopilot onboard the UAV. This autopilot imposed significant

limitations on the responsiveness of the FROG. This thesis developed and tested an off

board digital flight control system for use in lieu of the previous electromechanical

device.

The digital flight controller was developed using the MatrixX rapid prototyping

system and a previously validated dynamic model of the FROG. Surrogate flight control

servo actuators were characterized in the laboratory and added to the plant model.

Classic inner/outer loop controllers were developed for yaw damping and speed, altitude

and heading control. The system was then successfully demonstrated with hardware in

the loop in the lab. The FROG was then instrumented and a command uplink latency of

170 ms was discovered. This introduced excessive phase lag into the system, which

drove the flight controllers unstable. An alternate serial uplink method was developed

and tested which reduced the command latency to 76 ms however the remaining phase

lag resulted in limit cycle oscillation. Laboratory tests indicated that the current flight

controller could withstand a maximum of 50 ms command path delay, without

modification.

2

THIS PAGE INTENTIONALLY LEFT BLANK

3

II. FROG UAV SYSTEM

A. DESCRIPTION OF THE AIRPLANE

The FROG unmanned aerial vehicle (UAV) is a small high wing monoplane

used for digital control system research by the Naval Postgraduate School Aeronautics

Department. The airplane was manufactured by BAI Aerosystems, as the BAI TERN

(Tactically Expendable Remote Navigator), and was formerly designated the FOG-R by

the U.S. Army. In the FOG-R configuration the airplane was equipped with a fiber optic

data link for command uplink and video downlink. The TERN was designed to carry up

to twenty-two pounds of payload for periods of up to four hours. The TERN UAV is

currently in use as a test bed for sensor systems by both the US Navy’s Strike UAV

Program and NASA. In the past, the NPS FROG had been configured with a variety of

sensors including an onboard autopilot, various inertial measurement units, GPS

receivers, an instrumented nose boom and a digital camera. The FROG is depicted in

Figures 2.1 and 2.2.

Figure 2.1. FROG UAV.

4

Figure 2.2. FROG UAV 3 View Drawing.

The FROG is configured with a Model BA64 6.4 cubic inch, horizontally

opposed, piston engine, manufactured by Brinson Aircraft Company. The 2-cylinder

engine developed 9.3 Hp and is equipped with a two bladed propeller mounted in a

tractor orientation in a nacelle atop the wing, as depicted in Figure 2.3. The FROG has

fixed tricycle landing gear with a steer-able nose wheel. The empennage is connected to

the body of the airplane by a 1.75-inch diameter aluminum tube. The FROG is equipped

with conventional elevator, rudder, ailerons and flaps. Small servomotors, designed for

use in radio-controlled airplanes, actuate the control surfaces. The FROG’s significant

physical characteristics are presented in Table 1.1.

Figure 2.3. FROG Engine Configuration.

5

PARAMETER MEASUREMENT

Length 8.125 ft

Height 1.75 ft

Weight 67.7 lbs

Power Plant 9.3 Hp / 2 Cycle

Wing Airfoil NACA 2415

Horizontal Stabilizer Airfoil NACA 0006 (Approx.)

Wing Span (b) 126.5 in

Tail Span (bw) 39.75 in

Vertical Tail Span (bv) 15.0 in

ARw 6.32

Table 2.1. FROG UAV Physical Characteristics.

B. FROG RAPID FLIGHT TEST PROTOTYPING SYSTEM

The FROG Rapid Flight Test Prototyping System (RFTPS) is a broad description

of the hardware and software architecture used control the FROG in flight. The RFTPS

may be conveniently divided into a command channel (uplink) and feedback channel

(downlink). The ground segment of the command channel includes a safety pilot with

manual radio controller, an AC-104 computer running the flight control software and a

pulse code modulation (PCM) transmitter. The airborne segment includes a PCM

receiver and the servo actuators. The feedback channel includes the differential global

positioning system (DGPS) receiver, inertial sensors (NPS inertial measurement unit or

Crossbow attitude heading reference system), control surface position transducers, and

wireless spread spectrum modems. Flight control commands are generated on the

ground by either the safety pilot or by the AC-104 computer. Command signals from

the AC-104 computer are converted to a PCM signal by a Futaba radio controlled

airplane transmitter, which broadcasts them to the airplane. The airplane’s Futaba

receiver then decodes the PCM signal and generates PWM commands for each of the

control servo channels. In the feedback channel, sensor outputs are digitized and

transmitted via spread spectrum modem to the ground station for processing. Two

6

different inertial measurement units are currently in use with the FROG. When

configured with the NPS IMU, the DGPS and IMU sensor data are merged into a single

time phased serial output stream. This is accomplished by an embedded microcomputer

within the IMU. The CrossBow attitude heading reference system’s (AHRS) higher

bandwidth necessitated addition of a second downlink modem to the airplane. The

RFTPS architecture is depicted in Figure 2.4.

AC-104
Computer

TT8GPS/IMU

FreeWave
Modem

IMU
Computer

Position
Transducers

Servo
Actuators

FreeWave
Modem

Slave
Futaba

Master
Futaba

Futaba
Receiver

(Analog)

(PWM)

(PPM)

(PCM)

(Mechanical)
(Analog)

(Serial)
38400 bps

(Serial)
38400 bps

(Various)

AC-104
Computer

TT8GPS/IMU

FreeWave
Modem

IMU
Computer

Position
Transducers

Servo
Actuators

FreeWave
Modem

Slave
Futaba

Master
Futaba

Futaba
Receiver

(Analog)

(PWM)

(PPM)

(PCM)

(Mechanical)
(Analog)

(Serial)
38400 bps

(Serial)
38400 bps

(Various)

Figure 2.4. FROG Rapid Flight Test Prototyping System.

1. MATRIXX Rapid Prototyping System

The MATRIXX software suite provides and integrated environment for control

system design, software engineering, data acquisition and testing. The software suite

consists of Xmath, SystemBuild, RealSim, AutoCode, and the pSOSystem real time

operating system. The Xmath program provides the system analysis and visualization

environment. Xmath includes over 700 predefined functions and commands and

includes a compact scripting language for simplified command and function

programming. Basic Xmath commands support operations such as creating, plotting,

saving and loading data. Additional add-on modules provide sophisticated control

system design and analysis functions. SystemBuild visual modeling and simulation

software provides a graphical control system design environment. Continuous time,

7

discrete time and hybrid systems are easily constructed by selecting elements from

predefined palettes. SystemBuild includes built in simulation tools that allow the user to

interactively verify, test and modify system models. Data generated during SystemBuild

simulations may be captured and further analyzed using the powerful built- in (or user

defined) functions in Xmath. The functions and implementation of Xmath/SystemBuild

is analogous to MATLAB/SimuLink. The AutoCode module is an automatic code

generator for SystemBuild models. The AutoCode software processes the SystemBuild

model files and creates either ANSI C or Ada code, which can then be compiled to

create a stand-alone real-time executable program. AutoCode builds the program

scheduler by means of a template file for the target real time operating system (RTOS).

The scheduler performs overall direction and control of inserting inputs, scheduling

tasks, posting outputs and dispatching the tasks that perform the work of the real time

system. The application scheduler operates on the principle of rate-monotonic

scheduling, deriving priorities for the tasks from the repetition rate for periodic

subsystems. Higher priorities are assigned to faster subsystems while slower ones are

assigned lower priority. Understanding of the scheduler mechanization is critical to

achieving predictable real-time performance. Once compiled, the stand-alone

executable code is suitable for the test-bed environment or for use in an embedded real-

time system. The RealSim controller allows the user to perform real-time simulations of

feedback control systems designed in SystemBuild. RealSim compiles and links the

application code and includes provisions for connecting real hardware to the controller

for rapid prototyping and hardware- in-the-loop (HITL) testing. A data acquisition

module permits the user to record any selected input/output parameters for further

analysis in Xmath. Run-time graphical user interfaces can be built that allow the user to

observe and interact with the simulation while it is running on a real-time computer.

MATRIXX also includes custom drivers for the PC-104 based AC-104B computer to

permit easy download and execution of the real-time system. The pSOSystem RTOS

provides an execution environment on the computer that runs the real-time code.

AutoCode includes a template that optimizes the C code for the pSOSystem RTOS.

8

2. AC-104 Controller Configuration

The complete RealSim system includes a host PC (Windows 95/98/NT/2000 and

the MATRIXX software suite) and a second PC with an RTOS, to act as the controller.

The AC-104 is a compact microcomputer manufactured by Integrated Systems

Incorporated (now WindRiver Systems, Inc.), Figure 2.5. The AC-104 facilitates real-

time control and prototyping of hardware systems by integrating a complete

microcomputer with PC-104 based hardware I/O modules.

Figure 2.5. AC-104 Real-Time Controller.

The AC-104 is based on an Advantech PCM-5862 motherboard configured with a

Pentium MMX processor operating at 233 MHz. The NPS AC-104’s are configured

with 16 MB of EDO RAM, and a 4 MB flash disk for non-volatile storage. Basic I/O is

provided by a PCI–SVGA display controller, two serial ports (RS-232/422/485), an

enhanced parallel port, keyboard controller and a PCI based 10Base-T Ethernet

connection. The Host computer communicates with the AC-104 via the Ethernet

connection and may do so by direct cable connection or across a distributed network.

Enhanced I/O functions for hardware control and data acquisition are provided by add-

on cards, which interface with a PC-104 ISA expansion bus. The AC-104 comes

9

configured with an Analogic AIM16 PC-104 16-bit analog-to-digital (A/D) converter, a

Diamond Systems Ruby-MM 12 bit digital-to-analog (D/A) converter and an SBS

GreenSprings Modular I/O Industry Pack IP-68322 data acquisition and control module.

The IP-68322 module integrates a Motorola MC68322FC micro-controller with a Xilinx

3030 field programmable gate array (FPGA) onto a standardized form factor to provide

advanced data acquisition and hardware control capabilities. The IP-68322 is a daughter

board on a two slot Flex/104A carrier board. NPS has added an SBS GreenSpring IP-

Serial board to the second slot on the Flex/104A board. The IP-serial board provides

two RS-232-C/422 serial channels and provides programmable baud rates up to 2

Mbit/sec. The AC-104 has eight 50-pin Centronics connectors for PC-104 based I/O.

All connections are located on the front face of the AC-104, Figure 2.6. Standard PC

connectors are also provided for all non-PC-104 I/O.

Figure 2.6. AC-104 Interface Layout.

3. Command Uplink

The FROG is controlled by command signals transmitted from a ground based

Futaba FP-9ZAP digital proportional radio control set, Figure 2.7. The NPS FROG

command channel takes advantage of a unique feature designed into the FUTABA

10

transmitters. Two Futaba transmitters may be linked together, by means of a cable, to

form a MASTER / SLAVE system, as depicted in Figure 2.8.

Figure 2.7. Futaba FP-9ZAP Digital Proportional Radio Control.

Figure 2.8. FROG Master/Slave Transmitter Arrangement.

11

This configuration was originally designed to facilitate the training of novice

radio controlled airplane pilots. The instructor pilot can operate the Master controller

while the student operates the Slave. When the Master controller is active the instructor

pilot’s command inputs are converted to pulse code modulated (PCM) signals that are

transmitted to the airplanes receiver. The pilot’s control joysticks are connected to

potentiometers, which provide a voltage that is proportional to the joystick position.

This voltage value is then used to encode the PCM stream. The Master controller

transfers control to the Slave by actuation of a single electric switch. When the Slave

controller is active the Slave’s commands are converted to pulse period modulation

(PPM) signals, which are then relayed to the Master via the link cable. The Master

controller decodes the PPM signals from the Slave and converts them to PCM for output

on the Master’s transmitter. Significant latency in the AC-104’s commands, due to this

mechanization, was discovered during this research. This time delay poses significant a

challenge for control system design. The Slave controller is a highly modified 8-channel

Futaba FP-8UAP digital proportional radio. In the Slave, the joystick potentiometers

have been disconnected and externally generated voltages are passed directly to the

controller’s A/D converter via a DB-9 connector. The AC-104 based controller converts

airplane control commands into scaled voltages via an integral D/A converter. These

signals are then passed to the Slave controller by a locally manufactured data cable

connected to the DB-9. The Futaba transmitters have a maximum range of

approximately 1.5 miles. This short range severely limits the volume in which this

airplane may operate. Figure 2.4 depicts the RFTPS command channel architecture.

Onboard the FROG, a Futaba FP-R309DPS receiver decodes the PCM command

signal and generates pulse width modulated (PWM) commands on each of eight separate

channels. Each channel may be connected to one of the control servos, as depicted in

Figure 2.9. The FROG is configured with a variety of servos; each with different

performance specifications. All servos share a common specified neutral pulse width

(positions the servo at the mid-range location) of 1.52 ms. Due to installation

requirements, the neutral control surface position does not correspond to the neutral

servo position.

12

Figure 2.9. Futaba Receiver to Servo Connections from Ref. [1].

4. Sensor Downlink

Sensors onboard the FROG provided feedback to the digital flight control

system. At the present time there are two different GPS/INS sensor suites under

development for use with the FROG. The first is based on an indigenously designed and

manufactured inertial measurement unit (the NPS IMU) and a DGPS receiver

manufactured by Trimble, Inc. The second is comprised of the same DGPS receiver and

a commercial attitude heading reference system (AHRS) manufactured by Crossbow

Technology, Inc. The data interface differs significantly for these two configurations,

which necessitates unique avionics architectures for each. Both sensor suites include a

Trimble AgGPS 132 DGPS receiver. The AgGPS is a 12 channel L-band differential

correction receiver that provides sub-meter accuracy. The GPS receiver is configured

with two programmable RS-232 serial ports and provides position updates at a

maximum frequency of 10 Hz.

The NPS IMU configuration consists of the AgGPS 132 receiver and an

indigenously designed and manufactured IMU. The IMU contains both analog and

13

digital sensors. In order to convert the analog signals to digital data and format a

combined digital output stream a microcomputer was developed. The computer is based

on two TattleTale 8 data loggers, manufactured by Onset Computer Corporation. The

Tattletales are configured in a Master/Slave arrangement. Each TattleTale includes a

Motorola 68322 micro-controller, an eight channel 12-bit A/D converter and two RS-

232 serial ports. The digital and analog sensor data and GPS serial output are processed

in the TattleTale computers and formatted into custom serial messages for down link to

the ground station. The Master Tattletale outputs IMU sensor data at 40 Hz and

interleaves GPS messages at 10 Hz. The serial transmission rate is 38,600 bps. A more

detailed discussion of the IMU computer’s design and operation may be found in

paragraph II.C.2. The Master Tattletale computer is connected to a FreeWave wireless

spread spectrum data transceiver (modem) manufactured by FreeWave Technologies,

Inc. The FreeWave modem has a power output of 1/3 Watt and operates at in a

frequency range of 902 – 928 MHz. It is capable of communicating at a line of sight

range of up to 20 miles and supports data transmission at baud rates from 1200 bps –

115.2 Kbps. A matching FreeWave modem is connected to the PC-104 based IP-Serial

card on the AC-104 ground station and provides a continuous data stream to the FROG

controller. The NPS IMU downlink architecture is depicted in Figure 2.10.

AC-104
Computer

TT8GPS/IMU

FreeWave
Modem

IMU
Computer

Position
Transducers

Servo
Actuators

FreeWave
Modem

(Mechanical)
(Analog)

(Serial)
38400 bps

(Serial)
38400 bps

(Various)

AC-104
Computer

TT8GPS/IMU

FreeWave
Modem

IMU
Computer

Position
Transducers

Servo
Actuators

FreeWave
Modem

(Mechanical)
(Analog)

(Serial)
38400 bps

(Serial)
38400 bps

(Various)

Figure 2.10. NPS IMU Downlink Architecture.

14

The Crossbow AHRS is currently configured for continuous digital output of all

sensor data at an average rate of 65 Hz. The TattleTale downlink bandwidth limits

updates to approximately 50 Hz so an alternate downlink configuration was developed

in order to take full advantage of the AHRS faster update rate. The AgGPS receiver (10

Hz) and the Crossbow AHRS (60 – 70 Hz) are each connected to their own dedicated

FreeWave modem. These two modems communicate independently with two ident ical

modems which are connected to Channels A and B on the AC-104 IP-Serial card. The

digital flight controller reads each serial stream and updates the control system

accordingly. The Crossbow AHRS downlink configuration is depicted in Figure 2.11.

AC-104
Computer

AHRS

FreeWave
Modem

FreeWave
Modem (Serial)

38400 bps

(Serial)
38400 bps

DGPS

FreeWave
Modem

(Serial)
38400 bps

(Serial)
38400 bps

FreeWave
ModemAC-104

Computer

AHRS

FreeWave
Modem

FreeWave
Modem (Serial)

38400 bps

(Serial)
38400 bps

DGPS

FreeWave
Modem

(Serial)
38400 bps

(Serial)
38400 bps

FreeWave
ModemAC-104

Computer

AHRS

FreeWave
Modem

FreeWave
Modem (Serial)

38400 bps

(Serial)
38400 bps

DGPS

FreeWave
Modem

(Serial)
38400 bps

(Serial)
38400 bps

FreeWave
Modem

Figure 2.11. Crossbow AHRS Downlink Architecture.

5. Electromagnetic Interference

Prior to one flight test, spurious signals were found to be interfering with the

Futaba command signals. The FROG had been configured with both the NPS IMU and

Crossbow AHRS. During the ground check the safety pilot found that the control servos

responded erratically to each input. The electromagnetic interference (EMI) was

initially attributed to the presence of two FreeWave modems, in close proximity to the

airplane’s Futaba receiver, but extensive trouble shooting at the UAV lab was unable to

duplicate the effect. While the FreeWave modems may contribute to an adverse

15

electromagnetic environment the NPS IMU itself may also be a significant contributor.

The IMU has a DC-to-DC switching converter mounted externally to provide regulated

power to the various avionics sub-systems. The EMI effects of this converter should be

investigated. Additionally, the frequency spectrum that the Futaba controllers use is

publicly available. As such, accidental (or intentional) signal jamming may be

encountered. Transition to serial uplink transmission would significantly improve the

signal to noise tolerance of the system and reduce the likelihood of accidental

interference.

C. NPS INERTIAL MEASUREMENT UNIT

The design and manufacture of an integrated inertial measurement unit (IMU) is

a significant undertaking. The NPS IMU was developed to provide a low cost, high

quality inertial measurement unit for use in digital control systems for the FROG UAV.

The decision to locally design and manufacture an IMU was necessitated by the

inadequate performance of an IMU-600D IMU manufactured by Watson Industries.

The NPS IMU was designed not only as a sensor for FROG flight control projects but

also as a teaching tool that would allow investigation of such subjects a sensor

modeling, time-correlated random constant errors (such as bias and misalignment),

complementary and Kalman filtering, digital avionics and real-time operating systems

for embedded control. The adequacy of the NPS IMU for in flight inertial measurement

has not been evaluated yet. The hardware and embedded controller’s software have just

recently reached the state where they can support sensor calibration. IMU calibration, to

determine the time-correlated errors, can be accomplished at NPS using a 2-axis turning

table and is expected to proceed in the near future. While much of the NPS IMU’s

potential has yet to be realized, it has provided valuable experience in the software

design, data bandwidth management, micro-controller design and the practical

challenges involved in any system development effort where specific design criteria are

developed in parallel to the hardware.

1. Sensor Description

The development of the NPS IMU must be characterized as evolutionary. As

such the sensor suite and associated electronics have undergone several significant

revisions. In it’s current form the NPS IMU is configured with solid-state rate

16

gyroscopes, accelerometers, magneto-resistive flux sensors and a spinning mass vertical

gyroscope. Three Gyrochip AQRS-00064-104 angular rate sensors, manufactured by

the Systron Donner Inertial Division of BEI Technologies, Inc, are used to measure

angular rates. The Gyrochip rate sensors utilize a micromachined double-ended quartz

tuning fork fabricated from mono-crystalline piezoelectric quartz. Specifically designed

for “demanding automotive and commercial” applications, the gyros have a specified

range of ± 64°/sec. Applying the Coriolis effect, a rotational motion about the sensors

input axis produces a DC voltage (analog output) proportional to the rate of rotation. As

each gyro is housed in it’s own individual package it is expected that misalignment and

relative orthogonality will be significant contributors to the time-correlated random

error. The AQRS Gyrochip is depicted in Figure 2.12.

Figure 2.12. BEI GyrochipTM Rate Gyro

The 3DM™ 3-axis orientation, manufactured by MicroStrain, Inc., provides

linear acceleration and magnetic flux measurements. The 3DM is designed to provide

tilt sensing via orthogonal accelerometers and magnetic compass functions via

orthogonal flux gate magnetometers. The 3DM is configured with two ± 2 g

17

ADXL202E dual axis IC based accelerometers, manufactured by Analog Devices, Inc.

The accelerometers contain polysilicon surface micromachined sensors and signal

conditioning circuitry to implement an open loop acceleration measurement architecture.

The output of each sensor element is lowpass filtered and then converted to a duty cycle

(pulse width) modulated signal for output to the 3DM’s own microprocessor. Magnetic

field sensing is provided by orthogonally mounted IC based linear magnetic field

sensors, manufactured by Honeywell. The HMC1021/1022 magneto-resistive sensors

are made of a nickel- iron (Permalloy) thin film deposited on a silicon substrate. The

Honeywell magneto-resistive sensors are simple resistive bridge devices that provide an

analog voltage output corresponding to any ambient or applied magnetic field. A 12-bit

A/D converter within the 3DM™ digitizes the analog output of the magnetic sensor.

The 3DM uses the accelerometers and magnetometers to calculate pitch, roll and yaw

angles relative to the earths magnetic and gravitational fields. The 3DM can also be

programmed to output raw accelerometer and normalized magnetic field strength values

converted to engineering units. All data is output at 9600 baud via an RS-232 serial

port. The 3DM supports a maximum output rate of approximately 30 Hz. During early

development of the NPS IMU the 3DM suffered spurious mode switching between

continuous and polled modes of operation. At that time the erratic behavior was

attributed to EMI within the IMU case. To alleviate this problem MicroStrain provided

a special version of the 3DM embedded operating software on EEPROM. This

software supports only the polled/raw sensor output mode of operation. The original

3DM™ EEPROM has been retained and the unit could be converted back to the angle

measuring configuration once EMI concerns have been addressed. The 3DM

orientation sensor is depicted in Figure 2.13.

18

Figure 2.13. 3DM 3-Axis Orientation Sensor.

The NPS IMU contains a second attitude source in the form a VG-34-0201-2

vertical gyroscope manufactured by Humphrey, Inc. The VG-34 vertical gyro is a

classic gimbaled spinning mass gyroscope. The vertical gyro contains two electrolytic

level sensors, which provide a “gravity” reference for pitch and roll position. The VG-

34 has a specified accuracy of ±0.1° for both pitch and roll. Conductive plastic

potentiometers are used to provide analog pitch and roll output signals. The Humphrey

vertical gyro’s requirement for 28 Vdc and relatively high power consumption was the

significant driver in the design of the IMU’s power supply. The VG-34 vertical

gyroscope is depicted in Figure 2.14.

Figure 2.14. Humphrey VG-34-0201-2 Vertical Gyroscope.

19

Table 2.2 lists the operating limits of the NPS IMU’s sensors and the output data

formats.

Sensor Parameter Limits Output

Gyrochip Rate
Gyros

Angular rate

± 64 ° / sec

Analog – voltage

Linear Acceleration

± 2 g
(6 KHz bandwidth)

Serial – RS-232 at
9600 buad

3DM Orientation

Sensor
Magnetic Field

± 2 guass
(Normalized)

Serial: RS-232 at
9600 baud

Humphrey VG-34
Vertical Gyro

Pitch / Roll

± 60° / ± 90°

Analog - voltage

Table 2.2. NPS IMU Sensor Performance Limits.

2. Embedded Micro Controller Development

The FROG’s airborne sensor suite includes the NPS IMU (or Crossbow AHRS),

the Trimble AgGPS 132 differential GPS receiver and a variety of analog transducers

(position, pressure and temperature). The serial downlink architecture mandated that all

sensor data be digitized prior to transmission to the ground station for processing. It was

also desired to minimize the potential for EMI by employing a single wireless modem to

transmit the onboard data. Within the NPS IMU both digital and analog sensor outputs

are present. Additionally, the required GPS data are embedded in two separate serial

messages. In order to provide a single formatted IMU output message that could meet

high update rates, with minimal latency, it was necessary to develop an embedded

microcomputer. At a minimum the microcomputer needed the ability to convert analog

signals to digital (A/D), store and process the sampled data, and send and receive serial

data. The microcomputer was required to interface with as many as sixteen analog

sensors, receive serial data from two separate sources (operating at different baud rates

and update frequencies) and transmit serial data on a third channel. The TattleTale

Model 8 data logger, manufactured by ONSET Computer Corporation, was selected for

this purpose. The TattleTale 8 is a low cost miniature micro-controller that provides an

8-channel A/D converter, fourteen digital I/O lines, two RS-232 ports and is powered by

a Motorola 68322 32-bit microprocessor and a PIC 16C64 coprocessor, Figure 2.15.

20

The Tattletale 8 is also configured with 256Kb of Flash EEPROM for storing the

controller program and 1 MB of RAM.

Figure 2.15. TattleTale Model 8 Micro-Controller.

As a single TattleTale could not satisfy the demands for analog to digital

conversion and serial communication, two TattleTales are networked to form the

embedded IMU computer. Initially, one processor was programmed to read and process

the IMU sensor data (hereafter referred to as the “3DM TattleTale”) and the other was

programmed to read and process the GPS serial output messages (hereafter referred to as

the GPS TattleTale). The GPS and 3DM TattleTales time-shared a single wireless

modem by means of an external CMOS multiplex switch that allowed the 3DM

TattleTale to transmit at a different rate than the GPS TattleTale. In this scheme the

output signals were triggered to the GPS output message, which was believed to be a

reliable 10 Hz. Both TattleTale’s were programmed in BASIC and the resulting code

output GPS data at 10 Hz and IMU data at approximately 20 Hz. As the system

requirements were better understood the required IMU sensor update rate was increased

to a minimum of 40 Hz. In order to meet the new timing requirements LT Matt

Commerford crafted an entirely new real- time operating system for each TattleTale

using the Aztec C language (a variant of ANSI C). Additionally, LT Commerford

developed a Master/Slave architecture which greatly increased the output rate while also

21

significantly improving the systems overall determinism. Though the previous

nomenclature has been retained the current Master/Slave micro-controller configuration

is more appropriately called the “FROG onboard computer”. The FROG computer

functional architecture is depicted in Figure 2.16. The following discussion draws

heavily from the unpublished notes of LT Commerford, reference 2.

SLAVE
CPU

GPS - 10 Hz
(time, lat, long, alt,
speed, heading, etc)
RS - 232 38,400 bps

To Modem
System Timing
And Control

MASTER
CPU

Vertical Gyro
40 Hz - A/D

(φ , θ)

Rate Gyros
40 Hz - A/D

(p, q, r)

3DM Accel 20 Hz
RS - 232 9,600 bps

(Ax, Ay, Az , Hx , Hy , Hz)

Surface Positions
40 Hz - A/D

Digital
57,600 bps

Throttle Position,
Temp, Pressure

20 Hz – A/D
(+5 channels for future use)

RS - 232
38,400 bps

Figure 2.16. FROG Onboard Computer Functional Architecture after Ref. [2].

The 3DM TattleTale is the Master processor in the Master/Slave configuration.

It controls the overall system timing and acts as the scheduler for all serial output to the

ground station. The Master processor samples the IMU’s analog sensors, polls the 3DM

sensor and receives digital data from the GPS TattleTale via a digital I/O line configured

for serial communication. The GPS TattleTale receives the DGPS receiver’s serial

output and parses the data for the minimum required data set. The customized GPS

message is then transferred to the Master processor where it is queued for transmission.

The Slave processor’s A/D channels are also sampled and passed to the Master for

output with the IMU data. Each sensor has its own inherent limitations that restrict the

maximum allowable data rate. Samples from each sensor are taken at various data rates

and merged together in order to achieve a highest possible downlink data rate while

maintaining an easily decoded and error free data stream. In order to maximize the

22

downlink bandwidth all sensor data is converted to binary prior to transmission (vice

ASCII). The use of binary coded data significantly reduces the number of bytes

transmitted. The combined sensor output provides measurements of the complete state

vector, with the exception of heading (ψ). The measured parameters, associated sensors

and computer update rates are presented in Table 2.3.

Parameter Data Rate Source Notes

Angle rates (p,q,r) 40 Hz AQRS 104 4.096 Volt A to D sample
Pitch / Roll Angle (φ,θ) 40 Hz VG-34 4.096 Volt A to D sample

Control Surface Position
(elevator, aileron, rudder)

40 Hz

Series 150
String Pots

4.096 Volt A to D sample

Throttle Position

10 Hz

Series 150
String Pot

4.096 Volt A to D sample

Acceleration (ax, ay, az) 20 Hz 3DM RS-232 9,600 baud

Magnetic Field (Hx, Hy, Hz) 20 Hz 3DM RS-232 9,600 baud
GPS Time (t) 10 Hz Ag132 GPS RS-232 38,400 baud

GPS Latitude (Lat) 10 Hz Ag132 GPS RS-232 38,400 baud

GPS Longitude (Long) 10 Hz Ag132 GPS RS-232 38,400 baud
GPS Altitude (Alt) 10 Hz Ag132 GPS RS-232 38,400 baud

GPS Ground Speed (Knots) 10 Hz Ag132 GPS RS-232 38,400 baud

GPS Ground Track
(Degrees True)

10 Hz

Ag132 GPS

RS-232 38,400 baud

Magnetic Variation (Deg) 10 Hz Ag132 GPS RS-232 38,400 baud

Outside Air Temperature 20 Hz TBD 4.096 Volt A to D sample

Differential Pressure (for
airspeed)

20 Hz

TBD

4.096 Volt A to D sample

Future Use

20 Hz

TBD

5 Spare A/D channels
 (α, β , Vbat, etc.)

Table 2.3. NPS IMU Downlink Data List.

a. 3DM Tattletale Program

The 3DM TattleTale (Master) was required to sample and process all

inertial sensor and control surface position data and schedule and perform the

transmission of all airborne data. This task was complicated by the differing update

rates between the 3DM sensor and the GPS receiver. It was desired that all sensor data

23

be updated and transmitted at the fastest reliable rates. The sensors supported three

different update rates: 10 Hz, 30 Hz and continuous. An analysis of the data bandwidth

requirements indicated that a maximum minor frame size of 20 ms (50 Hz) was possible.

In order to ensure successful operation a minor frame length of 25 ms was chosen (40

Hz) for the scheduler. The 3DM’s special EEPROM only supports polled mode

operation. This requires that the Tattletale send a “request for data” command (90h or

144 decimal) to which the 3DM will respond with the 13-byte message presented in

Table 2.4.

Data Description

Diagnostic Byte 0x41h if Valid; 0x6Xh if error (‘X’ is an error code)

HX-m X Axis Magnetometer Data MSB

HX-l X Axis Magnetometer Data LSB

HY-m Y Axis Magnetometer Data MSB

HY-l Y Axis Magnetometer Data LSB

HZ-m Z Axis Magnetometer Data MSB

HZ-l Z Axis Magnetometer Data LSB

AX-m X Axis Accelerometer Data MSB

AX-l X Axis Accelerometer Data LSB

AY-m Y Axis Accelerometer Data MSB

AY-l Y Axis Accelerometer Data LSB

AZ-m Z Axis Accelerometer Data MSB

AZ-l Z Axis Accelerometer Data LSB

Table 2.4. 3DM Magnetometer & Accelerometer Data Format.

The 3DM data are transmitted MSB first and LSB second for each

measured value. The bytes are then decoded as Value = 256 x MSB + LSB.

The 3DM provides a single output rate of 9600 baud that should support

update rates in excess of 70Hz however timing tests revealed that a maximum reliable

update rate was only about 30 Hz. In order to provide consistent and predictable timing

performance it was decided to poll the 3DM at 20Hz (once every other minor frame).

Once received, the 3DM data is buffered in the Tattletale’s RAM and is transmitted with

24

each periodic IMU message. The remaining analog sensors in the IMU data package are

sampled at 40 Hz. To simplify the decoding of the IMU data, a single standard IMU

data message was developed. This message is transmitted at 40 Hz; with the 3DM data

updated only every other frame. The “userser.c” serial driver written for the RFTPS

decodes this downlink data message. As a result of this implementation, the 3DM

output occurs in repeated pairs. In order to perform frequency domain analysis it is first

necessary to strip off every other data value and use the sampling rate of 20 Hz for the

analysis. The 3DM™ TattleTale program is included in Appendix A.

b. GPS TattleTale Program

The Trimble Ag132 GPS receiver computes position at a maximum

frequency of 10 Hz. The GPS position data are then transmitted at 38400 baud to the

GPS TattleTale processor. All output conforms to the National Marine Electronics

Association (NMEA) GPS data protocol. Unfortunately, the parameters needed for

navigation and control are not contained in a single standard NEMA message. The

minimal GPS data set can be generated from two separate NEMA messages: $GPGGA

and $GPRMC. The combined $GPGGA and $GPRMC sentences consist of

approximately 161 ASCII text characters (varies slightly depending upon data content).

At an update rate of 10 Hz and baud rate of 38400 bps these two complete messages

would consume approximately thirty percent of the available downlink bandwidth.

Fortunately, it is possible to glean a minimal data set from these messages and generate

a single binary coded GPS data message that only requires 31 bytes. The GPS

TattleTale receives the GPS receiver’s output messages via one of its RS-232 serial

ports. The messages are then parsed to form a compact GPS message. The compact

GPS data message is then transmitted at 57600 baud to the Master processor, on the

3DM Tattletale, via one of the 68322’s digital I/O lines. Table 2.5 presents the data

contained in the standard NEMA $GPGGA and $GPRMC output messages and the NPS

IMU GPS downlink message.

25

Parameter $GPGGA $GPRMC NPS IMU

UTC of Position Fix X X X

Latitude X X X

Latitude Direction (N or S) X X

Longitude X X X

Longitude Direction (E or W) X X

GPS Quality Indicator X X

Number of Satellites in use X

Horizontal Dilution of Precision (HDOP) X

Antenna Altitude (MSL) X X

Geoidal Separation X

Time since last Differential mode update X

Differential Mode reference Station ID# X

Data Status X

Speed over ground (kts) X X

Track made good in degrees True X X

UTC Date X

Magnetic Variation X X

Magnetic Variation Direction X X

Checksum X X

Table 2.5. Comparison of GPS Message Data Content.

The specified GPS update rate of 10 Hz corresponds to a period of 100

ms for each GPS message. Lt Commerford’s extensive analysis of the GPS output

signal confirmed that the ASCII text data is reliably received from the GPS at an

average rate of 10 times per second, without dropouts our lost samples. The exact time

of the arrival of the GPS data however exhibited significant variability. While the

average update rate was 10 Hz each individual update arrived early or late; with some

observed as much as 100 ms time late (i.e. 200 ms between successive updates). This

uncertainty in sample time presents problems when trying to model the GPS for control

system design and analysis and may require greater gain and phase margins to account

26

for unmodeled (or inaccurately modeled) sensor behavior. The GPS parsing routine is

designed to wait until a full message has been received. Therefore, the timing of the

computers major and minor output frames was coordinated by the Master processor’s

real-time clock signal (vice the GPS message signal used in the previous

implementation). The Slave processor’s operating code is included in Appendix A.

Downlink data is transmitted in a binary format as a series of 8-bit bytes.

This coding scheme reduces the throughput requirement on the downlink channel but

requires the ground station’s serial driver to decode it before it can be input into the

flight controller. Values that range between 0 and 255 can be represented by a single

byte, with no conversion necessary. Values that range between 0 and 65535 must be

represented by a two 8-bit bytes. Our convention is to send the most significant byte

(MSB) first, followed by the least significant byte (LSB). To decode a two-byte

unsigned integer the following formula is applied:

 256Value MSB LSB= • + (2.1)

For signed integers a slightly different conversion must be used; since the

most significant bit of the MSB is usually a sign bit. The procedure used to decode 16-

bit 2’s complement data is

15

16

256

 Value > 2

2

Value MSB LSB

if

Value Value
endif

= • +

= −
 (2.2)

Since the 3DM TattleTale downlinks three different data messages a unique two-

byte header was incorporated to distinguish each one. Table 2.5 presents a summary of

the TattleTale downlink messages characteristics.

27

Message Content

Header (Hex /
Decimal)

Number of Data
Bytes (less Header)

Transmit
Rate

IMU Sensor Data FF FF / 255 255 28 40 Hz
GPS Data EE EE / 238 238 29 10 Hz
GPS TattleTale A/D Data DD DD / 221 221 16 20 Hz

Table 2.5. TattleTale Downlink Message Characteristics.

D. CROSSBOW ATTITUDE HEADING REFERENCE SET

The AHRS400CA-100 is a low cost, compact solid-state AHRS manufactured by

Crossbow Technology, Inc. The AHRS measures linear acceleration, angular velocity,

and magnetic flux for three orthogonal axes and computes stabilized values of pitch, roll

and heading by using proprietary Kalman filter algorithms. Output data is provided in

both digital and analog formats via a standard female DB-15 connector. The AHRS is

depicted in Figure 2.17.

Figure 2.17. Crossbow AHRS400CA-100 Attitude Heading Reference System.

1. Hardware Description

The AHRS features silicon micro-machined accelerometers and gyroscopes and

flux gate magnetometer. The AHRS400CA-100 is configured with a ± 2 g tri-axial

accelerometer, a ± 100°/sec rate tri-axial gyroscope, a tri-axial fluxgate magnetometer

and a temperature sensor. The angular rate sensors consist of vibrating ceramics plates

that utilize the Coriolis forces of output angular rate independently of acceleration. The

28

tree MEMS accelerometers are surface micro-machined silicon devices that use

differential capacitance to sense acceleration. The sensor outputs are converted to

digital signals in a 14-bit A/D converter and then processed by the embedded

microprocessor. The microprocessor provides serial output at 38400 baud via the RS-

232 compliant interface. Analog output signals are provided by a 12-bit D/A converter.

The AHRS system architecture is depicted in Figure 2.18.

Figure 2.18. Crossbow AHRS System Architecture.

The AHRS has three sensor modes of operation, voltage, scaled sensor, and

angle mode. In voltage mode, the analog sensors are sampled and converted to digital

data with 1 mV resolution. The rate sensor, magnetometer and angle analog outputs are

disabled in this mode though this data is still provided in the serial data stream. In

voltage mode the Crossbow provides only un-scaled raw sensor output without any

calibrations or corrections. When operating in the scaled mode the Crossbow AHRS400

is a classic inertial measurement unit (IMU). In the scaled sensor mode, the analog

sensors are sampled and converted to digital data as before but then are temperature

compensated, corrected for misalignment and scaled to engineering units. A factory

calibration table for each sensor is stored in the AHRS non-volatile memory. The

AHRS Kalman filter is not enabled in this mode so rate sensor bias values can be

expected to change over time. Also stabilized pitch, roll and yaw angles are not

available. The analog output signals are enabled in this mode. In the angle mode, the

AHRS acts as a complete attitude and heading reference and outputs stabilized roll, pitch

29

and yaw angles along with the angular rate, acceleration and magnetic field information

available in the scaled mode. The AHRS’ Kalman filter operates in the angle mode to

track the rate sensor bias and calculate the attitude angles. The attitude angles are

computed by integrating the rate sensor outputs. The accelerometers are used to correct

for gyro drift in pitch and roll and the magnetometers are used to compensate for drift in

yaw. The serial data parameters for each of the sensor modes are presented in Table 2.6.

The header and Checksum are passed as single bytes. In angle and scaled sensor modes

all data (except temperature and time) are sent as 16-bit signed integers in twos

complement format, most significant byte first. The temperature and timer data are sent

as 16-bit unsigned integers.

Angle Mode Scaled Sensor Mode Voltage Mode

Header (255) Header (255) Header (255)

Roll Angle Roll Angular Rate Roll Gyro Voltage

Pitch Angle Pitch Angular Rate Pitch Gyro Voltage

Heading Angle Yaw Angular Rate Yaw Gyro Voltage

Roll Angular Rate X-Axis Acceleration X-Axis Acceleration Voltage

Pitch Angular Rate Y-Axis Acceleration Y-Axis Acceleration Voltage

Yaw Angular Rate Z-Axis Acceleration Z-Axis Acceleration Voltage

X-Axis Acceleration X-Axis Magnetic Field X-Axis Mag Sensor Voltage

Y-Axis Acceleration Y-Axis Magnetic Field Y-Axis Mag Sensor Voltage

Z-Axis Acceleration Z-Axis Magnetic Field Z-Axis Mag Sensor Voltage

X-Axis Magnetic Field Temp Sensor Voltage Temp Sensor Voltage

Y-Axis Magnetic Field Time Time

Z-Axis Magnetic Field Checksum Checksum

Temp Sensor Voltage

Time

Checksum

Table 2.6. Sensor Mode Serial Data Parameters.

30

The data message uses a single header byte with a value of 0FFh. During the

development of the serial decoder for the FROG controller it was discovered that this

value appears numerous times within a single data packet. In order to decode the serial

data it is necessary to check each byte to determine if it is the header byte. When a byte

value equals 0FFh a checksum must be computed for the following 28 bytes (22 in

scaled or voltage mode) and compared to the next byte to see if it contains a valid

checksum. If the checksum matches then a single data packet has been found. If not

then the process continues in a serial fashion (byte-by-byte). The use of a single header

byte (who’s value commonly appears within the data message) creates a

computationally intensive and inefficient decoding job. This situation could be greatly

improved by adding a second header byte to each AHRS output message. The

probability of having two consecutive 0FFh’s is extremely low and would greatly reduce

number of computations required in order to decode the message. With a two-byte

header each byte is compared to the byte that preceded it. When both bytes have a value

of 0FFh a valid header has been found and the following bytes are almost certain to hold

the data string. Crossbow Technology’s cost estimate to change to a two-byte header

exceeded the purchase price of the AHRS itself.

2. Timing Performance

The Crossbow AHRS400 was purchased principally as an AHRS for the FROG.

As such, the performance in the angle sensor mode is of primary interest. The AHRS

may be operated in either continuous update or polled mode. In the continuous mode

data is streamed at the AHRS maximum rate. In the polled mode uses a challenge and

response format in which the AHRS responds with a single update message for each

“request for data” command received. During operation the ARHS processor runs in a

loop – collecting data from the A/D converter and processing/formatting the data for

output. The data is output to the user in a parallel process. Each data cycle consists of

three tasks. First, the sensors are sampled. Second, the microprocessor processes the

data and stores it in a set of registers for transfer to the serial output buffer. While the

AHRS is waiting for the serial buffer to clear the processor will simultaneously sample

the sensors again. Third, the unit actually transfers the data out to the RS-232 serial

buffer. In the case of analog output the data is placed on the output pins immediately

31

after the data processing step (no serial buffer delay). The serial data is transferred only

when the previous data packet has cleared the serial buffer. The AHRS continues to

take data (and over-write the data in the output registers) while waiting for the output

buffer to clear. Consequently, only about every third measurement is actually available

over the RS-232 interface.

Crossbow Technologies only specifies a maximum serial update (75 Hz) and

gives no other specific information on output performance. They do state that in

continuous mode the system processor activity is highly deterministic and accurate

timing information can be derived from the overall loop rate. Upon delivery of the

AHRS a flight test was performed to assess the units suitability for use in the FROG. As

AC-104 serial drivers were not yet written, the Gyroview software provided by

Crossbow was used to capture and decode the AHRS output. Gyroview version 2.1

includes the ability to control the AHRS operating mode and includes provisions for

real-time display and frequency domain (via fast Fourier transform) analysis of the

sensor outputs. The Gyroview interface and sample output are depicted in Figures 2.19

and 2.20 respectively.

Figure 2.19. Gyroview Software User Interface.

32

Figure 2.20. Gyroview Real-Time Data Display Capability.

Post flight analysis of the AHRS sensor and computed angle outputs indicated

that the AHRS could provide the level of accuracy required for the flight controller and

future control projects. Figures 2.21 and 2.22 depict the AHRS data for a double figure

eight maneuver. The analysis of the Gyroview data did, however, reveal a highly erratic

and inconsistent update rate, as shown in Figure 2.22. This discovery negates the utility

of the Gyroview Fourier analysis module, as a consistent sampling interval cannot be

maintained. CrossBow’s technicians reviewed this finding and indicated that the timing

irregularities in the captured data were due to unspecified problems in the Gyroview

program itself and that the AHRS output was stable and consistent.

33

1500 1510 1520 1530 1540 1550 1560 1570 1580 1590 1600
-200

-100

0

100

200
Crossbow AHRS, - Figure 8 (Evt 6)

time (sec)

A
tt

it
ud

e
(d

eg
)

roll
pitch
yaw

1500 1510 1520 1530 1540 1550 1560 1570 1580 1590 1600
-100

-50

0

50

100

time (sec)

A
ng

le
 R

at
es

 (
de

g/
se

c)

roll rate (p)
pitch rate (q)
yaw rate (r)

1500 1510 1520 1530 1540 1550 1560 1570 1580 1590 1600
-1

0

1

2

3

time (sec)

li
ne

ar
 a

cc
el

er
at

io
n

(g
)

ax
ay
az

Figure 2.21. Gyroview Flight Test Data (Level Figure-8 Maneuver).

34

1500 1510 1520 1530 1540 1550 1560 1570 1580 1590 1600
-0.5

0

0.5
Crossbow AHRS, - Figure 8 (Evt 6)

time (sec)

M
ag

ne
ti

c
Fl

ux
 (

G
au

ss
)

Hx
Hy
Hz

Norm of H

0 1000 2000 3000 4000 5000
0

50

100

150

data point (n)

U
pd

at
e

R
at

e
(H

z)

Figure 2.22. Gyroview Flight Test Data (Level Figure-8 Maneuver).

To test this assertion, and establish baseline timing performance specifications

for use in our discrete time control system, we performed detailed timing analysis of the

Crossbow AHRS400 serial output signals. Timing tests were performed in both the

continuous and polled operating modes and in the angle and scaled sensor measurement

modes. The AHRS serial output rate was set to the default value of 38400 baud for all

measurements. The update rates, message durations, inter-message gaps and polled

mode response latency were measured with a DSO-2102 PC—based digital storage

oscilloscope, manufactured by Link Instruments, Inc. In the angle mode the 30-byte

data message duration was a consistent 7.510 ms, as shown in Figure 2.23.

35

Crossbow AHRS
Continuos/Angle Mode

Data Packet Duration = 7.51 ms

Figure 2.23. AHRS Angle Mode Serial Output Signal.

In continuous/angle mode the output period alternated between 14.350 ms and

16.400 ms resulting in an alternating frequency of 69.7 Hz and 61.3 Hz. The alternating

output rate was highly stable and the slow-fast-slow-fast pattern was repeated without

interruption, as depicted in Figure 2.24.

16.4000 ms14.3500 ms

Figure 2.24. AHRS Continuous/Angle Mode Serial Output.

36

As the continuous/angle mode did not have a constant output frequency, the

polled mode was tested. The AHRS can be placed in the polled mode by sending an

ASCII “P” command. Once in the polled mode, the AHRS will send one complete data

message in response to each request for data command (ASCII “G”). In order to

stimulate the AHRS at precise frequencies a Motorola 68322 based TattleTale 8 micro-

controller was programmed to send the request for data command (ASCII “G”) over the

RS-232 line to the Crossbow AHRS. The command signal and the AHRS response

were then captured on the digital storage oscilloscope. Prior to each test, the micro-

controllers RS-232 command rates were verified using the digital storage oscilloscope.

In order to determine the AHRS range of response latency a sample of 169

polling command/response events was recorded. The oscilloscope was set to trigger on

the data request command line and the sampling rate was adjusted so that the scopes

data buffer would only capture a single command/response event. The display was then

set to accumulate the successive traces without refresh. The Tattletale polling rate was

set to 1 Hz to ensure that each command/response event could be considered and

independent event. Figure 2.25 shows the delay between data request initiation and

AHRS response varies from a minimum of 13.998 ms to a maximum of 29.692 ms.

Crossbow AHRS
Angle/Polled Mode

Polled Mode latency test. 169 samples.
Note wide variability in response to poll command.

Data Packet Length

Figure 2.25. AHRS Polled / Angle Mode Serial Output Response Variation.

37

These results suggest that the AHRS should be capable of responding to polling

commands at a maximum polling rate of 33.6 Hz. In order to confirm this result the

AHRS was polled at various frequencies and the response behavior was observed. The

AHRS was able to meet the response time constraints when polled at 20 Hz, Figure 2.26.

Contrary to expectations, the AHRS could not respond fast enough when polled at 30

Hz. Figure 2.27 clearly shows two AHRS responses arriving within the same polling

frame.

20 Hz Poll Rate

Crossbow AHRS
Angle/Polled Mode

Figure 2.26. AHRS Polled/Angle Mode Response - 20 Hz Polling Rate.

38

Poll Rate 30 Hz

Crossbow AHRS
Angle/Polled Mode

Figure 2.27. AHRS Polled/Angle Mode Response - 30 Hz Polling Rate.

Performance continued to degrade as the polling frequency was increased but

then appeared to improve as the polling command rate approached the continuous

mode’s output rate. At 60 Hz the AHRS could meet the polling rate for ten to eleven

cycles and then would drop a whole response, Figure 2.28. From these tests it was

deduced that the AHRS internal data cycle is unaffected by the selection of polled or

continuous mode. If by chance the polling command arrives just after a data sample has

been posted for output the latency can be quite small. However, if the polling command

arrives when the AHRS is posting new data to its registers a whole processing cycle may

elapse before output is available. If the polling rate could be set to match the natural

alternating frequency observed in continuous mode the AHRS would appear to function

flawlessly.

39

11 10 1110 11
Within blocks the interval alternates between approx 14.2 and 16.6 msec.
The interval between blocks is approx. 29.4 msec.
Polling Frequency = 60 Hz

Figure 2.28. AHRS Polled/Angle Mode Response - 60 Hz Polling Rate.

These results were provided to Crossbow Technologies for comment. Crossbow

advised that the apparent absence of determinism in the polled/angle mode response was

considered a “feature”. No explanation was offered for the alternating period observed

in continuous/angle mode.

In light of these findings, timing performance was also evaluated in the scaled

sensor mode. In scaled sensor mode the data message is 23 bytes long; vice 30 bytes in

angle mode. The scaled mode message required 6.16 ms, at 38400 bps. In

continuous/scaled sensor mode, the AHRS output period was a nearly constant 8.720

ms, which corresponds to a frequency of 114.6 Hz. There was no evidence of the

alternating period observed in continuous/angle mode. The continuous/scaled sensor

mode serial output performance is depicted in Figure 2.29.

40

Period = 8.72 ms (approx 114.6 Hz w/good stability)

Figure 2.29. AHRS Continuous/Scaled Sensor Mode Serial Output.

In the polled/scaled sensor mode the AHRS behavior was similar to that

observed in polled/angle mode. A sample of 100 command/response events was

collected in the same manner described for the polled/angle mode and is presented in

Figure 2.30. The AHRS response delay varied from a minimum of 8.638 ms to a

maximum of 16.480 ms. A maximum permissible polling rate for polled/scaled sensor

mode was not determined.

41

22.64 ms to trigger8.638 ms to trigger

Crossbow AHRS
Scaled/Polled Mode

Polled/Scaled Mode latency test. 100 samples.
Note wide variability in response to poll command

(though less than Angle mode).

Figure 2.30. AHRS Polled / Scaled Sensor Mode Serial Output Response Variation.

3. AHRS Noise Output

The noise characteristics of the AHRS were evaluated for future incorporation

into the FROG plant model. The AHRS was positioned on a stable concrete slab

covered with a vibration isolating padding. The AHRS was initialized and allowed to

operate for several minutes to allow the Kalman filters to converge on the gyro biases.

Data was collected with Gyroview software and post processed in Matlab®. The mean

pitch, roll and yaw rates were on the order of 0.005 degrees per second with an average

standard deviation range between 0.079 and 0.088 degrees per second. The standard

deviation of the orientation angles ranged from a low of 0.019 to a high of 0.025

degrees. The standard deviations for the three accelerometers ranged from a low of

0.00033 to a high of 0.00045 g’s. The standard deviation of magnetometer output

ranged from 0.00085 to 0.0011 Gauss. The computed mean values, standard deviations

and covariance matrices for each set of parameters are presented in Appendix B. The

observed ambient noise values are suitable for control system projects on the FROG and

42

should be incorporated into the FROG plant model prior to further controller

development.

43

III. DIGITAL FLIGHT CONTROLLER

The FROG autopilot was designed using classical feedback methodologies. The

autopilot was required to provide the following functions: altitude control via elevator,

speed control via throttle and heading control via ailerons. The autopilot was also

required to incorporate a yaw damper. The first step in the control system design

process was to model the plant (system to be controlled) as accurately as possible. The

non- linear FROG aerodynamic flight model used in this effort was developed, evaluated

and refined by several previous students, including Hallberg [Ref. 3], Papgeorgiou [Ref.

4] and Pollard [Ref. 5]. The model had been developed for a single trimmed speed of 88

fps so the autopilot was designed around this speed. The FROG aerodynamic model did

not incorporate the control servo dynamics so these had to be added before the flight

controller design could be started. The autopilot was designed using MatrixX version

6.2.2. Once completed the autopilot was demonstrated via hardware in the loop (HITL)

using the TS-75 servo actuators in the Controls Laboratory. The autopilot provided

stable and reliable performance with the TS-75 HITL.

A. SERVO TEST SET CHARACTERIZATION

The first step in the flight controller design was to develop a control servo model

to incorporate into the FROG plant model. Once the actuator dynamics were known a

second order servo model was developed. Initial development work on the FROG

autopilot was conducted in the NPS Aeronautical Engineering Department’s Controls

Systems Laboratory. During initial autopilot development the airplane’s servos had not

yet been instrumented for position feedback. Servo dynamics and hardware in the loop

(HITL) testing was performed using a surrogate servo test set that interfaced with the

AC-104 computer. Only after the prototype autopilot had been completed and

demonstrated in the Lab was the necessary instrumentation installed on the FROG

control surfaces to evaluate the airplane’s true servo response. The FROG servos were

then tested on the airplane to determine their dynamics and the overall control system

temporal response characteristics.

The dynamic response characteristics of the miniature electric servos, installed in

the servo test set, were determined using the data acquisition and hardware control

44

capabilities of the MATRIXX/AC-104 system. Each servo test set was equipped with

four Sys3000 TS-75 miniature electric servos, manufactured by Tower Hobbies. The

servos were mounted in a metal tabletop cabinet and were equipped with pointers so that

their position could be readily observed, Figure 3.1.

Figure 3.1 Servo Test Set.

Each TS-75 servo had been modified so that its internal feedback voltage could

be monitored on an external DIN-50 connector. A second 50-pin DIN connector was

provided to permit the input of servo PWM command signals. The laboratory HITL

system is depicted in Figure 3.2.

45

AC-104
Computer (IP 68322)

(PWM)(Analog -
Voltage)

(AIM16 A/D)

TS-75 Servo Test Set

Figure 3.2. Control Systems Laboratory Hardware in the Loop System.

MatrixX version 6.2.2 was used to create a test system to permit servo dynamics

assessment and control of the servos in the test set. The SystemBuild servo test system

is depicted in Figure 3.3. The servo commands were input in degrees (± 90°) and then

converted to pulse width values by a first order transfer function. In order to

synchronize the physical servo pointer position with the output command, the Deg-to-

PWM transfer function employed a variable slope and intercept that could be adjusted at

run time. The resulting PWM commands were sent to the IP-68332, which generated

the PWM signals for the TS-75 servos. The servo feedback voltage was digitized by the

AIM16, 16-bit A/D converter and converted to degrees using the following formula:

()0
90 90

180
outV V

V V °
+ ° − °

°
−

−
 (3.1)

The values of the minimum, maximum and zero degree voltages could be edited

during run-time to permit calibration of the V-to-Deg transfer function.

46

Ser 1 Deg Out

Ser 2 Deg Out

Ser 3 Deg Out

Ser 4 Deg Out0.001

SUPER

BLOCK

2
V_to_Deg

5

6

7

8

5 Servo 1 Vout
9 Ser 1 Vp100
10 Ser 1 Vo

11 Ser 1 Vm100

6 Servo 2 Vout

12 Ser 2 Vp100
13 Ser 2 Vo

14 Ser 2 Vm100
7 Servo 3 Vout

15 Ser 3 Vp100
16 Ser 3 Vo
17 Ser 3 Vm100

8 Servo 4 Vout

18 Ser 4 Vp100
19 Ser 4 Vo
20 Ser 4 Vm100

u1

u2

u3

y

5
Cal Mode

1
2
3
4

29 Cal Mode Switch

1 Servo 1 Deg Cmd

2 Servo 2 Deg Cmd

3 Servo 3 Deg Cmd

4 Servo 4 Deg Cmd

Ser 1 PW Cmd

Ser 2 PW Cmd

Ser 3 PW Cmd

Ser 4 PW Cmd0.001

SUPER

BLOCK

3
Deg_to_PWM

1
2
3
4

1

2

3

4

21 Ser 1 PW slope

22 Ser 1 zero PW

23 Ser 2 PW slope

24 Ser 2 zero PW

25 Ser 3 PW slope

26 Ser 3 zero PW

27 Ser 4 PW slope

28 Ser 4 zero PW

0.001

SUPER
BLOCK

35
one input

Ser 1 Vout
Ser 2 Vout
Ser 3 Vout
Ser 4 Vout

1

4 13
14
15
16

5 Servo 1 Vout

6 Servo 2 Vout
7 Servo 3 Vout
8 Servo 4 Vout

u1

u2

u3

y

1
HITL Mode

1 Ser 1 Deg Out

2 Ser 2 Deg Out

3 Ser 3 Deg Out

4 Ser 4 Deg Out

1
2
3
4

30 HITL Mode Switch

0.001

SUPER
BLOCK

32
Actuator Model
1

2
3
4

0.001

SUPER

BLOCK

31
Error Summer

Velocity

1

2

3

4

32Vel Cmd 1

33Vel Cmd 2

34Vel Cmd 3

35Vel Cmd 4
Continuous

SUPER
BLOCK

34
actuator

0.001

SUPER
BLOCK

15
Controller

1

2
3
4

9

10

11

1231 Variable Gain CMD

Figure 3.3. SystemBuild Servo Dynamics Test System.

The controller included a run-time graphical user interface, which allowed the

user to input servo position commands and monitor servo position feedback. Controls

were included to permit real-time adjustment of the command and feedback transfer

functions. The servo test system calibration mode GUI depicted in Figure 3.4.

The simulation was Autocoded with a minor frame size of 0.001 seconds

(Scheduler frequency = 1KHz). The RealSim Data Acquisition Editor was used to

capture the controller command outputs and raw and processed servo responses for

posttest analysis.

Once the test system was in place the actuators were stimulated with large and

small STEP inputs in order to observe the plant dynamics. Limited data was available

for the TS-75 servos. The TS-75 servos have a specified torque of 110.00 oz-in and a

response rate of 0.19 seconds per 60°. Though small variations existed between

individual actuators it was determined that the natural frequency was 38.73 rad/sec and

the damping ratio ()ς was 0.426. During testing the servo position feedback data

showed a repeatable periodic offset. The offset was visible in each of the STEP

47

response plots and was observed on more than one servo test set. These position offsets

occurred as the actuators slowed and approached the commanded position and could not

be characterized as noise. It is unclear if the offsets originated within the internal servo

feedback circuit or were introduced due to a binary error within the AIM16 A/D. The

servos response to a 10° STEP input is depicted in Figure 3.5.

Figure 3.4. Servo Test System Calibration GUI.

48

Time [s]

0.250.20.150.10.050 0.3

Se
rv

o
P

os
iti

on
 (d

eg
)

15

10

5

0

-5

-10

-15

-20

20

Figure 3.5. TS-75 Servo Response to 10° STEP Input.

The servo response to large STEP commands (greater than approx. 30°) revealed

the presence of an internal rate limiter. The servo rotation rate was limited to 346° per

second, which was reached after about 20° of rotation. The dynamic response data was

used to create a 2nd order servo model, Figure 3.6.

3

1500

14

1

s
X0= 0

5

0.022

4

Step

t

y 10
13

Limiter

346

-346

15

1

s
X0= 0

6

1

Figure 3.6. Second Order Model of TS-75 Servo.

To evaluate the accuracy of this model it was incorporated into a simple speed

control system. The controller was then linearized and a Bode analysis was performed

to determine the gain and phase margins. The Bode analysis indicated that the speed

controller had a gain margin of 30.37 dB @ 6.6 Hz and the phase margin was 88.6° @

49

0.179 Hz. The speed controller was then modified to permit the TS-75 servos to be

inserted as HITL in place of the 2nd order servo model. The controllers gain margin was

experimentally determined by incorporating a variable gain in the feedback loop. A

separate Speed Controller GUI was developed to permit monitoring of the servo

response and control of the feedback gain, Figure 3.7.

Figure 3.7. RealSim Speed Controller GUI.

The gain margin was determined by increasing the feedback loop gain until the

controller became unstable. Three of the test servos exhibited a gain margin of 26.24 dB

while the fourth had a gain margin of 27.42 dB. These gain margin values are in good

agreement with the predicted value of 30.37 dB (13.6% and 9.8% difference

respectively). The servo response to varying feedback gain is depicted in Figure 3.8.

50

Va
ria

ble
 G

ai
n C

M
D 22

20

18

16

24

Se
rvo

 #1
 P

os
iti

on
 (d

eg
)

50

0

-50

-100

100

Se
rvo

 #2
 P

os
iti

on
 (d

eg
)

50

0

-50

-100

100

Se
rvo

 #3
 P

os
iti

on
 (d

eg
)

50

0

-50

-100

100

Time [s]

6050403020100 70

Se
rvo

 #
4 P

os
iti

on
 (d

eg
)

50

0

-50

-100

100

Gain =23.5 Gain = 20.5

Figure 3.8. TS-75 Response to Increasing Speed Controller Feedback.

B. DIGITAL FLIGHT CONTROLLER DESIGN

The flight controller (autopilot) was designed to provide the following functions:

altitude control via elevator, speed control via throttle and heading control via ailerons.

The autopilot was also required to incorporate a yaw damper. MatrixX version 6.2.2

and the RFTPS were used to design and test the controller. The completed the autopilot

was demonstrated via hardware in the loop (HITL) using the TS-75 servo actuators.

1. Design Methodology and Performance Criteria

The autopilot was designed using classical inner/outer loop feedback

methodologies. The control channels were designed in the following order: yaw

damper, altitude control on elevator, heading control on aileron and finally speed control

on throttle. At each stage the inner and outer loop performance was evaluated using the

non- linear flight dynamics model of the FROG in MatrixX. The basic design procedure

for each controller was the same.

• Design the feedback (compensation) loop in SystemBuild.

• Linearize the new system (plant plus compensator) in Xmath.

• Evaluate the stability of the new system via root locus.

51

• Determine the systems phase and gain margin (Bode plot).

• Determine systems response to a Step command.

• Adjust the compensation gains and repeat steps two through five until the
specified design criteria were met.

• Once satisfied with the linearized systems performance check the non-
linear system by inserting a Step source into the SystemBuild simulation
and evaluate the systems performance.

The SystemBuild flight controller is presented in Figure 3.9. The servo

calibration GUI was modified and augmented with a separate autopilot control GUI,

which is depicted in Figure 3.10

Ser 1 PW Cmd aileron

Ser 2 PW Cmd elevator

Ser 3 PW Cmd rudder

Ser 4 PW Cmd throttle0 . 0 0 1

SUPER

BLOCK

3
Deg_to_PWM

1 aileron cmd

2 elevator cmd

3 rudder cmd

4 throttle cmd

1

2

3

4

2 1 Ser 1 PW slope

2 2 Ser 1 zero PW

2 3 Ser 2 PW slope

2 4 Ser 2 zero PW

2 5 Ser 3 PW slope

2 6 Ser 3 zero PW

2 7 Ser 4 PW slope

2 8 Ser 4 zero PW

Ser 1 Deg Out aileron

Ser 2 Deg Out elevator

Ser 3 Deg Out rudder

Ser 4 Deg Out throttle
0 . 0 0 1

S U P E R

B L O C K

2
V_to_Deg

5

6

7

8

5 S e r v o 1 V o u t

9 Ser 1 Vp100

10 S e r 1 V o

11 Ser 1 Vm100

6 S e r v o 2 V o u t

12 Ser 2 Vp100

13 S e r 2 V o

14 Ser 2 Vm100

7 S e r v o 3 V o u t

15 Ser 3 Vp100

16 S e r 3 V o

17 Ser 3 Vm100

8 S e r v o 4 V o u t

18 Ser 4 Vp100

19 S e r 4 V o

20 Ser 4 Vm100
Ser 1 Vout
Ser 2 Vout
Ser 3 Vout

Ser 4 Vout

1

4 14
15
16

17

5 S e r v o 1 V o u t

6 S e r v o 2 V o u t

7 S e r v o 3 V o u t

8 S e r v o 4 V o u t

C o n t i n u o u s

S U P E R

B L O C K

32
actuator

1 delta_aileron

2 d e l t a e l e v a t o r

3 d e l t a r u d d e r

4 delta_t

aileron cmd

elevator cmd

rudder cmd

throttle cmd

u1

u 2

u 3

y

5
C a l M o d e

1 delta aileron_deg

2 delta elevator_deg

3 delta rudder_deg

4 delta throttle_deg

2 9 Cal Mode Switch

1 Servo 1 Deg Cmd

2 Servo 2 Deg Cmd

3 Servo 3 Deg Cmd

4 Servo 4 Deg Cmd
aileron pos_deg

elevator pos_deg

rudder pos_deg

throttle pos_deg

u1

u2

u3

y

1
H I T L M o d e

1S e r 1 D e g O u t a i l e r o n

2Ser 2 Deg Out elevator

3Ser 3 Deg Out rudder

4Ser 4 Deg Out throttle

1
2

3

4

30 HITL Mode Switch

delta_aileron

delta elevator

delta rudder

delta_t

Vt Continuous

S U P E R

B L O C K

15
flight controller

1u

2v

3w

6r

5q

7phi

8theta

12P_z

13z_dot

4p

9psi

4Rudder Cmd_rad

1hdg cmd

2speed cmd

3alt cmd

9

10

11

12

13

u

v

w

p

q

r

p h i

t h e t a

p s i

P _ x

P _ y

P _ z

z _ d o t

C o n t i n u o u s

SUPER

BLOCK

3 5
frog

1aileron posit_rad

2elev posit_rad

3rudder pos_rad

4throttle pos_rad

22

23

25

aileron posit_rad

elev posit_rad

rudder pos_rad

throttle pos_rad Continuous

S U P E R
B L O C K

6
deg to radians

1aileron pos_deg

2elevator pos_deg

3rudder pos_deg

4throttle pos_deg

delta aileron_deg

delta elevator_deg

delta rudder_deg

delta throttle_deg C o n t i n u o u s

SUPER

BLOCK

7
r a d t o d e g

1delta_aileron

2delta elevator

3delta rudder

4delta_t

Hdg Cmd_rad

delta speed command

delta altitude command

Rudder Cmd_rad C o n t i n u o u s

S U P E R

B L O C K

8
command scaling

32Hdg Cmd

33Speed Cmd

34Alt Cmd

35Rudder Cmd

hdg cmd

speed cmd

alt cmd
Continuous

S U P E R

B L O C K

3 7
Mode switches

1
2
3

3 6alt mode sw

3 7hdg mode sw

3 8vel mode sw

P z
phi deg

theta deg
psi deg

yaw rate deg per sec 0.01

S U P E R

B L O C K

1 2
euler deg

1 2
7

8

9

61 8

1 9

2 0

2 1

2 4

 Figure 3.9. FROG SystemBuild Flight Controller Model.

52

Figure 3.10. RealSim Flight Controller Display.

2. Yaw Damper

The yaw damper was designed to provide stability augmentation by feeding back

commanded angle of bank (φ) (from the heading controller) divided by true airspeed

(Vt). Commanded angle of bank was chosen, in lieu of a washout filter, so that yaw

damper would not attempt to counter a commanded turn. The compensator chosen was

of the proportional/integral type (PI) with an additional scaling gain. As specific yaw

damper performance requirements were not given a target of 6 dB gain margin and 60°

phase margin was used. The yaw damper block diagram is presented in Figure 3.11.

The linearized yaw damper displayed a gain margin of 13.1 dB @ 38.39 rad/sec and a

phase margin of 76.1° @ 7.73 rad/sec.

53

I= 1
P= 1

3

delta_r Delta_rudder2

14
d_rudder

1delta_r

12

1 r

SIN(u)

4

2 phi cmd

COS(u)

5

2 phi cmd

6

32.174

1 5 1

V tVt = (u*u + v*v
 + w*w)**0.5

233 u

4 v

5 w

Figure 3.11. Yaw Damper SystemBuild Block Diagram.

Figure 3.12 presents the FROG’s response (with simulated actuators) to an 11.4°

(0.2 rad) step input to the rudder position. The yaw damper immediately counter acts

the rudder disturbance and bank angle is returned to zero within 14 seconds. The

airplane’s heading exhibits a maximum deviation of 2.3° and is restored within

approximately six seconds.

time (sec)

Ru
dd

er
 C

om
m

an
d (

de
g)

8

6

4

2

0

-2

10

time (sec)

Ya
w

Ra
te

(°/
se

c)

0

-1

-2

-3

-4

1

time (sec)

He
ad

ing
 (d

eg
)

0

-0.5

-1

-1.5

-2

-2.5

0.5

time (sec)

151050 20

Ro
ll A

ng
le

(d
eg

)

3

2

1

0

-1

4

Figure 3.12. Yaw Damper Response (Simulated Actuators).

54

Figure 3.13 presents the HITL performance of the yaw damper with HITL; when

subjected to a 10° rudder change (from –5° to +5°). The heading reaches a maximum

deviation of approximately 2.2° after 1.5 seconds and has returned to within 1° of the

original value by four seconds. It is noted that the presence of a small periodic signal

was observed in the TS-75 servo’s output. This small disturbance signal degraded the

yaw damper’s performance somewhat when compared to the simulation. The

disturbance signal was observed also observed when the controller was disconnected

and was therefore not an undesirable controller response. Other possible feedback

schemes include yaw rate feedback, roll rate feedback and sideslip feedback. Each of

these has significant influence on the short period and spiral modes of an airplane and

merit further investigation for use on the FROG.

R
ud

de
r

In
pu

t (
de

g
)

4

2

0

-2

-4

-6

6

R
ud

de
r C

om
m

an
d

(d
eg

)

8

6

4

2

0

-2

10

R
ud

de
r

Re
sp

on
se

 (
de

g)

6

4

2

0

-2

-4

8

Time [s]

6420 8

H
ea

di
ng

 (
de

g)

63.5

63

62.5

62

61.5

61

60.5

64

Figure 3.13. FROG Yaw Damper Performance with TS-75 Actuators.

3. Altitude Controller

The altitude controller was designed to satisfy the following criteria:

• The closed- loop system must be stable.

55

• The elevator command loop bandwidth should not exceed 7 rad/sec.

• Minimum gain margin of 6 dB and phase margin of 30°.

Additionally, the controller was designed to limit Step response overshoot of no

more than 10% and a have a rise time of about 10 seconds. The inner loop consisted of

a proportional/derivative (PD) compensator using pitch rate (q) and pitch attitude (θ)

feedback. The outer loop employed a PID compensator with altitude (Pz) and altitude

rate (h
•

) to produce commanded pitch attitude. The altitude controller block diagrams

are presented in Figure 3.14.

delta_el

Continuous

SUPER

BLOCK

97
elevator

delta_theta

1 q

14

3 theta

delta elevator-1

94

1

theta cmd

Continuous

SUPER

BLOCK

96
elev outer loop PID

4 P_z

6 altitude command

5 z_dot

Figure 3.14. Altitude Controller SystemBuild Block Diagram.

The altitude controller exhibited a gain margin of 13.86 dB @ 16.46 rad/sec and

a phase margin of 58.6° @ 6.50 rad/sec. The linearized model’s performance met the

10% overshoot and 10 second rise-time constraints but the non- linear simulation slightly

under performed. The non- linear controller exhibited an over shoot of approximately

15% and a rise time of approximately 11 seconds. The HITL response is presented in

Figure 3.15. The HITL overshoot was approximately 14% with a rise time of

approximately 9 seconds. A significant periodic oscillation, with a frequency = 0.83 Hz,

was observed on the elevator command and elevator servo output channels. Peak-to-

Peak variations of approximately 1° were observed but the variation did not appear to

affect the controller’s altitude performance. While this behavior was acceptable for the

altitude controller it would likely produce unacceptable variations in pitch attitude that

would adversely affect the ability to stabilize optical sensors. The source of the

variation was not determined.

56

Al
tit

ud
e

C
om

m
an

d
(f

t)
540

530

520

510

500

550

E
le

va
to

r C
om

m
an

d
(d

eg
)

0.7

0.6

0.5

0.4

0.3

0.2

0.8

E
le

va
to

r
R

es
po

ns
e

(d
eg

)

1

0.5

0

-0.5

-1

-1.5

1.5

Time [s]

20151050 25

A
lti

tu
de

 (f
t)

550

540

530

520

510

500

560

Figure 3.15. Altitude Controller Response with TS-75 Servos.

4. Heading Controller

The heading controller was designed to meet the same performance requirements

as the altitude controller. The heading controller design incorporated inner, middle and

outer loop feedback loops and is depicted in Figures 3.16 and 3.17. The outermost loop

took commanded heading (ψc) and produced an angle of bank command (φc). The

middle loop took φc and converted it into a roll rate command (pc) while the inner most

loop converted pc to an aileron deflection command (δa). The inner loop consisted of a

PI controller. The middle loop consisted of a PID controller and the outer loop consisted

of a PI controller. The outer loop also included a limiter that restricted φ output to less

than 0.5 radians (approximately 28.5°). Each loop layer was designed such that the

crossover frequencies were separated by at least one decade.

57

I= 1
P= 0.3

6
psi

7

1 p

T= 0.1
D= 1
I= 3

P= 15
8

psi
9

2 phi

delta_aileron0.8

25

1

0.04

10

15

4 heading command

3 psi

I= 0.5
P= 11

16

0.17

17

Limiter

0.5

-0.5

99

2

Figure 3.16. Heading Controller System Build Block Diagram.

The heading controller exhibited a gain margin of 14.74 dB @ 38.49 rad/sec and

a phase margin of 80° @ 5.97 rad/sec. The heading controller’s response, with

simulated actuators, to a step heading command of 29° is presented in Figure 3.17. The

airplane heading (ψ) exhibits a 10% overshoot and a rise time of approx. 5.5 seconds. It

can also be seen that the yaw damper responds as expected to produce a coordinated

turn.

Time (sec)

H
ea

din
g

C
om

m
an

d (
de

g
) 25

20

15

10

5

0

30

Time (sec)

A
ile

ro
n

C
om

m
an

d (
de

g
) 0.1

0.05

0

-0.05

-0.1

0.15

Time (sec)

R
oll

 A
ng

le
 (d

eg
)

25

20

15

10

5

0

-5

30

Time (sec)

151050 20

H
ea

di
ng

 (d
eg

)

30

25

20

15

10

5

0

35

Figure 3.17. Heading Controller Response With Simulated Actuators.

58

The HTIL response of the heading controller is presented in Figure 3.18. The

HITL response exhibits a ψ overshoot of approx. 8% and a rise time of 4.8 seconds,

which compares favorably with the simulation results. It was noted that the aileron

servo output exhibited nearly the same periodic variation as was observed in the yaw

damper. It is possible that the source of this signal would only be found in one of these

channels and that it is propagating into the other channel via the airplane’s roll/yaw

coupling. Further analysis of this phenomenon is warranted.

H
ea

di
ng

 C
om

m
an

d
(d

eg
)

25

20

15

10

5

0

30

Ai
le

ro
n

C
om

m
an

d
(d

eg
) 0.1

0.05

0

-0.05

0.15

A
ile

ro
n

R
es

po
ns

e
(d

eg
) 4

2

0

-2

-4

6

Time [s]

1086420 12

H
ea

di
ng

 (
de

g)

30

25

20

15

10

5

0

35

Figure 3.18. Heading Controller Response with TS-75 Servos.

5. Airspeed Controller

A PI speed controller was implemented on the throttle. The speed controller

block diagram is depicted in Figure 3.19. The speed controller’s gain and phase margin

were 36.7 dB @ 38.75 rad/sec and 88.1° @ 0.33 rad/sec respectively.

59

3
Speed Cmd

4
speed command

VtVt = (u**2 + v**
 2 + w**2)**0.5

4
Vt

2

1
u

2 v

3 w

14

Y = 88

2
Trim Airspeed

I= 0.5
P= 7

13

delta_t
0.015

5

1

Figure 3.19. Speed Controller SystemBuild Block Diagram.

The response of the speed controller to a 10 fps STEP command was the same

for the simulated and HITL actuators, Figure 3.20. The airspeed overshoots by

approximately 5% and has a rise time of about 9 seconds. It is noted that a small

amplitude periodic signal is imposed upon the throttle servo output signal. This

variation has the same period as that observed on the elevator command channel and is

likely due to the close coupling between throttle and elevator in the airplanes

longitudinal modes.

S
pe

ed
 C

om
m

an
d

(fp
s)

96

94

92

90

88

98

T
hr

ot
tle

 C
om

m
an

d
(d

eg
)

60

50

40

30

20

10

0

70

Th
ro

ttl
e

R
es

po
ns

e
(d

eg
)

50

40

30

20

10

0

-10

60

Time [s]

1086420 12

Vt
 (

fp
s)

98

96

94

92

90

88

86

100

Figure 3.20. Speed Controller Response with TS-75 Servos.

60

6. Control Mode Coupling

The coupling of the longitudinal and lateral control modes was observed on both

the simulated and HITL versions of the system. On the longitudinal side, the

relationship between throttle (speed) changes and elevator (pitch attitude) changes is

shown in Figure 3.21. In the figure, a +10 fps STEP command is sent to the speed

controller at t = 1.0 sec. As the airplane begins to accelerate it generates more lift and

also begins to climb. The altitude controller responds to this climb by programming a

tail up elevator command to arrest the climb and return the airplane to its original

altitude. It can also be seen that the airplane establishes a new trim attitude with θ = -

0.13°. The lateral control coupling was observed by commanding a STEP heading

change and observing the aileron and rudder response, Figure 3.22. As the heading

controller commands the ailerons to deflect the rudder immediately deflects to provide

turn coordination and the airplane smoothly turns to the commanded heading.

T
hr

ot
tle

 C
om

m
an

d
(d

eg
)

60

50

40

30

20

10

0

70

Vt
 (

fp
s)

98

96

94

92

90

88

86

100

E
le

va
to

r
C

om
m

an
d

(d
eg

)

0.6

0.5

0.4

0.3

0.2

0.1

0

0.7

Time [s]

1086420 12

A
lti

tu
de

 (f
t)

504

503

502

501

500

499

505

Figure 3.21. Longitudinal Control Mode Coupling.

61

A
ile

ro
n

C
om

m
an

d
(d

eg
)

0.1

0.05

0

-0.05

0.15

R
ol

l A
ng

le
 (

de
g)

25

20

15

10

5

0

-5

30

R
ud

de
r C

om
m

an
d

(d
eg

)

0

-0.1

-0.2

-0.3

-0.4

0.1

Ya
w

 R
at

e
(°

/s
ec

)

8

6

4

2

0

-2

10

Time [s]

1086420 12

H
ea

di
ng

 (d
eg

)

30

25

20

15

10

5

0

35

Figure 3.22. Lateral-Directional Control Mode Coupling.

C. FROG CONTROL SERVOS

The FROG control servos were not instrumented in time to support initial

autopilot design so the TS-75 servos were used as a surrogate. Once the FROG was

instrumented the RealSim servo test system was modified to permit dynamic response

testing of the servos installed on the airplane.

1. FROG Servo Configuration and Instrumentation

The FROG was configured with a number of different servo models. The

elevator servo specifications matched those for the test set TS-75 servos but the aileron,

rudder and throttle servos are specified at approximately half the output torque and give

a somewhat slower response. The FROG servo configuration is listed in Table 3.1

62

Control
Channel

Futaba
Model

Torque
(oz- in)

Speed

(sec / 60°)

Dimensions
Width x Length

x Height (in)

Elevator S3302 110.0 0.19 1.14 x 2.32 x 1.97

Ailerons FP-S130 55.60 0.24 0.75 x 1.50 x 1.31

Rudder FP-S130 55.60 0.24 0.75 x 1.50 x 1.31

Throttle FP-S130 55.60 0.24 0.75 x 1.50 x 1.31

Flaps1 FP-S125 129.30 0.62 0.88 x 1.75 x 1.69

Servo Test Set2 TS-75 110.0 0.19 1.14 x 2.32 x 1.97
Note 1: Flaps are not used by the autopilot.
Note 2: Provided for comparison.

Table 3.1. FROG Control Servo Configuration.

It was neither practical nor desirable to obtain servo position feedback in the

fashion used for the Lab test set servos. Tapping into the servos internal feedback

circuit would have required cutting a hole in the servo’s case, which would have

permitted moisture, dust and EMI intrusion. Each one of these are to be avoided in

flight worthy hardware. It was also impractical to attach external instrumentation

directly to the FROG servos so the control surfaces were instrumented instead. The

FROG servos are attached to the movable control surface by means of a linkage rod.

Rotation of the servo shaft was translated to a linear push/pull on the rod. The linkage

rod was attached to a mounting horn on the control surface. The push/pull motion of the

linkage rod is translated into rotation at the control surface. The elevator servo

installation is depicted in Figure 3.23.

63

Figure 3.23. FROG Elevator Servo Configuration.

The servo position and control surface hinge configuration result in a nonlinear

transfer function from servo rotation angle to control surface deflection angle. The

control surfaces were instrumented with Series 150 subminiature linear position

transducers, manufactured by SpaceAge Control, Inc. The position transducers,

commonly known to as “string pots” consist of a small threaded drum attached to a

single turn rotary potentiometer. The potentiometer shaft is connected to a coil spring

which provides a positive retract force for all positions. The transducers cable is

connected to a horn mount on the control surface so that the control surface neutral

position roughly corresponds to mid-point in the transducers range, Figure 3.24. As the

control surface moves the transducers cable is either extended or retracted. As the cable

moves the string pots resistance increases or decreases.

64

Figure 3.24. Series 150 Subminiature Position Transducer.

The string pots have a mechanical limit of 340° and are rated at 5K ohms, ±10%.

Each string pot was provided a reference voltage of 3.73 V and the output voltage was

routed to one of the TattleTale A/D converters in the NPS IMU computer. The raw

string pot voltages were incorporated into the IMU serial output message and then sent

(at 40 Hz) to the onboard FreeWave Modem; via the TattleTale’s RS-232 port. The

IMU message was received by the AC-104’s FreeWave modem and then decoded.

2. Control Surface Position Calibration

Before servo dynamic response measurements could be made the position

transducer outputs had to be calibrated. Additionally, the servo rotation limits had to be

established so that the RealSim servo test system would not command positions that

could result in binding or jammed controls. Both of these tasks required that the

Futaba® command uplink be implemented within RealSim. The command uplink signal

path is depicted in Figure 3.25.

65

AC-104
Computer

Servo
Actuators

Slave
Futaba

Master
Futaba

Futaba
Receiver

(Analog)

(PWM)

(PPM)

(PCM)

Figure 3.25. The FROG Command Uplink Signal Path.

The design approach for the FROG servo test system uplink was to start at the

Futaba® FP-R309DPS receiver’s PWM output signals and work backwards towards the

AC-104 output. The first task was to determine the valid range of servo PWM

commands. This would be the range of pulse widths generated by the Futaba® FP-

R309DPS receiver in response to control sweeps from the Safety pilot’s radio

transmitter. The receiver’s PWM output characteristics were determined by connecting

the output channels of an FP-R309DPS receiver directly to the digital I/O lines of the

AC-104’s IP-68322 port. The IP-68322 was programmed to measure pulse width on the

receiver output channels and the data was captured within RealSim. The elevator,

aileron, throttle and rudder controls on the FP-9ZAP radio control were held in their

extreme positions and the corresponding maximum and minimum PWM values were

noted. These values were later confirmed using the DSO-2102 digital storage

oscilloscope. Once the range of permissible PWM commands had been established the

AC-104-to-Slave controller signals had to be calibrated. The Master radio controller

was connected to the Futaba FP-8UAP Slave via the trainer cable. The FROG servo test

system interfaced with the Slave through the Ruby-MM 12-bit D/A converter. The

66

D/A’s 12-bit resolution provided 4096 (212) possible command values. With the D/A

converter configured for 0 to 5V unipolar operation, the resulting command resolution

was ()1.22 5 4096mV V . The RealSim servo controller was configured to send

discrete digital commands (values from 0 to 4096) to the D/A, which generated

proportional voltages for the Slave radio controller. These voltages were converted to

PPM and were relayed to the Master radio via the trainer cable. Once in the Master, the

PPM signals were recoded as PCM and transmitted to the FP-R309DPS receiver

connected to the IP-68322. The receiver decoded the PCM signals and the resulting

PWM servo command signals were measured by the IP-68322 and recorded by the AC-

104.

The test method was to start the controller with a default output command of

2048 (mid-range for the D/A) and then decrease or increase the command value until the

PWM limits were observed. As the D/A digital command was decreased the pulse

width decreased until a minimum of approximately 0.9 ms was reached at a D/A

command value of 1515 (1.849 Vout). Further decreases in D/A command had no effect

on the PWM pulse length. As the D/A command was increased an upper pulse width

limit of approx. 2.1 ms was reached at a D/A command value of 2685 (3.28 Vout). When

the D/A command was increased above 2685 the receivers pulse width output abruptly

jumped down to 1.5 ms. This is the pulse width that roughly corresponds to the control

neutral position. Based on these results limiter was added to the servo command path to

keep the D/A commands between 1515 and 2675.

The next task was to determine two transfer functions: D/A command (0 –

4096)-to-control position (deg) and string pot Vout-to-Surface Position (deg). In order to

determine the translation polynomials an accurate method of measuring each control

surface’s deflection was required. A laser pointer was attached to the control surface

such that the optical axis of the laser was perpendicular to the axis of rotation. The

laser’s objective lens was equipped with an opaque mask that reduced the exit aperture

to 0.014 mm. The laser’s beam was aimed at the inside surface of a section of circular

cylinder. The cylindrical surface had a radius of 20.0 inches and was marked in 0.2°

increments. This permitted accurate angular measurements down to ±0.1°. As the

67

control surface was moved, the position of the laser dot moved along the graduated

scale. The control surface deflection instrumentation is depicted in Figures 3.26 through

3.28.

Figure 3.26. Laser Installation for Control Surface Deflection Measurement.

Figure 3.27. Cylindrical Laser Target.

68

Figure 3.28 Laser Position Indicator Spot on Angle Scale.

The value of D/A command (0-4096), control surface deflection (deg) and string

pot output were noted for each position. The data was then curve fit by either a 3rd or 5th

order polynomial using a least squares approach. Figure 3.29 depicts the relationship

between the FROG’s aileron surface positions and AC-104 D/A output values. Figure

3.30 shows the relationship between the FROG’s aileron surface positions and the string

pot outputs.

69

-15 -10 -5 0 5 10 15
1000

1500

2000

2500

3000

y = 0.00027*x 5 - 0.0045*x4 + 0.01*x3 - 0.084*x2 + 41*x + 2.1e+003

Aileron Position (deg)

AC-104 D/A Command Value

Aileron D/A Command vs Control Surface Position (deg)

Position Data
 5th degree Fit

-10 -5 0 5 10
-15

-10

-5

0

5

10

15

Aileron Position (deg)

AC-104 D/A Command Value

Residual Error

Figure 3.29. FROG Aileron Position Command versus D/A Output Value.

8 10 12 14 16 18 20 22 24 26
-15

-10

-5

0

5

10

15

y = 1.7e-006*x5 - 0.00019*x4 + 0.0076*x3 - 0.14*x2 - 0.57*x + 25

Aileron Position Position vs Transducer Output

Aileron Position (deg)

Aileron String Pot Output

Aileron Data
 5th degree

10 12 14 16 18 20 22 24

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Aileron String Pot Output

Aileron Position (deg)

Residual Error

Figure 3.30. FROG Aileron String Pot Output versus Position.

70

3. FROG Servo Dynamics

Once calibrated the FROG control servo dynamics were assessed in the same

manner used for the TS-75 test set servos. The FROG servos were given small and large

STEP commands and the dynamic response was determined from the string pot position

feedback. Analysis of the STEP input commands and the servo response revealed some

unexpected system behavior. The strip chart in Figure 3.31 shows the elevator’s

response to a 20° STEP command (-10° to +10°). The elevator command and PWM

channels were sampled at 1000 Hz. The elevator control surface string pot signal is only

updated at 40 Hz (once every 25 ms); as it is part of the IMU downlink message. As can

be seen in the figure, the position command from RealSim is nearly an ideal STEP with

a rise time of 0.001 seconds. A closer inspection of the data revealed that the STEP

commands were not sent simultaneously but were spaced 1 ms. apart, which matched

the RTOS scheduler frequency. The first indication of a receiver response occurs some

69 ms later. The Futaba® FP-R309DPS receiver generated a piece-wise constant PWM

command for the servos which took an additional 20 ms to reach full pulse width. The

desired pulse width was not present in the receiver’s output until 89 ms after the AC-104

command was issued. The first indication of control surface response occurred an

average of 99 ms after the first pulse width change from the receiver. This was 168 ms

after the initial command was issued by the AC-104. This significant command path

delay had not been included in the FROG plant model when the flight controller was

developed.

71

15.5 15.6 15.7 15.8 15.9 16 16.1 16.2 16.3
- 1 0

-5

0

5

1 0

Elapsed Time (sec)

Command (deg)

elevator
aileron
rudder

15.5 15.6 15.7 15.8 15.9 16 16.1 16.2 16.3
1 0 0 0

1 5 0 0

2 0 0 0

Reciever PWM Output (us) Elapsed Time (sec)

15.5 15.6 15.7 15.8 15.9 16 16.1 16.2 16.3
- 2 0

- 1 0

0

1 0

2 0

Control Position (deg)

Elapsed Time (sec)

Figure 3.31. FROG Servo Response Delay.

Upon review of these results the servo test sets were tested to see if they showed

similar command latency. In the Avionics laboratory test sets the AC-104 generates the

PWM command signals with an internal Motorola 68322-based processor. As this is the

same unit used to measure pulse width it was not possible to capture the time delay

between servo command and pulse width response. It was possible, however, to

measure the entire delay between command and servo response, which was found to be

33 ms, depicted in Figure 3.32. This RPFTS command path delay was over five times

that found in the equipment used to develop the flight controller.

72

Time [s]

3.953.93.853.83.75 4

Se
rv

o
Co

m
m

an
d

an
d

R
es

on
se

 (d
eg

)

60

50

40

30

20

10

0

-10

70

Figure 3.32. TS-75 Servo Test Set Response Delay.

The observed servo responses were used to create 2nd order servo models. The

piece-wise PWM command signal gives each servo a dead-beat response and likely

masks the true dynamics. As no appreciable over-shoot was present a damping ratio of

0.9 was assumed. The resulting forward loop and feed back gains are listed in Table 3.2.

Control Servo Gain (K) Feedback Gain (Kh)

Elevator 2612.8 0.0352

Aileron 444.72 0.852

Rudder 1423.9 0.0477

Table 3.2. FROG Servo Gains.

The servo speed controller used on the TS-75 servos was then incorporated into

the FROG servo test system. Figure 3.33 shows the control surface response to variable

73

feedback gain. The aileron channel became unstable when the variable loop gain

exceeded 6.5 (16.3 dB). The rudder and elevator became unstable for when the loop

gain exceeded 8.0 (18.0 dB). It must be noted that the presence of considerable phase

lag makes clouds this assessment of gain margin.

Time (sec)

V
ar

ia
bl

e
S

er
vo

 G
ai

n

8.5

8

7.5

7

6.5

9

Time (sec)

E
le

va
to

r
Po

si
tio

n
(d

eg
)

20

10

0

-10

-20

-30

30

Time (sec)

A
ile

ro
n

Po
si

tio
n

(d
eg

)

10

5

0

-5

-10

-15

15

Time (sec)

806040200 100

R
ud

de
r P

os
iti

on
 (d

eg
)

20

10

0

-10

-20

-30

30

Gain = 6.6Gain = 8

Figure 3.33. FROG Servo-based Speed Controller Performance.

4. FROG Digital Flight Controller Performance

The performance of the RFTPS FROG digital flight controller was tested with

the FROG in the loop. The flight controller became unstable as soon as it was initialized

and was unable to track in any channel. The autopilot was then evaluated in the lab to

determine the influence of the command path latency. Figure 3.34 shows the effect of

introducing a 170 ms delay into the flight controller’s command output path. The

aileron and rudder are 180° out of phase with the controller’s commands while the

elevator and throttle lag the controller by 110°. The command path delay was reduced

to 50 ms and the controller’s performance was restored.

74

Ai
ler

on
 (d

eg
)

300

200

100

0

-100

-200

-300

400

Ele
va

tor
 (d

eg
)

100

50

0

-50

-100

150

R
ud

de
r (

de
g)

0

-1000

-2000

-3000

1000

Time [s]

1086420 12

Th
ro

ttle
 (d

eg
)

300

200

100

0

-100

400 Controller Output
Servo Response

Ai
ler

on
 (d

eg
)

300

200

100

0

-100

-200

-300

400

Ele
va

tor
 (d

eg
)

100

50

0

-50

-100

150

R
ud

de
r (

de
g)

0

-1000

-2000

-3000

1000

Time [s]

1086420 12

Th
ro

ttle
 (d

eg
)

300

200

100

0

-100

400 Controller Output
Servo Response

A
ile

ro
n

El
ev

at
o

r
R

u
d

d
er

T
h

ro
tt

le

180° Phase lag

110° Phase lag

180° Phase lag

110° Phase lag

Figure 3.34. Flight Controller with 170 ms Delay.

D. ALTERNATE COMMAND UPLINK

The interest in an alternate uplink method was initially driven by the short range

afforded by the Futaba® transmitter. Upon discovery of the magnitude and effects of

the RPFTS latency on the digital flight controller the focus of this investigation shifted

to reducing latency. The FreeWave modems used for data downlink provide a line of

sight range of up to 20 miles and offered the potential for higher speed uplink. Serial

commands can be sent from the AC-104, via the IP-serial board, to the FROG where

they are decoded in the Tattletale computer. The Motorola 68322 micro-controller, used

in the TattleTale and IP-68322, contains a powerful time processing unit (TPU) that can

perform match and capture operations on time, freeing the CPU for other tasks. The

TPU is in essence a slave processor built into the 68322 that controls two timers and

sixteen I/O lines and is capable of generating PWM signals. Each Tattletale 8 provides

access to nine of 68322’s TPU lines. Two of the TPU lines are currently used as a data

bus between the Master and Slave Tattletales. An investigation was conducted to assess

the feasibility of using four of the remaining TPU lines to generate PWM command

signals in place of the Futaba® receiver. In order to demonstrate the feasibility of this

approach, the Futaba® receiver-to-servo PWM signal characteristics had to be

determined. On board the FROG a Futaba® FP-R309DPS receiver converts the PCM

75

command signals to PWM and sends them on to the control servos. The PWM signal

characteristics were measured with a DSO-2102 PC—based digital storage oscilloscope,

manufactured by Link Instruments, Inc and with the IP-68322 data acquisition card in

the AC-104. A Futaba FP-9ZAP digital proportional radio control was used to generate

PCM command signals for the FP-R309DPS receiver. For this test, the controller trim

settings were set to zero so that the systems neutral command values could be

determined. It is noted that in actual practice the FROG controller trim settings are non-

zero in order to achieve balanced flight. The receiver generates 2.84 Volt PWM

command signals at an average frequency of 70.17 Hz (14.250 ms period). Figure 3.35

shows the receiver PWM output in response to a maximum elevator command and a

minimum aileron command.

Period = 14.250 ms

Short Pulse Width = 1.140 ms
Long Pulse Width = 2.085 ms

Figure 3.35. FP-R309DPS Receiver Output Signal.

The pulse width limits for each of the control channels were measured on the

digital storage oscilloscope and are presented in Table 3.3.

76

Pulse Width (ms) Receiver

Channel Minimum Neutral Trim Maximum

Elevator (ch 1) 0.955 1.520 2.085

Aileron (ch 2) 1.130 1.520 2.120

Throttle (ch 3) 1.235 1.570 1.940

Rudder (ch 4) 1.085 1.515 1.955

Table 3.3. FP-309DPS Pulse Width Response to FP-9ZAP Controller Commands.

The minimum pulse width observed was 0.955 ms for elevator channel. The

maximum pulse width was 2.120 ms on the aileron channel. The observed neutral

command pulse width matched the servo specified value of 1.52 ms for the elevator and

aileron channels and nearly so for the rudder channel. The throttle neutral pulse width

however was 1.57 ms. The throttles variation from the specified neutral output was

probably due to a voltage (resistance) bias in the throttle control stick. The receiver

PWM output, in response to dynamic commands was assessed with the AC-104’s IP-

68333 programmed to measure pulse period.

Once the baseline PWM signal parameters were determined the operating system

software in the NPS IMU was modified to accept and decode a servo command uplink

message. The servo command data was then used to set the pulse width duration. Once

the Tattletale program was modified the FROG control system was modified to include

a serial uplink message. The servo calibration controller was then used to generate

serial command signals, which were transmitted via the FreeWave modems to the

Tattletale computer. The first timing test was conducted with the PWM generation

functions embedded in the existing 3DM TattleTale program. With the IMU data

functions enabled the PWM output delay was a disappointing 150 ms. This would result

in a servo delay of approximately 180 ms (counting the 33 ms delay observe in the lab).

The TattleTale program was then modified and all non-PWM related functions were

disabled. With the IMU sampling functions disabled the PWM output delay was

reduced to 76 ms. To assess the suitability of this uplink method a 75 ms delay was

77

inserted into the flight controllers output path and the controller was run with TS-75

HITL, Figure 3.36. The reduction in servo response latency, while significant, was not

enough to reduce the restore stability to the system.

A
ile

ro
n

(d
eg

)

5

0

-5

-10

10

El
ev

at
or

 (d
eg

)

10

5

0

-5

-10

15

R
ud

de
r

(d
eg

)

10

0

-10

-20

-30

20

Time [s]

403020100 50

Th
ro

ttl
e

(d
eg

)

30

20

10

0

-10

40
Controller Output
Servo Response
Controller Output
Servo Response

A
il

er
o

n
E

le
va

to
r

R
u

d
d

er
T

h
ro

tt
le

A
ile

ro
n

(d
eg

)

5

0

-5

-10

10

El
ev

at
or

 (d
eg

)

10

5

0

-5

-10

15

R
ud

de
r

(d
eg

)

10

0

-10

-20

-30

20

Time [s]

403020100 50

Th
ro

ttl
e

(d
eg

)

30

20

10

0

-10

40
Controller Output
Servo Response
Controller Output
Servo Response

A
il

er
o

n
E

le
va

to
r

R
u

d
d

er
T

h
ro

tt
le

Figure 3.36. Flight Controller Performance with 75 ms Delay.

The 75ms delay produced limit cycle oscillation on each controller channel.

Figure 3.37 shows the phase lag between each controller channel and it’s associated

servo. The altitude controller exhibited a phase lag of 62 degrees compared to a phase

margin of 58.6 degrees. The rudder servo had 80 degrees of phase lag which is slightly

more than the Yaw damper’s phase margin of 76.1 degrees. The heading and speed

controllers had phase margins of 80 and 88 degrees respectively. The servo responses to

these controllers are less coherent suggesting that the phase margin has not been

exceeded yet.

78

Ai
ler

on
 (d

eg
)

2

0

-2

-4

-6

4

Ele
vat

or
 (d

eg
)

2

0

-2

-4

-6

-8

4

Ru
dd

er
 (d

eg
)

6

4

2

0

-2

-4

-6

-8

8

Time [s]

3332313029 34

Th
ro

ttle
 (d

eg
)

2

0

-2

-4

-6

4
Controller Output
Servo Response

Ai
ler

on
 (d

eg
)

2

0

-2

-4

-6

4

Ele
vat

or
 (d

eg
)

2

0

-2

-4

-6

-8

4

Ru
dd

er
 (d

eg
)

6

4

2

0

-2

-4

-6

-8

8

Time [s]

3332313029 34

Th
ro

ttle
 (d

eg
)

2

0

-2

-4

-6

4
Controller Output
Servo Response

Figure 3.37. Servo Phase Lag with 75 ms Command Delay.

It must be noted that though the digital flight controller does not provide

satisfactory performance with 76 ms delay it was not designed to do so. It is quite

probable that simply reducing the controller gains would restore stability but this would

come with a performance penalty. The prudent approach would be to incorporate the

servo response latency into the FROG plant model and re-tune each of the flight

controllers’ components. This way it may be determined if the desired controller

performance can be achieved with the current command path delay and if not a suitable

design goal for command path latency can be determined. This test did demonstrate the

validity of the serial uplink control scheme to reduce command uplink latency. Little

attention was paid to optimization of the TattleTale code and it is recognized that there

is room for improvement in this area. What is more important than the demonstration of

the TattleTale’s ability to replace the Futaba® transmitters and receiver is that principle

that serial uplink offers the potential to reduce command latency as well as extend the

FROG’s usable range.

79

IV. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS

The use of HITL greatly assisted the design and development of the digital flight

controller. The laboratory HITL, however, did not provide the required fidelity to be

able to create a flight controller for the FROG Rapid Prototyping Flight Test System.

The unmodeled command path latency resulted in excessive servo phase lag, which

exceeded the controllers phase margin. Reduction of the pulse width delay to 50 ms

provided satisfactory performance but likely leaves little phase margin. Inertial sensor

noise was not included in the FROG model and its effect on the flight controller’s

performance was not evaluated.

The Crossbow AHRS does not provide updates at a constant frequency in the

angle/ continuous mode of operation.

B. RECOMMENDATIONS

The fidelity of the FROG plant model should be improved by inclusion of the

command path latency, FROG servo dynamics and by sensor noise models. The flight

controller should also be modified to include limiters that restrict the control surface

deflection commands to the measured FROG control surface deflection limits, when

running with the TS-75 servo test set. Once these factors have been incorporated the

flight controller gains should be re-tuned in an attempt to meet the original performance

criteria. If the flight controller performance goals cannot be met an acceptable

command path delay should be determined and alternate command architecture should

be developed. Particular attention should be paid to serial via the existing FreeWave

modems. Consideration should also be given for transitioning to a wireless Ethernet

system.

The IMU computer should be modified to provide airborne data processing and

management capabilities for the AHRS avionics configuration. Future FROG guidance

and control projects will need to make use of analog to digital conversion onboard the

airplane. The TattleTale computer and operating software can be easily modified to

perform this task.

80

THIS PAGE INTENTIONALLY LEFT BLANK

81

APPENDIX A. NPS IMU OPERATING SOFTWARE

This appendix contains the “Aztec C” code listings for the 3DM and GPS

TattleTale microprocessors in the NPS IMU computer. Mathew Comerford originally

wrote this code while a student at the Naval Postgraduate School. The code was

subsequently modified to include the PWM generation capability by Maj Bock Aeng

Lim and the author.

A. 3DM TATTLETALE OPERATING CODE
/*--*/
/* 3DM Tattletale Operating System */
/* Primary function: IMU sampling, 3DM sampling, & Timing */
/* Secondary function: Merge GPS data into data stream */
/* April 23, 2001
/* Modified: September 2001 */
/* Filename: 3DMTTwPWM.c */
/*--*/

#include <TT8.h> /* Tattletale Model 8 Definitions */
#include <tt8lib.h> /* definitions and prototypes for Model 8 library */

#include <tt8lib.h> /* for TT8 functions */
#include <tat332.h> /* 68332 Hardware Definitions */
#include <tpu332.h> /* 68332 Time Processing Unit Definitions */
#include <sim332.h> /* 68332 System Integration Module Definitions */

#include <stdlib.h> /* for malloc */
#include <stdio.h> /* for printf() */
#include <userio.h> /* for prompts */
#include <string.h> /* for sting comparison */
#include "AtoDdata.h" // for AtoDdata sturcture definition
#include "data3DM.h" // for data3DM structure definition
#include "3DMio.h" // for SendAtoD and Send3DM functions
#include "PWM.h" // for PWM functions definition

// #define TESTMODE // if define test mode then program will sent simulated
data

#define SAMPLERATE 40 // Main sample frequency 40 Hz
#define SAMPLES 10000 // Number of samples to log
#define QSIZE 12 // Must be a power of 2 {2,4,8,16,32...}
#define TSBUFSIZE 4096 // Must be 2^QSIZE
// #define UplinkSerBUFSize 2048 //++ Buffer for Uplink PWM command at TPULine

/* Functions Prototype */

int SendAtoD (struct AtoDdata*); // SendAtoD function prototype
int Send3DM (struct data3DM*); // Send3DM function prototype
int Read3DM (struct data3DM* threeDM); // Read3DM function prototype
int Send3DMTest (short value); // Send3dmTest function prototype
int SendAtoDTest (struct AtoDdata *, short);// SendAtoDTest function prototype
int SendGPS (void); // SendGPS function prototype
int SendGPSAtoD(void); // SendGPSAtoD function prototype
void TPUSetupPWM(short pwmhi1, short pwmper1, short pwmhi2, short pwmper2, short pwmhi3,
short pwmper3, short pwmhi4, short pwmper4);
void TPUChangePWM(short pwmhi1, short pwmper1, short pwmhi2, short pwmper2, short pwmhi3,
short pwmper3, short pwmhi4, short pwmper4);

82

int PWMcmds_from_uplink(short []);
// int PWMcmds_from_TPU3(short []);

/* Global variable for PWM commands decoding */
int first_frame_a = 0;
short last_servo_cmd[8];

 main () {

 ulong sample = 0; // The current sample number
 ulong baud; // Baud rate
 ulong time = 0; // Timing Statistics
 ulong runningTime = 0; // Timing Statistics
 ulong missed = 0; // Timing Statistics
 char timeStr[40]; // Timing Statistics
 short status; // Timing Statistics
 short onTime = 1; // Timing Statistics
 short count = 0; // Timing Statistics
 float missedPercent = 0; // Timing Statistics
 XmdmErr xerr; // Xmodem error code
 short value = 48; // ASCII value for '0' --> to be used in testing
 short i = 0; // Generic Counter
 long *valuePtr; // Pointer to stored values
 void *serBufPtr = NULL; // Pointer to serial buffer
 void *inBufPtr = NULL; // Pointer to serial buffer TPU(14)
 void *inBufPtr1 = NULL; // Pointer to serial buffer TPU(1)
 void *inBufPtr2 = NULL; // Pointer to serial buffer TPU(2)
 void *inBufPtr3 = NULL; // Pointer to serial buffer TPU(3)
 void *outBufPtr = NULL; // Pointer to serial buffer TPU(13)
 void *UplinkBufPtr = NULL; //++
 struct AtoDdata AtoD3DM = {0}; // AtoD data structure variable
 struct data3DM threeDM = {48059,48059,48059,48059,48059,48059}; // Hex BB BB
 struct data3DM threeDM2 = {221,221,221,221,221,221}; // Hex 00 DD
 short servo_cmd[8];
 short tpumcr = 0x2040; // TPU MCR register for PWM output

 InitTT8(NO_WATCHDOG,tpumcr); // Initialize the Model 8

#ifdef TESTMODE
 printf("**************** Attention!! Data will be produced in TEST mode
************\n");
#endif

 printf("\nSet BAUD rate to 38400\n");
 Sleep(0);
 Sleep (200000); // Allow 5 second to display message
 // SimSetFSys(16000000); // Set TT to 16.0 MHz --> fastest speed
 SimSetFSys(14720000); // Set TT to 14.7 MHz --> best rate for serial transfer
 // baud = SerSetBaud(38400,0); // Set baud rate
 baud = SerSetBaud(9600,0);
 SetTickRate(40000); // TPU clock rate to 40 KHz --> 40 ticks = 1 ms

 // --------------- Set up Memory Buffers for Serial Input and Output ---------------

 serBufPtr = malloc(4096); // Console (Primary) Serial Buffer
 if (serBufPtr == NULL) printf("\nBuffer Memory Allocation Failed\n");
 if (serBufPtr != NULL) printf("\nbufferPtr Memory O.K.\n");

 inBufPtr = malloc(TSBUFSIZE+TSER_MIN_MEM); // TPU(14) Serial In Buffer
 if (inBufPtr == NULL) printf("inBufPtr too big\n");
 if (inBufPtr != NULL) printf("inBufPtr Memory O.K.\n");

 inBufPtr1 = malloc(TSBUFSIZE+TSER_MIN_MEM); // TPU(1) Serial In Buffer
 if (inBufPtr1 == NULL) printf("inBufPtr1 too big\n");
 if (inBufPtr1 != NULL) printf("inBufPtr1 Memory O.K.\n");

 inBufPtr2 = malloc(TSBUFSIZE+TSER_MIN_MEM); // TPU(2//8) Serial In Buffer
 if (inBufPtr2 == NULL) printf("inBufPtr2 too big\n");

83

 if (inBufPtr2 != NULL) printf("inBufPtr2 Memory O.K.\n");

 inBufPtr3 = malloc(TSBUFSIZE+TSER_MIN_MEM); // TPU(3) Serial In Buffer
 if (inBufPtr3 == NULL) printf("inBufPtr3 too big\n");
 if (inBufPtr3 != NULL) printf("inBufPtr3 Memory O.K.\n");

 outBufPtr = malloc(TSBUFSIZE+TSER_MIN_MEM); // TPU(13) Serial Output Buffer
 if (outBufPtr == NULL) printf("outBufPtr too big\n");
 if (outBufPtr != NULL) printf("outBufPtr Memory O.K.\n");

 // --------------- Set up Serial Input and Output Parameters -----------------------

 // Open Console (Primary) serial port for buffered input & output
 SerSetInBuf (serBufPtr,4096);
 SerInFlush();

 // Open TPU(1) for buffered input
 if(TSerOpen(1,HighPrior,0,inBufPtr1,TSBUFSIZE,33600,'N',8,1) == tsOK) {
 printf ("TSerOpen(1) O.K.\n");
 TSerInFlush(1);
 };

 // Open TPU(2//8) for buffered input// it suppose to be 8 with the same mode 0
 if(TSerOpen(8,HighPrior,0,inBufPtr2,TSBUFSIZE,33600,'N',8,1) == tsOK) {
 printf ("TSerOpen(8) O.K.\n");
 TSerInFlush(8);
 };

 // Open TPU(3) for buffered input
 if(TSerOpen(3,HighPrior,0,inBufPtr3,TSBUFSIZE,9600,'N',8,1) == tsOK) {
 printf ("TSerOpen(3) O.K.\n");
 TSerInFlush(3);
 };

 // Open TPU(13) for buffered output
 if(TSerOpen(13,MiddlePrior,1,outBufPtr,TSBUFSIZE,9600,'N',8,1) == tsOK) {
 printf ("TSerOpen(13) O.K.\n");
};

 // Open TPU(14) for buffered input
 if(TSerOpen(14,HighPrior,0,inBufPtr,TSBUFSIZE,9600,'N',8,1) == tsOK) {
 printf ("TSerOpen(14) O.K.\n");
 TSerInFlush(14);
};

 TPUSetupPWM(500,1000,500,1000,500,1000,500,1000); // simple values to open PWM channels

 printf ("Tick Rate is %ld\n",GetTickRate());
 printf ("System Clock is %ld\n",SimGetFSys());
 printf ("Baud Rate is %ld\n",baud);
 printf ("Press Control-C on the Primary port to reset to TOM8\n");
 Sleep (0);
 Sleep (200000); // Allow 5 seconds messages to be displayed.
// if (SerByteAvail()){
// if (SerGetByte() == 3) ResetToMon(); // Reset to TOM8 Monitor if CNTRL C
Pressed
// }
 // Allows reset of EEPROM program w/o hardware
reset

 //TPUSetPin (0,1); // Now we use direct connection to transmit data
from TPU0(GPS) to TPU8(3DM)
 // Define TPU0 for digital output and sets to
high level
 // Enable
Humphrey Gyro Auto Erect feature
 // Should this be done entire flight ??????

84

//**
// This portion of code conducts all of the timing for the IMU gyros and the 3DM
// accelerometers/magnetometers. The IMU AtoD data is sampled at 40 Hz while the 3DM
// is sampled at 20 Hz because of the instrument's limits. The 3DM is connected on
// the secondary serial port at 9,600 baud and the output is on the primary serial port
// Binary GPS data is received from the GPS Tattletale via TPU pin 1.
//**

 do {
// --
// 1st Minor Timing Cycle @ 40Hz --> {send AtoD, send 3DM, poll 3DM for data}
// --
 // Note: ** Indicates debugging code
 Sleep(0); // Initialize timer
 count = 0; // ** Initialize missed timing slot counter
 if (value >= 56) {value = 48;} // ** Reset sample counter to ASCII value for '0'

 TSerPutByte (13,144); // Poll(inquiry) 3dm for data output

 SendAtoD (&AtoD3DM); // Read and Send 16 bytes of AtoD data
 Send3DM (&threeDM); // Send 12 bytes of 3dM data
 SendGPS(); // Send 31 bytes of GPS data if available
 sample += 1; // ** Increment sample counter for testing
 value += 1; // ** Increment value counter for test data

 printf("\nPWMcmds_from_uplink status = %d\n", PWMcmds_from_uplink(servo_cmd));
// printf("\nPWMcmds_from_TPU3 status = %d\n", PWMcmds_from_TPU3(servo_cmd));

 // TPUChangePWM(PWM_default_hi, PWM_default_per, 2*PWM_default_hi, PWM_default_per,
3*PWM_default_hi, PWM_default_per, 4*PWM_default_hi, PWM_default_per);
 TPUChangePWM(servo_cmd[0],servo_cmd[1], servo_cmd[2], servo_cmd[3],servo_cmd[4],
servo_cmd[5],servo_cmd[6], servo_cmd[7]);

 onTime = Sleep (1000); // Sleep until 25 ms is over (40 = 1 ms)
 if (!onTime) { count += 1; } // ** Update missed timing slot statistics

// --
// 2nd Minor Timing Cycle @ 40Hz --> {Send AtoD, send 3DM, send GPS data}
// --

 // StopWatchStart(); // ** Begin timing of Segment
 SendAtoD(&AtoD3DM); // Read and Send 16 bytes of AtoD data
 Read3DM (&threeDM); // Read and store 12 bytes of 3DM data
 Send3DM (&threeDM); // Send 12 bytes of 3dM data
 SendGPSAtoD(); // Send 18 bytes of GPS Tattletale AtoD data if
available
 // time = StopWatchTime(); // ** End timing of segment

 sample += 1; // ** Increment sample counter for testing
 value += 1; // ** Increment value counter for test data

 onTime = Sleep (1000); // Sleep until 25 ms is over (40 = 1 ms)
 if (!onTime) { count += 1; } // ** Update missed timing slot statistics

// --
// 3rd Minor Timing Cycle @ 40Hz --> {Send AtoD, send 3DM, poll 3DM for data}
// --

 TSerPutByte (13,144); // Poll(inquiry) 3dm for data output

 SendAtoD (&AtoD3DM); // Read and Send 16 bytes of AtoD data
#ifdef TESTMODE
 Send3DMTest (103 - value); // Simulate 12 bytes from 3dM (ASCII '9'-'0')
#else
 Send3DM (&threeDM); // Send 12 bytes of 3dM data
#endif

85

 SendGPS(); // Send 31 bytes of GPS data if available

 sample += 1; // ** Increment sample counter for testing
 value += 1; // ** Increment value counter for test data

 onTime = Sleep (1000); // Sleep until 25 ms is over (40 = 1 ms)
 if (!onTime) { count += 1; } // ** Update missed timing slot statistics

// --
// 4th Minor Timing Cycle @ 40Hz --> {Send AtoD data, send 3DM data}
// --

 SendAtoD (&AtoD3DM); // Read and Send 16 bytes of AtoD data
 Read3DM (&threeDM);
#ifdef TESTMODE
 Send3DMTest (103 - value); // Simulate 12 bytes from 3dM (ASCII '9'-'0')
#else
 Send3DM (&threeDM); // Send 12 bytes of 3dM data
#endif
 SendGPSAtoD(); // Send 18 bytes of GPS Tattletale AtoD data if
available

 sample += 1; // ** Increment sample counter for testing
 value += 1; // ** Increment value counter for test data
 missed += count; // ** Total missed timing slot count
 runningTime += time; // ** Total simulation time

 onTime = Sleep (1000); // Sleep until 25 ms is over (40 = 1 ms)
 if (!onTime) { count += 1; } // ** Update missed timing slot statistics

// --

/*
// Output real time troubleshooting data
 sprintf(timeStr," T%lu B%d ",status,TSerByteAvail(1));
 for (i = 0;i <10; i++){
 SerPutByte (((int)timeStr[i]));
 }
 SerPutByte(13); // Carriage Return & Line Feed
 SerPutByte(10);
*/
} while(1); // Infinite loop

 //**
 // --------------- Output Timing Statistics and Download Options -------------------
 // Output timing statistics. This portion of the code will never be reached during
 // normal program execution.
 //**

 missedPercent = (float)missed/(float)sample*100;
 printf("\n# Samples: %ld, # Misses: %ld, Percent Misses: ,%5.3f, Ave Parse Time: %5.3f,
\n",
 sample, missed, missedPercent,(float)runningTime/(float)sample*4);
 SerPutByte (13); // Carriage Return & Line Feed
 SerPutByte (10);

/*
if (QueryYesNo("\nOffload the data?", TRUE)){
 printf("\nStarting XMODEM transfer ... ");
 fflush(stdout);
 xerr = XmodemSendMem(valuePtr, SAMPLES * sizeof(long), 30);
 printf(" Complete [%d]\n", xerr);
}
*/

 SerInFlush();
 SerSetBaud(9600,0);
 ResetToMon();

86

 return (0);
}

/***
** TPUSetupPWM Setup TPU channel for Pulse-Width Modulation
**
** Notes:
** pwmper = period in tcr1 cycles [call TPUGetTCR1() for current value]
** pwmhi = time high in tcr1 cycles
** priority = LowPrior, MiddlePrior, or HighPrior [defined in tpu.h]
** read about value limitations in the TPU Reference Manual
***/

void TPUSetupPWM(short pwmhi1, short pwmper1, short pwmhi2, short pwmper2, short pwmhi3,
short pwmper3, short pwmhi4, short pwmper4)
 {

 /* declarations */
 ulong tcr1;

 TPUSetPin(PWMChan1, 1); /* Configure Pins into Prpoer I/O State */
 TPUSetPin(PWMChan2, 1);
 TPUSetPin(PWMChan3, 1);
 TPUSetPin(PWMChan4, 1);

 tcr1 = TPUGetTCR1(); /* Get Current Clock Frequencey */

 CIER &= ~(1 << PWMChan1); / don't want interrupts
enabled for Chan# */
 *CIER &= ~(1 << PWMChan2);
 *CIER &= ~(1 << PWMChan3);
 *CIER &= ~(1 << PWMChan4);

 FUNSEL(PWMChan1, PWM); /* configure PWMChan# for PWM
mode */
 FUNSEL(PWMChan2, PWM);
 FUNSEL(PWMChan3, PWM);
 FUNSEL(PWMChan4, PWM);

 /* configure first 4 bytes of PWMRAM for PWMChan# */
 PRAM[PWMChan1][0] = OutputChan | NoChangePAC | (pwmhi1 ? ForceHigh : ForceLow);
 PRAM[PWMChan2][0] = OutputChan | NoChangePAC | (pwmhi2 ? ForceHigh : ForceLow);
 PRAM[PWMChan3][0] = OutputChan | NoChangePAC | (pwmhi3 ? ForceHigh : ForceLow);
 PRAM[PWMChan4][0] = OutputChan | NoChangePAC | (pwmhi4 ? ForceHigh : ForceLow);

 /* Convert Period & Time Hi input from usec to tcr1 ticks */

 pwmper1 = (float) tcr1 * (float) pwmper1 / 1e6;
 pwmhi1 = (float) tcr1 * (float) pwmhi1 / 1e6;
 pwmper2 = (float) tcr1 * (float) pwmper2 / 1e6;
 pwmhi2 = (float) tcr1 * (float) pwmhi2 / 1e6;
 pwmper3 = (float) tcr1 * (float) pwmper3 / 1e6;
 pwmhi3 = (float) tcr1 * (float) pwmhi3 / 1e6;
 pwmper4 = (float) tcr1 * (float) pwmper4 / 1e6;
 pwmhi4 = (float) tcr1 * (float) pwmhi4 / 1e6;

 /* Write pulse width and period to PWM RAM */

 PRAM[PWMChan1][2] = pwmhi1; /* time hi for PWMChan# */
 PRAM[PWMChan1][3] = pwmper1; /* period for PWMChan# */
 PRAM[PWMChan2][2] = pwmhi2;
 PRAM[PWMChan2][3] = pwmper2;
 PRAM[PWMChan3][2] = pwmhi3;
 PRAM[PWMChan3][3] = pwmper3;
 PRAM[PWMChan4][2] = pwmhi4;

87

 PRAM[PWMChan4][3] = pwmper4;

 HOSTSERVREQ(PWMChan1, 2); /* initiate PWMChan1 */
 HOSTSERVREQ(PWMChan2, 2);
 HOSTSERVREQ(PWMChan3, 2);
 HOSTSERVREQ(PWMChan4, 2);

 while (HOSTSERVSTAT(PWMChan1) & 3); /* await reply */
 while (HOSTSERVSTAT(PWMChan2) & 3); /* await reply */
 while (HOSTSERVSTAT(PWMChan3) & 3); /* await reply */
 while (HOSTSERVSTAT(PWMChan4) & 3); /* await reply */

 } /* TPUSetupPWM() */

/***
** TPUChangePWM Change PWM values for initiated TPU channel
**
** Notes:
** pwmper = period in tcr1 cycles
** pwmhi = time high in tcr1 cycles
***/

void TPUChangePWM(short pwmhi1, short pwmper1, short pwmhi2, short pwmper2, short pwmhi3,
short pwmper3, short pwmhi4, short pwmper4)
 {

 /* declarations */
 ulong tcr1;

 /* Get Current Clock Frequencey */
 tcr1 = TPUGetTCR1();

 /* Convert Period & Time Hi input from usec to tcr1 ticks */

 pwmper1 = (float) tcr1 * (float) pwmper1 / 1e6;
 pwmhi1 = (float) tcr1 * (float) pwmhi1 / 1e6;
 pwmper2 = (float) tcr1 * (float) pwmper2 / 1e6;
 pwmhi2 = (float) tcr1 * (float) pwmhi2 / 1e6;
 pwmper3 = (float) tcr1 * (float) pwmper3 / 1e6;
 pwmhi3 = (float) tcr1 * (float) pwmhi3 / 1e6;
 pwmper4 = (float) tcr1 * (float) pwmper4 / 1e6;
 pwmhi4 = (float) tcr1 * (float) pwmhi4 / 1e6;

 /* NEED TO DO THIS WRITE COHERENTLY (AS DOUBLE WRITE) */

 * (ulong *) &PRAM[PWMChan1][2] = ((ulong) pwmhi1 << 16L) | (ulong) pwmper1;
 HOSTSERVREQ(PWMChan1, 1); /* issue immediate update
request */
 while (HOSTSERVSTAT(PWMChan1) & 3) /* await reply */
 ;

 * (ulong *) &PRAM[PWMChan2][2] = ((ulong) pwmhi2 << 16L) | (ulong) pwmper2;
 HOSTSERVREQ(PWMChan2, 1);
 while (HOSTSERVSTAT(PWMChan2) & 3)
 ;

 * (ulong *) &PRAM[PWMChan3][2] = ((ulong) pwmhi3 << 16L) | (ulong) pwmper3;
 HOSTSERVREQ(PWMChan3, 1);
 while (HOSTSERVSTAT(PWMChan3) & 3)
 ;

88

 * (ulong *) &PRAM[PWMChan4][2] = ((ulong) pwmhi4 << 16L) | (ulong) pwmper4;
 HOSTSERVREQ(PWMChan4, 1);
 while (HOSTSERVSTAT(PWMChan4) & 3)
 ;

 } /* TPUChangePWM() */

int PWMcmds_from_uplink(short servo_cmd[]) {
//**
//
// This is a function to decode an array of 8 short integers from serial
// data collected in the Serial Port 1 buffer. The 8 short integers are
// for use by the TPUChangePWM().
//
//**

 short w_high, w_low;
 uchar last_byte=0, curr_byte = 0;
 short k;
 int header_found = 0;
 int i,j, NumBytes;

// 1. Specify default servo_cmd if first entry

 if (first_frame_a == 0)
 { for (i=0; i<PWM_word_length; i++)
 { last_servo_cmd[2*i] = (i+1)*1520;
 last_servo_cmd[2*i+1] =14250;
 first_frame_a = 1;
 }
 }

// 2. Will read all serial bytes that arrive by this time.
// Leave bytes arriving later in the Serial Buffer

// 3. Search for Header

 if (SerByteAvail()!=0)
 {
 last_byte = SerGetByte();

 while (SerByteAvail() != 0)
 { printf("\nSerByteAvail");
 curr_byte = SerGetByte();
 printf(" Current Byte = %x(x), %u(u)", curr_byte, curr_byte);

 if (last_byte == 255 && curr_byte == 255)
 { header_found = 1;
 break; }
 else {last_byte = curr_byte;}
 }

// 4. If header was found, compile the servo commands into short int array
 if (header_found == 1)
 { printf("\nHeader found");
 for (i=0; i<PWM_word_length; i++)
 {
 w_low = (short) SerGetByte();
 w_high = (short) SerGetByte();
 k = 256*w_high + w_low;
 last_servo_cmd[i] = k;
 SerInFlush();

89

 } /* end for loop */
 }

 } // endif NumBytes != 0

// 5. Make servo_cmd[] equal latest if new cmds was received. Otherwise, last cmds
used.
 for (j=0;j<PWM_word_length;j++)
 {
 servo_cmd[j] = last_servo_cmd[j];
 }

 printf("\nServo Hi 1 = %u, Servo Period 1 = %u",servo_cmd[0],servo_cmd[1]);
 return 5;

} /* PWMcmds_from_uplink */

int PWMcmds_from_TPU3(short servo_cmd[]) {
//**
//
// This is a function to decode an array of 8 short integers from serial
// data collected in the Serial Port 1 buffer. The 8 short integers are
// for use by the TPUChangePWM().
//
//**

 short w_high, w_low, k;
 char last_byte=0, curr_byte = 0;
 int header_found = 0;
 int i,j, NumBytes;

// 1. Specify default servo_cmd if first entry

 if (first_frame_a == 0)
 { for (i=0; i<PWM_word_length; i++)
 { last_servo_cmd[2*i] = (i+1)*1520;
 last_servo_cmd[2*i+1] =14250;
 }
 }

// 2. Will read all serial bytes that arrive by this time.
// Leave bytes arriving later in the Serial Buffer

 NumBytes = TSerByteAvail(3);

 printf("\nPass Stage 2. NumBytes Avail = %d",NumBytes);

// 3. Search for Header

 if (NumBytes !=0) { // do only if there are data in buffer, otherwise SerGetByte
 // will wait till char is received in buffer

 last_byte = TSerGetByte(3);
 NumBytes -= 1;

 while (NumBytes != 0)
 {
 curr_byte = TSerGetByte(3);
 NumBytes -= 1;
 if (last_byte == Header_byte && curr_byte == Header_byte)
 { header_found = 1;
 break; }
 last_byte = curr_byte;
 }

90

// 4. If header was found, compile the servo commands into short int array
 if (header_found == 1)
 { for (i=0; i<PWM_word_length; i++)
 {
 w_high = TSerGetByte(3);
 w_low = TSerGetByte(3);
 k = 256*w_high + w_low;
 last_servo_cmd[i] = k;
 } /* end for loop */
 }

 } // endif NumBytes != 0

// 5. Make servo_cmd[] equal latest if new cmds was received. Otherwise, last cmds
used.
 for (j=0;j<PWM_word_length;j++)
 {
 servo_cmd[j] = last_servo_cmd[j];
 }

 printf("\nServo Hi 1 = %u, Servo Period 1 = %u",servo_cmd[0],servo_cmd[1]);
 return 5;

} /* PWMcmds_from_TPU3 */

B. 3DMIO.H
//**
//
// Filename: 3DMio.h
// Description: 3DM Tattltetale Input and Output Routines.
// Purpose: Read and Send 3DM and AtoD data
// Data: 13 May, 2001
// Programmer: LT Matt B. Commerford
//
//**

#include "data3DM.h"
#include "AtoDdata.h"

int SendAtoD (struct AtoDdata *AtoD) {
//**
// This function reads all 8 A to D channels on the Tattletale and
// outputs them on the primary serial port.
//**

 int i = 0;
 char *ptrTemp;
 ptrTemp = (char*)AtoD; // Cast AtoDdata pointer to character so
 // each individual byte can be addressed

 // Read A to D Converter Channels 0 - 7;
 AtoD->ch0 = AtoDReadWord(0);
 AtoD->ch1 = AtoDReadWord(1);
 AtoD->ch2 = AtoDReadWord(2); // Note: Hardware Rate Sensors for p & q are
wired backwards
 AtoD->ch3 = AtoDReadWord(3); // Channel 2 and 3 are reversed again in
right order because of Jerry ask 07/30/01 -Vlad
// AtoD->ch2 = AtoDReadWord(3); // Note: Hardware Rate Sensors for p & q are wired
backwards
// AtoD->ch3 = AtoDReadWord(2); // Channel 2 and 3 are reversed in software to
correct problem
 AtoD->ch4 = AtoDReadWord(4);
 AtoD->ch5 = AtoDReadWord(5);
 AtoD->ch6 = AtoDReadWord(6);
 AtoD->ch7 = AtoDReadWord(7);

91

 SerPutByte (255); // AtoD header byte (0xFF)
 SerPutByte (255); // AtoD header byte (0xFF)

 for (i = 0; i < 16; i++) {
 SerPutByte (ptrTemp[i]); // Output AtoD data
 }

 return 1;
}

int SendAtoDTest (struct AtoDdata *AtoD,short value) {
//**
// This is a function to output test A to D data. The function accepts
// an integer value as the least significant byte on each A to D channel
// and outputs them on the primary serial port. A to D
// channels are actually read first to simulate timing requiremnts.
// The primary purpose is for troubleshooting the output of the code.
//**

 int i = 0;
 char *ptrTemp;
 ptrTemp = (char*)AtoD; // Cast AtoDdata pointer to character so
 // each individual byte can be addressed

 // Read A to D Converter Channels 0 - 7;
 AtoD->ch0 = AtoDReadWord(0);
 AtoD->ch1 = AtoDReadWord(1);
 AtoD->ch2 = AtoDReadWord(2);
 AtoD->ch3 = AtoDReadWord(3);
 AtoD->ch4 = AtoDReadWord(4);
 AtoD->ch5 = AtoDReadWord(5);
 AtoD->ch6 = AtoDReadWord(6);
 AtoD->ch7 = AtoDReadWord(7);

 // Test Values to ensure propper transmission.
 AtoD->ch0 = value;
 AtoD->ch1 = value;
 AtoD->ch2 = value;
 AtoD->ch3 = value;
 AtoD->ch4 = value;
 AtoD->ch5 = value;
 AtoD->ch6 = value;
 AtoD->ch7 = value;

 SerPutByte (255); // AtoD header byte (0xFF)
 SerPutByte (255); // AtoD header byte (0xFF)

 for (i = 0; i < 16; i++) {
 SerPutByte (ptrTemp[i]); // Output AtoD data.
 }

 return 1;
}

int Read3DM (struct data3DM* threeDM) {
//**
// This is a function to receive 3dm data. The function first reads the
// diagnostic byte. 65 indicates valid data. If data is valid two
// bytes are read for each of the 6 3DM channels (Hx, Hy, Hz, Ax, Ay, Az).
// Input is on the secondary serial port (TPU 14)
//**

 int i = 0;
 unsigned int temp[12];

 // Check diagnostic byte: 41h if valid. 6Xh if error where X is error code

92

 if (TSerByteAvail(14) >= 13) {
 if (TSerGetByte(14) == 65) {
 // Read in the 12 bytes in the buffer from the 3DM
 for (i = 0; i < 12; i++) {
 temp[i] = TSerGetByte(14);
 // TSerInFlush(14); // Empty input Buffer
 }

 threeDM->Hx = (short)(256*temp[0] + temp[1]); // MSB, LSB
 threeDM->Hy = (short)(256*temp[2] + temp[3]); // MSB, LSB
 threeDM->Hz = (short)(256*temp[4] + temp[5]); // MSB, LSB
 threeDM->Ax = (short)(256*temp[6] + temp[7]); // MSB, LSB
 threeDM->Ay = (short)(256*temp[8] + temp[9]); // MSB, LSB
 threeDM->Az = (short)(256*temp[10] + temp[11]); // MSB, LSB

 return 1; // Return after successful completion
 }
 }

 TSerInFlush(14);

 return 0; // Return after error code
}

int Send3DM (struct data3DM* threeDM) {
//**
// This is a function to send 3dm data. The function outputs two
// bytes for each of the 6 3DM channels (Hx, Hy, Hz, Ax, Ay, Az).
// Output is on the primary serial port.
//**
 int i = 0;
 char *ptrTemp;
 ptrTemp = (char*)threeDM; // Cast data3DM pointer to character pointer
 // so each individual byte can be addressed

 for (i = 0; i < 12; i++){
 SerPutByte(ptrTemp[i]); // Output 12 bytes of 3DM data
 }

 return 1;
}

int Send3DMTest (short value) {
//**
// This is a function to output test 3dm data. The function accepts
// an integer value as the least significant byte on each of the
// 6 channels (Hx, Hy, Hz, Ax, Ay, Az) and outputs them on the
// primary serial port. The primary purpose of the function is for
// troubleshooting the output of the code.
//**

 int i = 0;

 // Test Values to ensure propper transmission.
 SerPutByte(00);
 SerPutByte(value);
 SerPutByte(00);
 SerPutByte(value);
 SerPutByte(00);
 SerPutByte(value);
 SerPutByte(00);
 SerPutByte(value);
 SerPutByte(00);
 SerPutByte(value);
 SerPutByte(00);
 SerPutByte(value);

93

 return 1;
}

int SendGPS () {
//**
// This function reads in data on TPU line 1 from the GPS tattletale and
// retransmitts it out the primary serial port.
//**

 int i = 0;

 if (TSerByteAvail(1) >= 310) { // Flush the buffer if over 1 second of data present
 TSerInFlush(1);
 }

 if (TSerByteAvail(1) >= 31) { // Check for complete GPS message of 31 bytes
 for (i = 0; i < 31; i++) {
 SerPutByte(TSerGetByte(1));
 }
 SerPutByte(13);
 SerPutByte(10);

 return 1; // Return after successful transmission
 }

 return 0; // Return after not enough bytes available
}

int SendGPSAtoD () {
//**
// This function reads in AtoD data on TPU line 2(it's supposed to be 8) from the GPS
tattletale and
// retransmitts it out the primary serial port.
//**

 int i = 0;

 if (TSerByteAvail(8) >= 180) { // Flush the buffer if over 1 second of data present
 TSerInFlush(8);
 }

 if (TSerByteAvail(8) >= 18) { // Check for complete GPS AtoD message of 18 bytes
 for (i = 0; i < 18; i++) {
 SerPutByte(TSerGetByte(8));
 }
 SerPutByte(13);
 SerPutByte(10);

 return 1; // Return after successful transmission
 }

 return 0; // Return after not enough bytes available
}

C. DATA3DM.H
//**
//
// Filename data3DM.h
// Description: 3DM Data Structure
// Purpose: Structure to group all 3DM data into single data type
// Data: 13 May, 2001
// Programmer: LT Matt B. Commerford
//
//**

#if defined (__DATA3DM_H)
 // Avoid multiple header inclusions
#else

94

#define __DATA3DM_H

struct data3DM {

 short Hx; // two bytes for X magnetic vector
 short Hy; // two bytes for Y magnetic vector
 short Hz; // two bytes for Z magnetic vector
 short Ax; // two bytes for X acceleration
 short Ay; // two bytes for Y acceleration
 short Az; // two bytes for Z acceleration

};
#endif

D. PWM.H
//**
//
// Filename PWM.h
// Description: PWM Command functions
// Purpose: Functions to set PWM output from TT8 TPU
// Data: Sep 2001
// Programmer: Bock Aeng Lim
//
//**

/* Definitions for putting PWM waveform onto TPU(4)-(7) */
#define PWMChan1 4
#define PWMChan2 5
#define PWMChan3 6
#define PWMChan4 7

/* PSC Pin State Control */
#define ForceByPAC 0x00
#define ForceHigh 0x01
#define ForceLow 0x02
#define NoForceState 0x03

/* PAC Pin Action Control (Inputs) */
#define NoTranDet 0x00
#define DetRising 0x04
#define DetFalling 0x08
#define DetEither 0x0c
#define NoChangePAC 0x10

/* PAC Pin Action Control (Outputs) */
#define NoChangematch 0x00
#define HighOnMatch 0x04
#define LowOnMatch 0x08
#define ToggleOnMatch 0x0c

/* TBS Time Base/Directionality Control */
#define InputChan 0x00
#define OutputChan 0x80
#define Cap1Match1 0x00
#define Cap1Match2 0x20
#define Cap2Match1 0x40
#define Cap2Match2 0x60
#define NoChangeTBS 0x100

/* Definitions for Decoding Serial Data from TPU(9) */
// #define NULL 0;
#define Header_byte 255
#define PWM_byte_length 16
#define PWM_word_length 8
#define PWM_default_hi 1520;
#define PWM_default_per 14250;

95

E. GPS TATTLETALE OPERATING CODE
/*--*/
/* GPS Tattletale Operating System */
/* Primary function: GPS Serial Data Parsing */
/* Secondary function: Timing of A/D collection and transmission */
/* April 23, 2001 */
/* Filename: GPSTT.c */
/*--*/
#include <TT8.h> /* Tattletale Model 8 Definitions */
#include <tt8lib.h> /* for TT8 functions */
#include <tat332.h> /* 68332 Hardware Definitions */
#include <tpu332.h> /* 68332 Time Processing Unit Definitions */
#include <sim332.h> /* 68332 System Integration Module Definitions */ // Do I need?
#include <qsm332.h> /* 68332 Queued Serial Module Definitions */ // Do I need?
#include <dio332.h> /* 69332 Digital I/O Port Pin Definitions */ // Do I need?
#include <stdlib.h> /* for malloc */
#include <stdio.h> /* for printf() */
#include <userio.h> /* for prompts */
#include <string.h> /* for sting comparison */
#include "GPSparse.h" // for parseGGA, parseRMC, & parseVTG functions
#include "GPSio.h" // for printGPS and sendGPS functions
#include "GPSdata.h" // for GPSdata structure definition
#include "AtoDdata.h" // for AtoDdata sturcture definition

#define TSerInQBytes TSerByteAvail /* return number of bytes in input queue */
#define TSerOutQBytes TSerByteAvail /* return number of bytes in output queue */
//uchar /* pointer to the start of the queue
data buffer */
// TSerGetQueue(/* return low level queue information */
// int chan, /* TPU channel, 0..15 */
// int *head, /* index into queue for first
character */
// int *tail, /* index into queue for last
character -1 */
// int *size); /* size of queue for wrap
manipulation */

#define SAMPLERATE 40 // Main sample frequency 40 Hz
#define SLEEPCOUNT 40000/SAMPLERATE/2 // Sleep count in of Hertz rate (SAMPLERATE)
#define QSIZE 8 // Must be a power of 2
{2,4,8,16,32...}
#define TSBUFSIZE 128 // Must be 2^QSIZE

int parseGGA (struct GPSdata*); // parseGGA function prototype
int parseRMC (struct GPSdata*); // parseRMC function prototype
int parseVTG (struct GPSdata*); // parseVTG function prototype
int TprintGPS (const struct GPSdata* const); // TprintGPS function prototype
int TsendGPS (const struct GPSdata* const); // TsendGPS function prototype
int TsendAtoD (struct AtoDdata*); // TsendAtoD function prototype
int TsendAtoDTest (struct AtoDdata*, short); // TsendAtoDTest function prototype
int Tsend3dmTest (short value); // Tsend3dmTest function prototype

main (){

 XmdmErr xerr; // Xmodem error code
 ulong baud; // baud rate
 ulong time = 0; // Current clock tick rate
 ulong sample = 0; // Timing Statistucs
 ulong runningTime = 0; // Timing Statistics
 ulong missed = 0; // Timing Statistics
 float missedPercent = 0; // Timing Statistics
 long *valuePtr; // Pointer to stored values
 char timeStr[40]; // Timing Statistics
 short OnTime; // Test for timeslice overrun
 short value = 48; // ASCII value for '0' --> to be used in testing
 int onTime = 1; // Timing Statistics
 int i = 0;

96

 int count = 0;
 int status;
 void *serBufPtr = NULL;
 void *inBufPtr = NULL;
 void *outBufPtr = NULL;
 struct GPSdata GPS = {11,22,33,4,55,66,777777,888,99,000000,1,22,33,44,5,66,7,88,9};

 struct GPSdata emptyGPS = {11,22,33,4,55,66,777777,888,99,000000,1,22,33,44,5,66,7,88,9}
;

 struct AtoDdata TTAtoD;

 InitTT8(NO_WATCHDOG,TT8_TPU); // Initialize the Model 8

// --------------- Set up Memory Buffers for Serial Input and Output ----------------
--
 serBufPtr = malloc(4096); // Console
(Primary) Serial Buffer
 if (serBufPtr == NULL) printf("\nBuffer Memory Allocation Failed\n");
 if (serBufPtr != NULL) printf("bufferPtr Memory O.K.\n");

 inBufPtr = malloc(TSBUFSIZE+TSER_MIN_MEM); // TPU(14) Serial In Buffer
 if (inBufPtr == NULL) printf("inBufPtr too big\n");
 if (inBufPtr != NULL) printf("inBufPtr Memory O.K.\n");

 outBufPtr = malloc(TSBUFSIZE+TSER_MIN_MEM); // TPU(13) Serial Output Buffer
 if (outBufPtr == NULL) printf("outBufPtr too big\n");
 if (outBufPtr != NULL) printf("outBufPtr Memory O.K.\n");

// --------------- Set up Serial Input and Output Parameters ------------------------
--
 printf("\nSet BAUD rate to 38400\n");
 printf("\nTick Rate is %ld\n",GetTickRate());
 printf("\nCurrent System Freq %ld\n",SimGetFSys());
 printf("\nSystem Clock is %ld\n",SimGetFSys());
 printf("\nBaud Rate is %ld\n",baud);
 PutStr("\nPreparing to Get GPS data\n");

 Sleep(0); // Initialize timer
 Sleep(1200); // Sleep 30 ms to allow screen printout

 SimSetFSys(14720000);
 baud = SerSetBaud(38400,0);
 SetTickRate(40000);
 SerSetInBuf (serBufPtr,4096);
 //TSerOpen(14,LowPrior,0,inBufPtr,TSBUFSIZE,57600,'N',8,1); // Open Port 14 for
buffered input
 TSerOpen(13,HighPrior,1,outBufPtr,QSIZE,57600,'N',8,1); // Open Port 13 for
buffered output

// --------------- Attempt to Sync with 1st byte of GPS signal ----------------------
--
 SerInFlush (); // Empty the Serial
Buffer
 while (!SerByteAvail()) {}; // Wait until serial byte available
 Sleep(0); // Initialize timer
 Sleep(2000); // Sleep 50 ms to allow the buffer to fill
 SerInFlush(); // Empty Serial Buffer again to ensure next
 // string will be a complete one
 while (!SerByteAvail()) {}; // Wait until serial byte available
 Sleep(0); // Initialize timer
 Sleep(400); // Sleep 10 ms to allow the buffer to fill

 do {

97

 // --

 // 1st Minor Timing Cycle @ 40Hz --> {send AtoD data}
 // --

 // Note: ** Indicates debugging code
 Sleep(0); // Initialize timer
 count = 0; // ** Initialize missed timing block
counter
 if (value >= 56) {value = 48;} // ** Reset sample counter to ASCII value for
'0'
 if (sample == 100) {missed = 0;} // ** Reset timing counter. Measures steady
 // ** state errors after 100 initial samples.
 TPUSetPin (0,0); // Clock signal low to 2nd
Tattletale
 TPUSetPin (1,0); // Switch signal low
to Multiplex Switch
 TSerPutByte (13,255); // Header Byte (0xFF)
 TSerPutByte (13,255); // Header Byte (0xFF)

 TsendAtoDTest (&TTAtoD,value); // 16 bytes of Test AtoD (ASCII '0'-'9')

 onTime = Sleep (600); // Sleep until 15 ms is over
(40 = 1 ms)
 if (!onTime) { count += 1; } // ** Update missed timing slot
statistics

 // --

 TPUSetPin (0,1); // Clock signal high to 2nd
Tattletale
 TPUSetPin (1,1); // Switch signal high
to Multiplex Switch
 Tsend3dmTest (103 - value); // ** 12 bytes of Test 3dM (ASCII '9'-'0')

 sample += 1; // ** Increment sample counter for testing
 value += 1; // ** Increment test value counter

 onTime = Sleep (400); // Sleep until 10 ms is over
(40 = 1 ms)
 if (!onTime) { count += 1; } // ** Update missed timing slot
statistics

 // --

 // 2nd Minor Timing Cycle @ 40Hz --> {Send AtoD data}
 // --

 TPUSetPin (0,0); // Clock signal low
to 2nd Tattletale
 TPUSetPin (1,0); // Switch signal low
to Multiplex Switch

 TsendAtoDTest (&TTAtoD,value); // 16 bytes from AtoD (ASCII '0'-'9')

 onTime = Sleep (600); // Sleep until 15 ms is over (40
= 1 ms)
 if (!onTime) { count += 1; } // Update missed timing slot statistics

 // --

 TPUSetPin (0,1); // Clock signal high to 2nd
Tattletale
 TPUSetPin (1,1); // Switch signal high
to Multiplex Switch
 Tsend3dmTest (103 - value); // ** Send 12 bytes from 3dM (ASCII '9'-'0')

 sample += 1; // ** Increment sample counter for testing
 value += 1; // ** Increment test value counter

98

 onTime = Sleep (400); // Sleep until 10 ms is over
(40 = 1 ms)
 if (!onTime) { count += 1; } // ** Update missed timing slot
statistics

 // --

 // 3rd Minor Timing Cycle @ 40Hz --> {Send AtoD data, parse
GGA & RMC string}
 // --

 TPUSetPin (0,0); // Clock signal low
to 2nd Tattletale
 TPUSetPin (1,0); // Switch signal low
to Multiplex Switch

 TsendAtoDTest (&TTAtoD,value); // 16 bytes from AtoD (ASCII '0'-'9')

 StopWatchStart();
 parseGGA(&GPS); // Parse GGA line of GPS data
 parseRMC(&GPS); // Parse RMC line of GPS data
 time = StopWatchTime();

 onTime = Sleep (600); // Sleep until 15 ms is over
(40 = 1 ms)
 if (!onTime) { count += 1; } // ** Update missed timing slot
statistics

 // ---
 TPUSetPin (0,1); // Clock signal high
to 2nd Tattletale
 TPUSetPin (1,1); // Switch signal high
to Multiplex Switch
 Tsend3dmTest (103 - value); // ** Send 12 bytes from 3dM (ASCII '9'-'0')

 sample += 1; // ** Increment sample counter for testing
 value += 1; // ** Increment test value counter

 onTime = Sleep (400); // Sleep until 10 ms is over
(40 = 1 ms)
 if (!onTime) { count += 1; } // ** Update missed timing slot
statistics

 // --
 // 4th Minor Timing Cycle @ 40Hz --> {Send AtoD data, send GPS
data}
 // --
 TPUSetPin (0,0); // Clock signal low
to 2nd Tattletale
 TPUSetPin (1,0); // Switch signal low
to Multiplex Switch

 TsendAtoDTest (&TTAtoD,value); // 16 bytes from AtoD (ASCII '0'-'9')
 TsendGPS (&GPS); // Send GPS data out the secondary port (TPU
13)
 // Reset GPS value for troubleshooting. This helps determine where data drops out.
 GPS = emptyGPS;
 onTime = Sleep (600); // Sleep until 15 ms is over
(40 = 1 ms)
 if (!onTime) { count += 1; } // ** Update missed timing slot
statistics

 // ---
 TPUSetPin (0,1); // Clock signal high
to 2nd Tattletale

99

 TPUSetPin (1,1); // Switch signal high
to Multiplex Switch
 Tsend3dmTest (103 - value); // Send 12 bytes from 3dM (ASCII '9'-'0')

 sample += 1; // ** Increment sample counter for testing
 value += 1; // ** Increment test value counter

// ** Print out timing diagnostics.
 sprintf(timeStr," S%4.d T%4.d",SerByteAvail(),TSerByteAvail(13));
 for (i = 0;i <12; i++){
 TSerPutByte (13, ((int)timeStr[i]));
 }
 TSerPutByte(13,13); // Carriage Return & Line Feed
 TSerPutByte(13,10);

 missed += count;
 runningTime += time;

 onTime = Sleep (400); // Sleep until 10 ms
is over (40 = 1 ms)
 if (!onTime) { count += 1; }

 } while(sample < 3000); //!TSerByteAvail(14));

 // --------------- Output Timing Statistics and Download Options --------------------

 missedPercent = (float)missed/(float)sample*100;
 sprintf(timeStr,"\n# Samples: %ld, # Misses: %ld, Percent Misses: ,%5.3f, Ave Parse
Time: %5.3f, \n",
 sample, missed, missedPercent,(float)runningTime/(float)sample);
 for (i = 0;i <80; i++){
 TSerPutByte (13, ((int)timeStr[i]));
 }
 TSerPutByte (13,13); // Carriage Return &
Line Feed
 TSerPutByte (13,10);

 printf("\nFinished with GPS data...");
 SerInFlush();
 SerSetBaud(9600,0);
 ResetToMon();
 return(0);
}

F. GPSPARSE.H
//**
//
// Filename: GPSparse.h
// Description: GPS $GGGGA Parsing Routine.
// Purpose: Routine to parse the GGA line of the GPS data
// Data: 21 April, 2001
// Programmer: LT Matt B. Commerford
//
//**

#include "GPSdata.h"

int parseGGA (struct GPSdata *ptrGPS) {

 int success = 1;
 char temp[100];
 int i = 0;
 int j = 0;
 int gamma = 0 - (int)'0'; // Correction factor between ASCII and binary
values;

100

 // ------------------------ Get GPS String Header ---------------------------
 while (SerGetByte() != '$') {} // Find start of a string $
 j = 0;
 do {
 temp[j] = SerGetByte();
 } while (temp[j++] != ',');
 temp[j] = '\0'; // NULL terminate the string

 if (!strcmp(temp,"GPGGA")) { // Procces GGA line else return
 // Print out error message.
 sprintf(temp,"\nReturn from parseGGA\n");
 for (i = 0;i <12; i++){
 TSerPutByte (13, ((int)temp[i]));
 }
 TSerPutByte(13,13); // Carriage Return & Line Feed
 TSerPutByte(13,10);
 return (0);
 }

 // ------------------------ Get GPS Time stamp ------------------------------
 j = 0;
 do {
 temp[j] = SerGetByte();
 } while (temp[j++] != ',');

 ptrGPS->timeHH = (char)(10*((int)temp[0] + gamma) + ((int)temp[1]+gamma)); //
Hours
 ptrGPS->timeMM = (char)(10*((int)temp[2] + gamma) + ((int)temp[3]+gamma)); //
Minutes
 ptrGPS->timeSS = (char)(10*((int)temp[4] + gamma) + ((int)temp[5]+gamma)); //
Seconds
 ptrGPS->timeDecimalSS = (char)(1*((int)temp[7]+gamma));
 // Decimal Seconds

 // ------------------------ Get Latitude -------------------------------------
 j = 0;
 do {
 temp[j] = SerGetByte();
 } while (temp[j++] != ',');
 if (j <= 12) {
 temp[j++] = '0'; // Pad trailing zeros in array to ensure 7 decimal
places
 };
 temp[j] = '\0'; // NULL terminate string

 ptrGPS->latDeg = (char)(10*((int)temp[0] + gamma) + ((int)temp[1]+gamma)); //
Lat(deg)
 ptrGPS->latMin = (char)(10*((int)temp[2] + gamma) + ((int)temp[3]+gamma)); //
Lat(min)
 ptrGPS->latDecimalMin = atol(&temp[5]); //
Converts argument to type long

 // ------------------------ Get N/S ---
 j = 0;
 do {
 temp[j] = SerGetByte();
 } while (temp[j++] != ',');

 // ------------------------ Get Longitude ------------------------------------
 j = 0;
 do {
 temp[j] = SerGetByte();
 } while (temp[j++] != ',');
 if (j <= 12) {
 temp[j++] = '0'; // Pad trailing zeros in array to ensure 7 decimal
places

101

 };
 temp[j] = '\0'; // NULL terminate string

 ptrGPS->longDeg = (char)(100*((int)temp[0] + gamma) + 10*((int)temp[1]+gamma) +
 ((int)temp[2] + gamma));
 // Lat(deg)
 ptrGPS->longMin = (char)(10*((int)temp[3] + gamma) + ((int)temp[4]+gamma)); //
Lat(min)
 ptrGPS->longDecimalMin = atol(&temp[6]); //
Converts argument to type long

 // ------------------------ Get E/W ---
 j = 0;
 do {
 temp[j] = SerGetByte();
 } while (temp[j++] != ',');

 // ------------------------ Get DGPS status byte -----------------------------
 j = 0;
 do {
 temp[j] = SerGetByte();
 } while (temp[j++] != ',');
 ptrGPS->diffGPS = (char)((int)temp[0] + gamma);

 while (SerGetByte() != ',') {}; // Discard Number SV
 while (SerGetByte() != ',') {}; // Discard HDOP

 // ------------------------ Get Antenna Height -------------------------------
 j = 0;
 do {
 temp[j] = SerGetByte();
 } while (temp[j++] != '.');
 temp[j] = '\0'; // NULL terminate the string
 ptrGPS->altFeet = atoi(temp);

 j = 0;
 do {
 temp[j] = SerGetByte();
 } while (temp[j++] != ',');
 temp[j] = '\0'; // NULL terminate the string
 ptrGPS->altDecimalFeet = (char)atoi(temp);

 while (SerGetByte() != ',') {}; // Discard 'M' units
 while (SerGetByte() != ',') {}; // Discard Age of DGPS
 while (SerGetByte() != '*') {}; // Discard Base Station ID

 return success;
};

//**
//
// Description: GPS $GGRMC Parsing Routine.
// Purpose: Routine to parse the RMC line of the GPS data
// Data: 21 April, 2001
// Programmer: LT Matt B. Commerford
//
//**

int parseRMC (struct GPSdata *ptrGPS) {

 int success = 1;
 char temp[100];
 int i = 0;

102

 int j = 0;
 int gamma = 0 - (int)'0'; // Correction for difference between Binary
& Ascii

 while (SerGetByte() != '$') {}; // Ensure start of a string $
 j = 0;
 do {
 temp[j] = SerGetByte();
 } while (temp[j++] != ',');
 temp[j] = '\0'; // NULL terminate the string
 if (strcmp(temp,"GPRMC")) { // Procces RMC line else return

 // while (SerGetByte() != ',') {}; // Discard GPRC header
 while (SerGetByte() != ',') {}; // Discard Time
 while (SerGetByte() != ',') {}; // Discard Status
 while (SerGetByte() != ',') {}; // Discard Latitude
 while (SerGetByte() != ',') {}; // Discard Latitude N/S
 while (SerGetByte() != ',') {}; // Discard Longitude
 while (SerGetByte() != ',') {}; // Discard Longitude E/W

 // ------------------------ Get Ground Speed Line ------------------------

 j = 0;
 do {
 temp[j] = SerGetByte();
 } while (temp[j++] != '.');
 temp[j] = '\0'; // NULL terminate the string
 ptrGPS->grndSpeed = atoi(temp);

 j = 0;
 do {
 temp[j] = SerGetByte();
 } while (temp[j++] != ',');
 temp[j] = '\0'; // NULL terminate the string
 ptrGPS->grndSpeedDecimal = (char)atoi(temp);

 // ------------------------ Get Ground Track Line ------------------------

 j = 0;
 do {
 temp[j] = SerGetByte();
 } while (temp[j++] != '.');
 temp[j] = '\0'; // NULL terminate the string
 ptrGPS->grndTrack = atoi(temp);

 j = 0;
 do {
 temp[j] = SerGetByte();
 } while (temp[j++] != ',');
 temp[j] = '\0'; // NULL terminate the string
 ptrGPS->grndTrackDecimal = (char)atoi(temp);

 while (SerGetByte() != ',') {}; // Discard Date Line

 // ------------------------ Get Magnetic Variation Line ------------------

 j = 0;
 do {
 temp[j] = SerGetByte();
 } while (temp[j++] != '.');
 temp[j] = '\0'; // NULL terminate the string
 ptrGPS->magVar = atoi(temp);

 j = 0;
 do {
 temp[j] = SerGetByte();
 } while (temp[j++] != ',');

103

 temp[j] = '\0'; // NULL terminate the string
 ptrGPS->magVarDecimal = (char)atoi(temp);
 }

 // SerInFlush (); // Empty the Serial Buffer

 return success;
}

//**
//
// Description: GPS $GGRMC Parsing Routine.
// Purpose: Routine to parse the RMC line of the GPS data
// Data: 21 April, 2001
// Programmer: LT Matt B. Commerford
//
//**

int parseVTG (struct GPSdata *ptrGPS) {

 int success = 1;
 char temp[100];
 int i = 0;
 int j = 0;
 int gamma = 0 - (int)'0'; // Correction for difference between Binary
& Ascii

 while (SerGetByte() != '$') {}; // Ensure start of a string $
 j = 0;
 do {
 temp[j] = SerGetByte();
 } while (temp[j++] != ',');
 temp[j] = '\0'; // NULL terminate the string
 if (strcmp(temp,"GPVTG")) { // Procces VTG line else return

 // while (SerGetByte() != ',') {}; // Discard GPRC header
 // while (SerGetByte() != ',') {}; // Discard Time
 // while (SerGetByte() != ',') {}; // Discard Status
 // while (SerGetByte() != ',') {}; // Discard Latitude
 // while (SerGetByte() != ',') {}; // Discard Latitude N/S
 // while (SerGetByte() != ',') {}; // Discard Longitude
 // while (SerGetByte() != ',') {}; // Discard Longitude E/W

 // ------------------------ Get Ground Track Line ------------------------

 j = 0;
 do {
 temp[j] = SerGetByte();
 } while (temp[j++] != '.');
 temp[j] = '\0'; // NULL terminate the string
 ptrGPS->grndTrack = atoi(temp);

 j = 0;
 do {
 temp[j] = SerGetByte();
 } while (temp[j++] != ',');
 temp[j] = '\0'; // NULL terminate the string
 ptrGPS->grndTrackDecimal = (char)atoi(temp);

 while (SerGetByte() != ',') {}; // Discard "T" for True North
 while (SerGetByte() != ',') {}; // Discard ","
 while (SerGetByte() != ',') {}; // Discard ","

 // ------------------------ Get Ground Speed Line -----------------------------
 j = 0;
 do {

104

 temp[j] = SerGetByte();
 } while (temp[j++] != '.');
 temp[j] = '\0'; // NULL terminate the string
 ptrGPS->grndSpeed = atoi(temp);

 j = 0;
 do {
 temp[j] = SerGetByte();
 } while (temp[j++] != ',');
 temp[j] = '\0'; // NULL terminate the string
 ptrGPS->grndSpeedDecimal = (char)atoi(temp);

 // Fake Magnetic Variation Value for compatibility purposes
 ptrGPS->magVar = 15;
 ptrGPS->magVarDecimal = 3;

 while (SerGetByte() != ',') {}; // Discard Date Line
 while (SerGetByte() != ',') {}; // Discard ","

 }

// SerInFlush (); // Empty the Serial Buffer

 return success;
}

105

//**
//
// Filename: GPSio.h
// Description: GPS Input and Output Routines.
// Purpose: Print GPS structure data as ASCII or Binary data.
// Data: 28 April, 2001
// Programmer: LT Matt B. Commerford
//
//**

#include "GPSdata.h"
#include "AtoDdata.h"

int TprintGPS (const struct GPSdata* const ptrGPS) {
//**
// This function converts the GPSdata structure to an ASCII string using
// the sprintf function. The string is output to the secondary serial
// port (TPU 13). The primary use is to provide a readable output to
// be used in troubleshooting the code
//**

 char gpsLine[200];
 char gpsLine2[80];
 int i = 0;
 sprintf (gpsLine,"%d:%d:%d.%1.d %d %d.%ld %d %d.%ld %d %d.%d ",
 ptrGPS->timeHH, ptrGPS->timeMM, ptrGPS->timeSS, ptrGPS-
>timeDecimalSS, ptrGPS->latDeg,
 ptrGPS->latMin, ptrGPS->latDecimalMin, ptrGPS->longDeg, ptrGPS->longMin,
 ptrGPS->longDecimalMin, ptrGPS->diffGPS, ptrGPS->altFeet, ptrGPS-
>altDecimalFeet);
 sprintf (gpsLine2,"%d.%d %d.%d %d.%.d %d.%.d\n\0",ptrGPS->grndSpeed, ptrGPS-
>grndSpeedDecimal,
 ptrGPS->grndTrack, ptrGPS->grndTrackDecimal, ptrGPS->magVar, ptrGPS-
>magVarDecimal);
 strncat (gpsLine,gpsLine2,30);
 for (i = 0;i <66; i++){
 TSerPutByte (13, ((int)gpsLine[i]));
 }
 TSerPutByte(13,13);
 TSerPutByte(13,10);

 return 1;
}

int TsendGPS (const struct GPSdata* const ptrGPS) {
//**
// This function sends the GPSdata structure in binary format to the
// secondary serial port (TPU 13). This is the primary GPS output routine.
// The function accepts a pointer to a character array. In calling this
// function the GPSdata structure pointer must be cast to a character
// pointer so the bytes in the array can be referrenced individually.
// The data stored in the GPSdata structure is not necessarily stored
// continuously. There are gaps in the data because variables in the
// structure must be stored on 16 bit word boundaries in the Motorolla
// chip. Thus, there are gaps of meaningless data that are not output
// from the program {17, 21, 25, 29}.
//**

 char *ptrTemp;
 ptrTemp = (char*)ptrGPS; // Cast AtoDdata pointer to character so
 // each individual byte can be addressed

// TSerPutByte (13,255); // Header Byte
// TSerPutByte (13,255); // Header Byte

 TSerPutByte(13,(int)ptrTemp[0]); // GPS.timeHH

106

 TSerPutByte(13,(int)ptrTemp[1]); // GPS.timeMM
 TSerPutByte(13,(int)ptrTemp[2]); // GPS.timeSS
 TSerPutByte(13,(int)ptrTemp[3]); // GPS.timeDecimalSS

 TSerPutByte(13,(int)ptrTemp[4]); // GPS.latDeg
 TSerPutByte(13,(int)ptrTemp[5]); // GPS.latMin
 TSerPutByte(13,(int)ptrTemp[6]); // GPS.latDecimalMin
 TSerPutByte(13,(int)ptrTemp[7]);
 TSerPutByte(13,(int)ptrTemp[8]);
 TSerPutByte(13,(int)ptrTemp[9]);

 TSerPutByte(13,(int)ptrTemp[10]); // GPS.longDeg
 TSerPutByte(13,(int)ptrTemp[11]); // GPS.longMin
 TSerPutByte(13,(int)ptrTemp[12]); // GPS.longDecimalMin
 TSerPutByte(13,(int)ptrTemp[13]);
 TSerPutByte(13,(int)ptrTemp[14]);
 TSerPutByte(13,(int)ptrTemp[15]);

 TSerPutByte(13,(int)ptrTemp[16]); // GPS.diffGPS

 TSerPutByte(13,(int)ptrTemp[18]); // GPS.altFeet
 TSerPutByte(13,(int)ptrTemp[19]);
 TSerPutByte(13,(int)ptrTemp[20]); // GPS.altDecimalFeet

 TSerPutByte(13,(int)ptrTemp[22]); // GPS.grndSpeed
 TSerPutByte(13,(int)ptrTemp[23]);
 TSerPutByte(13,(int)ptrTemp[24]); // GPS.grndSpeedDecimal

 TSerPutByte(13,(int)ptrTemp[26]); // GPS.grndTrack
 TSerPutByte(13,(int)ptrTemp[27]);
 TSerPutByte(13,(int)ptrTemp[28]); // GPS.grndTrackDecimal

 TSerPutByte(13,(int)ptrTemp[30]); // GPS.magVar
 TSerPutByte(13,(int)ptrTemp[31]);
 TSerPutByte(13,(int)ptrTemp[32]); // GPS.magVarDecimal

// TSerPutByte(13,13);
// TSerPutByte(13,10);

 return 1;

};

int TsendAtoD (struct AtoDdata *TTAtoD) {
//**
// This function reads all 7 A to D channels on the Tattletale and
// outputs them on the secondary serial port (TPU 13).
//**

 int i = 0;
 char *ptrTemp;
 ptrTemp = (char*)TTAtoD; // Cast AtoDdata pointer to character so
 // each individual byte can be addressed

 // Read A to D Converter Channels 0 - 7;
 TTAtoD->ch0 = AtoDReadMilliVolts(0);
 TTAtoD->ch1 = AtoDReadMilliVolts(1);
 TTAtoD->ch2 = AtoDReadMilliVolts(2);
 TTAtoD->ch3 = AtoDReadMilliVolts(3);
 TTAtoD->ch4 = AtoDReadMilliVolts(4);
 TTAtoD->ch5 = AtoDReadMilliVolts(5);
 TTAtoD->ch6 = AtoDReadMilliVolts(6);
 TTAtoD->ch7 = AtoDReadMilliVolts(7);

// TSerPutByte(13,238); // AtoD header byte (0xEE)
// TSerPutByte(13,238); // AtoD header byte (0xEE)
 for (i = 0; i < 16; i++) {
 TSerPutByte (13,ptrTemp[i]);

107

 }
// TSerPutByte(13,13); // Carriage Return & Line Feed
// TSerPutByte(13,10);

return 1;
}

int TsendAtoDTest (struct AtoDdata *TTAtoD,short value) {
//**
// This is a function to output test A to D data. The function accepts
// an integer value as the least significant byte on each A to D channel
// and outputs them on the secondary serial port (TPU 13). A to D
// channels are actually read first to simulate timing requiremnts.
// The primary purpose is for troubleshooting the output of the code.
//**

 int i = 0;
 char *ptrTemp;
 ptrTemp = (char*)TTAtoD; // Cast AtoDdata pointer to character so
 // each individual byte can be addressed

 // Read A to D Converter Channels 0 - 7;
 TTAtoD->ch0 = AtoDReadMilliVolts(0);
 TTAtoD->ch1 = AtoDReadMilliVolts(1);
 TTAtoD->ch2 = AtoDReadMilliVolts(2);
 TTAtoD->ch3 = AtoDReadMilliVolts(3);
 TTAtoD->ch4 = AtoDReadMilliVolts(4);
 TTAtoD->ch5 = AtoDReadMilliVolts(5);
 TTAtoD->ch6 = AtoDReadMilliVolts(6);
 TTAtoD->ch7 = AtoDReadMilliVolts(7);

 // Test Values to ensure propper transmission.
 // value = 0;
 TTAtoD->ch0 = value;
 TTAtoD->ch1 = value;
 TTAtoD->ch2 = value;
 TTAtoD->ch3 = value;
 TTAtoD->ch4 = value;
 TTAtoD->ch5 = value;
 TTAtoD->ch6 = value;
 TTAtoD->ch7 = value;

// TSerPutByte(13,238); // AtoD header byte (0xEE)
// TSerPutByte(13,238); // AtoD header byte (0xEE)

 for (i = 0; i < 16; i++) {
 TSerPutByte (13,ptrTemp[i]);
 }

// TSerPutByte(13,13); // Carriage Return & Line Feed
// TSerPutByte(13,10);

return 1;
}

int Tsend3dmTest (short value) {
//**
// This is a function to output test 3dm data. The function accepts
// an integer value as the least significant byte on each of the
// 6 channels (Hx, Hy, Hz, Ax, Ay, Az) and outputs them on the
// secondary serial port (TPU 13). The primary purpose is for
// troubleshooting the output of the code.
//**

 int i = 0;

108

 // Test Values to ensure propper transmission.
 TSerPutByte(13,00);
 TSerPutByte(13,value);
 TSerPutByte(13,00);
 TSerPutByte(13,value);
 TSerPutByte(13,00);
 TSerPutByte(13,value);
 TSerPutByte(13,00);
 TSerPutByte(13,value + 10);
 TSerPutByte(13,00);
 TSerPutByte(13,value + 10);
 TSerPutByte(13,00);
 TSerPutByte(13,value + 10);

return 1;
}
G. GPSDATA.H
// File Name: GPSdata.h
// Description: GPS Data Structure
// Purpose: Structure to group all GPS data into a single data type
// Data: 21 April, 2001
// Programmer: LT Matt B. Commerford
//
//**

#if defined (__GPSDATA_H)
 // Avoid multiple header inclusions
#else
#define __GPSDATA_H

struct GPSdata {

// Note: One byte data represented with CHAR data type
// Two byte data represented with INT data type
// Four byte data represented with LONG data type
// No floating point numbers used. Conversions are
// done after data is transmitted.

 char timeHH; // one byte of Hours
 char timeMM; // one byte of Minutes
 char timeSS; // one byte of Seconds
 char timeDecimalSS; // one byte of tenths of Seconds

 char latDeg; // one byte of degrees Latitude
 char latMin; // one byte of minutes Latitude
 long latDecimalMin; // four bytes of decimal mintues Latitude

 char longDeg; // one byte of degrees Longitude
 char longMin; // one byte of minutes Longitude
 long longDecimalMin; // four bytes of decimal mintues Longitude

 char diffGPS; // one byte of DGPS status

 short altFeet; // two bytes of altitude in feet
 char altDecimalFeet; // one byte of decimal feet

 short grndSpeed; // two bytes of groundspeed in ft/s
 char grndSpeedDecimal; // one byte of groundspeed in decimal ft/s

 short grndTrack; // two bytes of ground track in degrees (0-359)
 char grndTrackDecimal; // one byte of ground track in decimal degrees

 short magVar; // two bytes of magnetic variation in degrees
 char magVarDecimal; // one byte of mag variation in decimal degrees

// short gpsCRC; // two byte Cyclic Reduncancy Check (CRC);
};
#endif

109

H. ATODDDATA.H
//**
//
// Filename : AtoDdata.h
// Description: AtoD Data Structure
// Purpose: Structure to group all AtoD data into a single data type
// Data: 29 April, 2001
// Programmer: LT Matt B. Commerford
//
//**

#if defined (__ATODDATA_H)
 // Avoid multiple header inclusions
#else
#define __ATODDATA_H

struct AtoDdata {

 short ch0; // two bytes for A to D channel (0)
 short ch1; // two bytes for A to D channel (1)
 short ch2; // two bytes for A to D channel (2)
 short ch3; // two bytes for A to D channel (3)
 short ch4; // two bytes for A to D channel (4)
 short ch5; // two bytes for A to D channel (5)
 short ch6; // two bytes for A to D channel (6)
 short ch7; // two bytes for A to D channel (7)

// short gpsCRC; // two byte Cyclic Reduncancy Check (CRC);
};
#endif

110

THIS PAGE INTENTIONALLY LEFT BLANK

111

APPENDIX B. CROSSBOW AHRS NOISE ANALYSIS

The CrossBow AHRS was evaluated to determine the amount and nature of the

sensor noise when operating in the continuous/angle mode. The AHRS was initialized

while sitting on a large stable concrete pad. Sufficient time was given for the Kalman

filter to converge and data was collected using the Gyroview version 2.1. The data was

then imported into Matlab where a statistical analysis was performed. The resulting

Matlab output follows.

Crossbow Static Noise Test

Angular Rates
Mean Rates: p = 0.0060913 q = 0.0059416 r = 0.0032076
Standard Devs: p = 0.087604 q = 0.085688 r = 0.07939

Covariance of Rates: p,q,r =

 0.0076745 -0.0002478 0.00020486
 -0.0002478 0.0073424 -7.9876e-005
 0.00020486 -7.9876e-005 0.0063027

Orientation Angle
Mean Angle: roll = 0.9201 pitch = 0.038009 yaw = -78.9903
Standard Devs: roll = 0.021981 pitch = 0.019398 yaw = 0.024684
Covariance of Angle: roll, pitch, yaw =

 0.00048315 8.8618e-006 2.5846e-005
 8.8618e-006 0.0003763 9.3887e-005
 2.5846e-005 9.3887e-005 0.00060928

Linear Acceleration
Mean Accel: Ax = -0.00066671 Ay = 0.016047 Az = 0.99781
Standard Devs: Ax = 0.00037249 Ay = 0.00045495 Az = 0.00032578
Covariance of Accel: Ax, Ay, Az =

 1.3875e-007 -5.3833e-009 1.1636e-009
 -5.3833e-009 2.0698e-007 -8.1784e-009
 1.1636e-009 -8.1784e-009 1.0613e-007

112

Magnetic Flux
Mean Flux: Hx = 0.045627 Hy = 0.24452 Hz = 0.48059
Standard Devs: Hx = 0.00083978 Hy = 0.00085417 Hz = 0.0010617
Covariance of Flux: Hx, Hy, Hz =

 7.0523e-007 -2.1908e-008 3.7182e-007
 -2.1908e-008 7.2961e-007 -1.8335e-007
 3.7182e-007 -1.8335e-007 1.1272e-006

113

LIST OF REFERENCES

1. Futaba Corporation of America, “Futaba® PCM1024ZA Instruction & Operation
Manual,” Irvine, CA.

2. Commerford, M., “FROG UAV Inertial Measurement Unit Software

Documentation,” Unpublished Paper, June 2001.

3. Hallberg, E., “On Integrated Plant, Control and Guidance Design,” Dissertation,

Naval Postgraduate School, Monterey, CA, September 1997.

4. Papageorgio, E., “Development of a Dynamic Model for a UAV,” Master’s

Thesis, Naval Postgraduate School, Monterey, CA, March 1997.

5. Pollard, S., “Development and Verification of an Aerodynamic Model for the

NPS FROG UAV using the CMARC Panel Code Software Suite,” Aeronautical
Engineer’s Thesis, Naval Postgraduate School, Monterey, CA, September 1998.

6. Integrated Systems, “RealSim User’s Guide, Sunnyvale, CA, February 1999.

114

THIS PAGE INTENTIONALLY LEFT BLANK

115

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
 Ft. Belvoir, Virginia

2. Dudley Knox Library

Naval Postgraduate School
Monterey, California

3. Doctor Isaac I. Kaminer, Dept. of Aeronautics and Astronautics
Naval Postgraduate School
Monterey, California

4. Oleg Yakimenko, Dept. of Aeronautics and Astronautics

Naval Postgraduate School
Monterey, California

5. Max Platzer, Dept. of Aeronautics and Astronautics

Naval Postgraduate School
Monterey, California

