“Lalhoun

Institutional Archive of the Naval Pastgraduate School

Calhoun: The NPS Institutional Archive
DSpace Repository

Theses and Dissertations 1. Thesis and Dissertation Collection, all items

2001-09

Design and evaluation of a digital flight
control system for the Frog Unmanned Aerial Vehicle

Flood, Christopher H.

Monterey, California. Naval Postgraduate School

https://hdl.handle.net/10945/1661

This publication is a work of the U.S. Government as defined in Title 17, United
States Code, Section 101. Copyright protection is not available for this work in the
United States.

Downloaded from NPS Archive: Calhoun

Calhoun is the Maval Postgraduate School's public access digital repository for

‘: DUDLEY research materials and institutional publications created by the NPS community.
lﬂ“‘ Calhoun is named for Professor of Mathematics Guy K. Calhoun, NPS's first

m“ KNOX appointed — and published — scholarly author,

LIBRARY Dudley Knox Library / Maval Postgraduate School
411 Dyer Road / 1 University Circle
Monterey, California USA 93943

hitp://www.nps.edu/library

NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS

DESIGN AND EVALUATION OF A DIGITAL FLIGHT
CONTROL SYSTEM FOR THE FROG UNMANNED
AERIAL VEHICLE

by
Christopher H. Flood
September 2001

Thesis Advisor: Isaac |. Kaminer
Second Reader: Oleg Y akimenko

Approved for public release; distribution is unlimited

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including
the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and
completing and reviewing the collection of information. Send comments regarding this burden estimate or any
other aspect of this collection of information, including suggestions for reducing this burden, to Washington
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leaveblank) | 2. REPORT DATE

September 2001

3. REPORT TYPE AND DATES COVERED
Aeronautical Engineers Thesis

4. TITLE AND SUBTITLE: Design and Evaluation of a Digital Flight Control
System for the FROG Unmanned Aeria Vehicle

5. FUNDING NUMBERS

6. AUTHOR(S) Flood, Christopher H.

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School

8. PERFORMING
ORGANIZATION REPORT

Monterey, CA 93943-5000

NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING /
MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of

the author and do not reflect the official

policy or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

13. ABSTRACT (maximum 200 words)

12b. DISTRIBUTION CODE

The importance of unmanned aerial vehicles (UAV's) to current and future military operations cannot be understated.
Thisrapidly developing field requires the ability to quickly develop and evaluate advanced control concepts. The FROG UAV
serves as a test bed for advanced control and sensor projects at the Naval Postgraduate School. Previous control system
projects have made use of a low performance electromechanical autopilot onboard the UAV. This autopilot imposed
significant limitations on the responsiveness of the FROG. This project developed and tested an off board digital flight control
system for use in lieu of the previous electromechanical device.

The digital flight controller was developed using the Matrixy rapid prototyping system and a previously validated
dynamic model of the FROG. Surrogate flight control servo actuators were characterized in the laboratory and added to the
plant model. Classic inner / outer loop controllers were developed for yaw damping and speed, altitude and heading control.
The system was then successfully demonstrated with hardware in the loop in the lab. The FROG was then instrumented and a
command uplink latency of 170 ms was discovered. This introduced excessive phase lag into the system, which drove the
flight controllers unstable. An alternate serial uplink method was developed and tested which reduced the command latency to
76 ms however the remaining phase lag resulted in limit cycle oscillation. Laboratory tests indicated that the current flight
controller could withstand a maximum of 50 ms command path delay; without modification.

14. SUBJECT TERMS Manned Aerial Vehicles, UAV, Frog UAV, Digital Flight Controller 15. NUMBER OF

PAGES
130
16. PRICE CODE
17. SECURITY 18. SECURITY 19. SECURITY 20.LIMITATION
CLASSIFICATION OF CLASSIFICATION OF THIS CLASSIFICATION OF OF ABSTRACT
REPORT PAGE ABSTRACT
Unclassified Unclassified Unclassified UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. 239-18

THIS PAGE INTENTIONALLY LEFT BLANK

Approved for public release; distribution is unlimited

DESIGN AND EVALUATION OF A DIGITAL FLIGHT CONTROL SYSTEM FOR
THE FROG UNMANNED AERIAL VEHICLE

Christopher H. Flood
Commander, United States Navy
B.5., United States Naval Academy, 1984

Submitted in partial fulfillmemnt of the
requirements for the degree of
AERONAUTICAL AND ASTRONAUTICAL ENGINEER

from the

NAVAL POSTGRADUATE SCHOOL
September 2001

=

f.':i]pg"&:}ﬂ'h;}'unk 0. Second Reader

T ey 5 Pa—

Max F. Platzer, Chairman
Department of Aeronautics and Astronautics

iii

THISPAGE INTENTIONALLY LEFT BLANK

ABSTRACT

The importance of unmanned aerial vehicles (UAVS) to current and future military
operations cannot be understated. This rapidly developing field requires the ability to quickly
develop and evaluate advanced control concepts. The FROG UAV serves as a test bed for
advanced control and sensor projects at the Naval Postgraduate School. Previous control
system projects have made use of a low performance electromechanical autopilot onboard the
UAV. This autopilot imposed significant limitations on the responsiveness of the FROG. This
project developed and tested an off board digital flight control system for use in lieu of the
previous electromechanical device.

The digita flight controller was developed using the Matrixx rapid prototyping system
and a previoudy validated dynamic model of the FROG. Surrogate flight control servo
actuators were characterized in the laboratory and added to the plant model. Classic
inner/outer loop controllers were developed for yaw damping and speed, atitude and heading
control. The system was then successfully demonstrated with hardware in the loop in the lab.
The FROG was then instrumented and a command uplink latency of 170 ms was discovered.
This introduced excessive phase lag into the system, which drove the flight controllers
unstable. An alternate serial uplink method was developed and tested which reduced the
command latency to 76 ms however the remaining phase lag resulted in limit cycle oscillation.
Laboratory tests indicated that the current flight controller could withstand a maximum of 50
ms command path delay; without modification.

THISPAGE INTENTIONALLY LEFT BLANK

vi

TABLE OF CONTENTS

l. INTRODUCTION ...ttt se sttt sae e s sesbesresseeseeseesensessessessessesns 1
. FROG UAYV SYSTEM ..ottt ettt sttt naesneene s 3
A. DESCRIPTION OF THE AIRPLANEooiiiie e 3

B. FROG RAPID FLIGHT TEST PROTOTYPING SYSTEMcocevvnnee. 5

1 MATRIXx Rapid Prototyping SyStem........cccocevererieeieneneneneneene 6

2 AC-104 Controller Configurationc.cccceevvreesieeseeseseese e 8

3 Command UpPHinKocooiiieceee e e 9

4, SENSOr DOWNIINK ... e 12

5. Electromagnetic INterference.......coeeeienene v 14

C. NPSINERTIAL MEASUREMENT UNIT ...oooiiiiinirineeeeeese e 15

1 SENSOr DESCIIPLION ..o 15

2. Embedded Micro Controller Developmentcccceceeeieienenennnne 19

a. 3DM Tattletale Program..........cccceeeeeereeneeieeseesesseeseeseeeeens 22

b. GPS TattleTale Programccccocveveeiieeiee e esies e 24

D. CROSSBOW ATTITUDE HEADING REFERENCE SETccccvvvnenee. 27

1. Har dwar € DEeSCriptioNcceecueeeereee e see st 27

2. TIiMING PErformManCe.........cccooeeiieie e 30

3. AHRS NOISE OULPUL ...ttt 41

1. DIGITAL FLIGHT CONTROLLER ..ottt 43
A. SERVO TEST SET CHARACTERIZATION ..o 43

B. DIGITAL FLIGHT CONTROLLER DESIGNccccccvriiiirienienenesesienens 50

1. Design Methodology and Performance Criteria.......ccooveeeevnrennee 50

2 Y aW DAmMPEY ..ottt 52

3 AltItUAE CONIOlEN ..o 54

4 Heading Controller ... 56

5. ATrspeed Controlleroceeieee e 58

6. Control Mode CoupliNg.......cccceeeieeeiecie e 60

C. FROG CONTROL SERVOS.......ccoiiiiiiieieeienese sttt sne e 61

1. FROG Servo Configuration and Instrumentation.............cc.cceeeen. 61

2. Control Surface Position Calibration..........c.ccocvveveieneneseneneneens 64

3. FROG Servo DYNAMICScocueiiiiiieieeie et 70

4. FROG Digital Flight Controller Performance..........cccccooevvrevnrenee. 73

D. ALTERNATE COMMAND UPLINKooiiiiiierise e 74

V. CONCLUSIONS AND RECOMMENDATIONS.......ccooitrireninieienie e 79
A. CONCLUSIONSottt sttt e saesnesrenneenis 79

B. RECOMMENDATIONS......ooiiietesenieee et 79
APPENDIX A. NPSIMU OPERATING SOFTWARE ..ot 81
A. 3DM TATTLETALE OPERATING CODEcccoviieiririeienenie e 81

B. G101 1 2 20

C. DATASDM H oo 93
D. PWM H e 94
E. GPSTATTLETALE OPERATING CODE.......cccooiiiiieieeeeeeeee 95
F. GPSPARSE . H ...t 99
G. GPSDATA H e 108
H. ATODDDATA H s 109
APPENDIX B. CROSSBOW AHRSNOISE ANALYSIS ... 111
LIST OF REFERENCESoooi e 113
INITIAL DISTRIBUTION LIST ..o e 115

viii

Figure 2.1.
Figure 2.2.
Figure 2.3.
Figure 2.4.
Figure 2.5.
Figure 2.6.
Figure 2.7.
Figure 2.8.
Figure 2.9.
Figure 2.10.
Figure 2.11.
Figure 2.12.
Figure 2.13.
Figure 2.14.
Figure 2.15.
Figure 2.16.
Figure 2.17.
Figure 2.18.
Figure 2.19.
Figure 2.20.
Figure 2.21.
Figure 2.22.
Figure 2.23.
Figure 2.24.
Figure 2.25.
Figure 2.26.
Figure 2.27.
Figure 2.28.
Figure 2.29.
Figure 2.30.
Figure3.1
Figure 3.2.
Figure 3.3.
Figure 3.4.
Figure 3.5.
Figure 3.6.
Figure 3.7.
Figure 3.8.
Figure 3.9.
Figure 3.10.
Figure 3.11.

LIST OF FIGURES

FROG UAV. ettt sttt nente st benneens 3
FROG UAV 3 VIEW DIaWING.cooviieirieriieieieieesie st 4
FROG ENgine Configuration.ccceceeveerueseesieeieseesieseeseesee e seessessessneenes 4
FROG Rapid Flight Test Prototyping SysStem.ccccceveviieevie s 6
AC-104 Real-Time Controller.coeoieeieeeeeeeeee e 8
AC-104 INterfate LAYOUL.cocveeieieesieeiieseese e see s ee e 9
Futaba FP-9ZAP Digital Proportional Radio Control.cccceeveeevieieennene 10
FROG Master/Slave Transmitter Arrangement.ccooceeveeeeeneeniesienseesesinens 10
FutabaO Receiver to Servo Connections from Ref. [1]......ccvevveervveveeseenneenn. 12
NPS IMU Downlink ArchiteCture.ccceveveiinieneniseseeeeeee e 13
Crossbow AHRS Downlink ArchiteCture.cceeeevereeneeieseeseee e 14
BEI Gyrochip™ REE GYIO.......oevveveveeeeseereeeseseeseseeessssesssessessssssessss s ssnnenns 16
3DM& 3-AXiS Orientation SENSOT.cccereereerierie et 18
Humphrey VG-34-0201-2 Vertical GYrOSCOPE.coeeveriererereeieniesiesienieneens 18
TattleTale Model 8 Micro-Controller. ..o 20
FROG Onboard Computer Functional Architecture after Ref. [2]. 21
Crossbow AHRS400CA-100 Attitude Heading Reference System. 27
Crossbow AHRS System ArchiteCture.ccocooeviii v 28
Gyroview Software User Interface.cocevevecce e 31
Gyroview Real-Time Data Display Capability.cccocevviieieniinieieneseee, 32
Gyroview Flight Test Data (Level Figure-8 Maneuver).cccccoveevveeeneeenne. 33
Gyroview Flight Test Data (Level Figure-8 Maneuver).ccccceveveveeceeneeenne. 34
AHRS Angle Mode Serial Output SIgnal.cccoecveiieciiciee e 35
AHRS Continuous/Angle Mode Serial OUIPUL.coererererieiieriese e 35
AHRS Polled / Angle Mode Serial Output Response Variation. 36
AHRS Polled/Angle Mode Response - 20 Hz Polling Rate.cccccocveeeee. 37
AHRS Polled/Angle Mode Response - 30 Hz Polling Rate. ..o 38
AHRS Polled/Angle Mode Response - 60 Hz Polling Rate.ccccccvvveene 39
AHRS Continuous/Scaled Sensor Mode Serial OUtpUt.ccceveeeeieeiieennnne. 40
AHRS Polled / Scaled Sensor Mode Serial Output Response Variation. 41
SENVO TESE SEL. ..t 44
Control Systems Laboratory Hardware in the Loop System.ccccecveveenene 45
SystemBuild Servo Dynamics Test SyStem.......ccccvvvveeveeviiecvee e 46
Servo Test System Calibration GUI. ..o 47
TS-75 Servo Response to 10° STEP INPUL.ooviieiiiieecee e 438
Second Order Model Of TS-75 SEIVO. ...cceeieeeieeriese e 48
Rea Sim Speed Controller GUI.coeoiieiiiiieeeee e 49
TS-75 Response to Increasing Speed Controller Feedback.cccevvveeenneene. 50
FROG SystemBuild Flight Controller Model.ccceveveiveiieiece e 51
Rea Sim Flight Controller Display.cccoverieiieienereeeeee e 52
Yaw Damper SystemBuild Block Diagram.cccccveverenieeieeienenese e 53

iX

Figure 3.12.
Figure 3.13.
Figure 3.14.
Figure 3.15.
Figure 3.16.
Figure 3.17.
Figure 3.18.
Figure 3.19.
Figure 3.20.
Figure 3.21.
Figure 3.22.
Figure 3.23.
Figure 3.24.
Figure 3.25.
Figure 3.26.
Figure 3.27.

Figure 3.28

Figure 3.29.
Figure 3.30.
Figure 3.31.
Figure 3.32.
Figure 3.33.
Figure 3.34.
Figure 3.35.
Figure 3.36.
Figure 3.37.

Yaw Damper Response (Simulated ACtUELOrS).cccveeeeeerieeieeseere e, 53
FROG Yaw Damper Performance with TS-75 ACtUators.cccceeeveeveeinenns 54
Altitude Controller SystemBuild Block Diagram.c.ccoceveereienenenenennens 55
Altitude Controller Response With TS-75 SErVos........ccceveeeveeriecceeseesie s 56
Heading Controller System Build Block Diagram.ccccceceveeneninneenennns 57
Heading Controller Response With Simulated ACtUALOIS.cccveevveereennnne 57
Heading Controller Response With TS-75 SEIVOS.cccccvveeenieenenieseeseenens 58
Speed Controller SystemBuild Block Diagram.ccccceveveveeicieeiieccieesieenn 59
Speed Controller Response With TS-75 SErVOS.cocvveveeieeieeiereesesesees 59
Longitudinal Control Mode Coupling.cccceieereeiereenieeieeseese e seeseeeens 60
Lateral-Directional Control Mode Coupling.ccoeeveveereeiiesieesece e 61
FROG Elevator Servo ConfigUraion.eeeeieerierieereeniesieeseeseeseeseeseeseens 63
Series 150 Subminiature Position TranSAUCES.cccooveeereerenieeseene e 64
The FROG Command Uplink Signal Path.cccccoeiiiiiieiece e 65
Laser Installation for Control Surface Deflection Measurement. 67
Cylindrical Laser TaIGEL.cccevvereierieseseeieee et 67
Laser Position Indicator Spot on Angle Scale.occvveeveecesciere e 68
FROG Aileron Position Command versus D/A Output Value.cccceeeuee. 69
FROG Aileron String Pot Output versus POSItIoN.cccceeveeenenencnencnnns 69
FROG Servo ReSponse DEl@Y.ccooveieieeieeesiesie et eee et 71
TS-75 Servo Test Set Response DElay.ccoveeveeieceecece e 72
FROG Servo-based Speed Controller Performance.ccccocveveeeieeveecnnnns 73
Flight Controller with 170 mS DeEl@y.cccooeiiiiniiinereeeeeeee e 74
FP-R309DPS Receiver Output SIgNal.ccecceeeeerieeieieerieceseesie e 75
Flight Controller Performance with 75 ms Delay.cccoooercinnniiinnieieee 77
Servo Phase Lag with 75 ms Command Delay.coevereeienenenenesesee 78

Table 2.1.
Table 2.2.
Table 2.3.
Table 2.4.
Table 2.5.
Table 2.6.
Table 3.1.
Table 3.2.
Table 3.3.

LIST OF TABLES

FROG UAV Physical CharaCteristiCs.coouvreereririierieneesieesee e 5
NPS IMU Sensor Performance LiMitS.......cccvevvieereeieneeneeieseesie e e e 19
NPS IMU DOWNIINK Data LiSt........cceviririeiieieriesie s 22
3DM Magnetometer & Accelerometer Data Format.ccoeeeveeiieccieesieene, 23
TattleTale Downlink Message CharaCteristiCs.ooovevererieeieeniereneseseeneee 27
Sensor Mode Serial Data Parameters..........ccooevevevienienesesieneesee e 29
FROG Control Servo Configuration.cccceeveereeieeseeseeieeseeseeseeseesneenens 62
FROG SEIVO GaINS.ocueiiiiiieiiesiiesie ettt see e s s snna s 72
FP-309DPS Pulse Width Response to FP-9ZAP Controller Commands. 76

Xi

THISPAGE INTENTIONALLY LEFT BLANK

Xii

ACKNOWLEDGMENTS

| would like to thank my wife, Tina. Without your steadfast support, limitless patience
and countless scarifies | would never have completed this work. This thesis is as much yours
asitismine. To my son, Kevin, | give my thanks. You have been a great help to your mother
and me and have shown maturity far beyond your years. | hope you remember this time in
Monterey fondly. To Scott and Brian, who are too young to understand why Daddy has to go

back to work after diner, | can play now.

| would also like to thank my advisor, Dr. Issac Kaminer, for the guidance, and
freedom to learn. Y ou have shown me that the mark of an educated man is more than the mere

facts he knows but instead is the manner in which he reasons.

Xiii

THISPAGE INTENTIONALLY LEFT BLANK

Xiv

l. INTRODUCTION

The importance of unmanned aerial vehicles (UAVS) to current and future
military operations cannot be understated. This rapidly developing field requires the
ability to quickly develop and evaluate advanced control concepts. The FROG UAV
serves as a test bed for advanced control and sensor projects at the Naval Postgraduate
School. Previous control system projects have made use of a low performance
electromechanical autopilot onboard the UAV. This autopilot imposed significant
limitations on the responsiveness of the FROG. This thesis developed and tested an off
board digital flight control system for use in lieu of the previous electromechanical

device.

The digital flight controller was developed using the Matrixx rapid prototyping
system and a previously validated dynamic model of the FROG. Surrogate flight control
servo actuators were characterized in the laboratory and added to the plant model.
Classic inner/outer loop controllers were developed for yaw damping and speed, altitude
and heading control. The system was then successfully demonstrated with hardware in
the loop in the lab. The FROG was then instrumerted and a command uplink latency of
170 ms was discovered. This introduced excessive phase lag into the system, which
drove the flight controllers unstable. An alternate serial uplink method was developed
and tested which reduced the command latency to 76 ms however the remaining phase
lag resulted in limit cycle oscillation. Laboratory tests indicated that the current flight
controller could withstand a maximum of 50 ms command path delay, without
modification.

THIS PAGE INTENTIONALLY LEFT BLANK

Il. FROG UAV SYSTEM

A. DESCRIPTION OF THE AIRPLANE

The FROG unmanned aeria vehicle (UAV) is a small high wing moroplane
used for digital control system research by the Naval Postgraduate School Aeronautics
Department. The airplane was manufactured by BAI Aerosystems, as the BAl TERN
(Tactically Expendable Remote Navigator), and was formerly designated the FOG-R by
the U.S. Army. Inthe FOG-R configuration the airplane was equipped with afiber optic
data link for command uplink and video downlink. The TERN was designed to carry up
to twenty-two pounds of payload for periods of up to four hours. The TERN UAYV is
currently in use as a test bed for sensor systems by both the US Navy’s Strike UAV
Program and NASA. In the past, the NPS FROG had been configured with a variety of
sensors including an onboard autopilot, various inertial measurement units, GPS

receivers, an instrumented nose boom and a digital camera. The FROG is depicted in
Figures2.1 and 2.2.

Figure2.1. FROG UAV.

m—
o
#

e)
]
D_‘

Figure2.2. FROG UAV 3 View Drawing.

The FROG is configured with a Model BA64 6.4 cubic inch, horizontally
opposed, piston engine, manufactured by Brinson Aircraft Company. The 2cylinder
engine developed 9.3 Hp and is equipped with a two bladed propeller mounted in a
tractor orientation in a nacelle atop the wing, as depicted in Figure 2.3. The FROG has
fixed tricycle landing gear with a steer-able nose wheel. The empennage is connected to
the body of the airplane by a 1.75-inch diameter aluminum tube. The FROG is equipped
with conventiona elevator, rudder, ailerons and flaps. Small servomotors, designed for
use in radio-controlled airplanes, actuate the control surfaces. The FROG’s significant

physical characteristics are presented in Table 1.1.

Figure2.3. FROG Engine Configuration.
4

PARAMETER MEASUREMENT
Length 8.125 ft
Height 1.75 ft
Weight 67.7 lbs

Power Plant 9.3Hp/2 Cyde
Wing Airfail NACA 2415

Horizonta Stabilizer Airfoil

NACA 0006 (Approx.)

Wing Span (b) 1265in

Tail Span (hy) 39.75in

Vertica Tail Span (b,) 15.0in
AR, 6.32

Table2.1. FROG UAV Physica Characteristics.

B. FROG RAPID FLIGHT TEST PROTOTYPING SYSTEM
The FROG Rapid Flight Test Prototyping System (RFTPS) is a broad description

of the hardware and software architecture used control the FROG in flight. The RFTPS
may be conveniently divided into a command channel (uplink) and feedback channel
(downlink). The ground segment of the command channel includes a safety pilot with
manual radio controller, an AC-104 computer running the flight control software and a
pulse code modulation (PCM) transmitter. The airborne segment includes a PCM
receiver and the servo actuators. The feedback channel includes the differential global
positioning system (DGPS) receiver, inertial sensors (NPS inertial measurement unit or
Crossbow attitude heading reference system), control surface position transducers, and
wireless spread spectrum modems. Flight control commands are generated on the
ground by either the safety pilot or by the AC-104 computer. Command signals from
the AC-104 computer are converted to a PCM signa by a FutabaO radio controlled
airplane transmitter, which broadcasts them to the airplane. The airplane’s FutabaO
receiver then decodes the PCM signal and generates PWM commands for each of the
control servo channels. In the feedback channel, sensor outputs are digitized and
transmitted via spread gectrum modem to the ground station for processing. Two
5

different inertial measurement units are currently in use with the FROG. When
configured with the NPS IMU, the DGPS and IMU sensor data are merged into a single
time phased seria output stream. This is accomplished by an embedded microcomputer
within the IMU. The CrossBowO attitude heading reference system’s (AHRS) higher
bandwidth necessitated addition of a second downlink modem to the airplane. The

RFTPS architecture is depicted in Figure 2.4.

(Analog)
i (Mechanical) (PWM)
(Various) = ——— — la-msrererriaaaiaries Futaba
.~ Receiver
TT8 DA .
(Serial) IMU Position Servo
Transducers Actuators
38400 bps, Computer
FreeWave (PCM
Modem
Slave Master
Futaba Futaba
(Serial)
38400 bps AC-104
(Analog)
Computer
FreeWave
Modem

Figure2.4. FROG Rapid Flight Test Prototyping System.

1. MATRIXx Rapid Prototyping System
The MATRIXx software suite provides and integrated environment for control

system design, software engineering, data acquisition and testing. The software suite
consists of Xmath, SystemBuild, RealSim, AutoCode, and the pSOSystem real time
operating system. The Xmath program provides the system analysis and visualization
environment. Xmath includes over 700 predefined functions and commands and
includes a compact scripting language for simplified command and function
programming. Basic Xmath commands support operations such as creating, plotting,
saving and loading data. Additional add-on modules provide sophisticated control
system design and analysis functions. SystemBuild visual modeling and simulation

software provides a graphical control system design environment. Continuous time,
6

discrete time and hybrid systems are easily constructed by selecting elements from
predefined palettes. SystemBuild includes built in simulation tools that alow the user to
interactively verify, test and modify system models. Data generated during SystemBuild
simulations may be captured and further analyzed using the powerful built-in (or user
defined) functions in Xmath. The functions and implementation of Xmath/SystemBuild
is analogous to MATLAB/SimuLink. The AutoCode module is an automatic code
generator for SystemBuild models. The AutoCode software processes the SystemBuild
model files and creates either ANSI C or Ada @de, which can then be compiled to
create a stand-alone real-time executable program. AutoCode builds the program
scheduler by means of a template file for the target real time operating system (RTOS).
The scheduler performs overall direction and control of inserting inputs, scheduling
tasks, posting outputs and dispatching the tasks that perform the work of the real time
system. The application scheduler operates on the principle of rate-monotonic
scheduling, deriving priorities for the tasks from the repetition rate for periodic
subsystems. Higher priorities are assigned to faster subsystems while slower ones are
assigned lower priority. Understanding of the scheduler mechanization is critical to
achieving predictable red-time performance. Once compiled, the stand-alone
executable code is suitable for the test-bed environment or for use in an embedded real-
time system. The RealSim controller alows the user to perform real-time simulations of
feedback control systems designed in SystemBuild. RealSm compiles and links the
application code and includes provisions for connecting real hardware to the controller
for rapid prototyping and hardware-inthe-loop (HITL) testing. A data acquisition
module permits the user to record any selected input/output parameters for further
analysisin Xmath. Run-time graphical user interfaces can be built that allow the user to
observe and interact with the simulation while it is running on a real-time computer.
MATRIXx aso includes custom drivers for the PC-104 based AC-104B computer to
permit easy download and execution of the rea-time system. The pSOSystem RTOS
provides an execution environment on the computer that runs the real-time code.
AutoCode includes a template that optimizes the C code for the pSOSystem RTOS.

2. AC-104 Controller Configuration

The complete Real Sim system includes a host PC (Windows 95/98/NT/2000 and
the MATRIXx software suite) and a second PC with an RTOS, to act as the controller.
The AC-104 is a compact microcomputer manufactured by Integrated Systems
Incorporated (now WindRiver Systems, Inc.), Figure 2.5. The AC-104 facilitates real-
time control and prototyping of hardware systems by integrating a complete
microcomputer with PC-104 based hardware 1/0 modules.

Figure2.5. AC-104 Real-Time Controller.

The AC-104 is based on an Advantech PCM-5862 motherboard configured with a
Pentium MMX processor operating at 233 MHz. The NPS AC-104's are configured
with 16 MB of EDO RAM, and a4 MB flash disk for non-volatile storage. Basic 1/0O is
provided by a PCI-SVGA display controller, two serial ports (RS-232/422/485), an
enhanced parallel port, keyboard controller and a PCl based 10Base-T Ethernet
connection. The Host computer communicates with the AC-104 via the Ethernet
connection and may do so by direct cable connection or across a distributed network.
Enhanced 1/0 functions for hardware control and data acquisition are provided by add-
on cards, which interface with a PC-104 ISA expansion bus. The AC-104 comes
8

configured with an Analogic AIM16 PC-104 16-bit analogto-digital (A/D) converter, a
Diamond Systems Ruby-MM 12 bit digital-to-analog (D/A) converter and an SBS
GreenSprings Modular 1/0 Industry Pack 1P-68322 data acquisition and control module.
The 1P-68322 module integrates a Motorola M C68322FC micro-controller with a Xilinx
3030 field programmable gate array (FPGA) onto a standardized form factor to provide
advanced data acquisition and hardware control capabilities. The IP-68322 is a daughter
board on atwo slot Flex/104A carrier board. NPS has added an SBS GreenSpring | P-
Seria board to the second dot on the Flex/104A board. The IP-serial board provides
two RS-232-C/422 seria channels and provides programmable baud rates up to 2
Mbit/sec. The AC-104 has eight 50-pin Centronics connectors for PC-104 based 1/0.
All connections are located on the front face of the AC-104, Figure 2.6. Standard PC
connectors are also provided for al non-PC-104 1/0.

P .
pAUSE P Fz, F3 ps” s P F7 ““.pa
- - =d | |B* = = e POWER ON
oN__OFF b | il ERFOR
N F Is 1 ;
te ig ! i§)R
LA H (B2 HLIE NLIE d|lE< HI(§ #||ES | PAvsED
ke e B | el [f |1 8| (f H||E ¥ < -
| == B2 A =]
| | 1|E = 4§ | L 'jfg] H B x IE.-E: 1 !)
= h ! 0l | H i . - { &£
| g ! I* |! i ¥ K 1]
| E o B[l B (B | (B A B A (B | |R
1182008 AC] I [T T ool
Fuie 10 A= 1= rhodd = 2 N R L D e
e AD; Ga3a SPAHE v
S pPARALFEL PORT FLOFRY DISKETTE KEYBOARD
YGA COM 1 CoM 2
[1
: ol lo sl
] 1 1
i integrated
Hl systems A= 104 }

Figure2.6. AC-104 Interface Layout.

3. Command Uplink

The FROG is controlled by command signals transmitted from a ground based
Futaba FP-9ZAP digital proportiona radio control set, Figure 2.7. The NPS FROG
command channel takes advantage of a unique feature designed into the FUTABA

9

transmitters. Two Futaba transmitters may be linked together, by means of a cable, to
form aMASTER / SLAVE system, as depicted in Figure 2.8.

Figure2.7. FutabaFP-9ZAP Digita Proportional Radio Control.

VA Output

Computer

/

Trainer € .'Z%hi.;;' ¢ Master
Controller

Figure2.8. FROG Master/Slave Transmitter Arrangement.
10

This configuration was originally designed to facilitate the training of novice
radio controlled airplane pilots. The instructor pilot can operate the Master controller
while the student operates the Slave. When the Master controller is active the instructor
pilot’s command inputs are converted to pulse code modulated (PCM) signals that are
transmitted to the airplanes receiver. The pilot’s control joysticks are connected to
potentiometers, which provide a voltage that is proportiona to the joystick position.
This voltage value is then used to encode the PCM stream. The Master controller
transfers control to the Slave by actuation of a single electric switch. When the Slave
controller is active the Slave's commands are converted to pulse period modulation
(PPM) signals, which are then relayed to the Master via the link cable. The Master
controller decodes the PPM signals from the Slave and converts them to PCM for output
on the Master’s transmitter. Significant latency in the AC-104's commands, due to this
mechanization, was discovered during this research. This time delay poses significant a
challenge for control system design. The Slave controller is a highly modified 8-channel
Futaba FP-8UAP digital proportiona radio. In the Slave, the joystick potentiometers
have been disconnected and externally generated voltages are passed directly to the
controller's A/D converter via a DB-9 connector. The AC-104 based controller converts
airplane control commands into scaled voltages via an integral D/A converter. These
signas are then passed to the Slave controller by a locally manufactured data cable
connected to the DB-9. The Futaba transmitters have a maximum range of
approximately 1.5 miles. This short range severely limits the volume in which this

airplane may operate. Figure 2.4 depicts the RFTPS command channel architecture.

Onboard the FROG, a Futaba FP-R309DPS receiver decodes the PCM command
signal and generates pulse width modulated (PWM) commands on each of eight separate
channels. Each channel may be connected to one of the control servos, as depicted in
Figure 29. The FROG is configured with a variety of servos; each with different
performance specifications. All servos share a common specified neutral pulse width
(positions the sarvo a the mid-range location) of 1.52 ms. Due to instalation
requirements, the neutral control surface position does not correspond to the neutral
Servo position.

11

- Dual Conversion

Receiver R309DPS

Figure2.9. FutabaO Receiver to Servo Connections from Ref. [1].

4. Sensor Downlink

Sensors onboard the FROG provided feedback to the digital flight control
system. At the present time there are two different GPS/INS sensor suites under
development for use with the FROG. The first is based on an indigenously designed and
manufactured inertial measurement unit (the NPS IMU) and a DGPS receiver
manufactured by Trimble, Inc. The second is comprised of the same DGPS receiver and
a commercial attitude heading reference system (AHRS) manufactured by Crossbow
Technology, Inc. The data interface differs significantly for these two configurations,
which necessitates unique avionics architectures for each. Both sensor suites include a
Trimble AgGPS 132 DGPS receiver. The AgGPS is a 12 channel L-band differential
correction receiver that provides sub-meter accuracy. The GPS receiver is configured
with two programmable RS-232 serial ports and provides position updates at a
maximum frequency of 10 Hz.

The NPS IMU configuration consists of the AgGPS 132 receiver and an
indigenously designed and manufactured IMU. The IMU contains both analog and

12

digital sensors. In order to convert the analog signals to digital data and format a
combined digital output stream a microcomputer was developed. The computer is based
on two TattleTale 8 data loggers, manufactured by Onset Computer Corporation. The
Tattletales are configured in a Master/Slave arrangement. Each TattleTale includes a
Motorola 68322 micro-controller, an eight channel 12-bit A/D converter and two RS-
232 serial ports. The digital and analog sensor data and GPS serial output are processed
in the TattleTale computers and formatted into custom serial messages for down link to
the ground station. The Master Tattletale outputs IMU sensor data at 40 Hz and
interleaves GPS messages at 10 Hz. The seria transmission rate is 38,600 bps. A more
detailed discussion of the IMU computer's design and operation may be found in
paragraph 11.C.2. The Master Tattletale computer is connected to a FreeWave wireless
spread spectrum data transceiver (modem) manufactured by FreeWave Technologies,
Inc. The FreeWave modem has a power output of 1/3 Watt and operates at in a
frequency range of 902 — 928 MHz. It is capable of communicating at a line of sight
range of up to 20 miles and supports data transmission at baud rates from 1200 bps —
115.2 Kbps. A matching FreeWave modem is connected to the PC-104 based |P-Serid
card on the AC-104 ground station and provides a continuous data stream to the FROG
controller. The NPS IMU downlink architecture is depicted in Figure 2.10.

(Analog)

(various) ... (Mechanical)
' ' B LT
Servo

(Serial) Position
IMU Actuators
38400 bps [Computer Transducers

(Serial)

38400 bps AC-104
Computer

FreeWave
Modem

Figure2.10. NPSIMU Downlink Architecture.
13

The Crossbow AHRS is currently configured for continuous digital output of all
sensor data at an average rate of 65 Hz. The TattleTae downlink bandwidth limits
updates to approximately 50 Hz so an alternate downlink configuration wes devel oped
in order to take full advantage of the AHRS faster update rate. The AgGPS receiver (10
Hz) and the Crossbow AHRS (60 — 70 Hz) are each connected to their own dedicated
FreeWave modem. These two modems communicate independently with two identical
modems which are connected to Channels A and B on the AC-104 IP-Serial card. The
digital flight controller reads each serial stream and updates the control system
accordingly. The Crossbow AHRS downlink configuration is depicted in Figure 2.11.

DGPS AHRS
= (Serial) = (Serial)
38400 bps 38400 bps
FreeWave FreeWave
Modem Modem
Freewave (Serial) (Serial) FreeWave
erial erial
Modem ssaoobps | AC-104 | 38400 bps Modem
[) Computer a=

Figure2.11. Crossbow AHRS Downlink Architecture.

5. Electromagnetic I nterference

Prior to one flight test, spurious signals were found to be interfering with the
Futaba command signals. The FROG had been configured with both the NPS IMU and
Crossbow AHRS. During the ground check the safety pilot found that the control servos
responded erratically to each input. The electromagnetic interference (EMI) was
initially attributed to the presence of two FreeWave modems, in close proximity to the
airplane’ s Futaba receiver, but extensive trouble shooting at the UAV lab was unable to

duplicate the effect. While the FreeWave modems may contribute to an adverse
14

electromagnetic environment the NPS IMU itself may also be a significant contributor.
The IMU has a DC-to-DC switching converter mounted externally to provide regulated
power to the various avionics sub-systems. The EMI effects of this converter should be
investigated. Additionally, the frequency spectrum that the Futaba controllers use is
publicly available. As such, accidental (or intentional) signal jamming may be
encountered. Transition to seria uplink transmission would significantly improve the
signal to noise tolerance of the system and reduce the likelihood of accidental
interference.
C. NPSINERTIAL MEASUREMENT UNIT

The design and manufacture of an integrated inertial measurement unit (IMU) is
a significant undertaking. The NPS IMU was developed to provide a low cost, high
quality inertial measurement unit for use in digital control systems for the FROG UAV.
The decision to locally design and manufacture an IMU was necessitated by the
inadequate performance of an IMU-600D IMU manufactured by Watson Industries.
The NPS IMU was designed not only as a sensor for FROG flight control projects but
also as a teaching tool that would allow investigation of such subjects a sensor
modeling, time-correlated random constant errors (such as bias and misalignment),
complementary and Kalman filtering, digital avionics and real-time operating systems
for embedded control. The adequacy of the NPS IMU for in flight inertial measurement
has not been evaluated yet. The hardware and embedded controller’s software have just
recently reached the state where they can support sensor calibration. IMU calibration, to
determine the time-correlated errors, can be accomplished at NPS using a 2-axis turning
table and is expected to proceed in the near future. While much of the NPS IMU’s
potential has yet to be realized, it has provided valuable experience in the software
design, data bandwidth management, micro-controller design and the practical
challenges involved in any system development effort where specific design criteria are
developed in paralel to the hardware.

1. Sensor Description

The development of the NPS IMU must be characterized as evolutionary. As
such the sensor suite and associated electronics have undergone severa significant

revisons. In it's current form the NPS IMU is configured with solid-state rate

15

gyroscopes, accelerometers, magneto-resistive flux sensors and a spinning mass vertical
gyroscope. Three Gyrochipd AQRS-00064-104 angular rate sensors, manufactured by
the Systron Donner Inertial Division of BEI Technologies, Inc, are used to measure
angular rates. The Gyrochipa rate sensors utilize a micromachined double-ended quartz
tuning fork fabricated from mono-crystalline piezoelectric quartz. Specifically designed
for “demanding automotive and commercial” applications, the gyros have a specified
range of + 64°/sec. Applying the Coriolis effect, a rotational motion about the sensors
input axis produces a DC voltage (analog output) proportional to the rate of rotation. As
each gyro is housed in it's own individua package it is expected that misalignment and
relative orthogonality will be significant contributors to the time-correlated random
error. The AQRS Gyrochipd isdepicted in Figure 2.12.

Figure2.12. BEI Gyrochip™ Rate Gyro

The 3DM™ 3-axis orientation, manufactured by MicroStrain, Inc., provides
linear acceleration and magnetic flux measurements. The 3DMa& is designed to provide
tilt sensing via orthogonal accelerometers and magnetic compass functions via

orthogonal flux gate magnetometers. The 3DMA& is configured with two = 2 g

16

ADXL202E dual axis IC based accelerometers, manufactured by Analog Devices, Inc.
The accelerometers contain polysilicon surface micromachined sensors and signal
conditioning circuitry to implement an open loop acceleration measurement architecture.
The output of each sensor element is lowpass filtered and then converted to a duty cycle
(pulse width) modulated signal for output to the 3DM’s own microprocessor. Magnetic
field sensing is provided by orthogonaly mounted IC based linear magnetic field
sensors, manufactured by Honeywell. The HMC1021/1022 magneto-resistive sensors
are made of a nickel-iron (Permalloy) thin film deposited on a silicon substrate. The
Honeywell magneto-resistive sensors are ssimple resistive bridge devices that provide an
analog voltage output corresponding to any ambient or applied magnetic field. A 12-bit
A/D converter within the 3DM™ digitizes the analog output of the magnetic sensor.

The 3DM& uses the accelerometers and magnetometers to calculate pitch, roll and yaw
angles relative to the earths magnetic and gravitational fields. The 3DMa can aso be
programmed to output raw accelerometer and normalized magnetic field strength values
converted to engineering units. All data is output at 9600 baud via an RS-232 serial
port. The 3DM supports a maximum output rate of approximately 30 Hz. During early
development of the NPS IMU the 3DMa suffered spurious mode switching between
continuous and polled modes of operation. At that time the erratic behavior was
attributed to EMI within the IMU case. To dleviate this problem MicroStrain provided
a specia version of the 3DMa embedded operating software on EEPROM. This
software supports only the polled/raw sensor output mode of operation. The origina

3DM™ EEPROM has been retained and the unit could be converted back to the angle
measuring configuration once EMI concerns have been addressed. The 3DMa

orientation sensor is depicted in Figure 2.13.

17

MicroStrain®

www.microstrain.com

Figure2.13. 3DMa 3-Axis Orientation Sensor.

The NPS IMU contains a second attitude source in the form a VG-34-0201-2
vertical gyroscope manufactured by Humphrey, Inc. The VG-34 vertical gyro is a
classic gimbaled spinning mass gyroscope. The vertical gyro contains two electrolytic
level sensors, which provide a “gravity” reference for pitch and roll position. The VG-
34 has a specified accuracy of +0.1° for both pitch and roll. Conductive plastic
potentiometers are used to provide analog pitch and roll output signals. The Humphrey
vertical gyro’s requirement for 28 Vdc and relatively high power consumption was the
dgnificant driver in the design of the IMU’s power supply. The VG-34 vertical
gyroscope is depicted in Figure 2.14.

o

Figure2.14. Humphrey VG-34-0201-2 Vertical Gyroscope.

18

Table 2.2 lists the operating limits of the NPS IMU’ s sensors and the output data

formats.
Sensor Parameter Limits Output
Gyrochipd Rate
Gyros Angular rate +64°/sec Anaog — voltage
29 Seriad — RS-232 at
3DMa Orientation | Linear Acceleration | (6 KHz bandwidth) 9600 buad
Sensor + 2 guass Seridl: RS-232 at
Magnetic Field (Normalized) 9600 baud
Humphrey VG-34
Vertical Gyro Pitch / Rall +60° /£ 90° Analog - voltage

Table2.2. NPS IMU Sensor Performance Limits.

2. Embedded Micro Controller Development

The FROG' s airborne sensor suite includes the NPS IMU (or Crossbow AHRS),
the Trimble AgGPS 132 differential GPS receiver and a variety of analog transducers
(position, pressure and temperature). The serial downlink architecture mandated that all
sensor data be digitized prior to transmission to the ground station for processing. It was
also desired to minimize the potential for EMI by employing a single wireless modem to
transmit the onboard data. Within the NPS IMU both digital and analog sensor outputs
are present. Additionally, the required GPS data are embedded in two separate serial
messages. In order to provide a single formatted IMU output message that could meet
high update rates, with minimal latency, it was necessary to develop an embedded
microcomputer. At a minimum the microcomputer needed the ability to convert analog
signals to digital (A/D), store and process the sampled data, and send and receive serial
data. The microcomputer was required to interface with as many as sixteen analog
sensors, receive serial data from two separate sources (operating at different baud rates
and update frequencies) and transmit seria data on a third channel. The TattleTae
Model 8 data logger, manufactured by ONSET Computer Corporation, was selected for
this purpose. The TattleTale 8 is alow cost miniature micro-controller that provides an
8-channel A/D converter, fourteen digital 1/0 lines, two RS-232 ports and is powered by
a Motorola 68322 32-bit microprocessor and a PIC 16C64 coprocessor, Figure 2.15.

19

The Tattletale 8 is aso configured with 256Kb of Flash EEPROM for storing the
controller program and 1 MB of RAM.

™
=
=
=
g
= |
=

Figure2.15. TattleTale Mode 8 Micro-Controller.

As a single TattleTale could not satisfy the demands for analog to digita
conversion and serial communication, two TattleTales are networked to form the
embedded IMU computer. Initially, one processor was programmed to read and process
the IMU sensor data (hereafter referred to as the “3DM TattleTae”) and the other was
programmed to read and process the GPS serial output messages (hereafter referred to as
the GPS TattleTale). The GPS and 3DM TattleTales time-shared a single wireless
modem by means of an externa CMOS multiplex switch that allowed the 3DM
TattleTale to transmit at a different rate than the GPS TattleTale. In this scheme the
output signals were triggered to the GPS output message, which was believed to be a
reliable 10 Hz. Both TattleTale' s were programmed in BASIC and the resulting code
output GPS data at 10 Hz and IMU data a approximately 20 Hz. As the system
requirements were better understood the required IMU sensor update rate was increased
to a minimum of 40 Hz. In order to meet the new timing requirements LT Maitt
Commerford crafted an entirely new real-time operating system for each TattleTale
using the Aztec C language (a variant of ANSI C). Additionaly, LT Commerford

developed a Master/Slave architecture which greatly increased the output rate while also
20

significantly improving the systems overall determinism. Though the previous
nomenclature has been retained the current Master/Slave micro-controller configuration
is more appropriately called the “FROG onboard computer”. The FROG computer
functional architecture is depicted in Figure 2.16. The following discussion draws
heavily from the unpublished notes of LT Commerford, reference 2.

GPS-10Hz Vertical Gyro Surface Positions
(time, lat, long, dlt, 40Hz - A/ID 40Hz - A/ID
Speed, heading, etc) (f,a)

RS-232 38,400 bps

Rate Gyros
40Hz - A/ID
(p.a, 1)

3DM Accd 20 Hz
RS-232 9,600 bps

Throttle Position, RS-232 (Ax, Ay, Az, Hx, Hy, H2)
Temp, Pressure 38,400 bps
20Hz - A/D .
stem Timing
(+5 channels for future use) %/
To Modem And Control

Figure2.16. FROG Onboard Computer Functional Architecture after Ref. [2].

The 3DM TattleTale is the Master processor in the Master/Slave configuration.
It controls the overall system timing and acts as the scheduler for al serial output to the
ground station. The Master processor samples the IMU’ s analog sensors, polls the 3DM
sensor and receives digital data from the GPS TattleTale via a digita /O line configured
for serial communication. The GPS TattleTale receives the DGPS receiver's serial
output and parses the data for the minimum required data set. The customized GPS
message is then transferred to the Master processor where it is queued for transmission.
The Slave processor's A/D channels are also sampled and passed to the Master for
output with the IMU data. Each sensor has its own inherent limitations that restrict the
maximum allowable data rate. Samples from each sensor are taken at various data rates
and merged together in order to achieve a highest possible downlink data rate while

maintaining an easily decoded and error free data stream. In order to maximize the

21

downlink bandwidth all sensor data is converted to binary prior to transmission (vice
ASCIl). The use of binary coded data significantly reduces the number of bytes
transmitted. The combined sensor output provides measurements of the complete state
vector, with the exception of heading (y). The measured parameters, associated sensors

and computer update rates are presented in Table 2.3.

Parameter Data Rate Source Notes
Angle rates (p,q,r) 40 Hz AOQRS 104 | 4.096 Volt A to D sample
Pitch / Roll Angle (f ,q) 40 Hz VG-34 4.096 Volt A to D sample
Control Surface Position Series 150
(elevator, aleron, rudder) 40 Hz String Pots | 4.096 Volt A to D sample
Series 150
Throttle Position 10 Hz String Pot | 4.096 Volt A to D sample
Accderation (a, a,, &) 20 Hz 3DM RS-232 9,600 baud
Magnetic Field (Hy, Hy, H,) 20 Hz 3DM RS-232 9,600 baud
GPS Time (t) 10 Hz Agl32 GPS | RS-232 38,400 baud
GPS Latitude (Lat) 10 Hz Agl32 GPS | RS-232 38,400 baud
GPS Longitude (Long) 10 Hz Agl32 GPS | RS-232 38,400 baud
GPS Altitude (Alt) 10 Hz Agl32 GPS | RS-232 38,400 baud
GPS Ground Speed (K nots) 10 Hz Agl32 GPS | RS-232 38,400 baud
GPS Ground Track
(Degrees True) 10 Hz Ag132 GPS | RS-232 38,400 baud
Magnetic Variation (Deg) 10 Hz Ag132 GPS | RS-232 38,400 baud
Outside Air Temperature 20 Hz TBD 4.096 Volt A to D sample
Differential Pressure (for
airspeed) 20 Hz TBD 4.096 Volt A to D sample
5 Spare A/D channels
Future Use 20Hz TBD (a,b, Vpa, €tc.)

Table2.3. NPS IMU Downlink Data List.

a. 3DM Tattletale Program

The 3DM TattleTae (Master) was required to sample and process all
inertial sensor and control surface position data and schedule and perform the
transmission of all airborne data. This task was complicated by the differing update

rates between the 3DM sensor and the GPS receiver. It was desired that all sensor data
22

be updated and transmitted at the fastest reliable rates. The sensors supported three
different update rates: 10 Hz, 30 Hz and continuous. An analysis of the data bandwidth
requirements indicated that a maximum minor frame size of 20 ms (50 Hz) was possible.
In order to ensure successful operation a minor frame length of 25 ms was chosen (40
Hz) for the scheduler. The 3DM’s special EEPROM only supports polled mode
operation. This requires that the Tattletale send a “request for data’ command (90h or

144 decima) to which the 3DM will respond with the 13-byte message presented in
Table 2.4.

Data Description
Diagnostic Byte | Ox41hif Valid; Ox6Xh if error (*X’ is an error code)

Hx-m X Axis Magnetometer Data M SB
Hyx .| X Axis Magnetometer Data L SB
Hy.m Y Axis Magnetometer Data M SB
Hy | Y Axis Magnetometer Data L SB
Hzm Z Axis Magnetometer Data M SB
Hz.| Z Axis Magnetometer Data L SB
Ax-m X Axis Accelerometer Data M SB
Ax| X Axis Accelerometer Data L SB
Av.m Y Axis Accelerometer Data M SB
Avy.| Y Axis Accelerometer Data L SB
Az-m Z Axis Accelerometer Data MSB
Az Z Axis Accelerometer Data LSB

Table 2.4. 3DM Magnetometer & Accelerometer Data Format.

The 3DM data are transmitted MSB first and LSB second for each
measured value. The bytes are then decoded as Value = 256 x MSB + LSB.

The 3DM provides a single output rate of 9600 baud that should support
update rates in excess of 70Hz however timing tests revealed that a maximum reliable
update rate was only about 30 Hz. In order to provide consistent and predictable timing
performance it was decided to poll the 3DM at 20Hz (once every other minor frame).

Once received, the 3DM data is buffered in the Tattletale’ s RAM and is transmitted with
23

each periodic IMU message. The remaining analog sensors in the IMU data package are
sampled at 40 Hz. To simplify the decoding of the IMU data, a single standard IMU
data message was developed. This message is transmitted at 40 Hz; with the 3DM data
updated only every other frame. The “userser.c’ seria driver written for the RFTPS
decodes this downlink data message. As a result of this implementation, the 3DM
output occurs in repeated pairs. In order to perform frequency domain analysisit isfirst
necessary to strip off every other data value and use the sampling rate of 20 Hz for the
anaysis. The3DM™ TattleTale program isincluded in Appendix A.

b. GPS TattleTale Program

The Trimble Agl32 GPS receiver computes position at a maximum
frequency of 10 Hz. The GPS position data are then transmitted at 38400 baud to the
GPS TattleTale processor. All output conforms to the National Marine Electronics
Association (NMEA) GPS data protocol. Unfortunately, the parameters needed for
navigation and control are not contained in a single standard NEMA message. The
minimal GPS data set can be generated from two separate NEMA messages. $GPGGA
and $GPRMC. The combined $GPGGA and $GPRMC senterces consist of
approximately 161 ASCII text characters (varies slightly depending upon data content).
At an update rate of 10 Hz and baud rate of 38400 bps these two complete messages
would consume approximately thirty percent of the available downlink bandwidth.
Fortunately, it is possible to glean a minima data set from these messages and generate
a single binary coded GPS data message that only requires 31 bytes. The GPS
TattleTale receives the GPS recelver’s output messages via one of its RS-232 serid
ports. The messages are then parsed to form a compact GPS message. The compact
GPS data message is then transmitted at 57600 baud to the Master processor, on the
3DM Tattletale, via one of the 68322's digital 1/0 lines. Table 2.5 presents the data
contained in the standard NEMA $GPGGA and $GPRMC output messages and the NPS
IMU GPS downlink message.

24

Par ameter $GPGGA | $GPRMC | NPSIMU

UTC of Position Fix X X X
Latitude X X X
Latitude Direction (N or S) X X

Longitude X X X
Longitude Direction (E or W) X X

GPS Quiality Indicator X X
Number of Satellitesin use X

Horizontal Dilution of Precision (HDOP) X

Antenna Altitude (MSL) X X
Geoidal Separation X

Time since last Differential mode update X

Differential Mode reference Station | D# X

Data Status X

Speed over ground (kts) X X
Track made good in degrees True X X
UTC Date X

Magnetic Variation X X
Magnetic Variation Direction X X
Checksum X X

Table 2.5. Comparison of GPS Message Data Content.

The specified GPS update rate of 10 Hz corresponds to a period of 100
ms for each GPS message. Lt Commerford's extensive analysis of the GPS output
signal confirmed that the ASCII text data is reliably received from the GPS at an
average rate of 10 times per second, without dropouts our lost samples. The exact time
of the arrival of the GPS data however exhibited significant variability. While the
average update rate was 10 Hz each individual update arrived early or late; with some
observed as much as 100 ms time late (i.e. 200 ms between successive updates). This
uncertainty in sample time presents problems when trying to model the GPS for control

system design and analysis and may require greater gain and phase margins to account

25

for unmodeled (or inaccurately modeled) sensor behavior. The GPS parsing routine is
designed to wait until a full message has been received. Therefore, the timing of the
computers major and minor output frames was coordinated by the Master processor’s
rea-time clock signal (vice the GPS message signd used in the previous

implementation). The Slave processor’s operating code is included in Appendix A.

Downlink data is transmitted in a binary format as a series of 8-bit bytes.
This coding scheme reduces the throughput requirement on the downlink channel but
requires the ground station’s serial driver to decode it before it can be input into the
flight controller. Vaues that range between 0 and 255 can be represented by a single
byte, with no conversion necessary. Values that range between 0 and 65535 must be
represented by a two 8-bit bytes. Our convention is to send the most significant byte
(MSB) first, followed by the least significant byte (LSB). To decode a two-byte
unsigned integer the following formula is applied:

Value=256- MB+LSB (2.1

For signed integers a dightly different conversion must be used; since the
most significant bit of the MSB is usually a sign bit. The procedure used to decode 16-

bit 2's complement datais

Value=256- MSB+LSB
if Value> 2"

Value = 2'° - Value

endif

2.2)

Since the 3DM TattleTale downlinks three different data messages a unique two-
byte header was incorporated to distinguish each one. Table 2.5 presents a summary of

the TattleTae downlink messages characteristics.

26

Header (Hex / Number of Data | Transmit
Message Content Decimal) Bytes (less Header) Rate
IMU Sensor Data FF FF / 255 255 28 40 Hz
GPS Data EE EE / 238 238 29 10 Hz
GPS TattleTale A/D Data DD DD /221 221 16 20 Hz

Table 2.5. TattleTale Downlink Message Characteristics.

D. CROSSBOW ATTITUDE HEADING REFERENCE SET

The AHRSA00CA-100 isalow cost, compact solid-state AHRS manufactured by
Crossbow Technology, Inc. The AHRS measures linear acceleration, angular velocity,
and magnetic flux for three orthogona axes and computes stabilized values of pitch, roll
and heading by using proprietary Kalman filter algorithms. Output data is provided in
both digital and analog formats via a standard female DB-15 connector. The AHRS is
depicted in Figure 2.17.

Figure2.17. Crossbow AHRS400CA-100 Attitude Heading Reference System.

1 Har dwar e Description

The AHRS features silicon micro-machined accelerometers and gyroscopes and
flux gate magnetometer. The AHRS400CA-100 is configured with a £ 2 g tri-axial
accelerometer, a + 100°/sec rate tri-axial gyroscope, a tri-axial fluxgate magnetometer
and a temperature sensor. The angular rate sensors consist of vibrating ceramics plates

that utilize the Coriolis forces of output angular rate independently of acceleration. The
27

tree MEMS accelerometers are surface micro-machined slicon devices that use
differential capacitance to sense acceleration. The sensor outputs are converted to
digital signas in a 14-bit A/D converter and then processed by the embedded
microprocessor. The microprocessor provides serial output at 38400 baud via the RS-
232 compliant interface. Analog output signals are provided by a 12-bit D/A converter.
The AHRS system architecture is depicted in Figure 2.18.

Tri-axial »

Accelerometer . o
RS-232 HRDclj!' PI}{hW
— migital M Heading Angle
Tiakal) = CPU + EEPROM ol g And

Gyroscope : e A XYI

: 2 lg—p Calibration L
= Algorithm 12-Fit Acceleration

Tri-anial) g - ACI N _

Magnetomeater Analog 3 Axis
Qutput _.-'1'-.I'|EILI|EIF Rate

AHRS Elock Diagram

Figure2.18. Crossbow AHRS System Architecture.

The AHRS has three sensor modes of operation, voltage, scaled sensor, and
angle mode. In voltage mode, the analog sensors are sampled and converted to digital
datawith 1 mV resolution. The rate sensor, magnetometer and angle analog outputs are
disabled in this mode though this data is still provided in the serial data stream. In
voltage mode the Crossbow provides only un-scaled raw sensor output without any
calibrations or corrections. When operating in the scaled mode the Crossbow AHR3400
is a classic inertial measurement unit (IMU). In the scaled sensor mode, the analog
sensors are sampled and converted to digital data as before but then are temperature
compensated, corrected for misalignment and scaled to engineering units. A factory
calibration table for each sensor is stored in the AHRS nonvolatile memory. The
AHRS Kalman filter is not enabled in this mode so rate sensor bias values can be
expected to change over time. Also stabilized pitch, roll and yaw angles are not
available. The analog output signals are enabled in this mode. In the angle mode, the

AHRS acts as a compl ete attitude and heading reference and outputs stabilized roll, pitch

28

and yaw angles along with the angular rate, acceleration and magnetic field information
available in the scaled mode. The AHRS Kaman filter operates in the angle mode to
track the rate sensor bias and calculate the attitude angles. The attitude angles are
computed by integrating the rate sensor outputs. The accelerometers are used to correct
for gyro drift in pitch and roll and the magnetometers are used to compensate for drift in
yaw. The seria data parameters for each of the sensor modes are presented in Table 2.6.
The header and Checksum are passed as single bytes. In angle ard scaled sensor modes
al data (except temperature and time) are sent as 16-bit signed integers in twos

complement format, most significant byte first. The temperature and timer data are sent

as 16-bit unsigned integers.

AngleMode Scaled Sensor Mode VoltageMode
Header (255) Header (255) Header (255)
Roll Angle Roll Angular Rate Rall Gyro Voltage
Ritch Angle Pitch Angular Rate Pitch Gyro Voltage
Heading Angle Yaw Angular Rate Yaw Gyro Voltage

Roll Angular Rate

X-Axis Acceleration

X-Axis Acceleration Voltage

Pitch Angular Rate

Y -Axis Acceleration

Y -Axis Acceleration Voltage

Yaw Angular Rate

Z-Axis Accderation

Z-Axis Accderation Voltage

X-Axis Acceleration

X-Axis Magnetic Field

X-Axis Mag Sensor Voltage

Y -Axis Acceleration

Y -Axis Magnetic Fidd

Y -Axis Mag Sensor Voltage

Z-Axis Accderation

Z-Axis Magnetic Field

Z-Axis Mag Sensor Voltage

X-Axis Magnetic Field Temp Sensor Voltage Temp Sensor Voltage
Y -Axis Magnetic Field Time Time
Z-Axis Magnetic Field Checksum Checksum
Temp Sensor Voltage
Time
Checksum
Table 2.6. Sensor Mode Serial Data Parameters.

29

The data message uses a single header byte with a value of OFFh. During the
development of the serial decoder for the FROG controller it was discovered that this
value appears humerous times within a single data packet. In order to decode the seria
datait is necessary to check each byte to determineif it is the header byte. When a byte
value equals OFFh a checksum must be computed for the following 28 bytes (22 in
scaled or voltage mode) and compared to the next byte to see if it contains a valid
checksum. If the checksum matches then a single data packet has been found. If not
then the process continues in a serial fashion (byte-by-byte). The use of a single header
byte (who's vaue commonly appears within the data message) creates a
computationally intensive and inefficient decoding job. This situation could be greatly
improved by adding a second header byte to each AHRS output message. The
probability of having two consecutive OFFh’s is extremely low and would greatly reduce
number of computations required in order to decode the message. With a two-byte
header each byte is compared to the byte that preceded it. When both bytes have avalue
of OFFh avalid header has been found and the following bytes are almost certain to hold
the data string. Crossbow Technology’s cost estimate to change to a two-byte header
exceeded the purchase price of the AHRS itself.

2. Timing Performance

The Crossbhow AHRS400 was purchased principally as an AHRS for the FROG.
As such, the performance in the angle sensor mode is of primary interest. The AHRS
may be operated in either continuous update or polled mode. In the continuous mode
data is streamed at the AHRS maximum rate. In the polled mode uses a challenge and
response format in which the AHRS responds with a single update message for each
“request for data’ command received. During operation the ARHS processor runsin a
loop — collecting data from the A/D converter and processing/formatting the data for
output. The data is output to the user in a parallel process. Each data cycle consists of
three tasks. First, the sensors are sampled. Second, the microprocessor processes the
data and stores it in a set of registers for transfer to the serial output buffer. While the
AHRS is waiting for the seria buffer to clear the processor will simultaneously sample
the sensors again. Third, the unit actually transfers the data out to the RS-232 serial
buffer. In the case of analog output the data is placed on the output pins immediately

30

after the data processing step (no seria buffer delay). The serial dataistransferred only
when the previous data packet has cleared the serial buffer. The AHRS continues to
take data (and over-write the data in the output registers) while waiting for the output
buffer to clear. Consequently, only about every third measurement is actualy available
over the RS-232 interface.

Crossbow Technologies only specifies a maximum serial update (75 Hz) and
gives no other specific information on output performance. They do state that in
continuous mode the system processor activity is highly deterministic and accurate
timing information can be derived from the overal loop rate. Upon delivery of the
AHRS aflight test was performed to assess the units suitability for use in the FROG. As
AC-104 seria drivers were not yet written, the Gyroview software provided by
Crossbow was used to capture and decode the AHRS output. Gyroview version 2.1
includes the ability to control he AHRS operating mode and includes provisions for
real-time display and frequency domain (via fast Fourier transform) analysis of the
sensor outputs. The Gyroview interface and sample output are depicted in Figures 2.19
and 2.20 respectively.

GIGYRO-VIEW Control Panel _________ MIEIES|

File DU Logging Windows Help

— DMU Status

| COk1 (2 38400: Connected 0:55
| DMU AHRSHDX REY.A31, 5/M: 105802
= sample rate | g5

-

— temperature history: one hour

— DhU Cantrols

packet type

I angle mode 'l

— DMU Logging
IDt_iging rate:
STARTLOG « full sample rate
« zamples persect 1
£~ seconds per sarn i

file:| Static Testbd

Figure2.19. Gyroview Software User Interface.

31

:-'-Iu!_ﬁhjl T HoghAsglee - 1 | Rl

i
AR a I
T
.

il s ChioFletag s | 4 . 2
A —— - I . L] gt - ¥ s Fiich
L B] L] L 1) ¥ L
sl et e R e

#
=
=
-]
e

Aoremrstans

-'\dm,elr.ﬂw N

H482-, ., . . ' . . ' . . . ' ' ' . =
1032 163 1035 028 1027 1008 1003 104D A0 0AE 043 1044 1DAS 1048 1047 108 10AR 105D 1RG0 052

Figure2.20. Gyroview Real- Time Data Display Capability.

Post flight analysis of the AHRS sensor and computed angle outputs indicated
that the AHRS could provide the level of accuracy required for the flight controller and
future control projects. Figures 2.21 and 2.22 depict the AHRS data for a double figure
eight maneuver. The analysis of the Gyroview data did, however, revea ahighly erratic
and inconsistent update rate, as shown in Figure 2.22. This discovery negates the utility
of the Gyroview Fourier analysis module, as a consistent sampling interval cannot be
maintained. CrossBow’s technicians reviewed this finding and indicated that the timing
irregularities in the captured data were due to unspecified problems in the Gyroview
program itself and that the AHRS output was stable and consistent.

32

Crossbow AHRS, - Figure 8 (Evt 6)

200 T
—= roll \ / \\\ /
’@100* —= pitch Ny -
S — SN S N
S ol : AN o
E \’"L\T“J / 1%/“/ N
-) / N 7
-200
1500 1510 1520 1530 1540 1550 1560 1570 1580 1590 1600
time (sec)
~100
g
> 50 A
o
g o —4 AR ANV Y T
& Il rate (p)
) —— roll rate (p
% 50 Y —— pitch rate (q)
2100 —— yaw rate (r)
1500 1510 1520 1530 1540 1550 1560 1570 1580 1590 1600
time (sec)
~ 3
2
55 A)
O e e e e Y N s VAT g e
S H— A P A
g & Y o5
g _ 6& PR Gt 1 P P
g0 T Tﬂs-"%s i ey
c

-1
1500 1510 15

20

1530 1540 15
time

50
(sec)

1560 1570 1580

15

90 1600

Figure2.21. Gyroview Flight Test Data (Level Figure-8 Maneuver).

33

Crossbow AHRS, - Figure 8 (Evt 6)

o
2

- e
/ Qv UzEn
1A \ L,

I I
-0.5
1500 1510 1520 1530 1540 1550 1560 1570 1580 1590 1600
time (sec)

b

Magnetic Flux (Gauss)
o

150

=
o
o

(TR TI TIRYITERE (THRTTATI AT Y] (TR W (HATTTT (RTTRT (M R A

Update Rate (Hz)
(o]
=)

0 1000 2000 3000 4000 5000
data point (n)

Figure2.22. Gyroview Flight Test Data (Level Figure-8 Maneuver).

To test this assertion, and establish baseline timing performance specifications
for use in our discrete time control system, we performed detailed timing analysis of the
Crossbow AHR$A00 seria output signals. Timing tests were performed in both the
continuous and polled operating modes and in the angle and scaled sensor measurement
modes. The AHRS seria output rate was set to the default value of 38400 baud for all
measurements. The update rates, message durations, inter-message gaps and polled
mode response latency were measured with a DSO-2102 PC—based digital storage
oscilloscope, manufactured by Link Instruments, Inc. In the angle mode the 30-byte

data message duration was a consistent 7.510 ms, as shown in Figure 2.23.

B B Tondd B0 B Whk) FTh BT MRiGed Bl e Hel

] sl]] wele s | QODEDDIg] S

e T e e B

Data Packet Duration = 7.51 ms
Crossbhow AHRS
e el ContinuogAngle Mode !
ﬁ [RLL S]] =

[it bt .| o

Figure2.23. AHRS Angle Mode Seria Output Signal.

In continuous/angle mode the output period alternated between 14.350 ms and
16.400 ms resulting in an alternating frequency of 69.7 Hz and 61.3 Hz. The alternating
output rate was highly stable and the slow-fast-slow-fast pattern was repeated without
interruption, as depicted in Figure 2.24.

B e hard FEoe EMe Wek) BRSBTSV HjAGs ey ks HHs

16.4000 ms

k | i
I et s e | BEL v

Figure2.24. AHRS Continuous/Angle Mode Serial Output.
35

As the continuous/angle mode did not have a constant output frequency, the
polled mode was tested. The AHRS can be placed in the polled mode by sending an
ASCIl “P” command. Once in the polled mode, the AHRS will send one complete data
message in response to each request for data command (ASCII “G”). In order to
stimulate the AHRS at precise frequencies a Motorola 68322 based TattleTale 8 micro-
controller was programmed to send the request for data command (ASCII “G”) over the
RS-232 line to the Crossbow AHRS. The command signal and the AHRS response
were then captured on the digital storage oscilloscope. Prior to each test, the micro-

controllers RS-232 command rates were verified using the digital storage oscilloscope.

In order to determine the AHRS range of response latency a sample of 169
polling command/response events was recorded. The oscilloscope was set to trigger on
the data request command line ard the sampling rate was adjusted so that the scopes
data buffer would only capture a single command/response event. The display was then
set to accumulate the successive traces without refresh. The Tattletale polling rate was
set to 1 Hz to ensure that each command/response event could be considered and
independent event. Figure 2.25 shows the delay between data request initiation and

AHRS response varies from a minimum of 13.998 ms to a maximum of 29.692 ms.

Bl B Ounnel Jiges Bale Tring s AT P Meaors ey Bindoes Heh

B ®iale|lel @il 5 asmEey oo omio) &

Crossbow AHRS
Angle/Polled M ode

Data Packet Length

Polled Mode latency test. 169 samples.
Note wide variability in response to poll command.

Figure2.25. AHRS Polled / Angle Mode Serial Output Response Variation.
36

These results suggest that the AHRS should be capable of responding to polling
commands at a maximum polling rate of 33.6 Hz. In order to confirm this result the
AHRS was polled at various frequencies and the response behavior was observed. The
AHRS was able to meet the response time constraints when polled at 20 Hz, Figure 2.26.
Contrary to expectations, the AHRS could not respond fast enough when polled at 30
Hz. Figure 2.27 clearly shows two AHRS responses arriving within the same polling

frame.

Crossbow AHRS
Angle/Polled Mode

20 Hz Poll Rate

Blaan| [Daian Bk znm

Figure2.26. AHRS Polled/Angle Mode Response - 20 Hz Polling Rate.

37

Er-r-iLw-B—1m5'nFlerw-u-wmn¢
Crosshow AHRS
Angle/Polled M ode

8| =|alalel #l= 2 ﬂ|';z:].’;.°";‘ I o oinooolo) &%

Poll Rate 30 Hz

Erallde, wasa £ o ST T]

s | [Tt Pty |[i0wtean - o

Figure2.27. AHRS Polled/Angle Mode Response - 30 Hz Polling Rate.

Performance continued to degrade as the polling frequency was increased but
then appeared to improve as the polling command rate approached the continuous
mode’s output rate. At 60 Hz the AHRS could meet the polling rate for ten to eleven
cycles and then would drop a whole response, Figure 2.28. From these tests it was
deduced that the AHRS internal data cycle is unaffected by the selection of polled or
continuous mode. If by chance the polling command arrives just after a data sample has
been posted for output the latency can be quite small. However, if the polling command
arrives when the AHRS is posting new data to its registers a whole processing cycle may
elapse before output is available. If the polling rate could be set to match the natural

alternating frequency observed in continuous mode the AHRS would appear to function
flawlessly.

38

Within blocks theinterval alter nates between approx 14.2 and 16.6 msec.
Theinterval between blocksis approx. 29:4 msec.
Polling Frequency = 60 Hz

Figure2.28. AHRS Polled/Angle Mode Response - 60 Hz Polling Rate.

These results were provided to Crossbow Technologies for comment. Crossbow
advised that the apparent absence of determinism in the polled/angle mode response was
considered a “feature”. No explanation was offered for the alternating period observed

in continuous/angle mode.

In light of these findings, timing performance was also evaluated in the scaled
sensor mode. In scaled sensor mode the data message is 23 bytes long; vice 30 bytesin
angle mode. The scaled mode message required 6.16 ms, at 38400 bps. In
continuous/scaled sensor mode, the AHRS output period was a nearly constant 8.720
ms, which corresponds to a frequency of 114.6 Hz. There was no evidence of the
alternating period observed in continuous/angle mode. The continuous/scaled sensor

mode seria output performance is depicted in Figure 2.29.

39

B e Chawed [nooe RA® Tiard Sha FFT GV Peomse Mol Acke HSD

=5 O8DE 0o &1

Period = 8.72 ms (approx 114.6 Hz w/good stability)

¥ ST (Ve

Figure 2.29. AHRS Continuous/Scaled Sensor Mode Serial Output.

In the polled/scaled sensor mode the AHRS behavior was similar to that
observed in polled/angle mode. A sample of 100 command/response events was
collected in the same manner described for the polled/angle mode and is presented in
Figure 2.30. The AHRS response delay varied from a minimum of 8.638 ms to a
maximum of 16.480 ms. A maximum permissible polling rate for polled/scaled sensor

mode was not determined.

40

Bwdn2] [B[]

Ol et homel Tiggar Esin Ting Rein FFT A Mpssan Menone Widos e
Crossbow AHRS
/Polled Mode

B| a|alelel &k %l ald| 2w O50nn 00 o &

e D=2 M 0FmS Soreas sime =75 b IID0S

8.638 msto trigger 22.64 msto trigger

Polled/Scaled Mode latency test. 100 samples.
Note wide variability in response to poll command
(though less than Angle mode).

= = = i =5

Figure2.30. AHRS Polled / Scaled Sensor Mode Serial Output Response Variation.

3. AHRS Noise Output

The noise characteristics of the AHRS were evaluated for future incorporation
into the FROG plant model. The AHRS was positioned on a stable concrete slab
covered with a vibration isolating padding. The AHRS was initialized and alowed to
operate for severa minutes to allow the Kalman filters to converge on the gyro biases.
Data was collected with Gyroview software and post processed in Matlab®. The mean
pitch, roll and yaw rates were on the order of 0.005 degrees per second with an average
standard deviation range between 0.079 and 0.088 degrees per second. The standard
deviation of the orientation angles ranged from a low of 0.019 to a high of 0.025
degrees. The standard deviations for the three accelerometers ranged from a low of
0.00033 to a high of 0.00045 g's. The standard deviation of magnetometer output
ranged from 0.00085 to 0.0011 Gauss. The computed mean values, standard deviations
and covariance matrices for each set of parameters are presented in Appendix B. The

observed ambient noise values are suitable for control system projects on the FROG and
41

should be incorporated into the FROG plant model prior to further controller

devel opment.

42

I1l. DIGITAL FLIGHT CONTROLLER

The FROG autopilot was designed using classical feedback methodologies. The
autopilot was required to provide the following functions: atitude control via elevator,
speed control via throttle and heading control via ailerons. The autopilot was aso
required to incorporate a yaw damper. The first step in the control system design
process was to model the plant (system to be controlled) as accurately as possible. The
nontlinear FROG aerodynamic flight model used in this effort was developed, evaluated
and refined by several previous students, including Hallberg [Ref. 3], Papgeorgiou [Ref.
4] and Pollard [Ref. 5]. The model had been developed for a single trimmed speed of 88
fps so the autopilot was designed around this speed. The FROG aerodynamic model did
not incorporate the control servo dynamics so these had to be added before the flight
controller design could be started. The autopilot was designed using MatrixX version
6.2.2. Once completed the autopilot was demonstrated via hardware in the loop (HITL)
using the TS-75 servo actuators in the Controls Laboratory. The autopilot provided
stable and reliable performance with the TS-75 HITL.

A. SERVO TEST SET CHARACTERIZATION

The first step in the flight controller design was to develop a control servo model
to incorporate into the FROG plant model. Once the actuator dynamics were known a
second order servo model was developed. Initiadl development work on the FROG
autopilot was conducted in the NPS Aeronautical Engineering Department’s Controls
Systems Laboratory. During initial autopilot development the airplane’s servos had not
yet been instrumented for position feedback. Servo dynamics and hardware in the loop
(HITL) testing was performed using a surrogate servo test set that interfaced with the
AC-104 computer. Only after the prototype autopilot had been completed and
demonstrated in the Lab was the necessary instrumentation installed on the FROG
control surfaces to evaluate the airplane’s true servo response. The FROG servos were
then tested on the airplane to determine their dynamics and the overall control system

temporal response characteristics.

The dynamic response characteristics of the miniature electric servos, installed in

the servo test set, were determined using the data acquisition and hardware control
43

capabilities of the MATRIXx/AC-104 system. Each servo test set was equipped with
four Sys3000 TS-75 miniature electric servos, manufactured by Tower Hobbies. The
servos were mounted in a metal tabletop cabinet and were equipped with pointers so that
their position could be readily observed, Figure 3.1.

Figure 3.1 Servo Test Set.

Each TS-75 servo had been modified so that its internal feedback voltage could
be monitored on an external DIN-50 connector. A second 50-pin DIN connector was
provided to permit the input of servo PWM command signals. The laboratory HITL
system is depicted in Figure 3.2.

TS-75 Servo Test Set

I

< -
L1

<

(Analog - (PWM)
Voltage)

AC-104
Com puter (IP 68322)

(AIM16 A/D)

*

Figure3.2. Control Systems Laboratory Hardware in the Loop System.

Matrixx version 6.2.2 was used to create a test system to permit servo dynamics
assessment and control of the servosin the test set. The SystemBuild servo test system
is depicted in Figure 3.3. The servo commands were input in degrees (£ 90°) and then
converted to pulse width values by a first order transfer function. In order to
synchronize the physical servo pointer position with the output command, the Degto-
PWM transfer function employed a variable slope and intercept that could be adjusted at
run time. The resulting PWM commands were sent to the 1P-68332, which generated
the PWM signals for the TS-75 servos. The servo feedback voltage was digitized by the
AIM16, 16-bit A/D converter and converted to degrees using the following formula:

180°
Vigor = Vg

(Vou - Vi) (3.1
The values of the minimum, maximum and zero degree voltages could be edited

during run-time to permit calibration of the V-to-Deg transfer function.

V_to_Deg Servo 1 Vout 4 Ser 1 Vout
5 rvo 1 Vout 2 [Ser 2 Vout
2[i xgloo Ser 1 Deg Out J5~ Servo 3 Vout | 1 er 3 Vout
or 1 Vmioo. Servo 4 Vout [Ser 4 Vout
161 ervo 2 Vout
er 2 Vpi00
Ser_2 Deg Out
er 2 Vo SUPER >
TaoSer 2 vmioo
ervo 3 Vout
er 3 Vp100]
e BLOCK Ser 3 Deg Out Jrmy
er 3 Vmio0
5<Servo 4 Vout T od
ode
TgdSer 4 Vp100 Ser 4 Deg Out Hi TL Mode Switch T
er 4 Vo 0.001 > @5—
er 4 vmioo qj—Ser 1 Deg Oulg
Ser_2 Deg Out
E Ser 3 Deg Outyl
Deg to PWM Ser 4 Deg Out _
Cal Mode Switch SAl_Mode o 4 3 __uz y
al Mode Switc
oy —oce o ohy]
Servo 1 Deg Cmd =] o Ser 1 PW Cmd — =
Servo 2 Deg Cmd ul o ol U3
Servo 3 Deg Cmd - —n
Servo 4 Deg Cmd Ser 2 PWCHW [F ontroller
[t beg w2 — T ESE! 1zero PW SUPER [2> = 150 o>
= ser 2 Pwsiope] [] 1
e < PWslope =
;‘: us — EDSer 2 zero Pw BLOCK Ser 3 PWCmd [y = g SUPERRS +1>
input . Eser 3 PWsiope o Pk VR
= Ser 3 zero PW Variable Gain cMD] o 001 M
[sorerls b EDser 4 PWsiope 0. 001 Ser 4 PW Cd o~y ED -
TY srock @:Ser 4 zero PW
0. 001
Actuator Model
= [32
Fa SUPER |y
9 sLock
Vel ocity
Yo oSl [P
[FIT -1
.|
=
surer| b,
DLver cmi n
sLock| [x| actuator
Vel cmd 255
Vel cmd 3.3 SUPER
0.001 vel cmd 4rrsy JeLock P
fFonti nuous|

Figure3.3. SystemBuild Servo Dynamics Test System.

The controller included a run-time graphical user interface, which alowed the
user to input servo position commands and monitor servo position feedback. Controls
were included to permit real-time adjustment of the command and feedback transfer

functions. The servo test system calibration mode GUI depicted in Figure 3.4.

The simulation was Autocoded with a minor frame size of 0.001 seconds
(Scheduler frequency = 1KHz). The ReadSim Data Acquisition Editor was used to

capture the controller command outputs and raw and processed servo responses for
posttest analysis.

Once the test system was in place the actuators were stimulated with large and
small STEP inputs in order to observe the plant dynamics. Limited data was available
for the TS-75 sarvos. The TS-75 servos have a specified torque of 110.00 ozin and a
response rate of 0.19 seconds per 60°. Though small variations existed between
individual actuators it was determined that the natural frequency was 38.73 rad/sec and

the damping ratio (V) was 0.426. During testing the servo position feedback data

showed a repeatable periodic offset. The offset was visible in each of the STEP
46

response plots and was observed on more than one servo test set. These position offsets
occurred as the actuators slowed and approached the commanded position and could not
be characterized as noise. It is unclear if the offsets originated within the internal servo

feedback circuit or were introduced due to a binary error within the AIM16 A/D. The
servos response to a 10° STEP input is depicted in Figure 3.5.

¢ Endit e At

13,00 13, a0

Sarvo Position Adj

Servo Position Adj

— R — = R —
— I — =
Dasplay Cal Display Cal
T:Tn?u r;:!:a. =N Sarva Output e LT
5 =y 1. 13,000 Volts | = RARL L —
- ‘l’.j"[li — -— 'I'.-_":I.!'I —
1F, 00
13. 00

Servn Position Adg Seren Position Ad

= R —
| -

— BT —

Desplay Cal

Serm Duiput
15. 000 Yolls

S Oulput
13900 Wolts

Figure3.4. Servo Test System Calibration GUI.

47

Senvo Pasition (deg)

0 005 01 Q15 02 025 03

Time [s]

Figure3.5. TS-75 Servo Response to 10° STEP Input.

The servo response to large STEP commands (greater than approx. 30°) reveaed
the presence of an internal rate limiter. The servo rotation rate was limited to 346° per
second, which was reached after about 20° of rotation. The dynamic response data was

used to create a 2" order servo model, Figure 3.6.

E

346[:
- 346

Limter

Figure3.6. Second Order Modd of TS-75 Servo.

To evaluate the accuracy of this model it was incorporated into a simple speed
control system. The controller was then linearized and a Bode analysis was performed
to determine the gain and phase margins. The Bode analysis indicated that the speed

controller had a gain margin of 30.37 dB @ 6.6 Hz and the phase margin was 88.6° @
48

0.179 Hz. The speed controller was then modified to permit the TS-75 servos to be
inserted as HITL in place of the 2" order servo model. The controllers gain margin was
experimentally determined by incorporating a variable gain in the feedback loop. A
separate Speed Controller GUI was developed to permit monitoring of the servo
response and control of the feedback gain, Figure 3.7.

Servo &2 Servo #1

Einale it

Tal Moy _:l:-. T ==
al Pad | - Bl
B = -

Figure3.7. ReaSim Speed Controller GUI.

The gain margin was determined by increasing the feedback loop gain until the
controller became unstable. Three of the test servos exhibited a gain margin of 26.24 dB
while the fourth had a gain margin of 27.42 dB. These gain margin values are in good
agreement with the predicted value of 30.37 dB (13.6% and 9.8% difference
respectively). The servo response to varying feedback gain is depicted in Figure 3.8.

49

: r—'_'—_
2 . — |
%B '__'_'_l !]
_,_l—' i I
. [I
5 s 1 | PR ETE OV PN N B I | ||..|I.-||.||.
i . | ol LATARA T ALATL A ARA S AAA RS ALY
§ ' il i ""ﬂ%wu Py Uy Yy vl
" | I LANARARERE LR AR BAA DAY
m]
I |-ll|.|lil|||l|ll|||l bl bk [| e
.] ..h*lll!.ﬁflﬂﬂh.flhﬂﬂﬂﬁllﬂﬂﬂﬂ IAR AT AR ALK
' ' T Ty Y ey gy
; ! | LU UL L |[|r|11'1'r TP, TTTFPRT
E; I |.Illll;lll.lllil:-l-l.llln::-nl.l n
. _,'*Elnuﬁmumn IO AR R LAY AT AT AL
Ly A R T Yy DYy
. AR AR RN R AR KA
: E— !
. i Lty
: N A ‘N“*‘* e 1]
. I i LA
I |
Gain = 20.5 Gain =23.5

Figure3.8. TS-75 Response to Increasing Speed Controller Feedback.

B. DIGITAL FLIGHT CONTROLLER DESIGN
The flight controller (autopilot) was designed to provide the following functions:
altitude control via elevator, speed control via throttle and heading control via ailerons.
The autopilot was also required to incorporate a yaw damper. MatrixX version 6.2.2
and the RFTPS were used to design and test the controller. The completed the autopilot
was demonstrated via hardware in the loop (HITL) using the TS-75 servo actuators.
1. Design Methodology and Performance Criteria
The autopilot was designed using classica inner/outer loop feedback
methodologies. The control channels were designed in the following order: yaw
damper, altitude control on elevator, heading control on aileron and finally speed control
on throttle. At each stage the inner and outer loop performance was evauated using the
nontlinear flight dynamics model of the FROG in MatrixX. The basic design procedure
for each controller was the same.
Design the feedback (compensation) loop in SystemBuild.
Linearize the new system (plant plus compensator) in Xmath.
Evauate the stability of the new system viaroot locus.

50

Determine the systems phase and gain margin (Bode plot).
Determine systems response to a Step command.

Adjust the compensation gains and repeat steps two through five until the
specified design criteria were met.

Once satisfied with the linearized systems performance check the non
linear system by inserting a Step source into the SystemBuild ssmulation
and evaluate the systems performance.

The SystemBuild flight controller is presented in Figure 3.9. The servo
calibration GUI was modified and augmented with a separate autopilot control GUI,
which is depicted in Figure 3.10

Figure3.9. FROG SystemBuild Flight Controller Model.

51

Wwinghy Aarplanas

FROG Flight Controller

Allisude Sel Heading 584

Walocty Sal

4.._..

Mode Conrold Fanel

I ¢+

I Scarc
i

Figure 3.10. RealSim Flight Controller Display.

2. Y aw Damper

The yaw damper was designed to provide stability augmentation by feeding back
commanded angle of bank (f) (from the heading controller) divided by true airspeed
(Vt). Commanded angle of bank was chosen, in lieu of a washout filter, so that yaw
damper would not attempt to counter a commanded turn. The compensator chosen was
of the proportional/integral type (Pl) with an additional scaling gain. As specific yaw
damper performance requirements were not given atarget of 6 dB gain margin and 60°
phase margin was used. The yaw damper block diagram is presented in Figure 3.11.
The linearized yaw damper displayed a gain margin of 13.1 dB @ 38.39 rad/sec and a
phase margin of 76.1° @ 7.73 rad/sec.

52

Eghi cmd

Eghi cmd

o

Figure 3.11.

d_rudder

14
_> > Del ta_rudder -

Yaw Damper SystemBuild Block Diagram.

Figure 3.12 presents the FROG' s response (with simulated actuators) to an 11.4°

(0.2 rad) step input to the rudder position. The yaw damper immediately counter acts

the rudder disturbance and bank angle is returned to zero within 14 seconds. The

airplane’s heading exhibits a maximum deviation of 2.3° and is restored within

approximately six seconds.

Rutder Command (ce)
® o m & o o B

e (se0)

YawRete(%sec)

P

0.5

e (se0)

Heatdng (ceg)

B v & o

Rdl Argle deg

[S

e (se0)

Figure 3.12.

53

Y aw Damper Response (Simulated Actuators).

Figure 3.13 presents the HITL performance of the yaw damper with HITL; when
subjected to a 10° rudder change (from —-5° to +5°). The heading reaches a maximum
deviation of approximately 2.2° after 1.5 seconds and has returned to within 1° of the
original value by fou seconds. It is noted that the presence of a small periodic signa
was observed in the TS-75 servo’s output. This small disturbance signal degraded the
yaw damper’'s performance somewhat when compared to the simulation. The
disturbance signal was observed also observed when the controller was disconnected
and was therefore not an undesirable controller response. Other possible feedback
schemes include yaw rate feedback, roll rate feedback and sideslip feedback. Each of
these has significant influence on the short period and spiral modes of an airplane and

merit further investigation for use on the FROG.

Ruckler Irput (cbg)

Rucker Comerd (ck)

0 LT it LT
: 1
2, N
P A
0) ey
g, W‘-"'_"'J‘ il o T
B B
I Y
2 Y
|- N m—
a e e

6 8

o
N

Tme[s]

Figure3.13. FROG Yaw Damper Performance with TS-75 Actuators.

3. Altitude Controller
The altitude controller was designed to satisfy the following criteria:
The closed- 1oop system must be stable.
54

The elevator command loop bandwidth should not exceed 7 rad/sec.
Minimum gain margin of 6 dB and phase margin of 30°.

Additionally, the controller was designed to limit Step response overshoot of no
more than 10% and a have a rise time of about 10 seconds. The inner loop consisted of
a proportional/derivative (PD) compensator using pitch rate (g) and pitch attitude @)
feedback. The outer loop employed a PID compensator with altitude (P,) and atitude

rate (h) to produce commanded pitch attitude. The altitude controller block diagrams
are presented in Figure 3.14.

el ev outer loop PID
I_i_:al'titude conmand SUPER theta cnd
g BLOCK >
z_dot
o= Conti nuous

el evat or

o7}

SUPER delta_el 94
14 O > J

delta_theta BLOCK delta el evator

-1 E)

-+ Conti nuous

theta +

Figure 3.14. Altitude Controller SystemBuild Block Diagram.

The altitude controller exhibited a gain margin of 13.86 dB @ 16.46 rad/sec and
a phase margin of 58.6° @ 6.50 rad/sec. The linearized model’s performance met the
10% overshoot and 10 second rise-time constraints but the non linear simulation dlightly
under performed. The nontlinear controller exhibited an over shoot of approximately
15% and a rise time of approximately 11 seconds. The HITL response is presented in
Figure 3.15. The HITL overshoot was approximately 14% with a rise time of
approximately 9 seconds. A significant periodic oscillation, with afrequency = 0.83 Hz,
was observed on the elevator command and elevator servo output channels. Peak-to-
Peak variations of approximately 1° were observed but the variation did not appear to
affect the controller’s atitude performance. While this behavior was acceptable for the
altitude controller it would likely produce unacceptable variations in pitch attitude that
would adversely affect the ability to stabilize optical sensors. The source of the

variation was not determined.
55

e Comrerd (f)
8

feveter Comend (ckg)
°
8
ot

Elestor Resprse (k)
°
0
'
i
'
i
'
i
'
i
'
|
1

Al)
g 8

Time[s

Figure 3.15. Altitude Controller Response with TS-75 Servos.

4, Heading Controller
The heading controller was designed to meet the same performance requirements

as the altitude controller. The heading controller design incorporated inner, middle and
outer loop feedback loops and isdepicted in Figures 3.16 and 3.17. The outermost |oop
took commanded heading / ¢) and produced an angle of bank command ¢¢). The
middle loop took f . and converted it into a roll rate command (pc) while the inner most
loop converted p; to an aileron deflection command (ds). The inner loop consisted of a
PI controller. The middle loop consisted of a PID controller and the outer loop consisted
of a Pl controller. The outer loop also included a limiter that restricted f output to less
than 0.5 radians (approximately 28.5°). Each loop layer was designed such that the
crossover frequencies were separated by at least one decade.

56

15 16 17 99
0.5
syheading command | P=11 o -
+ 1= 0.5
-0.5
- L t
Typsi imter

e

25

7 6
P= 0.3 delta_aileron
o = — 1D
+ 3 1= 1 »
h

Figure3.16. Heading Controller System Build Block Diagram.

The heading controller exhibited a gain margin of 14.74 dB @ 38.49 rad/sec and
a phase margin of 80° @ 5.97 rad/sec. The heading controller’s response, with
simulated actuators, to a step heading command of 29° is presented in Figure 3.17. The
airplane heading (y) exhibits a 10% overshoot and arise time of approx. 5.5 seconds. It

can aso be seen that the yaw damper responds as expected to produce a coordinated

turn.
;=
5
g 15
g 10
=
—_ 01 H
E \
- ——
o ‘Time (sec)
. el BN
g d T
) rd e
£ T
rd e
‘Time (sec)
: P —
. -~
g 5 J‘J‘-J#
" 7
-
Time sec

Figure 3.17. Heading Controller Response With Simulated Actuators.
57

The HTIL response of the heading controller is presented in Figure 3.18. The
HITL response exhibits a y overshoot of approx. 8% and a rise time of 4.8 seconds,
which compares favorably with the simulation results. It was noted that the aileron
servo output exhibited nearly the same periodic variation as was observed in the yaw
damper. It is possible that the source of this signal would only be found in one of these
channels and that it is propagating into the other channel via the airplane's roll/yaw

coupling. Further analysis of this phenomenon is warranted.

Heecing Commend deg)

o B B B e

Aleron Commard (deg)
8§ =

g‘l

E_z _'vvwm"w' My doe
¢ _‘ﬂ'""—

g . el

: 7 —

] A
: "

Figure3.18. Heading Controller Response with TS-75 Servos.

5. Airspeed Controller
A Pl speed controller was implemented on the throttle. The speed controller

block diagram is depicted in Figure 3.19. The speed controller’s gain and phase margin
were 36.7 dB @ 38.75 rad/sec and 88.1° @ 0.33 rad/sec respectively.

58

Speed Cmd

3 14 13

5
speed command /T 1 P=7 - delta_t
= > | I= 0.5
+ =+
B
- +

Trim Airspeed

2]

Vt

Vt = (u**2 + v**
2 + wW*2)**0.5

Figure3.19. Speed Controller SystemBuild Block Diagram.

The response of the speed controller to a 10 fps STEP command was the same
for the smulated and HITL actuators, Figure 3.20. The airspeed overshoots by
approximately 5% and has a rise time of about 9 seconds. It is noted that a small
amplitude periodic signal is imposed upon the throttle servo output signal. This
variation has the same period as that observed on the elevator command channel and is
likely due to the close coupling between throttle and elevator in the airplanes

longitudinal modes.

*
%
£
Eg«
ng
0
]
n
e
)
2 \‘
E:ﬂ e ———
e Y
E o
0
0
&
0
340 \-_;\
I e
P - M
e ve —
0
10
00
*
%
7 9
g
© /
8 il
®
0 2 6 8 o) 2
Tmely

Figure 3.20. Speed Controller Response with TS-75 Servos.

59

6. Control Mode Coupling
The coupling of the longitudinal and lateral control modes was observed on both

the simulated and HITL versions of the system. On the longitudina side, the
relationship between throttle (speed) changes and elevator (pitch attitude) changes is
shown in Figure 3.21. In the figure, a +10 fps STEP command is sent to the speed
controller at t = 1.0 sec. As the airplane begins to accelerate it generates more lift and
also begins to climb. The altitude controller responds to this climb by programming a
taill up elevator command to arrest the climb and return the airplane to its original
dtitude. It can aso be seen that the airplane establishes a new trim attitude with q = -
0.13°. The latera control coupling was observed by commanding a STEP heading
change and observing the aileron and rudder response, Figure 3.22. As the heading
controller commands the ailerons to deflect the rudder immediately deflects to provide

turn coordination and the airplane smoothly turns to the commanded heading.

n
&
ER B
o D
g 2 ———
@ _H
E o
10
0
100
B
%
a 9
: = e
© el
&8 /
k33
07
05 ==t
g o L
E 04
P
03
;- -
014_—'/
0
505
504 i A ———
503 ’/- Te———
g 502 /
g /
501 e
w0 Y.y
499
o 6 8 10 2
Tmely

Figure 3.21. Longitudinal Control Mode Coupling.

60

015
g m—'\
006
NN
g 1 [
005 [
0
: e —
g 5 el
o, // —
g s
5
01
k] P il
M
02
§ 03 ’I
04
K ~—
7 o BV
i
EI e
2
*H
D
= gt
g el
;e —
12 o
—
0 2 4 6 8 10 2
Tmel

Figure3.22. Latera-Directional Control Mode Coupling.

C. FROG CONTROL SERVOS
The FROG control servos were not instrumented in time to support initial

autopilot design so the TS-75 servos were used as a surrogate. Once the FROG was
instrumented the RealSim servo test system was modified to permit dynamic response
testing of the servosinstalled on the airplane.

1. FROG Servo Configuration and Instrumentation
The FROG was configured with a number of different servo models. The

elevator servo specifications matched those for the test set TS-75 servos but the aileron,
rudder and throttle servos are specified at approximately half the output torque and give
a somewhat slower response. The FROG servo configuration is listed in Table 3.1

61

Dimensions
Control Futaba Torque Speed Width x Length

Channel Model (0z-in) (sec/ 60°) X Height (in)
Elevator S3302 110.0 0.19 1.14x2.32x1.97
Ailerons FP-S130 55.60 0.24 0.75x 1.50x 1.31
Rudder FP-S130 55.60 0.24 0.75x 1.50 x 1.31
Throttle FP-S130 55.60 0.24 0.75x 1.50 x 1.31
Flaps' FP-S125 129.30 0.62 0.88 x 1.75 x 1.69
Servo Test Set? TS75 110.0 0.19 1.14 x 2.32 x 1.97

Note 1: Flaps are not used by the autopilot.
Note 2: Provided for comparison.

Table 3.1. FROG Control Servo Configuration.

It was neither practical nor desirable to obtain servo position feedback in the
fashion used for the Lab test set servos. Tapping into the servos internal feedback
circuit would have required cutting a hole in the servo’'s case, which would have
permitted moisture, dust and EMI intrusion. Each one of these are to be avoided in
flight worthy hardware. It was also impractical to attach externa instrumentation
directly to the FROG servos so the control surfaces were instrumented instead. The
FROG servos are attached to the movable control surface by means of a linkage rod.
Rotation of the servo shaft was trandated to a linear push/pull on the rod. The linkage
rod was attached to a mounting horn on the control surface. The push/pull motion of the
linkage rod is trandated into rotation at the control surface. The elevator servo
installation is depicted in Figure 3.23.

62

Figure3.23. FROG Elevator Servo Configuration.

The servo position and control surface hinge configuration result in a nonlinear
transfer function from servo rotation angle to control surface deflection angle. The
control surfaces were instrumented with Series 150 subminiature linear position
transducers, manufactured by SpaceAge Control, Inc. The position transducers,
commonly known to as “string pots’ consist of a sall threaded drum attached to a
single turn rotary potentiometer. The potentiometer shaft is connected to a coil spring
which provides a positive retract force for al positions. The transducers cable is
connected to a horn mount on the control surface ® that the control surface neutral
position roughly corresponds to mid-point in the transducers range, Figure 3.24. Asthe
control surface moves the transducers cable is either extended or retracted. Asthe cable

moves the string pots resistance increases or decreases.

63

Figure3.24. Series 150 Subminiature Position Transducer.

The string pots have a mechanical limit of 340° and are rated at 5K ohms, £10%.
Each string pot was provided a reference voltage of 3.73 V and the output voltage was
routed to one of the TattleTale A/D converters in the NPS IMU computer. The raw
string pot voltages were incorporated into the IMU serial output message and then sent
(at 40 Hz) to the onboard FreeWave Modem; via the TattleTae's RS-232 port. The
IMU message was received by the AC-104's FreeWave modem and then decoded.

2. Control Surface Position Calibration

Before servo dynamic response measurements could be made the position
transducer outputs had to be calibrated. Additionally, the servo rotation limits had to be
established so that the RealSim servo test system would not command positions that
could result in binding or jammed controls. Both of these tasks required that the
Futaba® command uplink be implemented within RealSim. The command uplink signal
path is depicted in Figure 3.25.

(PWM)
<+—— Futaba
~ « Receiver

Servo
Actuators (PCM)
Slave Master
Futaba Futaba
AC-104
(Analog)
Computer

Figure 3.25. The FROG Command Uplink Signal Path.

The design approach for the FROG servo test system uplink was to start at the
Futaba® FP-R309DPS receiver’s PWM output signals and work backwards towards the
AC-104 output. The first task was to determine the valid range of servo PWM
commands. This would be the range of pulse widths generated by the Futaba® FP-
R309DPS receiver in response to control sweeps from the Safety pilot's radio
transmitter. The receiver’'s PWM output characteristics were determined by connecting
the output channels of an FP-R309DPS receiver directly to the digital 1/0 lines of the
AC-104's1P-68322 port. The IP-68322 was programmed to measure pulse width on the
receiver output channels and the data was captured within RealSm. The elevator,
aileron, throttle and rudder controls on the FP-9ZAP radio control were held in their
extreme positions and the corresponding maximum and minimum PWM values were
noted. These values were later confirmed using the DSO-2102 digital storage
oscilloscope. Once the range of permissible PWM commands had been established the
AC-104-to-Slave controller signals had to be calibrated. The Master radio controller
was connected to the Futaba FP-8UAP Slave viathe trainer cable. The FROG servo test
system interfaced with the Slave through the Ruby-MM 12-bit D/A converter. The

65

D/A’s 12-bit resolution provided 4096 (2'?) possible command values. With the D/A
converter configured for O to 5V unipolar operation, the resulting command resolution

was 1.22mV (5//4096). The RealSim servo controller was configured to send

discrete digital commands (values from O to 4096) to the D/A, which generated
proportional voltages for the Slave radio controller. These voltages were converted to
PPM and were relayed to the Master radio viathe trainer cable. Once in the Master, the
PPM signals were recoded as PCM and transmitted to the FP-R309DPS receiver
connected to the 1P-68322. The receiver decoded the PCM signals and the resulting
PWM servo command signals were measured by the 1P-68322 and recorded by the AC-
104.

The test method was to start the controller with a default output command of
2048 (mid-range for the D/A) and then decrease or increase the command value until the
PWM limits were observed. As the D/A digital command was decreased the pulse
width decreased until a minimum of approximately 0.9 ms was reached at a D/A
command value of 1515 (1.849 Vy). Further decreases in D/A command had no effect
on the PWM pulse length As the D/A command was increased an upper pulse width
limit of approx. 2.1 ms was reached at a D/A command value of 2685 (3.28 Vo). When
the D/A command was increased above 2685 the receivers pulse width output abruptly
jumped down to 1.5 ms. This is the pulse width that roughly corresponds to the control
neutral position. Based on these results limiter was added to the servo command path to
keep the D/A commands between 1515 and 2675.

The next task was to determine two transfer functions. D/A command (0 —
4096)-to-control position (deg) and string pot Vou:-to-Surface Position (deg). In order to
determine the trandation polynomials an accurate method of measuring each control
surface’s deflection was required. A laser pointer was attached to the wntrol surface
such that the optical axis of the laser was perpendicular to the axis of rotation. The
laser’s objective lens was equipped with an opague mask that reduced the exit aperture
to 0.014 mm. The laser’s beam was aimed at the inside surface of a section of circular
cylinder. The cylindrical surface had a radius of 20.0 inches and was marked in 0.2°

increments. This permitted accurate angular measurements down to £0.1°. As the

66

control surface was moved, the position of the laser dot moved along the graduated
scale. The control surface deflection instrumentation is depicted in Figures 3.26 through
3.28.

Figure3.26. Laser Instalation for Control Surface Deflection Measurement.

Figure 3.27. Cylindrical Laser Target.

67

Figure3.28 Laser Position Indicator Spot on Angle Scale.

The value of D/A command (0-4096), control surface deflection (deg) and string
pot output were noted for each position. The data was then curve fit by either a 3" or 5

order polynomial using a least squares approach. Figure 3.29 depicts the relationship
between the FROG's aileron surface positions and AC-104 D/A output values. Figure

3.30 shows the relationship between the FROG' s aileron surface positions and the string
pot outputs.

68

Aileron D/A Command vs Control Surface Position (deg)

3000 T
5 . 3) —— Position Data
y =0.00027fx " - 0.0045*x" +{0.01*X" - 0.084*K™ + 41*x + 2.1e+D03 —— 5th degree Fit ||
2500 /‘E'
2000 ///
1500 //
AC-104 YA Command Vahie
1000
-15 -10 -5 0 5 10 15
Aileron Position (deg)
Residual Error
15
10
5
0 o ' | | I | I L I 1 X I .
o T T
-5
-10
AC-:I:QQ D/A Gommand Value

-10 -5 0 5 10
Aileron Position (deg)

Figure 3.29. FROG Aileron Position Command versus D/A Output Value.

Aileron Position Position vs Transducer Output

15 T
\ —— Aileron Data

10 y= L._;?Gﬁvs& -BO01O % 80078 = Ot 05T x+45 —— 5th degree [

5 \\

0 =

\\
-5 \
AileroH’ Position (ddg) \\
-15
8 10 12 14 16 18 20 22 24 26

Aileron String Pot Output

Residual Error

0.1 |

Lot o Dbl
0 B I 1 1 | IIIIII Il'l II Illl

- -0.2 —
Aileron Position (¢leg)
-0.3]

10 12 14 16 18 20 2 24
Aileron String Pot Output

Figure3.30. FROG Aileron String Pot Output versus Position.
69

3. FROG Servo Dynamics

Once calibrated the FROG control servo dynamics were assessed in the same
manner used for the TS-75 test set servos. The FROG servos were given small and large
STEP commands and the dynamic response was determined from the string pot position
feedback. Analysis of the STEP input commands and the servo response revealed some
unexpected system behavior. The strip chart in Figure 3.31 shows the elevator's
response to a 20° STEP command (-10° to +10°). The elevator command and PWM
channels were sampled at 1000 Hz. The elevator control surface string pot signal is only
updated at 40 Hz (once every 25 ms); asit is part of the IMU downlink message. Ascan
be seen in the figure, the position command from RealSim is nearly an ideal STEP with
arise time of 0.001 seconds. A closer inspection of the data revealed that the STEP
commands were not sent simultaneously but were spaced 1 ms. apart, which matched
the RTOS scheduler frequency. The first indication of a receiver response occurs some
69 ms later. The Futaba® FP-R309DPS receiver generated a piece-wise constant PWM
command for the servos which took an additional 20 ms to reach full pulse width. The
desired pulse width was not present in the receiver’s output until 89 ms after the AC-104
command was issued. The first indication of control surface response occurred an
average of 99 ms after the first pulse width change from the receiver. This was 168 ms
after the initial command was issued by the AC-104. This significant command path
delay had not been included in the FROG plant model when the flight controller was
devel oped.

70

16.3

16.3

10
5
0
——— elevator
5 —— aileron [
Compgpd (dep) —— rudder
15.5 15.6 15.7 15.8 15.9 16 16.1 16.2
Elapsed Time (sec)
2000
1500 :Jj:jjﬂl
1000
) 5.5 15.6 15.7 15.8 15.9 16 16.1 16.2
Reciever PWM Output (us) Elapsed Time (sec)
20
10
L rrf
0 I
i
-10 adil
Contrdi;Foson (deg 15.7 15.8 15.9 16 16.1 16.2

Elapsed Time (sec)

Figure3.31l. FROG Servo Response Delay.

Upon review of these results the servo test sets were tested to see if they showed
similar command latency. In the Avionics laboratory test sets the AC-104 generates the
PWM command signals with an internal Motorola 68322-based processor. Asthisisthe

same unit used to measure pulse width it was not possible to capture the time delay

between servo command and pulse width response.

measure the entire delay between command and servo response, which was found to be
33 ms, depicted in Figure 3.32. This RPFTS command path delay was over five times

that found in the equipment used to develop the flight controller.

71

16.3

It was possible, however, to

Servo Command and Resonse (deg)
8

-

10 " " " " " " " " "
375 38 385 39 395 4

Time[s]

Figure3.32. TS-75 Servo Test Set Response Delay.

The observed servo responses were used to create 2" order servo models. The
piece-wise PWM command signal gives each servo a dead-beat response and likely
masks the true dynamics. As no appreciable over-shoot was present a damping ratio of
0.9 was assumed. The resulting forward loop and feed back gains are listed in Table 3.2.

Control Servo Gain (K) Feedback Gain (Kp)
Elevator 2612.8 0.0352
Aileron 444.72 0.852

Rudder 1423.9 0.0477

Table 3.2. FROG Servo Gains.

The servo speed controller used on the TS-75 servos was then incorporated into
the FROG servo test system. Figure 3.33 shows the control surface response to variable

72

feedback gain. The alleron channel became unstable when the variable loop gain
exceeded 6.5 (16.3 dB). The rudder and elevator became unstable for when the loop
gain exceeded 8.0 (18.0 dB). It must be noted that the presence of considerable phase

lag makes clouds this assessment of gain margin.

b

Vaiatle Sevo Gain
©

65
| Timefsed)

Elestor Roston(ceg)

===l
——
=

8 8 B o 0 B8 8

Alleron Rositin (deg)

AL

o « B B
D
=

Yot
=
e

-

I |l|ll T LILILILI

:
(= ——
pu —
o
<
o
-
=
=

B B &

I Time(seq)

””IIIIJu | |il

Ruekier Position (deg)

p—

LN [

8 8 B o b B B

Timefsec)

Gain =8

|
Gain = 6.6

(|
D) I) ™
1

Figure 3.33. FROG Servo-based Speed Controller Performance.

4. FROG Digital Flight Controller Performance
The performance of the RFTPS FROG digital flight controller was tested with

the FROG in the loop. The flight controller became unstable as soon as it was initialized
and was unable to track in any channel. The autopilot was then evaluated in the lab to
determine the influence of the command path latency. Figure 3.34 shows the effect of
introducing a 170 ms delay into the flight controller’'s command output path. The
aileron and rudder are 180° out of phase with the controller’'s commands while the
elevator and throttle lag the controller by 110°. The command path delay was reduced

to 50 ms and the controller’ s performance was restored.

73

w 180° Phase lag &
s> S 7
e 1w o Y W N
27 ey P Y. == A W A
Tow A LA NS S

- N7 v

- o
- 110° Phase lag \ o
g7 N, FLANLTITSN
. . i SRV VAN
o N2

o

180° Phase lag g
5 2N
= _ A\
g T

. |1 110° Phase lag T

0 Controller Output \
@O Servo Response \ o il
£ - \ f;”"
= 14

e

Figure3.34. Flight Controller with 170 ms Delay.

D. ALTERNATE COMMAND UPLINK

The interest in an alternate uplink method was initialy driven by the short range
afforded by the Futaba® transmitter. Upon discovery of the magnitude and effects of
the RPFTS latency on the digital flight controller the focus of this investigation shifted
to reducing latency. The FreeWave modems used for data downlink provide a line of
sight range of up to 20 miles and offered the potential for higher speed uplink. Serial
commands can be sent from the AC-104, via the IP-seriad board, to the FROG where
they are decoded in the Tattletale computer. The Motorola 68322 micro-controller, used
in the TattleTale and 1P-68322, contains a powerful time processing unit (TPU) that can
perform match and capture operations on time, freeing the CPU for other tasks. The
TPU is in essence a dave processor built into the 68322 that controls two timers and
sixteen 1/0O lines and is capable of generating PWM signals. Each Tattletale 8 provides
access to nine of 68322's TPU lines. Two of the TPU lines are currently used as a data
bus between the Master and Slave Tattletales. An investigation was conducted to assess
the feasibility of using four of the remaining TPU lines to generate PWM command
signals in place of the Futaba® receiver. In order to demonstrate the feasibility of this
approach, the Futaba® receiver-to-servo PWM signal characteristics had to be

determined. On board the FROG a Futaba® FP-R309DPS receiver converts the PCM
74

command signals to PWM and sends them on to the control servos. The PWM signal
characteristics were measured with a DSO-2102 PC—based digital storage oscilloscope,
manufactured by Link Instruments, Inc and with the IP-68322 data acquisition card in
the AC-104. A Futaba FP-9ZAP digital proportional radio control was used to generate
PCM command signals for the FP-R309DPS receiver. For this test, the controller trim
settings were set to zero so that the systems neutra command values could be
determined. It is noted that in actual practice the FROG controller trim settings are non
zero in order to achieve balanced flight. The receiver generates 2.84 Volt PWM

command signals at an average frequency of 70.17 Hz (14.250 ms period). Figure 3.35
shows the receiver PWM output in response to a maximum elevator command and a

minimum aileron command.

Wm0 [O] =]
B W Dunel Trigoer ol Tiieg Bele FFT St Maswan Menoy window Heo

Bl alalelsl Bk 2 #leiwzEE] OaeDomal 88

Period = 14.250 ms

Short Pulse Width = 1.140 ms
Long Pulse Width = 2.085 ms

Fa Halp, paaerF1 i A (1LY LTH &1 Aol

Figure 3.35. FP-R309DPS Receiver Output Signal.

The pulse width limits for each of the control channels were measured on the

digital storage oscilloscope and are presented in Table 3.3.

75

Recelver Pulse Width (ms)

Channel Minimum Neutral Trim Maximum
Elevator (ch 1) 0.955 1.520 2.085
Aileron (ch 2) 1.130 1.520 2.120
Throttle (ch 3) 1.235 1.570 1.940

Rudder (ch 4) 1.085 1.515 1.955

Table 3.3. FP-309DPS Pulse Width Response to FP-9ZAP Controller Commands.

The minimum pulse width observed was 0.955 ms for elevator channel. The
maximum pulse width was 2.120 ms on the aileron channel. The observed neutral
command pulse width matched the servo specified value of 1.52 ms for the elevator and
aileron channels and nearly so for the rudder channel. The throttle neutral pulse width
however was 1.57 ms. The throttles variation from the specified neutral output was
probably due to a voltage (resistance) bias in the throttle control stick. The receiver
PWM output, in response to dynamic commands was assessed with the AC-104's IP-

68333 programmed to measure pul se period.

Once the baseline PWM signal parameters were determined the operating system
software in the NPS IMU was modified to accept and decode a servo command uplink
message. The servo command data was then used to set the pulse width duration. Once
the Tattletale program was modified the FROG control system was modified to include
a seria uplink message. The servo calibration controller was then used to generate
seridl command signals, which were transmitted via the FreeWave modems to the
Tattletale computer. The first timing test was conducted with the PWM generation
functions embedded in the existing 3DM TattleTae program. With the IMU data
functions enabled the PWM output delay was a disappointing 150 ms. This would result
in a servo delay of approximately 180 ms (counting the 33 ms delay observe in the 1ab).
The TattleTae program was then modified and al nonPWM related functions were
disabled. With the IMU sampling functions disabled the PWM output delay was

reduced to 76 ms. To assess the suitability of this yplink method a 75 ms delay was
76

inserted into the flight controllers output path and the controller was run with TS-75
HITL, Figure 3.36. The reduction in servo response latency, while significant, was not
enough to reduce the restore stability to the system.

Aileron

Elevator

]
o o
o
03: 10
* Controller Output —
® | e Servo Response]
% ® /l'f/ I “\\‘k
o -
=X I e
e SR

5
8

0 10 EY kY 0

Timefs

Figure3.36. Flight Controller Performance with 75 ms Delay.

The 75ms delay produced limit cycle oscillation on each controller channel.
Figure 3.37 shows the phase lag between each controller channel and it's associated
servo. The altitude controller exhibited a phase lag of 62 degrees compared to a phase
margin of 58.6 degrees. The rudder servo had 80 degrees of phase lag which is dightly
more than the Yaw damper’s phase margin of 76.1 degrees. The heading and speed
controllers had phase margns of 80 and 88 degrees respectively. The servo responsesto
these controllers are less coherent suggesting that the phase margin has not been

exceeded yet.

77

Alleron (ceg)

Hewtor(deg)

R, —_—
_ TN s WA o Y
g Nl by 2 NN e PN]
3 S, = P T S W7
) .
-+
e Controller Output
— SErv0o Response
e ,«w_.

Thotle(deg)

& A v o N s b S AN o NsoOo @ b & A & o N oA~ & A& v o N &

Figure3.37. Servo Phase Lag with 75 ms Command Delay.

It must be noted that though the digital flight controller does not provide
satisfactory performance with 76 ms delay it was not designed to do so. It is quite
probable that smply reducing the controller gains would restore stability but this would
come with a performance penalty. The prudent approach would be to incorporate the
servo response latency into the FROG plant model and re-tune each of the flight
controllers components. This way it may be determined if the desired controller
performance can be achieved with the current command path delay and if not a suitable
design goal for command path latency can be determined. This test did demonstrate the
validity of the seria uplink control scheme to reduce command uplink latency. Little
attention was paid to optimization of the TattleTae code and it is recognized that there
is room for improvement in this area. What is more important than the demonstration of
the TattleTale's ability to replace the Futaba® transmitters and receiver is that principle
that serial uplink offers the potential to reduce command latency as well as extend the

FROG's usable range.
78

V. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS

The use of HITL greatly assisted the design and development of the digital flight
controller. The laboratory HITL, however, did not provide the required fidelity to be
able to create a flight controller for the FROG Rapid Prototyping Flight Test System.
The unmodeled command path latency resulted in excessive servo phase lag, which
exceeded the controllers phase margin. Reduction of the pulse width delay to 50 ms
provided satisfactory performance but likely leaves little phase margin. Inertia sensor
noise was not included in the FROG model and its effect on the flight controller’s

performance was not evaluated.

The Crossbow AHRS dbes not provide updates at a constant frequency in the
angle/ continuous mode of operation.
B. RECOMMENDATIONS

The fiddlity of the FROG plant model should be improved by inclusion of the
command path latency, FROG servo dynamics and by sensor noise models. The flight
controller should also be modified to include limiters that restrict the control surface
deflection commands to the measured FROG control surface deflection limits, when
running with the TS-75 servo test set. Once these factors have been incorporated the
flight controller gains should be re-tuned in an attempt to meet the origina performance
criteria. If the flight controller performance goas cannot be met an acceptable
command path delay should be determined and alternate command architecture should
be developed. Particular attention should be paid to serial via the existing FreeWave
modems. Consideration should also be given for transitioning to a wireless Ethernet

system.

The IMU computer should be modified to provide airborne data processing and
management capabilities for the AHRS avionics configuration. Future FROG guidance
and control projects will need to make use of analog to digital conversion onboard the
airplane. The TattleTale computer and operating software can be easily modified to

perform this task.

79

THISPAGE INTENTIONALLY LEFT BLANK

80

APPENDIX A. NPSIMU OPERATING SOFTWARE

This appendix contains the “Aztec C” code listings for the 3DM and GPS
TattleTale microprocessors in the NPS IMU computer. Mathew Comerford originally
wrote this code while a student at the Naval Postgraduate School. The code was
subsequently modified to include the PWM generation capability by Ma Bock Aeng
Lim and the author.

A. 3DM TATTLETALE OPERATING CODE

/* __ */
/* 3DM Tattletal e Qperating System */
/* Primary function: I MJ sanpling, 3DMsanpling, & Tining */
/* Secondary function: Merge GPS data into data stream */
/* April 23, 2001

/* Modified: Septenber 2001 */
/* Filename: 3DMITWPVWM c */
/* __ */
#i ncl ude <TT8. h> /* Tattletale Model 8 Definitions */

#include <tt8lib. h> /* definitions and prototypes for Mdel 8 library */
#i nclude <tt8lib. h> /* for TT8 functions */

#i ncl ude <tat 332. h> /* 68332 Hardware Definitions */

#i ncl ude <t pu332. h> /* 68332 Tine Processing Unit Definitions */

#i ncl ude <sinB32. h> /* 68332 System Integration Modul e Definitions */

#i ncl ude <stdlib. h> /* for malloc */

#i ncl ude <stdio. h> [* for printf() */

#i ncl ude <userio. h> /* for pronpts */

#i ncl ude <string. h> /* for sting conparison */

#i ncl ude " At oDdat a. h" /] for AtoDdata sturcture definition

#i ncl ude "dat a3DM h" /] for data3DM structure definition

#i ncl ude "3DM o. h" /] for SendAtoD and Send3DM functi ons

#i ncl ude "PWM h" /] for PWMfunctions definition

/1 #define TESTMODE /1 if define test node then programwi ||l sent sinulated
dat a

#def i ne SAMPLERATE 40 /1 Main sanple frequency 40 Hz

#def i ne SAMPLES 10000 /1 Nunber of sanples to |og

#defi ne Q8l ZE 12 [/l Mist be a power of 2 {2,4,8,16,32...}
#defi ne TSBUFSI ZE 4096 /1 Mist be 2"QSl ZE

/1 #define UplinkSerBUFSi ze 2048 //++ Buffer for Uplink PW command at TPULI ne

/* Functions Prototype */

int SendAtoD (struct AtoDdata*); /1 SendAt oD function prototype
int Send3DM (struct data3Dwr); /1 Send3DM function prototype
int Read3DM (struct data3DWVF threeDV); /1 Read3DM function prototype
int Send3DMrest (short val ue); /1 Send3dnTest function prototype
int SendAtoDTest (struct AtoDdata *, short);// SendAtoDTest function prototype
int SendGPS (void); /1 SendGPS function prototype
i nt SendGPSAt oD(voi d); /1 SendGPSAt oD function prototype

voi d TPUSet upPWM short pwnhi 1, short pwnperl, short pwnrhi 2, short pwrper2, short pwnrhi 3,
short pwrper3, short pwrhi 4, short pwnper4);
voi d TPUChangePWM short pwrhi 1, short pwrperl, short pwrhi 2, short pwnper2, short pwnrhi 3,
short pwrper3, short pwrhi 4, short pwnper4);

81

int PWEnds_fromuplink(short [1);
/1 int PwEcmds_from TPU3(short []);
/* dobal variable for PW commands decoding */

i nt first_frame_a = O;
short | ast _servo_cnd[8] ;

main () {

ul ong sanple = 0; /1 The current sanpl e nunber

ul ong baud; // Baud rate

ulong tine = 0; /] Timng Statistics

ul ong runni ngTi ne = 0; // Timng Statistics

ul ong m ssed = 0; /1l Timng Statistics

char tineStr[40]; // Timng Statistics

short status; /[l Timng Statistics

short onTine = 1; /1l Timng Statistics

short count = 0; /1l Timng Statistics

fl oat m ssedPercent = 0; // Timng Statistics

XmdnEr r xerr; /1 Xmodem error code

short val ue = 48; /1 ASCll value for '0" -->to be used in testing
short i = 0; /] Generic Counter

I ong *val uePtr; /1 Pointer to stored val ues

void *serBuf Ptr = NULL; /] Pointer to serial buffer

void *inBuf Ptr = NULL; /1 Pointer to serial buffer TPU 14)

void *inBuf Ptr1 = NULL; /1 Pointer to serial buffer TPU(1)

void *inBuf Ptr2 = NULL; /] Pointer to serial buffer TPU 2)

void *inBuf Ptr3 = NULL; // Pointer to serial buffer TPUY 3)

voi d *out Buf Ptr = NULL; // Pointer to serial buffer TPU(13)

voi d *Upl i nkBuf Ptr = NULL; /] ++

struct AtoDdata AtoD3DM = {0}; /1 AtoD data structure variable

struct data3DM threeDM = {48059, 48059, 48059, 48059, 48059, 48059} ; /1 Hex BB BB
struct data3DMthreeDM = {221, 221, 221, 221, 221, 221}, /1 Hex 00 DD
short servo_cmd[8];

short tpuncr = 0x2040; /1 TPU MCR register for PWM out put

I ni t TT8(NO_WATCHDOG, t puntr) ; [/ Initialize the Mdel 8
#i f def TESTMODE

Pri ntf (" xxxxxrkokkokkodkdkokokok Attention!! Data will be pr oduced in TEST node

************\ n") -
1

#endi f

printf("\nSet BAUD rate to 38400\n");
Sl eep(0);
Sl eep (200000) ;

/1 Allow 5 second to display message

/1 Si nBet FSys(16000000) ;
Si nBet FSys(14720000) ;

/1 baud = Ser Set Baud(38400, 0);
Ser Set Baud(9600, 0) ;

baud =
Set Ti ckRat e(40000) ;

if (inBufPtr2

/] Set TT to 16.0 MHz --> fastest speed

/1l Set TT to 14.7 Mi --> best

/1

/1 TPU clock rate to 40 KHz

Set baud rate

NULL) printf("inBuf Ptr2 too big\n");

82

--> 40 ticks =

rate for serial

transfer

1 ns

I Set up Menory Buffers for Serial Input and Qutput ---------------
serBuf Ptr = mal | oc(4096); /] Console (Primary) Serial Buffer
if (serBuf Ptr == NULL) printf("\nBuffer Menory Allocation Failed\n");
if (serBuf Ptr !'= NULL) printf("\nbufferPtr Menory O K \n");
i nBuf Ptr = mal | oc(TSBUFSI ZE+TSER_ M N_MEM) ; /1 TPWY14) Serial In Buffer
if (inBuf Ptr == NULL) printf("inBufPtr too big\n");
if (inBuf Ptr !'= NULL) printf("inBuf Ptr Menory O K\n");
inBuf Ptr1 = mal | oc(TSBUFSI ZE+TSER_ M N_MEM) ; [/l TPW1) Serial In Buffer
if (inBuf Ptrl == NULL) printf("inBufPtrl too big\n");
if (inBuf Ptrl != NULL) printf("inBufPtrl1 Memory O K\n");
inBuf Ptr2 = mal | oc(TSBUFSI ZE+TSER_ M N_MEM) ; /1 TPY2//8) Serial In Buffer

if (inBuf Ptr2 !'= NULL) printf("inBufPtr2 Menory O K\n");

i nBuf Ptr3 = nal | oc(TSBUFSI ZE+TSER_M N_MEM) ; /1 TPW3) Serial In Buffer
if (inBuf Ptr3 == NULL) printf("inBufPtr3 too big\n");
if (inBuf Ptr3 !'= NULL) printf("inBuf Ptr3 Menory O K\n");

out Buf Ptr = mal | oc(TSBUFSI ZE+TSER M N_MEM) ; /1 TPU(13) Serial Qutput Buffer
if (outBuf Ptr == NULL) printf("outBufPtr too big\n");
if (outBuf Ptr !'= NULL) printf("outBuf Ptr Menory O K\n");

I TR T Set up Serial Input and Qutput Parameters -----------------------
/1 Qpen Console (Primary) serial port for buffered input & output

Ser Set | nBuf (serBufPtr, 4096);

Ser | nFl ush();

/1 Open TPU 1) for buffered input

i f (TSer Open(1, H ghPrior, 0,inBuf Ptr1, TSBUFSI ZE, 33600,' N, 8,1) == tsCK) {
printf ("TSerQpen(l) O K\n");
TSer I nFl ush(1);

b

/1 Open TPY(2//8) for buffered input// it suppose to be 8 with the sane node 0
i f (TSer Open(8, H ghPrior, 0, i nBuf Ptr2, TSBUFSI ZE, 33600, ' N , 8,1) == tsOK) {

printf ("TSerQpen(8) O K\n");

TSer I nFl ush(8);
b

/'l Open TPY(3) for buffered input

i f (TSer Open(3, H ghPrior, 0, i nBuf Pt r3, TSBUFSI ZE, 9600, ' N , 8,1) == tsOK) {
printf ("TSerCpen(3) O K\n");
TSer | nFl ush(3);

b

/1 Open TPY 13) for buffered output
i f (TSer Open(13, M ddl ePri or, 1, out Buf Pt r, TSBUFSI ZE, 9600, ' N , 8, 1) == tsK) {
printf ("TSerCpen(13) O K \n");

/1 Open TPY(14) for buffered input
i f(TSer Open(14, H ghPrior, 0, i nBuf Ptr, TSBUFSI ZE, 9600,' N , 8,1) == tsOK) {
printf ("TSerQpen(14) QK \n");
TSer | nFl ush(14);
b

TPUSet upPWW 500, 1000, 500, 1000, 500, 1000, 500, 1000); // sinple values to open PWM channel s

printf ("Tick Rate is %dn", GetTickRate());

printf ("System dock is %d n", SimGetFSys());

printf ("Baud Rate is %d\n", baud);

printf ("Press Control-C on the Prinary port to reset to TOMB\ n");

Sleep (0);
Sl eep (200000); /1 Allow 5 seconds nessages to be displ ayed.
/1 if (SerByteAvail ()){
I if (SerGetByte() == 3) ResetToMn(); /] Reset to TOMB Monitor if CNTRL C
Pressed
I}
/1 Al ows reset of EEPROM program w o hardware
reset
/1 TPUSet Pin (0,1); /1 Now we use direct connection to transnmt data

from TPWO(GPS) to TPUB(3DV)
/1 Define TPW for digital output and sets to
hi gh | evel
/1 Enabl e
Humphrey Gyro Auto Erect feature
/1 Should this be done entire flight ???2???

83

//**

/1 This portion of code conducts all of the timng for the | MJ gyros and the 3DM

/1 accel eroneters/ magnetonmeters. The |MJ AtoD data is sanpled at 40 Hz while the 3DM
/1 is sanpled at 20 Hz because of the instrunent's limts. The 3DMis connected on

/1 the secondary serial port at 9,600 baud and the output is on the primary serial port
[/l Binary GPS data is received fromthe GPS Tattletale via TPU pin 1.

//**

[] e e il

I/ 1st Mnor Timng Cycle @40Hz --> {send AtoD, send 3DM poll 3DMfor data}
R R R R LR R

/1 Note: ** |ndicates debuggi ng code

Sl eep(0); /1 Initialize timer

count = O; /1 ** Initialize mssed timng slot counter

if (value >= 56) {value = 48;} /] ** Reset sanple counter to ASCI| value for 'O
TSer Put Byte (13, 144); /] Poll (inquiry) 3dmfor data output

SendAt oD (&At oD3DM) ; /l Read and Send 16 bytes of AtoD data

Send3DM (& hreeDV) ; /1 Send 12 bytes of 3dM data

SendGPS() ; // Send 31 bytes of GPS data if available

sanpl e += 1, /1 ** Increment sanple counter for testing

val ue += 1; /1 ** Increment val ue counter for test data

printf("\nPWtnds_fromuplink status = %d\n", PWtnds_fromuplink(servo_cmd));
[l printf("\nPWtnmds_from TPU3 status = %\n", PWnds_from TPU3(servo_cnd));

/1 TPUChangePWM PWM def aul t _hi, PWM default_per, 2*PWM default_hi, PW default_per,
3*PWM defaul t_hi, PWMdefault_per, 4*PWM default_hi, PWW default_per);

TPUChangePWW servo_cnd[0], servo_cnd[1], servo_cnd[2], servo_cnd[3], servo_cnd[4],
servo_cnd[5], servo_cnd[6], servo_cnmd[7]);

onTime = Sl eep (1000); /] Sleep until 25 nms is over (40 = 1 ns)
if (onTine) { count += 1; } /1 ** Update missed timng slot statistics

/1 StopWatchStart(); /] ** Begin timng of Segnent

SendAt oD(&At oD3DV) ; /'l Read and Send 16 bytes of AtoD data

Read3DM (& hreeDV) ; /!l Read and store 12 bytes of 3DM data

Send3DM (& hreeDV) ; /1 Send 12 bytes of 3dM data

SendGPSAt oY) ; /1 Send 18 bytes of GPS Tattletale AtoD data if
avai |l abl e

/1 time = StopWatchTine(); /1 ** End timng of segnent

sanpl e += 1; /1 ** Increnent sanple counter for testing

val ue += 1; /1 ** Increment value counter for test data

onTime = Sl eep (1000); I/l Sleep until 25 nms is over (40 = 1 ms)

if ('onTime) { count += 1; } /1 ** Update missed timng slot statistics

e

I/ 3rd Mnor Timng Gcle @40Hz --> {Send AtoD, send 3DM poll 3DM for data}
R TR

TSer Put Byte (13, 144); /1 Poll (inquiry) 3dm for data output

SendAt oD (&At oD3DV) ; /] Read and Send 16 bytes of AtoD data
#i fdef TESTMODE

Send3DMrest (103 - val ue); // Sinmulate 12 bytes from 3dM (ASCIl '9'-'0")
#el se

Send3DM (& hreeDV) ; /1 Send 12 bytes of 3dM data
#endi f

84

SendGPS() ; /1 Send 31 bytes of GPS data if avail able

sanpl e += 1; /1 ** Increnent sanple counter for testing
val ue += 1; /1 ** Increment value counter for test data
onTime = Sl eep (1000); /] Sleep until 25 ms is over (40 = 1 ms)

if (‘onTime) { count += 1; } /] ** Update missed timng slot statistics

I 4th Mnor Timng Cycle @40Hz --> {Send AtoD data, send 3DM dat a}

SendAt oD (&At oD3DM) ; /1 Read and Send 16 bytes of AtoD data
Read3DM (& hreeDM) ;
#i fdef TESTMODE

Send3DMrest (103 - val ue); /1 Simulate 12 bytes from 3dM (ASCIl '9'-'0")
#el se

Send3DM (& hreeDV) ; /1 Send 12 bytes of 3dM data
#endi f

SendGPSAt oY) ; /] Send 18 bytes of GPS Tattletale AtoD data if
avai | abl e

sanpl e += 1, /1 ** Increment sanple counter for testing

val ue += 1; /1 ** Increment val ue counter for test data

m ssed += count; /1 ** Total mssed timng slot count

runni ngTi ne += time; /1 ** Total simulation tine

onTinme = Sl eep (1000); /1 Sleep until 25 nms is over (40 = 1 ns)

if (!onTine) { count += 1; } /1 ** Update missed timng slot statistics
e e T T
/*
/] Qutput real time troubl eshooting data

sprintf(timeStr," T%u B% ",status, TSerByteAvail (1));

for (i = 0;i <10; i++){

SerPutByte (((int)tinmeStr[i]));

}

Ser Put Byt e(13) ; I/l Carriage Return & Line Feed

Ser Put Byt e(10) ;
*/
} while(l); /1 Infinite | oop

//**

R Qutput Timing Statistics and Downl oad Options -------------------
/1 CQutput tinmng statistics. This portion of the code will never be reached during

/] normal program execution.
//** kkhkkhkkhkkhkkkkkkkkk*x

m ssedPercent = (fl oat)m ssed/ (fl oat)sanpl e*100;
printf("\n# Sanples: %d, # Msses: %d, Percent Msses: ,%.3f, Ave Parse Tine: %. 3f,
\n",
sanpl e, m ssed, m ssedPercent, (fl oat)runningTi ne/ (fl oat)sanpl e*4);
Ser Put Byte (13); /1 Carriage Return & Line Feed
Ser Put Byte (10);

/*

if (QueryYesNo("\nOfload the data?', TRUE))({
printf("\nStarti ng XMODEM transfer "),
fflush(stdout);
xerr = XnodenBendMen(val uePtr, SAMPLES * sizeof (I ong), 30);
printf(" Conplete [%]\n", xerr);

b

Ser I nFl ush();
Ser Set Baud(9600, 0) ;
Reset ToMon() ;

85

return (0);

/***

** TPUSet upPWM Setup TPU channel for Pul se-Wdth Mdul ati on
** Not es:

* pwhper = period in tcrl cycles [call TPUGet TCRL() for current val ue]
** pwrhi = time high in tcrl cycles

** priority = LowPrior, MddlePrior, or H ghPrior [defined in tpu.h]

** read about value limtations in the TPU Reference Manual

***/

voi d TPUSet upPWM short pwnhi 1, short pwrperl, short pwrhi 2, short pwrper2, short pwrhi 3,
short pwnper3, short pwrhi4, short pwnper4)
{

/* declarations */
ulong tceril;

TPUSet Pi n(PWMChanl, 1); /* Configure Pins into Prpoer |/O State */
TPUSet Pi n(PMChan2, 1);

TPUSet Pi n(PWMChan3, 1);

TPUSet Pi n(PMChan4, 1);

tcrl = TPUGet TCRL(); /* Get Current O ock Frequencey */

C ER & ~(1 << PWMChanl); / don't want interrupts
enabl ed for Chan# */
*C ER & ~(1 << PWMChan2);
*CER & ~(1 << PWMChan3);
*Cl ER & ~(1 << PWMChan4);

FUNSEL (PWMChanl, PWWY); /* configure PWChan# for PWM
node */
FUNSEL(PWMChan2, PWY);
FUNSEL (PWMChan3, PWY) ;
FUNSEL(PWMChan4, PW) ;

/* configure first 4 bytes of PWRAM for PWMChan# */

CQut put Chan | NoChangePAC | (pwrhil ? ForceH gh : ForcelLow);
Qut put Chan | NoChangePAC | (pwrhi 2 ? ForceH gh : ForcelLow);
CQut put Chan | NoChangePAC | (pwrhi 3 ? ForceH gh : ForcelLow);
Qut put Chan | NoChangePAC | (pwrhi 4 ? ForceH gh : ForcelLow);

PRAM PWChan1] [0]
PRAM PWvChan2] [0]
PRAM PWChan3] [0]
PRAM PWChan4] [0]

/* Convert Period & Time H input fromusec to tcrl ticks */

pwmperl = (float) terl * (float) pwnperl / 1le6;
pwhil = (float) tcrl * (float) pwrhil / 1e6;
pwmper2 = (float) tcrl * (float) pwnper2 / 1leé6;
pwhi2 = (float) tcrl * (float) pwrhi2 / 1e6;
pwrper3 = (float) tcrl * (float) pwrper3 / 1le6;
pwrhi3 = (float) tcrl * (float) pwrhi3 / 1e6;
pwmper4 = (float) tcrl * (float) pwnper4d / 1leé6;
pwrhi4 = (float) tcrl * (float) pwrhi4 / 1e6;

/* Wite pulse width and period to PW RAM */

PRAM PWMChanl][2] = pwnrhi 1; /* tinme hi for PWWChan# */
PRAM PWVMChanl] [3] = pwnper1; /* period for PWChan# */

PRAM PWMChan2] [2] = pwrhi 2;

PRAM PWMChan2] [3] = pwnper 2;

PRAM PWMChan3][2] = pwnrhi 3;

PRAM PW\Chan3] [3] = pwnper 3;

PRAM PWMChan4] [2] = pwnrhi 4;

86

PRAM PWMChan4] [3] = pwnper 4;

HOSTSERVREQ PWMChanl, 2); /* initiate PWChanl */
HOSTSERVREQ PWWMChan2, 2);

HOSTSERVREQ(PWMChan3, 2);
HOSTSERVREQ PWMChan4, 2);

whi | e (HOSTSERVSTAT(PMWWMChanl) & 3); /* await reply */
whi | e (HOSTSERVSTAT(PWfChan2) & 3); /* await reply */

whi | e (HOSTSERVSTAT(PMWMChan3) & 3); /* await reply */

whi | e (HOSTSERVSTAT(PWMChan4) & 3); /* await reply */
} /* TPUSet upPWM) */

/***

* TPUChangePWv Change PWM val ues for initiated TPU channel
* %

** Not es:

* % pwnper = period in tcrl cycles

* pwhi = time high in tcrl cycles

***/

voi d TPUChangePWM short pwrhi 1, short pwrperl, short pwrhi 2, short pwnper2, short pwnrhi 3,
short pwrper3, short pwrhi4, short pwrper4)
{

/* declarations */
ulong tcrli,;

/* Get Current O ock Frequencey */
terl = TPUGet TCRL();

/* Convert Period & Tine H input fromusec to tcrl ticks */

pwmperl = (float) terl * (float) pwnperl / 1le6;
pwhil = (float) tcrl * (float) pwrhil / 1e6;
pwmper2 = (float) terl * (float) pwnper2 / 1le6;
pwhi2 = (float) tcrl * (float) pwrhi2 / 1e6;
pwmper3 = (float) terl * (float) pwnper3 / 1e6;
pwhi3 = (float) tcrl * (float) pwrhi3 / 1e6;
pwmper4 = (float) terl * (float) pwnper4 / 1leé6;
pwhi4 = (float) tcrl * (float) pwrhi4 / 1e6;

/* NEED TO DO TH S WRI TE COHERENTLY (AS DOUBLE WR TE) */

* (ulong *) &PRAM PWWMChanl][2] = ((ulong) pwrhil << 16L) | (ulong) pwper1;

HOSTSERVREQ PWMChanl, 1); /* issue inmediate wupdate
request */
whi | e (HOSTSERVSTAT(PWMChanl) & 3) /* await reply */

* (ulong *) &PRAM PWMChan2][2] = ((ulong) pwnhi2 << 16L) | (ul ong) pwnper2;
HOSTSERVREQ PWMChan2, 1);
whi | e (HOSTSERVSTAT(PWMChan2) & 3)

* (ulong *) &PRAM PWMChan3][2] = ((ulong) pwrhi 3 << 16L) | (ul ong) pwrper3;
HOSTSERVREQ PWMChan3, 1);
whi | e (HOSTSERVSTAT(PWW/Chan3) & 3)

87

* (ulong *) &PRAM PWMChan4][2] = ((ulong) pwrhi4 << 16L) | (ul ong) pwnper4;
HOSTSERVREQ PWWMChan4, 1);
whi | e (HOSTSERVSTAT(PWWMChan4) & 3)

} /* TPUChangePWM) */

int PWnds_fromuplink(short servo _cmd[])
//***
I

/1 This is a function to decode an array of 8 short integers fromserial
// data collected in the Serial Port 1 buffer. The 8 short integers are
/1 for use by the TPUChangePW\) .

/1

//**

kkhkkhkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkhkkhkkhkhkhkhkhkkx*%

short w_hi gh, w_| ow,

uchar | ast _byte=0, curr_byte = O;
short k;

i nt header _found = 0;

int i,j, NunBytes;

/1 1. Specify default servo_cnd if first entry

if (first_frame_a ==
{ for (i=0; i<PWM word_length; i++)
{ | ast _servo_cmd[2*i] = (i+1)*1520;
| ast _servo_cnd[2*i +1] =14250;
first_frame_a = 1;

}
}
/1l 2. WIIl read all serial bytes that arrive by this tinme.
I/ Leave bytes arriving later in the Serial Buffer

/1 3. Search for Header
if (SerByteAvail ()!=0)
| ast _byte = SerCGetByte();

while (SerByteAvail () != 0)
{ printf("\ nSerByteAvail");
curr_byte = SerCGetByte();
printf(" Current Byte = 9%&(x), %(u)", curr_byte, curr_byte);

if (last_byte == 255 && curr_byte == 255)
{ header_found = 1;

break; }

el se {last_byte = curr_byte;}

/1 4. |f header was found, conpile the servo comrands into short int array
if (header_found == 1)
{ printf("\nHeader found");

for (i=0; i<PWM word_|ength; i++)

{
w_|ow = (short) SerGetByte();
w_high = (short) SerGetByte();
k = 256*w_hi gh + w_| ow;

| ast_servo_cnd[i] = k;

Ser | nFl ush();

88

} /* end for loop */

} /7 endif NunBytes != 0

/1 5. Make servo_cnd[] equal latest if new cnds was received. Otherw se, |ast cnds
used.
for (j=0;j<PWM word_length;j++)
{
servo_cmd[j] = last_servo_cnd[j];
}
printf("\nServo H 1 = %, Servo Period 1 = %", servo_cnd[0], servo_cnd[1]);
return 5;
} /* Pwends_fromuplink */
int PwWtnds_from TPU3(short servo_cnd[]) {
//**
I
/1 This is a function to decode an array of 8 short integers fromserial
// data collected in the Serial Port 1 buffer. The 8 short integers are
I/ for use by the TPUChangePW{) .
/1
//**
short w_hi gh, w_|ow, Kk;
char | ast _byte=0, curr_byte = 0;
int header _found = 0;
int i,j, NunBytes;
/1 1. Specify default servo cnd if first entry
if (first_frame_a == 0)
{ for (i=0; i<PW word_|ength; i++)
{ | ast _servo_cmd[2*i] = (i+1)*1520;
| ast _servo_cnd[2*i +1] =14250;
}
}
/1 2. WII read all serial bytes that arrive by this tine.
I Leave bytes arriving later in the Serial Buffer
NunByt es = TSer Byt eAvail (3);
printf("\ nPass Stage 2. NunBytes Avail = %", NunBytes);
/1 3. Search for Header
if (NumBytes !=0) { /] do only if there are data in buffer, otherw se SerGetByte
/1 will wait till char is received in buffer
| ast _byte = TSer GetByte(3);
NunBytes -= 1,

while (NunmBytes = 0)
{
curr_byte = TSer Get Byte(3);
NunBytes -= 1;
if (last_byte == Header_byte && curr_byte == Header _byte)
{ header _found = 1;
break; }
| ast _byte = curr_byte;

89

/1 4. |f header was found, conpile the servo commands into short int array
if (header_found == 1)
{ for (i=0; i<PWM word_|ength; i++)
{
w_hi gh = TSer Get Byt e(3);
w_|ow = TSerCGetByte(3);
k = 256*w_high + w_| ow
last_servo_cmd[i] = k;
} /* end for loop */

} // endif NunBytes !=0

/Il 5. Make servo_cnd[] equal latest if new cnds was received. Otherw se, last cnds
used.

for (j=0;j<PWMword_|ength;j++)

{

servo_cmd[j] = last_servo_cnd[j];
}
printf("\nServo H 1 = %, Servo Period 1 = %", servo_cnd[O0], servo_cnd[1]);
return 5;
} /* PWenmds_from TPU3 */
B. 3DMIOH
//**
11
/1 Filename: 3DM o. h
/1 Description: 3DM Tattltetal e I nput and Qutput Routines.
/1 Purpose: Read and Send 3DM and At oD data
/1 Data: 13 May, 2001
/1 Programmer: LT Matt B. Commerford
11

//**

#i ncl ude "dat a3DM h"
#i ncl ude " At oDdat a. h"

int SendAtoD (struct AtoDdata *AtoD)
//**
/1 This function reads all 8 Ato D channels on the Tattletale and

/1 outputs themon the primary serial port.

//********************* kkkkhkkkhkkhkkhkhkhkhkhkhkhkhhhhhhhhhhhhhhhhkhkhkhkhkhhhhhhhxhxdxhxhxxx*x%x

int i =0;

char *ptrTenp;

ptrTenp = (char*)At oD, // Cast AtoDdata pointer to character so
// each individual byte can be addressed

/! Read A to D Gnverter Channels 0 - 7;
At oD >chO = At oDReadWr d(0);

At oD >chl = At oDReadWord(1);

At oD >ch2 = At oDReadWr d(2); /1 Note: Hardware Rate Sensors for p & gq are
w red backwards

At oD >ch3 = At oDReadWrd(3); /] Channel 2 and 3 are reversed again in
right order because of Jerry ask 07/30/01 -M ad
/1 At oD >ch2 = At oDReadWrd(3); /1 Note: Hardware Rate Sensors for p & q are wired
backwar ds
I At oD >ch3 = At oDReadWrd(2); /1 Channel 2 and 3 are reversed in software to

correct problem
At oD >ch4 = At oDReadWrd(4);

At oD >ch5 = At oDReadWr d(5);
At oD >ch6 = At oDReadWr d(6) ;
At oD >ch7 = At oDReadWrd(7);

90

Ser Put Byt e (255);
Ser Put Byt e (255);

for (i =0; i < 16; i++) {
Ser Put Byte (ptrTenp[i]);

}

return 1;

/1 AtoD header byte (OxFF)
/1 AtoD header byte (OxFF)

/1 Qutput AtoD data

int SendAtoDTest (struct AtoDdata *AtoD, short val ue) {
//**
This is a function to output test Ato D data. The function accepts

an integer value as the | east significant byte on each A to D channel

/1
11
/1
11
/1

and outputs themon the pri

mary serial port. Ato D

channel s are actually read first to sinulate timng requiremts.
The primary purpose is for troubl eshooting the output of the code.

//**

int i =0;
char *ptrTenp;
ptrTenp = (char*) At oD;

/] Cast AtoDdata pointer to character so

/1 each individual

/! Read A to D Converter Channels 0 - 7;

At oD header byte (OxFF)
At oD header byte (OxFF)

/1 CQutput AtoD data.

At oD >ch0 = At oDReadWrd(0);

At oD >chl = At oDReadWord(1);

At oD >ch2 = At oDReadWrd(2);

At oD >ch3 = At oDReadWor d(3) ;

At oD >ch4 = At oDReadWrd(4);

At oD >ch5 = At oDReadWor d(5);

At oD >ch6 = At oDReadWr d(6) ;

At oD >ch7 = At oDReadWord(7);

// Test Values to ensure propper transm ssion.

At oD >ch0 = val ue;

At oD >chl = val ue;

At oD >ch2 = val ue;

At oD >ch3 = val ue;

At oD >ch4 = val ue;

At oD >ch5 = val ue;

At oD >ch6 = val ue;

At oD >ch7 = val ue;

Ser Put Byt e (255); I

Ser Put Byt e (255); /1

for (i =0; i <16; i++) {
SerPutByte (ptrTenp[i]);

}

return 1;

int Read3DM (struct data3DVr threeDV {

//**

11
11
11
11

This is a function to receive 3dmdata. The function first
65 indicates valid data.
bytes are read for each of the 6 3DMchannels (Hx, Hy, Hz, Ax, Ay,
is on the secondary serial

di agnostic byte.

I nput

port (TPU 14)

byte can be addressed

reads the

If data is valid two

AZ).

//**

int i =0;
unsigned int tenmp[12];

/] Check diagnostic byte:

41h if valid.
91

6Xh if error where X is error code

if (TSerByteAvail (14) >= 13) {
if (TSerGetByte(14) == 65) {
/!l Read in the 12 bytes in the buffer fromthe 3DM
for (i =0; i <12; i++) {
temp[i] = TSer Cet Byte(14);

/1 TSer | nFl ush(14); /1 Enpty input Buffer

}

threeDM->Hx = (short)(256*tenp[0] + temp[1]); /1 NMBB, LSB
threeDM->Hy = (short) (256*tenp[2] + tenp[3]); /1 MBB, LSB
threeDM->Hz = (short) (256*tenp[4] + tenp[5]); /1 NMBB, LSB
threeDM>Ax = (short) (256*tenp[6] + tenp[7]); /1 MBB, LSB
threeDM->Ay = (short) (256*tenp[8] + tenp[9]); /1 NMBB, LSB
threeDM->Az = (short) (256*tenp[10] + tenp[11]); // MSB, LSB
return 1, /1 Return after successful conpletion

}
}

TSer | nFl ush(14) ;

return 0; /! Return after error code

int Send3DM (struct data3DV threeDVM {
//**
/1 This is a function to send 3dmdata. The function outputs two
/1l bytes for each of the 6 3DM channels (Hx, Hy, Hz, Ax, Ay, Az).
/] CQutput is on the primary serial port.
//**

int i =0;

char *ptrTenp;

ptrTenp = (char*)threeDM /1 Cast data3DM pointer to character pointer

/1 so each individual byte can be addressed

for (i =0; i < 12; i++){
Ser Put Byte(ptrTenp[i]); /1 Qutput 12 bytes of 3DM data

return 1;

int Send3DMlest (short value) {
//**
/1 This is a function to output test 3dmdata. The function accepts

/1 an integer value as the |east significant byte on each of the

/1 6 channels (Hx, Hy, Hz, Ax, Ay, Az) and outputs themon the

/1 primary serial port. The prinary purpose of the function is for

/1 troubl eshooting the output of the code.

//**
int i =0

Il Test Values to ensure propper transm ssion.
Ser Put Byt e(00) ;
Ser Put Byt e(val ue) ;
Ser Put Byt e(00) ;
Ser Put Byt e(val ue) ;
Ser Put Byt e(00) ;
Ser Put Byt e(val ue) ;
Ser Put Byt e(00) ;
Ser Put Byt e(val ue) ;
Ser Put Byt e(00) ;
Ser Put Byt e(val ue) ;
Ser Put Byt e(00) ;
Ser Put Byt e(val ue) ;

92

return 1;

int SendGPS () {

//**

/1 This function reads in data on TPUline 1 fromthe GPS tattletal e and
/1 retransnitts it out the primary serial port.

//********************************)\‘*************************************
int i =0

if (TSerByteAvail (1) >= 310) { // Flush the buffer if over 1 second of data present
TSer | nFl ush(1);
}

if (TSerByteAvail (1) >= 31) { // Check for conplete GPS nessage of 31 bytes
for (i =0; i <31 i++) {
Ser Put Byt e(TSer Get Byte(1));

Ser Put Byt e(13) ;
Ser Put Byt e(10) ;

return 1; /1 Return after successful transni ssion

}

return O; /] Return after not enough bytes avail abl e

int SendGPSAtoD () {

//**

/1 This function reads in AtoD data on TPU line 2(it's supposed to be 8) fromthe GPS
tattletale and
/1 retransmtts it out the prinmary serial port.

//**
int i =0;
if (TSerByteAvail (8) >= 180) { // Flush the buffer if over 1 second of data present
TSer | nFl ush(8);
}

if (TSerByteAvail (8) >= 18) { // Check for conplete GPS AtoD nessage of 18 bytes
for (i =0; i <18; i++)
Ser Put Byt e(TSer Get Byt e(8)) ;

}
Ser Put Byt e(13) ;
Ser Put Byt e(10) ;

return 1; /1l Return after successful transm ssion

}

return O; /1 Return after not enough bytes avail abl e

}
C. DATA3DM .H

//**

I

/1 Filenane dat a3DM h

/1 Description: 3DM Data Structure

/1 Purpose: Structure to group all 3DM data into single data type
/1 Data: 13 May, 2001

/1 Progranmmer: LT Matt B. Commerford

I

//**

#i f defined (__DATA3DM H)
I Avoid mul tiple header inclusions
#el se

93

#define _ DATA3DM H

struct data3DM {

short Hx; /'l two bytes for X magnetic vector
short Hy; /1 two bytes for Y magnetic vector
short Hz; /'l two bytes for Z magnetic vector
short Ax; // two bytes for X acceleration
short Ay; // two bytes for Y acceleration
short Az; // two bytes for Z acceleration
oo
#endi f
D. PWM .H
//*******************~k~k~k~k~k~k~k**
I
/1 Filename PWM h
/1 Description: PWV Conmand functi ons
/1 Purpose: Functions to set PWM output from TT8 TPU
/1 Data: Sep 2001
/1 Progranmmer: Bock Aeng Lim
I

//*** kkkkkhkkhkkhkkhkkhkhkkhkkhkkhkkkkkk*x

/* Definitions for putting PWMwaveformonto TPU(4)-(7) */

#defi ne PWVMChanl 4
#def i ne PWVMChan2 5
#defi ne PWMChan3 6
#def i ne PWVChan4 7

/* PSC Pin State Control */

#defi ne For ceByPAC 0x00
#define For ceHi gh 0x01
#def i ne For ceLow 0x02
#def i ne NoForceState 0x03

/* PAC Pin Action Control (Inputs) */

#def i ne NoTr anDet 0x00
#defi ne Det Ri si ng 0x04
#def i ne Det Fal | i ng 0x08
#def i ne Det Ei t her 0x0c
#def i ne NoChangePAC 0x10
/* PAC Pin Action Control (Qutputs) */

#define NoChangenmat ch 0x00

#def i ne H ghOnMat ch 0x04
#def i ne LowOnhat ch 0x08
#def i ne Toggl eOnMat ch 0x0c

/* TBS Tine Base/Directionality Control */

#defi ne | nput Chan 0x00
#defi ne Cut put Chan 0x80
#defi ne Caplhat chl 0x00
#defi ne Caplhat ch2 0x20
#defi ne Cap2Mat chl 0x40
#defi ne Cap2Mat ch2 0x60
#defi ne NoChangeTBS 0x100
/* Definitions for Decoding Serial Data from TPY(9) */
/1 #define NULL 0;

#defi ne Header _byte 255

#def i ne PWV byte_| ength 16

#def i ne PWV word_| ength 8

#def i ne PWV def aul t _hi 1520;

#defi ne PWM def aul t _per 14250;

94

E. GPSTATTLETALE OPERATING CODE

/* __ */

/* GPS Tattletal e Operating System */

/* Primary function: GPS Serial Data Parsing */

/* Secondary function: Timng of A/D collection and transnission */

/* April 23, 2001 */

/* Fi | enane: GPSTT. ¢ */

/* __ */

#i ncl ude <TT8. h> /* Tattletal e Model 8 Definitions */

#include <tt8lib.h> /* for TT8 functions */

#i ncl ude <tat 332. h> /* 68332 Hardware Definitions */

#i ncl ude <t pu332. h> /* 68332 Tine Processing Unit Definitions */

#i ncl ude <si nB32. h> /* 68332 System Integrati on Mddule Definitions */ // Do | need?
#i ncl ude <gsnB832. h> /* 68332 Queued Serial Mdule Definitions */ /1 Do | need?
#i ncl ude <di 0332. h> /* 69332 Digital 1/O Port Pin Definitions */ /1 Do | need?
#i ncl ude <stdlib. h> /* for malloc */

#i ncl ude <stdi o. h> [* for printf() */

#i ncl ude <userio. h> /* for pronpts */

#i ncl ude <string. h> /* for sting conparison */

#i ncl ude "GPSparse.h" [/ for parseGEA, parseRMC, & parseVTG functions

#i ncl ude "GPSi 0. h" /1 for printGPS and sendGPS functions

#i nclude "GPSdata. h" // for GPSdata structure definition

#i ncl ude " At oDdat a. h" /1 for AtoDdata sturcture definition

#defineTSer| nBytes TSerByteAvai l

#defi ne TSer Qut Byt es TSer Byt eAvai |

[uchar

data buffer */

/1l TSer Get Queue(/*
/1 int chan,

I int *head,

character */

I int *tail,

character -1 */

/1l int *size);

nmani pul ation */

#def i ne SAMPLERATE 40

#def i ne SLEEPCOUNT 40000/ SAMPLERATE/ 2
#define @8l ZE 8
{2,4,8,16,32...}

11
/1

value for '0Q'
Timng Statistics

/* return nunber of bytes in input queue */
/* return nunber of bytes in output queue */

/* pointer to the start of the queue

return |low | evel queue information */

/* TPU channel, 0..15 */

/* index into queue for first
/* index into queue for |ast
/* si ze of queue for wrap

Mai n sanpl e frequency 40 Hz
Sl eep count in of Hertz rate (SAMPLERATE)

/1 Must be a power of 2

/1 Must be 2"QSI ZE
/] parseGGA function prototype
/1 parseRMC function prototype

/] parseVTG function prototype

/1 TprintGPS function prototype
/1 TsendGPS function prototype

/] TsendAt oD function prototype
/'l TsendAt oDTest function prototype
/1 Tsend3dnirest function prototype

/1 Xmodem error code

/1l CQurrent clock tick rate
// Timng Statistucs

Timng Statistics
Timng Statistics
Timng Statistics

/! Pointer to stored val ues

Timng Statistics

/] Test for tineslice overrun
-->to be used in testing

#defi ne TSBUFSI ZE 128
int parseGGA (struct GPSdata*);
int parseRMC (struct GPSdata*);
int parseVTG (struct GPSdata*);
int TprintGPS (const struct GPSdata* const);
int TsendGPS (const struct GPSdata* const);
int TsendAtoD (struct AtoDdata*);

int TsendAtoDTest (struct AtoDdata*, short);
int Tsend3dniTest (short val ue);

main (){

Xmdner r Xerr;

ul ong baud; /1 baud rate
ulong time = 0;

ul ong sanple = 0;

ul ong runni ngTi ne = 0; I

ul ong m ssed = 0; /1

fl oat m ssedPercent = 0; /1

long *val uePtr;

char tineStr[40]; /1

short OnTi ne;

short val ue = 48; /1 ASC |
int onTine = 1; /1

int i =0;

95

int count = O;

int status;

voi d *serBuf Ptr = NULL;

void *inBuf Ptr = NULL;

voi d *out Buf Ptr = NULL;

struct GPSdata GPS = {11, 22,33, 4,55, 66, 777777, 888, 99, 000000, 1, 22, 33, 44, 5, 66, 7, 88, 9};

struct GPSdata enptyGPS = {11, 22, 33, 4, 55, 66, 777777, 888, 99, 000000, 1, 22, 33, 44, 5, 66, 7, 88, 9}

struct AtoDdata TTAtoD;

I ni t TT8(NO_WATCHDOG, TT8_TPU) ; /1 Initialize the Mdel 8
L R Set up Menory Buffers for Serial Input and Qutput ----------------
serBuf Ptr = mal | oc(4096); /1 Consol e

(Primary) Serial Buffer
if (serBuf Ptr == NULL) printf("\nBuffer Mermory Allocation Failed n");
if (serBufPtr !'= NULL) printf("bufferPtr Menmory O K \n");

inBuf Ptr = mal | oc(TSBUFSI ZE+TSER_ M N_MEM) ; /1 TPY(14) Serial In Buffer
if (inBuf Ptr == NULL) printf("inBuf Ptr too big\n");
if (inBuf Ptr !'= NULL) printf("inBuf Ptr Memory QK \n");

outBuf Ptr = mal | oc(TSBUFSI ZE+TSER_M N_MEM) ; /1 TPW13) Serial CQutput Buffer
if (outBuf Ptr == NULL) printf("outBuf Ptr too big\n");
if (outBufPtr != NULL) printf("outBufPtr Menory O K \n");

N R Set up Serial Input and Qutput Parameters ------------------------
printf("\nSet BAUD rate to 38400\n");

printf("\nTick Rate is %d\n", GetTickRate());

printf("\nCurrent SystemFreq % d\ n", Si nGet FSys());

printf("\nSystemdock is %d\n", Si nGet FSys());

printf("\nBaud Rate is %d\n", baud);

Put Str("\nPreparing to Get GPS data\n");

Sl eep(0); /1 Initialize tinmer
Sl eep(1200); /1 Sleep 30 ns to allow screen printout

Si nBet FSys(14720000) ;

baud = Ser Set Baud(38400, 0);
Set Ti ckRat e(40000) ;

Ser Set | nBuf (serBufPtr, 4096);

/1 TSer Open(14, LowPri or, O, i nBuf Pt r, TSBUFSI ZE, 57600, ' N , 8, 1) ; /1 Open Port 14 for
buf fered i nput
TSer Qpen(13, H ghPrior, 1, out Buf Pt r, @8l ZE, 57600, ' N , 8, 1) ; // OCpen Port 13 for

buf f ered out put

R T T Attenpt to Sync with 1st byte of GPS signal -------------ccmmmm--

Ser | nFl ush (); /1l Enpty the Serial

Buf f er

while (!SerByteAvail ()) {}; /1 Wait until serial byte avail able

Sl eep(0); /1 Initialize tiner

Sl eep(2000) ; /1 Sleep 50 ns to allow the buffer to fill

Ser | nFl ush(); /1 Enpty Serial Buffer again to ensure next
/1 string will be a conplete one

while (!SerByteAvail ()) {}: /1 Wit until serial byte available

Sl eep(0); I/ Initialize tiner

Sl eep(400); /1 Sleep 10 ns to allow the buffer to fill

do {

96

/1 1st Mnor Timng Cycle @40Hz --> {send AtoD dat a}
L R e R R T T
/1 Note: ** Indicates debuggi ng code
Sl eep(0); /1 Initialize tiner
count = 0; /1 ** Initialize mssed timng block
count er
if (value >= 56) {value = 48;} /1l ** Reset sanple counter to ASCI| val ue for
o
if (sanple == 100) {m ssed = 0;} [/l ** Reset timng counter. Measures steady
/1 ** state errors after 100 initial sanples.
TPUSet Pin (0, 0); /' dock signal low to 2nd
Tattletal e
TPUSetPin (1,0); /1 Switch signal |ow
to Multiplex Switch
TSer Put Byte (13, 255); /1 Header Byte (OxFF)
TSer Put Byte (13, 255); /1 Header Byte (OxFF)
TsendAt oDTest (&TTAt oD, val ue); // 16 bytes of Test AtoD (ASCI '0'-'9")
onTine = Sleep (600); /1 Sleep until 15 nms is over
(40 = 1 ms)
if (tonTime) { count += 1; } [/l ** Update mssed timng slot
statistics
L R e
TPUSet Pin (0, 1); /1 Cdock signal high to 2nd
Tattletal e
TPUSetPin (1,1); /1 Switch signal high
to Multiplex Switch
Tsend3dnirest (103 - val ue); /1 ** 12 bytes of Test 3dM (ASCII '9'-'0")
sanmple += 1; /1 ** Increnment sanple counter for testing
val ue += 1; /] ** Increnment test val ue counter
onTinme = Sl eep (400); // Sleep until 10 ns is over
(40 = 1 ms)
if ('onTime) { count += 1; } /1 ** Update missed timng slot

statistics

L R e R T T
/1 2nd Mnor Timng Cycle @40Hz --> {Send AtoD data}
L R E L LT
TPUSet Pin (0,0); /] dock signal [|ow
to 2nd Tattletal e
TPUSet Pin (1,0); /] Switch signal |ow
to Multiplex Switch
TsendAt oDTest (&TTAt oD, val ue); /1 16 bytes fromAtoD (ASCII '0'-'9")
onTime = Sleep (600); /1 Sleep until 15 ms is over (40
=1 ns)
if (tonTine) { count += 1; } /1 Update nissed tinming slot statistics
L R e
TPUSetPin (0,1); /1 dock signal high to 2nd
Tattletal e
TPUSetPin (1,1); /1 Switch signal high
to Multiplex Switch
Tsend3dnirest (103 - val ue); // ** Send 12 bytes from 3dM (ASCIl '9'-'0")
sanple += 1; /1 ** Increment sanple counter for testing
val ue += 1; /] ** Increment test value counter

97

onTi me = Sl eep (400); I/l Sleep until 10 nms is over
(40 = 1 ns)

if (lonTime) { count += 1; } /1 ** Update missed timng slot
statistics
L R e R e T T
/1 3rd Mnor Timng Cycle @40Hz --> {Send AtoD data, parse
GGA & RMC string}
L R e R e T T
TPUSet Pin (0,0); /1 dock signal |ow
to 2nd Tattletal e
TPUSetPin (1,0); /1 Switch signal |ow
to Multiplex Switch
TsendAt oDTest (&TTAt oD, val ue); /] 16 bytes fromAtoD (ASCII '0'-'9")
St opWat chStart();
par seGGA(&GPS) ; /] Parse GGAA line of GPS data
par seRMJ(&GPS) ; /1 Parse RMC |ine of GPS data
time = StopWatchTime();
onTime = Sleep (600); I/l Sleep until 15 nms is over
(40 = 1 ns)
if (!onTine) { count += 1; } /1 ** Update mssed timng slot
statistics
L T T
TPUSetPin (0,1); /1 dock signal high
to 2nd Tattletale
TPUSetPin (1,1); /1 Switch signal high
to Multiplex Switch
Tsend3dnirest (103 - val ue); /1 ** Send 12 bytes from 3dM (ASCIl '9'-'0")
sanmple += 1; /1 ** Increnment sanple counter for testing
val ue += 1; /1 ** Increment test value counter
onTinme = Sl eep (400); // Sleep until 10 ns is over
(40 = 1 ms)
if (lonTine) { count += 1; } /1 ** Update missed timng slot
statistics
e R R T
/1 4th Mnor Timng Cycle @40Hz --> {Send AtoD data, send GPS
dat a}
L L R e R
TPUSet Pin (0,0); /1 dock signal |ow
to 2nd Tattletal e
TPUSetPin (1,0); /1 Switch signal |ow
to Multiplex Switch
TsendAt oDTest (&TTAt oD, val ue); /1 16 bytes fromAtoD (ASCII '0'-'9")
TsendGPS (&GPS) ; /1 Send GPS data out the secondary port (TPU
13)
/] Reset GPS value for troubl eshooting. This hel ps determ ne where data drops out.
GPS = enptyGPS;
onTinme = Sl eep (600); // Sleep until 15 ms is over
(40 = 1 ns)
if (lonTinme) { count += 1; } /1l ** Update missed timng slot
statistics
L e e
TPUSetPin (0,1); /1 dock signal high

to 2nd Tattletale

98

TPUSetPin (1,1); /1 Switch signal high
to Multiplex Switch

Tsend3dnirest (103 - val ue); /1 Send 12 bytes from 3dM (ASCll '9'-'0")
sanple += 1; /1 ** Increment sanple counter for testing
val ue += 1; /1 ** Increment test value counter

I/ ** Print out tining diagnostics.

sprintf(timeStr," S%.d T%. d", SerByteAvail (), TSer Byt eAvail (13));

for (i =0;i <12; i++){
TSerPutByte (13, ((int)tinmeStr[i]));

}
TSer Put Byt e(13, 13); /1 Carriage Return & Line Feed

TSer Put Byt e(13, 10) ;

m ssed += count;

is over

runni ngTi ne += tine;

(40 = 1 ns)
if (lonTine) { count += 1; }

} whil e(sanple < 3000); /1! TSer Byt eAvai |l (14));

N Qutput Timng Statistics and Downl oad Options -------

m ssedPercent = (float)m ssed/(fl oat)sanpl e*100;
sprintf(timeStr,"\n# Sanples: %d, # Msses: %d, Percent M sses: ,9%.3f, Ave Parse
Time: 9%.3f, \n",

sanpl e,
for (i

TSer Put Byte (13, 13);

m ssed, m ssedPercent, (float)runni ngTi me/ (fl oat)sanpl e);
= 0;i <80; i++){
TSerPutByte (13, ((int)tineStr[i]));

Li ne Feed

TSer Put Byte (13, 10);

printf("\nFinished with GPS data...");

Ser | nFl ush();

Ser Set Baud(9600, 0) ;

Reset ToMon() ;

return(0);

}

F. GPSPARSE.H
//**
I

I Fi | enane: GPSpar se. h

/1 Descri ption: GPS $GCGGA Parsi ng Routi ne.

/1 Pur pose: Routine to parse the GGA line of the GPS data
I Dat a: 21 April, 2001

/1 Pr ogr anmer : LT Matt B. Commerford

I

//**

#i ncl ude "GPSdat a. h"

int parseGGA (struct GPSdata *ptrGPS) {

val ues;

int success = 1;
char tenp[100];

int i =0;
int j =0;
int gamma = 0 - (int)'0"; /1 Correction factor between ASC I

99

onTime = Sl eep (400); /] Sleep until 10 ns

/1 Carriage Return &

and binary

R Get GPS String Header ------------mmmmmmmooon

while (SerGetByte() !'="'9%") {} /l Find start of a string $
j =0;
do {
temp[j] = SerCetByte();
} while (tenmp[j++] I=",");
temp[j] = "\0"; // NULL terminate the string
if (!'strenp(tenp, "GPGA")) { /1 Procces GGA line else return

/1 Print out error message.
sprintf(tenp, "\ nReturn from parseGGA n");
for (i =0;i <12; i++){

TSerPutByte (13, ((int)tenp[i]));

}
TSer Put Byt (13, 13) ; /l Carriage Return & Line Feed
TSer Put Byt e(13, 10) ;
return (0);
}
R Get GPS Tinme stamp ------------------------------
j =0;
do {
tenp[j] = SerGetByte();
} while (temp[j++] I=",");
ptrGS->timeHH = (char) (10*((int)tenp[0] + gamma) + ((int)tenp[l]+gamm)); [/
Hour s
ptrGPS->timeMM = (char) (10*((int)tenp[2] + gamma) + ((int)tenp[3]+ganm)); /1
M nut es
ptrGPS->timeSS = (char) (10*((int)tenp[4] + gamma) + ((int)tenp[5]+gamm)); /1
Seconds
ptrGPS->ti meDeci nal SS = (char) (1*((int)tenp[7] +gamm));
/] Deci mal Seconds
e CGet Latitude ----------cmmmmmmmi o
j =0;
do {
tenp[j] = SerCetByte();
} while (tenp[j++] I=",");
if (j <=12) {
tenp[j++] ='0"; /! Pad trailing zeros in array to ensure 7 deci mal
pl aces
I
tenp[j] = "'\0"; /1 NULL terminate string
ptrGPS->l atDeg = (char) (10*((int)tenp[0] + gamma) + ((int)tenp[l]+ganmma)); /1
Lat (deg)
ptrGS->latMn = (char) (10*((int)tenp[2] + gamma) + ((int)tenp[3]+gamma)); /1
Lat (m n)
ptrGPS->l at Decimal M n = atol (& enp[5]); 11

Converts argument to type |ong

pl aces

e Get N S mmmmmm o
j =0;
do {
tenp[j] = SerGetByte();
} while (tenp[j++] I=",");
Y LR R TR TR Get Longitude ------------mei
j =0
do {
tenp[j] = SerCGetByte();
} while (tenmp[j++] !'=",");
if (j <=12) {
tenp[j++] ="'0"; // Pad trailing zeros in array to ensure 7 decinal

100

}
tenp[j] = "\0"; /1 NULL ternminate string

ptrGPS->l ongDeg = (char) (100*((int)tenp[0] + gamma) + 10*((int)tenp[l]+gamma) +
((int)tenp[2] + gamma));
/1 Lat (deg)
ptr@S->longMn = (char)(10*((int)tenp[3] + gamma) + ((int)tenp[4]+gamm)); /1l
Lat (mi n)
ptr GPS->l ongDeci malM n = atol (& enp[6]); /1
Converts argunment to type |ong

tenp[j] = SerGetByte();
} while (tenp[j++] !=",");

SR E R LR EE R Get DGPS status byte ------------mmmmmma o

tenp[j] = SerCGetByte();
} while (tenp[j++] 1=",");
ptrGPS->di ffGPS = (char)((int)tenp[0] + gamma);

while (SerGetByte() !'=",") {}; /1 Discard Nunber SV

while (SerGetByte() !'=",") {}; // Discard HDCP

I e Cet Antenna Height --------------------~--~-~--------

j =0

do {

tenp[j] = SerCGetByte();

} while (tenp[j++] !=".");

tenmp[j] ="'\0"; // NULL terminate the string

ptrGPS->al t Feet = atoi (tenp);

i =0;

do {

tenp[j] = SerGetByte();

} while (tenp[j++] !'="',");

tenp[j] ="'\0"; /1 NULL ternminate the string

pt r GPS- >al t Deci nal Feet = (char)atoi (tenp);

while (SerGetByte() !'="',") {}; /I Discard 'M wunits

while (SerGetByte() !'=",") {}; // Discard Age of DGPS

while (SerGetByte() !="'*") {}; /] Discard Base Station ID

return success;
b
//**
11
I Descri ption: GPS $GGRMC Parsi ng Routi ne.
/1l Pur pose: Routine to parse the RVMC line of the GPS data
/1 Dat a: 21 April, 2001
/1l Pr ogr anmer : LT Matt B. Conmerford
;//~k~k~k~k~k***

int parseRMC (struct GPSdata *ptrGPS) {

int success = 1;
char tenp[100];
int i =0

101

int j =0;

int gamma = 0 - (int)'0"; /1 Correction for difference between Binary
& Asci i

while (SerGetByte() !'="'$") {}; /] Ensure start of a string $

i =0

do {

tenp[j] = SerCGetByte();
} while (tenp[j++] !'="',");
tenp[j] ="'\0"; // NULL ternminate the string

if (strcmp(tenp, "GPRMC')) { /1 Procces RMC line else return

/1 while (SerGetByte() '="',") {}; /1 Discard GPRC header

while (SerGetByte() !'=",") {}; // Discard Tine
while (SerGetByte() !="',") {}; /] Discard Status
while (SerGetByte() !'=",") {}; /1l Discard Latitude
while (SerGetByte() '=",") {}; /| Discard Latitude NS
while (SerGetByte() !'=",") {}; // Discard Longitude
while (SerGetByte() !'=",") {}; /1 Discard Longitude E/#W
R Get Ground Speed Line ------------------------
j =0
do {

tenp[j] = SerCGetByte();
} while (tenmp[j++] !=".");
tenp[j] ="'\0"; // NULL terminate the string
pt r GPS->gr ndSpeed = atoi (tenp);
i =0;
do {

tenp[j] = SerCetByte();
} while (tenp[j++] I=",");
tenp[j] = "\0"; /1 NULL terminate the string

pt r GPS- >gr ndSpeedDeci nal = (char)atoi (tenp);

e Get Ground Track Line ------------------------
j =0
do {
tenp[j] = SerCetByte();
} while (tenp[j++] I=".");
tenp[j] = "\0"; /1 NULL terminate the string
ptr GPS->grndTrack = atoi (tenp);
j =0
do {
tenp[j] = SerCGetByte();
} while (tenp[j++] !'=",");
temp[j] ="\0"; /1 NULL terminate the string

pt r GPS->gr ndTrackDeci mal = (char)atoi (tenp);

while (SerGetByte() '="',") {}; // Discard Date Line
e Get Magnetic Variation Line ------------------
j =0
do {
tenp[j] = SerCGetByte();
} while (tenp[j++] I=".");
tenp[j] ="'\0"; // NULL terminate the string
ptr GPS->magVar = atoi (tenp);
j =0
do {
tenp[j] = SerGetByte();
} while (temp[j++] I=",");

102

temp[j] ="\0'"; /1 NULL terminate the string
pt r GPS->magVar Deci mal = (char)atoi (tenp);

}
/1 Ser I nFlush (); /] Enpty the Serial Buffer

return success;
}
//**
11
/1 Descri ption: GPS $CCGRMC Par si ng Routi ne.
/1l Pur pose: Routine to parse the RMC line of the GPS data
/1l Dat a: 21 April, 2001
/1l Pr ogr anmer : LT Matt B. Commerford
I

//**

int parseVTG (struct GPSdata *ptrGPS) {

int success = 1;
char tenp[100];

int i =0;

int j =0;

int gamma = 0 - (int)'0"; /1 Correction for difference between Binary
& Ascii

while (SerGetByte() !'="$%$") {}; /1 Ensure start of a string $

i =0

do {

tenp[j] = SerCGetByte();
} while (tenp[j++] !=",");
tenmp[j] ="'\0"; // NULL terminate the string

if (stremp(tenp, "GPVIG')) { /1 Procces VIG line else return

/1 while (SerGetByte() !'=",") {}; /1 Discard GPRC header
/1l while (SerGetByte() !'=",") {}; // Discard Tine
/1 while (SerGetByte() !'=",") {}; /1 Discard Status
/1l while (SerGetByte() !'=",") {}; /1 Discard Latitude
/1 while (SerGetByte() !'=",") {}; // Discard Latitude NS
/1 while (SerGetByte() !'="',") {}; // Discard Longitude
/1 while (SerGetByte() !'=",") {}; /1 Discard Longitude E/W
e Get Gound Track Line -------------moommmmmnnn
j =0
do {
tenp[j] = SerGtByte();
} while (tenp[j++] I=".");
temp[j] = "\0"; /1 NULL term nate the string
ptrGPS->grndTrack = atoi (tenp);
i =0
do {
tenp[j] = SerCGetByte();
} owhile (tenp[j++] I=",");
tenp[j] ="'\0"; // NULL terminate the string

pt r GPS->gr ndTr ackDeci mal = (char)atoi (tenp);

while (SerGetByte() !=",") {}; /1 Discard "T" for True North
while (SerGetByte() !'=",") {}; /Il Discard ","
while (SerCetByte() !'="',") {}; /| Discard ","
e Get Gound Speed Line -----------------oooo
j =0;
do {

103

temp[j] = SerCetByte();

} while (tenp[j++] I=".");
tenp[j] = "'\0"; // NULL ternminate the string
ptr GPS->grndSpeed = atoi (tenp);
j =0
do {
tenp[j] = SerCGetByte();
} while (tenp[j++] !'=",");
tenmp[j] = "\0"; /1 NULL terminate the string

pt r GPS- >gr ndSpeedDeci mal = (char)atoi (tenp);

// Fake Magnetic Variation Value for conpatibility purposes
ptr GPS >nagVar = 15;
pt r GPS->nagVar Deci mal = 3;

while (SerGetByte() !'=",") {}; // Discard Date Line
while (SerGetByte() '=",") {}; /l Discard ","
}
I Ser | nFl ush (); [/l Enpty the Serial Buffer

return success;

104

IR R R R RS S S S S S S S EEEEEEEEE SRR R R R RS SRR R SRR R R R R R REE R SRR EEEEEEEEEEEEES

/1
I
/1 Fi | enane: GPSi 0. h

/1 Descri ption: GPS | nput and Qut put Routi nes.

/1 Pur pose: Print GPS structure data as ASCI| or Binary data.
/1 Dat a: 28 April, 2001

/1l Pr ogr anmer : LT Matt B. Commerford

11

/1

ER R R R e R R R R R R R R R R

#i ncl ude " @&PSdat a. h"
#i ncl ude "AtoDdat a. h"

int TprintGPS (const struct GPSdata* const ptrGPS) {
//**
/1 This function converts the GPSdata structure to an ASCI| string using
/1 the sprintf function. The string is output to the secondary seri al
// port (TPU 13). The primary use is to provide a readable output to

/1 be used in troubl eshooting the code

//**

char gpsLi ne[200] ;
char gpsLi ne2[80] ;

int i =0;
sprintf (gpsLine, "%:%:%.%.d % %l. %d % %.%d % %. % ",
ptrGPS->t i meHH, ptrGPS->ti meMV| ptr GPS- >t i meSS, ptr GPS

>t i neDeci mal SS, ptr GPS >l at Deg,
ptr GS->latM n, ptrGPS >l at Deci nal M n, ptrGPS->l ongDeg, ptrGPS- >l ongM n,
pt r GPS- >l ongDeci mal M n, pt r GPS->di f f GPS, ptr GPS- >al t Feet , ptrGPS
>al t Deci nal Feet) ;
sprintf (gpsLine2,"%. % %l. % %. %d %l %d\n\ 0", ptrGPS->grndSpeed, ptrGPS
>gr ndSpeedDeci nal ,
pt r GPS- >gr ndTr ack, pt r GPS- >gr ndTr ackDeci nmal , pt r GPS- >nagVar , ptr GPS
>magVar Deci mal) ;
strncat (gpsLine, gpsLi ne2, 30);
for (i = 0;i <66; i++){
TSer PutByte (13, ((int)gpsLine[i]));

}
TSer Put Byt e(13, 13) ;
TSer Put Byt e(13, 10) ;

return 1;

int TsendGPS (const struct GPSdata* const ptrGPS) {
//**
/1 This function sends the GPSdata structure in binary fornat to the

/1 secondary serial port (TPU 13). This is the primary GPS output routine.
/1 The function accepts a pointer to a character array. 1In calling this
/1 function the GPSdata structure pointer nust be cast to a character

/] pointer so the bytes in the array can be referrenced individually.

I/l The data stored in the GPSdata structure is not necessarily stored

/1 continuously. There are gaps in the data because variables in the

/1 structure nust be stored on 16 bit word boundaries in the Mtorolla
/1 chip. Thus, there are gaps of neaningl ess data that are not out put
/!l fromthe program {17, 21, 25, 29}.

//**

char *ptrTenp;
ptrTenp = (char*)ptrGPS; /] Cast AtoDdata pointer to character so
/] each individual byte can be addressed

/1 TSer Put Byte (13, 255); /| Header Byte
11l TSer Put Byte (13, 255); /1 Header Byte
TSer Put Byt e(13, (i nt) ptrTenp[0]); [/l GPS.tineHH

105

TSer Put Byt e(13, (i nt)ptrTenp[1]); /1
TSer Put Byt e(13, (i nt) ptrTenp[2]); /1
TSer Put Byt e(13, (i nt)ptrTenp[3]); /1
TSer Put Byt e(13, (i nt)ptrTenp[4]); /1
TSer Put Byt e(13, (i nt) ptrTenp[5]); I
TSer Put Byt e(13, (i nt) ptrTenp[6]); I/

TSer Put Byt e(13, (int)ptrTenp[7]);
TSer Put Byt e(13, (i nt) ptrTenp[8]);
TSer Put Byt e(13, (i nt) ptrTenp[9]);

TSer Put Byt e(13, (i nt) ptrTenp[10]); I
TSer Put Byt e(13, (i nt)ptrTenp[11]); I
TSer Put Byt e(13, (i nt) ptrTenp[12]); I/

TSer Put Byt e(13, (i nt)ptrTenp[13]);
TSer Put Byt e(13, (i nt) ptrTenp[14]);
TSer Put Byt e(13, (i nt)ptrTenp[15]);

TSer Put Byt e(13, (i nt) ptrTenp[16]); /1
TSer Put Byt e(13, (i nt) ptrTenp[18]); /1
TSer Put Byt e(13, (i nt) ptrTenp[19]);
TSer Put Byt e(13, (i nt)ptrTenp[20]); /1
TSer Put Byt e(13, (i nt)ptrTenp[22]); /1
TSer Put Byt e(13, (i nt) ptrTenp[23]);
TSer Put Byt e(13, (i nt)ptrTenp[24]); /1
TSer Put Byt e(13, (i nt) ptrTenp[26]); /1
TSer Put Byt e(13, (i nt) ptrTenp[27]);
TSer Put Byt e(13, (i nt) ptrTenp[28]); I/
TSer Put Byt e(13, (i nt)ptrTenp[30]); I
TSer Put Byt e(13, (i nt) ptrTenp[31]);
TSer Put Byt e(13, (i nt)ptrTenp[32]); I
/1 TSer Put Byt e(13, 13) ;
I TSer Put Byt e(13, 10) ;
return 1,
b

int TsendAtoD (struct AtoDdata *TTAtoD) {

GPS. ti neMM
GPS. ti neSs
GPS. ti meDeci mal SS
GPS. | at Deg

GPS. latMn
GPS. | at Deci mal M n

GPS. | ongbDeg
GPS. | ongM n
GPS. | ongDeci mal M n

GPS. di f f GPS

GPS. al t Feet

GPS. al t Deci mal Feet
GPS. gr ndSpeed

GPS. gr ndSpeedDeci nal
GPS. gr ndTr ack

GPS. gr ndTr ackDeci nmal
GPS. magVar

GPS. magVar Deci nal

//**

/1 This function reads all 7 Ato D channels on the Tattletal e and

/1 outputs themon the secondary serial port (TPU 13).

//**

int i =0;
char *ptrTenp;

ptrTenp = (char*) TTAt oD, /] Cast AtoDdata pointer to character so
/1 each individual byte can be addressed

/! Read A to D Converter Channels 0 - 7;
TTAt oD >ch0 = AtoDReadM I |i Vol ts(0);

TTAt oD->chl = AtoDReadM I |i Vol ts(1);

TTAt oD->ch2 = AtoDReadM | li Vol ts(2);

TTAt oD->ch3 = AtoDReadM | |i Vol t s(3);

TTAt oD->ch4 = AtoDReadM | |i Vol ts(4);

TTAt oD->ch5 = At oDReadM I Ii Vol t s(5);

TTAt oD->ch6 = At oDReadM | |i Vol t s(6);

TTAt oD->ch7 = AtoDReadM | |i Vol ts(7);
I TSer Put Byt e(13, 238) ; /1 AtoD header byte (OxEE)
11l TSer Put Byt e(13, 238); /1 AtoD header byte (OxEE)

for (i =0; i <16; i++) {
TSer PutByte (13, ptrTenp[i]);

106

/1 TSer Put Byt e(13, 13);
/1 TSer Put Byt e(13, 10);
return 1;

}

/1 Carriage Return & Line Feed

int TsendAtoDTest (struct AtoDdata *TTAtoD, short val ue) {
//**
This is a function to output test Ato D data. The function accepts
an integer value as the | east significant byte on each A to D channel
and outputs themon the secondary serial port (TPU 13). A to D
channel s are actually read first to simulate timng requiremts.

The primary purpose is for troubl eshooting the output of the code.

//**

/1
11
/1
11
/1

/1

Il
11

11
I

int

i = 0;

char *ptrTenp;

ptrTenp = (char*) TTAt oD,

/] Cast AtoDdata pointer to character so

// each individual byte can be addressed

// Read A to D Converter Channels 0 - 7;
TTAt oD- >ch0 = AtoDReadM I 1i Vol ts(0);

At oDReadM | i Vol ts(1);
At oDReadM | 1'i Vol ts(2);
At oDReadM I I'i Vol t s(3);
At oDReadM | i Vol ts(4);
At oDReadM | | i Vol t s(5);
At oDReadM | |'i Vol t s(6);
At oDReadM | i Vol ts(7);

/1

TTAt oD >chO
TTAt oD >chl
TTAt oD >ch2
TTAt oD >ch3
TTAt oD >ch4
TTAt oD >chb
TTAt oD >ch6
TTAt oD >ch7

TTAtoD->chl
TTAt oD->ch2
TTAt oD->ch3
TTAt oD->ch4
TTAt oD- >ch5
TTAt oD- >ch6
TTAt oD- >ch7

Test Values to ensure propper transm ssion.
val ue = 0;

val ue;
val ue;
val ue;
val ue;
val ue;
val ue;
val ue;
val ue;

TSer Put Byt e(13, 238) ; I/
TSer Put Byt e(13, 238) ; I/

for (i =0; i
TSer PutByte (13, ptrTenp[i]);

}

< 16; i++) {

TSer Put Byt e(13, 13); I/
TSer Put Byt e(13, 10) ;

return 1;

}

int Tsend3dnifest (short value) {

//**

This is a function to output test 3dmdata. The function accepts
an integer value as the |l east significant byte on each of the

/1
11
/1
11
/1

6 channels (Hx, Hy, Hz, Ax, Ay,
secondary seri al

port (TPU 13).

At oD header byte (OxEE)
At oD header byte (OXEE)

Carriage Return & Line Feed

Az) and outputs themon the
The primary purpose is for

troubl eshooting the output of the code.

//**************************** kkhkkhkkhkkhkhkhkhkhhkhkhhhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhhhhhhhhx*x*

int

i =0;

107

[/l Test Values to ensure propper transn ssion.

TSer Put Byt e(13, 00) ;

TSer Put Byt e(13, val ue) ;

TSer Put Byt e(13, 00) ;

TSer Put Byt e(13, val ue) ;

TSer Put Byt e(13, 00) ;

TSer Put Byt e(13, val ue);

TSer Put Byt e(13, 00) ;

TSer Put Byt (13, val ue + 10);
TSer Put Byt e(13, 00) ;

TSer Put Byt (13, val ue + 10);
TSer Put Byt e(13, 00) ;

TSer Put Byt (13, val ue + 10);

return 1;

}

G. GPSDATA.H

/1 Fil e Nane: GPSdat a. h

I/ Description: GPS Data Structure

I Pur pose: Structure to group all GPS data into a single data type
/1 Dat a: 21 April, 2001

I/ Progr ammer : LT Matt B. Commerford

I

//**

#if defined (__GPSDATA H)

Il Avoi d nul tipl e header inclusions
#el se
#define _ GPSDATA H

struct GPSdata {

/1 Note: (One byte data represented with CHAR data type

I/ Two byte data represented with INT data type
I Four byte data represented with LONG data type
I/ No floating point nunbers used. Conversions are
/1 done after data is transmtted.
char tinmeHH; /1 one byte of Hours
char tineW /1 one byte of M nutes
char tinmeSs; /1 one byte of Seconds
char tineDeci mal SS; /1 one byte of tenths of Seconds
char | atDeg; /1 one byte of degrees Latitude
char latMn; /1 one byte of mnutes Latitude
long |atDecimalMn; [/ four bytes of decinmal mntues Latitude
char | ongDeg; /1 one byte of degrees Longitude
char | ongM n; /1 one byte of mnutes Longitude
long | ongDeci mal M n; /1 four bytes of decimal mntues Longitude
char diffGPS; /1 one byte of DGPS status
short altFeet; /1 two bytes of altitude in feet
char al t Deci mal Feet ; /1 one byte of decinal feet
short grndSpeed; /1 two bytes of groundspeed in ft/s
char grndSpeedDecimal; // one byte of groundspeed in decimal ft/s
short grndTrack; /1 two bytes of ground track in degrees (0-359)
char grndTrackDecimal; // one byte of ground track in decinal degrees
short nagVar; /1 two bytes of nagnetic variation in degrees
char magVar Deci nal ; /] one byte of nag variation in decimal degrees
/1 short gpsCRC, /1 two byte Cyclic Reduncancy Check (CRO);
b
#endi f

108

H. ATODDDATA.H

//**

Il

/1 Filename : At oDdat a. h

/1l Descri ption: At oD Data Structure

/1 Pur pose: Structure to group all AtoD data into a single data type
I Dat a: 29 April, 2001

/1 Pr ogr anmmer : LT Matt B. Commerford

I

//**

#if defined (__ATODDATA H

/1l Avoid mul tipl e header inclusions
#el se
#def i ne __ ATODDATA H

struct AtoDdata {

short cho; /!l two bytes for Ato D channel (0)
short chil; /1 two bytes for Ato D channel (1)
short ch2; /1 two bytes for Ato D channel (2)
short ch3; /1 two bytes for Ato D channel (3)
short ch4; /!l two bytes for Ato D channel (4)
short chb; /1 two bytes for Ato D channel (5)
short ché; /'l two bytes for Ato D channel (6)
short ch7; /1 two bytes for Ato D channel (7)

/1l short gpsCRC, /1 two byte Cyclic Reduncancy Check (CROC);

H

#endi f

109

THISPAGE INTENTIONALLY LEFT BLANK

110

APPENDIX B. CROSSBOW AHRSNOISE ANALYSIS

The CrossBow AHRS was evaluated to determine the amount ard nature of the
sensor noise when operating in the continuous/angle mode. The AHRS was initialized
while sitting on a large stable concrete pad. Sufficient time was given for the Kalman
filter to converge and data was collected using the Gyroview version2.1. The data was
then imported into Matlab where a statistical analysis was performed. The resulting
Matlab output follows.

Crossbow Static Noise Test

Angul ar Rat es
Mean Rates:
St andard Devs:

0. 0059416 r
0. 085688

0. 0032076
0.07939

0060913 g
087604 q

p = 0.
p = 0.
Covariance of Rates: p,q,r =
0. 0076745 -0. 0002478 0. 00020486
-0.0002478 0.0073424 -7.9876e- 005
0.00020486 -7.9876e-005 0.0063027

Orientation Angle

Mean Angl e: roll = 0.9201 pitch = 0.038009 yaw = -78.9903
St andard Devs: roll = 0.021981 pitch = 0.019398 yaw = 0. 024684
Covariance of Angle: roll, pitch, yaw =

0. 00048315 8. 8618e- 006 2.5846e- 005

8. 8618e- 006 0. 0003763 9. 3887e- 005

2.5846e- 005 9. 3887e- 005 0. 00060928
Li near Accel eration
Mean Accel : Ax = -0.00066671 Ay = 0.016047 Az = 0.99781
Standard Devs: Ax = 0.00037249 Ay = 0.00045495 Az = 0.00032578

Covariance of Accel: Ax, Ay, Az =
1.3875e-007 -5.3833e-009 1.1636e- 009

- 5. 3833e-009 2.0698e-007 -8.1784e-009
1.1636e-009 -8.1784e-009 1. 0613e- 007

111

Magneti ¢ Fl ux

Mean Fl ux:

St andard Devs:

Covari ance of

7.0523e- 007
-2.1908e-008
3. 7182e- 007

0. 045627

Hx
Hx 0. 000839

0. 24452
0. 00085417

|_Iy
78 Hy

Flux: Hx, Hy, Hz =

-2.1908e-008
7.2961e- 007
- 1. 8335e- 007

3. 7182e- 007
- 1. 8335e- 007
1.1272e-006

112

Hz
Hz

0. 48059
0. 0010617

LIST OF REFERENCES

Futaba Corporation of America, “Futaba® PCM1024ZA Instruction & Operation
Manual,” Irvine, CA.

Commerford, M., “FROG UAV Inetia Measurement Unit Software
Documentation,” Unpublished Paper, June 2001.

Hallberg, E., “On Integrated Plant, Control and Guidance Design,” Dissertation,
Naval Postgraduate School, Monterey, CA, September 1997.

Papageorgio, E., “Development of a Dynamic Model for a UAV,” Master's
Thesis, Naval Postgraduate School, Monterey, CA, March 1997.

Pollard, S., “Development and Verification of an Aerodynamic Model for the
NPS FROG UAV using the CMARC Panel Code Software Suite,” Aeronautical
Engineer’s Thesis, Naval Postgraduate School, Monterey, CA, September 1998.

Integrated Systems, “RealSim User’s Guide, Sunnyvale, CA, February 1999.

113

THISPAGE INTENTIONALLY LEFT BLANK

114

INITIAL DISTRIBUTION LIST

Defense Technical Information Center
Ft. Belvoir, Virginia

Dudley Knox Library
Naval Postgraduate School
Monterey, California

Doctor Isaac |. Kaminer, Dept. of Aeronautics and Astronautics
Naval Postgraduate School
Monterey, California

Oleg Y akimenko, Dept. of Aeronautics and Astronautics
Naval Postgraduate School
Monterey, California

Max Platzer, Dept. of Aeronautics and Astronautics
Naval Postgraduate School
Monterey, California

115

