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ABSTRACT 
 
 
 
The importance of unmanned aerial vehicles (UAVs) to current and future military 

operations cannot be understated.  This rapidly developing field requires the ability to quickly 

develop and evaluate advanced control concepts.  The FROG UAV serves as a test bed for 

advanced control and sensor projects at the Naval Postgraduate School.  Previous control 

system projects have made use of a low performance electromechanical autopilot onboard the 

UAV.  This autopilot imposed significant limitations on the responsiveness of the FROG.  This 

project developed and tested an off board digital flight control system for use in lieu of the 

previous electromechanical device. 

The digital flight controller was developed using the MatrixX rapid prototyping system 

and a previously validated dynamic model of the FROG.  Surrogate flight control servo 

actuators were characterized in the laboratory and added to the plant model.  Classic 

inner/outer loop controllers were developed for yaw damping and speed, altitude and heading 

control.  The system was then successfully demonstrated with hardware in the loop in the lab.  

The FROG was then instrumented and a command uplink latency of 170 ms was discovered.  

This introduced excessive phase lag into the system, which drove the flight controllers 

unstable.  An alternate serial uplink method was developed and tested which reduced the 

command latency to 76 ms however the remaining phase lag resulted in limit cycle oscillation.  

Laboratory tests indicated that the current flight controller could withstand a maximum of 50 

ms command path delay; without modification. 
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I. INTRODUCTION 

The importance of unmanned aerial vehicles (UAVs) to current and future 

military operations cannot be understated.  This rapidly developing field requires the 

ability to quickly develop and evaluate advanced control concepts.  The FROG UAV 

serves as a test bed for advanced control and sensor projects at the Naval Postgraduate 

School.  Previous control system projects have made use of a low performance 

electromechanical autopilot onboard the UAV.  This autopilot imposed significant 

limitations on the responsiveness of the FROG.  This thesis developed and tested an off 

board digital flight control system for use in lieu of the previous electromechanical 

device. 

The digital flight controller was developed using the MatrixX rapid prototyping 

system and a previously validated dynamic model of the FROG.  Surrogate flight control 

servo actuators were characterized in the laboratory and added to the plant model.  

Classic inner/outer loop controllers were developed for yaw damping and speed, altitude 

and heading control.  The system was then successfully demonstrated with hardware in 

the loop in the lab.  The FROG was then instrumented and a command uplink latency of 

170 ms was discovered.  This introduced excessive phase lag into the system, which 

drove the flight controllers unstable.  An alternate serial uplink method was developed 

and tested which reduced the command latency to 76 ms however the remaining phase 

lag resulted in limit cycle oscillation.  Laboratory tests indicated that the current flight 

controller could withstand a maximum of 50 ms command path delay, without 

modification. 
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II. FROG UAV SYSTEM 

A. DESCRIPTION OF THE AIRPLANE 

The FROG unmanned aerial vehicle (UAV) is a small high wing monoplane 

used for digital control system research by the Naval Postgraduate School Aeronautics 

Department.  The airplane was manufactured by BAI Aerosystems, as the BAI TERN 

(Tactically Expendable Remote Navigator), and was formerly designated the FOG-R by 

the U.S. Army.  In the FOG-R configuration the airplane was equipped with a fiber optic 

data link for command uplink and video downlink.  The TERN was designed to carry up 

to twenty-two pounds of payload for periods of up to four hours.  The TERN UAV is 

currently in use as a test bed for sensor systems by both the US Navy’s Strike UAV 

Program and NASA.  In the past, the NPS FROG had been configured with a variety of 

sensors including an onboard autopilot, various inertial measurement units, GPS 

receivers, an instrumented nose boom and a digital camera.  The FROG is depicted in 

Figures 2.1 and 2.2.  

 

Figure 2.1. FROG UAV. 
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Figure 2.2. FROG UAV 3 View Drawing. 
 

The FROG is configured with a Model BA64 6.4 cubic inch, horizontally 

opposed, piston engine, manufactured by Brinson Aircraft Company.  The 2-cylinder 

engine developed 9.3 Hp and is equipped with a two bladed propeller mounted in a 

tractor orientation in a nacelle atop the wing, as depicted in Figure 2.3.  The FROG has 

fixed tricycle landing gear with a steer-able nose wheel.  The empennage is connected to 

the body of the airplane by a 1.75-inch diameter aluminum tube.  The FROG is equipped 

with conventional elevator, rudder, ailerons and flaps.  Small servomotors, designed for 

use in radio-controlled airplanes, actuate the control surfaces.  The FROG’s significant 

physical characteristics are presented in Table 1.1. 

 

Figure 2.3. FROG Engine Configuration. 
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PARAMETER MEASUREMENT 

Length 8.125 ft 

Height 1.75 ft 

Weight 67.7 lbs 

Power Plant 9.3 Hp / 2 Cycle 

Wing Airfoil NACA 2415 

Horizontal Stabilizer Airfoil NACA 0006 (Approx.) 

Wing Span (b) 126.5 in 

Tail Span (bw) 39.75 in 

Vertical Tail Span (bv) 15.0 in 

ARw 6.32 
 

Table 2.1. FROG UAV Physical Characteristics. 
 

B. FROG RAPID FLIGHT TEST PROTOTYPING SYSTEM 

The FROG Rapid Flight Test Prototyping System (RFTPS) is a broad description 

of the hardware and software architecture used control the FROG in flight.  The RFTPS 

may be conveniently divided into a command channel (uplink) and feedback channel 

(downlink).  The ground segment of the command channel includes a safety pilot with 

manual radio controller, an AC-104 computer running the flight control software and a 

pulse code modulation (PCM) transmitter.  The airborne segment includes a PCM 

receiver and the servo actuators.  The feedback channel includes the differential global 

positioning system (DGPS) receiver, inertial sensors (NPS inertial measurement unit or 

Crossbow attitude heading reference system), control surface position transducers, and 

wireless spread spectrum modems.  Flight control commands are generated on the 

ground by either the safety pilot or by the AC-104 computer.  Command signals from 

the AC-104 computer are converted to a PCM signal by a Futaba radio controlled 

airplane transmitter, which broadcasts them to the airplane.  The airplane’s Futaba 

receiver then decodes the PCM signal and generates PWM commands for each of the 

control servo channels.  In the feedback channel, sensor outputs are digitized and 

transmitted via spread spectrum modem to the ground station for processing.  Two 
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different inertial measurement units are currently in use with the FROG.  When 

configured with the NPS IMU, the DGPS and IMU sensor data are merged into a single 

time phased serial output stream.  This is accomplished by an embedded microcomputer 

within the IMU.  The CrossBow attitude heading reference system’s (AHRS) higher 

bandwidth necessitated addition of a second downlink modem to the airplane.  The 

RFTPS architecture is depicted in Figure 2.4. 

AC-104
Computer

TT8GPS/IMU

FreeWave
Modem

IMU
Computer

Position
Transducers

Servo
Actuators

FreeWave
Modem

Slave
Futaba

Master
Futaba
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(Analog)

(PWM)
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38400 bps

(Various)

AC-104
Computer

TT8GPS/IMU

FreeWave
Modem

IMU
Computer

Position
Transducers

Servo
Actuators

FreeWave
Modem

Slave
Futaba

Master
Futaba

Futaba
Receiver

(Analog)

(PWM)

(PPM)

(PCM)

(Mechanical)
(Analog)

(Serial)
38400 bps

(Serial)
38400 bps

(Various)

 
 

Figure 2.4. FROG Rapid Flight Test Prototyping System. 
 
1. MATRIXX Rapid Prototyping System 

The MATRIXX software suite provides and integrated environment for control 

system design, software engineering, data acquisition and testing.  The software suite 

consists of Xmath, SystemBuild, RealSim, AutoCode, and the pSOSystem real time 

operating system.  The Xmath program provides the system analysis and visualization 

environment.  Xmath includes over 700 predefined functions and commands and 

includes a compact scripting language for simplified command and function 

programming.  Basic Xmath commands support operations such as creating, plotting, 

saving and loading data.  Additional add-on modules provide sophisticated control 

system design and analysis functions.  SystemBuild visual modeling and simulation 

software provides a graphical control system design environment.  Continuous time, 
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discrete time and hybrid systems are easily constructed by selecting elements from 

predefined palettes.  SystemBuild includes built in simulation tools that allow the user to 

interactively verify, test and modify system models.  Data generated during SystemBuild 

simulations may be captured and further analyzed using the powerful built- in (or user 

defined) functions in Xmath.  The functions and implementation of Xmath/SystemBuild 

is analogous to MATLAB/SimuLink.  The AutoCode module is an automatic code 

generator for SystemBuild models.  The AutoCode software processes the SystemBuild 

model files and creates either ANSI C or Ada code, which can then be compiled to 

create a stand-alone real-time executable program.  AutoCode builds the program 

scheduler by means of a template file for the target real time operating system (RTOS).  

The scheduler performs overall direction and control of inserting inputs, scheduling 

tasks, posting outputs and dispatching the tasks that perform the work of the real time 

system.  The application scheduler operates on the principle of rate-monotonic 

scheduling, deriving priorities for the tasks from the repetition rate for periodic 

subsystems.  Higher priorities are assigned to faster subsystems while slower ones are 

assigned lower priority.  Understanding of the scheduler mechanization is critical to 

achieving predictable real-time performance.  Once compiled, the stand-alone 

executable code is suitable for the test-bed environment or for use in an embedded real-

time system.  The RealSim controller allows the user to perform real-time simulations of 

feedback control systems designed in SystemBuild.  RealSim compiles and links the 

application code and includes provisions for connecting real hardware to the controller 

for rapid prototyping and hardware- in-the-loop (HITL) testing.  A data acquisition 

module permits the user to record any selected input/output parameters for further 

analysis in Xmath.  Run-time graphical user interfaces can be built that allow the user to 

observe and interact with the simulation while it is running on a real-time computer.  

MATRIXX also includes custom drivers for the PC-104 based AC-104B computer to 

permit easy download and execution of the real-time system.  The pSOSystem RTOS 

provides an execution environment on the computer that runs the real-time code.  

AutoCode includes a template that optimizes the C code for the pSOSystem RTOS. 
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2. AC-104 Controller Configuration 

The complete RealSim system includes a host PC (Windows 95/98/NT/2000 and 

the MATRIXX software suite) and a second PC with an RTOS, to act as the controller.  

The AC-104 is a compact microcomputer manufactured by Integrated Systems 

Incorporated (now WindRiver Systems, Inc.), Figure 2.5.  The AC-104 facilitates real-

time control and prototyping of hardware systems by integrating a complete 

microcomputer with PC-104 based hardware I/O modules. 

 

Figure 2.5. AC-104 Real-Time Controller. 
 

The AC-104 is based on an Advantech PCM-5862 motherboard configured with a 

Pentium MMX processor operating at 233 MHz.  The NPS AC-104’s are configured 

with 16 MB of EDO RAM, and a 4 MB flash disk for non-volatile storage.  Basic I/O is 

provided by a PCI–SVGA display controller, two serial ports (RS-232/422/485), an 

enhanced parallel port, keyboard controller and a PCI based 10Base-T Ethernet 

connection.  The Host computer communicates with the AC-104 via the Ethernet 

connection and may do so by direct cable connection or across a distributed network.  

Enhanced I/O functions for hardware control and data acquisition are provided by add-

on cards, which interface with a PC-104 ISA expansion bus.  The AC-104 comes 
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configured with an Analogic AIM16 PC-104 16-bit analog-to-digital (A/D) converter, a 

Diamond Systems Ruby-MM 12 bit digital-to-analog (D/A) converter and an SBS 

GreenSprings Modular I/O Industry Pack IP-68322 data acquisition and control module.  

The IP-68322 module integrates a Motorola MC68322FC micro-controller with a Xilinx 

3030 field programmable gate array (FPGA) onto a standardized form factor to provide 

advanced data acquisition and hardware control capabilities.  The IP-68322 is a daughter 

board on a two slot Flex/104A carrier board.  NPS has added an SBS GreenSpring IP-

Serial board to the second slot on the Flex/104A board.  The IP-serial board provides 

two RS-232-C/422 serial channels and provides programmable baud rates up to 2 

Mbit/sec. The AC-104 has eight 50-pin Centronics connectors for PC-104 based I/O.  

All connections are located on the front face of the AC-104, Figure 2.6.  Standard PC 

connectors are also provided for all non-PC-104 I/O. 

 

Figure 2.6. AC-104 Interface Layout. 
 
3. Command Uplink 

The FROG is controlled by command signals transmitted from a ground based 

Futaba FP-9ZAP digital proportional radio control set, Figure 2.7.  The NPS FROG 

command channel takes advantage of a unique feature designed into the FUTABA 
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transmitters.  Two Futaba transmitters may be linked together, by means of a cable, to 

form a MASTER / SLAVE system, as depicted in Figure 2.8.   

 

Figure 2.7. Futaba FP-9ZAP Digital Proportional Radio Control. 
 

 

Figure 2.8. FROG Master/Slave Transmitter Arrangement. 
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This configuration was originally designed to facilitate the training of novice 

radio controlled airplane pilots.  The instructor pilot can operate the Master controller 

while the student operates the Slave.  When the Master controller is active the instructor 

pilot’s command inputs are converted to pulse code modulated (PCM) signals that are 

transmitted to the airplanes receiver.  The pilot’s control joysticks are connected to 

potentiometers, which provide a voltage that is proportional to the joystick position.  

This voltage value is then used to encode the PCM stream.  The Master controller 

transfers control to the Slave by actuation of a single electric switch.  When the Slave 

controller is active the Slave’s commands are converted to pulse period modulation 

(PPM) signals, which are then relayed to the Master via the link cable.  The Master 

controller decodes the PPM signals from the Slave and converts them to PCM for output 

on the Master’s transmitter.  Significant latency in the AC-104’s commands, due to this 

mechanization, was discovered during this research.  This time delay poses significant a 

challenge for control system design.  The Slave controller is a highly modified 8-channel 

Futaba FP-8UAP digital proportional radio.  In the Slave, the joystick potentiometers 

have been disconnected and externally generated voltages are passed directly to the 

controller’s A/D converter via a DB-9 connector.  The AC-104 based controller converts 

airplane control commands into scaled voltages via an integral D/A converter.  These 

signals are then passed to the Slave controller by a locally manufactured data cable 

connected to the DB-9.  The Futaba transmitters have a maximum range of 

approximately 1.5 miles.  This short range severely limits the volume in which this 

airplane may operate.  Figure 2.4 depicts the RFTPS command channel architecture. 

Onboard the FROG, a Futaba FP-R309DPS receiver decodes the PCM command 

signal and generates pulse width modulated (PWM) commands on each of eight separate 

channels.  Each channel may be connected to one of the control servos, as depicted in 

Figure 2.9.  The FROG is configured with a variety of servos; each with different 

performance specifications.  All servos share a common specified neutral pulse width 

(positions the servo at the mid-range location) of 1.52 ms.  Due to installation 

requirements, the neutral control surface position does not correspond to the neutral 

servo position. 
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Figure 2.9. Futaba Receiver to Servo Connections from Ref. [1]. 
 
4. Sensor Downlink 

Sensors onboard the FROG provided feedback to the digital flight control 

system.  At the present time there are two different GPS/INS sensor suites under 

development for use with the FROG.  The first is based on an indigenously designed and 

manufactured inertial measurement unit (the NPS IMU) and a DGPS receiver 

manufactured by Trimble, Inc.  The second is comprised of the same DGPS receiver and 

a commercial attitude heading reference system (AHRS) manufactured by Crossbow 

Technology, Inc.  The data interface differs significantly for these two configurations, 

which necessitates unique avionics architectures for each.  Both sensor suites include a 

Trimble AgGPS 132 DGPS receiver.  The AgGPS is a 12 channel L-band differential 

correction receiver that provides sub-meter accuracy.  The GPS receiver is configured 

with two programmable RS-232 serial ports and provides position updates at a 

maximum frequency of 10 Hz. 

The NPS IMU configuration consists of the AgGPS 132 receiver and an 

indigenously designed and manufactured IMU.  The IMU contains both analog and 
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digital sensors.  In order to convert the analog signals to digital data and format a 

combined digital output stream a microcomputer was developed.  The computer is based 

on two TattleTale 8 data loggers, manufactured by Onset Computer Corporation.  The 

Tattletales are configured in a Master/Slave arrangement.  Each TattleTale includes a 

Motorola 68322 micro-controller, an eight channel 12-bit A/D converter and two RS-

232 serial ports.  The digital and analog sensor data and GPS serial output are processed 

in the TattleTale computers and formatted into custom serial messages for down link to 

the ground station.  The Master Tattletale outputs IMU sensor data at 40 Hz and 

interleaves GPS messages at 10 Hz.  The serial transmission rate is 38,600 bps.  A more 

detailed discussion of the IMU computer’s design and operation may be found in 

paragraph II.C.2.  The Master Tattletale computer is connected to a FreeWave wireless 

spread spectrum data transceiver (modem) manufactured by FreeWave Technologies, 

Inc.  The FreeWave modem has a power output of 1/3 Watt and operates at in a 

frequency range of 902 – 928 MHz.  It is capable of communicating at a line of sight 

range of up to 20 miles and supports data transmission at baud rates from 1200 bps – 

115.2 Kbps.  A matching FreeWave modem is connected to the PC-104 based IP-Serial 

card on the AC-104 ground station and provides a continuous data stream to the FROG 

controller.  The NPS IMU downlink architecture is depicted in Figure 2.10. 
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Figure 2.10. NPS IMU Downlink Architecture. 
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The Crossbow AHRS is currently configured for continuous digital output of all 

sensor data at an average rate of 65 Hz.  The TattleTale downlink bandwidth limits 

updates to approximately 50 Hz so an alternate downlink configuration was developed 

in order to take full advantage of the AHRS faster update rate.  The AgGPS receiver (10 

Hz) and the Crossbow AHRS (60 – 70 Hz) are each connected to their own dedicated 

FreeWave modem.  These two modems communicate independently with two ident ical 

modems which are connected to Channels A and B on the AC-104 IP-Serial card.  The 

digital flight controller reads each serial stream and updates the control system 

accordingly.  The Crossbow AHRS downlink configuration is depicted in Figure 2.11. 
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Figure 2.11. Crossbow AHRS Downlink Architecture. 
 
5. Electromagnetic Interference 

Prior to one flight test, spurious signals were found to be interfering with the 

Futaba command signals.  The FROG had been configured with both the NPS IMU and 

Crossbow AHRS.  During the ground check the safety pilot found that the control servos 

responded erratically to each input.  The electromagnetic interference (EMI) was 

initially attributed to the presence of two FreeWave modems, in close proximity to the 

airplane’s Futaba receiver, but extensive trouble shooting at the UAV lab was unable to 

duplicate the effect.  While the FreeWave modems may contribute to an adverse 



15 

electromagnetic environment the NPS IMU itself may also be a significant contributor.  

The IMU has a DC-to-DC switching converter mounted externally to provide regulated 

power to the various avionics sub-systems.  The EMI effects of this converter should be 

investigated.  Additionally, the frequency spectrum that the Futaba controllers use is 

publicly available.  As such, accidental (or intentional) signal jamming may be 

encountered.  Transition to serial uplink transmission would significantly improve the 

signal to noise tolerance of the system and reduce the likelihood of accidental 

interference. 

C. NPS INERTIAL MEASUREMENT UNIT 

The design and manufacture of an integrated inertial measurement unit (IMU) is 

a significant undertaking.  The NPS IMU was developed to provide a low cost, high 

quality inertial measurement unit for use in digital control systems for the FROG UAV.  

The decision to locally design and manufacture an IMU was necessitated by the 

inadequate performance of an IMU-600D IMU manufactured by Watson Industries.  

The NPS IMU was designed not only as a sensor for FROG flight control projects but 

also as a teaching tool that would allow investigation of such subjects a sensor 

modeling, time-correlated random constant errors (such as bias and misalignment), 

complementary and Kalman filtering, digital avionics and real-time operating systems 

for embedded control.  The adequacy of the NPS IMU for in flight inertial measurement 

has not been evaluated yet.  The hardware and embedded controller’s software have just 

recently reached the state where they can support sensor calibration.  IMU calibration, to 

determine the time-correlated errors, can be accomplished at NPS using a 2-axis turning 

table and is expected to proceed in the near future.  While much of the NPS IMU’s 

potential has yet to be realized, it has provided valuable experience in the software 

design, data bandwidth management, micro-controller design and the practical 

challenges involved in any system development effort where specific design criteria are 

developed in parallel to the hardware.   

1. Sensor Description 

The development of the NPS IMU must be characterized as evolutionary.  As 

such the sensor suite and associated electronics have undergone several significant 

revisions.  In it’s current form the NPS IMU is configured with solid-state rate 
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gyroscopes, accelerometers, magneto-resistive flux sensors and a spinning mass vertical 

gyroscope.  Three Gyrochip  AQRS-00064-104 angular rate sensors, manufactured by 

the Systron Donner Inertial Division of BEI Technologies, Inc, are used to measure 

angular rates.  The Gyrochip  rate sensors utilize a micromachined double-ended quartz 

tuning fork fabricated from mono-crystalline piezoelectric quartz.  Specifically designed 

for “demanding automotive and commercial” applications, the gyros have a specified 

range of ± 64°/sec.  Applying the Coriolis effect, a rotational motion about the sensors 

input axis produces a DC voltage (analog output) proportional to the rate of rotation.  As 

each gyro is housed in it’s own individual package it is expected that misalignment and 

relative orthogonality will be significant contributors to the time-correlated random 

error.  The AQRS Gyrochip  is depicted in Figure 2.12. 

 

Figure 2.12. BEI GyrochipTM Rate Gyro 
 

The 3DM™ 3-axis orientation, manufactured by MicroStrain, Inc., provides 

linear acceleration and magnetic flux measurements.  The 3DM  is designed to provide 

tilt sensing via orthogonal accelerometers and magnetic compass functions via 

orthogonal flux gate magnetometers.  The 3DM  is configured with two ± 2 g 
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ADXL202E dual axis IC based accelerometers, manufactured by Analog Devices, Inc.  

The accelerometers contain polysilicon surface micromachined sensors and signal 

conditioning circuitry to implement an open loop acceleration measurement architecture.  

The output of each sensor element is lowpass filtered and then converted to a duty cycle 

(pulse width) modulated signal for output to the 3DM’s own microprocessor.  Magnetic 

field sensing is provided by orthogonally mounted IC based linear magnetic field 

sensors, manufactured by Honeywell.  The HMC1021/1022 magneto-resistive sensors 

are made of a nickel- iron (Permalloy) thin film deposited on a silicon substrate.  The 

Honeywell magneto-resistive sensors are simple resistive bridge devices that provide an 

analog voltage output corresponding to any ambient or applied magnetic field.  A 12-bit 

A/D converter within the 3DM™ digitizes the analog output of the magnetic sensor.  

The 3DM  uses the accelerometers and magnetometers to calculate pitch, roll and yaw 

angles relative to the earths magnetic and gravitational fields.  The 3DM  can also be 

programmed to output raw accelerometer and normalized magnetic field strength values 

converted to engineering units.  All data is output at 9600 baud via an RS-232 serial 

port.  The 3DM supports a maximum output rate of approximately 30 Hz.  During early 

development of the NPS IMU the 3DM  suffered spurious mode switching between 

continuous and polled modes of operation.  At that time the erratic behavior was 

attributed to EMI within the IMU case.  To alleviate this problem MicroStrain provided 

a special version of the 3DM  embedded operating software on EEPROM.  This 

software supports only the polled/raw sensor output mode of operation.  The original 

3DM™ EEPROM has been retained and the unit could be converted back to the angle 

measuring configuration once EMI concerns have been addressed.  The 3DM 

orientation sensor is depicted in Figure 2.13. 
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Figure 2.13. 3DM  3-Axis Orientation Sensor. 
 

The NPS IMU contains a second attitude source in the form a VG-34-0201-2 

vertical gyroscope manufactured by Humphrey, Inc.  The VG-34 vertical gyro is a 

classic gimbaled spinning mass gyroscope.  The vertical gyro contains two electrolytic 

level sensors, which provide a “gravity” reference for pitch and roll position.  The VG-

34 has a specified accuracy of ±0.1° for both pitch and roll.  Conductive plastic 

potentiometers are used to provide analog pitch and roll output signals.  The Humphrey 

vertical gyro’s requirement for 28 Vdc and relatively high power consumption was the 

significant driver in the design of the IMU’s power supply.  The VG-34 vertical 

gyroscope is depicted in Figure 2.14. 

 

Figure 2.14. Humphrey VG-34-0201-2 Vertical Gyroscope. 
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Table 2.2 lists the operating limits of the NPS IMU’s sensors and the output data 

formats. 

Sensor Parameter Limits Output 

Gyrochip  Rate 
Gyros 

 
Angular rate 

 
± 64 ° / sec 

 
Analog – voltage 

 
Linear Acceleration 

± 2 g 
(6 KHz bandwidth) 

Serial – RS-232 at 
9600 buad 

 
3DM  Orientation 

Sensor  
Magnetic Field 

± 2 guass 
(Normalized) 

Serial: RS-232 at 
9600 baud 

Humphrey VG-34 
Vertical Gyro 

 
Pitch / Roll 

 
± 60° / ± 90° 

 
Analog - voltage 

 
Table 2.2. NPS IMU Sensor Performance Limits. 

 
2. Embedded Micro Controller Development 

The FROG’s airborne sensor suite includes the NPS IMU (or Crossbow AHRS), 

the Trimble AgGPS 132 differential GPS receiver and a variety of analog transducers 

(position, pressure and temperature).  The serial downlink architecture mandated that all 

sensor data be digitized prior to transmission to the ground station for processing.  It was 

also desired to minimize the potential for EMI by employing a single wireless modem to 

transmit the onboard data.  Within the NPS IMU both digital and analog sensor outputs 

are present.  Additionally, the required GPS data are embedded in two separate serial 

messages.  In order to provide a single formatted IMU output message that could meet 

high update rates, with minimal latency, it was necessary to develop an embedded 

microcomputer.  At a minimum the microcomputer needed the ability to convert analog 

signals to digital (A/D), store and process the sampled data, and send and receive serial 

data.  The microcomputer was required to interface with as many as sixteen analog 

sensors, receive serial data from two separate sources (operating at different baud rates 

and update frequencies) and transmit serial data on a third channel.  The TattleTale 

Model 8 data logger, manufactured by ONSET Computer Corporation, was selected for 

this purpose.  The TattleTale 8 is a low cost miniature micro-controller that provides an 

8-channel A/D converter, fourteen digital I/O lines, two RS-232 ports and is powered by 

a Motorola 68322 32-bit microprocessor and a PIC 16C64 coprocessor, Figure 2.15.  
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The Tattletale 8 is also configured with 256Kb of Flash EEPROM for storing the 

controller program and 1 MB of RAM. 

 

Figure 2.15. TattleTale Model 8 Micro-Controller. 
 

As a single TattleTale could not satisfy the demands for analog to digital 

conversion and serial communication, two TattleTales are networked to form the 

embedded IMU computer.  Initially, one processor was programmed to read and process 

the IMU sensor data (hereafter referred to as the “3DM TattleTale”) and the other was 

programmed to read and process the GPS serial output messages (hereafter referred to as 

the GPS TattleTale).  The GPS and 3DM TattleTales time-shared a single wireless 

modem by means of an external CMOS multiplex switch that allowed the 3DM 

TattleTale to transmit at a different rate than the GPS TattleTale.  In this scheme the 

output signals were triggered to the GPS output message, which was believed to be a 

reliable 10 Hz.  Both TattleTale’s were programmed in BASIC and the resulting code 

output GPS data at 10 Hz and IMU data at approximately 20 Hz.  As the system 

requirements were better understood the required IMU sensor update rate was increased 

to a minimum of 40 Hz.  In order to meet the new timing requirements LT Matt 

Commerford crafted an entirely new real- time operating system for each TattleTale 

using the Aztec C language (a variant of ANSI C).  Additionally, LT Commerford 

developed a Master/Slave architecture which greatly increased the output rate while also 
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significantly improving the systems overall determinism.  Though the previous 

nomenclature has been retained the current Master/Slave micro-controller configuration 

is more appropriately called the “FROG onboard computer”.  The FROG computer 

functional architecture is depicted in Figure 2.16.  The following discussion draws 

heavily from the unpublished notes of LT Commerford, reference 2. 

 

SLAVE 
CPU 

GPS  - 10 Hz 
(time, lat, long, alt, 
speed, heading, etc) 
RS - 232  38,400 bps 

To Modem 
System Timing 
And Control 

MASTER 
CPU 

Vertical Gyro  
40 Hz  - A/D 

( φ ,  θ ) 

Rate Gyros 
40 Hz  - A/D 

(p, q, r) 

3DM  Accel 20 Hz 
RS - 232  9,600 bps 

(Ax, Ay,  Az ,  Hx ,  Hy , Hz) 

Surface Positions 
40 Hz  - A/D 

Digital 
57,600 bps 

Throttle Position, 
Temp, Pressure 

20 Hz  – A/D 
(+5 channels for future use) 

RS - 232  
38,400 bps 

 

Figure 2.16. FROG Onboard Computer Functional Architecture after Ref. [2]. 
 

The 3DM TattleTale is the Master processor in the Master/Slave configuration.  

It controls the overall system timing and acts as the scheduler for all serial output to the 

ground station.  The Master processor samples the IMU’s analog sensors, polls the 3DM 

sensor and receives digital data from the GPS TattleTale via a digital I/O line configured 

for serial communication. The GPS TattleTale receives the DGPS receiver’s serial 

output and parses the data for the minimum required data set.  The customized GPS 

message is then transferred to the Master processor where it is queued for transmission.  

The Slave processor’s A/D channels are also sampled and passed to the Master for 

output with the IMU data.  Each sensor has its own inherent limitations that restrict the 

maximum allowable data rate.  Samples from each sensor are taken at various data rates 

and merged together in order to achieve a highest possible downlink data rate while 

maintaining an easily decoded and error free data stream.  In order to maximize the 
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downlink bandwidth all sensor data is converted to binary prior to transmission (vice 

ASCII).  The use of binary coded data significantly reduces the number of bytes 

transmitted.  The combined sensor output provides measurements of the complete state 

vector, with the exception of heading (ψ).  The measured parameters, associated sensors 

and computer update rates are presented in Table 2.3. 

 

Parameter Data Rate Source Notes 

Angle rates (p,q,r) 40 Hz AQRS 104 4.096 Volt A to D sample 
Pitch / Roll Angle (φ,θ) 40 Hz VG-34 4.096 Volt A to D sample 

Control Surface Position 
(elevator, aileron, rudder) 

 
40 Hz 

Series 150 
String Pots 

 
4.096 Volt A to D sample 

 
Throttle Position 

 
10 Hz 

Series 150 
String Pot 

 
4.096 Volt A to D sample 

Acceleration (ax, ay, az) 20 Hz 3DM RS-232 9,600 baud  

Magnetic Field (Hx, Hy, Hz) 20 Hz 3DM RS-232 9,600 baud  
GPS Time (t) 10 Hz Ag132 GPS RS-232 38,400 baud 

GPS Latitude (Lat) 10 Hz Ag132 GPS RS-232 38,400 baud 

GPS Longitude (Long) 10 Hz Ag132 GPS RS-232 38,400 baud 
GPS Altitude (Alt) 10 Hz Ag132 GPS RS-232 38,400 baud 

GPS Ground Speed (Knots) 10 Hz Ag132 GPS RS-232 38,400 baud 

GPS Ground Track 
(Degrees True) 

 
10 Hz 

 
Ag132 GPS 

 
RS-232 38,400 baud 

Magnetic Variation (Deg) 10 Hz Ag132 GPS RS-232 38,400 baud 

Outside Air Temperature 20 Hz TBD 4.096 Volt A to D sample 

Differential Pressure (for 
airspeed) 

 
20 Hz 

 
TBD 

 
4.096 Volt A to D sample 

 
Future Use 

 
20 Hz 

 
TBD 

5 Spare A/D channels 
     (α, β , Vbat, etc.) 

 
Table 2.3. NPS IMU Downlink Data List. 

 
a. 3DM Tattletale Program 

The 3DM TattleTale (Master) was required to sample and process all 

inertial sensor and control surface position data and schedule and perform the 

transmission of all airborne data.  This task was complicated by the differing update 

rates between the 3DM sensor and the GPS receiver.  It was desired that all sensor data 
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be updated and transmitted at the fastest reliable rates.  The sensors supported three 

different update rates: 10 Hz, 30 Hz and continuous.  An analysis of the data bandwidth 

requirements indicated that a maximum minor frame size of 20 ms (50 Hz) was possible.  

In order to ensure successful operation a minor frame length of 25 ms was chosen (40 

Hz) for the scheduler.  The 3DM’s special EEPROM only supports polled mode 

operation.  This requires that the Tattletale send a “request for data” command (90h or 

144 decimal) to which the 3DM will respond with the 13-byte message presented in 

Table 2.4.   

Data Description 

Diagnostic Byte 0x41h if Valid; 0x6Xh if error (‘X’ is an error code) 

HX-m X Axis Magnetometer Data MSB 

HX-l X Axis Magnetometer Data LSB 

HY-m Y Axis Magnetometer Data MSB 

HY-l Y Axis Magnetometer Data LSB 

HZ-m Z Axis Magnetometer Data MSB 

HZ-l Z Axis Magnetometer Data LSB 

AX-m X Axis Accelerometer Data MSB 

AX-l X Axis Accelerometer Data LSB 

AY-m Y Axis Accelerometer Data MSB 

AY-l Y Axis Accelerometer Data LSB 

AZ-m Z Axis Accelerometer Data MSB 

AZ-l Z Axis Accelerometer Data LSB 
 

Table 2.4. 3DM Magnetometer & Accelerometer Data Format. 
 

The 3DM data are transmitted MSB first and LSB second for each 

measured value.  The bytes are then decoded as Value = 256 x MSB + LSB. 

The 3DM provides a single output rate of 9600 baud that should support 

update rates in excess of 70Hz however timing tests revealed that a maximum reliable 

update rate was only about 30 Hz.  In order to provide consistent and predictable timing 

performance it was decided to poll the 3DM at 20Hz (once every other minor frame).  

Once received, the 3DM data is buffered in the Tattletale’s RAM and is transmitted with 
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each periodic IMU message.  The remaining analog sensors in the IMU data package are 

sampled at 40 Hz.  To simplify the decoding of the IMU data, a single standard IMU 

data message was developed.  This message is transmitted at 40 Hz; with the 3DM data 

updated only every other frame.  The “userser.c” serial driver written for the RFTPS 

decodes this downlink data message.  As a result of this implementation, the 3DM 

output occurs in repeated pairs.  In order to perform frequency domain analysis it is first 

necessary to strip off every other data value and use the sampling rate of 20 Hz for the 

analysis.  The 3DM™ TattleTale program is included in Appendix A. 

b. GPS TattleTale Program 

The Trimble Ag132 GPS receiver computes position at a maximum 

frequency of 10 Hz.  The GPS position data are then transmitted at 38400 baud to the 

GPS TattleTale processor.  All output conforms to the National Marine Electronics 

Association (NMEA) GPS data protocol.  Unfortunately, the parameters needed for 

navigation and control are not contained in a single standard NEMA message.  The 

minimal GPS data set can be generated from two separate NEMA messages: $GPGGA 

and $GPRMC.  The combined $GPGGA and $GPRMC sentences consist of 

approximately 161 ASCII text characters (varies slightly depending upon data content).  

At an update rate of 10 Hz and baud rate of 38400 bps these two complete messages 

would consume approximately thirty percent of the available downlink bandwidth.  

Fortunately, it is possible to glean a minimal data set from these messages and generate 

a single binary coded GPS data message that only requires 31 bytes.  The GPS 

TattleTale receives the GPS receiver’s output messages via one of its RS-232 serial 

ports.  The messages are then parsed to form a compact GPS message.  The compact 

GPS data message is then transmitted at 57600 baud to the Master processor, on the 

3DM Tattletale, via one of the 68322’s digital I/O lines.  Table 2.5 presents the data 

contained in the standard NEMA $GPGGA and $GPRMC output messages and the NPS 

IMU GPS downlink message. 
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Parameter $GPGGA $GPRMC NPS IMU 

UTC of Position Fix X X X 

Latitude X X X 

Latitude Direction (N or S) X X  

Longitude X X X 

Longitude Direction (E or W) X X  

GPS Quality Indicator X  X 

Number of Satellites in use X   

Horizontal Dilution of Precision (HDOP) X   

Antenna Altitude (MSL) X  X 

Geoidal Separation X   

Time since last Differential mode update X   

Differential Mode reference Station ID# X   

Data Status  X  

Speed over ground (kts)  X X 

Track made good in degrees True  X X 

UTC Date  X  

Magnetic Variation  X X 

Magnetic Variation Direction  X X 

Checksum X X  

Table 2.5. Comparison of GPS Message Data Content. 

 

The specified GPS update rate of 10 Hz corresponds to a period of 100 

ms for each GPS message.  Lt Commerford’s extensive analysis of the GPS output 

signal confirmed that the ASCII text data is reliably received from the GPS at an 

average rate of 10 times per second, without dropouts our lost samples.  The exact time 

of the arrival of the GPS data however exhibited significant variability.  While the 

average update rate was 10 Hz each individual update arrived early or late; with some 

observed as much as 100 ms time late (i.e. 200 ms between successive updates).  This 

uncertainty in sample time presents problems when trying to model the GPS for control 

system design and analysis and may require greater gain and phase margins to account 
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for unmodeled (or inaccurately modeled) sensor behavior.  The GPS parsing routine is 

designed to wait until a full message has been received.  Therefore, the timing of the 

computers major and minor output frames was coordinated by the Master processor’s 

real-time clock signal (vice the GPS message signal used in the previous 

implementation).  The Slave processor’s operating code is included in Appendix A.   

Downlink data is transmitted in a binary format as a series of 8-bit bytes.  

This coding scheme reduces the throughput requirement on the downlink channel but 

requires the ground station’s serial driver to decode it before it can be input into the 

flight controller.  Values that range between 0 and 255 can be represented by a single 

byte, with no conversion necessary.  Values that range between 0 and 65535 must be 

represented by a two 8-bit bytes.  Our convention is to send the most significant byte 

(MSB) first, followed by the least significant byte (LSB).  To decode a two-byte 

unsigned integer the following formula is applied:  

 

 256Value MSB LSB= • +  (2.1) 

 

For signed integers a slightly different conversion must be used; since the 

most significant bit of the MSB is usually a sign bit.  The procedure used to decode 16-

bit 2’s complement data is  

 

 
15

16

256

 Value > 2

2

Value MSB LSB

if

Value Value
endif

= • +

= −
 (2.2) 

 

Since the 3DM TattleTale downlinks three different data messages a unique two-

byte header was incorporated to distinguish each one.  Table 2.5 presents a summary of 

the TattleTale downlink messages characteristics.   
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Message Content 

Header (Hex / 
Decimal) 

Number of Data 
Bytes (less Header) 

Transmit 
Rate 

IMU Sensor Data FF FF / 255 255 28 40 Hz 
GPS Data EE EE / 238 238 29 10 Hz 
GPS TattleTale A/D Data DD DD / 221 221 16 20 Hz 

 
Table 2.5. TattleTale Downlink Message Characteristics. 

 
D. CROSSBOW ATTITUDE HEADING REFERENCE SET 

The AHRS400CA-100 is a low cost, compact solid-state AHRS manufactured by 

Crossbow Technology, Inc.  The AHRS measures linear acceleration, angular velocity, 

and magnetic flux for three orthogonal axes and computes stabilized values of pitch, roll 

and heading by using proprietary Kalman filter algorithms.  Output data is provided in 

both digital and analog formats via a standard female DB-15 connector.  The AHRS is 

depicted in Figure 2.17. 

 

Figure 2.17. Crossbow AHRS400CA-100 Attitude Heading Reference System. 
 
1. Hardware Description 

The AHRS features silicon micro-machined accelerometers and gyroscopes and 

flux gate magnetometer.  The AHRS400CA-100 is configured with a ± 2 g tri-axial 

accelerometer, a ± 100°/sec rate tri-axial gyroscope, a tri-axial fluxgate magnetometer 

and a temperature sensor.  The angular rate sensors consist of vibrating ceramics plates 

that utilize the Coriolis forces of output angular rate independently of acceleration.  The 
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tree MEMS accelerometers are surface micro-machined silicon devices that use 

differential capacitance to sense acceleration.  The sensor outputs are converted to 

digital signals in a 14-bit A/D converter and then processed by the embedded 

microprocessor. The microprocessor provides serial output at 38400 baud via the RS-

232 compliant interface.   Analog output signals are provided by a 12-bit D/A converter.  

The AHRS system architecture is depicted in Figure 2.18. 

 

Figure 2.18. Crossbow AHRS System Architecture. 
 

The AHRS has three sensor modes of operation, voltage, scaled sensor, and 

angle mode.  In voltage mode, the analog sensors are sampled and converted to digital 

data with 1 mV resolution.  The rate sensor, magnetometer and angle analog outputs are 

disabled in this mode though this data is still provided in the serial data stream.  In 

voltage mode the Crossbow provides only un-scaled raw sensor output without any 

calibrations or corrections.  When operating in the scaled mode the Crossbow AHRS400 

is a classic inertial measurement unit (IMU).  In the scaled sensor mode, the analog 

sensors are sampled and converted to digital data as before but then are temperature 

compensated, corrected for misalignment and scaled to engineering units.  A factory 

calibration table for each sensor is stored in the AHRS non-volatile memory.  The 

AHRS Kalman filter is not enabled in this mode so rate sensor bias values can be 

expected to change over time.  Also stabilized pitch, roll and yaw angles are not 

available.  The analog output signals are enabled in this mode.  In the angle mode, the 

AHRS acts as a complete attitude and heading reference and outputs stabilized roll, pitch 



29 

and yaw angles along with the angular rate, acceleration and magnetic field information 

available in the scaled mode.  The AHRS’ Kalman filter operates in the angle mode to 

track the rate sensor bias and calculate the attitude angles.  The attitude angles are 

computed by integrating the rate sensor outputs.  The accelerometers are used to correct 

for gyro drift in pitch and roll and the magnetometers are used to compensate for drift in 

yaw.  The serial data parameters for each of the sensor modes are presented in Table 2.6.  

The header and Checksum are passed as single bytes.  In angle and scaled sensor modes 

all data (except temperature and time) are sent as 16-bit signed integers in twos 

complement format, most significant byte first.  The temperature and timer data are sent 

as 16-bit unsigned integers. 

Angle Mode  Scaled Sensor Mode  Voltage Mode  

Header (255) Header (255) Header (255) 

Roll Angle Roll Angular Rate Roll Gyro Voltage 

Pitch Angle  Pitch Angular Rate  Pitch Gyro Voltage 

Heading Angle  Yaw Angular Rate Yaw Gyro Voltage 

Roll Angular Rate X-Axis Acceleration X-Axis Acceleration Voltage 

Pitch Angular Rate  Y-Axis Acceleration Y-Axis Acceleration Voltage 

Yaw Angular Rate Z-Axis Acceleration Z-Axis Acceleration Voltage 

X-Axis Acceleration X-Axis Magnetic Field X-Axis Mag Sensor Voltage 

Y-Axis Acceleration Y-Axis Magnetic Field Y-Axis Mag Sensor Voltage 

Z-Axis Acceleration Z-Axis Magnetic Field Z-Axis Mag Sensor Voltage 

X-Axis Magnetic Field Temp Sensor Voltage Temp Sensor Voltage 

Y-Axis Magnetic Field Time Time 

Z-Axis Magnetic Field Checksum Checksum 

Temp Sensor Voltage   

Time   

Checksum   
 

Table 2.6. Sensor Mode Serial Data Parameters. 
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The data message uses a single header byte with a value of 0FFh.  During the 

development of the serial decoder for the FROG controller it was discovered that this 

value appears numerous times within a single data packet.  In order to decode the serial 

data it is necessary to check each byte to determine if it is the header byte.  When a byte 

value equals 0FFh a checksum must be computed for the following 28 bytes (22 in 

scaled or voltage mode) and compared to the next byte to see if it contains a valid 

checksum.  If the checksum matches then a single data packet has been found.  If not 

then the process continues in a serial fashion (byte-by-byte).  The use of a single header 

byte (who’s value commonly appears within the data message) creates a 

computationally intensive and inefficient decoding job.  This situation could be greatly 

improved by adding a second header byte to each AHRS output message.  The 

probability of having two consecutive 0FFh’s is extremely low and would greatly reduce 

number of computations required in order to decode the message.  With a two-byte 

header each byte is compared to the byte that preceded it.  When both bytes have a value 

of 0FFh a valid header has been found and the following bytes are almost certain to hold 

the data string.  Crossbow Technology’s cost estimate to change to a two-byte header 

exceeded the purchase price of the AHRS itself. 

2. Timing Performance 

The Crossbow AHRS400 was purchased principally as an AHRS for the FROG.  

As such, the performance in the angle sensor mode is of primary interest.  The AHRS 

may be operated in either continuous update or polled mode.  In the continuous mode 

data is streamed at the AHRS maximum rate.  In the polled mode uses a challenge and 

response format in which the AHRS responds with a single update message for each 

“request for data” command received.  During operation the ARHS processor runs in a 

loop – collecting data from the A/D converter and processing/formatting the data for 

output.  The data is output to the user in a parallel process.  Each data cycle consists of 

three tasks.  First, the sensors are sampled.  Second, the microprocessor processes the 

data and stores it in a set of registers for transfer to the serial output buffer.  While the 

AHRS is waiting for the serial buffer to clear the processor will simultaneously sample 

the sensors again.  Third, the unit actually transfers the data out to the RS-232 serial 

buffer.  In the case of analog output the data is  placed on the output pins immediately 
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after the data processing step (no serial buffer delay).  The serial data is transferred only 

when the previous data packet has cleared the serial buffer.  The AHRS continues to 

take data (and over-write the data in the output registers) while waiting for the output 

buffer to clear.  Consequently, only about every third measurement is actually available 

over the RS-232 interface. 

Crossbow Technologies only specifies a maximum serial update (75 Hz) and 

gives no other specific information on output performance.  They do state that in 

continuous mode the system processor activity is highly deterministic and accurate 

timing information can be derived from the overall loop rate.  Upon delivery of the 

AHRS a flight test was performed to assess the units suitability for use in the FROG.  As 

AC-104 serial drivers were not yet written, the Gyroview software provided by 

Crossbow was used to capture and decode the AHRS output.  Gyroview version 2.1 

includes the ability to control the AHRS operating mode and includes provisions for 

real-time display and frequency domain (via fast Fourier transform) analysis of the 

sensor outputs.  The Gyroview interface and sample output are depicted in Figures 2.19 

and 2.20 respectively.   

 

Figure 2.19. Gyroview Software User Interface. 
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Figure 2.20. Gyroview Real-Time Data Display Capability. 
 

Post flight analysis of the AHRS sensor and computed angle outputs indicated 

that the AHRS could provide the level of accuracy required for the flight controller and 

future control projects.  Figures 2.21 and 2.22 depict the AHRS data for a double figure 

eight maneuver.  The analysis of the Gyroview data did, however, reveal a highly erratic 

and inconsistent update rate, as shown in Figure 2.22.  This discovery negates the utility 

of the Gyroview Fourier analysis module, as a consistent sampling interval cannot be 

maintained.  CrossBow’s technicians reviewed this finding and indicated that the timing 

irregularities in the captured data were due to unspecified problems in the Gyroview 

program itself and that the AHRS output was stable and consistent. 
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Figure 2.21. Gyroview Flight Test Data (Level Figure-8 Maneuver). 
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Figure 2.22. Gyroview Flight Test Data (Level Figure-8 Maneuver). 
 

To test this assertion, and establish baseline timing performance specifications 

for use in our discrete time control system, we performed detailed timing analysis of the 

Crossbow AHRS400 serial output signals.  Timing tests were performed in both the 

continuous and polled operating modes and in the angle and scaled sensor measurement 

modes.  The AHRS serial output rate was set to the default value of 38400 baud for all 

measurements.  The update rates, message durations, inter-message gaps and polled 

mode response latency were measured with a DSO-2102 PC—based digital storage 

oscilloscope, manufactured by Link Instruments, Inc.  In the angle mode the 30-byte 

data message duration was a consistent 7.510 ms, as shown in Figure 2.23. 
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Crossbow AHRS
Continuos/Angle Mode

Data Packet Duration = 7.51 ms

 

Figure 2.23. AHRS Angle Mode Serial Output Signal. 
 

In continuous/angle mode the output period alternated between 14.350 ms and 

16.400 ms resulting in an alternating frequency of 69.7 Hz and 61.3 Hz.  The alternating 

output rate was highly stable and the slow-fast-slow-fast pattern was repeated without 

interruption, as depicted in Figure 2.24. 

16.4000 ms14.3500 ms

 

Figure 2.24. AHRS Continuous/Angle Mode Serial Output. 
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As the continuous/angle mode did not have a constant output frequency, the 

polled mode was tested.  The AHRS can be placed in the polled mode by sending an 

ASCII “P” command.  Once in the polled mode, the AHRS will send one complete data 

message in response to each request for data command (ASCII “G”).  In order to 

stimulate the AHRS at precise frequencies a Motorola 68322 based TattleTale 8 micro-

controller was programmed to send the request for data command (ASCII “G”) over the 

RS-232 line to the Crossbow AHRS.  The command signal and the AHRS response 

were then captured on the digital storage oscilloscope.  Prior to each test, the micro-

controllers RS-232 command rates were verified using the digital storage oscilloscope.   

In order to determine the AHRS range of response latency a sample of 169 

polling command/response events was recorded.  The oscilloscope was set to trigger on 

the data request command line and the sampling rate was adjusted so that the scopes 

data buffer would only capture a single command/response event.  The display was then 

set to accumulate the successive traces without refresh.  The Tattletale polling rate was 

set to 1 Hz to ensure that each command/response event could be considered and 

independent event.  Figure 2.25 shows the delay between data request initiation and 

AHRS response varies from a minimum of 13.998 ms to a maximum of 29.692 ms.   

Crossbow AHRS
Angle/Polled Mode

Polled Mode latency test.  169 samples.
Note wide variability in response to poll command.

Data Packet Length

 

Figure 2.25. AHRS Polled / Angle Mode Serial Output Response Variation. 
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These results suggest that the AHRS should be capable of responding to polling 

commands at a maximum polling rate of 33.6 Hz.  In order to confirm this result the 

AHRS was polled at various frequencies and the response behavior was observed.  The 

AHRS was able to meet the response time constraints when polled at 20 Hz, Figure 2.26.  

Contrary to expectations, the AHRS could not respond fast enough when polled at 30 

Hz.  Figure 2.27 clearly shows two AHRS responses arriving within the same polling 

frame. 

 

20 Hz Poll Rate

Crossbow AHRS
Angle/Polled Mode

 
 
Figure 2.26. AHRS Polled/Angle Mode Response - 20 Hz Polling Rate. 
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Poll Rate 30 Hz

Crossbow AHRS
Angle/Polled Mode

 

Figure 2.27. AHRS Polled/Angle Mode Response - 30 Hz Polling Rate. 
 

Performance continued to degrade as the polling frequency was increased but 

then appeared to improve as the polling command rate approached the continuous 

mode’s output rate.  At 60 Hz the AHRS could meet the polling rate for ten to eleven 

cycles and then would drop a whole response, Figure 2.28.  From these tests it was 

deduced that the AHRS internal data cycle is unaffected by the selection of polled or 

continuous mode.  If by chance the polling command arrives just after a data sample has 

been posted for output the latency can be quite small.  However, if the polling command 

arrives when the AHRS is posting new data to its registers a whole processing cycle may 

elapse before output is available.  If the polling rate could be set to match the natural 

alternating frequency observed in continuous mode the AHRS would appear to function 

flawlessly. 
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Within blocks the interval alternates between approx 14.2 and 16.6 msec.
The interval between blocks is approx. 29.4 msec.
Polling Frequency = 60 Hz

 

Figure 2.28. AHRS Polled/Angle Mode Response - 60 Hz Polling Rate. 
 

These results were provided to Crossbow Technologies for comment.  Crossbow 

advised that the apparent absence of determinism in the polled/angle mode response was 

considered a “feature”.  No explanation was offered for the alternating period observed 

in continuous/angle mode. 

In light of these findings, timing performance was also evaluated in the scaled 

sensor mode.  In scaled sensor mode the data message is 23 bytes long; vice 30 bytes in 

angle mode.  The scaled mode message required 6.16 ms, at 38400 bps.  In 

continuous/scaled sensor mode, the AHRS output period was a nearly constant 8.720 

ms, which corresponds to a frequency of 114.6 Hz.  There was no evidence of the 

alternating period observed in continuous/angle mode.  The continuous/scaled sensor 

mode serial output performance is depicted in Figure 2.29. 
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Period = 8.72 ms (approx 114.6 Hz w/good stability)

 

Figure 2.29. AHRS Continuous/Scaled Sensor Mode Serial Output. 
 

In the polled/scaled sensor mode the AHRS behavior was similar to that 

observed in polled/angle mode.  A sample of 100 command/response events was 

collected in the same manner described for the polled/angle mode and is presented in 

Figure 2.30.  The AHRS response delay varied from a minimum of 8.638 ms to a 

maximum of 16.480 ms.  A maximum permissible polling rate for polled/scaled sensor 

mode was not determined.   
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22.64 ms to trigger8.638 ms to trigger

Crossbow AHRS
Scaled/Polled Mode

Polled/Scaled Mode latency test.  100 samples.
Note wide variability in response to poll command 

(though less than Angle mode).
 

Figure 2.30. AHRS Polled / Scaled Sensor Mode Serial Output Response Variation. 
 
3. AHRS Noise Output 

The noise characteristics of the AHRS were evaluated for future incorporation 

into the FROG plant model.  The AHRS was positioned on a stable concrete slab 

covered with a vibration isolating padding.  The AHRS was initialized and allowed to 

operate for several minutes to allow the Kalman filters to converge on the gyro biases.  

Data was collected with Gyroview software and post processed in Matlab®.  The mean 

pitch, roll and yaw rates were on the order of 0.005 degrees per second with an average 

standard deviation range between 0.079 and 0.088 degrees per second.  The standard 

deviation of the orientation angles ranged from a low of 0.019 to a high of 0.025 

degrees.  The standard deviations for the three accelerometers ranged from a low of 

0.00033 to a high of 0.00045 g’s.  The standard deviation of magnetometer output 

ranged from 0.00085 to 0.0011 Gauss.  The computed mean values, standard deviations 

and covariance matrices for each set of parameters are presented in Appendix B.  The 

observed ambient noise values are suitable for control system projects on the FROG and 
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should be incorporated into the FROG plant model prior to further controller 

development.  
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III. DIGITAL FLIGHT CONTROLLER 

The FROG autopilot was designed using classical feedback methodologies.  The 

autopilot was required to provide the following functions: altitude control via elevator, 

speed control via throttle and heading control via ailerons.  The autopilot was also 

required to incorporate a yaw damper.  The first step in the control system design 

process was to model the plant (system to be controlled) as accurately as possible.  The 

non- linear FROG aerodynamic flight model used in this effort was developed, evaluated 

and refined by several previous students, including Hallberg [Ref. 3], Papgeorgiou [Ref. 

4] and Pollard [Ref. 5].  The model had been developed for a single trimmed speed of 88 

fps so the autopilot was designed around this speed.  The FROG aerodynamic model did 

not incorporate the control servo dynamics so these had to be added before the flight 

controller design could be started.  The autopilot was designed using MatrixX version 

6.2.2.  Once completed the autopilot was demonstrated via hardware in the loop (HITL) 

using the TS-75 servo actuators in the Controls Laboratory.  The autopilot provided 

stable and reliable performance with the TS-75 HITL. 

A. SERVO TEST SET CHARACTERIZATION 

The first step in the flight controller design was to develop a control servo model 

to incorporate into the FROG plant model.  Once the actuator dynamics were known a 

second order servo model was developed.  Initial development work on the FROG 

autopilot was conducted in the NPS Aeronautical Engineering Department’s Controls 

Systems Laboratory.  During initial autopilot development the airplane’s servos had not 

yet been instrumented for position feedback.  Servo dynamics and hardware in the loop 

(HITL) testing was performed using a surrogate servo test set that interfaced with the 

AC-104 computer.  Only after the prototype autopilot had been completed and 

demonstrated in the Lab was the necessary instrumentation installed on the FROG 

control surfaces to evaluate the airplane’s true servo response.  The FROG servos were 

then tested on the airplane to determine their dynamics and the overall control system 

temporal response characteristics. 

The dynamic response characteristics of the miniature electric servos, installed in 

the servo test set, were determined using the data acquisition and hardware control 
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capabilities of the MATRIXX/AC-104 system.  Each servo test set was equipped with 

four Sys3000 TS-75 miniature electric servos, manufactured by Tower Hobbies.  The 

servos were mounted in a metal tabletop cabinet and were equipped with pointers so that 

their position could be readily observed, Figure 3.1. 

 

 

Figure 3.1 Servo Test Set. 
 

Each TS-75 servo had been modified so that its internal feedback voltage could 

be monitored on an external DIN-50 connector.  A second 50-pin DIN connector was 

provided to permit the input of servo PWM command signals.  The laboratory HITL 

system is depicted in Figure 3.2.    
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Computer (IP 68322)

(PWM)(Analog -
Voltage)

(AIM16 A/D)

TS-75 Servo Test Set

 

Figure 3.2. Control Systems Laboratory Hardware in the Loop System. 
 

MatrixX version 6.2.2 was used to create a test system to permit servo dynamics 

assessment and control of the servos in the test set.  The SystemBuild servo test system 

is depicted in Figure 3.3.  The servo commands were input in degrees (± 90°) and then 

converted to pulse width values by a first order transfer function.  In order to 

synchronize the physical servo pointer position with the output command, the Deg-to-

PWM transfer function employed a variable slope and intercept that could be adjusted at 

run time.  The resulting PWM commands were sent to the IP-68332, which generated 

the PWM signals for the TS-75 servos.  The servo feedback voltage was digitized by the 

AIM16, 16-bit A/D converter and converted to degrees using the following formula: 

( )0
90 90

180
outV V

V V °
+ ° − °

°
−

−
 (3.1) 

The values of the minimum, maximum and zero degree voltages could be edited 

during run-time to permit calibration of the V-to-Deg transfer function. 
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Figure 3.3. SystemBuild Servo Dynamics Test System. 
 

The controller included a run-time graphical user interface, which allowed the 

user to input servo position commands and monitor servo position feedback.  Controls 

were included to permit real-time adjustment of the command and feedback transfer 

functions.  The servo test system calibration mode GUI depicted in Figure 3.4. 

The simulation was Autocoded with a minor frame size of 0.001 seconds 

(Scheduler frequency = 1KHz). The RealSim Data Acquisition Editor was used to 

capture the controller command outputs and raw and processed servo responses for 

posttest analysis. 

Once the test system was in place the actuators were stimulated with large and 

small STEP inputs in order to observe the plant dynamics.  Limited data was available 

for the TS-75 servos.  The TS-75 servos have a specified torque of 110.00 oz-in and a 

response rate of 0.19 seconds per 60°.  Though small variations existed between 

individual actuators it was determined that the natural frequency was 38.73 rad/sec and 

the damping ratio ( )ς  was 0.426.  During testing the servo position feedback data 

showed a repeatable periodic offset.  The offset was visible in each of the STEP 
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response plots and was observed on more than one servo test set.  These position offsets 

occurred as the actuators slowed and approached the commanded position and could not 

be characterized as noise.  It is unclear if the offsets originated within the internal servo 

feedback circuit or were introduced due to a binary error within the AIM16 A/D.  The 

servos response to a 10° STEP input is depicted in Figure 3.5. 

 

 

Figure 3.4. Servo Test System Calibration GUI. 
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Figure 3.5. TS-75 Servo Response to 10° STEP Input. 
 

The servo response to large STEP commands (greater than approx. 30°) revealed 

the presence of an internal rate limiter.  The servo rotation rate was limited to 346° per 

second, which was reached after about 20° of rotation.  The dynamic response data was 

used to create a 2nd order servo model, Figure 3.6. 
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Figure 3.6. Second Order Model of TS-75 Servo. 
 

To evaluate the accuracy of this model it was incorporated into a simple speed 

control system.  The controller was then linearized and a Bode analysis was performed 

to determine the gain and phase margins.  The Bode analysis indicated that the speed 

controller had a gain margin of 30.37 dB @ 6.6 Hz and the phase margin was 88.6° @ 
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0.179 Hz.  The speed controller was then modified to permit the TS-75 servos to be 

inserted as HITL in place of the 2nd order servo model.  The controllers gain margin was 

experimentally determined by incorporating a variable gain in the feedback loop.  A 

separate Speed Controller GUI was developed to permit monitoring of the servo 

response and control of the feedback gain, Figure 3.7.   

 

Figure 3.7. RealSim Speed Controller GUI. 
 

The gain margin was determined by increasing the feedback loop gain until the 

controller became unstable.  Three of the test servos exhibited a gain margin of 26.24 dB 

while the fourth had a gain margin of 27.42 dB.  These gain margin values are in good 

agreement with the predicted value of 30.37 dB (13.6% and 9.8% difference 

respectively).  The servo response to varying feedback gain is depicted in Figure 3.8. 
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Figure 3.8. TS-75 Response to Increasing Speed Controller Feedback. 
 

B. DIGITAL FLIGHT CONTROLLER DESIGN 

The flight controller (autopilot) was designed to provide the following functions: 

altitude control via elevator, speed control via throttle and heading control via ailerons.  

The autopilot was also required to incorporate a yaw damper.  MatrixX version 6.2.2 

and the RFTPS were used to design and test the controller.  The completed the autopilot 

was demonstrated via hardware in the loop (HITL) using the TS-75 servo actuators. 

1. Design Methodology and Performance Criteria 

The autopilot was designed using classical inner/outer loop feedback 

methodologies.  The control channels were designed in the following order: yaw 

damper, altitude control on elevator, heading control on aileron and finally speed control 

on throttle.  At each stage the inner and outer loop performance was evaluated using the 

non- linear flight dynamics model of the FROG in MatrixX.  The basic design procedure 

for each controller was the same. 

• Design the feedback (compensation) loop in SystemBuild. 

• Linearize the new system (plant plus compensator) in Xmath. 

• Evaluate the stability of the new system via root locus. 
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• Determine the systems phase and gain margin (Bode plot). 

• Determine systems response to a Step command. 

• Adjust the compensation gains and repeat steps two through five until the 
specified design criteria were met. 

• Once satisfied with the linearized systems performance check the non-
linear system by inserting a Step source into the SystemBuild simulation 
and evaluate the systems performance. 

The SystemBuild flight controller is presented in Figure 3.9.  The servo 

calibration GUI was modified and augmented with a separate autopilot control GUI, 

which is depicted in Figure 3.10 
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 Figure 3.9. FROG SystemBuild Flight Controller Model. 
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Figure 3.10. RealSim Flight Controller Display. 
 
2. Yaw Damper 

The yaw damper was designed to provide stability augmentation by feeding back 

commanded angle of bank (φ) (from the heading controller) divided by true airspeed 

(Vt).  Commanded angle of bank was chosen, in lieu of a washout filter, so that yaw 

damper would not attempt to counter a commanded turn.  The compensator chosen was 

of the proportional/integral type (PI) with an additional scaling gain. As specific yaw 

damper performance requirements were not given a target of 6 dB gain margin and 60° 

phase margin was used.  The yaw damper block diagram is presented in Figure 3.11.  

The linearized yaw damper displayed a gain margin of 13.1 dB @ 38.39 rad/sec and a 

phase margin of 76.1° @ 7.73 rad/sec. 
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Figure 3.11. Yaw Damper SystemBuild Block Diagram. 
 

Figure 3.12 presents the FROG’s response (with simulated actuators) to an 11.4° 

(0.2 rad) step input to the rudder position.  The yaw damper immediately counter acts 

the rudder disturbance and bank angle is returned to zero within 14 seconds.  The 

airplane’s heading exhibits a maximum deviation of 2.3° and is restored within 

approximately six seconds.   
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Figure 3.12. Yaw Damper Response (Simulated Actuators). 
 



54 

Figure 3.13 presents the HITL performance of the yaw damper with HITL; when 

subjected to a 10° rudder change (from –5° to +5°).  The heading reaches a maximum 

deviation of approximately 2.2° after 1.5 seconds and has returned to within 1° of the 

original value by four seconds.  It is noted that the presence of a small periodic signal 

was observed in the TS-75 servo’s output.  This small disturbance signal degraded the 

yaw damper’s performance somewhat when compared to the simulation.  The 

disturbance signal was observed also observed when the controller was disconnected 

and was therefore not an undesirable controller response.  Other possible feedback 

schemes include yaw rate feedback, roll rate feedback and sideslip feedback.  Each of 

these has significant influence on the short period and spiral modes of an airplane and 

merit further investigation for use on the FROG. 
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Figure 3.13. FROG Yaw Damper Performance with TS-75 Actuators. 
 
3. Altitude Controller 

The altitude controller was designed to satisfy the following criteria: 

• The closed- loop system must be stable. 
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• The elevator command loop bandwidth should not exceed 7 rad/sec. 

• Minimum gain margin of 6 dB and phase margin of 30°. 

Additionally, the controller was designed to limit Step response overshoot of no 

more than 10% and a have a rise time of about 10 seconds.  The inner loop consisted of 

a proportional/derivative (PD) compensator using pitch rate (q) and pitch attitude (θ) 

feedback.  The outer loop employed a PID compensator with altitude (Pz) and altitude 

rate ( h
•

) to produce commanded pitch attitude.  The altitude controller block diagrams 

are presented in Figure 3.14. 
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Figure 3.14. Altitude Controller SystemBuild Block Diagram. 
 

The altitude controller exhibited a gain margin of 13.86 dB @ 16.46 rad/sec and 

a phase margin of 58.6° @ 6.50 rad/sec.  The linearized model’s performance met the 

10% overshoot and 10 second rise-time constraints but the non- linear simulation slightly 

under performed.  The non- linear controller exhibited an over shoot of approximately 

15% and a rise time of approximately 11 seconds.  The HITL response is presented in 

Figure 3.15.  The HITL overshoot was approximately 14% with a rise time of 

approximately 9 seconds. A significant periodic oscillation, with a frequency = 0.83 Hz, 

was observed on the elevator command and elevator servo output channels.  Peak-to-

Peak variations of approximately 1° were observed but the variation did not appear to 

affect the controller’s altitude performance.  While this behavior was acceptable for the 

altitude controller it would likely produce unacceptable variations in pitch attitude that 

would adversely affect the ability to stabilize optical sensors.  The source of the 

variation was not determined. 
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Figure 3.15. Altitude Controller Response with TS-75 Servos. 
 
4. Heading Controller 

The heading controller was designed to meet the same performance requirements 

as the altitude controller.  The heading controller design incorporated inner, middle and 

outer loop feedback loops and is depicted in Figures 3.16 and 3.17.  The outermost loop 

took commanded heading (ψc) and produced an angle of bank command (φc).  The 

middle loop took φc and converted it into a roll rate command (pc) while the inner most 

loop converted pc to an aileron deflection command (δa).  The inner loop consisted of a 

PI controller.  The middle loop consisted of a PID controller and the outer loop consisted 

of a PI controller.  The outer loop also included a limiter that restricted φ output to less 

than 0.5 radians (approximately 28.5°).  Each loop layer was designed such that the 

crossover frequencies were separated by at least one decade. 
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Figure 3.16. Heading Controller System Build Block Diagram. 

 

The heading controller exhibited a gain margin of 14.74 dB @ 38.49 rad/sec and 

a phase margin of 80° @ 5.97 rad/sec.  The heading controller’s response, with 

simulated actuators, to a step heading command of 29° is presented in Figure 3.17.  The 

airplane heading (ψ) exhibits a 10% overshoot and a rise time of approx. 5.5 seconds.  It 

can also be seen that the yaw damper responds as expected to produce a coordinated 

turn. 
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Figure 3.17. Heading Controller Response With Simulated Actuators. 
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The HTIL response of the heading controller is presented in Figure 3.18.  The 

HITL response exhibits a ψ overshoot of approx. 8% and a rise time of 4.8 seconds, 

which compares favorably with the simulation results.  It was noted that the aileron 

servo output exhibited nearly the same periodic variation as was observed in the yaw 

damper.  It is possible that the source of this signal would only be found in one of these 

channels and that it is propagating into the other channel via the airplane’s roll/yaw 

coupling.  Further analysis of this phenomenon is warranted. 
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Figure 3.18. Heading Controller Response with TS-75 Servos. 
 
5. Airspeed Controller 

A PI speed controller was implemented on the throttle.  The speed controller 

block diagram is depicted in Figure 3.19.  The speed controller’s gain and phase margin 

were 36.7 dB @ 38.75 rad/sec and 88.1° @ 0.33 rad/sec respectively. 
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Figure 3.19. Speed Controller SystemBuild Block Diagram. 
 

The response of the speed controller to a 10 fps STEP command was the same 

for the simulated and HITL actuators, Figure 3.20.  The airspeed overshoots by 

approximately 5% and has a rise time of about 9 seconds.  It is noted that a small 

amplitude periodic signal is imposed upon the throttle servo output signal.  This 

variation has the same period as that observed on the elevator command channel and is 

likely due to the close coupling between throttle and elevator in the airplanes 

longitudinal modes. 
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Figure 3.20. Speed Controller Response with TS-75 Servos. 
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6. Control Mode Coupling 

The coupling of the longitudinal and lateral control modes was observed on both 

the simulated and HITL versions of the system.  On the longitudinal side, the 

relationship between throttle (speed) changes and elevator (pitch attitude) changes is 

shown in Figure 3.21.  In the figure, a +10 fps STEP command is sent to the speed 

controller at t = 1.0 sec.  As the airplane begins to accelerate it generates more lift and 

also begins to climb.  The altitude controller responds to this climb by programming a 

tail up elevator command to arrest the climb and return the airplane to its original 

altitude.  It can also be seen that the airplane establishes a new trim attitude with θ = -

0.13°.  The lateral control coupling was observed by commanding a STEP heading 

change and observing the aileron and rudder response, Figure 3.22.  As the heading 

controller commands the ailerons to deflect the rudder immediately deflects to provide 

turn coordination and the airplane smoothly turns to the commanded heading. 
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Figure 3.21. Longitudinal Control Mode Coupling. 
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Figure 3.22. Lateral-Directional Control Mode Coupling. 
 

C. FROG CONTROL SERVOS 

The FROG control servos were not instrumented in time to support initial 

autopilot design so the TS-75 servos were used as a surrogate.  Once the FROG was 

instrumented the RealSim servo test system was modified to permit dynamic response 

testing of the servos installed on the airplane. 

1. FROG Servo Configuration and Instrumentation 

The FROG was configured with a number of different servo models.  The 

elevator servo specifications matched those for the test set TS-75 servos but the aileron, 

rudder and throttle servos are specified at approximately half the output torque and give 

a somewhat slower response.  The FROG servo configuration is listed in Table 3.1 
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Control 
Channel 

 
Futaba     
Model 

 
Torque        
(oz- in) 

 
Speed           

(sec / 60°) 

Dimensions 
Width x Length 

x Height (in) 

Elevator S3302 110.0 0.19 1.14 x 2.32 x 1.97 

Ailerons FP-S130 55.60 0.24 0.75 x 1.50 x 1.31 

Rudder FP-S130 55.60 0.24 0.75 x 1.50 x 1.31 

Throttle FP-S130 55.60 0.24 0.75 x 1.50 x 1.31 

Flaps1 FP-S125 129.30 0.62 0.88 x 1.75 x 1.69 

Servo Test Set2 TS-75 110.0 0.19 1.14 x 2.32 x 1.97 
Note 1: Flaps are not used by the autopilot. 
Note 2: Provided for comparison. 

 
Table 3.1. FROG Control Servo Configuration. 

 

It was neither practical nor desirable to obtain servo position feedback in the 

fashion used for the Lab test set servos.  Tapping into the servos internal feedback 

circuit would have required cutting a hole in the servo’s case, which would have 

permitted moisture, dust and EMI intrusion.  Each one of these are to be avoided in 

flight worthy hardware.  It was also impractical to attach external instrumentation 

directly to the FROG servos so the control surfaces were instrumented instead.  The 

FROG servos are attached to the movable control surface by means of a linkage rod.  

Rotation of the servo shaft was translated to a linear push/pull on the rod.  The linkage 

rod was attached to a mounting horn on the control surface.  The push/pull motion of the 

linkage rod is translated into rotation at the control surface.  The elevator servo 

installation is depicted in Figure 3.23. 
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Figure 3.23. FROG Elevator Servo Configuration. 
 

The servo position and control surface hinge configuration result in a nonlinear 

transfer function from servo rotation angle to control surface deflection angle.  The 

control surfaces were instrumented with Series 150 subminiature linear position 

transducers, manufactured by SpaceAge Control, Inc.  The position transducers, 

commonly known to as “string pots” consist of a small threaded drum attached to a 

single turn rotary potentiometer.  The potentiometer shaft is connected to a coil spring 

which provides a positive retract force for all positions.  The transducers cable is 

connected to a horn mount on the control surface so that the control surface neutral 

position roughly corresponds to mid-point in the transducers range, Figure 3.24.  As the 

control surface moves the transducers cable is either extended or retracted.  As the cable 

moves the string pots resistance increases or decreases. 
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Figure 3.24. Series 150 Subminiature Position Transducer. 
 

The string pots have a mechanical limit of 340° and are rated at 5K ohms, ±10%. 

Each string pot was provided a reference voltage of 3.73 V and the output voltage was 

routed to one of the TattleTale A/D converters in the NPS IMU computer.  The raw 

string pot voltages were incorporated into the IMU serial output message and then sent 

(at 40 Hz) to the onboard FreeWave Modem; via the TattleTale’s RS-232 port.  The 

IMU message was received by the AC-104’s FreeWave modem and then decoded. 

2. Control Surface Position Calibration 

Before servo dynamic response measurements could be made the position 

transducer outputs had to be calibrated.  Additionally, the servo rotation limits had to be 

established so that the RealSim servo test system would not command positions that 

could result in binding or jammed controls.  Both of these tasks required that the 

Futaba® command uplink be implemented within RealSim.  The command uplink signal 

path is depicted in Figure 3.25.   
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Figure 3.25. The FROG Command Uplink Signal Path. 
 

The design approach for the FROG servo test system uplink was to start at the 

Futaba® FP-R309DPS receiver’s PWM output signals and work backwards towards the 

AC-104 output.  The first task was to determine the valid range of servo PWM 

commands.  This would be the range of pulse widths generated by the Futaba® FP-

R309DPS receiver in response to control sweeps from the Safety pilot’s radio 

transmitter.  The receiver’s PWM output characteristics were determined by connecting 

the output channels of an FP-R309DPS receiver directly to the digital I/O lines of the 

AC-104’s IP-68322 port.  The IP-68322 was programmed to measure pulse width on the 

receiver output channels and the data was captured within RealSim.  The elevator, 

aileron, throttle and rudder controls on the FP-9ZAP radio control were held in their 

extreme positions and the corresponding maximum and minimum PWM values were 

noted.  These values were later confirmed using the DSO-2102 digital storage 

oscilloscope.  Once the range of permissible PWM commands had been established the 

AC-104-to-Slave controller signals had to be calibrated.  The Master radio controller 

was connected to the Futaba FP-8UAP Slave via the trainer cable.  The FROG servo test 

system interfaced with the Slave through the Ruby-MM 12-bit D/A converter.  The 
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D/A’s 12-bit resolution provided 4096 (212) possible command values.  With the D/A 

converter configured for 0 to 5V unipolar operation, the resulting command resolution 

was ( )1.22  5 4096mV V .  The RealSim servo controller was configured to send 

discrete digital commands (values from 0 to 4096) to the D/A, which generated 

proportional voltages for the Slave radio controller.  These voltages were converted to 

PPM and were relayed to the Master radio via the trainer cable.  Once in the Master, the 

PPM signals were recoded as PCM and transmitted to the FP-R309DPS receiver 

connected to the IP-68322.  The receiver decoded the PCM signals and the resulting 

PWM servo command signals were measured by the IP-68322 and recorded by the AC-

104. 

The test method was to start the controller with a default output command of 

2048 (mid-range for the D/A) and then decrease or increase the command value until the 

PWM limits were observed.  As the D/A digital command was decreased the pulse 

width decreased until a minimum of approximately 0.9 ms was reached at a D/A 

command value of 1515 (1.849 Vout).  Further decreases in D/A command had no effect 

on the PWM pulse length.  As the D/A command was increased an upper pulse width 

limit of approx. 2.1 ms was reached at a D/A command value of 2685 (3.28 Vout).  When 

the D/A command was increased above 2685 the receivers pulse width output abruptly 

jumped down to 1.5 ms.  This is the pulse width that roughly corresponds to the control 

neutral position.  Based on these results limiter was added to the servo command path to 

keep the D/A commands between 1515 and 2675. 

The next task was to determine two transfer functions: D/A command (0 – 

4096)-to-control position (deg) and string pot Vout-to-Surface Position (deg).  In order to 

determine the translation polynomials an accurate method of measuring each control 

surface’s deflection was required.  A laser pointer was attached to the control surface 

such that the optical axis of the laser was perpendicular to the axis of rotation.  The 

laser’s objective lens was equipped with an opaque mask that reduced the exit aperture 

to 0.014 mm.  The laser’s beam was aimed at the inside surface of a section of circular 

cylinder.  The cylindrical surface had a radius of 20.0 inches and was marked in 0.2° 

increments.  This permitted accurate angular measurements down to ±0.1°.  As the 
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control surface was moved, the position of the laser dot moved along the graduated 

scale.  The control surface deflection instrumentation is depicted in Figures 3.26 through 

3.28.   

 

Figure 3.26. Laser Installation for Control Surface Deflection Measurement. 
 

 

Figure 3.27. Cylindrical Laser Target. 
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Figure 3.28 Laser Position Indicator Spot on Angle Scale. 
 

The value of D/A command (0-4096), control surface deflection (deg) and string 

pot output were noted for each position.  The data was then curve fit by either a 3rd or 5th 

order polynomial using a least squares approach.  Figure 3.29 depicts the relationship 

between the FROG’s aileron surface positions and AC-104 D/A output values.  Figure 

3.30 shows the relationship between the FROG’s aileron surface positions and the string 

pot outputs. 
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Figure 3.29. FROG Aileron Position Command versus D/A Output Value. 
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Figure 3.30. FROG Aileron String Pot Output versus Position. 
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3. FROG Servo Dynamics 

Once calibrated the FROG control servo dynamics were assessed in the same 

manner used for the TS-75 test set servos.  The FROG servos were given small and large 

STEP commands and the dynamic response was determined from the string pot position 

feedback.  Analysis of the STEP input commands and the servo response revealed some 

unexpected system behavior.  The strip chart in Figure 3.31 shows the elevator’s 

response to a 20° STEP command (-10° to +10°).  The elevator command and PWM 

channels were sampled at 1000 Hz.  The elevator control surface string pot signal is only 

updated at 40 Hz (once every 25 ms); as it is part of the IMU downlink message.  As can 

be seen in the figure, the position command from RealSim is nearly an ideal STEP with 

a rise time of 0.001 seconds.  A closer inspection of the data revealed that the STEP 

commands were not sent simultaneously but were spaced 1 ms. apart, which matched 

the RTOS scheduler frequency.  The first indication of a receiver response occurs some 

69 ms later.  The Futaba® FP-R309DPS receiver generated a piece-wise constant PWM 

command for the servos which took an additional 20 ms to reach full pulse width.  The 

desired pulse width was not present in the receiver’s output until 89 ms after the AC-104 

command was issued.  The first indication of control surface response occurred an 

average of 99 ms after the first pulse width change from the receiver.  This was 168 ms 

after the initial command was issued by the AC-104.  This significant command path 

delay had not been included in the FROG plant model when the flight controller was 

developed.  
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Figure 3.31. FROG Servo Response Delay. 
 

Upon review of these results the servo test sets were tested to see if they showed 

similar command latency.  In the Avionics laboratory test sets the AC-104 generates the 

PWM command signals with an internal Motorola 68322-based processor.  As this is the 

same unit used to measure pulse width it was not possible to capture the time delay 

between servo command and pulse width response.  It was possible, however, to 

measure the entire delay between command and servo response, which was found to be 

33 ms, depicted in Figure 3.32.  This RPFTS command path delay was over five times 

that found in the equipment used to develop the flight controller. 
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Figure 3.32. TS-75 Servo Test Set Response Delay. 
 

The observed servo responses were used to create 2nd order servo models.  The 

piece-wise PWM command signal gives each servo a dead-beat response and likely 

masks the true dynamics.  As no appreciable over-shoot was present a damping ratio of 

0.9 was assumed.  The resulting forward loop and feed back gains are listed in Table 3.2.   

 

Control Servo Gain (K) Feedback Gain (Kh) 

Elevator 2612.8 0.0352 

Aileron 444.72 0.852 

Rudder 1423.9 0.0477 

 
Table 3.2. FROG Servo Gains. 

 

The servo speed controller used on the TS-75 servos was then incorporated into 

the FROG servo test system.  Figure 3.33 shows the control surface response to variable 
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feedback gain.  The aileron channel became unstable when the variable loop gain 

exceeded 6.5 (16.3 dB).  The rudder and elevator became unstable for when the loop 

gain exceeded 8.0 (18.0 dB).  It must be noted that the presence of considerable phase 

lag makes clouds this assessment of gain margin.    
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Figure 3.33. FROG Servo-based Speed Controller Performance. 
 
4. FROG Digital Flight Controller Performance 

The performance of the RFTPS FROG digital flight controller was tested with 

the FROG in the loop.  The flight controller became unstable as soon as it was initialized 

and was unable to track in any channel.  The autopilot was then evaluated in the lab to 

determine the influence of the command path latency.  Figure 3.34 shows the effect of 

introducing a 170 ms delay into the flight controller’s command output path.  The 

aileron and rudder are 180° out of phase with the controller’s commands while the 

elevator and throttle lag the controller by 110°.  The command path delay was reduced 

to 50 ms and the controller’s performance was restored. 
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Figure 3.34. Flight Controller with 170 ms Delay. 
 

D. ALTERNATE COMMAND UPLINK 

The interest in an alternate uplink method was initially driven by the short range  

afforded by the Futaba® transmitter.  Upon discovery of the magnitude and effects of 

the RPFTS latency on the digital flight controller the focus of this investigation shifted 

to reducing latency.  The FreeWave modems used for data downlink provide a line of 

sight range of up to 20 miles and offered the potential for higher speed uplink.  Serial 

commands can be sent from the AC-104, via the IP-serial board, to the FROG where 

they are decoded in the Tattletale computer.  The Motorola 68322 micro-controller, used 

in the TattleTale and IP-68322, contains a powerful time processing unit (TPU) that can 

perform match and capture operations on time, freeing the CPU for other tasks.  The 

TPU is in essence a slave processor built into the 68322 that controls two timers and 

sixteen I/O lines and is capable of generating PWM signals.  Each Tattletale 8 provides 

access to nine of 68322’s TPU lines.  Two of the TPU lines are currently used as a data 

bus between the Master and Slave Tattletales.  An investigation was conducted to assess 

the feasibility of using four of the remaining TPU lines to generate PWM command 

signals in place of the Futaba® receiver.  In order to demonstrate the feasibility of this 

approach, the Futaba® receiver-to-servo PWM signal characteristics had to be 

determined.  On board the FROG a Futaba® FP-R309DPS receiver converts the PCM 
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command signals to PWM and sends them on to the control servos.  The PWM signal 

characteristics were measured with a DSO-2102 PC—based digital storage oscilloscope, 

manufactured by Link Instruments, Inc and with the IP-68322 data acquisition card in 

the AC-104.  A Futaba FP-9ZAP digital proportional radio control was used to generate 

PCM command signals for the FP-R309DPS receiver.  For this test, the controller trim 

settings were set to zero so that the systems neutral command values could be 

determined.  It is noted that in actual practice the FROG controller trim settings are non-

zero in order to achieve balanced flight.  The receiver generates 2.84 Volt PWM 

command signals at an average frequency of 70.17 Hz (14.250 ms period).  Figure 3.35 

shows the receiver PWM output in response to a maximum elevator command and a 

minimum aileron command.   

Period = 14.250 ms

Short Pulse Width = 1.140 ms
Long Pulse Width = 2.085 ms

 

Figure 3.35. FP-R309DPS Receiver Output Signal. 
 

The pulse width limits for each of the control channels were measured on the 

digital storage oscilloscope and are presented in Table 3.3. 
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Pulse Width (ms) Receiver 

Channel Minimum Neutral Trim Maximum 

Elevator (ch 1) 0.955 1.520 2.085 

Aileron (ch 2) 1.130 1.520 2.120 

Throttle (ch 3) 1.235 1.570 1.940 

Rudder (ch 4) 1.085 1.515 1.955 

 
Table 3.3. FP-309DPS Pulse Width Response to FP-9ZAP Controller Commands. 

 

The minimum pulse width observed was 0.955 ms for elevator channel.  The 

maximum pulse width was 2.120 ms on the aileron channel.  The observed neutral 

command pulse width matched the servo specified value of 1.52 ms for the elevator and 

aileron channels and nearly so for the rudder channel.  The throttle neutral pulse width 

however was 1.57 ms.  The throttles variation from the specified neutral output was 

probably due to a voltage (resistance) bias in the throttle control stick.  The receiver 

PWM output, in response to dynamic commands was assessed with the AC-104’s IP-

68333 programmed to measure pulse period. 

Once the baseline PWM signal parameters were determined the operating system 

software in the NPS IMU was modified to accept and decode a servo command uplink 

message.  The servo command data was then used to set the pulse width duration.  Once 

the Tattletale program was modified the FROG control system was modified to include 

a serial uplink message.  The servo calibration controller was then used to generate 

serial command signals, which were transmitted via the FreeWave modems to the 

Tattletale computer.  The first timing test was conducted with the PWM generation 

functions embedded in the existing 3DM TattleTale program.  With the IMU data 

functions enabled the PWM output delay was a disappointing 150 ms.  This would result 

in a servo delay of approximately 180 ms (counting the 33 ms delay observe in the lab).  

The TattleTale program was then modified and all non-PWM related functions were 

disabled.  With the IMU sampling functions disabled the PWM output delay was 

reduced to 76 ms.  To assess the suitability of this uplink method a 75 ms delay was 
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inserted into the flight controllers output path and the controller was run with TS-75 

HITL, Figure 3.36.  The reduction in servo response latency, while significant, was not 

enough to reduce the restore stability to the system.  
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Figure 3.36. Flight Controller Performance with 75 ms Delay. 
 

The 75ms delay produced limit cycle oscillation on each controller channel.  

Figure 3.37 shows the phase lag between each controller channel and it’s associated 

servo.  The altitude controller exhibited a phase lag of 62 degrees compared to a phase 

margin of 58.6 degrees.  The rudder servo had 80 degrees of phase lag which is slightly 

more than the Yaw damper’s phase margin of 76.1 degrees.  The heading and speed 

controllers had phase margins of 80 and 88 degrees respectively.  The servo responses to 

these controllers are less coherent suggesting that the phase margin has not been 

exceeded yet. 
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Figure 3.37. Servo Phase Lag with 75 ms Command Delay. 
 

It must be noted that though the digital flight controller does not provide 

satisfactory performance with 76 ms delay it was not designed to do so.  It is quite 

probable that simply reducing the controller gains would restore stability but this would 

come with a performance penalty.  The prudent approach would be to incorporate the 

servo response latency into the FROG plant model and re-tune each of the flight 

controllers’ components.  This way it may be determined if the desired controller 

performance can be achieved with the current command path delay and if not a suitable 

design goal for command path latency can be determined.  This test did demonstrate the 

validity of the serial uplink control scheme to reduce command uplink latency.  Little 

attention was paid to optimization of the TattleTale code and it is recognized that there 

is room for improvement in this area.  What is more important than the demonstration of 

the TattleTale’s ability to replace the Futaba® transmitters and receiver is that principle 

that serial uplink offers the potential to reduce command latency as well as extend the 

FROG’s usable range. 
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IV. CONCLUSIONS AND RECOMMENDATIONS 

A. CONCLUSIONS 

The use of HITL greatly assisted the design and development of the digital flight 

controller.  The laboratory HITL, however, did not provide the required fidelity to be 

able to create a flight controller for the FROG Rapid Prototyping Flight Test System.  

The unmodeled command path latency resulted in excessive servo phase lag, which 

exceeded the controllers phase margin.  Reduction of the pulse width delay to 50 ms 

provided satisfactory performance but likely leaves little phase margin.  Inertial sensor 

noise was not included in the FROG model and its effect on the flight controller’s 

performance was not evaluated.   

The Crossbow AHRS does not provide updates at a constant frequency in the 

angle/ continuous mode of operation.   

B. RECOMMENDATIONS 

The fidelity of the FROG plant model should be improved by inclusion of the 

command path latency, FROG servo dynamics and by sensor noise models.  The flight 

controller should also be modified to include limiters that restrict the control surface 

deflection commands to the measured FROG control surface deflection limits, when 

running with the TS-75 servo test set.  Once these factors have been incorporated the 

flight controller gains should be re-tuned in an attempt to meet the original performance 

criteria.  If the flight controller performance goals cannot be met an acceptable 

command path delay should be determined and alternate command architecture should 

be developed.  Particular attention should be paid to serial via the existing FreeWave 

modems.  Consideration should also be given for transitioning to a wireless Ethernet 

system. 

The IMU computer should be modified to provide airborne data processing and 

management capabilities for the AHRS avionics configuration.   Future FROG guidance 

and control projects will need to make use of analog to digital conversion onboard the 

airplane.  The TattleTale computer and operating software can be easily modified to 

perform this task. 
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APPENDIX A.  NPS IMU OPERATING SOFTWARE 

This appendix contains the “Aztec C” code listings for the 3DM  and GPS 

TattleTale microprocessors in the NPS IMU computer.  Mathew Comerford originally 

wrote this code while a student at the Naval Postgraduate School.  The code was 

subsequently modified to include the PWM generation capability by Maj Bock Aeng 

Lim and the author. 

A. 3DM TATTLETALE OPERATING CODE 
/*----------------------------------------------------------------------------------*/ 
/*  3DM Tattletale Operating System                                                 */ 
/*  Primary function: IMU sampling, 3DM sampling, & Timing                          */ 
/*  Secondary function: Merge GPS data into data stream                             */ 
/*  April 23, 2001 
/*  Modified: September 2001                                                        */ 
/*  Filename:  3DMTTwPWM.c                                                          */ 
/*----------------------------------------------------------------------------------*/ 
 
#include <TT8.h>           /* Tattletale Model 8 Definitions */ 
#include <tt8lib.h>     /* definitions and prototypes for Model 8 library */ 
 
#include <tt8lib.h>        /* for TT8 functions */ 
#include <tat332.h>        /* 68332 Hardware Definitions */ 
#include <tpu332.h>        /* 68332 Time Processing Unit Definitions */ 
#include <sim332.h>     /* 68332 System Integration Module Definitions */ 
 
#include <stdlib.h>        /* for malloc */ 
#include <stdio.h>         /* for printf() */ 
#include <userio.h>        /* for prompts */ 
#include <string.h>        /* for sting comparison */ 
#include "AtoDdata.h"      // for AtoDdata sturcture definition  
#include "data3DM.h"       // for data3DM structure definition 
#include "3DMio.h"         // for SendAtoD and Send3DM functions 
#include "PWM.h"           // for PWM functions definition 
 
 
 
// #define TESTMODE            //  if define test mode then program will sent simulated 
data 
 
#define SAMPLERATE  40                  //  Main sample frequency 40 Hz        
#define SAMPLES     10000               //  Number of samples to log      
#define QSIZE       12                  //  Must be a power of 2 {2,4,8,16,32...} 
#define TSBUFSIZE   4096                //  Must be 2^QSIZE 
// #define UplinkSerBUFSize    2048        //++  Buffer for Uplink PWM command at TPULine 
 
  
 
/* Functions Prototype */ 
 
int SendAtoD (struct AtoDdata*);            // SendAtoD function prototype  
int Send3DM  (struct data3DM*);             // Send3DM function prototype 
int Read3DM  (struct data3DM* threeDM);     // Read3DM function prototype 
int Send3DMTest (short value);              // Send3dmTest function prototype 
int SendAtoDTest (struct AtoDdata *, short);// SendAtoDTest function prototype 
int SendGPS (void);                         // SendGPS function prototype 
int SendGPSAtoD(void);                      // SendGPSAtoD function prototype 
void TPUSetupPWM(short pwmhi1, short pwmper1, short pwmhi2, short pwmper2, short pwmhi3, 
short pwmper3, short pwmhi4, short pwmper4); 
void TPUChangePWM(short pwmhi1, short pwmper1, short pwmhi2, short pwmper2, short pwmhi3, 
short pwmper3, short pwmhi4, short pwmper4); 
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int  PWMcmds_from_uplink(short []);  
// int  PWMcmds_from_TPU3(short []);  
 
/* Global variable for PWM commands decoding */ 
int     first_frame_a = 0; 
short   last_servo_cmd[8]; 
 
 main () { 
 
 ulong sample = 0;                  // The current sample number  
 ulong baud;                        // Baud rate 
 ulong time = 0;                    // Timing Statistics 
 ulong runningTime = 0;             // Timing Statistics 
 ulong missed = 0;                  // Timing Statistics 
 char timeStr[40];                  // Timing Statistics 
 short status;                      // Timing Statistics 
 short onTime = 1;                  // Timing Statistics 
 short count = 0;                   // Timing Statistics 
 float missedPercent = 0;           // Timing Statistics 
 XmdmErr        xerr;               // Xmodem error code 
 short value = 48;                  // ASCII value for '0' --> to be used in testing 
 short i = 0;                       // Generic Counter 
 long *valuePtr;                    // Pointer to stored values  
 void *serBufPtr = NULL;            // Pointer to serial buffer 
 void *inBufPtr = NULL;             // Pointer to serial buffer TPU(14) 
 void *inBufPtr1 = NULL;            // Pointer to serial buffer TPU(1) 
 void *inBufPtr2 = NULL;            // Pointer to serial buffer TPU(2) 
 void *inBufPtr3 = NULL;            // Pointer to serial buffer TPU(3) 
 void *outBufPtr = NULL;            // Pointer to serial buffer TPU(13) 
 void *UplinkBufPtr = NULL;         //++  
 struct AtoDdata AtoD3DM = {0};     // AtoD data structure variable 
 struct data3DM threeDM   = {48059,48059,48059,48059,48059,48059};     // Hex BB BB 
 struct data3DM threeDM2  = {221,221,221,221,221,221};                 // Hex 00 DD 
 short  servo_cmd[8]; 
 short tpumcr = 0x2040;             // TPU MCR register for PWM output 
 
 
 
 
 InitTT8(NO_WATCHDOG,tpumcr);      // Initialize the Model 8  
 
#ifdef TESTMODE 
 printf("**************** Attention!! Data will be produced in TEST mode 
************\n"); 
#endif 
 
 printf("\nSet BAUD rate to 38400\n"); 
 Sleep(0); 
 Sleep (200000);                // Allow 5 second to display message 
 // SimSetFSys(16000000);       // Set TT to 16.0 MHz --> fastest speed 
 SimSetFSys(14720000);          // Set TT to 14.7 MHz --> best rate for serial transfer 
 // baud = SerSetBaud(38400,0);    // Set baud rate 
 baud = SerSetBaud(9600,0); 
 SetTickRate(40000);            // TPU clock rate to 40 KHz --> 40 ticks = 1 ms 
 
 //  ---------------    Set up Memory Buffers for Serial Input and Output ---------------
--- 
 serBufPtr = malloc(4096);                            //  Console (Primary) Serial Buffer 
    if (serBufPtr == NULL) printf("\nBuffer Memory Allocation Failed\n"); 
    if (serBufPtr != NULL) printf("\nbufferPtr Memory O.K.\n"); 
 
 inBufPtr = malloc(TSBUFSIZE+TSER_MIN_MEM);           //  TPU(14) Serial In Buffer 
    if (inBufPtr == NULL) printf("inBufPtr too big\n"); 
    if (inBufPtr != NULL) printf("inBufPtr Memory O.K.\n"); 
 
 inBufPtr1 = malloc(TSBUFSIZE+TSER_MIN_MEM);           //  TPU(1) Serial In Buffer 
    if (inBufPtr1 == NULL) printf("inBufPtr1 too big\n"); 
    if (inBufPtr1 != NULL) printf("inBufPtr1 Memory O.K.\n"); 
 
 inBufPtr2 = malloc(TSBUFSIZE+TSER_MIN_MEM);           //  TPU(2//8) Serial In Buffer 
    if (inBufPtr2 == NULL) printf("inBufPtr2 too big\n"); 
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    if (inBufPtr2 != NULL) printf("inBufPtr2 Memory O.K.\n"); 
 
 inBufPtr3 = malloc(TSBUFSIZE+TSER_MIN_MEM);           //  TPU(3) Serial In Buffer 
    if (inBufPtr3 == NULL) printf("inBufPtr3 too big\n"); 
    if (inBufPtr3 != NULL) printf("inBufPtr3 Memory O.K.\n"); 
 
 outBufPtr = malloc(TSBUFSIZE+TSER_MIN_MEM);          //  TPU(13) Serial Output Buffer 
    if (outBufPtr == NULL) printf("outBufPtr too big\n"); 
    if (outBufPtr != NULL) printf("outBufPtr Memory O.K.\n"); 
 
 
 
 //  ---------------    Set up Serial Input and Output Parameters -----------------------
--- 
 // Open Console (Primary) serial port for buffered input & output 
 SerSetInBuf (serBufPtr,4096); 
 SerInFlush(); 
 
 // Open TPU(1) for buffered input 
 if(TSerOpen(1,HighPrior,0,inBufPtr1,TSBUFSIZE,33600,'N',8,1) == tsOK) { 
    printf ("TSerOpen(1) O.K.\n"); 
    TSerInFlush(1); 
 }; 
 
 // Open TPU(2//8) for buffered input// it suppose to be 8 with the same mode 0 
 if(TSerOpen(8,HighPrior,0,inBufPtr2,TSBUFSIZE,33600,'N',8,1) == tsOK) { 
    printf ("TSerOpen(8) O.K.\n"); 
    TSerInFlush(8); 
 }; 
 
  // Open TPU(3) for buffered input 
 if(TSerOpen(3,HighPrior,0,inBufPtr3,TSBUFSIZE,9600,'N',8,1) == tsOK) { 
    printf ("TSerOpen(3) O.K.\n"); 
    TSerInFlush(3); 
 }; 
 
 // Open TPU(13) for buffered output  
 if(TSerOpen(13,MiddlePrior,1,outBufPtr,TSBUFSIZE,9600,'N',8,1) == tsOK) { 
    printf ("TSerOpen(13) O.K.\n"); 
}; 
 
 // Open TPU(14) for buffered input 
 if(TSerOpen(14,HighPrior,0,inBufPtr,TSBUFSIZE,9600,'N',8,1) == tsOK) { 
    printf ("TSerOpen(14) O.K.\n"); 
    TSerInFlush(14); 
}; 
 
 
 
 TPUSetupPWM(500,1000,500,1000,500,1000,500,1000);  // simple values to open PWM channels 
 
 printf ("Tick Rate is %ld\n",GetTickRate()); 
 printf ("System Clock is %ld\n",SimGetFSys()); 
 printf ("Baud Rate is %ld\n",baud); 
 printf ("Press Control-C on the Primary port to reset to TOM8\n"); 
 Sleep  (0); 
 Sleep  (200000);                       // Allow 5 seconds messages to be displayed. 
// if (SerByteAvail()){ 
//     if (SerGetByte() == 3) ResetToMon();     // Reset to TOM8 Monitor if CNTRL C 
Pressed 
// } 
                                       // Allows reset of EEPROM program w/o hardware 
reset 
 
 //TPUSetPin (0,1);                      // Now we use direct connection to transmit data 
from TPU0(GPS) to TPU8(3DM) 
                                         // Define TPU0 for digital output and sets to 
high level 
             // Enable 
Humphrey Gyro Auto Erect feature  
                                       // Should this be done entire flight ?????? 
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//************************************************************************************** 
//  This portion of code conducts all of the timing for the IMU gyros and the 3DM  
//  accelerometers/magnetometers.  The IMU AtoD data is sampled at 40 Hz while the 3DM 
//  is sampled at 20 Hz because of the instrument's limits.  The 3DM is connected on 
//  the secondary serial port at 9,600 baud and the output is on the primary serial port 
//  Binary GPS data is received from the GPS Tattletale via TPU pin 1. 
//************************************************************************************** 
 
  do { 
//  -------------------------------------------------------------------------------- 
//    1st Minor Timing Cycle @ 40Hz  -->  {send AtoD, send 3DM, poll 3DM for data} 
//  -------------------------------------------------------------------------------- 
                                        // Note: ** Indicates debugging code 
   Sleep(0);                            // Initialize timer 
   count = 0;                           // ** Initialize missed timing slot counter 
   if (value >= 56) {value = 48;}       // ** Reset sample counter to ASCII value for '0' 
    
   TSerPutByte (13,144);                // Poll(inquiry) 3dm for data output 
    
   SendAtoD (&AtoD3DM);                 // Read and Send 16 bytes of AtoD data 
   Send3DM (&threeDM);                  // Send 12 bytes of 3dM data 
   SendGPS();                           // Send 31 bytes of GPS data if available 
   sample += 1;                         // ** Increment sample counter for testing 
   value += 1;                          // ** Increment value counter for test data 
 
  printf("\nPWMcmds_from_uplink status = %d\n", PWMcmds_from_uplink(servo_cmd)); 
//  printf("\nPWMcmds_from_TPU3 status = %d\n", PWMcmds_from_TPU3(servo_cmd)); 
 
   // TPUChangePWM(PWM_default_hi, PWM_default_per, 2*PWM_default_hi, PWM_default_per, 
3*PWM_default_hi, PWM_default_per, 4*PWM_default_hi, PWM_default_per);    
   TPUChangePWM(servo_cmd[0],servo_cmd[1], servo_cmd[2], servo_cmd[3],servo_cmd[4], 
servo_cmd[5],servo_cmd[6], servo_cmd[7]); 
   
 
   onTime = Sleep (1000);               // Sleep until 25 ms is over (40 = 1 ms) 
   if (!onTime) { count += 1; }         // ** Update missed timing slot statistics 
    
 
//  -------------------------------------------------------------------------------- 
//    2nd Minor Timing Cycle @ 40Hz  -->  {Send AtoD, send 3DM, send GPS data} 
//  -------------------------------------------------------------------------------- 
    
   // StopWatchStart();                 // ** Begin timing of Segment 
   SendAtoD(&AtoD3DM);                  // Read and Send 16 bytes of AtoD data 
   Read3DM (&threeDM);                  // Read and store 12 bytes of 3DM data 
   Send3DM (&threeDM);                  // Send 12 bytes of 3dM data 
   SendGPSAtoD();                       // Send 18 bytes of GPS Tattletale AtoD data if 
available 
   // time = StopWatchTime();           // ** End timing of segment 
 
   sample += 1;                         // ** Increment sample counter for testing 
   value += 1;                          // ** Increment value counter for test data 
      
   onTime = Sleep (1000);               // Sleep until 25 ms is over (40 = 1 ms) 
   if (!onTime) { count += 1; }         // ** Update missed timing slot statistics 
    
    
//  -------------------------------------------------------------------------------- 
//    3rd Minor Timing Cycle @ 40Hz  -->  {Send AtoD, send 3DM, poll 3DM for data} 
//  -------------------------------------------------------------------------------- 
    
   TSerPutByte (13,144);                // Poll(inquiry) 3dm for data output 
    
    
   SendAtoD (&AtoD3DM);                 // Read and Send 16 bytes of AtoD data 
#ifdef  TESTMODE 
   Send3DMTest (103 - value);         // Simulate 12 bytes from 3dM (ASCII '9'-'0')   
#else 
   Send3DM (&threeDM);                  // Send 12 bytes of 3dM data 
#endif 
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   SendGPS();                           // Send 31 bytes of GPS data if available 
   
   sample += 1;                         // ** Increment sample counter for testing 
   value += 1;                          // ** Increment value counter for test data 
    
   onTime = Sleep (1000);               // Sleep until 25 ms is over (40 = 1 ms) 
   if (!onTime) { count += 1; }         // ** Update missed timing slot statistics 
    
 
//  -------------------------------------------------------------------------------- 
//    4th Minor Timing Cycle @ 40Hz  -->  {Send AtoD data, send 3DM data} 
//  -------------------------------------------------------------------------------- 
 
   SendAtoD (&AtoD3DM);                 // Read and Send 16 bytes of AtoD data 
   Read3DM (&threeDM); 
#ifdef  TESTMODE 
   Send3DMTest (103 - value);         // Simulate 12 bytes from 3dM (ASCII '9'-'0')   
#else 
   Send3DM (&threeDM);                  // Send 12 bytes of 3dM data 
#endif 
   SendGPSAtoD();                       // Send 18 bytes of GPS Tattletale AtoD data if 
available 
 
   sample += 1;                         // ** Increment sample counter for testing 
   value += 1;                          // ** Increment value counter for test data 
   missed += count;                     // ** Total missed timing slot count 
   runningTime += time;                 // ** Total simulation time 
 
   onTime = Sleep (1000);               // Sleep until 25 ms is over (40 = 1 ms) 
   if (!onTime) { count += 1; }         // ** Update missed timing slot statistics 
 
 
//  -------------------------------------------------------------------------------- 
 
/*   
// Output real time troubleshooting data 
   sprintf(timeStr," T%lu B%d   ",status,TSerByteAvail(1)); 
    for (i = 0;i <10; i++){ 
        SerPutByte (((int)timeStr[i])); 
    } 
   SerPutByte(13);                  //  Carriage Return & Line Feed 
   SerPutByte(10); 
*/ 
} while(1);                         // Infinite loop 
 
  
 //************************************************************************************** 
 //  ---------------    Output Timing Statistics and Download Options ------------------- 
 //  Output timing statistics.  This portion of the code will never be reached during 
 //  normal program execution. 
 //************************************************************************************** 
  
 missedPercent = (float)missed/(float)sample*100; 
 printf("\n# Samples: %ld, # Misses: %ld,  Percent Misses: ,%5.3f, Ave Parse Time: %5.3f, 
\n", 
    sample, missed, missedPercent,(float)runningTime/(float)sample*4); 
 SerPutByte (13);                        // Carriage Return & Line Feed 
 SerPutByte (10); 
 
/* 
if (QueryYesNo("\nOffload the data?", TRUE)){ 
   printf("\nStarting XMODEM transfer ... "); 
   fflush(stdout); 
   xerr = XmodemSendMem(valuePtr, SAMPLES * sizeof(long), 30); 
   printf("  Complete [%d]\n", xerr); 
} 
*/  
  
 SerInFlush(); 
 SerSetBaud(9600,0); 
 ResetToMon(); 
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 return (0); 
} 
 
 
/******************************************************************************* 
** TPUSetupPWM   Setup TPU channel for Pulse-Width Modulation 
**  
** Notes: 
**  pwmper = period in tcr1 cycles [call TPUGetTCR1() for current value] 
**  pwmhi = time high in tcr1 cycles 
**  priority = LowPrior, MiddlePrior, or HighPrior [defined in tpu.h] 
**  read about value limitations in the TPU Reference Manual 
*******************************************************************************/ 
 
 
void TPUSetupPWM(short pwmhi1, short pwmper1, short pwmhi2, short pwmper2, short pwmhi3, 
short pwmper3, short pwmhi4, short pwmper4) 
 { 
 
    /* declarations */ 
    ulong   tcr1; 
 
 
 TPUSetPin(PWMChan1, 1);             /*  Configure Pins into Prpoer I/O State  */ 
 TPUSetPin(PWMChan2, 1); 
    TPUSetPin(PWMChan3, 1); 
    TPUSetPin(PWMChan4, 1); 
     
    tcr1 = TPUGetTCR1();                /*  Get Current Clock Frequencey */ 
     
 *CIER &= ~(1 << PWMChan1);    /* don't want interrupts 
enabled for Chan# */ 
    *CIER &= ~(1 << PWMChan2); 
    *CIER &= ~(1 << PWMChan3); 
    *CIER &= ~(1 << PWMChan4); 
 
 
 FUNSEL(PWMChan1, PWM);     /* configure PWMChan# for PWM 
mode */ 
    FUNSEL(PWMChan2, PWM); 
    FUNSEL(PWMChan3, PWM); 
    FUNSEL(PWMChan4, PWM); 
 
                           /* configure first 4 bytes of PWMRAM for PWMChan#  */ 
 PRAM[PWMChan1][0] = OutputChan | NoChangePAC | (pwmhi1 ? ForceHigh : ForceLow);  
 PRAM[PWMChan2][0] = OutputChan | NoChangePAC | (pwmhi2 ? ForceHigh : ForceLow);  
 PRAM[PWMChan3][0] = OutputChan | NoChangePAC | (pwmhi3 ? ForceHigh : ForceLow);  
 PRAM[PWMChan4][0] = OutputChan | NoChangePAC | (pwmhi4 ? ForceHigh : ForceLow);  
 
 
    /*  Convert Period & Time Hi input from usec to tcr1 ticks */ 
 
    pwmper1 = (float) tcr1 * (float) pwmper1 / 1e6; 
 pwmhi1  = (float) tcr1 * (float) pwmhi1 / 1e6; 
    pwmper2 = (float) tcr1 * (float) pwmper2 / 1e6; 
 pwmhi2  = (float) tcr1 * (float) pwmhi2 / 1e6; 
    pwmper3 = (float) tcr1 * (float) pwmper3 / 1e6; 
 pwmhi3  = (float) tcr1 * (float) pwmhi3 / 1e6; 
    pwmper4 = (float) tcr1 * (float) pwmper4 / 1e6; 
 pwmhi4  = (float) tcr1 * (float) pwmhi4 / 1e6; 
 
     
    /*  Write pulse width and period to PWM RAM */ 
 
    PRAM[PWMChan1][2] = pwmhi1;    /* time hi for PWMChan#  */ 
 PRAM[PWMChan1][3] = pwmper1;    /* period for PWMChan#   */ 
    PRAM[PWMChan2][2] = pwmhi2; 
    PRAM[PWMChan2][3] = pwmper2; 
    PRAM[PWMChan3][2] = pwmhi3; 
    PRAM[PWMChan3][3] = pwmper3; 
    PRAM[PWMChan4][2] = pwmhi4; 
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    PRAM[PWMChan4][3] = pwmper4; 
 
  
    HOSTSERVREQ(PWMChan1, 2);    /* initiate PWMChan1 */ 
 HOSTSERVREQ(PWMChan2, 2); 
    HOSTSERVREQ(PWMChan3, 2); 
 HOSTSERVREQ(PWMChan4, 2); 
 
 
    while (HOSTSERVSTAT(PWMChan1) & 3);  /* await reply */ 
 while (HOSTSERVSTAT(PWMChan2) & 3);  /* await reply */ 
    while (HOSTSERVSTAT(PWMChan3) & 3);  /* await reply */ 
    while (HOSTSERVSTAT(PWMChan4) & 3);  /* await reply */ 
 
 
 
 } /* TPUSetupPWM() */ 
 
 
 
 
 
/******************************************************************************* 
** TPUChangePWM  Change PWM values for initiated TPU channel 
**  
** Notes: 
**  pwmper = period in tcr1 cycles  
**  pwmhi = time high in tcr1 cycles 
*******************************************************************************/ 
 
 
void TPUChangePWM(short pwmhi1, short pwmper1, short pwmhi2, short pwmper2, short pwmhi3, 
short pwmper3, short pwmhi4, short pwmper4) 
 { 
 
    /* declarations */ 
    ulong   tcr1; 
 
 
    /*  Get Current Clock Frequencey */ 
    tcr1 = TPUGetTCR1();                 
 
    /*  Convert Period & Time Hi input from usec to tcr1 ticks */ 
 
    pwmper1 = (float) tcr1 * (float) pwmper1 / 1e6; 
 pwmhi1  = (float) tcr1 * (float) pwmhi1 / 1e6; 
    pwmper2 = (float) tcr1 * (float) pwmper2 / 1e6; 
 pwmhi2  = (float) tcr1 * (float) pwmhi2 / 1e6; 
    pwmper3 = (float) tcr1 * (float) pwmper3 / 1e6; 
 pwmhi3  = (float) tcr1 * (float) pwmhi3 / 1e6; 
    pwmper4 = (float) tcr1 * (float) pwmper4 / 1e6; 
 pwmhi4  = (float) tcr1 * (float) pwmhi4 / 1e6; 
 
 
    /*  NEED TO DO THIS WRITE COHERENTLY (AS DOUBLE WRITE)  */ 
 
 * (ulong *) &PRAM[PWMChan1][2] = ((ulong) pwmhi1 << 16L) | (ulong) pwmper1; 
 HOSTSERVREQ(PWMChan1, 1);    /* issue immediate update 
request */ 
 while (HOSTSERVSTAT(PWMChan1) & 3)  /* await reply */ 
  ; 
 
    * (ulong *) &PRAM[PWMChan2][2] = ((ulong) pwmhi2 << 16L) | (ulong) pwmper2; 
 HOSTSERVREQ(PWMChan2, 1);     
 while (HOSTSERVSTAT(PWMChan2) & 3)   
  ; 
 
    * (ulong *) &PRAM[PWMChan3][2] = ((ulong) pwmhi3 << 16L) | (ulong) pwmper3; 
 HOSTSERVREQ(PWMChan3, 1);     
 while (HOSTSERVSTAT(PWMChan3) & 3)   
  ; 
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    * (ulong *) &PRAM[PWMChan4][2] = ((ulong) pwmhi4 << 16L) | (ulong) pwmper4; 
 HOSTSERVREQ(PWMChan4, 1);     
 while (HOSTSERVSTAT(PWMChan4) & 3)   
  ; 
 
 } /* TPUChangePWM() */ 
 
 
 
int  PWMcmds_from_uplink(short servo_cmd[]) { 
//********************************************************************** 
// 
//  This is a function to decode an array of 8 short integers from serial 
//  data collected in the Serial Port 1 buffer. The 8 short integers are  
//  for use by the TPUChangePWM().  
//   
//********************************************************************** 
 
 
    short   w_high, w_low; 
    uchar    last_byte=0, curr_byte = 0; 
    short   k; 
    int  header_found = 0; 
    int     i,j, NumBytes; 
 
//  1. Specify default servo_cmd if first entry 
 
    if (first_frame_a == 0)  
    {   for (i=0; i<PWM_word_length; i++) 
        {   last_servo_cmd[2*i] = (i+1)*1520; 
            last_servo_cmd[2*i+1] =14250;  
            first_frame_a = 1; 
        } 
    } 
 
  
 
 
// 2. Will read all serial bytes that arrive by this time.  
//     Leave bytes arriving later in the Serial Buffer  
 
 
//  3. Search for Header  
    
    if (SerByteAvail()!=0)  
    {      
        last_byte = SerGetByte(); 
  
        while (SerByteAvail() != 0) 
        {   printf("\nSerByteAvail"); 
            curr_byte = SerGetByte();  
            printf(" Current Byte = %x(x), %u(u)", curr_byte, curr_byte); 
   
            if (last_byte == 255 && curr_byte == 255)  
            { header_found = 1;  
            break; } 
            else {last_byte = curr_byte;} 
    } 
     
 
//  4.  If header was found, compile the servo commands into short int array 
 if (header_found == 1)     
    {   printf("\nHeader found"); 
        for ( i=0; i<PWM_word_length; i++)   
        { 
       w_low = (short) SerGetByte(); 
        w_high =  (short) SerGetByte(); 
       k = 256*w_high + w_low; 
      last_servo_cmd[i] = k; 
         SerInFlush(); 
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  } /* end for loop */ 
    } 
 
 
    } // endif NumBytes != 0 
  
//  5.  Make servo_cmd[] equal latest if new cmds was received. Otherwise, last cmds 
used. 
    for (j=0;j<PWM_word_length;j++) 
    { 
        servo_cmd[j] = last_servo_cmd[j];    
    } 
  
    printf("\nServo Hi 1 = %u,  Servo Period 1 = %u",servo_cmd[0],servo_cmd[1]); 
    return 5; 
 
 
} /* PWMcmds_from_uplink */ 
 
 
int  PWMcmds_from_TPU3(short servo_cmd[]) { 
//********************************************************************** 
// 
//  This is a function to decode an array of 8 short integers from serial 
//  data collected in the Serial Port 1 buffer. The 8 short integers are  
//  for use by the TPUChangePWM().  
//   
//********************************************************************** 
 
 
    short   w_high, w_low, k; 
    char    last_byte=0, curr_byte = 0; 
    int  header_found = 0; 
    int     i,j, NumBytes; 
 
//  1. Specify default servo_cmd if first entry 
 
    if (first_frame_a == 0)  
    {   for (i=0; i<PWM_word_length; i++) 
        {   last_servo_cmd[2*i] = (i+1)*1520; 
            last_servo_cmd[2*i+1] =14250;  
        } 
    } 
        
 
// 2. Will read all serial bytes that arrive by this time.  
//     Leave bytes arriving later in the Serial Buffer  
 
    NumBytes = TSerByteAvail(3);       
 
    printf("\nPass Stage 2. NumBytes Avail = %d",NumBytes); 
 
 
//  3. Search for Header  
    
    if (NumBytes !=0) {     // do only if there are data in buffer, otherwise SerGetByte 
                            // will wait till char is received in buffer 
     
        last_byte = TSerGetByte(3); 
        NumBytes -= 1; 
 
  
        while (NumBytes != 0) 
        {    
            curr_byte = TSerGetByte(3);  
            NumBytes -= 1; 
            if (last_byte == Header_byte && curr_byte == Header_byte)  
            { header_found = 1;  
            break; } 
        last_byte = curr_byte; 
    } 
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//  4.  If header was found, compile the servo commands into short int array 
 if (header_found == 1)     
    {   for ( i=0; i<PWM_word_length; i++)   
        { 
       w_high = TSerGetByte(3); 
        w_low =  TSerGetByte(3); 
       k = 256*w_high + w_low; 
      last_servo_cmd[i] = k;     
  } /* end for loop */ 
    } 
 
 
    } // endif NumBytes != 0 
  
//  5.  Make servo_cmd[] equal latest if new cmds was received. Otherwise, last cmds 
used. 
    for (j=0;j<PWM_word_length;j++) 
    { 
        servo_cmd[j] = last_servo_cmd[j];    
    } 
 
    printf("\nServo Hi 1 = %u,  Servo Period 1 = %u",servo_cmd[0],servo_cmd[1]); 
    return 5; 
 
 
} /* PWMcmds_from_TPU3 */ 
 
B. 3DMIO.H 
//********************************************************************** 
// 
//  Filename:       3DMio.h 
//  Description:    3DM Tattltetale Input and Output Routines. 
//  Purpose:        Read and Send 3DM and AtoD data 
//  Data:           13 May, 2001 
//  Programmer:     LT Matt B. Commerford 
// 
//********************************************************************** 
 
#include "data3DM.h" 
#include "AtoDdata.h" 
 
 
int SendAtoD (struct AtoDdata *AtoD) { 
//********************************************************************** 
//  This function reads all 8 A to D channels on the Tattletale and   
//  outputs them on the primary serial port.   
//********************************************************************** 
    
   int i = 0; 
   char *ptrTemp; 
   ptrTemp = (char*)AtoD;       // Cast AtoDdata pointer to character so  
                                // each individual byte can be addressed 
    
   // Read A to D Converter Channels 0 - 7; 
   AtoD->ch0 = AtoDReadWord(0); 
   AtoD->ch1 = AtoDReadWord(1); 
   AtoD->ch2 = AtoDReadWord(2);             // Note:  Hardware Rate Sensors for p & q are 
wired backwards 
   AtoD->ch3 = AtoDReadWord(3);             // Channel 2 and 3 are reversed again in 
right order because of Jerry ask 07/30/01 -Vlad 
//   AtoD->ch2 = AtoDReadWord(3);    // Note:  Hardware Rate Sensors for p & q are wired 
backwards 
//   AtoD->ch3 = AtoDReadWord(2);    // Channel 2 and 3 are reversed in software to 
correct problem 
   AtoD->ch4 = AtoDReadWord(4); 
   AtoD->ch5 = AtoDReadWord(5); 
   AtoD->ch6 = AtoDReadWord(6); 
   AtoD->ch7 = AtoDReadWord(7); 
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   SerPutByte (255);            //  AtoD header byte (0xFF) 
   SerPutByte (255);            //  AtoD header byte (0xFF) 
    
   for (i = 0; i < 16; i++) { 
      SerPutByte (ptrTemp[i]);  //  Output AtoD data 
   } 
    
   return 1; 
} 
 
 
 
int SendAtoDTest (struct AtoDdata *AtoD,short value) { 
//********************************************************************** 
//  This is a function to output test A to D data. The function accepts  
//  an integer value as the least significant byte on each A to D channel 
//  and outputs them on the primary serial port.  A to D  
//  channels are actually read first to simulate timing requiremnts.  
//  The primary purpose is for troubleshooting the output of the code. 
//********************************************************************** 
    
   int i = 0; 
   char *ptrTemp; 
   ptrTemp = (char*)AtoD;        // Cast AtoDdata pointer to character so  
                                 // each individual byte can be addressed 
    
   // Read A to D Converter Channels 0 - 7; 
   AtoD->ch0 = AtoDReadWord(0); 
   AtoD->ch1 = AtoDReadWord(1); 
   AtoD->ch2 = AtoDReadWord(2); 
   AtoD->ch3 = AtoDReadWord(3); 
   AtoD->ch4 = AtoDReadWord(4); 
   AtoD->ch5 = AtoDReadWord(5); 
   AtoD->ch6 = AtoDReadWord(6); 
   AtoD->ch7 = AtoDReadWord(7); 
    
   // Test Values to ensure propper transmission. 
   AtoD->ch0 = value; 
   AtoD->ch1 = value; 
   AtoD->ch2 = value; 
   AtoD->ch3 = value; 
   AtoD->ch4 = value; 
   AtoD->ch5 = value; 
   AtoD->ch6 = value; 
   AtoD->ch7 = value; 
    
    
   SerPutByte (255);         //  AtoD header byte (0xFF) 
   SerPutByte (255);         //  AtoD header byte (0xFF) 
    
   for (i = 0; i < 16; i++) { 
      SerPutByte (ptrTemp[i]);   //  Output AtoD data. 
   } 
    
   return 1; 
} 
 
 
int Read3DM (struct data3DM* threeDM) { 
//********************************************************************** 
//  This is a function to receive 3dm data. The function first reads the  
//  diagnostic byte.  65 indicates valid data.  If data is valid two 
//  bytes are read for each of the 6 3DM channels (Hx, Hy, Hz, Ax, Ay, Az). 
//  Input is on the secondary serial port (TPU 14) 
//********************************************************************** 
    
   int i = 0; 
   unsigned int temp[12]; 
    
   //  Check diagnostic byte:  41h if valid.  6Xh if error where X is error code 
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   if (TSerByteAvail(14) >= 13) { 
      if (TSerGetByte(14) == 65) { 
         //  Read in the 12 bytes in the buffer from the 3DM 
         for (i = 0; i < 12; i++) { 
            temp[i] = TSerGetByte(14); 
            // TSerInFlush(14);                    // Empty input Buffer 
         } 
          
         threeDM->Hx = (short)(256*temp[0] + temp[1]);    // MSB, LSB 
         threeDM->Hy = (short)(256*temp[2] + temp[3]);    // MSB, LSB 
         threeDM->Hz = (short)(256*temp[4] + temp[5]);    // MSB, LSB 
         threeDM->Ax = (short)(256*temp[6] + temp[7]);    // MSB, LSB 
         threeDM->Ay = (short)(256*temp[8] + temp[9]);    // MSB, LSB 
         threeDM->Az = (short)(256*temp[10] + temp[11]);  // MSB, LSB 
          
         return 1;               // Return after successful completion 
      } 
   } 
    
   TSerInFlush(14); 
 
   return 0;                     // Return after error code 
} 
 
 
 
int Send3DM (struct data3DM* threeDM) { 
//********************************************************************** 
//  This is a function to send 3dm data. The function outputs two 
//  bytes for each of the 6 3DM channels (Hx, Hy, Hz, Ax, Ay, Az).   
//  Output is on the primary serial port. 
//**********************************************************************     
   int i = 0; 
   char *ptrTemp; 
   ptrTemp = (char*)threeDM;     // Cast data3DM pointer to character pointer 
                                 // so each individual byte can be addressed 
    
   for (i = 0; i < 12; i++){ 
      SerPutByte(ptrTemp[i]);    // Output 12 bytes of 3DM data 
   } 
    
   return 1; 
}  
 
 
 
int Send3DMTest (short value) { 
//********************************************************************** 
//  This is a function to output test 3dm data. The function accepts  
//  an integer value as the least significant byte on each of the  
//  6 channels (Hx, Hy, Hz, Ax, Ay, Az) and outputs them on the  
//  primary serial port. The primary purpose of the function is for  
//  troubleshooting the output of the code. 
//********************************************************************** 
    
   int i = 0; 
    
   // Test Values to ensure propper transmission. 
   SerPutByte(00); 
   SerPutByte(value); 
   SerPutByte(00); 
   SerPutByte(value); 
   SerPutByte(00); 
   SerPutByte(value); 
   SerPutByte(00); 
   SerPutByte(value); 
   SerPutByte(00); 
   SerPutByte(value); 
   SerPutByte(00); 
   SerPutByte(value); 
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   return 1; 
}  
 
 
int SendGPS () { 
//********************************************************************** 
//  This function reads in data on TPU line 1 from the GPS tattletale and 
//  retransmitts it out the primary serial port. 
//********************************************************************** 
    
   int i = 0; 
    
   if (TSerByteAvail(1) >= 310) { // Flush the buffer if over 1 second of data present 
      TSerInFlush(1); 
   } 
    
   if (TSerByteAvail(1) >= 31) {  // Check for complete GPS message of 31 bytes 
      for (i = 0; i < 31; i++ ) { 
         SerPutByte(TSerGetByte(1)); 
      } 
      SerPutByte(13); 
      SerPutByte(10); 
       
      return 1;                  // Return after successful transmission 
   } 
    
   return 0;                     // Return after not enough bytes available 
}  
 
 
int SendGPSAtoD () { 
//********************************************************************** 
//  This function reads in AtoD data on TPU line 2(it's supposed to be 8) from the GPS 
tattletale and 
//  retransmitts it out the primary serial port. 
//********************************************************************** 
    
   int i = 0; 
    
   if (TSerByteAvail(8) >= 180) {  // Flush the buffer if over 1 second of data present 
      TSerInFlush(8); 
   } 
    
   if (TSerByteAvail(8) >= 18) {  // Check for complete GPS AtoD message of 18 bytes 
      for (i = 0; i < 18; i++ ) { 
         SerPutByte(TSerGetByte(8)); 
      } 
      SerPutByte(13); 
      SerPutByte(10); 
       
      return 1;                  // Return after successful transmission 
   } 
   
   return 0;                     // Return after not enough bytes available 
}  
 
C. DATA3DM.H 
//********************************************************************** 
// 
//  Filename       data3DM.h 
//  Description:   3DM Data Structure 
//  Purpose:       Structure to group all 3DM data into single data type 
//  Data:          13 May, 2001 
//  Programmer:    LT Matt B. Commerford 
// 
//********************************************************************** 
 
#if defined (__DATA3DM_H) 
   //    Avoid multiple header inclusions 
#else 
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#define __DATA3DM_H 
 
struct data3DM { 
    
   short Hx;         // two bytes for X magnetic vector 
   short Hy;         // two bytes for Y magnetic vector 
   short Hz;         // two bytes for Z magnetic vector 
   short Ax;         // two bytes for X acceleration 
   short Ay;         // two bytes for Y acceleration 
   short Az;         // two bytes for Z acceleration 
 
}; 
#endif 
 

D. PWM.H 
//********************************************************************** 
// 
//  Filename       PWM.h 
//  Description:   PWM Command functions 
//  Purpose:       Functions to set PWM output from TT8 TPU 
//  Data:          Sep 2001 
//  Programmer:    Bock Aeng Lim 
// 
//********************************************************************** 
 

 
/* Definitions for putting PWM waveform onto TPU(4)-(7) */ 
#define  PWMChan1 4 
#define  PWMChan2 5 
#define  PWMChan3 6 
#define  PWMChan4 7 
 
 
/* PSC Pin State Control */ 
#define   ForceByPAC  0x00 
#define   ForceHigh  0x01 
#define   ForceLow  0x02 
#define   NoForceState 0x03 
 
/* PAC Pin Action Control (Inputs) */ 
#define   NoTranDet  0x00 
#define   DetRising  0x04 
#define   DetFalling  0x08 
#define   DetEither  0x0c 
#define   NoChangePAC  0x10 
 
/* PAC Pin Action Control (Outputs) */ 
#define   NoChangematch 0x00 
#define   HighOnMatch  0x04 
#define   LowOnMatch  0x08 
#define   ToggleOnMatch 0x0c 
 
/* TBS Time Base/Directionality Control */ 
#define   InputChan  0x00 
#define   OutputChan  0x80 
#define   Cap1Match1  0x00 
#define   Cap1Match2  0x20 
#define   Cap2Match1  0x40 
#define   Cap2Match2  0x60 
#define   NoChangeTBS  0x100 
 
/* Definitions for Decoding Serial Data from TPU(9) */ 
// #define     NULL            0; 
#define     Header_byte     255 
#define     PWM_byte_length 16 
#define     PWM_word_length 8 
#define     PWM_default_hi  1520; 
#define     PWM_default_per 14250; 
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E. GPS TATTLETALE OPERATING CODE 
/*--------------------------------------------------------------------------------*/ 
/*  GPS Tattletale Operating System                  */ 
/*  Primary function: GPS Serial Data Parsing    */ 
/*  Secondary function:  Timing of A/D collection and transmission */ 
/*  April 23, 2001                                            */ 
/*  Filename: GPSTT.c       */ 
/*--------------------------------------------------------------------------------*/ 
#include <TT8.h>  /* Tattletale Model 8 Definitions */ 
#include <tt8lib.h>  /* for TT8 functions */ 
#include <tat332.h>  /* 68332 Hardware Definitions */ 
#include <tpu332.h>     /* 68332 Time Processing Unit Definitions */ 
#include <sim332.h>     /* 68332 System Integration Module Definitions */  // Do I need? 
#include <qsm332.h>     /* 68332 Queued Serial Module Definitions */       // Do I need? 
#include <dio332.h>     /* 69332 Digital I/O Port Pin Definitions */       // Do I need? 
#include <stdlib.h>  /* for malloc */ 
#include <stdio.h>  /* for printf() */ 
#include <userio.h>  /* for prompts */ 
#include <string.h>  /* for sting comparison */ 
#include "GPSparse.h" // for parseGGA, parseRMC,  & parseVTG functions  
#include "GPSio.h"  // for printGPS and sendGPS functions 
#include "GPSdata.h" // for GPSdata structure definition  
#include "AtoDdata.h"   // for AtoDdata sturcture definition  
 
#define TSerInQBytes TSerByteAvail /* return number of bytes in input queue */ 
#define TSerOutQBytes TSerByteAvail /* return number of bytes in output queue */ 
//uchar       /* pointer to the start of the queue 
data buffer */ 
// TSerGetQueue(    /* return low level queue information */ 
//  int  chan,   /* TPU channel, 0..15 */ 
//  int  *head,   /* index into queue for first 
character */ 
//  int  *tail,   /* index into queue for last 
character -1 */ 
//  int  *size);   /* size of queue for wrap 
manipulation */ 
 
 
#define SAMPLERATE  40                 //  Main sample frequency 40 Hz        
#define SLEEPCOUNT  40000/SAMPLERATE/2  //  Sleep count in of Hertz rate (SAMPLERATE)             
#define QSIZE  8     //  Must be a power of 2 
{2,4,8,16,32...} 
#define TSBUFSIZE 128              //  Must be 2^QSIZE 
 
int parseGGA (struct GPSdata*);              // parseGGA function prototype 
int parseRMC (struct GPSdata*);              // parseRMC function prototype 
int parseVTG (struct GPSdata*);                 // parseVTG function prototype 
int TprintGPS (const struct GPSdata* const);    // TprintGPS function prototype 
int TsendGPS  (const struct GPSdata* const);    // TsendGPS function prototype 
int TsendAtoD (struct AtoDdata*);             // TsendAtoD function prototype  
int TsendAtoDTest (struct AtoDdata*, short);    // TsendAtoDTest function prototype  
int Tsend3dmTest (short value);                 // Tsend3dmTest function prototype 
 
main (){ 
 
 XmdmErr  xerr;               // Xmodem error code 
 ulong baud;                        // baud rate 
 ulong time = 0;        // Current clock tick rate 
 ulong sample = 0;      // Timing Statistucs 
 ulong runningTime = 0;             // Timing Statistics 
 ulong missed = 0;                  // Timing Statistics 
 float missedPercent = 0;           // Timing Statistics 
 long *valuePtr;     // Pointer to stored values  
 char timeStr[40];                  // Timing Statistics 
 short OnTime;      // Test for timeslice overrun  
 short value = 48;                  // ASCII value for '0' --> to be used in testing 
 int onTime = 1;                    // Timing Statistics 
 int i = 0;      
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 int count = 0;   
 int status; 
 void *serBufPtr = NULL; 
 void *inBufPtr = NULL; 
 void *outBufPtr = NULL; 
 struct GPSdata GPS = {11,22,33,4,55,66,777777,888,99,000000,1,22,33,44,5,66,7,88,9};
   
 struct GPSdata emptyGPS = {11,22,33,4,55,66,777777,888,99,000000,1,22,33,44,5,66,7,88,9} 
;   
 
 struct AtoDdata TTAtoD; 
 
  
 InitTT8(NO_WATCHDOG,TT8_TPU);      // Initialize the Model 8  
 
 
//  --------------- Set up Memory Buffers for Serial Input and Output ----------------
-- 
 serBufPtr = malloc(4096);       //  Console 
(Primary) Serial Buffer 
  if (serBufPtr == NULL) printf("\nBuffer Memory Allocation Failed\n"); 
  if (serBufPtr != NULL) printf("bufferPtr Memory O.K.\n"); 
 
 inBufPtr = malloc(TSBUFSIZE+TSER_MIN_MEM);   //  TPU(14) Serial In Buffer 
        if (inBufPtr == NULL) printf("inBufPtr too big\n"); 
        if (inBufPtr != NULL) printf("inBufPtr Memory O.K.\n"); 
 
 outBufPtr = malloc(TSBUFSIZE+TSER_MIN_MEM);  //  TPU(13) Serial Output Buffer 
        if (outBufPtr == NULL) printf("outBufPtr too big\n"); 
        if (outBufPtr != NULL) printf("outBufPtr Memory O.K.\n"); 
 
   
//  --------------- Set up Serial Input and Output Parameters ------------------------
-- 
 printf("\nSet BAUD rate to 38400\n"); 
 printf("\nTick Rate is %ld\n",GetTickRate()); 
 printf("\nCurrent System Freq %ld\n",SimGetFSys()); 
 printf("\nSystem Clock is %ld\n",SimGetFSys()); 
 printf("\nBaud Rate is %ld\n",baud); 
 PutStr("\nPreparing to Get GPS data\n"); 
  
 
 Sleep(0);                                      // Initialize timer 
 Sleep(1200);                                   // Sleep 30 ms to allow screen printout  
  
 SimSetFSys(14720000); 
 baud = SerSetBaud(38400,0); 
 SetTickRate(40000); 
 SerSetInBuf (serBufPtr,4096); 
 //TSerOpen(14,LowPrior,0,inBufPtr,TSBUFSIZE,57600,'N',8,1);    // Open Port 14 for 
buffered input 
 TSerOpen(13,HighPrior,1,outBufPtr,QSIZE,57600,'N',8,1);        // Open Port 13 for 
buffered output 
 
 
//  --------------- Attempt to Sync with 1st byte of GPS signal ----------------------
-- 
 SerInFlush ();              // Empty the Serial 
Buffer 
 while (!SerByteAvail()) {};       // Wait until serial byte available 
 Sleep(0);                                  // Initialize timer 
 Sleep(2000);                               // Sleep 50 ms to allow the buffer to fill  
 SerInFlush();                              // Empty Serial Buffer again to ensure next 
                                            // string will be a complete one 
 while (!SerByteAvail()) {};       // Wait until serial byte available 
 Sleep(0);                                  // Initialize timer 
 Sleep(400);                                // Sleep 10 ms to allow the buffer to fill  
 
 
 
 do { 
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  //  ----------------------------------------------------------------------------
---- 
  //   1st Minor Timing Cycle @ 40Hz  -->  {send AtoD data} 
  //  ----------------------------------------------------------------------------
---- 
                                            // Note:  ** Indicates debugging code 
     Sleep(0);                              // Initialize timer 
  count = 0;                             // ** Initialize missed timing block 
counter 
     if (value >= 56) {value = 48;}         // ** Reset sample counter to ASCII value for 
'0' 
     if (sample == 100 ) {missed = 0;}      // ** Reset timing counter.  Measures steady  
                                            // ** state errors after 100 initial samples. 
     TPUSetPin (0,0);      // Clock signal low to 2nd 
Tattletale 
  TPUSetPin (1,0);      // Switch signal low 
to Multiplex Switch 
     TSerPutByte (13,255);     // Header Byte (0xFF) 
  TSerPutByte (13,255);     // Header Byte (0xFF) 
 
     TsendAtoDTest (&TTAtoD,value);         // 16 bytes of Test AtoD (ASCII '0'-'9') 
 
  onTime = Sleep (600);     // Sleep until 15 ms is over 
(40 = 1 ms) 
  if (!onTime) { count += 1; }           // ** Update missed timing slot 
statistics 
 
  //  ----------------------------------------------------------------------------
--- 
     TPUSetPin (0,1);      // Clock signal high to 2nd 
Tattletale 
  TPUSetPin (1,1);      // Switch signal high 
to Multiplex Switch 
     Tsend3dmTest (103 - value);            // ** 12 bytes of Test 3dM (ASCII '9'-'0') 
  
     sample += 1;                           // ** Increment sample counter for testing 
     value += 1;                            // ** Increment test value counter 
 
     onTime = Sleep (400);     // Sleep until 10 ms is over 
(40 = 1 ms) 
  if (!onTime) { count += 1; }           // ** Update missed timing slot 
statistics 
 
 
  //  ----------------------------------------------------------------------------
---- 
  //   2nd Minor Timing Cycle @ 40Hz  -->  {Send AtoD data} 
  //  ----------------------------------------------------------------------------
---- 
    TPUSetPin (0,0);      // Clock signal low 
to 2nd Tattletale 
  TPUSetPin (1,0);      // Switch signal low 
to Multiplex Switch 
 
     TsendAtoDTest (&TTAtoD,value);         // 16 bytes from AtoD (ASCII '0'-'9') 
      
  onTime = Sleep (600);        // Sleep until 15 ms is over (40 
= 1 ms) 
  if (!onTime) { count += 1; }           // Update missed timing slot statistics 
 
 
  //  ----------------------------------------------------------------------------
--- 
     TPUSetPin (0,1);      // Clock signal high to 2nd 
Tattletale 
  TPUSetPin (1,1);      // Switch signal high 
to Multiplex Switch 
     Tsend3dmTest (103 - value);            // ** Send 12 bytes from 3dM (ASCII '9'-'0') 
   
     sample += 1;                           // ** Increment sample counter for testing 
     value += 1;                            // ** Increment test value counter 
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     onTime = Sleep (400);     // Sleep until 10 ms is over 
(40 = 1 ms) 
  if (!onTime) { count += 1; }           // ** Update missed timing slot 
statistics 
 
 
  //  ----------------------------------------------------------------------------
---- 
  //   3rd Minor Timing Cycle @ 40Hz  -->  {Send AtoD data, parse 
GGA & RMC string} 
  //  ----------------------------------------------------------------------------
---- 
   TPUSetPin (0,0);      // Clock signal low 
to 2nd Tattletale 
  TPUSetPin (1,0);      // Switch signal low 
to Multiplex Switch 
 
     TsendAtoDTest (&TTAtoD,value);         // 16 bytes from AtoD (ASCII '0'-'9') 
 
     StopWatchStart(); 
  parseGGA(&GPS);                        // Parse GGA line of GPS data 
  parseRMC(&GPS);                        // Parse RMC line of GPS data 
  time = StopWatchTime(); 
 
  onTime = Sleep (600);     // Sleep until 15 ms is over 
(40 = 1 ms) 
  if (!onTime) { count += 1; }           // ** Update missed timing slot 
statistics 
   
     //  ------------------------------------------------------------------------------- 
  TPUSetPin (0,1);      // Clock signal high 
to 2nd Tattletale 
  TPUSetPin (1,1);      // Switch signal high 
to Multiplex Switch 
     Tsend3dmTest (103 - value);            // ** Send 12 bytes from 3dM (ASCII '9'-'0') 
 
     sample += 1;                           // ** Increment sample counter for testing 
     value += 1;                            // ** Increment test value counter 
 
     onTime = Sleep (400);     // Sleep until 10 ms is over 
(40 = 1 ms) 
  if (!onTime) { count += 1; }           // ** Update missed timing slot 
statistics 
 
 
     //  -------------------------------------------------------------------------------- 
     //   4th Minor Timing Cycle @ 40Hz  -->  {Send AtoD data, send GPS 
data} 
     //  -------------------------------------------------------------------------------- 
  TPUSetPin (0,0);      // Clock signal low 
to 2nd Tattletale 
  TPUSetPin (1,0);      // Switch signal low 
to Multiplex Switch 
 
     TsendAtoDTest (&TTAtoD,value);         // 16 bytes from AtoD (ASCII '0'-'9')   
     TsendGPS (&GPS);                     // Send GPS data out the secondary port (TPU 
13) 
     // Reset GPS value for troubleshooting.  This helps determine where data drops out. 
     GPS = emptyGPS; 
     onTime = Sleep (600);     // Sleep until 15 ms is over 
(40 = 1 ms) 
  if (!onTime) { count += 1; }           // ** Update missed timing slot 
statistics 
 
 
 
    //  --------------------------------------------------------------------------------- 
  TPUSetPin (0,1);      // Clock signal high 
to 2nd Tattletale 
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  TPUSetPin (1,1);      // Switch signal high 
to Multiplex Switch 
     Tsend3dmTest (103 - value);            // Send 12 bytes from 3dM (ASCII '9'-'0') 
 
     sample += 1;                           // ** Increment sample counter for testing 
     value += 1;                            // ** Increment test value counter 
 
//   ** Print out timing diagnostics. 
     sprintf(timeStr," S%4.d T%4.d",SerByteAvail(),TSerByteAvail(13)); 
  for (i = 0;i <12; i++){ 
    TSerPutByte (13, ((int)timeStr[i])); 
  } 
  TSerPutByte(13,13);                        //  Carriage Return & Line Feed  
  TSerPutByte(13,10); 
   
     missed += count; 
  runningTime += time; 
 
     onTime = Sleep (400);      // Sleep until 10 ms 
is over (40 = 1 ms) 
  if (!onTime) { count += 1; } 
 
 } while(sample < 3000);     //!TSerByteAvail(14)); 
 
 
 //  --------------- Output Timing Statistics and Download Options --------------------
---- 
  
 missedPercent = (float)missed/(float)sample*100; 
 sprintf(timeStr,"\n# Samples: %ld, # Misses: %ld,  Percent Misses: ,%5.3f, Ave Parse 
Time: %5.3f, \n", 
 sample, missed, missedPercent,(float)runningTime/(float)sample); 
 for (i = 0;i <80; i++){ 
  TSerPutByte (13, ((int)timeStr[i])); 
 } 
     TSerPutByte (13,13);      // Carriage Return & 
Line Feed 
  TSerPutByte (13,10);       
 
 printf("\nFinished with GPS data..."); 
 SerInFlush(); 
 SerSetBaud(9600,0); 
 ResetToMon(); 
 return(0); 
} 
 
 
F. GPSPARSE.H 
//********************************************************************** 
// 
// Filename:  GPSparse.h 
// Description: GPS $GGGGA Parsing Routine. 
// Purpose:  Routine to parse the GGA line of the GPS data 
// Data:   21 April, 2001 
// Programmer:  LT Matt B. Commerford 
// 
//********************************************************************** 
 
#include "GPSdata.h" 
 
int parseGGA (struct GPSdata *ptrGPS) { 
  
 int success = 1; 
 char temp[100]; 
 int i = 0; 
 int j = 0; 
 int gamma = 0 - (int)'0'; // Correction factor between ASCII and binary 
values; 
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 // ------------------------ Get GPS String Header --------------------------- 
 while (SerGetByte() != '$') {} // Find start of a string $ 
 j = 0; 
 do { 
  temp[j] = SerGetByte(); 
 } while (temp[j++] != ','); 
 temp[j] = '\0';     // NULL terminate the string 
 
    if (!strcmp(temp,"GPGGA")) {  // Procces GGA line else return 
        //  Print out error message. 
        sprintf(temp,"\nReturn from parseGGA\n"); 
        for (i = 0;i <12; i++){ 
            TSerPutByte (13, ((int)temp[i])); 
        } 
     TSerPutByte(13,13);                 //  Carriage Return & Line Feed  
     TSerPutByte(13,10); 
        return (0); 
    } 
 
 
 
 // ------------------------ Get GPS Time stamp ------------------------------ 
 j = 0; 
 do { 
  temp[j] = SerGetByte(); 
 } while (temp[j++] != ','); 
  
 ptrGPS->timeHH = (char)(10*((int)temp[0] + gamma) + ((int)temp[1]+gamma));  // 
Hours 
 ptrGPS->timeMM = (char)(10*((int)temp[2] + gamma) + ((int)temp[3]+gamma));  // 
Minutes 
 ptrGPS->timeSS = (char)(10*((int)temp[4] + gamma) + ((int)temp[5]+gamma));  // 
Seconds 
 ptrGPS->timeDecimalSS = (char)(1*((int)temp[7]+gamma));   
      // Decimal Seconds 
 
 
 // ------------------------ Get Latitude ------------------------------------- 
 j = 0; 
 do { 
  temp[j] = SerGetByte(); 
 } while (temp[j++] != ','); 
 if (j <= 12 ) { 
  temp[j++] = '0'; // Pad trailing zeros in array to ensure 7 decimal 
places 
 }; 
 temp[j] = '\0';   // NULL terminate string  
 
 ptrGPS->latDeg = (char)(10*((int)temp[0] + gamma) + ((int)temp[1]+gamma));    // 
Lat(deg) 
 ptrGPS->latMin = (char)(10*((int)temp[2] + gamma) + ((int)temp[3]+gamma));    // 
Lat(min) 
 ptrGPS->latDecimalMin = atol(&temp[5]);     // 
Converts argument to type long 
 
 
 // ------------------------ Get N/S ----------------------------------------- 
 j = 0; 
 do { 
  temp[j] = SerGetByte(); 
 } while (temp[j++] != ','); 
  
 
 // ------------------------ Get Longitude ------------------------------------ 
 j = 0; 
 do { 
  temp[j] = SerGetByte(); 
 } while (temp[j++] != ','); 
 if (j <= 12 ) { 
  temp[j++] = '0'; // Pad trailing zeros in array to ensure 7 decimal 
places 
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 };  
 temp[j] = '\0';   // NULL terminate string  
 
 ptrGPS->longDeg = (char)(100*((int)temp[0] + gamma) + 10*((int)temp[1]+gamma) + 
  ((int)temp[2] + gamma));      
       // Lat(deg) 
 ptrGPS->longMin = (char)(10*((int)temp[3] + gamma) + ((int)temp[4]+gamma));   // 
Lat(min) 
 ptrGPS->longDecimalMin = atol(&temp[6]);     // 
Converts argument to type long 
  
 
 
 // ------------------------ Get E/W ----------------------------------------- 
 j = 0; 
 do { 
  temp[j] = SerGetByte(); 
 } while (temp[j++] != ','); 
 
 
 // ------------------------ Get DGPS status byte ----------------------------- 
 j = 0; 
 do { 
  temp[j] = SerGetByte(); 
 } while (temp[j++] != ','); 
 ptrGPS->diffGPS = (char)((int)temp[0] + gamma);  
 
 
 while (SerGetByte() != ',') {}; // Discard Number SV 
 while (SerGetByte() != ',') {}; // Discard HDOP 
 
 
 // ------------------------ Get Antenna Height ------------------------------- 
 j = 0; 
 do { 
  temp[j] = SerGetByte(); 
 } while (temp[j++] != '.'); 
 temp[j] = '\0';  // NULL terminate the string 
 ptrGPS->altFeet = atoi(temp);   
  
 j = 0; 
 do { 
  temp[j] = SerGetByte(); 
 } while (temp[j++] != ','); 
 temp[j] = '\0';  // NULL terminate the string 
 ptrGPS->altDecimalFeet = (char)atoi(temp);  
  
 while (SerGetByte() != ',') {}; // Discard 'M' units 
 while (SerGetByte() != ',') {}; // Discard Age of DGPS 
 while (SerGetByte() != '*') {}; // Discard Base Station ID 
 
 
 return success; 
}; 
 
 
 
//********************************************************************** 
// 
// Description: GPS $GGRMC Parsing Routine. 
// Purpose:  Routine to parse the RMC line of the GPS data 
// Data:   21 April, 2001 
// Programmer:  LT Matt B. Commerford 
// 
//********************************************************************** 
 
int parseRMC (struct GPSdata *ptrGPS) { 
 
 int success = 1; 
 char temp[100]; 
 int i = 0; 
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 int j = 0; 
 int gamma = 0 - (int)'0';  // Correction for difference between Binary 
& Ascii 
 
 while (SerGetByte() != '$') {}; // Ensure start of a string $ 
 j = 0; 
 do { 
  temp[j] = SerGetByte(); 
 } while (temp[j++] != ','); 
 temp[j] = '\0';  // NULL terminate the string 
 if (strcmp(temp,"GPRMC")) { // Procces RMC line else return 
 
 // while (SerGetByte() != ',') {}; // Discard GPRC header 
  while (SerGetByte() != ',') {}; // Discard Time 
  while (SerGetByte() != ',') {}; // Discard Status 
  while (SerGetByte() != ',') {}; // Discard Latitude 
  while (SerGetByte() != ',') {}; // Discard Latitude N/S 
  while (SerGetByte() != ',') {}; // Discard Longitude 
  while (SerGetByte() != ',') {}; // Discard Longitude E/W 
 
 
  // ------------------------ Get Ground Speed Line ------------------------
----- 
  j = 0; 
  do { 
   temp[j] = SerGetByte(); 
  } while (temp[j++] != '.'); 
  temp[j] = '\0';  // NULL terminate the string 
  ptrGPS->grndSpeed = atoi(temp);   
 
  j = 0; 
  do { 
   temp[j] = SerGetByte(); 
  } while (temp[j++] != ','); 
  temp[j] = '\0';  // NULL terminate the string 
  ptrGPS->grndSpeedDecimal = (char)atoi(temp); 
 
 
  // ------------------------ Get Ground Track Line ------------------------
------- 
  j = 0; 
  do { 
   temp[j] = SerGetByte(); 
  } while (temp[j++] != '.'); 
  temp[j] = '\0';  // NULL terminate the string 
  ptrGPS->grndTrack = atoi(temp);  
   
  j = 0; 
  do { 
   temp[j] = SerGetByte(); 
  } while (temp[j++] != ','); 
  temp[j] = '\0';  // NULL terminate the string 
  ptrGPS->grndTrackDecimal = (char)atoi(temp); 
 
 
  while (SerGetByte() != ',') {};  // Discard Date Line 
 
 
  // ------------------------ Get Magnetic Variation Line ------------------
-------- 
  j = 0; 
  do { 
   temp[j] = SerGetByte(); 
  } while (temp[j++] != '.'); 
  temp[j] = '\0';  // NULL terminate the string 
  ptrGPS->magVar = atoi(temp);   
 
  j = 0; 
  do { 
   temp[j] = SerGetByte(); 
  } while (temp[j++] != ','); 
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  temp[j] = '\0';  // NULL terminate the string 
  ptrGPS->magVarDecimal = (char)atoi(temp); 
 } 
 
 //   SerInFlush ();   // Empty the Serial Buffer 
 
 return success; 
} 
 
 
 
 
//********************************************************************** 
// 
// Description: GPS $GGRMC Parsing Routine. 
// Purpose:  Routine to parse the RMC line of the GPS data 
// Data:   21 April, 2001 
// Programmer:  LT Matt B. Commerford 
// 
//********************************************************************** 
 
int parseVTG (struct GPSdata *ptrGPS) { 
 
 int success = 1; 
 char temp[100]; 
 int i = 0; 
 int j = 0; 
 int gamma = 0 - (int)'0';  // Correction for difference between Binary 
& Ascii 
 
 while (SerGetByte() != '$') {}; // Ensure start of a string $ 
 j = 0; 
 do { 
  temp[j] = SerGetByte(); 
 } while (temp[j++] != ','); 
 temp[j] = '\0';  // NULL terminate the string 
 if (strcmp(temp,"GPVTG")) { // Procces VTG line else return 
 
 // while (SerGetByte() != ',') {}; // Discard GPRC header 
 // while (SerGetByte() != ',') {}; // Discard Time 
 // while (SerGetByte() != ',') {}; // Discard Status 
 // while (SerGetByte() != ',') {}; // Discard Latitude 
 // while (SerGetByte() != ',') {}; // Discard Latitude N/S 
 // while (SerGetByte() != ',') {}; // Discard Longitude 
 // while (SerGetByte() != ',') {}; // Discard Longitude E/W 
 
 
  // ------------------------ Get Ground Track Line ------------------------
------- 
  j = 0; 
  do { 
   temp[j] = SerGetByte(); 
  } while (temp[j++] != '.'); 
  temp[j] = '\0';  // NULL terminate the string 
  ptrGPS->grndTrack = atoi(temp);  
   
  j = 0; 
  do { 
   temp[j] = SerGetByte(); 
  } while (temp[j++] != ','); 
  temp[j] = '\0';  // NULL terminate the string 
  ptrGPS->grndTrackDecimal = (char)atoi(temp); 
 
        while (SerGetByte() != ',') {}; // Discard "T" for True North 
        while (SerGetByte() != ',') {}; // Discard "," 
        while (SerGetByte() != ',') {}; // Discard "," 
 
         
        // ------------------------ Get Ground Speed Line ----------------------------- 
  j = 0; 
  do { 
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   temp[j] = SerGetByte(); 
  } while (temp[j++] != '.'); 
  temp[j] = '\0';  // NULL terminate the string 
  ptrGPS->grndSpeed = atoi(temp);   
 
  j = 0; 
  do { 
   temp[j] = SerGetByte(); 
  } while (temp[j++] != ','); 
  temp[j] = '\0';  // NULL terminate the string 
  ptrGPS->grndSpeedDecimal = (char)atoi(temp); 
 
 
        // Fake Magnetic Variation Value for compatibility purposes 
        ptrGPS->magVar = 15; 
        ptrGPS->magVarDecimal = 3; 
 
  while (SerGetByte() != ',') {};  // Discard Date Line 
        while (SerGetByte() != ',') {};     // Discard "," 
 
 
 } 
 
//   SerInFlush ();   // Empty the Serial Buffer 
 
 return success; 
} 
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//********************************************************************** 
// 
// Filename:  GPSio.h 
// Description: GPS Input and Output Routines. 
// Purpose:  Print GPS structure data as ASCII or Binary data. 
// Data:   28 April, 2001 
// Programmer:  LT Matt B. Commerford 
// 
//********************************************************************** 
 
#include "GPSdata.h" 
#include "AtoDdata.h" 
 
 
int TprintGPS (const struct GPSdata* const ptrGPS) { 
//********************************************************************** 
//  This function converts the GPSdata structure to an ASCII string using   
//  the sprintf function.  The string is output to the secondary serial  
//  port (TPU 13).  The primary use is to provide a readable output to 
//  be used in troubleshooting the code 
//********************************************************************** 
 
     
    char gpsLine[200]; 
 char gpsLine2[80]; 
 int i = 0; 
 sprintf (gpsLine,"%d:%d:%d.%1.d  %d %d.%ld  %d %d.%ld  %d  %d.%d  ", 
  ptrGPS->timeHH, ptrGPS->timeMM, ptrGPS->timeSS, ptrGPS-
>timeDecimalSS, ptrGPS->latDeg, 
  ptrGPS->latMin, ptrGPS->latDecimalMin, ptrGPS->longDeg, ptrGPS->longMin, 
  ptrGPS->longDecimalMin, ptrGPS->diffGPS, ptrGPS->altFeet, ptrGPS-
>altDecimalFeet); 
 sprintf (gpsLine2,"%d.%d  %d.%d  %d.%.d  %d.%.d\n\0",ptrGPS->grndSpeed, ptrGPS-
>grndSpeedDecimal,  
  ptrGPS->grndTrack, ptrGPS->grndTrackDecimal, ptrGPS->magVar, ptrGPS-
>magVarDecimal); 
 strncat (gpsLine,gpsLine2,30); 
 for (i = 0;i <66; i++){ 
  TSerPutByte (13, ((int)gpsLine[i])); 
 } 
 TSerPutByte(13,13); 
 TSerPutByte(13,10); 
 
 return 1; 
} 
 
 
    
int TsendGPS (const struct GPSdata* const ptrGPS) { 
//********************************************************************** 
//  This function sends the GPSdata structure in binary format to the  
//  secondary serial port (TPU 13).  This is the primary GPS output routine. 
//  The function accepts a pointer to a character array.  In calling this  
//  function the GPSdata structure pointer must be cast to a character  
//  pointer so the bytes in the array can be referrenced individually. 
//  The data stored in the GPSdata structure is not necessarily stored  
//  continuously.  There are gaps in the data because variables in the  
//  structure must be stored on 16 bit word boundaries in the Motorolla  
//  chip.  Thus, there are gaps of meaningless data that are not output 
//  from the program {17, 21, 25, 29}.  
//********************************************************************** 
 
 char *ptrTemp; 
 ptrTemp = (char*)ptrGPS;    // Cast AtoDdata pointer to character so  
                                // each individual byte can be addressed 
 
     
//  TSerPutByte (13,255);     // Header Byte 
//  TSerPutByte (13,255);     // Header Byte 
 
  TSerPutByte(13,(int)ptrTemp[0]);  // GPS.timeHH 
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  TSerPutByte(13,(int)ptrTemp[1]);  // GPS.timeMM 
  TSerPutByte(13,(int)ptrTemp[2]);  // GPS.timeSS 
  TSerPutByte(13,(int)ptrTemp[3]);  // GPS.timeDecimalSS 
 
  TSerPutByte(13,(int)ptrTemp[4]);  // GPS.latDeg 
  TSerPutByte(13,(int)ptrTemp[5]);  // GPS.latMin 
  TSerPutByte(13,(int)ptrTemp[6]);  // GPS.latDecimalMin 
  TSerPutByte(13,(int)ptrTemp[7]); 
  TSerPutByte(13,(int)ptrTemp[8]); 
  TSerPutByte(13,(int)ptrTemp[9]); 
 
  TSerPutByte(13,(int)ptrTemp[10]);  // GPS.longDeg 
  TSerPutByte(13,(int)ptrTemp[11]);  // GPS.longMin  
  TSerPutByte(13,(int)ptrTemp[12]);  // GPS.longDecimalMin  
  TSerPutByte(13,(int)ptrTemp[13]); 
  TSerPutByte(13,(int)ptrTemp[14]); 
  TSerPutByte(13,(int)ptrTemp[15]); 
   
  TSerPutByte(13,(int)ptrTemp[16]);  // GPS.diffGPS 
   
  TSerPutByte(13,(int)ptrTemp[18]);  // GPS.altFeet 
  TSerPutByte(13,(int)ptrTemp[19]); 
   TSerPutByte(13,(int)ptrTemp[20]);   // GPS.altDecimalFeet 
 
  TSerPutByte(13,(int)ptrTemp[22]);   // GPS.grndSpeed 
  TSerPutByte(13,(int)ptrTemp[23]); 
  TSerPutByte(13,(int)ptrTemp[24]);   // GPS.grndSpeedDecimal   
   
  TSerPutByte(13,(int)ptrTemp[26]);   // GPS.grndTrack 
  TSerPutByte(13,(int)ptrTemp[27]); 
  TSerPutByte(13,(int)ptrTemp[28]);   // GPS.grndTrackDecimal  
 
  TSerPutByte(13,(int)ptrTemp[30]);  // GPS.magVar  
  TSerPutByte(13,(int)ptrTemp[31]); 
  TSerPutByte(13,(int)ptrTemp[32]);  // GPS.magVarDecimal 
   
//  TSerPutByte(13,13); 
//  TSerPutByte(13,10); 
 
  return 1; 
 
}; 
 
 
 
int TsendAtoD (struct AtoDdata *TTAtoD) { 
//********************************************************************** 
//  This function reads all 7 A to D channels on the Tattletale and   
//  outputs them on the secondary serial port (TPU 13).   
//********************************************************************** 
 
    int i = 0; 
 char *ptrTemp; 
 ptrTemp = (char*)TTAtoD;    // Cast AtoDdata pointer to character so  
                                // each individual byte can be addressed 
 
 
    // Read A to D Converter Channels 0 - 7; 
    TTAtoD->ch0 = AtoDReadMilliVolts(0); 
 TTAtoD->ch1 = AtoDReadMilliVolts(1); 
 TTAtoD->ch2 = AtoDReadMilliVolts(2); 
 TTAtoD->ch3 = AtoDReadMilliVolts(3);     
 TTAtoD->ch4 = AtoDReadMilliVolts(4); 
 TTAtoD->ch5 = AtoDReadMilliVolts(5); 
 TTAtoD->ch6 = AtoDReadMilliVolts(6); 
 TTAtoD->ch7 = AtoDReadMilliVolts(7); 
      
// TSerPutByte(13,238);        //  AtoD header byte (0xEE) 
// TSerPutByte(13,238);        //  AtoD header byte (0xEE) 
     for (i = 0; i < 16; i++) { 
         TSerPutByte (13,ptrTemp[i]); 
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     } 
// TSerPutByte(13,13);         //  Carriage Return & Line Feed  
// TSerPutByte(13,10); 
  
return 1; 
} 
 
 
 
int TsendAtoDTest (struct AtoDdata *TTAtoD,short value) { 
//********************************************************************** 
//  This is a function to output test A to D data. The function accepts  
//  an integer value as the least significant byte on each A to D channel 
//  and outputs them on the secondary serial port (TPU 13).  A to D  
//  channels are actually read first to simulate timing requiremnts.  
//  The primary purpose is for troubleshooting the output of the code. 
//********************************************************************** 
 
    int i = 0; 
 char *ptrTemp; 
 ptrTemp = (char*)TTAtoD;    // Cast AtoDdata pointer to character so  
                                // each individual byte can be addressed 
 
    // Read A to D Converter Channels 0 - 7; 
    TTAtoD->ch0 = AtoDReadMilliVolts(0); 
 TTAtoD->ch1 = AtoDReadMilliVolts(1); 
 TTAtoD->ch2 = AtoDReadMilliVolts(2); 
 TTAtoD->ch3 = AtoDReadMilliVolts(3);     
 TTAtoD->ch4 = AtoDReadMilliVolts(4); 
 TTAtoD->ch5 = AtoDReadMilliVolts(5); 
 TTAtoD->ch6 = AtoDReadMilliVolts(6); 
 TTAtoD->ch7 = AtoDReadMilliVolts(7); 
      
    //  Test Values to ensure propper transmission. 
 //   value = 0; 
    TTAtoD->ch0 = value; 
    TTAtoD->ch1 = value;     
    TTAtoD->ch2 = value; 
    TTAtoD->ch3 = value; 
    TTAtoD->ch4 = value; 
    TTAtoD->ch5 = value; 
    TTAtoD->ch6 = value; 
    TTAtoD->ch7 = value; 
 
 
// TSerPutByte(13,238);    //  AtoD header byte (0xEE) 
// TSerPutByte(13,238);    //  AtoD header byte (0xEE) 
 
     for (i = 0; i < 16; i++) { 
         TSerPutByte (13,ptrTemp[i]); 
     } 
 
// TSerPutByte(13,13);     //  Carriage Return & Line Feed 
// TSerPutByte(13,10); 
  
return 1; 
} 
 
 
 
int Tsend3dmTest (short value) { 
//********************************************************************** 
//  This is a function to output test 3dm data. The function accepts  
//  an integer value as the least significant byte on each of the  
//  6 channels (Hx, Hy, Hz, Ax, Ay, Az) and outputs them on the  
//  secondary serial port (TPU 13). The primary purpose is for  
//  troubleshooting the output of the code. 
//********************************************************************** 
 
    int i = 0; 
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    //  Test Values to ensure propper transmission. 
   TSerPutByte(13,00); 
 TSerPutByte(13,value); 
 TSerPutByte(13,00); 
 TSerPutByte(13,value); 
 TSerPutByte(13,00); 
 TSerPutByte(13,value); 
 TSerPutByte(13,00); 
 TSerPutByte(13,value + 10); 
 TSerPutByte(13,00); 
 TSerPutByte(13,value + 10); 
 TSerPutByte(13,00); 
 TSerPutByte(13,value + 10); 
 
return 1; 
}  
G. GPSDATA.H 
// File Name: GPSdata.h 
//    Description:    GPS Data Structure 
//    Purpose:        Structure to group all GPS data into a single data type 
//    Data:            21 April, 2001 
//    Programmer:        LT Matt B. Commerford 
// 
//********************************************************************** 
 
#if defined (__GPSDATA_H) 
    //        Avoid multiple header inclusions 
#else 
#define __GPSDATA_H 
 
struct GPSdata { 
         
//  Note:   One byte data represented with CHAR data type 
//          Two byte data represented with INT data type 
//          Four byte data represented with LONG data type 
//          No floating point numbers used.  Conversions are 
//          done after data is transmitted. 
     
    char  timeHH;            // one byte of Hours 
    char  timeMM;            // one byte of Minutes 
    char  timeSS;            // one byte of Seconds 
    char  timeDecimalSS;     // one byte of tenths of Seconds 
 
    char  latDeg;            // one byte of degrees Latitude 
    char  latMin;            // one byte of minutes Latitude 
    long  latDecimalMin;     // four bytes of decimal mintues Latitude 
 
    char  longDeg;           // one byte of degrees Longitude 
    char  longMin;           // one byte of minutes Longitude 
    long  longDecimalMin;    // four bytes of decimal mintues Longitude 
     
    char  diffGPS;           // one byte of DGPS status 
 
    short altFeet;           // two bytes of altitude in feet 
    char  altDecimalFeet;    // one byte of decimal feet 
 
    short grndSpeed;         // two bytes of groundspeed in ft/s 
    char  grndSpeedDecimal;  // one byte of groundspeed in decimal ft/s 
     
    short grndTrack;         // two bytes of ground track in degrees (0-359) 
    char  grndTrackDecimal;  // one byte of ground track in decimal degrees 
     
    short magVar;            // two bytes of magnetic variation in degrees 
    char  magVarDecimal;     // one byte of mag variation in decimal degrees 
     
//    short     gpsCRC;      // two byte Cyclic Reduncancy Check (CRC); 
}; 
#endif 
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H. ATODDDATA.H 
//********************************************************************** 
// 
//  Filename   :    AtoDdata.h 
// Description: AtoD Data Structure 
// Purpose:  Structure to group all AtoD data into a single data type 
// Data:   29 April, 2001 
// Programmer:  LT Matt B. Commerford 
// 
//********************************************************************** 
 
#if defined (__ATODDATA_H) 
 //  Avoid multiple header inclusions 
#else 
#define __ATODDATA_H 
 
struct AtoDdata { 
  
 short ch0;   // two bytes for A to D channel (0) 
 short ch1;   // two bytes for A to D channel (1) 
 short ch2;   // two bytes for A to D channel (2) 
 short ch3;   // two bytes for A to D channel (3) 
 short ch4;   // two bytes for A to D channel (4) 
 short ch5;   // two bytes for A to D channel (5) 
 short ch6;   // two bytes for A to D channel (6) 
 short ch7;   // two bytes for A to D channel (7) 
  
// short  gpsCRC; // two byte Cyclic Reduncancy Check (CRC); 
}; 
#endif 



110 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK 



111 

APPENDIX B.  CROSSBOW AHRS NOISE ANALYSIS 

The CrossBow AHRS was evaluated to determine the amount and nature of the 

sensor noise when operating in the continuous/angle mode.  The AHRS was initialized 

while sitting on a large stable concrete pad.  Sufficient time was given for the Kalman 

filter to converge and data was collected using the Gyroview version 2.1.  The data was 

then imported into Matlab where a statistical analysis was performed.  The resulting 

Matlab output follows. 

 

Crossbow Static Noise Test 
----------------------------------------------------------- 
----------------------------------------------------------- 
 
Angular Rates 
Mean Rates:    p = 0.0060913   q = 0.0059416   r = 0.0032076 
Standard Devs: p = 0.087604    q = 0.085688    r = 0.07939 
 
Covariance of Rates: p,q,r =  
 
    0.0076745   -0.0002478    0.00020486 
   -0.0002478    0.0073424   -7.9876e-005 
    0.00020486  -7.9876e-005  0.0063027 
 
Orientation Angle 
Mean Angle:        roll = 0.9201   pitch = 0.038009   yaw = -78.9903 
Standard Devs:     roll = 0.021981 pitch = 0.019398   yaw =   0.024684 
Covariance of Angle: roll, pitch, yaw =  
 
   0.00048315     8.8618e-006   2.5846e-005 
   8.8618e-006    0.0003763     9.3887e-005 
   2.5846e-005    9.3887e-005   0.00060928 
 
Linear Acceleration 
Mean Accel:     Ax = -0.00066671  Ay = 0.016047   Az = 0.99781 
Standard Devs:  Ax =  0.00037249  Ay = 0.00045495 Az = 0.00032578 
Covariance of Accel: Ax, Ay, Az =  
 
  1.3875e-007  -5.3833e-009   1.1636e-009 
 -5.3833e-009   2.0698e-007  -8.1784e-009 
  1.1636e-009  -8.1784e-009   1.0613e-007 
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Magnetic Flux 
Mean Flux:      Hx = 0.045627     Hy = 0.24452     Hz = 0.48059 
Standard Devs:  Hx = 0.00083978   Hy = 0.00085417  Hz = 0.0010617 
Covariance of Flux: Hx, Hy, Hz =  
 
  7.0523e-007  -2.1908e-008   3.7182e-007 
 -2.1908e-008   7.2961e-007  -1.8335e-007 
  3.7182e-007  -1.8335e-007   1.1272e-006 
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