

Calhoun: The NPS Institutional Archive DSpace Repository

Designing an automatic control system for a submarine

Babaoglu, Orhan K.
https://hdl.handle.net/10945/23162

Copyright is reserved by the copyright owner.

Downloaded from NPS Archive: Calhoun

a Me-

NAVAL POSTGRADUATE SCHOOL Monterey, California

THESIS

DLSIG.ING AXALIOMATIC COXTROL SYSIEM FOR A SLBMARINE

by

Orhan K. Babaoglu

December 1988

Approved for public relcase: distribution is unlimited.

classified

RLPORI DOCL.MEXISIIOX PAGE

Report Security Classification Colassified		16 Restrictive Mankings			
Securty Classification Authority		3 Distribution Avalabilts of Report Approved for public release; distribution is unlimited.			
Declassfication Downeradme Schedule					
Performing Organization Report \umber(s)		5 Montorme Orsamiz	on Report	umber(s)	
Name of Performmg Olganmation avial Postgraduatc School	6b Olfice Symbol (if apflicable) 33	7a Name of Monitorn Casal Postgraduat	Oreanizati School		
Address (ctro statr. and ZIP code) Ionterey. CA 939+3-5000		7b Address (ciry, statr Monterey. CA 930	$\begin{aligned} & \text { and ZIP cod } \\ & 43-5000 \end{aligned}$		
入ame of Funding Sponsoring Organization	$8 b$ Office Symbol if apricatie)	9 Procurement Instrument Identifation . . umber			
dddress (ciry, slate, and ZIP code)		10 Source of Funding Numbers			
		Program Element No	Project Vo	Jask \o	Work Limt Accession \o

Persomal Authoris) Orhan K. Babaoglu

Sunflementary Notation The views expressed in this thesis are those of the author and لo not reflect the official policy or poion of the Department of Defense or the L.S. Government.

Cosati Codes		
1 ld	Group	Subgroup

18 Subject Terms (continuc on metrse if necessary and identify by block mumber) Depth, pitch and yaw control, squatting effect on a submarine

Abstract icontinue on reverse if nccessary and identify by block number)
The purpose of this thesis is to linearize given non-linear differential equations and design a complete automatic control stem for the three dimensional motions of a submanine. Automatic control ststems are designed using a steady state deupling scheme for vertical and horizontal motion. Both designs are simulated using the Dynamic Simulation Language JSL) for both linear and non-linear models and compared. Cross-coupling effect between horizontal and vertical motions e to the rudder deflections is also investigated.

Distribution A valability of Abstract unclassified unlamited $\quad \square$ same as report	\square Ditc users	$\begin{aligned} & 21 \text { Abstract Securnty Classification } \\ & \text { Unclassified } \end{aligned}$	
तame of Responsible Individual orge J. Thaler		$\begin{aligned} & 226 \text { lelenhone include Arca cade) } \\ & (408) 6+6-21.3 . \end{aligned}$	$\begin{aligned} & \text { 22c Olfice Symbol } \\ & \text { 021r } \end{aligned}$

Approved for public release: distribution is unlimited.

Designing an Automatic Control System for a Submainc

by
Othan K. Babaoglu
Lieutenant Junior Ciade, Turkish Nary B.S., Tukish Naval Academy, 1982
Submitted in partial lillillment of the requirements lor the degree of
\title{ }

from the

Abstract

The purpose of this thesis is to lincarize given non-linear differential equations and design a complete automatic control system for the three dimensional motions of a submarine. Automatic control systems are designed using a steady state decoupling scheme for vertical and horizontal motion. Both designs are simulated using the Dynamic Simulation Language (DSL) for both linear and non-linear models and compared. Cross-coupling effect between horizontal and vertical motions due to the rudder deflections is also investigated.

TABLE OF CONTENTS

I. INTRODUCTION I
11. EQUATIONS OF MOTIONS IN SIX DEGREES OF FREEDOM 3
A. BACKGROUND 3
B. DERIVATION OF TIIE LINEARIZED MODEL 5

1. Assumptions 5
2. Derivation of the linear equations of Motion 6
a. Linearization on the vertical plane 6
b. Linearization on the Ilorizontal Plane 7
C. VALIDATION OF LINEAR MODEL 11
3. Validation of Linear Model on Vertical Plane 11
a. Initial Condition Response 11
b. Forced Response 12
4. Validation of the Linear Model on the Horizontal Plane 41
a. Initial Condition Response 42
b. Forced Response 48
5. AUTOMATIC DEPTH AND PITCH COMTROL 65
A. DESIG. SPECIFICATIONS 65
B. DESIG. 65
6. Decoupling 66
7. Design 68
a. Limiters 79
b. Actuators S2
8. Simulation 83
IV. AUTOMATIC STEERING CONTROL 97
A. DESIGN SPECIFICATIONS 97
B. DESIG. 98
9. Decoupling 99
10. Simulation 103
V. VALIDATION OF THE COMPENSATED NON-LINEAR MODEL 117
A. Sinllilation 117
V1. CONCLLSIONS AND RECOMMINDATIONS FOR FURTIIER WORK 136
A. CONCLL'SIO.S 136
B. RECOMIIENDATIONS IOR FURIIIER WORK 136
APPENDIXA. DEFINITIONS OF SYMBOLS 138
APPEADIX B. HYDRODYNA.MIC COEFFICIENTS OF SIMULATION EQLATIONS 142
A. AXIAL force 142
B. LATERAL FORCE 142
C. NOR.MAL FORCE 142
D. ROLLING MOMENT 143
E. PITCHI:G MOMENT 143
F. YAWING MONIE.TT 143
G. OTHERS 143
APPENDIX C. STANDARD EQUATIONS OF MOTION 144
A. AXIAL FORCE 144
B. LATERAL FORCE 145
C. CORMAL FORCE 146
D. ROLLING MOMENT 147
E. PITCHANG MOMEへT 148
F. YAWING MOMENT 149
G. AUXILARY EQLATIONS 150
APPE.NDIX D. SIMLLLATION PROGRAM FOR LINEARIZED VERTICAL EQLATIONS OF MOTION 151
APPENDIXE. SIMLLATION PROGRAM FOR LINEARIZED IIORIZON. TAL EQUATIONS OF MOHON 152
APPENDIXF. SIMLLATION PROGRAM FOR THE COMPEXSATED SYS- TEM IN VLRTICAL MOIIO. 154
APPENDIX G. SIMLLATION PROGRAMFOR THE COMPENSATED SYSTE.M I. HORIZONTAL MOTION 156
APPENDIXH. SIMLLATION PROGRAN FOR NON-LINEAR EQLATIONS OF MOTION 158
APPE.NDIX I. COMPENSATED NON-LINEAR MODEL 162
LIST OF REFERE.CES 167
INITIAL DISTRIBUTION LIST 169

LIST OF FIGURES

Figure 1. A Submarine with Axes of Motion \downarrow
Figure 2. Block Diagram for the Linearized Model on the Vertical Plane S
Figure 3. Block Diagram for the Lincarized Model on the Horizontal Plane 10
Figure 4. Initial Condition Response Init. Pitch $=5$ Deg. $\mathrm{U}=5$ Kits. 13
Figure 5. Initial Condition Response Init. Pitch $=5$ Deg. $\mathrm{U}=8 \mathrm{Kts}$. 14
Figure 6. Initial Condition Response Init. Pitch $=5$ Deg. $\mathrm{L}=12 \mathrm{Kts}$. 15
Figure 7. Initial Condition Response Init. Pitch $=5$ Deg. $\mathrm{U}=18 \mathrm{Kts}$. 16
Figure 8. Initial Condition Response 1nit. Pitch $=5$ Deg. $\mathrm{U}=25 \mathrm{Kts}$. 17
Figure 9. Initial Condition Response Init. Pitch $=45$ Deg. $\mathrm{U}=5 \mathrm{Kts}$. 18
Figure 10. Initial Condition Response 1nit. Pitch $=45$ Deg. $\mathrm{U}=8 \mathrm{Kts}$. 19
Figure 11. Initial Condition Response Init. Pitch $=45$ Deg. $\mathrm{U}=12 \mathrm{Kits}$. 20
Figure 12. Forced Response. Bow Planc $=5$ Deg. down. $\mathrm{U}=5 \mathrm{Kts}$. 22
Figure 13. Forced Response. Bow Plane $=15$ Deg. down. $\mathrm{U}=5 \mathrm{~K} t \mathrm{t}$. 23
Figure 14. Forced Response. Bow Plane $=35$ Deg. down. $\mathrm{U}=5 \mathrm{Kts}$. 24
Figure 15. Forced Response. Bow Plane $=5$ Deg. down. $\mathrm{U}=12 \mathrm{Kts}$. 25
Figure 16. 1:orced Response. Bow Plane $=15$ Deg. down. $U=12 \mathrm{Kts}$. 26
Figure 17. Forced Response. Bow Plane $=35$ Deg. down. $\mathrm{U}=12 \mathrm{Kts}$. 27
Figure 18. Forced Response. Bow Plane $=5$ Deg. down. $\mathrm{L}^{\prime}=18 \mathrm{Kts}$. 28
Figure 19. Forced Response. Bow Plane $=15$ Deg. down. U $=18 \mathrm{Kts}$. 29
Figure 20. Forced Response. Bow Plane $=35$ Deg. Jown. $\mathrm{L}=18$ Kits. 30
Iigure 21. Forced Response. Stern Plane $=5$ Deg. $U=5 \mathrm{Kts}$. 32
Figure 22. Forced Response. Stern Plane $=15$ Deg. $\mathrm{U}=5 \mathrm{Kts}$. 33
Figure 23. Forced Response. Stern Plane $=35$ Deg. U $=5 \mathrm{Kts}$. 34
Figure 24. Forced Response. Stern Plane $=5$ Deg. $\mathrm{U}=12 \mathrm{Kts}$. 35
Figure 25. I orced Response. Stern Plane $=15$ Deg. $\mathrm{U}=12 \mathrm{Kts}$. 36
Figure 26. Forced Response. Stern Plane $=35$ Deg. $\mathrm{U}=12 \mathrm{Kts}$. 37
Figure 27. Forced Response. Stern Plane $=5$ Deg. $\mathrm{U}=18 \mathrm{Kts}$. 38
Figure 28. Forced Response. Stern Plane $=15$ Deg. U $=18 \mathrm{Kts}$. 39
Figure 29. Forced Response. Stern Plane $=35$ Deg. $\mathrm{U}=18 \mathrm{Kts}$. 40
Figure 30. Initial Condition Response Init. Roll $=5$ Deg. $\mathrm{C}=5$ and $8 \mathrm{~K} t \mathrm{t}$. 43
Figure 31. Initial Condition Response lnit. Roll $=5 \mathrm{Deg}, \mathrm{U}=12$ and 18 Kits 44
Figure 32．Init．Cond．Response Init．Roll $=5$ and 25 Deg ． $\mathrm{L}=25$ and 5 Kts ． 45
Iigure 33．Initial Condition Response Init．Roll $=25 \mathrm{Deg}$ ． $\mathrm{L}=8$ and 12 Kts． 46
Figure 34．Initial Condition Response Init．Roll $=25 \mathrm{Deg} . \mathrm{U}=18$ and 25 Kits． 47
Figure 35．「orced Response．Rudder $=5$ Deg． $\mathrm{U}=5$ K゙ts． 49
Figure 36．Forced Response．Rudder $=15$ Deg． $\mathrm{L}=5 \mathrm{~K} t \mathrm{~s}$ ． 50
Figure 37．Forced Response．Rudder $=35$ Deg．U $=5$ Kits． 5 I
Figure 38．Cross－Coupling Ellict on Vertical Plane．Rudder $=35$ Deg． $\mathrm{L}=5 \mathrm{~K}$ ts． 52
Figure 39．Forced Response．Rudder $=5$ Deg．$U=12 \mathrm{~K}$ is． 53
Figure 40．Cross－Coupling Effect on Vertical Plane．Rudder $=5 \mathrm{Deg}$ ． $\mathrm{L}=12 \mathrm{Kts}$ ． 54
Figure 41 ．Forced Response．Rudder $=15 \mathrm{Deg}$ ．down． $\mathrm{U}=12 \mathrm{Kts}$ ． 55
Figure 42．Cross－Coupling Effect on Vertical Plane．Ruduer $=15$ Deg．U $=12 \mathrm{~K} t \mathrm{t}$ ． 56
Figure 43．Forced Response．Rudder $=35 \mathrm{Deg} . \mathrm{Li}=12 \mathrm{Kis}$ ． 57
Figure 44．Cross－Coupling Ellect on Vertical Plane．Rudder $=35 \mathrm{Deg} . \mathrm{U}=12 \mathrm{~K}$ ts． 58
Figure 45．Forced Response．Rudder $=5 \mathrm{Deg}$ ． $\mathrm{U}=18$ Ǩts． 59
Figure 46．Cross－Coupling EMect on Vertical Planc．Rudder $=5 \mathrm{Deg} . \mathrm{L}=18 \mathrm{Kts}$ ． 60
Figure 47．Forced Response．Rudder $=15$ Deg．U $=$ IS Kts． 61
Figure 48 ．Cross－Coupling Effect on Vortical Plane．Rudder $=15 \mathrm{Deg} . \mathrm{U}=18 \mathrm{Kits}$ ． 62
Figure 49．Forced Response．Rudder $=35 \mathrm{Deg} . ~ U=18 \mathrm{Kits}$. 63
「igure 50．Cross－Coupling Elfect on Vertical Plane．Rudder $=35$ Deg． $\mathrm{U}=18 \mathrm{~F}$ ts． 64
Figure 51．Signal Flow Graph for Vertical Equations of Motion 60
Figure 52．Cascade Compensated Control Model for Vertical Motion 70
Figure 53．Root Locus Plot for $g_{11}(s)$ 71
Figure 54 ．Open Loop Bode Plot for $g_{11}(s)$ ． 72
「igure 55．Root Locus Plot Yor $g_{12}(s)$ ． 73
Figure 56．Open Loop Bode I＇lot for $g_{12}(s)$ ． 74
Iigure 57．Root Locus Plot for $g_{21}(s)$ 75
Tigure 58．Open Loop Bode Plot for $g_{2 i}(s)$ ． 76
Figure 59．Root Locus Plot for $g_{22}(s)$ ． 77
Figuic 60．Open Loop Bode Plot for $g_{22}(s)$ ． 78
Figure 61．Root Locus Plot for $G_{c} \mathrm{c}_{1}$ ． 80
Figure 62．Open Loop Bode Plot lor Ggat 81
Fisure 63．Block Diagram lor Compensated Linear Model in Vertical Motion S2
Figure 64．Compensated System Depth Response $Z=0.1 . \mathrm{P}=1.0$ 86
Figure 65．Compensated System Depth Response $\mathrm{K}!=0.015, \mathrm{~K} 2=1.0$ $\$ 7$
Figure 66．Plane Angle Deflections for first and second Compensator S8
Figure 67. Compensated System Response to 100 ft . Depth Change 89
Figure 68. Compensated System l'itch Response for Commanded Pitch $=-5$ Deg. 90
Figure 69. Compensated System Response to 10 ft . Depth Change $\mathrm{U}=9 \mathrm{~K} t \mathrm{~s}$. 91
Figure 70. Compensated System Response to 100 ft . Depth Change U $=9 \mathrm{Kts}$. 92
Figure 71. Compensated System Response to 10 ft . Depth Change $\mathrm{U}=12 \mathrm{Kts}$. 93
Figure 72. Compensated System Response to 100 ft . Depth Change $\mathrm{U}=12 \mathrm{Kts}$. 94
Figure 73. Compensated System Response to 10 ft . Depth Change $\mathrm{U}=18 \mathrm{Kts}$. 95
Figure 74. Compensated System Response to 100 ft . Depth Change $\mathrm{U}=18 \mathrm{Kts}$. 96
Figure 75. Cascade Compensated Control Model for Iforizontal Motion 99
Figure 76. Signal Flow Graph for Horizontal Equations of :Motion 100
Figure 77. Root Locus Plot for $\frac{\text { raw }}{3 r}$. 101
Figure 78. Open Loop Bode Plot for $\frac{\text { yaw }}{i r}$. 102
Figure 79. Open Loop Bode P'lot for $G_{c} G_{p}$. 104
Figure s0. Root Locus Plot for $G_{c} G_{F}$. 105
Figure 81. Block Diagram for Compensated Linear Model in 11 orizontal Motion 106
Figure 82. Yaw and Roll Response to 10 Degrec Course Change. No Limiter 108
Figure 83. Yaw and Roll Response to 15 Degree Course Change. With Limiter 109
Figure 84 . Yaw and Roll Response to 90 Degree Course Change. $\mathrm{L}=6 \mathrm{Kts}$. 110
Figure 85. Y'aw and Roll Response to 15 Degree Course Change. $\mathrm{U}=10 \mathrm{~K}$ ts. 111
Figure 86. Yaw and Roll Response to 90 Degree Course Change. U $=10 \mathrm{Kts}$. 112
Figure 87. Yaw and Roll Response to 15 Degree Course Change. $\mathrm{U}=15 \mathrm{Kts}$. 113
Figure 88 . Yaw and Roll Response to 90 Degree Course Change. $\mathrm{U}=15 \mathrm{~K}$ ts. 114
Figure 89. Yaw and Roll Response to 15 Degree Course Change. $\mathrm{U}=20 \mathrm{Kts}$. 115
Figure 90. Yaw and Roll Response to 90 Degree Course Change. $\mathrm{U}=20 \mathrm{Kts}$. 116
Figure 91. Compensated Submarine Depth Responses at $6 \mathrm{~K} t s$. 121
Figure 92. Compensated Submarine Yaw Responses at 6 Kits. 122
Figure 93. Compensated Submarine Depth Responses at 10 Kts. 123
Figure 94. Compensated Submarine Yaw Responses at 10 Kts. 124
Figure 95. Deviations from the Commanded Speed for Non-Lincar Submarine 125
Figure 96. Cross-Coupling Effects for the . $o n$-Lincar Submarine at 10 Kts 126
Figure 97. Course and Depth Change Commanded at the Same Time LC $=10$ Kts. 127
Figure 98. Roll. Pitch and Speed Response for Multi-Manevuer Subnarine. 128
Figure 99. Depth and Pitch Response for Fixed Rudder Commands $\mathrm{U}=12 \mathrm{Kts}$. 129
Figure 100. Compensated Submarine Yaw Responses at 15 Kts 130
Figure 101. Compensated Submarine Depth Responses at 15 Kts 131
Figure 102. Depth Change with 5 Deg. Down Pitch Angle for Non-Linear Sub. 132
Figure 103. Compensated Submarine law Responses at 20 kts 133
Figure $10 \not 4$. Compensated Submarine Depth Responses at 20 Kts 134
Figure 105. Compensated Submarine Pitch Response to Depth Change Com- mands 135

AChNOWLEDGEMENTS

The author wishes to express his sincere appreciation to Dr. George J. Thater for the guidance, assistance and continuous encouragement which he provided during the pursuit of this study. The author would also like to express his appreciation to LTJG Levent Korkmaz from Turkish Navy for his valuable assistance.

I. INTRODUCTION

Since they are operated in three dimensions and because of their different body structure and operational conditions. submarines always present a great challange for automatic control engineers. Especially for submarines with extremely high underwater speeds, it is very important to have automatic controls which can be used effectively.

In this study, using the equations of motions in six degrees of freedom which were developed by Naval Ship Research and Development Center (..SRDC), a linearized submarine model was derived for both horizontal and vertical motions. It was obvious that working with a linear model is much simpler then with a complete nonlinear model. Also the automatic control system design procedures which are used in this study require a linear model for decoupling. Even though the linearized model does not introduce a cross-coupling effect between horizontal and vertical motion, as would a real submarine, it works in almost the same way the nonlinear model does.

In designing an automatic controller for both vertical and horizontal motions, a MIMO (Multi-input Multi-output) system representing the submarine, has to be investigated. Inputs are propeller which creates the forward speed, rudder for horizontal motion, and the bow and stern planes for vertical motion. The outputs are the three speed components u, W, v and roll, vaw, pitch angles around three axes of the submarine. Also a ballast system can be used to maneuver the submarine but it is not included in this study assuming the submarine is always in trim.

The pitch and yaw angles and the depth have the main importance for maneuvering a submerged submarine. Therefore the automatic control system is designed to control these three states.

After obtaining valid linear models for both horizontal and vertical motions, the method of the automatic control design has to be chosen. One of the most popular design method is optimal control theory but it requires feedback of both position and rate information. This information is available for submarines which are equipped with an inertial guidance system. For the small coastal submarines which do not have an inertial guidance system, a different design approach must be carried out. A possible way would be the design of cascaded compensators using only position (such as depth) feedback.

There is ahways a cross-coupling effect between vertical and horizontal motion in a submerged submarine which is also called a squatting effect. The cross-coupling effect
is simpty the rudder effect on vertical plane which makes the submarine pitch up and change depth when a rudder angle is applied. The cross-coupling effect is also investigated in this study:

II. EQUATIONS OF MOTIONS IN SIX DEGREES OF FREEDON

A. BACKGROUND

With diving capability, submarines differ from surface ships. They also have completely different hull structures, hydrodynamic specifications and relatively complex control and stability problems. A submarine can be operated in all six degrecs of freedom. To maneuver usually three sets of plane surfaces, the propulsion system consisting of one or two propellers, and a ballast system consisting of two or three ballast tanks for different type of submarines are used.

To control horizontal motion the submarine has a usual rudder such as surface ships do. But in vertical motion, a submerged submarine needs at least one more control surface to maintain the desired depth and pitch angle. Λ classic submarine has bow planes. which can be used to keep ordered depth, and stern planes, which can be used to tilt the submarine to an ordered pitch angle. Depending on the submarines's speed and condition these plancs can have an appreciable interaction.

Modern submarines usually have bow planes on their sails, which are called fairwater planes. However, high underwater speeds reduce the necessity of bowplanes. It is possible to keep ordered depth without using bow planes while operating with higher underwater speeds. Since the numbers presented by NSRIDC [Rcf. 1: p. SS] are for an American submarine, bow and fairwater planes were both considered in this study.

An illustrative picture of a submarine with axes, velocity and plane deffinitions is given in lig. 1. The arrows are pointed in the positive motion direction. This coordinate system is the right hand orthogonal system which is fixed in the submarine and moves with it. The origin of the coordinates is located at the center of gravity with x-axis along the center plane. The positive x direction is forward, the positive y direction is horizontally to the right, and the positive z direction is down. [Ref. 2: p. 438]

The heading of the submarine is the direction of its x-axis, and this is measured as an angle with respect to the geographic coordinate system. The heading angle, atso called the yaw angle, is delined to be the angle between the direction of the ships x-axis and the direction of the x-axis of the geographic coordinate sy stem. The symbol used for the yaw angle is ψ.

Figure 1. A Submarine with Axes of Notion

The pitch angle of the ship is the rotation around its y-axis. It is defmed to be the angle between the direction of the ships x-axis and the horizontal reference line. The symbol used for the yaw angle is θ.

The roll angle of the submarine is the rotation around its x -axis. It is measured from the vertical reference to the direction of the submarine z-axis. The symbol used for the roll angle is ϕ.

Velocities for the x, y and z directions are u, v and w respectively, which can be called velocity components of linear velocity of body axes relative to an earth-fixed axis system.

Definitions for all symbols used in this study are given in Appendix A.

B. DERIVATION OF THE LINEARIZED MODEL

The equations of motion are derived by summing the applicable forces and moments in each degree of freedom: surge(x), sway (y), heave (z), roll (ϕ), pitch (θ) and yaw (ψ). Reference 1 presents the standard sets of equations of motion developed for submarine motion studies by \times SRDDC. These equations are general enough to simulate the trajectories and responses of submarines in the six degrees of freedom resulting from various types of maneuters. They simulate motion of a given ship design upon insertion of the nondimensionalized hedrodynamic cocflicients developed for that particular design. In addition values must be supplicd for propulsion force and rudder and diving plane angles. A complete set of hydrodynamic coeflicients and other required data used in this thesis is given on Appendix B.

The derivation of equations of motions in six degrees of freedom which are to be linearized. was discussed in several earlier studies. [Ref. 3, Ref. 4.] The authors were satisfied that these equations are valid and can simulate a submarine's motion effectively.

1. Assumptions

I'orward speed can be taken as constant. Linearizing about the axial speed,u, which affects nearly every term in the standard equations, could be very complex, so the forward speed was assumed to be constant. This also reduces the degrees of freedom to five.

Roll angle is assumed to be small. Linder normal circumtances in submarine mancuvering, the roll angle usually stays within $\pm 5^{\circ}$. Large roll angles are only caused by high speed plus hard over rudder. Therefore, the roll angle can be neglected.

Cross-products of inertia can be neglected. This assumption is common to all submarine simulations because the hull and interior layout of submarines is approximately symmetric.

All terms including W^{\prime}, can be discarded. Since it is assumed that the submarine is in trim. weight of water blown from a particular ballast tank. W^{\prime}, must equal zero.

All terms involving nonlinearity are neglected.
Vertical motion is decoupled from horizontal motion. As a result of the first five assumptions it also has to be assumed that there is no coupling between vertical and horizontal motion.

2. Derivation of the linear equations of Motion

a. Linearization on the vertical plane

The linearized form of the equations on vertical plane are:

1) Equation of Motion Along z-axis (Normal Force):

$$
\begin{equation*}
m u \dot{w}-u n q=\frac{\rho}{2} l^{3} Z_{\dot{q}} \dot{q}+\frac{\rho}{2} l^{3}\left(Z_{w} \dot{w}+Z_{q} u q\right)+\frac{\rho}{2} l^{2}\left(Z_{w} u w+u^{2}\left(Z_{\delta s} \hat{\delta} s+Z_{\delta b} \dot{\delta} b\right)\right) \tag{1}
\end{equation*}
$$

where
$\rho=2.0 \frac{\text { slug }}{\mathrm{ft}^{3}}$, mass density of sea water,
$l=415$ ji., submarine length, and
$m=6.25 \times 10^{\circ}$ slugs , submarine weight.
All values for the hydrodynamic coefficients are given in Appendix B. Substituting these numbers into the equation, and after performing the required algebra

$$
\begin{equation*}
i==-5.11 \dot{q}-1.632 \times 10^{-3} u w+0.261 u q-7.416 \times 10^{-4} u^{2} \dot{\delta}-3.71 \times 10^{-4} u^{2} \delta b \tag{2}
\end{equation*}
$$

2) Fquation of Motion About y-axis:

$$
\begin{equation*}
I_{y} \dot{q}=\frac{\rho}{2} l^{5} M_{q} \dot{q}+\frac{\rho}{2} \cdot l^{1}\left(M_{q} u \psi+M_{w}(\dot{w})+\frac{\rho}{2} l^{3}\left(M_{w} u w+u^{2}\left(M_{\delta s} \dot{\overline{ } s}+M I_{\delta b} \dot{\delta b}\right)\right)+B z_{B} \theta\right. \tag{3}
\end{equation*}
$$

After substituting appropriate numbers and required algebra

$$
\begin{align*}
\dot{q}= & -4.975 \times 10^{-4} \dot{w}-6.219 \times 10^{-3} u q+1.798 \times 10^{-5} u w-1.5 \times 10^{-5} u^{2} \dot{\delta}+3.0 \times 10^{-6} u^{2} \delta b \\
& +2.516 \times 10^{-3} \theta \tag{4}
\end{align*}
$$

If these two equations are substituted into each other

$$
\begin{equation*}
u=0.29+u q-1.728 . \times 10^{-3} u w-6.667 . \times 10^{-4} u^{2} \delta s-3.873 \times 10^{-4} u^{2} \dot{b} b-0.01280 \tag{5}
\end{equation*}
$$

$$
\dot{q}=1.884 \times 10^{-5} u w-6.365 \times 10^{-3} u q-1.465 \times 10^{-5} u^{2} \delta s+3.193 \times 10^{-6} u^{2} \delta b+2.522 \times 10^{-3} \theta(6)
$$

These two equations describe the state variable representation of the linearized, vertical plane equations of motion. However they do not have the depthas a state variable. In order to make the depth a state variable, these equations are to be modilied by using linearized auxilary equations which are given in Appendix C. Therefore the auxilary equation used for the modification is

$$
{\dot{z_{0}}}_{0}=-u \operatorname{Sin} \theta+r \operatorname{Cos} \theta \sin \phi+w \cos \theta \cos \phi
$$

Using our assumptions the lincarized equation will be
$\dot{\epsilon}_{0}=-u \theta+w$
Then the modified linear equations of motion have the following form

$$
\begin{align*}
\ddot{z}= & -1.728 \times 10^{-3} u \bar{z}-0.706 u q+\left(0.01283-1.728 \times 10^{-3} u^{2}\right) \theta-6.667 \times 10^{-4} u^{2} \delta s \\
& -3.873 \times 10^{-4} u^{2} \delta b \tag{7}\\
\dot{q}= & 1.884 \times 10^{-5} u \dot{z}-6.365 \times 10^{-3} u q-1.465 \times 10^{-5} u^{2} \delta s+3.193 \times 10^{-6} u^{2} \delta b \\
& +\left(1.884 . \times 10^{-5} u^{2}-2.522 \times 10^{-3}\right) \theta \tag{S}
\end{align*}
$$

As it was mentioned before the forward speed u is not a state variable but a constant which can be changed as desired. A complete block diagram for vertical motion is given in Figure 2.

b. Lincarization on the Horizontal Plane

The linearized form of the equations on horizontal plane are:

1) Equation of motion along y-axis (Lateral Force):

$$
\begin{align*}
m i v-m u r= & \frac{\rho}{2} \zeta_{1}^{2}\left(Y_{r} \dot{r}+I_{r} \dot{P}\right)+\frac{\rho}{2} l^{2}\left(Y_{r} \dot{Y}+Y_{r} u r+Y_{p} u r\right) \tag{9}\\
& +\frac{\rho}{2} l^{2}\left(Y_{V} u \dot{+}+u^{2} Y_{\delta r} \dot{r}\right)
\end{align*}
$$

Lsing same set of numbers and hydrodynamic coeflicients, the final form of the equation is

$$
\begin{equation*}
\dot{r}=1.89 \dot{r}-6.3 \dot{p}-0.291 u r-0.035 u p-2.563 \times 10^{-3} u v+7.568 . \times 10^{-4} u^{2} \delta r \tag{10}
\end{equation*}
$$

「igure 2. Block Diagram for the Lineatized Model on the Vertical Plane

$$
I_{x} \dot{j}=\frac{\rho}{2} l^{5}\left(K_{p}^{\prime} \dot{\prime}+K_{r}^{\prime} \dot{\prime}\right)+\frac{\rho}{2} l^{4}\left(K_{p}^{\prime} u p+K_{r}^{\prime} u r+K_{v}^{\prime} \dot{i}\right)+\frac{\rho}{2} l^{3}\left(K_{v}^{\prime} u v+u^{2} K_{\delta r}^{\prime} \delta r\right)+B z_{B} \phi(11)
$$

The final form of the equation is

$$
\begin{align*}
\dot{p}= & -0.679 \dot{r}-0.0584 i-8.179 \times 10^{-3} u p-9.347 \times 10^{-3} u r-3.942 \times 10^{-4} u v \\
& +3.942 \times 10^{-5} u^{2} \delta r-0.236 \phi \tag{12}
\end{align*}
$$

3) Equation of motion about z-axis (Yawing Moment)

$$
\begin{equation*}
l_{z} \dot{r}=\frac{\rho}{2} l^{5}\left(\alpha_{r} \dot{r}+\alpha_{r} \dot{p}\right)+\frac{\rho}{2} l^{4}\left(\lambda_{r} u r+N_{p} u p+\lambda_{v} \dot{v}\right)+\frac{\rho}{2} l^{3}\left(\lambda_{v} u v+u^{2} \lambda_{\delta r} \delta r\right) \tag{13}
\end{equation*}
$$

The final form of the equation is

$$
\begin{align*}
\dot{r}= & -6.553 \times 10^{-3} \dot{p}+6.767 \times 10^{-4} \dot{i}-6.767 \times 10^{-3} u r-4.511 \times 10^{-6} u p-4.076 \times 10^{-5} u v \\
& -1.631 \times 10^{-5} u^{2} \delta r \tag{14}
\end{align*}
$$

These three equations are supposed to describe a submerged submarine motion in the horizontal plane. The only difference from the equations for vertical motion is the equations for the horizontal motion have the order of the highest derivative of all the variables such as r, p and r in each particular equation. [Ref. 4: p .48]

Having all of the highest derivatives in each particular equation creates an algebraic loop problem for the simulation. To solve this problem it is possible to manipulate the equations to eliminate the highest order derivative from one of the equations which includes the other derivative as it was done before for the vertical plane equations of motion. This was done very nicely for the case of two equations but does not seem to be very attractive when there are three or more equations involved.

There are some other possible ways to solve algebraic loop problems. But since the new tersion of DSL [Ref. 5] can take care of this problem automatically, it is preferred to use those equations in simulation.

A complete block diagram for horizontal motion is given in Figure 3.

「igure 3. Block Diagram for the Linearized Model on the Hosizontal Plane

C. VALIDATION OF LINEAR MODEL

The objective of this section is to compare the dynamics of the standard model with the derived linear model in botls vertical and horizontal planes.

In order to compare both models they should be in the same initial state and both models have to be in trim. In trim has the meaning that the submarine maintains depth at a given speed with the desired pitch angle without using bow or stern planes. When making linearizing assumptions the terms which are related to trim are already ignored. Therefore the linearized model will be in trim at all times. Because of the submarine hull and sail structure it is required to adjust ballast tanks for given speed. The corrections for trim which are used in the simulation for this study are obtained from an earlier thesis study. [Rer. 6: p. 184]

To validate the linear model it is preferred to obtain both the initial condition and forced response in order to make sure that the linear model is working properly.

1. Validation of Linear Model on Vertical Plane

a. Initial Condition Response

It was expected that for small perturbations the deriations between models should be small. Therefore initial conditions of 5° in pitch were tested first. For the linear model it is also required to give an initial value for depth change which was defined as:

$$
z=-u \operatorname{Sin} \theta
$$

Test runs up to 360 sec. in the speed range 5 to 25 Knots were performed simultancously for both models. Maximum differences for each run were obtained from data files and given in Table 1. The pitch and depth behaviors for both models were given in Fig. 4-s.

Table 1. INITIAL CONDITION RESPONSE TO 5 DEGREE PITCH ANGLE

$\begin{aligned} & \text { Run } \\ & \text { No. } \end{aligned}$	Speed (Kits.)	Maximum Deviation In						Fig.
		Pitch		Z		Depth		
		Deg.	0 。	Ft. sec.	$\%$	Fect	\because	
1	5	0.10901	1.8	0.0017	0.2	0.1050	0.1	4
2	8	0.0608	1.2	0.0169	0.6	0.6740	0.7	5
3	12	0.0302	10.6	0.0113	0.6	1.0960	1.1	6
4	18	0.1486	$1.1)$	0.11275	1.0	3.4200	1.4	7
5	25	0.1908	3.5	0.1599	4.3	11.900	4.8	8

As can be easily seen from the figures and Table 1 all deviations are very small for this initial condition. That means dynamics for both model are nearly identical for small perturbations.

In normal operational conditions a submarine never exceeds 20° pitch angle. But theoretically miximum allowed pitch angle is limited to about 45°. Therefore three more runs were performed with 45° initial pitch to see large perturbation effects on system dymanics. Simulation results for 45° initial pitch angle are given on Figures 9-11. Maximum deviations for pitch angle. speed in the z direction and depth are given in Table 2. Maximum deviation does not exceed 7\% for this case as can be seen in Table 2.

Table 2. INITIAL CONDITION RESPONSE TO 45 DEGREE PITCH ANGLE

$\begin{aligned} & \text { Run } \\ & \text { No. } \end{aligned}$	Speed (K'ts.)	Maximum Deriation In						Fig.
		Pitch		Z		Depth		
		Deg.		Ft. sec.	$\%$	Feet	\%	
6	5	1). $8+49$	1.9	0.2408	4.9	18.470	3.7	9
7	8	1.1988	2.7	11.1997	2.1	9.690	1.9	(1)
8	12	2.486	5.5	0.9760	6.8	05.260	0.5	11

The deviations between both models for a second set of initial conditions are much bigger but still leads to very similar dyamic behavior. This was expected as the angle approximation

$$
\begin{equation*}
\sin \theta=\theta \tag{15}
\end{equation*}
$$

is not as salid as for 5° initial pitch angle. In general for both sets of initial conditions it is observed that increasing speed tends to increase the deviations between trajectories.

b. Forced Response

Both stem and bow planes can be used in different combinations to keep the ordered depth and pitch angle. In order to validate the linear model it is required to include some control plane commands in the simulation. Since the mechanical limit for the planes is about 35°, test runs were performed up to this angle. It is also desired to keep the submarine in maximum allowed piteh and depth limits. For the simulation runs which are performed only with bow plane, 5,15 and 35 degree plane angles were applied after the first ten seconds.

Iigure 4. Initial Condition Response Init. Pitch $=5 \mathrm{Deg} \cdot \mathrm{U}=5 \mathrm{~K} / \mathrm{s}$.

IN. COND. RESPONSE FOR DEPTH $U=$ BKTS.

IN. COND. RESPONSE FOR PITCH $U=$ EKTS.

Figure 5. Initial Condition Response Init. Pitch $=5 \mathrm{Deg} . \mathrm{U}=\boldsymbol{\beta}$ Kits.

IN. COND. RESPONSE FOR DEPTH $U=12 K T S$.

IN. COND. RESPONSE FOR FITCH $U=12 K T S$.

Figure 6. Initial Condition Response Init. Pitch $=5$ Deg. $\mathrm{U}=12$ Kits.

IN. COND. RESPONSE FOR DEPTH $U=18 \mathrm{KTS}$.

IN. COND. RESPONSE FOR PITCH $U=18 \mathrm{KTS}$.

「igure 7. Initial Condition Response Init. Pitch $=5$ Deg. $\mathrm{U}=18$ Kts.

IN. COND. RESPONSE FOR DEPTH $U=25 \mathrm{kTS}$.

IN. COND. RESPONSE FOR PITCH $U=25 \mathrm{KTS}$.

Figure 8. Initial Condition Response Init. Pitch $=5 \mathrm{Deg}$. $\mathrm{U}=25 \mathrm{Kts}$.

IN. COND. RESPONSE FOR DEPTH $U=5 \mathrm{KTS}$.

IN. COND. RESPONSE FOR PITCH $U=5 \mathrm{kTS}$.

Figure 9. Initial Condition Response Init. Pitch $=45 \mathrm{Deg} . \mathrm{U}=5 \mathrm{Kts}$.

$\mathbb{I N} . \operatorname{COND}$. RESPONSE FOR DEPTH $U=8 \mathrm{KTS}$.

IN. COND. RESPONSE FOR PITCH $U=8$ KTS.

Figure 10. Initial Condition Response Init. Pitch $=45 \mathrm{Deg} . \mathrm{U}=8$ Rits.

IN. COND. RESPONSE FOR DEPTH $U=12 \mathrm{KTS}$.

IN. COND. RESPONSE FOR PITCH $U=12 \mathrm{kTS}$.

Figare 11. Initial Condition Response lnit. Pitch $=45 \mathrm{Deg} . \mathrm{U}=12$ Kits.

Because of the enomous ellect of the stern plane on submarine pitch angle. it was concluded to use reverse angles for 30 seconds each and then to bring the stern plane to the neutral condition.

Maximum deviations were obtained from data files by a FORIRA: program and given in Table 3,4 and 5 for bow planes, stern planes and both planes respectively.

The test simulation results which were obtained with the bow planes, are given in Figures 12 through 20. Figures 12, 15 and 18 represent small perturbations for three different speeds and it can also be observed from Table 3 that maximum deviation is not more than 23 ft. for depth and not more than 0.4 degree for pitch angle. Figures 13, 16 and 19 were given for 15 degree bow plane and except for Figure 19 which represents the simulation with $18 \mathrm{~K} t \mathrm{~s}$. forward speed. the linear model is acceptable. For 35 degree bow planes, the linear model is valid only for lower speeds as can be seen from Figures 14,17 and 20.

Table 3. FORCED RESPONSE TO BOW PLANES

$\begin{aligned} & \text { Run } \\ & \text { No. } \end{aligned}$	Speed (Kis.)	Bow Plane (Deg.)	Maximum Deviation 1 n						Fig.
			Pitch		Z		Depth		
			1)eg.	On	1.t. sec.	$\%$	1 cet	\%	
9	5	5	0.10850	19.8	0.0046	3.2	1.420	1.0	12
10	5	15	0.3751	29.2	0.0128	3.1	0.500	0.2	13
11	5	35	1.4706	08.2	0.2285	22.6	58.980	14.1	14
12	12	5	0.3598	35.6	0.1006	19.0	21.750	11.5	15
13	12	15	2.5177	82.5	0.6860	43.2	148.25	33.1	16
14	12	35	9.0961	127.7	1.9668	53.1	382.52	40.4	17
15	18	5	0.4103	19.0	0.1743	19.2	23.650	14.4	18
16	18	15	5.1356	79.3	2.4369	89.7	557.87	103.7	19
17	18	35	19.340	128.0	8.1425	128.5	1852.8	110.8	20

Figure 12. Forced Response. Bow Plane $=5$ Deg. down. $\quad \mathrm{U}=5 \mathrm{Kts}$.

DEPTH CHANGE WITH 15 DEGREE DOWN BOW PLANE

pitch angle with 15 degree down dow plane

Figure 13. Torced Response. Bow Plane $=15$ Deg. donn. $U=5$ Kits.

Figure 14. Forced Response. Bow Plane $=35$ Deg. down. $U=5$ kits.

FORCED RESPONSE WITH 5 DEG. DOWN BOW PLANE

Figure 15. Forced Response. Bow Plane $=5$ Deg. down. U $=12 \mathrm{Kts}$.

Figure 16. Forcad Response. Bon Plane $=15$ Deg. down. $\mathrm{U}=12 \mathrm{Lits}$.

FORCED RESPONSE WITH 5 DEG. DOWN BOW PLANE

NONUNEAR MODEL LIIEAR MCDEL

Figure 18. Forced Response. Bow Plane $=5$ Deg. down. $\mathrm{U}=18 \mathrm{Kts}$.

FORCED RESPONSE WITH 15 DEG. DOWN BOW PLANE

Tigure 19. \quad Forced Response. Bow I'lane $=15$ Deg. down. $\mathrm{U}=18$ Kts.

FORCED RESPONSE WITH 35 DEG. DOWI BOW PLANE

Tigure 20. lorced Response. Bow Plane $=35$ Deg. down. $U=18 \mathrm{Kits}$.

Therefore the linear model is valid for all speeds for small plane angles. And in general, it is possible to say that for the first 120 seconds the linear model does work well enough for large perturbations. In fact it is not very often that a watch officer wants to keep the bow planes full down for more than 120 seconds in a real submarine.

The test run results which are obtained with stern plane, are given in Figures 21 to 29 and Table 4. Similarly, deviations are acceptable for small and medium perturbations as can be seen from the figures. The only condition for which the linear model can not be accepted as valid, is displayed in Figure 29 which represents 35 degree bow planes with 18 K ts. forward speed. This is expected since two important linearizing assumption are invalid at this speed and resulting pitch angles are large. As mentioned before, the constant speed assumption for large plane angles and the $\sin (x)=x$ approximation for pitch angle are no longer valid for this run.

Table 4. FORCED RESPONSE TO STERN PLANES

$\begin{aligned} & \text { Run } \\ & \text { No } \end{aligned}$	$\begin{aligned} & \text { Speed } \\ & \text { (Kts.) } \end{aligned}$	$\begin{aligned} & \text { Stern } \\ & \text { Plane } \\ & \text { (Deg.) } \end{aligned}$	Maximum Deriation In						Fig.
			Pitch		Z		Depth		
			Deg.	\%	Ft. 'sec.	\%	Feet	\%	
18	5	5	0.0910	5.6	0.0016	1.2	0.1030	0.1	21
19	5	15	0.1808	3.8	0.0126	3.3	0.7400	0.7	22
20	5	35	0.9021	8.2	0.1463	16.4	4.6610	3.8	23
21	12	5	0.3673	5.6	0.1070	6.0	5.000	3.0	24
22	12	15	2.5750	13.1	0.8569	15.9	35.680	12.1	25
23	12	35	12.010	26.1	5.2815	42.1	185.53	33.5	26
24	18	5	1.5585	12.6	0.7962	14.2	59.406	19.0	27
25	18	15	8.4160	22.6	4.8350	28.8	201.84	27.4	28
26	18	35	33.619	38.8	23.068	58.8	844.42	53.3	29

To be able to observe the effects of both planes on deviations between models, nine more runs were performed using stern and bow planes simultaneously. For each run the same bow and stern plane angles were applied in such a manner so they can suppress each other's effect in order not to exceed submarine depth and pitch

Гigure 21. Гorced Response. Stem Plane $=5$ Deg. $\mathrm{U}=5 \mathrm{Kts}$.

FORCED RESFONSE WITH 15 DEG. STERN PLANE

Figure 22. Forced Response. Stern Plane $=15$ Deg. $U=5$ his.

Гigure 23. \quad Corced Response. Stern Plane $=35$ Deg. $U=5$ Lits.

「igure 24. Forced Response. Stern Plane $=5$ Deg. $U=12 \mathrm{Kts}$.

「igure 25. \quad.orced Response. Stem Plane $=15$ Deg. $U=12 \mathrm{Kts}$.

Figure 26. Forced Response. Stern Plane $=35$ Deg. $U=12$ kts.

FORCED RESPONSE WITH 5 DEG. STERN PLANE

Гigure 27. \quad Torced Response. Stem Plane $=5$ Deg. $\mathrm{U}=18 \mathrm{Kits}$.

Figure 23. Torced Response. Stern Plane $=15$ Deg. $U=18$ Kts.

FORCED RESPONSE WITH 35 DEG. STERN PLANE

Figure 29. Forced Response. Stern Plane $=33$ Deg. $\mathrm{U}=18 \mathrm{Kts}$.
limitations. Figures were created but not supplied in this study since they are very similar to the preceeding results which were obtained using only stern planes. Deviations between models for this last set of runs are a little bit larger than the preceeding results. Lsing two sets of planes means more approximations for the linear model and greater deviations between linear and nonlinear models are expected.

Table 5. FORCED RESPONSE TO BOW AND STERN PLANES

$\begin{aligned} & \text { Run } \\ & \text { No. } \end{aligned}$	$\begin{aligned} & \text { Speed } \\ & \text { (Kts.) } \end{aligned}$	Bow Stern Plane	Maximum Deviation 1 l						Fig.
			Pitch		Z		Depth		
			Deg.	\%	Ft., sec.	\%	Feet	\%	
27	5	5	0.0943	6.5	0.0012	1.1	0.0500	0.05	-
28	5	15	0.2448	6.0	0.0262	S. 0	0.9030	0.8	-
29	5	35	1.3542	14.2	0.2891	37.7	8.0200	7.1	-
30	12	5	0.5151	S.4	0.1558	S.9	7.2100	4.4	-
31	12	15	3.0320	19.8	1.3423	25.6	53.000	18.3	-
32	12	35	16.329	38.2	7.1826	58.8	262.15	48.4	-
33	18	5	2.9117	16.8	1.10424	18.5	01.856	19.6	-
34	18	15	11.203	31.2	6.6167	39.1	267.52	35.8	-
35	18	35	43.214	51.6	27.816	70.4	1053.8	65.5	-

Obviously the linear model does not behave like the nonlinear model for large plane angles and high speeds. The most important reason for this is the constant speed assumption for the linear model. This assumption is no longer valid for large plane angles since planes reduce the forward speed of the actual submarine. Since the aim of this study is to validate the linear model for small perturbations, it is achieved for the vertical plane.

2. Validation of the Linear Model on the Horizontal Plane

A submarine behaves like a surface ship for most horizontal motions. There are some differences because of its submerged condition and sail structure. The main difference is in roll. A submarine rolls to inboard when a rudder angle is applied. Also the rudder has a squatting effect on the submarine which makes the submarine to pitch up
and dise. Since the linear model assumes that there is no cross-coupling between rertical and horizontal motion it is not possible to compare the squatting effect with the lincar model.

On the horizontal plane, roll and yaw angles and sway speed can be observed. Roll and yaw infomation are displayed on figures and tables for convenience. But the sway response is only supplied on tables as deviation between models.

a. Initial Condition Response

The simulations were carried out with a certain roll angle as initial condition. In order to see the small and large perturbations effeets, 5 and 25 degrees initial roll angles were chosen and test runs were performed at $5, \mathrm{~S} .12$, IS and 25 Kts .

Since both models reach a steady state value after about 120 seconds, simulations up to 120 seconds were performed simultancously for both the lincar and nonlinear models. Maximum deviations for each run were obtained from data files and are given in Table 6.

Table 6. INITIAL CONDITION RESPONSE FOR IIORIZONTAL PLANE

Run No.	Speed (Kts.)	Maximum Deviation In Roll				Figures
		Init. Roll = 5 Dcg .		Init. Roll $=25 \mathrm{Deg}$.		
		Degree	\%。	Degree	" n	
36.37	5	0.01072	1.9	3.22-42	12.9	311-3.2
38-39	S	0.0677	1.3	2.01.57	8.2	$311-3.3$
41)-41	12	0.0365	0.7	1.34 ${ }^{(1)}$	5.4	$31-33$
$42-43$	18	(1).0) 3.42	0.7	1.1720	4.7	31-3.4
+4-4,	25	0.0252	0.5	1.01610	1.1	32-3.4

As can be seen from Figures 30. 31 and 32, it is obvious that there is almost no deviation on roll response for 5 degree initial roll angle. There are some slight deviations for 25 degrec intial roll angle and unlike the vertical plane. desiations are decreasing with increasing axial speed. It is to be noted that the aproximation by a linear model has not affected the period of rolling. Simulation results are given on ligures 32 . 33 and 34 for 25 degree initial roll angle response.

Therefore it has been concluded that the linear model on horizontal plane is ralid for small and lare initial conditions.

INIT. COND. RESPONSE - INIT. ROLL $=5$ DEG

Figure 30. Initial Condition Response Init. Roll $=5$ Deg. $\mathrm{U}=5$ and 8 lits.

Figure 31. Initial Condition Response Init. Roll $=5 \mathrm{Deg} \mathrm{U}=12$ and 13 Kis.

INIT. COND. RESPONSE - INIT. ROLL $=5$ DEG

INIT. COND. RESPONSE - INIT. ROLL $=25$ DEG

Figure 32. Init. Cond. Response Init. Roll $=5$ and 25 Deg. $\mathrm{U}=25$ and 5 Kts .

Figure 33. Initial Condition Response Init. Roll $=25 \mathrm{Deg}$. $\mathrm{U}=8$ and 12 Kts.

Figure 34. Initial Condition Response Init. Roll $=25 \mathrm{Deg} . \mathrm{U}=19$ and 25 Kits.

b. Sorced Response

The only relevant force beside propellers is created by the mdder on horizontal plane. The rudder also has an appreciable effect on vertical motion which is called the squatting eflect. Eien though the linear model assumes that there is no crosscoupling effect between vertical and horizontal motion, it was decided to dicplay depth and pitch angle changes which were obtained by non-linear simulation for further study. Cross-coupling effects which are obtaned by non-linear simulation at different speeds. are given in Figures 38, 40, 42, 44, 46, 48 and 50.

Simulation runs are abtained for three different speeds and rudder angles for this case. Plots for yaw and roll response are given in Figures 35-37, 39, 41, 43, 45, 47 and 49. Waximum deviations are given on Table 7. Again similar deviation behaviors call be observed as reatical motion.

Table 7. FORCED RESPONSE TO RUDDER

$\begin{aligned} & \text { Run } \\ & \text { No. } \end{aligned}$	Specd (Kts.)	Ruder (1)eg.)	Maximmm Deviation In						1'ig.
			V		Yaw		Roll		
			F't'sec.	0	1)eg.	$\%$	Deg.	".	
46	5	5	0.0060	3.6	0.3775	13.7	$0.00+1$	3.0	35
47	5	15	0.0487	9.8	2.0360	24.7	0.0 .518	12.7	36
48	5	35	0.2413	20.8	3.3520	17.4	0.3633	38.3	37
49	12	5	0.1417	14.9	2.8058	23.8	0.2880	18.6	38
50	12	15	0.9515	33.6	13.27	37.5	2.603 .4	$56.1)$	39
51	12	35	3.780 .4	57.2	42.223	51.1	10.3.4.5	9.54	410
52	18	5	. 0.5104	25.3	6.97	30.3	1.6658	35.0	41
53	18	15	3.0963	51.2	35.065	50.8	11.262	78.9	42
54	18	35	10.424	73.8	100.83	66.4	34.525	103.6	43

As a result of this chapter it has been concluded that approximation by linear model is valid for small perturbations at all speeds for both motions. In addition. it has been observed that the linearized model is still valid for large perturbations applied over a short period of time.

Figure . $35 . \quad$ Forced Response. Rudder $=5$ Deg. U $=5 \mathrm{Kts}$.

Tigure 36. Forced Response. Rudder $=15$ Deg. $\mathrm{U}=5 \mathrm{Kts}$.

Figure 37. Torced Response. Rudder $=35$ Dcg. $U=5 \mathrm{Kts}$.

Figure 38. Cross-Coupling Elfect on Vertical Plane. Rudder $=35$ Deg. U $=5 \mathrm{Kts}$.

Tigure .39. Forced Response. Rudder $=5 \mathrm{Deg} . \quad \mathrm{U}=12 \mathrm{~F} / \mathrm{s}$.

Tigure 40. Cross-Coupling Effect on Vertical Plane. Ruder $=5$ Deg. $\mathrm{U}=12 \mathrm{Kts}$.

「igure 41. \quad Torced Response. Rudder $=15$ Deg. down. $\mathrm{U}=12 \mathrm{~K} \mathrm{~s}$.

Figure 42. Cross-Coupling Elfect on Vertical Plane. Rudder $=15 \mathrm{Deg} . \mathrm{U}=12 \mathrm{Kts}$.

FORCED RESPONSE WITH 35 DEG. RUDDER

Figure 43. Forced Response. Rudder $=35 \mathrm{Deg} . \mathrm{U}=12 \mathrm{kts}$.

FORCED RESFONSE WITH 35 DEG. RUDDER AXIAL SPEED $U=12 \mathrm{kTS}$.

Figure 44. Cross-Coupling Effect on Vertical Plane. Rudter $=35 \mathrm{Deg}$. $\mathrm{U}=12 \mathrm{Kts}$.

「igure $45 . \quad$ Forced Response. Rudder $=5 \mathrm{Deg} . \mathrm{U}=18 \mathrm{Kits}$.

Figure $46 . \quad$ Cross-Coupling Elfect on Vertical Plane. Rudder $=5$ Deg. $\mathrm{U}=18 \mathrm{Kts}$.

Figure 47. Forced Response. Rudder $=15$ Deg. $U=13$ lits.

Figure 48. Cross-Coupling Elfect on Vertical Plane. Rudder $=15 \mathrm{Deg} . \mathrm{U}=18 \mathrm{Kts}$.
-

Figure 49. Forced Response. Rudder $=35$ Deg. $\mathrm{U}=18 \mathrm{Kts}$.

Figure 50. Cross-Coupling Effect on Vertical Plane. Rudder $=35 \mathrm{Deg} . \mathrm{U}=18 \mathrm{Kts}$.

III. AUTONATIC DEPTII AND PITCH CONTROL

A. DESIGN SIECIIICATIONS

After a valid linear model is defincd, any type of design method for linear stistems can be used. It is assumed that the submarine which is considered in this study has no inertial guidance system. That means rate information is not arailable and the only states to be used as featback are depth. pitch and speed. Due to this limited instrumentation the controller will have to use cascaded filters.

Since a submarine mancuvering capability depends highly on the axial speed, it is very hard to satisfy some centain specifications for this kind of control systems. But basically it is acceptable if the control system can achieve 10 ft . depth change in 120 seconds and 100 ft . depth change in 240 seconds. Also more than 2 fect overshoot is not desirable for small depth changes and overshoot must stay within $5^{\prime \prime}$ i for large depth changes. Deviation from ordered pitch must stay within 2 degrees.

Ior the control system to be designed, plane angle limits which are ahout 3.5 degeres. have to be taken into the consideration. A depth and pitch control system which repuires more than 35 degrecs plane angles to get the ordered depth or pitch is clearly not realizable.

B. DESIGN

The linearized equations of motion for the vertical plane are ohtained and given in Chapter 2. I hey are repeated below for convenience

$$
\begin{align*}
\ddot{z}= & -1.728 . \times 10^{-3} u \dot{z}-0.706 u q+\left(0.01283-1.728 \times 10^{-3} u^{2}\right) 0-6.667 . \times 10^{-4} u^{7} \dot{s} s \\
& -3.873 .10^{-4} u^{2} i b \tag{16}\\
\dot{q}= & 1.884 \times 10^{-5} u=-6.365 \times 10^{-3} u q-1.465 \times 10^{-5} u^{2} \delta s+3.193 \times 10^{-6} u^{2} \delta b \\
& +\left(1.884 \times 10^{-5} u^{2}-2.522 \times 10^{-3}\right)^{\theta} \tag{17}
\end{align*}
$$

A signal flow graph can describe the corresponding input output relations for these equations. Inputs will be the bow and stern plane angles and outputs of interest are depth and pitch for vertical motion and such a flow graph is given in lig. St where

$$
\begin{aligned}
& a=-3.87 \times 10^{-4} u^{2} \\
& b=-1.73 \times 10^{3} u \\
& c=-1.465 \times 10^{5} u^{2}
\end{aligned}
$$

Figure 51. Signal Flow Graph for Vertical Equations of Motion

$$
\begin{aligned}
& d=-6.67 \times 10^{-4} u^{2} \\
& e=3.19 \times 10^{-6} u^{2} \\
& f=-6.36 . \times 10^{-3} u \\
& g=1.88 \times 10^{-5} u^{2}-2.52 \times 10^{-3} \\
& h=0.706 u \\
& i=0.013-1.73 \times 10^{-3} u^{2} \\
& k=1.83 \times 10^{-5} u
\end{aligned}
$$

1. Decoupling

In order to design a cascade compensator with a single loop technique, one must have the independent input-output relations for each input and output [Ref. 7]. In other words it is necessary to obtain two transfer functions for depth and two transfer functions for pitch which have the stern and bow planes as inputs.

Applying Wason's gain rule to the signal llow graph given in Fig. 44 the inputoutput relations will be as follows [Ref. S: p. 83].

$$
\begin{align*}
& \frac{d i p h}{j h}=\frac{d s^{2}+(c h-a f) s+c i-a g}{s^{4}-(f+h) s^{3}+(h f-g-k h) s^{2}+(g b-k i) s} \tag{18}\\
& \frac{d c p h}{\delta s}=\frac{d s^{2}+(c h-(f) s+c i-d g}{s^{4}-(f+h) s^{3}+(h f-g-k h) s^{2}+(g h-k i) s} \tag{19}\\
& \frac{p i t c h}{\delta b}=\frac{c s-b c+a k}{s^{3}-(f+b) s^{2}+(h f-g-k h) s+(g b-k i)} \tag{20}\\
& \frac{\text { pich }}{i s}=\frac{c s-h c+d k}{s^{3}-(f+b) s^{2}+(h f-g-k h) s+(g b-k i)} \tag{2l}
\end{align*}
$$

Substituting the corresponding numbers into these equations

$$
\begin{align*}
& \frac{d c p / h}{\delta b}=\frac{-3.87 \times 10^{-4} u^{2} s^{2}-2.1 \times 10^{-7} u^{3} s-9.33 \times 10^{-7} u^{2}+1.75 . \times 10^{-9} u^{4}}{s^{4}+8.09 \times 10^{-3} u s^{3}+\left(2.52 \times 10^{-3}-2.11 \times 10^{-5} u^{2}\right) s^{2}+4.12 \times 10^{-6} u s} \tag{22}\\
& \frac{d c p h}{\delta s}=\frac{-6.67 \times 10^{-4} u^{2} s^{2}-6.1 \times 10^{-6} u^{3} s-1.87 \times 10^{-6} u^{2}+3.78 \times 10^{-8} u^{4}}{s^{4}+5.09 .110^{-3} u s^{3}+\left(2.52 \times 10^{-3}-2.11 . \times 10^{-5} u^{2}\right) s^{2}+4.12 \times 10^{-6} u s} \tag{23}\\
& \frac{\text { pitch }}{\delta b}=\frac{3.19 \times 10^{-6} u^{2} s-1.75 . \times 10^{-9} u^{3}}{s^{3}+8.09 \times 10^{-3} u s^{2}+\left(2.52 \times 10^{-3}-2.11 \times 10^{-5} u^{2}\right) s+4.12 \times 10^{-6} u} \tag{24}\\
& \frac{\text { pitch}}{\delta s}=\frac{-1.46 .5 \times 10^{-5} u^{2} s-1.28 . \times 10^{-8} u^{3}}{s^{3}+8.09 \times 10^{-3} u s^{2}+\left(2.52 \times 10^{-3}-2.11 . \times 10^{-5} u^{2}\right) s+4.12 \times 10^{-6} u} \tag{2.5}
\end{align*}
$$

Transfer functions which are dealing with depth, have fourth order characteristic equations and they are type one systems with the same denominator. ()n the other hand. transfer functions for pitch are type zero and have third order charactenistic equations with the same denominator. Also all transler functions have the same poles esecept one at the origin. So it is expected that they might show similar freguency response and it may be possible to use only one cascade compensator to compansate the whote system.
ln order to make further analysis on these transfer functions, the axial speed. u has to be defined as a number. It is always possible to design the control system for a specific spect and check the validation of design for a certain speed range. Since slower speeds matie it harder to get desired depth and pitch angle, it is not very efficient to use an automatic control for less than 5 Knots. A possible approach would be to use 10
ft sec. (5.9 K゙ts.) as axial speed. If the designed control swstem works for this speed. it will probably work for the higher speeds.

2. Design

With 10 ft. sec. axial speed, transfer functions become

$$
\begin{align*}
& \frac{d c p h}{\delta b}=\frac{-3.87 \times 10^{-2} s^{2}-2.1 \times 10^{-4} s-9.33 \times 10^{-5}}{s^{4}+8.09 \times 10^{-2} s^{3}+0.41 \times 10^{-3} s^{2}+4.12 \times 10^{-5} s} \tag{26}\\
& \frac{d c p h}{\delta s}=\frac{-6.67 \times 10^{-2} s^{2}-6.06 \times 10^{-3} s+1.91 \times 10^{-4}}{s^{4}+8.09 \times 10^{-2} s^{3}+0.41 \times 10^{-3} s^{2}+4.12 \times 10^{-5} s} \tag{27}\\
& \frac{\text { pitch }}{\delta b}=\frac{3.19 \times 10^{-4} s-1.75 \times 10^{-6}}{s^{3}+8.09 \times 10^{-2} s^{2}+0.41 \times 10^{-3} s+4.12 \times 10^{-5}} \tag{28}\\
& \frac{\text { pilch }}{\delta s}=\frac{-1.465 \times 10^{-3}-1.28 \times 10^{-5}}{s^{3}+8.09 \times 10^{-2} s^{2}+0.41 \times 10^{-3} s+4.12 \times 10^{-5}} \tag{29}
\end{align*}
$$

It is more convenient to rename thesc transfer functions such as

$$
\begin{align*}
& g_{11}(s)=\frac{d c p t h}{\delta b} \tag{30}\\
& g_{12}(s)=\frac{d c p t h}{\delta s} \tag{31}\\
& g_{21}(s)=\frac{\text { pitch }}{\delta b} \tag{32}\\
& g_{22}(s)=\frac{\text { pitch }}{\bar{\delta}} \tag{33}
\end{align*}
$$

Then the transfer function matrix becomes

$$
G(s)=\left[\begin{array}{ll}
g_{11}(s) & g_{12}(s) \tag{3-4}\\
g_{21}(s) & g_{22}(s)
\end{array}\right]
$$

Using cascade compensation and a diagonal compensator matrix

$$
G_{c}(s)=\left[\begin{array}{cc}
g_{c 11}(s) & 0 \tag{3.5}\\
0 & g_{c 22}(s)
\end{array}\right]
$$

The corresponding control model is sketched in Fig.52. The equivalent transfer function matrix will be

$$
G_{e q}=G(s) G_{c}(s)=\left[\begin{array}{ll}
g_{11}(s) g_{c 11}(s) & g_{12}(s) g_{c 22}(s) \tag{36}\\
g_{21}(s) g_{c 11}(s) & g_{22}(s) g_{c 22}(s)
\end{array}\right]
$$

Characteristic equation roots for these transfer functions are given in Table 8. Only one transfer function has roots in right half plane which is $g_{12}(s)$.

Table 8. CHARACTERISTIC EQUATION ROOTS FOR VERTICAL MIOTION

Transfer Function	Roots
$g_{11}(s)$	$-0.392 \pm \mathrm{j} 0.188,-0,0001 \pm \mathrm{j} 0.045$
$g_{12}(s)$	$-0.030 \pm \mathrm{j} 0.260,-0.0646,0.043$
$g_{81}(s)$	$-0.014 \pm \mathrm{j} 0.022,-0.078$
$g_{22}(s)$	$-0.008 \pm \mathrm{j} 0.028,-0.065$

The open loop Bode diagrams and root locus plots are given on ligures 53 to 60. As expected transfer functions for depth have sinular frequency response with a small positive phase margin. Also both of them have root locations on the right half plane. On the other hand transfer functions for pitch show similar behavior. They are also stable with 50 and 60 degrees phase margin. The only transfer function which is stable for all gains is $g_{22}(s)$ as can be seen from Fig. 60.

From the root locus diagrams one can easily see that, except for $g_{22}(s)$, the other three transfer functions have many root locations on the right half plane which might make the cascade compensation design required. Since $g_{12}(s)$ has characteristic equation roots in the right half plane and also the root locus diagram shows one root location branch that extends along the positive real axis, it is clearly unstable. In particular $g_{22}(s)$ might not need any compensation other than a gain adjustment.

The effect of bow planes on pitch angle and the effect of stern planes on depth are rather small compared to the effect of bow planes on depth and stern planes on pitch. So it is considered best to focus on the transfer functions $g_{11}(s)$ and g_{22} while carrying out a design procedure. Even if the designed compensators for these two transfer functions are not satisfactory for the other two equations, the total system response might be sufficient.

Figure 52. Cascade Compensated Control Model for Vertical Motion

Since the transfer functions for the vertical plane have poles in the right half plane, they do not represent minimum phase systems. For a non-minimum phase system it is more complicated to achieve a design which meets the required specifications. However it is possible to start with a very basic design and improve it after observing compensator effects on the system behavior.

From the requirements mentioned before, the settling time will be more than 100 seconds and the damping coefficient ζ is about 0.5 for suflicient damping. Using the formula for second order approximation

$$
\begin{equation*}
T_{s}=\frac{4}{\zeta \omega_{n}} \tag{37}
\end{equation*}
$$

Solving for ω_{n} and substituting numbers

$$
\begin{equation*}
\omega_{n}=\frac{4}{0.5 \times 100}=0.08 \tag{38}
\end{equation*}
$$

The gain crossover frequency for the uncompensated system is ahout 0.2 rad'sec. as can be seen from Fig. 5t. Then the gain which is to be used for the first

「igure 53. Root Locus Plot for $g_{11}(s)$.

「igure 54. Open Loop Bode Plot for $g_{n}(s)$.

Tigure 55. Root Locus Plot for $g_{12}(s)$.

「igure 56. Open Loop Bode Plot for $g_{2 z}(s)$.

Tigure 58 . Open Loop Bode Plot for $g_{21}(s)$.

Figure 59. Root Locus Plot for $g_{2 i}(s)$.

「igure 6(1. Open Loop Bode Flot for $g_{2 i}(s)$.
compensator. has to be less than one in order to get the desired response. This gain constant is called Kl and taken as 0.1 for the first trial.

In order to increase phase margin a first order lead compensator is to be atded to the formard path. Such a compensator has the form

$$
\begin{equation*}
G_{c}=\frac{p}{z} \frac{(s+\dot{z})}{(s+p)} \tag{39}
\end{equation*}
$$

The multiplier $\mathrm{p} z$ is required to keep error coeflicient constant. [Ref. 2 |
Lsing cascade compensator design techniques the best choice for the first trial on $g_{\text {al }}$ will be

$$
\begin{equation*}
g_{c 11}=\frac{1}{0.1} \frac{s+0.1}{s+1.0}=10 \frac{(s+0.1)}{s+1.0} \tag{40}
\end{equation*}
$$

Multiplying with Kl the total compensator is

$$
\begin{equation*}
G_{c}=\frac{s+0.1}{s+1.0} \tag{41}
\end{equation*}
$$

The root locus plot and open loop Bode diagram for the compensated system are given on 「ig. 61 and 「ig. 62. The compensated system has about 75 degree phase margin which is obriously more than the specified requirements. This excess phase margin may cause a request for the large plane angles which it is not poscible to supply. Since it is always possible to use limiters on plane angles it is concluted to leave the designed compensator as it is and use it for pretiminary design procedures.

Since $g_{22}(s)$ is already very reasonable well damped. no compensator will be used and K 2 will be taken as 1.0 for the first trial.

The next step is to put the compensator in the actual linear system and observe the response of the system. But before doing that the simulation program has to be updated in order to get more realistic results and accuracy.

a. Limiters

The mechanical limit for both plane deflections is 35 degree. But it is not desirable to use full plane angles for higher speeds. Also it is possible to limit planes and the error signals. The test runs which are achieved with limited planes led to unacceptable plane behavior such as very small deflections. Linder these set of eireumstances it was concluded to limit the error signal such as:

Figure 61. Root Locus Plot for $G_{c} g_{11}$.

Tigure 62. Open Loop Bode Plot for $G_{c} g_{11}$.

$$
\begin{array}{ll}
\lim =35 & \text { when } u<15 \mathrm{ft} / \text { sec. } \\
\lim =25 & \text { when } 15<\mathrm{u}<30 \mathrm{ft} \text { 'sec. } \\
\lim =15 & \text { when } u>30 \mathrm{ft} / \text { sec. }
\end{array}
$$

Obviously this limiter does not have any effect for less than 1.5 ft . depth changes where there is no need for a limiter.

b. Actuators

The lincarized model docs not include the dynamics of the plane actuators. which are force and moment producers. The actuator dynamics were ignored in the model comparison part of this study. In order to have an accurate model for the design procedure, an actuator model has to be added to the system dynamics. Such an actuator model was developed by [Ref. 6] and represented as

$$
\begin{equation*}
G_{a c t}=\frac{1}{s+0.667} \tag{42}
\end{equation*}
$$

The complete model which is used in the simulation program is given in Tig. 63.

Tigure 6.3. Block Diagram for Compensated Linear Model in Vertical Motion

3. Simulation

The simulation program is written based on the discussed subjects above. The first run was made with the preliminary design gains. poles and zeros. Then required corrections were made in order to meet the design specifications. The DSL simulation program with the limal parameters is given in A ppendix F .

Test run results which were achieved with different sets of parameters are given in Figures 64 to 74. Each run is explained briefly below:

Run No. 1:
The simulation program was run with the first set of parameters for 10 ft . depth change and 10 ft sec. axial speed which is the lower limit for this compensation. With $\mathrm{Kl}=0.1$ the required bow plane angle was very large and overshoot was $25^{\circ} \%$. This rum does not meet the specified requirements.

Run No. 2:
In order to get reasomable plane response it is decided to reduce KI to the value of 0.01 . This time the maximum bow plane dellection is 26 degree but the time required to reach 10 feet depth change is a little longer than the specification. This rum is also discarded.

Run No. 3:
A third approach would be to change K 1 to 0.015 . The result was quite satisfactory except the fo degree maximum bow plane angle. The man teason for this larger plane request is the excess phase margin on the system. The one possible way to reduce phase margin is to shift the cascade compensator one decade up in the freyuency domain.

Run خ̌o. $4:$
Using the new compensator with one zero at 1.0 and one pole at 10.0 , the results are satisfactory. As can be seen from ligure 66 the maximum required bow plane angle is 10 degrecs, the time to complete 10 ft . depth change is 78 sec . and the overshoot is 10"'. This excess overshoot is the payofl for reducing the phase magin but since it makes only one foot difference, it is aeceptable.

Run No. 5:
It is desired to check the sustem response for large depth changes. The simubation program was run for a 100 ft. depth change. Maximum requited how plane angle
is 34 degres and overshoot is 5%. At this point it secms that the compensated linear model for depth control is acceptable.

It is also required to check the pitch response of the system. Test runs were performed with zero depth and some certain pitch angle change. Becaluse of the bow plane effect (which trice to keep the submarine at the same depth) there was a steady state crror on pitch angle. Since this pitch error relates very closcly to K 2 , it is concluded to increase K 2 to 2.0.

Runs ․o. 6 and 7:
To make sure that there is no negative effect on depth behavior of the system created by the new K 2 parameter, two more runs were achieved with $\mathrm{K} 2=2.0$ for 10 and 100 fect depth change. Since there was only a slight change on overshoot, the new K 2 value is accepted and used for further study.

Run ㅊo. 8

In order to check the pitch response of the compensated system, a - 5 degree pitch command was ordered while the depth change command was zero. System has reached the ordered pitch angle in 46 seconds and because of the bow plane effect. it settled on -4 degrec. Increasing K 2 might decrease this steady state crror but at the same time it might create more overshoot and instability problems on depth hehavior of the ststem. Since a 1 degree error is in the specifications limits, $\mathrm{K} 2=2.0$ will be used for further study.

Runs No. ${ }^{9}$ and 10:
The neyt step is to check the designed system for a certain range of speed. Ion 15.2 ft .'sec. (9 Kits.) two runs were performed with 10 and 100 ft . depth change. $\Delta \mathrm{s}$ it can be seen from 「ig.s 69 and 70 there is $12^{\circ} \%$ overshoot for 10 ft . depth change and 3° in for 100 lt. depth change. Increasing the speed has a positive effect for large depth changes while having a negative effect for small ones.

Runs No. 11 and 12 :
The axial speed was increased to 12 K ts. The system reaches the ordered depth in shoiter time and has only 2% overshoot for 100 ft . depth change.

Runs ㅅo. 13 and 14:
Two more test runs were performed with 18 k ts. axial speed. As can be seen from liges 21 and 22 the compensated control model is still valid and, in fact, worts hetter with only ló overshoot for large depth change.
linally it is considered that the designed automatic control for the linearized vertical motion using cascade compensator design techmiques is satisfactory and should

be checked with actual non-linear model. Alter designing another cascade compensator for the horizontal motion, both models will be checked in order to see whether the design is completed or needs some alterations.

10 FT . DEPTH CHANGE $U=10 \mathrm{FT} . / \mathrm{SEC}$.

Figure 6t. Compensated System Depth Response $Z=0.1, \Gamma=1.0$

Figure 65. Compensated System Depth Response $\mathrm{K} 1=0.015, \mathrm{~K} 2=1.0$

Figure 66. Plane Angle Deflections for first and second Compensator

Figure 67. Compensated System Response to 100 ft . Depth Change

Figure 68. Compensated System Pitch Response for Commanded Pitch $=-5$ Deg.

「igure 69. Compensated System Response to 10 ft . Depth Change U=9 Kts.

Figure 70. Compensated System Response to 100 ft . Depth Change $\mathrm{U}=9$ Kis.

PLANE DEFLECTIONS

「igure 71. Compensated System Response to 10 ft . Depth Change $\mathrm{U}=12 \mathrm{Kis}$.

Figure 72. Compensated System Response to 100 ft . Depth Change $\mathrm{U}=12 \mathrm{Kts}$.

Figure 73. Compensated System Response to 10 ft . Depth Change $U=18 \mathrm{Kts}$.

Figure 74. Compensated System Response to 100 ft . Depth Change $\mathrm{U}=18$ Kits.

IV. AUTOMATIC STEERING CONTROL

Turning characteristics of a surfaced submarine are very similar to a surface ship But the situation in the submerged position shows hig differences. Sail structure can be considered the main difference and the main source of rolling. But roll control is not considered in this study since the main purpose was to control depth change which is caused by the rudder.

In Chapter 2, three equations of motion were linearized and derived for the horizontal plane. Same cyuations will be used to design a stecring control for a submerged submarine. But the algebraic loop problem has to be solved before using Mason's gain rule.

Three lincar equations for horizontal motion are

$$
\begin{align*}
& \dot{r}=1.89 \dot{r}-6.3 \dot{p}-0.291 u r-0.035 u p-2.563 \times 10^{-3} u r+7.568 \times 10^{-4} u^{2} \dot{\partial} r \tag{4.3}\\
& \dot{r}=-0.679 \dot{r}-0.0584 \dot{r}-8.179 . \times 10^{-3} u p-9.347 \times 10^{-3} u r-3.942 \times 10^{-4} u r^{0} \\
& +3.942 \times 10^{-5} u^{2} \delta r-0.236 \phi \tag{44}\\
& \dot{r}=-6.553 \times 10^{-3} \dot{r}+6.767 \times 10^{-4} \dot{i}-6.767 \times 10^{-3} u r-4.511 \times 10^{-6} u p-4.076 \times 10^{-5} u r^{1} \\
& -1.631 . r 10^{-5} u^{2} 0 r \tag{4.5}
\end{align*}
$$

Substituting the highest derivative terms into each equation and after a great deal of algebraic work

$$
\begin{gathered}
i=-0.437 u r+0.027 u p-5.06 \times 10^{-4} u+6.49 \times 10^{-4} u^{2} 3 r-2.389 \phi \\
\dot{r}=0.021 u-9.8 \times 10^{-3} u p-3.384 \times 10^{-4} u+1.249 \times 10^{-5} u^{2} \dot{b}-0.378 \phi \\
i=-7.2 \times 10^{-3} u r+7.8 \times 10^{-5} u p-3.888 \times 10^{-5} u v-1.595 \times 10^{-5} u^{2} s r-4.094 \times 10^{-3} \phi(48)
\end{gathered}
$$

A. DESIGN SPECIFICATIONS

In general. the required time to achieve a course change in a ship depends on

1. The formard speed,
2. The difference between previous and commanded course,
3. Applied rudder angle,
4. Rudder arca,
5. The length and hull structure of the ship.

The submerged condition is also a very important aspect since the required turning time is about three times greater for a submerged submarine than a surfaced one. lispecially at lower speeds, it is very hard to achieve the desired course lor a submerged submarinc.

It is concluded that for the speeds which are less then 10 Kts ., a control system must achieve every 10 degrees course change in 30 seconds. This allows 9 minutes to complete a 180 degreses turn and it is very reasonable for a low speed submerged submarinc. For higher speeds this time limit would be 20 seconds. It is also considered that more than 2.5 degrees overshoot is not acceptable.

The mechanical limit angle for rudder is also 35 degrec and has to be considered in the design process.

B. DESIGN

The cascade compensation method will be used for the horizontal motion. Since the aim of this chapter is to design a basic steering control, the roll response will not be investigated. The yaw response to the rudder is the only input-output relation of interest at this point. Figure 75 represents a control model for the horizontal motion.

A signal flow graph is given on Fig. 76 for the linearized equations of horizontal motion. The corresponding numbers for symbols in the flow graph are given below:

$$
\begin{aligned}
& a=0.437 u \\
& b=0.027 u \\
& c=-5.0 \times 10^{-4} u \\
& d=6.5 \times 10^{-4} u^{2} \\
& e=-2.39 \\
& f=0.021 u \\
& g=-9.8 \times 10^{-3} u \\
& h=-3.4 \times 10^{-4} u \\
& i=1.25 \times 10^{-5} u^{2} \\
& j=-0.378 \\
& k=-7.2 \times 10^{-3} u \\
& l=-7.8 \times 10^{-5} u \\
& m=-3.9 \times 10^{-5} u \\
& n=-1.6 \times 10^{-5} u \\
& o=-4.1 \times 10^{-3}
\end{aligned}
$$

Figure 75. Cascade Compensated Control Model for Horizontal Motion

1. Decoupling

Since this signal how graph creates 13 loops to be handled. it is considered to take u as 10 ft . $/ \mathrm{sec}$. at the begimning of the calculation in order to reduce the amount of required algebraic work.

Applying Mason's gain rule to the signal flow graph given in Fig. 76, the imputoutput relation for yaw will be as follows

$$
\begin{equation*}
\frac{y \cdot a w}{o r}=G_{p}=\frac{-1.6 \times 10^{-4} s^{3}-5.4 \times 10^{-5} s^{2}-6.8 \times 10^{-5} s-6.5 \times 10^{-6}}{s^{5}+0.175 s^{4}+0.3885 s^{3}+0.022 s^{2}-5.77 \times 10^{-5} s} \tag{49}
\end{equation*}
$$

In factorized form. the same equation will be

$$
\begin{equation*}
G_{p}=\frac{-1.6 \times 10^{-4}(s+0.1176+j 0.6222)(s+0.1176-j 0.6222)(s+0.102)}{s(s+0 .(1587+j 0.6152)(s+0.0587-j 0.6152)(s+0.0602)(s-0.0(225)} \tag{50}
\end{equation*}
$$

As can be seen from the transfer function, there is a real pole in the right half plane which is very near to the origin. The characteristic equation roots are
$-0.058 \pm j 0.615$
$-0.018 \pm j 0.020$
-0.1
-0.022

Figure 76. Signal Clow Grapla for Horizontal Equations of Motion

The root locus plot and open loop Bode plot for G_{p} are given in Fig.s 77 and 78.

The root locus plot shows that there is a very small gain range where the system is stable. The Bode plot also agrees that the system is unstable with 15 degrees negative phase margin and there really is a small gain range over which the system will be stable with a small damping.

Since it is obvious that a gain adjustment will not be enough to get the desired response out of the system, the cascade compensation will be required. In order to

Tigme 7i. Open Loop Bode Plot for $\frac{\text { fill }}{\delta r}$.
increase phase margin a first order lead compensat or is to be added to the forward path. Using cascade compensator design techniques, the first trial would be

$$
\begin{equation*}
g_{c}=\frac{0.1}{0.0 \mathrm{I}} \frac{s+0.01}{s+0.1}=10 \frac{(s+0.01)}{s+0.1} \tag{5I}
\end{equation*}
$$

There will be no gain adjusment at this point.
The Bode plot for the compensated system is given in Fig. 79. The phase margin is 40 degrees and that is about the maximum phase which can be acquired with only one cascade compensator. The root locus plot shows that the compensator has moved a lot of root locations to the left half plane and it is given in Fig. 80.

Since the root locus and Bode plots show very reasonable damping and stability, it is considered that the compensated system is ready for the simulation. The DSL simulation program which is used for the validation of the linear model (Appendix E), is updated with the designed caseade compensator. This program is given in Appendix G including required modilications.
2. Simulation

The same plane actuators which were used for the stern and bow planes, are used for the rudder in the simulation program. But sinee the input is totally different, it is necessary to design a different criteria for the limiter. The first run was made without any limiter, then using trial and error, the best limiter choice is appeared to be:

$$
\begin{array}{ll}
\lim =0.070 & \text { when } u<12 \mathrm{Kts} . \\
\lim =0.050 & \text { when } 12<u<1 S \mathrm{Kts} . \\
\lim =0.035 & \text { when } u>18 \mathrm{Kts} .
\end{array}
$$

The complete model which is used in the simulation program is given in Fig. 81.
Test run results which were achieved with different sets of speed and course, are given in Figures $\$ 2$ to 90 . The roll response is also given in order to make sure that submarine does not exced maximum allowable roll limits. Each run is explained briefly below:

Run No. 1:
Lising 6 K ts. forward speed and 10 degrees course change, the maximum required rudder angle was 82 degrees. Therefore it is necessary to use a limiter on the error signal.

「igure 79. Open Loop Bode Plot for $G_{c} G_{F}$.

Figure 80. Root Locus Plot for $G_{c} G_{r}$.

Figure 81. Block Diagram for Compensated Linear Model in Horizontal Motion

Run No. 2:
Using the limiter which was mentioned above and for 15 degrees course change. the maximum required rudder was 33 degrees. It takes 46 second to get 15 degrees course alteration with only 2.5% overshoot.

Run ㅅo. 3:
This time the system is tested with the same speed for a 90 degree course change which is one of the commonly used commands in a submarine. It takes 214 sec. to exceute this command which is in the specilied limits. The overshoot is 1.5% and maximum required rudder angle is also 33 degrees.

Run No. 4:
In order to get the speed range in which the compensated system stays in the required specifications, the forward speed is increased to 10 Kts . For a 15 degree course change the time to exccute the command is 22 sec with 1.9 feet overshoot.

Run ㅊo. 5 :
Гor 90 degrees course change with 10 K ts. forward speed the time to execute the command is 103 see. with 1.5% overshoot. Maximum required rudder angle is still 33 degrees. As can also be seen from Fig. 86 the maximum roll is about 3 degrees.

Runs No. 6 and 7:

These runs were made with 15 kts . forward speed for 15 and 90 degrees course changes. While the required time decreases with increasing speed, the overshoot increases. But the results are still in the specification limit as can be seen from Fig.s 87 and 88. The maximum roll angle is 5 degrees for 15 Kts . forward speed which is also reasonable. The maximum required rudder angle is 23 degrees for this case.

Runs No. 8 and 9:
These runs were made with 20 Kts . forward speed also dictated the speed range for the compensated system because it becomes too oscillatory after 20 Kts . which is not desirable. It is necessary to add another cascade compensator to the forward path in order to get enough damping for specds higher than 20 Kts . It is to be noted that using a limiter also helps to keep the roll angles small. In this case the maximum rudder angle is only 16 degrees because of the limiter ellect. With this limited rudder angle the maximum roll is only 8 degrees. Even though it is not intended to control the roll, the limiter supplies an indirect control on the roll response.

Finally it is considered that the designed automatic control for the linearized horizontal motion using cascade compensator design techniques, is satisfactory for the speed range of 6 to 20 Kts. This design should be checked in the actual non-linear system.

RUDDER DEFLECTION

Figure $8 . \quad$ Yaw and Roll Response to 10 Degree Course Change. No Limiter

RUDDER DEFLECTON

Figure 83. Jaw and Roll Response to 15 Degree Course Change. Wilh Limiter

「igure id. Jan and Roll Response to 90 Degree Couse Change. U $=6$ Kits.

Figure 35. Yaw and Roll Response to 15 Degree Course Change. $U=10$ Kits.

Figure 86. Yaw and Roll Response to 90 Degree Course Clange. $\mathrm{U}=10 \mathrm{Kts}$.

ORDERED YAW $=15$ DEGREES $-U=15 \mathrm{KTS}$

RUDDER OEFLECHON

「igure 87. Van and Roll Response to 15 Degree Course Change. $\mathrm{U}=15 \mathrm{Kts}$.

RUDDER DEFLECTION

Figure 33. Yaw and Roll Response to 90 Degree Course Change. $\mathrm{U}=15 \mathrm{Kts}$.

ORDERED YAW $=15$ DEGREES $-U=20 \mathrm{kTS}$

RUDDER DEFLECTON

「igure 89. Law and Roll Response to 15 Degree Course Change. $\mathrm{U}=20$ Kits.

RUDDER DEFLECTION

「igure 90. Jan and Roll Response to 90 Degree Course Change. $\mathrm{U}=20$ Kis.

V. VALIDATION OF THE COMIIENSATED NON-LINEAR MODEL

The main purpose of this study was to show that it is possible to design a compensator based on the linearized version of a non-linear model and then to compensate the actual non-linear model with this designed compensator. In the previous chapters the required compensators were designed for the linear models on vertical and horizontal motions. These compensators had to be checked with the actual non-linear model to see that the system will really work with them.

The complete DSL simulation program for the non-linear model was already written and used by Ref. 3 and Ref. 5. It is also used for this study to compare linearized models with the non-linear model. In order to check the validity of automatic control systems. the DSL simulation program is to be modilied including the compensator and limiter algorithms in it. The modified version of the DSL program for the compensated nonlincar model is given in Appendix I.

A. SIMIULATION

For the test runs to check the designed compensators, the same limiter values are used. Since the actual and commanded velocitics (U and UC) are two different parameters and U is always somewhat less then UC , it is concluded to take actual speed Li as the parameter for the limiters. This will give more accurate plane deflections depending on actual forward speed.

The non-linear simulation program was run at $6,10,12,15$ and 20 Kits. for various depth, pitch and yaw commands. A diving submanine can give hundreds of maneuser variations in three dimensional motions. Since it is not possible to include all of them: only the most common commands and the commands which were used in Chapter 2.3 and 4 are included for comparison purposes.

The trim values for the ordered speed are carcfully calculated from Ref: 5 and implemented in the non-linear model.

Test run results which were achieved for different sets of speeds and commands are given in Figures 91 to 106 . Each run is explaned brielly below:

Runs . .o. 1-4:
The simulation program was run for 10 and 100 ft . depth changes at 6 K ts. commanded forward speed. As can be seen from Fig. 91 the non-linear model completes a 10 ft . depth change 10 sec . after the linear model does. It completes a 100 ft . depth
change 20 sec. after the linear model and overshoots for both case are on the specilication limits. I here is also a 1 ft . steady state error for both cases.

At the same sped the simulation program was run for 15 and 90 degree course changes. As can he seen from Fig. 92 the non-linear model takes ahout 100 seconds to achicese a 15 degree course change with no overshoot and a slight undershoot. Also the repuired time to make a 90 degree course change is more than 360 seconds for the nonlincar model. These two case are also non-acceptable.

The main reason for this failure is the decreasing forward speed due to the plane deflections. The forwad speed, depending on the amount of the rudder deflection, actually drops up to 4 Kts. while achiering a course change mancurer. The same thing also happens for a depth change mancuver due to the stern and bow planes. The compensators were designed for actual 6 Kts . and higher speeds and they do not meet the specifications for less than 6 Kts . forward speed.

Under these circumstances no more investigations were made at 6 Kts . At this point it is concluded to operate at 10 Kts .

Runs . ${ }^{\circ} \mathrm{o}$ 5-8:
As cian he seen in lig. 93 the non-linear model completes a 10 ft . depth change in 42 seconds with 1 ft . overshoot at 10 Kts . It completes a 100 ft . depth change in 106 seconde with $3.5^{\prime \prime \prime}$ overshoot. These numbers satislied the reguired specilications and they are nearly the same as for the linear model with a little time lag.

As can be seen in Fig. 9t the non-linear model makes a 15 degree course change in 25 seconds with 0.8 degree overshoot which is less than the lincar case. For a 90 degree course change the time is 205 seconds with no overshoot. Again due to the rudker drag force. the time to reach the commanded course is much larger but more realistic than the linear case. Since the constant speed assumption which is used for the linear model is no longer valid for large perturbations, this is really expected. (On the other hand the designed cascade compensators can still control the actual non-lincar ststem effectively cnough and in lact, with less overshoot which is very important from the point of this study.

Runs No. 9-12:
1n order to have an idea about speed deviation due to the plame deflections. four runs were performed for 10 and 100 feet depth change and 15 and 90 degrec couse change at 10 Kits. As can be seen in Fig. 95 there is an appreciathle difference between the drag forces ereated by rudder and bow, stern planes. This is expected since the mdder has a lot more surface than the other planes. For a 15 degree course change the formard
speed drops abruptly to 9.3 Kts . and goes back to it's original value in a relatively small time. For a 90 degree course change, the forward speed drops up to 9 Kits. and stays almost constant for about 150 seconds which is the greatest cause for the slower course change rate.

Runs Xo. 13 and 14:
Since the linear model assumes no cross-coupling between vertical and horizontal motion, these runs are performed only for the non-linear model. Cross-coupline eflects on depth and pitch angle are shown in Fig. 96 at 10 Kts . for 15 and 90 degrec course change commands. For both commands, the submarine stays in the 5 feet depth and 2 degrees pitch error limitations.

Run No. Is:
Onc of the most diflicult mancurer for a submarine is to change depth while achicring a course command. Results of such a mancurer are given on 1 ig .97 and 1 ig . 98. A simulation run for simultancous 90 degree course and foo ft. depth change commands. shows that the time to reach 90 degree course change is about 40 seconds longer than the usual condition but it does not affect the depth change. Because of the rudder effect only a small depth error appears until the submarine settles on the desired course.

As can be seen in Fig. 98 the non-linear submarine's roll and pitch responses are somewhat non-regular but still in reasonable limits for this case. The forward speed deviation due to the plane drag forces is also given in Fig. 98. Speed drops up to 8.3 Kts . and this gives an explanation for lower course change rate.

As a result for this run, even though the designed control systems interact, they ean work well simultancously.

Runs. No. 16 and 17:
In order to be able to compare fixed rudder effeets on depth and pitch angle. We simulations were performed for 15 degree and 35 degree lixed rudder commands in the same fashion as in Chapter 4 at 12 Kts . For 15 degree rudder the pitelt and depth errors stay in specified limits but for 35 degree rudder these errors are not allowahle. Simulation results for this case are given in Fig. 99.

Runs No. IS and 19:
Figure 100 gives the simulation results for a 15 and a 90 degree course change at 1.5 Kts. for both linear and the non-linear models. The yaw response for 15 degree course change is almost the same as the response for 10 Kts . with a little more overshoot and oseillation. On the other hand the non-linear model shows a better response with tese overshoot for both cases.

Runs No. 20 and 21:
Figure 101 gives the simulation results for a 10 and a 100 feet depth change at 15 Kts. Surprisingly there is almost no difference between linear and non-linear model for the 10 feet depth change. But for the 100 ft . depth change the non-linear model has a faster response than the linear model. This is unusual and created by different limiter behaviors on bow planes at this specific forward speed.

Runs `o. 22 and 23:
In a real submarine a depth change command usually comes with a pitch command in order to reduce the time to get the desired depth. Figure 102 gives the results of such a command for" 100 feet depth change with 5 degree down pitch angle at 6 and 15 Kts . For both cases the submarine reaches the desired depth 35 seconds before the case for which no pitch command is given. But as a trade-off the overshoots are over 10%. Also the pitch command has to be reduced to zero before the desired depth is reached in order to aroid too much orershoot and a steady state error on depth. This is done 10 feet before the desired depth is reached. for 6 K ts and 50 feet before for 15 Kts .

Runs No. 24 and 25:
Finally the compensated non-lincar system was checked at 20 Kts . For a 15 and a 90 degree course change, the yaw responses of the compensated submarine are given in Fig. 103. Once again the non-lincar model gives a better but slower response then the linear model. For the 15 degree course change the yaw responses of both models become too oscillatory due to the high speed. But the compensator still works well enough to control the submarine.

Runs No. 26 and 27:
Figure 104 gives the compensated submarine depth responses for a 10 and a 100 feet depth change at 20 Kts . There is a 0.8 feet steady state error for both cases which is created by the system dynamics due to the high speed. The control system design is based on 10 ft .'scc. (6 Kts .) forward speed. At 20 Kts . the transfer functions which describes the submarine dynamics might have very diflerent characteristics. Consequently it is concluded that the upper speed limit for this design is 20 Kts . In fact, the control system works up to 25 Kts . without exceeding design specification limits.

The compensated submarine pitch responses for the same runs are given in Fig. 105. The linear and non-linear models show very similar pitch behavior and pitch angles do not exceed the given 2 degree limit even for this high speed.

As a result of this chapter it has been shown that the designed automatic control system for the linearized model can also work effectively on the actual non-linear model.

Figure 91. Compensated Submarine Depth Responses at 6 Kts.

80 DEG. COURSE CHANGE UC $=6 \mathrm{kTS}$.

Figure 92. Compensated Submarine Yaw Responses at 6 Kts.

10 FT . DEPTH CHANGE UC $=10 \mathrm{kTS}$.

100 FT. DEPTH CHANGE UC $=10 \mathrm{KTS}$.

「igure 93. Compensated Submarine Depth Responses at 10 Kts .

15 DEG. COURSE CHANGE UC $=10 \mathrm{KTS}$.

90 DEG. COURSE CHANGE UC $=10 \mathrm{KTS}$.

Figure 94. Compensated Submarine Yaw Responses at 10 Kts .

Figure 95. Deriations from the Commanded Speed for Non-Linear Suhmarine

Figure 96. Cross-Coupling Effects for the Non-Linear Submarine at 10 Kis.

YAW RESPONSE FOR 90 DEG. AND 100 FT. CHANGES

「igure 97. Course and Depth Change Commanded at the Same Time UC=10 Kts.

Figure 98. Roll. Pitch and Speed Response for Multi-Manevuer Suhmarine.

Figure 99. Depth and Pitch Response for Fixed Rudder Commands $\mathrm{U}=12$ Kts.

15 DEG. COURSE CHANGE UC $=15 \mathrm{kTS}$.

90 DEG. COURSE CHANGE UC $=15$ KTS.

Figure 100. Compensated Submarine Yaw Responses at 15 Kts.

Figure 101. Compensated Submarine Depth Responses at 15 Kts .

Figure 102. Depth Change with 5 Deg. Down Pitch Angle for Non-Linear Sub.

15 DEG. COURSE CHANGE UC $=20 \mathrm{kTS}$.

90 DEG. COURSE CHANGE UC $=20 \mathrm{KTS}$.

「igure 103. Compensated Submanine Yaw Responses at 20 Kts.

100 FT . DEPTH CHANGE $U=20 \mathrm{KTS}$.

Figure 104. Compensated Submarine Depth Responses at 20 Kts .

PITCH RESPONSE TO 100 FT. DEPTH CHANGE

Figure 105. Compensated Submarine Pitch Response to Depth Change Commands

VI. CONCLUSIONS AND RECOMMENDATIONS FOR FURTHER WORK

A. CONCLUSIONS

The linearization of given non-linear differential equations of motion in six degrecs of freedom, designing two automatic control systems using cascade compensator design techniques for vertical and horizontal motion of a submarine and finally investigating cross-coupling effects due to the rudder deffections were the main concerns in this study.

It has been shown that using linearized equations to design an automatic control for the actual non-linear system is possible for the submarine problem. Also cascade compensation, using a single loop technique. which was mainly the Bode plot design in this study, is possible and practical for automatic pitch, depth and yaw control of small submarines.

The designed control systems for both planes satisfied the design specifications for a speed range from 8 to 20 Kts . That means the compensated system is rather insensitive to speed deviations. Therefore all problems related to gain switching. like cluttering and discontinuitics in plane angles. are avoided. This is especially important because the forward speed changes significantly during maneuvers.

The implementation of the designed compensators into hardware has the following desirable features:

1. Minimal Instrumentation: Since rate information is not required, no inertial guidance system is necessary. Only a regular gyro for course and simple sensors for depth and pitch angle are needed.
2. Low Cost. Weight and Size: The simplicity of the compensator transfer functions makes them easily realizable in physical hardware at low manufacturing cost. Weight and size requirements are very small. another important factor especially for small coastal submarines. A wide speed range is covered by one fixed compensator and no changes in parameters are necessary.
3. Reliability: The automatic controller can be realized with a set of plysical components with a well known high reliability: High component reliability and a small number of components will generally result in a high system reliability.

B. RECOMMENDATIONS FOR FURTHER WORK

1. The designed control system in this study can keep the pitch and depth errors in reasonable limits for small rudder deflections and course changes. But larger deflections still create an appreciable amount of depth and pitch error at high speeds which is not
desirable for near surface operations. It might be worthwhile to improve this design to get a sulficient control on cross-coupling effects for all kinds of heary maneurers. This can be done using diflerent sets of parameters for the compensators and limiters and or increasing the numbers of compensators for the vertical control of the submarine.
2. In some operational conditions it is very important to reach a desined depth as soon as possible in a submarine. Therefore an additional pitch angle command is given which has an enormous effect on depth change rate. For the present design it is possible to give both depth and pitch command at the same time but the watch oflicer has to decide where to change the pitch command to zero. Otherwise, depending on the forward speed and commanded pitch angle. the submarine might not stay on desired depth.

The present design can be modified using a new algorithm which can decide where and in what fashion to decrease the pitch angle automatically in order to get desired depth and stay there without any unacceptable overshoot and steady state error.

APPENDIX A. DEFINITIONS OF SYMBOLS

SYMBOL
DEFINITION

A dot over any symbol signifies differentiation with respect to time.

Buoyancy force which is positive upwards.

Mass of the submarine including the water in the free floating spaces.

1

U
u
V
w
u_{c}

X

Overall length of the submarine.

Linear velocity of origin of body axes relative to an earth-fixed axis system.

Component of U along the body x-axis.

Component of U along the body y -axis.

Component of U along the body z-axis.

Command speed.
L. ongitudinal axis of the body fixed coordinate axis system.

Transterse axis of the body fixed coordinate axis system.

Vertical axis of the body fixed coordinate axis sustem.
x_{0}

$$
y_{0}
$$

z_{0}
p
q
r
z_{B}
α
β
δb
δr
δb
n

Distance along the x axis of an earth-fixed axis system.

Distance along the y axis of an earth-fixed axis system.

Distance along the z axis of an earth-fixed axis system.

Component of angular velocity about the body fixed x-axis.

Component of angular velocity about the body fixed y-axis.

Component of angular velocity about the body fixed z-axis.

The z coordinate of the center of buoyance (CB) of the submarine.

Angle of attack.

Angle of drift.

Deflection of bow or fairwater planes.

Deflection of rudder.

Deflection of stern planes.

The ratio $\frac{u_{c}}{u}$.

Pitch angle.

Roll angle.
$H_{i} \quad$ Weight of water blown from a particular ballast tank identified by the integer assigned to the index i.

Angular velocity.

Time.
$\left(F_{x}\right)_{p} \quad$ Propulsion force.

Moment of inertia of a submarine about the x -axis.

Iy Moment of inertia of a submarine about the y-axis.
$I_{2} \quad$ Moment of inertia of a submarine about the z-axis.

All K's Non-dimensional constants each of which is assigned to a particular force term in the equation of motion about the body x-axis.
All N's Non-dimensional constants each of which is assigned to a particular force term in the equation of motion about the body y-axis.

All N's

All X's Non-dimensional constants cach of which is assigned

All Y"s
Non-dimensional constants each of which is assigned to a particular force term in the equation of motion along the body y-axis.

All Z's
Non-dimensional constants each of which is assigned to a particular force term in the equation of motion about the body z-axis. to a particular force term in the equation of motion along the body x-axis. Non-dimensional constants each of which is assigned to a particular force term in the equation of motion along the body z-axis.

APPENDIX B. HIYDRODYNAMIC COEFFICIENTS OF SINIULATION EQUATIONS

A. ANIAL FORCE

XQQ	$=-0.000200$	XRR	$=-0.000090$	XRP	$=0.000250$
$\mathrm{XLDOT}=-0.000150$	XVR	$=0.011000$	XWQ	$=-0.007500$	
XLU	$=0.0$	XVV	$=0.006500$	XDRDR	$=-0.002800$
$\mathrm{XDSDS}=-0.002500$	XDBDB	$=-0.002600$	$\mathrm{XVVN}=0.0$		
$\mathrm{XWWN}=0.0$	$\mathrm{XDR} 2 \mathrm{~N}=0.0$	$\mathrm{XDS} 2 \mathrm{~N}=0.0$			

B. LATERAL FORCE

YP'P!	$=0.0$	$Y P Q$	$=0.000200$	$Y P D O T$	$=-0.000300$
$Y R D O T$	$=0.000090$	$Y V D O T$	$=-0.011000$	$Y V / R /$	$=-0.007300$
$Y W P$	$=0.007500$	$Y R$	$=0.003000$	$Y R D R$	$=0.0$
$Y P$	$=-0.000700$	$Y L U$	$=0.0$	$Y V / V /$	$=-0.060000$
$Y V$	$=-0.021000$	$Y D R$	$=0.006200$	$Y W V$	$=-0.065000$
$Y V S$	$=0.0$	$Y R X$	$=0.0$	$Y V N$	$=0.0$
$Y V A V N$	$=0.0$	$Y D R N$	$=0.0$		

C. NORMAL FORCE

ZRR	$=-0.001500$	ZRP	$=-0.000900$	ZQDOT $=$	- -0.0000200
ZWDOT	$=-0.007500$	ZVR	$=-0.008000$	Z Wi Q^{\prime}	-0.0006000
ZQ	$=-0.004500$	ZQDS	$=0.0$	ZVP	-0.0070700
ZLU	$=-0.000100$	ZVV	$=0.000650$	ZWiW:	-0.0300000
ZW	$=-0.011000$	ZDS	$=-0.005000$	ZDB	$-0.002 .500$
Z! Wi	$=0.0$	ZWW	$=0.0$	ZVS	0.0
7.2.	$=0.0$	ZWN	$=0.0$	ZWAWN=	0.0
Z1)SN	$=0.0$	$\mathrm{Z}+\mathrm{VP}$	$=0.0$		

D. ROLLING MOMENT

$\mathrm{KP} \cdot \mathrm{P}_{i}$	$=-0.0000008 \mathrm{KQR}$	$=-0.000100$	KPDOT	$=-0.000003$
KRDOT	$=-0.000007$	KVDOT	$=-0.000250$	KWP
KR	$=-0.000040$	KP	$=-0.000035$	KUU
KR	$=0.000250$			
$\mathrm{KV}, \mathrm{V} /$	$=-0.000900$	KV	$=-0.000700$	KDR
KWV	$=0.003500$			

E. PITCHING MOMIENT

MRR	$=-0.0005500$	MRP	$=0.000150$	$\mathrm{MQDOT}=-0.000-400$
$\mathrm{M}+\mathrm{RP}$	$=0.0$	MWDOT	$=-0.000200$	MVR $=-0.002000$
M/W, Q	$=-0.002000$	MQ	$=-0.002500$	$\mathrm{MQDS}=0.0$
MVP	$=0.000900$	MUU	$=0.000040$	MVV $=0.015000$
MW/W/	$=-0.005000$	MW	$=0.003000$	$\mathrm{MDS}=-0.002500$
MDB	$=0.000500$	M/W ${ }_{\text {/ }}$	$=0.0$	MWWW $=0.0$
MQN	$=0.0$	MWN	$=0.0$	MWAWN $=0.0$
MDS.V	$=0.0$			

F. YAWING MOMENT

NPQ	$=-0.0004000$	NPDOT	$=-0.000007$	NRDOT	$=-0.000500$
NVDOT	$=0.000300$	N:V'R	$=-0.004500$	NWP	$=-0.000200$
$\cdots \mathrm{N}$	$=-0.003000$	NRDR	$=0.0$	NP	$=-0.0000005$
NUU	$=0.0$	NV; ${ }^{\text {Ni }}$	$=0.014000$	NV	$=-0.007500$
MDR	$=-0.003000$	NWV	$=0.015000$	NRN	$=0.0$
NVN	$=0.0$	NVAVN	$=0.0$	NDRN	$=0.0$

G. OTHERS

| Al | $=-0.001000 \mathrm{~A} 2$ | $=-0.000950 \mathrm{~A} 3$ | $=0.001950$ |
| :--- | :--- | :--- | :--- | :--- |
| LC | $=415.0 \mathrm{ML}$ | $=0.0057445 \mathrm{BZB}$ | $=0.0010114$ |
| IX | $=7.311 \times 10^{-6} \mathrm{IY}$ | $=5.6867 \times 10^{-4} \mathrm{IZ}$ | $=5.0867 . \times 10^{-4}$ |

APPENDIX C. STANDARD EQUATIONS OF MOTION

A. AXIAL FORCE

$$
\begin{aligned}
m(u-v+w q)= & \frac{\rho}{2} l^{4}\left[X_{q q} q^{2}+X_{r r} r^{2}+X_{r p} r q\right] \\
& +\frac{\rho}{2} l^{3}\left[X_{u} \dot{u}+X_{v r} \cdot r+X_{w q} w q\right] \\
& +\frac{\rho}{2} l^{2}\left[X_{u u^{\prime}} u^{2}+X_{v v^{2}}+X_{w w} w^{2}\right] \\
& +\frac{\rho}{2} l^{2} u^{2}\left[X_{\delta r \delta \delta} \delta r^{2}+X_{\delta s \delta s} \delta s^{2}+X_{\delta b \delta b} \delta b^{2}\right] \\
& +\frac{\rho}{2} l^{2} X_{v v n}(n-1) v^{2} \\
& +\frac{\rho}{2} l^{2} X_{w w n}(n-1) w^{2} \\
& +\frac{\rho}{2} l^{2} u^{2} X_{\dot{\delta s \delta s n}}(n-1) \delta_{s}^{2} \\
& +\frac{\rho}{2} l^{2} u^{2} X_{\delta r \delta r n}(n-1) \delta_{r}^{2} \\
& -\sum H_{l} \sin \theta \\
& +\left(F_{x}\right)_{P}
\end{aligned}
$$

B. LATERAL FORCE

$$
\begin{aligned}
m(\dot{v}-w p+u r)= & \frac{\rho}{2} l^{4}\left[Y_{r} \dot{r}+Y_{p} \dot{p}\right] \\
& +\frac{\rho}{2} l^{4}\left[Y_{p q} p q+Y_{p|p|} p|p|\right] \\
& +\frac{\rho}{2} l^{3}\left[Y_{v} \dot{v}+Y_{w p} w p+Y_{v|r|} \frac{v}{|v|}\left|\left(v^{2}+w^{2}\right)^{\frac{1}{2}}\right||r|\right] \\
& +\frac{\rho}{2} l^{3}\left[Y_{r} u r+Y_{|r| \delta r} u|r| \delta r+Y_{p} u p\right] \\
& +\frac{\rho}{2} l^{3} Y_{r n}(n-1) u r \\
& +\frac{\rho}{2} l^{2}\left[Y_{u u} u^{2}+Y_{v} u v+Y_{v|\eta|} v \left\lvert\,\left(v^{2}+w^{2}\right)^{\left.\frac{1}{2} \right\rvert\,}\right.\right] \\
& +\frac{\rho}{2} l^{2} u^{2} Y_{s u b \delta r \delta r} \\
& +\frac{\rho}{2} l^{2} u^{2} Y_{\delta r n}(n-1) \delta r \\
& +\frac{\rho}{2} l^{2} Y_{v n}(n-1) u \cdot \\
& \left.+\frac{\rho}{2} l^{2} Y_{v|v| n}(n-1) v \right\rvert\,\left(v^{2}+w^{2}\right)^{\left.\frac{1}{2} \right\rvert\,} \\
& +\frac{\rho}{2} l^{2} Y_{w v} u v \\
& +\frac{\rho}{2} l^{2}\left(Y_{y}\right)_{v s} \frac{\sum v^{2}+w^{2}}{U}(-w) \sin \omega t \\
& \sin _{i n} \phi \cos \theta
\end{aligned}
$$

C. NORMAL FORCE

$$
\begin{aligned}
m(\dot{w}-u q+v p)= & \frac{\rho}{2} l^{4} Z_{q} \dot{q} \\
& +\frac{\rho}{2} l^{4}\left[Z_{r r} r^{2}+Z_{r p} r p\right] \\
& +\frac{\rho}{2} l^{3}\left[Z_{w} \dot{w}+Z_{w r} v r+Z_{v p} v p+\Delta Z_{v p} v p\right] \\
& +\frac{\rho}{2} l^{3}\left[Z_{q} u q+Z_{|q| \delta s} u|q| \delta s+Z_{w|q|} \frac{w}{|w|}\left|\left(v^{2}+w^{2}\right)^{\frac{1}{2}} \| q\right|\right] \\
& +\frac{\rho}{2} l^{3} Z_{q n}(n-1) u q \\
& +\frac{\rho}{2} l^{2}\left[Z_{u u^{\prime}} u^{2}+Z_{w} u w+Z_{w|w|} w \left\lvert\,\left(v^{2}+w^{2}\right)^{\left.\frac{1}{2} \right\rvert\,}\right.\right] \\
& +\frac{\rho}{2} l^{2}\left[\left.Z_{|w|} u| | w\left|+Z_{w w}\right| w\left(v^{2}+w^{2}\right)^{\frac{1}{2}} \right\rvert\, Z_{v v} v^{2}\right] \\
& +\frac{\rho}{2} l^{2}\left[Z_{\delta s} \delta s+Z_{\delta b} \delta b\right] \\
& +\frac{\rho}{2} l^{2}\left[Z_{w n}(n-1) u w+Z_{w|w| n}(n-1) w\left|\left(v^{2}+w^{2}\right)^{\frac{1}{2}}\right|\right] \\
& +\frac{\rho}{2} l^{2} u^{2} Z_{\delta s n}(n-1) \delta s \\
& +\frac{\rho}{2} l^{2}\left(F_{z}\right)_{v s} \frac{v^{2}+w^{2}}{U} v \sin \omega t \\
& +\sum H_{l}^{\prime} \cos \phi \cos \theta
\end{aligned}
$$

D. ROLLING MOMENT

$$
\begin{aligned}
I_{x} \dot{p}+\left(I_{z}-I_{y}\right) q r= & \frac{\rho}{2} l^{5}\left[K_{p} \dot{p}+K_{q r} q r+K_{r} \dot{r} K_{p|p|} p|p|\right] \\
& +\frac{\rho}{2} l^{4}\left[K_{p} u p+K_{r} u r+K_{v} \dot{r}+K_{w p} u p\right] \\
& +\frac{\rho}{2} l^{3}\left[K_{u u} u^{2}+K_{v} u v+K_{v|v|} v \left\lvert\,\left(v^{2}+w^{2}\right)^{\left.\frac{1}{2} \right\rvert\,}\right.\right] \\
& +\frac{\rho}{2} l^{3} K_{v w} \imath w \\
& +\frac{\rho}{2} l^{3} u^{2} K_{\delta r} \dot{d} r \\
& +B z_{B} \sin \phi \cos \theta
\end{aligned}
$$

E. PITCHING MOMENT

$$
\begin{aligned}
& I_{y} \dot{q}+\left(I_{x}-I_{z}\right) r p=\frac{\rho}{2} l^{5}\left[M_{q} \dot{q}+M_{r r} r^{2}+M_{r p} r p+\Delta M_{r p} r r\right] \\
& +\frac{\rho}{2} l^{4}\left[M_{q} u q+M_{|q| \delta s} u|q| \delta s+M M_{|w| q}\left|\left(r^{2}+w^{2}\right)^{\frac{1}{2}}\right| q\right] \\
& +\frac{\rho}{2} l^{4}\left[M_{w} \dot{w}+M_{v r} v r+M_{v p} \downarrow p\right] \\
& +\frac{\rho}{2} l^{4} M_{q n}(n-1) u q \\
& +\frac{\rho}{2} l^{3}\left[M M_{u u^{\prime}} u^{2}+M M_{w} u w+M H_{w|w|} w\left|\left(v^{2}+w^{2}\right)^{\frac{1}{2}}\right|\right] \\
& +\frac{\rho}{2} l^{3}\left[M_{|w|} u|w|+M_{w w}\left|w\left(v^{2}+w^{2}\right)^{\frac{1}{2}}\right|+M_{w} v^{2}\right] \\
& +\frac{\rho}{2} l^{3}\left[M_{\delta s} \delta s+M_{\delta b} \delta b\right] \\
& +\frac{\rho}{2} l^{3}: M_{w n}(n-1) u w \\
& +\frac{\rho}{2} l^{3} M_{w|w| n}(n-1) w\left|\left(v^{2}+w^{2}\right)^{\frac{1}{2}}\right| \\
& +\frac{\rho}{2} l^{3} u^{2} M_{\delta s n}(n-1) \delta s \\
& +B z_{B} \sin \theta \\
& +\sum H_{i} x_{t i} \cos \phi \cos \theta
\end{aligned}
$$

F. IAIIING MOMENI

$$
\begin{aligned}
& I_{z} i+\left(I_{y}-I_{x}\right) p q=\frac{\rho}{2} l^{5}\left[\mu_{r} \dot{r}+\lambda_{r q} P^{\prime} q+\lambda_{r} \dot{r}\right] \\
& +\frac{\rho}{2} l^{4}\left[N_{r} u r+\Lambda_{|r| \delta r} r|r| \sigma r+N_{|r| r} \left\lvert\,\left(r^{2}+n^{2}\right)^{\left.\frac{1}{2} \right\rvert\, r}\right.\right] \\
& +\frac{\rho}{2} l^{4}\left[N_{p} u p+N_{v} \dot{v}+N_{r p} u p\right] \\
& +\frac{\rho}{2} l^{4} \lambda_{r n}(n-1) t u \\
& +\frac{\rho}{2} l^{3}\left[\left.N_{u u u^{\prime}} u^{2}+N_{v} u v+N_{v|v|} \cdot \|\left(v^{2}+u^{2}\right)^{\frac{1}{2}} \right\rvert\,\right] \\
& +\frac{\rho}{2} l^{3} u^{2} N_{\delta r} \delta r \\
& +\frac{\rho}{2} l^{3} u^{2} N_{\delta r n}(n-1) \delta r \\
& +\frac{\rho}{2} l^{3} N_{v n}(n-1) u v \\
& \left.+\frac{\rho}{2} l^{3} \lambda_{v w_{n} n}(n-1) 川\left(v^{2}+w^{2}\right)^{\frac{1}{2}} \right\rvert\, \\
& +\frac{\rho}{2} l^{3} N_{w, ~} \cdot v \\
& +\sum H_{i} r_{t i} \sin \phi \cos \theta
\end{aligned}
$$

G. AUXILARY EQUATIONS

$$
\begin{gathered}
\dot{\phi}=p+\dot{\psi} \sin \theta \\
\dot{\theta}=\frac{q-\dot{\psi} \cos \theta \sin \phi}{\cos \phi} \\
\dot{\psi}=\frac{r+\dot{\theta} \sin \phi}{\cos \phi \cos \theta}
\end{gathered}
$$

$\dot{x}_{0}=u \cos \theta \cos \psi+v(\sin \phi \sin \theta \cos \psi-\cos \phi \sin \psi)$
$+w(\sin \phi \sin \psi+\cos \phi \sin \theta \cos \psi)$

$$
\begin{aligned}
\dot{y}_{0}= & u \cos \theta \sin \psi+v(\cos \phi \cos \psi+\sin \phi \sin \theta \sin \psi) \\
& +w(\cos \phi \sin \theta \sin \psi-\sin \phi \cos \psi)
\end{aligned}
$$

$$
\dot{z}_{0}=-u \sin \theta+v \cos \theta \sin \phi+w \cos \theta \cos \phi
$$

$$
\left(F_{x}\right)_{P}=\frac{\rho}{2} l^{2} u^{2}\left[a_{1}+a_{2} n+a_{3} n^{2}\right]
$$

APPENDIX D. SIMIULATION PIROGRAM FOR LINEARIZED

VERTICAL EQUATIONS OF MOTION

```
is
%
*
*
TITLE SUBMARINE EQUATIONS FOR THE VERTICAL PLANE
*
* AXIAL SPEED
CONST U=8.445
INITIAL
    DS=0.0
    DB=0.0
DERIVATIVE
    DB=0.0*STEP(0)
    DS=0.0;STEP(0)
    THETA=INTGRL(0.08726,Q)
    DEPTH = INTGRL(.0,ZDOT)
    Q=INTGRL(.0,QDOT)
    ZDOT=INTGRL(-0.736, ZDDOT)
    Y1=-1.728E-3*U*ZDDOT
    Y4=-0.706%U%Q
    Y5=(0.0128-(1.728E-3)*U*U)*THETA
    Y2=-6.667E-4}\because\textrm{U}\because\textrm{U}\because\textrm{EDS
    Y3=-3.873E-4%U\divU%DB
    ZDDOT=Y1+Y2+Y3+Y4+Y5
    YO=1.884E-5%U:ZZDOT
    Y9=-6.365E-3*U:Q
    Y6=3.193E-6}\div\textrm{U}\div\textrm{U}\div\textrm{DB
    Y7=-1.465E-5%U\divU%DS
    Y8=((1.884E-5)}\because(1%\textrm{U}-2.522\textrm{E}-3)%THET
    QDOT=Y0+Y8+Y6+Y7+Y9
    DEP=INTGRL(.0,ZDOT)
CONTROL FINTIM=360
PRINT 1.,THETA,DEPTH,ZDOT
SAVE 0.1,W,ZDOT,THETA,DEP
GRAPH(DE=TEK6 18)TIME ,THETA, DEP
LABEL INITIAL CONDITION RESPONSE IN. PITCH=5 DEG. U=5 KTS.
GRAPH(DE=TEK618)TIME,ZDOT
LABEL INITIAL CONDITION RESPONSE IN. PITCH=5 DEG. U=5 KTS.
```


APPENDIX E. SIMULATION PROGRAM FOR LINEARIZED

 IIORIZONTAL EQUATIONS OF MOTION

 IIORIZONTAL EQUATIONS OF MOTION}

```
* THIS PROGRAM SIMULATES THE LINEARIZED SUBMARINE EQUATIONS
* IN THE HORIZONTAL PLANE.
*
*
is
TITLE SUBMARINE EQUATIONS FOR THE HORIZONTAL PLANE
is
* AXIAL SPEED
CONST U=30.4
INITIAL
    DR=0.0
DERIVATIVE
    Y1=1.89*RDOT
    Y2=-6.3*PDOT
    Y3=-0.291%U}\div\textrm{R
    Y4=-0.035*U%P
    Y5=-2.563E-3:U\becauseV
    Y6=7.568E-4%U%U*DR
    VDOT=Y1+Y2+Y3+Y4+Y5+Y6
    Y7=-0.679*RDOT
    Y8=-0.0584%VDOT
    Y9=-9.347E-3%U*R
    Y10=-8.179E-3*U*P
    Y11=-3.942E-4*U*V
    Y12=3.942E-5%U%U%DR
    Y13=0. 236%PHI
    PDOT=Y7+Y8+Y9+Y10+Y11+Y12-Y13
    Y14=-6.553E-3%PDOT
    Y15=6.767E-4%VDOT
    Y16=-6.767E-3*U*R
    Y17=-4.511E-6%U*P
    Y18=-4.076E-5%U:%V
    Y19=-1.631E-5*U%U*DR
    RDOT=Y14+Y15+Y16+Y17+Y18+Y19
    P=INTGRL(.0,PDOT)
    V=INTGRL(.0,VDOT)
    R=INTGRL(.0,RDOT)
* PHI=INTGRL(0.43633,P)
    PHI=INTGRL(0.0,P)
    XI=INTGRL(.0,R)
DYNAMIC
    IF(TIME.GE. 10) DR = 0.611
    IF(TIME.GE.40) DR = -0.611
    IF(TIME.GE.70) DR = 0.0
    DRDEG = DR*57.296
    ROLDEG= PHI*57.296
    YAWDEG= XI*57.296
CONTROL FINTIM=360
```

PRINT 1.,V,YAWDEG,ROLDEG
SAVE 0.1,V,YAWDEG,ROLDEG, DRDEG
GRAPH(DE=TEK618)TIME, YAWDEG, ROLDEG
LABEL FORCED RESPONSE TO 35 DEG. RUDDER $\mathrm{U}=18 \mathrm{KTS}$.

APPENDIX F. SIMULATION PROGRAMFOR TIIE COMIPENSATED

SYSTEM IN VERTICAL MOTION

```
* THIS PROGRAM SIMULATES THE COMPENSATED SUBMARINE MOTIONS
* IN THE VERTICAL PLANE.
```

is
*
*
TITLE SUBMARINE SIMULATION
PARAM K1 $=0.015$
PARAM K2 $=2.0$
PARAM UC $=10.4$
PARAM ZOR= 100.
PARAM POR= 0.0
*
DERIVATIVE
PITCH=INTGRL(0.0,Q)
DEPTH $=$ INTGRL(. 0,2 DOT)
Q=INTGRL(.0,QDOT)
ZDOT=INTGRL(-0.736, ZDDOT)
Y1=-1.728E-3*U*ZDOT
$\mathrm{Y} 4=-0.706 * \mathrm{U} \div \mathrm{Q}$
$\mathrm{Y} 5=(0.0128-(1.728 \mathrm{E}-3) * \mathrm{U} \div \mathrm{U}) * \mathrm{PITCH}$
Y $2=-6.667 \mathrm{E}-4 \% \mathrm{U} * \mathrm{U} \div \mathrm{DS}$
$Y 3=-3.873 E-4 \% U * U \div D B$
ZDDOT $=\mathrm{Y} 1+\mathrm{Y} 2+\mathrm{Y} 3+\mathrm{Y} 4+\mathrm{Y} 5$
$\mathrm{Y} 0=1.884 \mathrm{E}-5 \% \mathrm{U} \div \mathrm{ZDOT}$
$\mathrm{Y} 9=-6.365 \mathrm{E}-3 * \mathrm{U} \div \mathrm{Q}$
Y6=3. 193E-6 $\div \mathrm{U} \div \mathrm{U} \div \mathrm{DB}$
$\mathrm{Y} 7=-1.465 \mathrm{E}-5 * \mathrm{U} \div \mathrm{U} \div \mathrm{DS}$
$\mathrm{Y} 8=((1.884 \mathrm{E}-5) * \mathrm{U} * \mathrm{U}-2.522 \mathrm{E}-3) * \mathrm{PITCH}$
QDOT $=Y 0+Y 8+Y 6+Y 7+Y 9$
DEP=INTGRL(. 0,ZDOT)
ZER = ZOR - DEPTH
PER = POR - PITCH
ZERR= LIMIT(-LIM,LIM,ZER)
PERR= LIMIT(-LIM,LIM,PER)
DYNAMIC
IF (UC. LT. 15.) LIM $=35$.
$\operatorname{IF}($ UC. GE. 15.) $\operatorname{LIM}=25$
IF(UC.GE. 25.) LIM $=15$.
\therefore COMPENSATOR GC11
C11 $=-$ K $1 * 2 E R R$
$\mathrm{C} 12=\operatorname{LEDLAG}(0 ., 1.0,0.1, \mathrm{C} 11)$
DB $=\operatorname{REALPL}(0 ., .667, \mathrm{C} 12)$
*COMPENSATOR GC22
$\mathrm{C} 21=-\mathrm{K} 2 * \mathrm{PERR}$
DS $=\operatorname{REALPL}(0 ., .667, \mathrm{C} 21)$
DSDEG $=57.296 *$ DS
DBDEG $=57.296 *$ DB

FITDEG $=57.296 *$ PITCH
CONTROL FINTIM=360
SAVE 0.1,DEPTH, ZDOT,PITDEG, DSDEG,DBDEG
FRINT 1., PITDEG,DEPTH, ZDOT, DSDEG,DBDEG
GRAPH (DE=TEK618)TIME, PITCH, DEPTH
LABEL 100 FT. DEPTH CHANGE $\mathrm{U}=6 \mathrm{KTS}$. GRAPH (DE=TEK618) DBDEG, DSDEG LABEL 100 FT. DEPTH CHANGE $U=6 \mathrm{kTS}$.

APPENDIX G. SIMULATION PROGRAM FOR TIIE COMPENSATED

SISTEMIN HORIZONTAL MOTION

; THIS PROGRAM SIMULATES THE COMPENSATED SUBMARINE MOTIONS * IN THE HORIZONTAL PLANE

\therefore
$\%$
$\%$
TITLE SUBMARINE SIMULATION FOR THE HORIZONTAL PLANE \%
PARAM K1 $=1.00$
PARAM LIM $=0.065$
PARAM U $=30.4$
PARAM ORYAW=0.2618
DERIVATIVE

$$
\mathrm{Y} 1=1.89 \div \mathrm{RDOT}
$$

$\mathrm{Y} 2=-6.3 * \mathrm{PDOT}$
$\mathrm{Y} 3=-0.291 \div \mathrm{U} \% \mathrm{R}$
$Y 4=-0.035 \div U \div P$
$\mathrm{Y} 5=-2.563 \mathrm{E}-3 * \mathrm{U} \div \mathrm{V}$
$\mathrm{Y} 6=7.568 \mathrm{E}, 4 \div \mathrm{U} \div \mathrm{U} \div \mathrm{DR}$
VDOT $=\mathrm{Y} 1+\mathrm{Y} 2+\mathrm{Y} 3+\mathrm{Y} 4+\mathrm{Y} 5+\mathrm{Y} 6$
$\mathrm{Y} 7=-0.679 \div$ RDOT
$\mathrm{Y} 8=-0.0584 \div \mathrm{VDDOT}$
$\mathrm{Y} 9=-9.347 \mathrm{E}-3 \div \mathrm{U} \div \mathrm{R}$
$Y 10=-8.179 \mathrm{E}-3 \div \mathrm{U} \div \mathrm{P}$
Y11 $=-3.942 \mathrm{E}-4 \div \mathrm{U} \div \mathrm{V}$
Y12 $=3.942 \mathrm{E}-5 \div \mathrm{U} \div \mathrm{U} \div \mathrm{DR}$
Y13 $=0.236 \%$ PHI
$\mathrm{FDOT}=\mathrm{Y} 7+Y 8+\mathrm{Y} 9+\mathrm{Y} 10+\mathrm{Y} 11+\mathrm{Y} 12-\mathrm{Y} 13$
Y14 $=-6.553 \mathrm{E}-3 *$ PDOT
Y15=6.767E-4\%VDOT
$\mathrm{Y} 16=-6.767 \mathrm{E}-3 \div \mathrm{U} \div \mathrm{R}$
$Y 17=-4.511 \mathrm{E}-6 \div \mathrm{U} \div \mathrm{P}$
$Y 18=-4.076 E-5 \%(3 \div V$
$\mathrm{Y} 19=-1.631 \mathrm{E}-5 \div \mathrm{U} \div \mathrm{U} \div \mathrm{DR}$
RDOT $=Y 14+Y 15+Y 16+Y 17+Y 18+Y 19$
$\mathrm{P}=\mathrm{INTGRL}(.0, \mathrm{PDOT})$
$\mathrm{V}=$ INTGRL (0,0, VDOT $)$
$\mathrm{R}=\operatorname{INTGRL}(.0, \operatorname{RDOT})$
$\mathrm{PHI}=\mathrm{INTGRL}(0.0, \mathrm{P})$
XI=INTGRL($0,0, R)$
DY゙NAMIC
IF (U. LT. 20.3) LIM=0.070
IF (U.GE. 20.3) LIM=0.050
IF (U.GE.30.4) LIM=0.035
ERR = ORYAW - XI
LERR $=$ LIMIT(-LIM,LIM,ERR)
*COMPENSATOR GC11
$\mathrm{LC} 1 \mathrm{~A}=-\mathrm{K} 1 * \mathrm{LERR}$
$\operatorname{LC} 1 B=\operatorname{LEDLAG}(0 ., 100 ., 10 ., \operatorname{LC} 1 A)$
$\mathrm{DR}=\operatorname{REALPL}(0 ., .667, \mathrm{LC} 1 \mathrm{~B})$
DRDEG $=$ DR*57.296
ROLDEG $=$ PHI $\because 57.296$
YAKIEG $=$ XI $\div 57.296$
CONTROL FINTIII=360
PRINT 1., V, YAKDEG, DRDEG,ROLDEG
SAVE $0.1, V, Y A N D E G$, ROLDEG, DRDEG
GRAPH (DE=TEK618) TIME , YANDEG, ROLDEG
LABEL 15 DEGREE COURSE CHANGE U=18 KTS.
GRAFH(DE=TEK618)TIME, DRDEG
LABEL RUDDER RESPONSE TO 15 DEG. COURSE CHANGE U=18 KTS.

APPENIIXII. SINIULATION PROGRANIFOR NON-LINEAR

EQUATIONS OF MOTION

```
<THIS PROGRAM SIMULATES NON-LINEAR EQUATIONS OF MOTION IN SIX DEGREES
%OF FREEDOM FOR A SUBHERGED SUBMARINE
i
TITLE NONLINEAR SIX DEGREE OF FREEDOM SUBMARINE SIMULATION
PARAII UC = 18.58
*
\thereforeBALLAST TANKS CONTAINS FOR DIFFERENT AXIAL SPEEDS
*
*FOR 5 KTS
*ARAM AT = -0.800E-5
*ARAII FT = 0.800E-5
*ARAM AU = 1.400E-5
*FOR 6 KTS
\thereforeARAM AT = -1.03F,-5
*ARAi1 FT = 1.03E-5
ARAB AU = 2.500E-5
#FOR 8 KTS
\thereforeARAM AT = -1.85E-5
\therefore\triangleRAM FT = 1.85E-5
*ARAM AU = 4.50E-5
\thereforeFOR 9 KTS
\thereforeARAM AT = -2.35E-5
#ARAM FT = 2.35E-5
*RAM AU = 5.70E-5
#FOR 10 KTS
PARAII AT = -2.85E-5
PARAM FT = 2.85E-5
PARAM AU = 7.00E-5
\thereforeFOR 12KTS
*ARAII AT = -4.138E-5
*ARAM FT = 4.138E-5
*ARAM AU = 9.77E-5
*FOR 18FTS
*ARAII AT = -8.400E-5
*ARAII FT = 8.400E-5
*ARAM AU = 1.80E-4
*FOR 25kTS
*ARAM AT = -9.080E-5
*ARAM FT = 9.080E-5
ARAM AU = 2.100E-4
*
\thereforePRECALCULATED COFACTORS
*
PARAM DEL=. 18901E-16, COFAA =.212502E-14, COFAB = 0.0, COFAC = 0.0
PARAM COFAD = 0.0, COFAE = 0. 0, COFAF = 0.0, COFBA = 0.0
PARAM COFBB=.153152E-14, COFBC=0.0, COFBD=-.186106E-10, COFBE = 0.0
PARAM COFBF=.17543E-12, COFCA=0.0, COFCB = 0.0, COFCC =.11665E-14
```

FARAM COFCD $=0.0, \quad$ COFCE $=-.999506 E-13$, COFCF $=0.0, \quad$ COFDA $=0.0$ PARAM COFDB $=-.905797 E-16, C O F D C=0.0, \quad$ COFDD $=.294191 E-11, \quad$ COFDE $=0.0$ PARAII COFDF $=-.224359 \mathrm{E}-13$, COFEA $=0.0, \quad$ COFEB $=0.0, \quad$ COFEC $=-.58035 \mathrm{E}-18$ PARAM COFED $=0.0, \quad$ COFEE $=19562 E-13, \quad$ COFEF $=0.0, \quad$ COFFA $=0.0$ PARAM COFFB $=.162929 E-17, \operatorname{COFFC}=0.0, \quad$ COFFD $=-.318591 E-13, \quad$ COFFE $=0.0$ PARAII COFFF $=.179521 \mathrm{E}-13$
*
\#HYDRODYNAIIIC COEFFICIENTS AND SUBMARINE CHARACTERISTICS *
PARAM LC $=415.0$, ML $=.0087445, \mathrm{~A} 1=-0.001, \mathrm{~A} 2=-.00095, \mathrm{~A} 3=.00195$
FARAM IX=7.3114E-6, IY=5.6867E-4, IZ $=5.6867 \mathrm{E}-4$
PARAM XUDOT $=-.00015, \mathrm{XVR}=.011, \mathrm{XWQ}=-.0075, \mathrm{XVV}=.0065, \mathrm{XWW}=.002$
PARAM XDRDR $=-.0028, X D S D S=-.0025, X D B D B=-.0026, X Q Q=-.0002, X R R=-.00009$
PARAM XRP $=.00025$
PARAM YVDOT =-.011, YWP = . 0075, YV =-.021, Y1V1V=-.06, YR = . 003
PARAM YV1R1 $=-.0073$, YP $=-.0007$, YRDOT $=.00009$, YPDOT $=-.0003$, YDR $=.0062$
PARAM YPQ $=.0002, \quad$ YWV $=-.065$
FARAM ZWDOT $=-.0075, \quad Z V P=-.007, \quad Z S=-.0001, \quad Z W=-.011, \quad 2 W 1 W 1=-.03$
PARAM ZVV $=.065, \quad Z Q=-.0045, Z W 1 Q 1=-.006, \quad Z V R=-.008, \quad$ ZRR $=-.0015$
PARAM ZDS $=-.005, \quad Z D B=-.0025, Z Q D O T=-.0002, Z 1 W 1=0.0, Z W W=0.0$
PARAII ZRP $=-.0009$
PARAM KPDOT $=-3 . E-6, \quad K Q R=-.0001, K R D O T=-7 . E-6, K 1 P 1 P=-8 . E-7, K V=-.0007$
PARAII K1V1V $=-.0009, \quad \mathrm{KP}=-3.5 \mathrm{E}-5, \mathrm{KR}=-4 . \mathrm{E}-5, \mathrm{KVDOT}=-.00025, \mathrm{KVW}=.0035$
FARAII $\mathrm{KDR}=7 . \mathrm{E}-5, \quad \mathrm{KWP}=2.5 \mathrm{E}-4$
PARAI MODOT $=-.0004, \quad \operatorname{MRP}=.00015, \quad \mathrm{MS}=4 . \mathrm{E}-5, \quad$ MW $=.003, \mathrm{M} W 1 \mathrm{~W}=-.005$
PARAM MVV $=.015, \quad M Q=-.0025, M 1 W 1 Q=-.002, \quad M V R=-.004, M R R=-.00055$
PARAM MWDOT $=-.0002$, MDS $=-.0025$, MDB $=.0005, \mathrm{M} 1 \mathrm{~W} 1=0.0$, MVF $=.0009$
PARAM NRDOT $=-5 . E-4, \quad N P Q=-4 . E-4, N P D O T=-7 . E-6, \quad N V=-.0075, N 1 V 1 V=.014$
PARAM NR $=-.003$, N1V1R $=-.0045, N P=-2 . E-6, N V D O T=.0003$, NDR $=-.003$
PARAII NWV $=.015, \quad$ NWP $=-.0002$
PARAM BZB $=1.011413 \mathrm{E}-3$
INCON YADOT $=0.0$, RODOT $=0.0$, PIDOT $=0.0$
$I N C O N D S=0.0, D B=0.0, D R=0.0$
CONTRL FINTIM=360., DELT $=.01$, DELS $=.5$
PRINT 1., V, YAWGRA, ROLGRA, DEFTH, PITGRA
*
INITIAL.
$\mathrm{LC} 2=\mathrm{LC} \div \div 2$
$\mathrm{I} 7 \mathrm{X}=\mathrm{I} \mathrm{Z}-\mathrm{IX}$
$I Y X=I Y-I X$
$I Z Y=I Z-I Y$
\therefore

```
DYNAMIC
*
* IF(TIME.GE. 10) \(\operatorname{DR}=0.611\)
* IF(TIME.GE. 10) \(D B=0.611\)
* IF (TIME.GE.40) DR \(=-0.611\)
* IF (TIME.GE.40) \(\mathrm{DB}=-0.611\)
\(\%\) IF(TIME.GE. 70) UR \(=0.0\)
\(\therefore \quad\) IF (TIME.GE. 70) \(D B=0.0\)
\(\therefore\)
```

DERIVATIVE
;
*PRECALCULATION FOR EQUATIONS OF MOTION
\therefore
PA1 $=X D R D R * U * U * D R * D R / L C$

```
PA2 = XDSDS*U*U*DS*DS /LC
PA3 = XDBDB*U*U*DB*DB/LC
PB = YDR%U*U*DR/LC
PC2 = ZDS %U:U%DS /LC
PC3 = ZDB*U*U*DB/LC
PD = KDR*U*U:DR/LC2
PE2 = MDS: =U %U*DS/LC2
PE3 = MDB:U}\div\textrm{U}\div\textrm{DB}/\textrm{LC}
PF = NDR*U*U:DR/LC2
PA = PA1 + PA2 + PA3
PC = PC2 + PC3
PE = PE2 + PE3
ABV = ABS(V)
ABW = ABS(W)
ABP}=ABS(P
ABQ = ABS(Q)
ABR = ABS(R)
VVINW= V}\becauseV+W+W:
AVW = SQRT(VVWW)
ABWP=FCNSW(W,-1.,0.,1.)
ABVP=FCNSW(V,-1.,0.,1.)
SA1 =+LC*(XQQ*Q**2 + XRR*R*~2 + XRP*R*P
```



```
SA3 =+(XVV*V**2 + XWW*W**2)/LC - SIN(PITCH)*(AT+FT+AU)
SA4 =+(A1*U**2 + A 2%U*UC + A 3*UC**2)/LC
SB1 =+LC*YPQ*P*Q
SB2 =+(YWP*W%P + YV1R1*ABR*AVW*ABVP +ML*W*P - ML*U*R)
SB3 =+(YWV*W%V + Y1V1V*AVW%V)/LC + SIN(ROLL) %COS(PITCH)}%(AT+FT+AU
SB4 =(YR:%R+YP*P +YV苜V/LC)}\because
SC1 = LC }\because\textrm{R}\div(\textrm{ZRR}\div\textrm{R}+\textrm{ZRP}\div\textrm{P}
SC2 =+(ZVP*V*P + ZVR*V*R + ZW1Q1*ABQ*AVW*ABWP + ML*U*Q - MI;PrV)
SC3 =+(ZWW*W%*2 + ZVV*V**2 + ZW1W1*W%AVW + U*Z1W1%ABW + U*U*ZS )/LC
SC4 = ZQ }\because\textrm{U}\because\textrm{Q}+2W%U\divW/LC + COS(PITCH)*COS(ROLL) %(AT+FT+AU)
SD1 =+(KQR*Q*R + K1P1P*ABP*P) - IZY*Q }\because
SD2 = (KWP*W*P-BZB*SIN(ROLL)*COS(PITCH))/LC
SD3 =+(K1V1V*V*AVW + KVW*V*W + KS*U**2)/LC2
SD4 = ((KP*P + KR*R)/LC + KV;V/LC2) %U
SE1 = (MRP*P + MRR*R + IZX*P)}\because
SE2 = ((MVR*R + MVP*P)*V + M1W1Q*AVW*Q - BZB*SIN(PITCH))/LC
SE3 =(MVV*V**2 +MWW*W*-%2 + M1W1W*AVW%W +M1W1*U*AVW + U**2*MS)/LC2
SE4 = MQ:U*Q/LC + (MW*U*W - (175. 5*FT-219. 5%AT)*COS(PITCH)*. . .
COS(ROLL))/LC2
SF1 = (NPQ-IYX)*P%Q
SF2 =+(NWP*W*P + N1V1R*AVW*R)/LC
SF3 = (NWV*W + N1V1V*AVW)*V/LC2
SF4 = (NP*P+NR*R)*U/LC+(NV:U*V+(175.5*FT-219.5*AT)}\because\textrm{COS}(PITCH)*..
SIN(ROLL))/LC2
SA}=SA1+SA2+SA3+SA4
SB}=\textrm{SB}1+\textrm{SB}2+\textrm{SB}3+\textrm{SB}
SC}=\textrm{SC}1+\textrm{SC}2+\textrm{SC}3+\textrm{SC}
SD = SD1 + SD2 + SD3 + SD4
SE = SE1 + SE2 + SE3 + SE4
SF}=\textrm{SF}1+\textrm{SF}2+\textrm{SF}3+\textrm{SF}
ZA = SA + PA
ZB}=SB+P
ZC}=SC+P
```

```
ZD = SD + PD
ZE = SE + PE
ZF = SF + IF
```

\therefore
$\therefore E Q U A T I O N S$ OF MOTION
;
UDOT $=($ COFAA $\because Z A+C O F A B * Z B+C O F A C * Z C+C O F A D \because Z D+C O F A E ; Z E+C O F A F \because Z F) / D F I_{1}$
$\mathrm{VDOT}=(\mathrm{COFBA} \div \mathrm{ZA}+\mathrm{COFBB} \div \mathrm{ZB}+\mathrm{COFBC} \div \mathrm{ZC}+\mathrm{COFBD} \div \mathrm{ZD}+\mathrm{COFBE} \div 2 \mathrm{E}+\mathrm{COFBF} \div \mathrm{ZF}) / \mathrm{DEL}$
$W D O T=(C O F C A \div Z A+C O F C B * Z B+C O F C C \div 2 C+C O F C D \div Z D+C O F C E * 2 E+C O F C F \div Z F) / D E L$
PDOT $=($ COFD $A \div Z A+C O F D B * Z B+C O F D C * Z C+C O F D D * Z D+C O F D E * 2 E+C O F D F * Z F) / D E I$,
QDOT $=($ COFEA $\div \mathrm{ZA}+\mathrm{COFEB} \div \mathrm{ZB}+\mathrm{COFEC} \div \mathrm{ZC}+\mathrm{COFED} \div \mathrm{ZD}+\mathrm{COFEE} \div \mathrm{ZE}+\mathrm{COFEF} \div \mathrm{ZF}) / \mathrm{DEI}$,
RDOT $=($ COFFA $\div 2 A+C O F F B \div Z B+C O F F C \div Z C+C O F F D \div Z D+C O F F E \div Z E+C O F F F \div Z F) / D E L$
is
\therefore AUXILARY EQUATIONS
*

PIDOT $=Q \div \operatorname{COS}($ ROLL $)-R \div \operatorname{SIN}($ ROLL $)$
YADOT $=(\mathrm{R} \div \operatorname{COS}($ ROLL $)+\mathrm{Q} \div \mathrm{SIN}($ ROLL $)) / \mathrm{COS}($ PITCH $)$
RODOT $=P+Y A D O T \div S I N(P I T C H)$
$\mathrm{U}=\mathrm{INTGRL}(\mathrm{UC}, \mathrm{UDOT})$
$\mathrm{V}=\operatorname{INTGRL}(0 ., V D O T)$
$W=\operatorname{INTGRL}(0 ., W D O T)$
$P=\operatorname{INTGRL}(0$, PDOT $)$
$\mathrm{Q}=\operatorname{INTGRI}(0 .$, QDOT $)$
$\mathrm{R}=\operatorname{INTGRL}(0 .$, RDOT $)$
DEPTH $=$ INTGRL (0., ZODOT)
\therefore ROLL $=\operatorname{INTGRL}(0.43633$, RODOT $)$
ROLL $=$ INTGRL(0.0, RODOT $)$
PITCH $=$ INTGRL(0.7854, PIDOT $)$
PITCH $=\operatorname{INTGRL}(0.0$, PIDOT $)$
YAW = INTGRL(0.,YADOT)
DBGRA $=$ DB $\div 57.296$
LISGRA $=$ DS $\div 57.296$
DRGRA $=$ DR $\div 57.296$
PITGRA $=$ PITCH $\div 57.296$
ROLGRA $=$ ROI, $\div 57.296$
YAWGRA $=Y A W \div 57.296$
SAVE O. 1,V,DEPTH,YAW, PITGRA, ROLL, ZODOT
GRAPH (DE=TFK618)TIME , DEPTH, ZODOT, PITGRA
LABEL NI. PITCHO.04RAD. U $=18.58 \mathrm{FT} / \mathrm{SEC}$. NO PLANES
GRAFH(DE=TEK618)TIME ,ROLL, YAW,V
LABEL INI. ROLL=0. 1 RAD. U $=18.580 \mathrm{FT} / \mathrm{SEC}$. NO PLANES

APPENDIX I. COMIPENSATED NON-LINEAR MIODEL

```
*
*THIS PROGRAM SIMULATES THE COMPENSATED NON-LINEAR SUBMARINE IN SIX
\thereforeDEGREES OF FREEDOM
is
TITLE COMPENSATED NONLINEAR SIX DEGREE OF FREEDOM SUBMARINE SIMULATION
PARAM KH = 1.00
PARAM K1 =0.015
PARAM K2 = 2.0
PARAM UC = 18.69
*ARAM ORYAW=1.5726
PARAM ORYAW=0.2618
\thereforePARAM ZOR=10.
PARAM POR=0.0
*
\thereforeBALLAST TANKS CONTAINS FOR DIFFERENT AXIAL SPEEDS
is
*FOR 5 KTS
ARAM AT = -0. 800E-5
*ARAM FT = 0.800E-5
\thereforeARAM AU = 1.400E-5
\becauseFOR 6 KTS
#ARAM AT = -1.030E-5
*ARAM FT = 1.030E-5
\thereforeARAM AU = 2.500E-5
\thereforeFOR 8 KTS
\thereforeARAM AT =-1.85E-5
\thereforeARAM FT = 1.85E-5
*ARAM AU = 4.5E-5
\thereforeFOR 9 KTS
PARAM AT = - 2.35E-5
PARAM FT = 2.35E-5
FARAH AU = 5.7E-5
\thereforeFOR 12KTS
*ARAM AT = -4. 138E-5
*ARAM FT = 4.138E-5
\thereforeARAM AU =9.77E-5
\thereforeFOR 18KTS
*ARAM AT = -8.400E-5
\thereforeARAM FT }=8.400E-
\thereforeARAM AU = 1.80E-4
\thereforeFOR 25KTS
*ARAM AT = -9.080E-5
*ARAl! FT = 9.080E-5
*ARAM AU = 2. 100E-4
%
*PRECALCULATED COFACTORS
*
PARAM DEL=. 18901E-16, COFAA=.212502E-14, COFAB = 0.0, COFAC = 0.0
PARAM COFAD = 0.0, COFAE = 0.0, COFAF = 0.0, COFBA = 0.0
PARAM COFBB=.153152E-14, COFBC=0.0, COFBD=-. 186106E-10, COFBE = 0.0
```



```
HERR= LIMIT(-LIMHOR,LIMHOR,HER)
is
DERIVATIVE
*
*PRECALCULATION FOR EQUATIONS OF MOTION
*
PA1 = XDRDR*U*U*DR*DR/LC
PA2 = XDSDS*U*U*DS*DS/LC
PA3 = XDBDB*U*U*DB*DB/LC
PB = YDR*U*U\divDR/LC
PC2 = 2DS*U*U*DS/LC
PC3 = 2DB*U*U\divDB/LC
PD = KDR*U*U%DR/LC2
PE2 = MDS*U*U\divDS/LC2
PE3 = MDB*U*U*DB/LC2
PF = NDR*U*U*DR/LC2
PA = PA1 + PA2 + PA3
PC = PC2 + PC3
PE = PE2 + PE3
ABV = ABS(V)
ABW = ABS(W)
ABP = ABS(P)
ABQ = ABS(Q)
ABR = ABS(R)
VVWH}= V\becauseVV + W%r
AVW = SQRT(VVWW)
ABNP=FCNSW(W,-1. ,0.,1.)
ABVP=FCNSW(V,-1.,0.,1.)
SA1 =+LC*(XQQ*Q*r*2 + XRR*R*r*2 + XRP*R*P)
SA2 =+(ML*V*R + XVR*V*R + XWQ*W*Q -ML*W*Q)
SA3 =+(XVV苜**2 + XWW*W**2)/LC - SIN(PITCH)*(AT+FT+AU)
SA4 =+(A1*U**2 + A2*U*UC + A3*UC**2)/LC
SB1 =+LC*YPQ*P*Q
SB2 =+(YWP*W*P + YV1R1*ABR*AVW*ABVP +ML*W*P - ML*U*R)
SB3 =+(YWV*W*V + Y1V1V*AVW*V)/LC + SIN(ROLL)*COS(PITCH)*(AT+FT+AU)
SB4 =(YR*R +YP*P +YV*V/LC)*U
SC1 = LC*R* (ZRR*R + ZRP** )
SC2 =+( ZVP*V*FP + 2VR*V*R + ZW1Q1*ABQ*AVW%ABWP + ML*U*Q - MI*FP*V)
```



```
SC4 = ZQ*U*Q + ZW*U*W/LC + COS(PITCH)*COS(ROLL)*(AT+FT+AU )
SD1 =+(KQR*Q*R + K1P1P*ABP*P) - IZY*Q*R
SD2 = (KTVP*W*P-BZB*SIN(ROLL)*COS(PITCH))/LC
SD3 =+(K1V1V;V%AVW + KVW%V*N + KS*U*%2)/LC2
SD4 = ((KP*P + KR*R)/LC + KV*V/LC2)*U
SE1 = (MRP*P + MRR*R + IZX*P)*R
SE2 = ((MVR*R + MVP*P)*V + M1W1Q*AVW*Q - BZB*SIN(PITCH))/LC
SE3 =(MVV*V**2 + MWW*W*r%2 + M1W1W*AVW*W +M1W1*U*AVW + U* % 2*MS)/LC2
SE4 = MQ*U*Q/LC + (MW*U*W - (175.5*FT-219.5*AT)*COS(PITCII)*. . 
COS(ROLL))/LC2
SF1 = (NPQ-IYX)*P*Q
SF2 =+(NWP*W*P + N1V1R*AVW*R)/LC
SF3 = (NWV*W + N1V1V*AVW)*V/LC2
SF4 = (NP*P+NR*R)*U/LC+(NV*U*V+(175.5*FT-219.5*AT)*COS(PITCH)*...
SIN(ROLL))/LC2
SA = SA1 + SA2 + SA3 + SA4
SB}=\textrm{SB}1+\textrm{SB}2+\textrm{SB}3+SB
```

```
SC}=SC1+SC2+SC3+SC
SD = SD1 + SD2 + SD3 + SD4
SE = SE1 + SE2 + SE3 + SE4
SF}=\textrm{SF}1+\textrm{SF}2+\textrm{SF}3+\textrm{SF}
ZA = S\Lambda + PA
ZB}=SB+P
ZC}=SC+P
ZD = SD + PD
ZF = SE + PE
ZF = SF + PF
is
\thereforeEQUATIONS OF MOTION
*
UDOT =( COFA\Lambda*ZA+COFAB*ZB+COFAC*ZC+COFAD*ZD+COFAE*ZE+COFAF*ZF)/DEL
VDOT = (COFBA}\div2\Lambda+COFBB*ZB+COFBC*ZC+COFBD*ZD+COFBE*ZE+COFBF*ZF)/DEI,
KDOT = (COFCA*ZA+COFCB*ZB+COFCC*ZC+COFCD*ZD+COFCE*ZE+COFCF*ZF)/DEI
PDOT =(COFDA*ZA+COFDB*ZB+COFDC*ZC+COFDD*ZD+COFDE*ZE+COFDF*ZF)/DEL
QDOT =( COFEA }%\textrm{ZA}+\textrm{COFEB}\div2B+COFEC*ZC+COFED*ZD+COFEE*ZE+COFEF*ZF)/DEL
```



```
*
\thereforeAUXILARY EQUATIONS
*
    ZODOT =-U*SIN(PITCH)+V*COS(PITCH)*SIN(ROLL)+W*COS(PITCH)}\because\textrm{COS}(\mathrm{ ROLL )
PIDOT = Q:COS(ROLL) -R*SIN(ROLI,)
YADOT = (R*COS(ROLL)+Q*SIN(ROLL))}/\textrm{COS}(\textrm{PITCH}
RODOT = P+YADOT*SIN(PITCH)
U = INTGRL(UC,UDOT)
V = INIGRL(0, ,VDOT)
W = INTGRL(0.,WDOT)
P = INTGRL(0., PDOT)
Q = INTGRL(0.,QDOT)
R = INTGRL(0., RDOT)
DFPTII = INTGRL(0.0,ZODOT)
ROLL = INTGPL(0.0,RODOT)
FITCH = INTGRL(0.0,PIDOT)
YAW = INTGRL(0.,YADOT')
\thereforeCOMPENSATOR GC11
C11 = -K1%2ERR
C12 = I,FDI,AG(0.,1.0,0.1,C11)
DB = REALPL(0.,.667,C12)
*
\thereforeCOMPENSATOR GC22
C21 = -K2%PER
DS = REALPL(0.,.667,C21)
*
*COMPENSATOR GC
C1 = -K|%HERR
C2 = LEUI,\G(0.,100., 10.,C1)
LR = REALPL(0, ..667,C2)
is
DBDEG \(=\) DB \(\div 57.296\)
DSDEG \(=\) DS \(\div 57.296\)
IRRDEG \(=\) DR \(\div 57.296\)
PITDEG= PITCH \(\div 57.296\)
ROLDEG \(=\) ROLL \(\div 57.296\)
```

YAWDEG= YAW:57.296
SAVE 0.1,V,ZDOT,DEPTH,PITDEG,ROLDEG,YAWDEG,DRDEG,DSDEG,DBDEG GRAPH(DE=TEK618)TIME, ROLLDEG, YAWDEG,V
LABEL 15 DEGREE COURSE CHANGE $U=10 \mathrm{KTS}$.
\therefore GRAPH (DE=TEK618)TIME,PITDEG,DEPTH,ZDOT
\therefore LABEL 10 FEET DEPTH CHANGE $\mathrm{U}=10 \mathrm{KTS}$.

LIST OF REFERENCES

1. Richard. R. W., User's Guide NSRDC Digital Program for Simulating Submarine Motion, $\$ SRDC Report Nop-433-M-01, June 1971.
2. Thater, G. J., Modelling and Simulation of Dynamic Systems, Naval Postgraduate School, Monterey, C Λ, July 1988.
3. Drurev, H. L., Automatic Control of Submarine Depth, Pitch and Trim, MSEE Thesis, Naval Postgraduate School, Monterey, CA, September 1975.
4. Romero, E., Mathematical Models and Computer Solution for the Equations of Motion of Surface Ships and Submarines, MSEE Thesis, Naval Postgraduate School. Monterey, CA, June 1972.
5. I.B.M., Dynamic Simulation Language, 1987.
6. Nitsche V., and Luessow, K. J. C., Automatic Dcpth and Pith Control Systems for Submarines, MSEE Thesis, Naval Postgraduate School, CA, December 1976.
7. Thaler G. J., and Huang, J. Y., Steady State Decoupling and Design of Linear Multivariable Systems, Research Report Grant No. NGR 05-017-010. University of Santa Clara, Santa Clara, CA, June 1972-June 1974.
8. Kuo, B. C., Automatic Control Systems, University of Illinois, Champaign-Urbana, Illinois, 1982.

INITIAL DISTRIBUTION LIST

No. Copics

1. Defense Technical Information Center 2
Cameron Station
Alcxandria, VA 22304-6145
2. Library. Code 0142 2
Naval Postgraduate School
Montercy, CA 939ł3-5002
3. Department Chairman. Code 62 1
Xaval Postgraduate School
Monterey, CA 93943-5000
4. Professor George J. Thater. Code 62Tr 5
Niaval Postgraduate School
Monteres, CA 93943-5000
5. Professor Hal Titus, Code 62Ts 1
Niaral Posteraduate School
Monterey, CA 93943-5000
6. Naval Ship Research and Development Center 1
Amnapolis Laboratory
Annapolis, Maryland 21402
7. Department of the Navy 1
Naval Ship Rescarch and Development Center Code 1576
Bethesda, Maryland 2003-
8. Orhan Babaoglu 2
Cumhurivet Mahallesi
Boztepe Caddesi. 89
Trabzon, TLRKEY 61030
9. Deniz Kuvretleri Komutanligi 3
Personel Egitim Daire Baskanligi
Bakanliklar - Ankara, TLRKEY
10. Deniz Itarp Okulu 2
Ogretim Kurulu Baskanligi Tuzla - 1stanbul, ILRKEY
11. O. D. T. L. Kutuphanesi 1
Orta Dogu Teknik Universitesi Ankara, ILRREY
12. Hacettepe Liniversitesi Kutuphanesi 1
Hacettepe Universitesi. Beytepe Ankara. TLRKEY
13. Denizalti Filosu Komutanligi 1
Golcuk
Kocacli, TLRKEY
14. Denizalti Egitim Merkezi Komutanligi 1 Golcuk
Kocaeli, TURKEY
15. Gurkan Turkes 1
S.MC 29S3 NPS
Monterey, CA 93943

Thesis B10502

Babaoglu
Designing an automatic control system for a submarine.

20, ater thes 10502
Designing an automatic control system fo

32768000847909 DUDLEY KNOX LIBRARY

