
Calhoun: The NPS Institutional Archive
DSpace Repository

Theses and Dissertations 1. Thesis and Dissertation Collection, all items

1988-12

Designing an automatic control system for a submarine

Babaoglu, Orhan K.

https://hdl.handle.net/10945/23162

Copyright is reserved by the copyright owner.

Downloaded from NPS Archive: Calhoun





3L
:co«5











NAVAL POSTGRADUATE SCHOOL
Monterey, California

f Z/' J &*

DESIGNING AN A I"TOM ATI C CONTROL SYSTEM
FOR A SUBMARINE

by

Orhan K. Babaoglu

December 19SS

Thesis Advisor Gcor^. e J. Thaler

Approved for public release; distribution is unlimited.

T241653





lclassified

urity classification of this page

REPORT DOCUMENTATION PACK
i Report Security Classification I nclassified lb Restrictive Mai kings

i Security Classification Authority

> Declassification Downgrading Schedule

3 Distribution Availability of Report

Approved for public release: distribution is unlimited.

Performing Organization Report Number(s) 5 Monitoring Organization Report Number(s)

i Name of Performing Organization

aval Postgraduate School
6b Office Symbol

(if applicable) 33

7a Name of Monitoring Organization

Naval Postgraduate School

: Address (tin-, state, and ZIP '.ode)

lontcrev. CA 93943-5000

7b Address (ciry, stair, and ZIP code)

Monterey, CA 93943-5000

Name of Funding Sponsoring Organization 8b Office Symbol
(if applicable}

9 Procurement Instrument Identification Number

Address (city, state, and ZIP code) 10 Source of Funding Numbers

Program Element No Project No Task No Woik L nit Accession No

Title (include security classification) DESIGNING AN AL'IOMAI IC CONTROL SYSTEM FOR A SUBMARINE
Personal Authorise Orhan K. Babaoglu

a Type of Report

aster's Thesis

13b Time Covered
From To

14 Date of Report (year, month, day)

December 19SS

1 5 Page Count

183

Supplementary Notation The views expressed in this thesis are those of the author and do not reilect the official policy or po-

ion of the Department of Defense or the U.S. Government.

Cosati Codes
-

hid Grout Subgroup

IS Subject Terms (continue on reverse, if necessary and identify by block number)

Depth, pitch and yaw control, squatting effect on a submarine

( Abstract (continue on reverse if necessary and identify by block number)

The purpose of this thesis is to linearize given non-linear differential equations and design a complete automatic control

Istem for the three dimensional motions of a submarine. Automatic control systems are designed using a steady state de-

jupling scheme for vertical and horizontal motion. Both designs are simulated using the Dynamic Simulation Language

|)SL) for both linear and non-linear models and compared. Cross-coupling effect between horizontal and vertical motions
re to the rudder deilections is also investigated.

Distribution Availability of Abstract

unclassified unlimited D same as report DIIC users

21 Abstract Security Classification

Unclassified

Name of Responsible lndividus

ori:e J. Thaler
21b 1 elephone (include Area code

(408) 646-2134
22c Office Symbol

621 r

IORM 1473,84 MAR 83 APR edition may be used until exhausted

All other editions are obsolete

security classification of this page

Unclassified



Approved for public release; distribution is unlimited.

Designing an Automatic Control System for a Submarine

by

Orhan K. Babaoglu

Lieutenant Junior Grade.Turkish Navy

B.S., Turkish Naval Academy, 1982

Submitted in partial fulfillment of the

requirements lor the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the



ABSTRACT

The purpose of this thesis is to linearize given non-linear differential equations and

design a complete automatic control system for the three dimensional motions of a

submarine. Automatic control systems are designed using a steady state decoupling

scheme for vertical and horizontal motion. Both designs are simulated using the Dy-

namic Simulation Language (DSL) for both linear and non-linear models and compared.

Cross-coupling effect between horizontal and vertical motions due to the rudder de-

flections is also investigated.
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I. INTRODUCTION

Since they are operated in three dimensions and because of their different body

structure and operational conditions, submarines always present a great challange for

automatic control engineers. Especially lor submarines with extremely high underwater

speeds, it is very important to have automatic controls which can be used effectively.

In this study, using the equations of motions in six degrees of freedom which were

developed by Naval Ship Research and Development Center (NSRDC), a linearized

submarine model was derived for both horizontal and vertical motions. It was obvious

that working with a linear model is much simpler then with a complete nonlinear model.

Also the automatic control system design procedures which are used in this study require

a linear model for decoupling. Even though the linearized model does not introduce a

cross-coupling effect between horizontal and vertical motion, as would a real submarine,

it works in almost the same way the nonlinear model does.

In designing an automatic controller for both vertical and horizontal motions, a

MlMO ( Multi-input Multi-output ) system representing the submarine, has to be in-

vestigated. Inputs are propeller which creates the forward speed, rudder for horizontal

motion, and the bow and stern planes for vertical motion. The outputs are the three

speed components u, w, v and roll, yaw, pitch angles around three axes of the submarine.

Also a ballast system can be used to maneuver the submarine but it is not included in

this study assuming the submarine is always in trim.

The pitch and yaw angles and the depth have the main importance for maneuvering

a submerged submarine. Therefore the automatic control system is designed to control

these three states.

After obtaining valid linear models for both horizontal and vertical motions, the

method of the automatic control design has to be chosen. One of the most popular de-

sign method is optimal control theory but it requires feedback of both position and rate

information. This information is available for submarines which are equipped with an

inertial guidance system. For the small coastal submarines which do not have an inertial

guidance system, a different design approach must be carried out. A possible way would

be the design of cascaded compensators using only position ( such as depth ) feedback.

There is always a cross-coupling effect between vertical and horizontal motion in a

submerged submarine which is also called a squatting effect. The cross-coupling effect



is simply the rudder effect on vertical plane which makes the submarine pitch up and

change depth when a rudder angle is applied. The cross-coupling effect is also investi-

gated in this studv.



II. EQUATIONS OF MOTIONS IN SIX DEGREES OF FREEDOM

A. BACKGROUND

With diving capability, submarines differ from surface ships. They also have com-

pletely different hull structures, hydrodynamic specifications and relatively complex

control and stability problems. A submarine can be operated in all six degrees of free-

dom. To maneuver usually three sets of plane surfaces, the propulsion system consisting

of one or two propellers, and a ballast system consisting of two or three ballast tanks for

different type of submarines are used.

To control horizontal motion the submarine has a usual rudder such as surface ships

do. But in vertical motion, a submerged submarine needs at least one more control sur-

face to maintain the desired depth and pitch angle.A classic submarine has bow planes,

which can be used to keep ordered depth, and stern planes, which can be used to tilt the

submarine to an ordered pitch angle. Depending on the submarines's speed and condi-

tion these planes can have an appreciable interaction.

Modern submarines usually have bow planes on their sails, which are called

fairwatcr planes. However, high underwater speeds reduce the necessity of bowplancs.

It is possible to keep ordered depth without using bow planes while operating with

higher underwater speeds. Since the numbers presented by NSRDC [Rcf. 1: p. 88] are for

an American submarine, bow and fairwatcr planes were both considered in this study.

An illustrative picture of a submarine with axes, velocity and plane definitions is

given in Fig. 1. The arrows are pointed in the positive motion direction. This coordinate

system is the right hand orthogonal system which is fixed in the submarine and moves

with it. The origin of the coordinates is located at the center of gravity with x-axis along

the center plane. The positive x direction is forward, the positive y direction is horizon-

tally to the right, and the positive z direction is down. [Ref 2: p. 43S]

The heading of the submarine is the direction of its x-axis, and this is measured as

an angle with respect to the geographic coordinate system. The heading angle, also

called the yaw angle, is defined to be the angle between the direction of the ships x-axis

and the direction of the x-axis of the geographic coordinate system. The symbol used for

the yaw angle is >//.



Figure 1. A Submarine \ritb Axes of Motion



The pitch angle of the ship is the rotation around its y-axis. It is defined to be the

angle between the direction of the ships x-axis and the horizontal reference line. The

symbol used for the yaw angle is .

The roll angle of the submarine is the rotation around its x-axis. It is measured from

the vertical reference to the direction of the submarine z-axis. The symbol used for the

roll angle is </>.

Velocities for the x. y and z directions are u, v and w respectively, which can be

called velocity components of linear velocity of body axes relative to an earth-fixed axis

system.

Definitions for all symbols used in this study are given in Appendix A.

B. DERIVATION OF THE LINEARIZED MODEL
The equations of motion arc derived by summing the applicable forces and moments

in each degree of freedom: surge(x), sway(y), heave(z), roll(0), pitch((?) and yaw(i/>).

Reference 1 presents the standard sets of equations of motion developed for submarine

motion studies by NSRDC. These equations are general enough to simulate the trajec-

tories and responses of submarines in the six degrees of freedom resulting from various

types of maneuvers. They simulate motion of a given ship design upon insertion of the

nondimensionalizcd hydrodynamic coefficients developed for that particular design. In

addition values must be supplied for propulsion force and rudder and diving plane an-

gles. A complete set of hydrodynamic coefficients and other required data used in this

thesis is given on Appendix B.

The derivation of equations of motions in six degrees of freedom which are to be

linearized, was discussed in several earlier studies. [Rcf. 3 , Ref. 4 .] The authors were

satisfied that these equations are valid and can simulate a submarine's motion effec-

tively.

1. Assumptions

Forward speed can be taken as constant. Linearizing about the axial speed, u,

which affects nearly every term in the standard equations, could be very complex, so the

forward speed was assumed to be constant. This also reduces the degrees of freedom to

i\\e.

Roll angle is assumed to be small. Under normal circumtances in submarine

maneuvering, the roll angle usually stays within +5°. Large roll angles arc only caused

by high speed plus hard over rudder. Therefore, the roll angle can be neglected.



Cross-products of inertia can be neglected. This assumption is common to all

submarine simulations because the hull and interior layout of submarines is approxi-

mately symmetric.

All terms including U] can be discarded. Since it is assumed that the submarine

is in trim, weight of water blown from a particular ballast tank, l\'„ must equal zero.

All terms involving nonlincarity arc neglected.

Vertical motion is decoupled from horizontal motion. As a result of the first five

assumptions it also has to be assumed that there is no coupling between vertical and

horizontal motion.

2. Derivation of the linear equations of Motion

a. Linearization on the vertical plane

The linearized form of the equations on vertical plane are:

1) Equation of Motion Along z-axis (Normal Force):

P J. P 3 P 2 2mw - wnq = — lZ
q
q + — l{Zw \v + Z

q
uq) + — I (Zwuw + u {Z6sds + Z6bdb)) (1)

where
slug

o = 2.0 —+-
, mass densitv ol sea water,

'

Ji*

1=415 J). . submarine length, and

m = 6. 25.x 10 ; slugs . submarine weight.

All values for the hydrodynamic coefficients are given in Appendix B.

Substituting these numbers into the equation, and after performing the required algebra

w = -5. 1 \q -1.632* [Q~2uw +0.26 iw? -7.416jdO~V<$5 -3.71.vlO~V<5/> (2)

2) Equation of Motion About y-axis:

I
yq

= y l

5M
q
q + y/W<7 + M^V) + y l

3(Mwuw + u
2{M6sSs + M6bdb)) + Bz B (3)

After substituting appropriate numbers and required algebra

q = -4.975.rl0~
4w -6.2\9x\Q~

3
uq +\.79SxW~

5uw -l.5x\Q~
5
u
7
3s + 3.0jclO~V<5fc

-3 (
4

)

+ 2.516.vlO
3

If these two equations are substituted into each other



u- = 0.294m/ -l.72S.vlO \w -6.067.vl0 Vds -3.S73.vlo V()Z> -O.O12S0 (5)

<7=l.SS4.\TO
5
uw -6.365.r 10

3
uq -1.465.t10

5
u
2
ds +3.193x10

6
u
2
Sb +2.522rl0

3

0(6)

These two equations describe the state variable representation of the

linearized, vertical plane equations of motion. However they do not have the depth as

a state variable. In order to make the depth a state variable, these equations are to be

modified by using linearized auxilary equations which are given in Appendix C. There-

Tore the auxilary equation used lor the modification is

z = —uSinO + vCosQ sin </> + w cos 6 cos

Using our assumptions the linearized equation will be

z = — u6 + w

Then the modified linear equations of motion have the following form

i = -1.728.rl0"
3
«2 -0.706m/ + (0.012S3 -1.72S.y1O~V)0 -6.667.V 10~Vc)s

-3.873rlO~V(56

q = 1.884.rl0~
5
wi -6.365x\0~

3
uq -\.465xl0~

5
u
2
ds +3A93x\0~

6
u
2
5b

+ (1.884.y10~V -2.522jdO~
3

)0

As it was mentioned before the forward speed u is not a state variable but

a constant which can be changed as desired. A complete block diagram for vertical mo-

tion is given in Figure 2.

b. Linearization on the Horizontal Plane

The linearized form of the equations on horizontal plane are:

1) liquation of motion along y-axis (Lateral Force):

P 4 P ?
iuy - nmr = — / (},/•+ ) np) + — I ( 1 ,.v + ) rur + ) 'up)

2 p 2

r r
2

2 '

(9)
+ — I (Yvuv + u Y

dr
dr)

Using same set of numbers and hydrodynamic coefificients, the final form

of the equation is

v = 1.S9;- - 6.3/) - 0.291w - 0.035;//' - 2.563.\TO
-V + 7.568.y10~Vc>;- (10)



db

ds

-4 .

3.87x10 u

-4 2

6.67x10 u

0.706u

-6

3.19x10 u

-5

1.465x10 u

-3

6.365x10 u

V-

-3

1.73x10 u

!

\ 4

z
1

3

Z 1

s

z

-5

1.88x10 u

-3

0.013-1.73x10u

y -5 2
"3

1 .88x1 Ou -2.52x10

e

Figure 2. Block Diagram for the Linearized Model on the Vertical Plane



Ij = 4 l

5
{K

pp + K
r
i) + -~ l\K

p
up + Kr

ur + A'
v
,v) + -y /

3
(A>v + u

2K6r5r) + BzB <f> (11)

'1 he final form of the equation is

p = -0.679/- - 0.0584v - 8.179.vlO~\//> - 9.347* 10~
3
m/- -3.942.xT0~

4
wv

+ 3.942*10~Vdr - 0.2360

3) Equation of motion about z-axis ( Yawing Moment)

(12)

If = y l%\r + Kjp) + -j l\\r
ur + N

p
up + A» + y /

3(A>v + uN6r5r) (13)

The final form of the equation is

r = -6.553.xT0~V' + 6.767jc10~
4
v - 6.767.x-10"

3
i/r -4.51 lx\0~

6
up - 4.076jc10~

5
uv

(1^)
-1.631.y10 u

2
Or

These three equations are supposed to describe a submerged submarine

motion in the horizontal plane. "I he only difference from the equations for vertical mo-

tion is the equations for the horizontal motion have the order of the highest derivative

of all the variables such as v, p and r in each particular equation. [Ref. 4: p. 4SJ

Having all of the highest derivatives in each particular equation creates

an algebraic loop problem for the simulation. To solve this problem it is possible to

manipulate the equations to eliminate the highest order derivative from one of the

equations which includes the other derivative as it was done before for the vertical plane

equations of motion. This was done very nicely for the case of two equations but does

not seem to be very attractive when there are three or more equations involved.

There are some other possible ways to solve algebraic loop problems. But

since the new version of DSL [Ref. 5] can take care of this problem automatically, it is

preferred to use those equations in simulation.

A complete block diagram for horizontal motion is given in Figure 3.
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Figure 3. Block Diagram for the Linearized Model on the Horizontal Plane
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C. VALIDATION OF LINEAR MODEL
The objective of this section is to compare the dynamics of the standard model with

the derived linear model in both vertical and horizontal planes.

In order to compare both models they should be in the same initial state and both

models have to be in trim. In trim has the meaning that the submarine maintains depth

at a given speed with the desired pitch angle without using bow or stern planes. When

making linearizing assumptions the terms which are related to trim are already ignored.

Therefore the linearized model will be in trim at all times. Because of the submarine hull

and sail structure it is required to adjust ballast tanks for given speed. The corrections

for trim which are used in the simulation for this study are obtained from an earlier

thesis study. [Ref. 6: p. 184)

To validate the linear model it is preferred to obtain both the initial condition and

forced response in order to make sure that the linear model is working properly.

I. Validation of Linear Model on Vertical Plane

a. Initial Condition Response

It was expected that for small perturbations the deviations between models

should be small. Therefore initial conditions of 5° in pitch were tested first. For the linear

model it is also required to give an initial value for depth change which was defined as:

z = -uSin

Test runs up to 360 sec. in the speed range 5 to 25 Knots were performed

simultaneously for both models. Maximum differences for each run were obtained from

data files and given in Table 1. The pitch and depth behaviors for both models were

civen in Fi" 4-8.

Table 1. INITIAL CONDITION RESPONSE TO 5 DEGREE PITCH ANGLE

Run
No.

Speed
(Kts.)

M iximum Deviation In

Fig.Pitt:h Z Depth

Deg. . Ft. sec. % Feet

1 5 0.0901 1.8 ().()(J17 0.2 0.1050 o.l 4

2 8 0.0608 1.2 0.069 0.6 0.6740 0.7 5

^
J 12 0.0302 n.6 0.0113 0.6 1.0960 1.1 6

4 18 0.04S6 l.o 0.0275 l.o 3.4200 1.4 7

5 25 0.1908 3.8 0.15^9 4.3 11.960 4.8 8



As can be easily seen from the figures and Table 1 all deviations are very

small for this initial condition. That means dynamics for both model are nearly identical

for small perturbations.

In normal operational conditions a submarine never exceeds 20° pitch an-

gle. But theoretically maximum allowed pitch angle is limited to about 45°. Therefore

three more runs were performed with 45° initial pitch to see large perturbation effects

on system dynamics. Simulation results for 45° initial pitch angle are given on Figures

9-11. Maximum deviations for pitch angle, speed in the z direction and depth are given

in Table 2. Maximum deviation docs not exceed 7% for this case as can be seen in Table

2.

Table 2. INITIAL CONDITION RESPONSE TO 45 DEGREE PITCH ANGLE

Run
No.

Speed
(Kts.j

Maximum Deviation In

Fig.Pitch Z Depth

Deg. % Ft./sec. % Feet %
6 5 0.8449 1.9 0.2408 4.0 1S.470 3.7 9

7 8 1.19S8 2.7 0.1^97 2.1 9.690 1.9 10

8 12 2.480 5.5 0.9760 6.S 65.260 6.5 11

The deviations between both models for a second set of initial conditions

are much bigger but still leads to very similar dynamic behavior. This was expected as

the angle approximation

sin = (15)

is not as valid as for 5° initial pitch angle. In general for both sets of initial conditions

it is obsened that increasing speed tends to increase the deviations between trajectories.

b. Forced Response

Both stern and bow planes can be used in different combinations to keep

the ordered depth and pitch angle. In order to validate the linear model it is required to

include some control plane commands in the simulation. Since the mechanical limit for

the planes is about 35°. test runs were performed up to this angle. It is also desired to

keep the submarine in maximum allowed pitch and depth limits. For the simulation runs

which are performed only with bow plane, 5. 15 and 35 degree plane angles were applied

after the first ten seconds.
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Figure 4. Initial Condition Response Init. Pitcli-5 Deg. \J=5 Kts.
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Figure 5. Initial Condition Response Init. Pitch =5 Deg. U = 8 Kls.
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Figure 6. Initial Condition Response lnit. Pitch = 5 Deg. U= 12 Kts.
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Figure 7. Initial Condition Response I nit. Pitch=5 Deg. U= 18 Kts.
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Figure 8. Initial Condition Response I nit. Pitch=5 Deg. U=25 Kts.
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Figure 9. Initial Condition Response Iiiit. Pitch = 45 Deg. U = 5 Kts.
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Figure 10. Initial Condition Response lnit. Pitch = 45 Deg. U = 8 Kts.
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Figure II. Initial Condition Response Init. Pilch= 45 Deg. U= 12 Kls.
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Because of the enormous effect of the stern plane on submarine pitch angle,

it was concluded to use reverse angles for 30 seconds each and then to bring the stern

plane to the neutral condition.

Maximum deviations were obtained from data files by a FORTRAN pro-

gram and given in Table 3, 4 and 5 for bow planes, stern planes and both planes re-

spectively.

The test simulation results which were obtained with the bow planes, are

given in Figures 12 through 20. Figures 12, 15 and 18 represent small perturbations for

three different speeds and it can also be observed from Table 3 that maximum deviation

is not more than 23 ft. for depth and not more than 0.4 degree for pitch angle. Figures

13, 16 and 19 were given for 15 degree bow plane and except for Figure 19 which re-

presents the simulation with IS Kts. forward speed, the linear model is acceptable. For

35 degree bow planes, the linear model is valid only for lower speeds as can be seen from

Fieurcs 14. 17 and 20.

Table 3 . FORCED RESPONSE TO BOW PLANES

Run
No.

Speed
(Kts.)

Bow
Plane

(Deg.)

Maximum Deviation In

Fig.Pitc h Z Dep th

Deg. , Ft. sec. % feet %
9 5 5 0.OS5O 19.8 0.0046 3.2 1.420 1.0 12

10 5 15 0.3751 29.2 0.0 12S 3.1 0.500 0.2 13

11 5 35 1.47()(i 08.2 0.2285 22.6 5S.^S() 14.1 14

12 12 5 0.359S 35.6 0.1006 19.0 21.750 11.5 15

13 12 15 2.5177 82.5 0.6860 43.2 148.25 33.1 16

14 12 35 9.0961 127.7 1.9668 53.1 382.52 40.4 17

15 18 5 0.4103 19.0 0.1743 19.2 23.650 14.4 18

16 IS 15 5.1356 79.3 2.4369 89.7 557.S7 103.7 19

17 IS 35 19.340 128.0 8.1425 128.5 1S52.8 110.8 20
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Figure 12. Forced Response. Bow Plane = 5 Deg. down. U = 5 Kts.
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Figure 13. Forced Response. Bonn Flane = 15 Deg. down. U = 5 Kts.
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Figure \A. forced Response. Dow Plane = 35 Deg. down. U = 5 Kts.
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Figure 15. Forced Response. Bon Plane = 5 Deg. down. U = 12 Kts.
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Figure 16. forced Response. Co» Plane = 15 De». down. U = 12 Kts.
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Figure 17. Forced Response. Bou Plane = 35 Deg. down. U = 12 Kts.
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Figure 18. Forced Response. Dow Phine = 5 Deg. down. U = 18 Kts.
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Figure 19. Forced Response. Bow Plane 15 Deg. down. U 18 Kls.
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Figure 20. Forced Response. Bow Plane = 35 Deg. down. U = 18 KIs.
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Therefore the linear model is valid for all speeds for small plane angles. And

in general, it is possible to say that for the first 120 seconds the linear model does work

well enough for large perturbations. In fact it is not very often that a watch officer

wants to keep the bow planes full down for more than 120 seconds in a real submarine.

The test run results which arc obtained with stern plane, are given in Fig-

ures 21 to 29 and Table 4. Similarly, deviations are acceptable for small and medium

perturbations as can be seen from the figures. The only condition for which the linear

model can not be accepted as valid, is displayed in Figure 29 which represents 35 degree

bow planes with 18 Kts. forward speed. This is expected since two important linearizing

assumption are invalid at this speed and resulting pitch angles are large. As mentioned

before, the constant speed assumption for large plane angles and the sin(x) = x ap-

proximation for pitch angle arc no longer valid for this run.

Table A . FORCED RESPONSE TO STERN PLANES

Run
No.

Speed
(Kts.)

Stern

Plane

(Deg.)

Maximum Deviation In

Fig.Pitch Z Depth

Deg. '

/O Ft. sec. % Feet %
18 5 5 0.0910 5.6 0.0016 1.2 0.1030 0.1 21

19 5 15 0. 1 80S 3.8 0.0126 3.3 0.7400 0.7 22

20 5 35 0.9021 8.2 0.1463 16.4 4.0610 3.8 23

21 12 5 0.3673 5.6 0.1070 6.0 5.000 3.0 24

12 15 2.5750 13.1 O.S569 15.9 35.680 12.1 25

23 12 35 12.010 26.1 5.2815 42.1 185.53 33.5 26

24 18 5 1.55S5 12.6 0.7962 14.2 59.406 19.0 27

25 18 15 8.4160 22.6 4.8350 28.8 201.84 27.4 28

26 IS 35 33.619 38.8 23.068 58.

S

844.42 53.3 29

To be able to observe the effects of both planes on deviations between

models, nine more runs were performed using stern and bow planes simultaneously. For

each run the same bow and stern plane angles were applied in such a manner so they

can suppress each other's effect in order not to exceed submarine depth and pitch
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figure 21. Forced Response. Stein Plane = 5 Deg. U = 5 Kts.
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figure 22. Forced Response. Stern FMnne = 15 De«. U = 5 Kls.
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Figure 23. Forced Response. Stern Plane = 35 Deg. U = 5 Kts.
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Figure 24. Forced Response. Stern Plane 5 Deg. y = 12 Kts.

35



FORCED RESPONSE WITH 15 DEC STERN PLANE

.. AXIAL SPEED U = 1 2 KTS.

NONLINEAR MODEL
LINEAR MODEL

200

TIME (SEC.)

If)

-

LO °
UJ
uj \K
CJ> m
IU I

D '

^-^

T"

o o
i- *;

— \

CL '

in

7 \

o .

1 1 1 1

1 100 200 300

TIME (SEC.)

figure 2?. forced Response. Stern Plane = 15 Deg. U = 12 Kts.

36



E
E

FORCED RESPONSE WITH 35 DEC STERN PLANE

AXIAL SPEED U - 12 KTS.

NONLINEAR MODEL
LINEAR MCDEL

100 200

TIME (SEC.)

300

200

TIME (SEC.)

300

Figure 26. Forced Response. Stern Plane = 35 De«. U = 12 Kls.
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Figure 27. forced Response. Stern Plane = 5 Deg. U 18 Kt!
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Figure 23. forced Response. Stern Plane 15 Deg. U = IS Kts.
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Figure 29. Forced Response. Stern Plane = 35 Deg. U = 18 Kts.

40



limitations. Figures were created but not supplied in this study since they arc very similar

to the preceeding results which were obtained using only stern planes. Deviations

between models for this last set of runs are a little bit larger than the preceeding results.

Using two sets of planes means more approximations for the linear model and greater

deviations between linear and nonlinear models are expected.

Table 5. FORCED RESPONSE TO BOW AND STERN PLANES

Run
No.

Speed
(Kts.)

Bow

Stern

Plane

Maximum Deviation In

Fig.Pitch Z Depth

Deg. % Ft.,'sec. % Feet %
27 5 s 0.0943 6.8 0.0012 1.1 0.0500 0.05 -

28 5 15 0.244S 6.0 0.0262 S.O 0.9030 0.8 -

29 5 35 1.3542 14.2 0.2891 37.7 8.0200 7.1 -

30 12 5 0.5151 8.4 0.1 55S 8.9 7.2100 4.4 -

31 12 15 3.6320 19.8 1.3423 25.6 53.000 18.3 -

32 12 35 16.329 3S.2 7.1S26 58.8 262.15 48.4 -

33 18 5 2.0117 16.8 1.0424 18.5 61.856 19.6 -

34 18 15 11.203 31.2 6.6167 39.1 267.52 35.S -

35 18 35 43.214 51.6 27.816 70.4 1053.8 65.5 -

Obviously the linear model docs not behave like the nonlinear model lor

large plane angles and high speeds. The most important reason for this is the constant

speed assumption for the linear model. This assumption is no longer valid for large plane

angles since planes reduce the forward speed of the actual submarine. Since the aim of

this study is to validate the linear model for small perturbations, it is achieved for the

vertical plane.

2. Validation of the Linear Model on the Horizontal Plane

A submarine behaves like a surface ship for most horizontal motions.There are

some differences because of its submerged condition and sail structure. The main defer-

ence is in roll. A submarine rolls to inboard when a rudder angle is applied. Also the

rudder has a squatting effect on the submarine which makes the submarine to pitch up
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and dive. Since the linear model assumes that there is no cross-coupling between vertical

and horizontal motion it is not possible to compare the squatting effect with the linear

model.

On the horizontal plane, roll and yaw angles and sway speed can be observed.

Roll and yaw information are displayed on figures and tables for convenience. But the

sway response is only supplied on tables as deviation between models.

a. Initial Condition Response

The simulations were carried out with a certain roll angle as initial condi-

tion. In order to see the small and large perturbations effects, 5 and 25 degrees initial roll

angles were chosen and test runs were performed at 5, S, 12, IS and 25 Kts.

Since both models reach a steady state value after about 12') seconds, sim-

ulations up to 120 seconds were performed, simultaneously for both the linear and non-

linear models. Maximum deviations for each run were obtained from data files and arc

given in fable 6.

Table 6. INITIAL CONDITION RESPONSE FOR HORIZONTAL PLANE

Run No.
Speed

(Kts.)

Maximum Deviation In Roll

FiguresI nit. Roll = 5 Dcg. [nit. Roll =25 Deg.

Degree .'0 Degree

36-37 5 0.0972 1.9 3.2242 12.9 30-32

38-39 s 0.0677 1.3 2.0457 S.2 30-33

40-41 12 0.0365 0.7 1.3490 5.4 31-33

42-43 18 0.0342 0.7 1.1720 4.7 31-34

44-45 25 0.0252 0.5 1.0160 4.1 32-34

As can be ^ecn from Figures 30. 31 and 32. it is obvious that there is almost

no deviation on roll response for 5 degree initial roll angle. There are some slight devi-

ations for 25 degree initial roll angle and unlike the vertical plane, deviations arc de-

creasing with increasing axial speed. It is to be noted that the approximation by a linear

model has not affected the period of rolling. Simulation results arc given on figure 5
; 32,

33 and 34 for 25 degree initial roll angle response.

Therefore it has been concluded that the linear model on horizontal plane

is valid for small and larjic initial conditions.
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Figure 30. Initial Condition Response Init. Roll =5 Deg. U= 5 and 8 Kts.
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Figure 31. Initial Condition Response I nil. Roll =5 Deg. U= 12 and 18 Kts.
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Figure 33. Initinl Condition Response Init. Roll=25 De«. U= 8 and 12 Kts.
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Figure 34. Initial Condition Response Init. Roll=25 Deg. U= 18 and 25 Kts.
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b. roneti Response

The only relevant force beside propellers is created by the rudder on hori-

zontal plane. The rudder also has an appreciable effect on vertical motion which is called

the squatting cllcct. Even though the linear model assumes that there is no cross-

coupling effect between vertical and horizontal motion, it was decided to display depth

and pitch angle changes which were obtained by non-linear simulation for further study.

Cross-coupling effects which are obtained by non-linear simulation at different speeds,

are given in Figures 38, 40, 42, 44, 46, 48 and 50.

Simulation runs are abtained for three different speeds and rudder angles for

this case. Plots for yaw and roll response are given in Figures 35-37, 39, 41, 43, 45, 47

and 49. Maximum deviations are given on Table 7. Again similar deviation behaviors

can be observed as vertical motion.

Table 7 . FORCED RESPONSE TO RUDDER

Run
No.

Speed
(Kts.)

Rudder
(Dcg.)

Maximum Deviation In

fig.V Yaw Ro 1

Ft/sec.
'

/o Dcg. % Dcg. i)

46 5 5 0.0060 3.6 0.3775 13.7 0.0041 3.0 35

47 5 15 0.0487 9.8 2.0360 24.7 0.05 1

8

12.7 36

4S 5 35 0.2413 20.8 3.3520 17.4 0.3633 38.3 37

49 12 5 0.1417 14.9 2.8058 23.8 0.2880 18.6 38

50 12 15 0.9515 33.6 13.27 37.5 2.6034 56.0 39

51 12 35 3.7804 57.2 42.223 51.1 10.345 95.4 40

52 18 5 .0.5104 25.3 6.97 30.3 1.6658 35.0 41

53 18 15 3.0963 51.2 35.065 50.8 11.262 78.9 42

54 18 35 10.424 73.8 106. S3 66.4 34.525 103.6 43

As a result of this chapter it has been concluded that approximation by

linear model is valid for small perturbations at all speeds for both motions. In addition,

it has been observed that the linearized model is still valid for large perturbations applied

over a short period of time.
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Figure 35. Forced Response. Rudder = 5 Deg. U = 5 Kts.
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Figure 36. Forced Response. Rudder = 15 Deg. U = 5 Kts.
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Figure 37. Forced Response. Rudder = 35 Deg. U = 5 Kls.
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figure 38. Cross-Coupling Effect on Vertical Plane. Rudder=35 Dcg. U=5 Kts.
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figure 39. Forced Response. Rudder = 5 Deg. U = 12 Ills.
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Hguie 40. Cross-Coupling Effect on Vertical Plane. Rudder =5 Deg. U= 12 Kts.
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Figure 42. Cross-Coupling Effect on Vertical Plane. Rudder = 15 Deg. U = 12 Kts.
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Figure 43>. Forced Response. Rudder = 35 Deg. U = 12 Kls.
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Figure 44. Cross-Coupling Effect on Vertical Plane. Rudder =35 Deg. U= 12 Kts.
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Figure 46. Cross-Coupling Effect on Vertical Plane. Rudder =5 Deg. U= IS Kts.
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figure 47. Forced Response. Rudder = 15 Dey. U = 13 Kts.
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Figure 49. Forced Response. Rudder = 35 Deg. U = 18 Kts.
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III. AUTOMATIC DEPTH AND PITCH CONTROL

A. DESIGN SPECIFICATIONS

After a valid linear model is defined, any type of design method for linear systems

can be used. It is assumed that the submarine which is considered in this study has no

incrtial guidance system. That means rate information is not available and the only

states to be used as feedback are depth, pitch and speed. Due to this limited instrumen-

tation the controller will have to use cascaded filters.

Since a submarine maneuvering capability depends highly on the axial speed, it is

very hard to satisfy some certain specifications for this kind of control systems. Hut

basically it is acceptable if the control system can achieve 10 ft. depth change in 12')

seconds and 100 ft. depth change in 240 seconds. Also more than 2 feet overshoot is not

desirable for small depth changes and overshoot must stay within 5% for huge depth

changes. Deviation from ordered pitch must stay within 2 degrees.

lor the control system to be designed, plane angle limits which arc about 35 degrees,

have to be taken into the consideration. A depth and pitch control system which requires

more than 35 degrees plane angles to get the ordered depth or pitch is clearly not

realizable.

B. DESIGN
'1 he linearized equations of motion for the vertical plane are obtained and given in

Chapter 2. They arc repeated below for convenience

2 = -1.728.rl(r
3
«i -OJOCmq + (0.01283 -1.728.vlO~V)0 -6.667.vlO~Vos

4 2 (lfi)

-3.873.yK) ii 5b

q= 1.8S4vlO
5
uz -6.265x\0~

3
uq -1.465.\:10~V<5s +3.193.rI(T

6
w

2M
+ (l.SS4vlO"V-2.522.tlO~

3
)0

17)

A signal flow graph can describe the corresponding input output relations for these

equations. Inputs will be the bow and stern plane angles and outputs of interest are

depth and pitch for vertical motion and such a flow graph is given in Fig. 51 where

a = -3.87.vl0 V
b = -l.73.vlO hi

c= -l.465.viu V
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Figure 51. Signal Flow Graph for Vertical Equations of Motion

r/=-6.67.vl0 V
e = 3A9xW-hi2

/=-6.36jt10-3m

g= I.88.vl0-V-2.52.rl0-s

/i = 0.706;/

i«0.013- 1.73.vl0-V

* = l.SS.rK) -^

1. Decoupling

In order to design a cascade compensator with a single loop technique, one must

have the independent input-output relations for each input and output [Ref. 7
J.

In

other words it is necessary to obtain two transfer functions for depth and two transfer

functions for pitch which have the stern and bow planes as inputs.

Applying Mason's gain rule to the signal flow graph given in Fig.44 the input-

output relations will be as follows [Ref. 8: p. 83].
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depth

Oh

us + {eh — aj)s +ei — ag

s
4 - (/*+ h)s

3 + {hf- g - kh)s
2 + {gb - ki)s

(IS)

depth

ds

ds + (cli - i(f)s+ci- tig

/ - (/+ b)s
3 + (hf- g-kh)s

2 + {gb - ki)s

(19)

pitch

oh

cs — be + ak

5
3 - [f+ b)s

2
+ (hf- g - kh)s + {gb - ki)

(2(»)

piic-h cs - he + dk

( ' 5 a
3 - (f+ b)s

2 + (hf- g - kh)s + (gb - ki)

(21)

Substituting the corresponding numbers into these equations

depth -3.87.rl(rVs
2
-2.1.vl0"

7
«
3
s - 9.33.vIO~V +1.75.yK)~V

oh
s
4
+8.09.vl0"

3
w5

3 + (2.52jc10~
3
-2.ll.xr I0~V)s2

+4.\2xH)~
6
us

??i

depth -6.67.x\Q~*u
2
s
2
-6.1.tl(TVs - 1.87.rlO~V +3.78.y1()~V

^
5
4
+S.U9.y10"

3
W5

3
+ (2.52.vlU~

3

-2.11.rlO~
5«V +4.12*10

(

\ts
23)

piteh

Oh

3.19.YlO~Vs-I.75.rlO~V
-3 2 5 2,

5
J
+S.09.xT0 hs + (2.52.vl(f -2.Il.rlO~V)s +4.I2.vlO u

(24)

pitch

Os

1.465.vKrVs -1.2S.VurV
s
3
+S.09.vl<)

3
ws

2 + (2.52.vl0
3
-2.ll.vl0 V)s+4.12.vl0

,5

«
!5)

Transfer functions which arc dealing with depth, have fourth order characteristic

equations and they are type one systems with the same denominator. On the other hand,

transfer functions for pitch are type zero and have third order characteristic equations

with the same denominator. Also all transfer functions have the same poles except one

at the origin. So it is expected that they might show similar frequency response and it

may be possible to use only one cascade compensator to compansate the whole system.

In order to make further analysis on these transfer functions, the axial speed, u

has to be defined as a number. It is always possible to design the control system for a

specific speed and check the validation of design for a certain speed range. Since slower-

speeds make it harder to get desired depth and pitch angle, it is not very efficient to use

an automatic control for less than 5 Knots. A possible approach would be to use 1<>
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ft sec. ( 5.9 Kts.) as axial speed. If the designed control system works for this speed, it

will probably work for the higher speeds.

2. Design

With 10 ft. 'sec. axial speed, transfer functions become

depth

6 b

-3.87.vlQ~y -2.1.vl0~
4
5 - 9.33.vlO~

5

5
4
+8.09A-10~y +0.41.y10~

3
5
2
+4.12.y10~

5
.s

depth -6.67x\0~
2
s
2
-6.06.tl0

-3
s + 1.9LrlO~

4

OS

pitch

6 b

pilch

s
4
+8.09.vl0"

2
5
3
+0.41.vlO~Y +4.12.vl(T

5

5

3.19.rl0~
4
5-1.75.vl0"

6

n-2 2 -3
s+8.09.y1(TV + 0.4LrlO 5+4.12.v10

1.465.rl0~
3
-1.28.rl0~

5

-30S s
J
+8.09.Y10"V +0.4LrlO s+4.12.vlO

It is more convenient to rename these transfer functions such as

gn(S) =

gi\{s) =

gilt*)
=

depth

6b

depth

6 s

pitch

6 b

pitch

6 s

Then the transfer function matrix becomes

G(s)

S2\(s ) g2l(s)

Using cascade compensation and a diagonal compensator matrix

O
c
(s) =

gc22(s)

(26

(27)

(28)

(29)

(30)

(31)

(32)

(33)

(34)

(35)
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The corresponding control model is sketched in Fig. 52. The equivalent transfer

function matrix will be

G = G{s)G
c
(s) =

Sll(*)&ll(*) gnWStlli*)
(36)

Characteristic equation roots for these transfer functions are given in Table 8.

Only one transfer function has roots in right half plane which is g\ 2(s).

Table 8. CHARACTERISTIC EQUATION ROOTS FOR VERTICAL MOTION
Transfer Function Roots

gM -0.392 ± jO.188, -0.001 + jO.045

gM -0.030 + jO. 260, -0.0646, 0.043

ftiW -0.014 + jO.022, -0.078

&a(*) -0.00S ± jO.028, -0.065

The open loop Bode diagrams and root locus plots are given on Figures 53 to

60. As expected transfer functions for depth have similar frequency response with a small

positive phase margin. Also both of them have root locations on the right half plane.

On the other hand transfer functions for pitch show similar behavior. They arc also

stable with 50 and 60 degrees phase margin. The only transfer function which is stable

for all gains is g2:{s) as can be seen from Fig. 60.

From the root locus diagrams one can easily see that, except for£22 (.s). the other

three transfer functions have many root locations on the right half plane which might

make the cascade compensation design required. Since g l2
(s) has characteristic equation

roots in the right half plane and also the root locus diagram shows one root location

branch that extends along the positive real axis, it is clearly unstable. In particular

g22{s) might not need any compensation other than a gain adjustment.

The effect of bow planes on pitch angle and the effect of stern planes on depth

are rather small compared to the effect of bow planes on depth and stern planes on

pitch. So it is considered best to focus on the transfer functions .en (s) and g:2
while car-

rying out a design procedure. Even if the designed compensators for these two transfer

functions are not satisfactory for the other two equations, the total system response

might be sufficient.
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Figure 52. Cascade Compensated Control Model for Vertical Motion

Since the transfer functions for the vertical plane have poles in the right half

plane, they do not represent minimum phase systems. For a non-minimum phase system

it is more complicated to achieve a design which meets the required specifications.

However it is possible to start with a very basic design and improve it after observing

compensator effects on the system behavior.

From the requirements mentioned before, the settling time will be more than

100 seconds and the damping coefficient ( is about 0.5 for sufficient damping. Using the

formula for second order approximation

T =—I—
5

Co),,

(37)

Solving for co„ and substituting numbers

°)n
0.5.x 100

= 0.08 (38)

The gain crossover frequency for the uncompensated system is about 0.2

rad/scc. as can be seen from Fig. 54. Then the sain which is to be used for the first
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compensator, has to be loss than one in order to get the desired response. I his gain

constant is called Kl and taken as 0.1 for the first trial.

In oidcr to increase phase margin a first order lead compensator is to be added

to the forward path. Such a compensator has the form

P k + z)

c z (s + p)
(39)

The multiplier p z is required to keep error coefficient constant. [Rcf. 2
]

Using cascade compensator design techniques the best choice for the first trial

on gcU will be

£d
1 5 + 0.1 = 1Q

(5 + 0.1

0.1 .s + 1 .0 5 + 1 .0
(40)

Multiplying with Kl the total compensator is

Gc
s + 0.

1

s+ 1.0
(41

The root locus plot and open loop Bode diagram for the compensated system

are given on fig. 61 and Fig. 62. The compensated system has about 75 degree phase

margin which is obviously more than the specified requirements. This excess phase

margin may cause a request for the large plane angles which it is not possible to supply.

Since it is always possible to use limiters on plane angles it is concluded to leave the

designed compensator as it is and me it for preliminary design procedures.

Since ,;
7

:: (.<0
is already very reasonable well damped, no compensator will be used

and K2 will be taken as 1.0 for the first trial.

I he next step is to put the compensator in the actual linear system and observe

the response of the system. But before doing that the simulation program has to be up-

dated in order to get more realistic results and accuracy.

a. Limiters

The mechanical limit for both plane deflections is 35 degree. But it is not

desirable to use full plane angles for higher speeds. Also it is possible to limit planes and

the error signals. The test runs which are achieved with limited planes led to unaccepta-

ble plane behavior such as very small deflections. Under these set of circumstances it

was concluded to limit the error signal such as:
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Inn = 35

lim = 25

lim = 15

when u < 15 ft; sec.

when 15 < u < 30 ft sec.

when u > 30 ft/ sec.

Obviously this limitcr docs not have any effect for less than 15 ft. depth

changes where there is no need for a limiter.

b. Actuators

The linearized model does not include the dynamics of the plane actuators,

which arc force and moment producers. The actuator dynamics were ignored in the

model comparison part of this study. In order to have an accurate model for the design

procedure, an actuator model has to be added to the system dynamics. Such an actuator

model was developed by [Ref. 6 ] and represented as

Ct„,, =
1

aa
s + 0.667

(42]

The complete model which is used in the simulation program is given in Fig.

63.

u

Depth

LINEAR

MODEL

r~

db0.015(s+1)

(s*10)

1
Ordered 'r-—<y+
Depth

Limiter

Pitch

S+0.667

ds

_

I
Ordered

^ . 2

Pitch i s+0.667

Figure 63. Block Diagram for Compensated Linear Model in Vertical Motion
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3. Simulation

1 he simulation program is written based on the discussed subjects above. The

first run was made with the preliminary design gains, poles and zeros. Then required

corrections were made in order to meet the design specifications. The DSL simulation

program with the final parameters is given in Appendix F.

'lest run results which were achieved with different sets of parameters arc given

in Figures 64 to 74. Each run is explained briefly below:

Run No. 1:

The simulation program was run with the first set of parameters for 1" ft. depth

change and 10 ft, sec. axial speed which is the lower limit for this compensation. With

Kl = 0.1 the required bow plane angle was very large and overshoot was 25%. This run

does not meet the specified requirements.

Run No. 2;

In order to get reasonable plane response it is decided to reduce Kl to the value

of 0.01. This time the maximum bow plane deflection is 26 degree but the time required

to reach 10 feet depth change is a little longer than the specification. This run is also

discarded.

Run No. 3:

A third approach would be to change Kl to 0.O15. The result was quite satis-

factory except the 40 degree maximum bow plane angle. The main reason for this larger

plane request is the excess phase margin on the system. The one possible way to reduce

phase margin is to shift the cascade compensator one decade up in the frequency do-

main.

Run No. 4:

Using the new compensator with one zero at 1.0 and one pole at 10.0. the results

arc satisfactory. As can be seen from figure 66 the maximum required how plane angle

is 10 degrees, the time to complete 10 ft. depth change is 78 sec. and the overshoot is

10%. This excess overshoot is the payoff for reducing the phase margin but since it

makes only one foot difference, it is acceptable.

Run No. 5:

It is desired to check the system response for large depth changes. The simu-

lation program was run for a 100 ft. depth change. Maximum required bow plane angle
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is 34 degrees and overshoot is 5%. At this point it seems that the compensated linear

model for depth control is acceptable.

It is also required to check the pitch response of the system. Test runs were

performed with zero depth and some certain pitch angle change. Because of the bow

plane effect (which tries to keep the submarine at the same depth) there was a steady

state error on pitch angle. Since this pitch error relates very closely to K2, it is concluded

to increase K2 to 2.0.

Runs No. 6 and 7:

To make sure that there is no negative effect on depth behavior of the system

created by the new K2 parameter, two more runs were achieved with K2= 2.0 Cor 10 and

100 feet depth change. Since there was only a slight change on overshoot, the new K2

value is accepted and used for further study.

Run Xo. 8

In order to check the pitch response of the compensated system, a -5 degree

pitch command was ordered while the depth change command was zero. System has

reached the ordered pitch angle in 46 seconds and because of the bow plane effect, it

settled on -4 degree. Increasing K2 might decrease this steady state error but at the same

time it might create more overshoot and instability problems on depth behavior of the

system. Since a 1 degree error is in the specifications limits, K2 =2.0 will be used for

further study.

Runs No. 9 and 10:

The next step is to check the designed system for a certain range ofspecd. For

15.2 ft.,'sec. ( 9 Kts. ) two runs were performed with 10 and 100 ft. depth change. As it

can be seen from fig.s 69 and 70 there is 12% overshoot for H) It. depth change and 3%

for 100 ft. depth change. Increasing the speed has a positive effect for large depth

changes while having a negative effect for small ones.

Runs No. 1 1 and 12:

The axial speed was increased to 12 Kts. The system reaches the ordered depth

in shorter time and has only 2% overshoot for 100 ft. depth change.

Runs No. 13 and 14:

Two more test runs were performed with 18 Kts. axial speed. As can be seen

from fig.s 21 and 22 the compensated control model is still valid and, in fact, works

better with only 1% overshoot for large depth change.

finally it is considered that the designed automatic control lor the linearized

vertical motion using cascade compensator design techniques is satisfactory and should
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he checked with actual non-linear model. Alter designing another cascade compensator

for the horizontal motion, both models will be checked in order to see whether the design

is completed or needs some alterations.
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Figure 64. Compensated System Depth Response Z =0.1, P = 1.0
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Figure 65. Compensated System Depth Response Kl =0.015, K2 = 1.0
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Figure 66. Plane Angle Deflections for first and second Compensator
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Figure 67. Compensated System Response to 100 ft. Depth Change
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Figure 68. Compensated System Pitch Response for Commanded Pitch =-5 Dog.
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Figure 70. Compensated System Response to 100 ft. Depth Change U = 9 Kfs.
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Figure 71. Compensated System Response to 10 ft. Depth Change U= 12 Kts.
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Figure 74. Compensated System Response to 100 ft. Depth Change U= 18 Kts.
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IV. AUTOMATIC STEERING CONTROL

Turning characteristics of a surfaced submarine are very similar to a surface ship.

But the situation in the submerged position shows big differences. Sail structure can be

considered the main difference and the main source of rolling. But roll control is not

considered in this study since the main purpose was to control depth change which is

caused by the rudder.

In Chapter 2, three equations of motion were linearized and derived for the hori-

zontal plane. Same equations will be used to design a steering control for a submerged

submarine. But the algebraic loop problem has to be solved before using Mason's gain

rule.

Three linear equations for horizontal motion are

v = 1.89/- - 6.3/? - 0.291 ur - 0.035///' - 2.563x1 0~
3
mv + 7.568xKrV<5r (43)

p = -0.679/ - 0.0584v - 8.179x10
_3

m/j - 9.347.vlO~
3
/// -3.942x10~

4
mv

+ 3.942xlO~V(5r- 0.2360
(44)

/•= -6.553.vlO
3

/; + 6.767*10
4v- 6.767xl0~V -4.51 \x\0~

6
up - 4.076x10

5
uv

-1.63 1x10~Vdr
(45)

Substituting the highest derivative terms into each equation and alter a great deal

of algebraic work.

v = _o.437, /r + 0.027///1 - 5.06x10~
4
mv + 6.49jc10~V«5»- - 2. 3890 (46)

p = 0.02 1 ur - 9.8.v10"
3
m/> -3.384x10

_4
mv + 1.249xl0~Ve)r - 0.3780 (47)

/• = -7.2xlO~
3
Mr + 7.8x10

_5
m/> -3.888x10~

S
mv - 1.595xl0~Vt>r - 4.O94xl()~

3
(48)

A. DESIGN SPECIFICATIONS

In general, the required time to achieve a course change in a ship depends on

1. The forward speed,

2. The difference between previous and commanded course,

3. Applied rudder angle,

4. Rudder area,
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5. The length and hull structure of the ship.

The submerged condition is also a very important aspect since the required turning

time is about three times greater for a submerged submarine than a surfaced one. espe-

cially at lower speeds, it is very hard to achieve the desired course for a submerged sub-

marine.

It is concluded that for the speeds which are less then 10 Kts., a control system must

achieve every 10 degrees course change in 30 seconds. This allows 9 minutes to complete

a 180 degrees turn and it is very reasonable for a low speed submerged submarine. For

higher speeds this time limit would be 20 seconds. It is also considered that more than

2.5 degrees overshoot is not acceptable.

The mechanical limit angle for rudder is also 35 degree and has to be considered in

the design process.

B. DESIGN

The cascade compensation method will be used for the horizontal motion. Since the

aim of this chapter is to design a basic steering control, the roll response will not be in-

vestigated. The yaw response to the rudder is the only input-output relation of interest

at this point. Figure 75 represents a control model for the horizontal motion.

A signal flow graph is given on Fig. 76 for the linearized equations of horizontal

motion. The corresponding numbers for symbols in the flow graph are given below:

a = 0.437;/

b = 0.027t/

c = -5.0x lQ-*u

d= 6.5.\iO-V

e = -2.39

/= 0.02 \u

g = -9.8*10 -hi

h = -2.4xlO-4u

i= l.25.vlO-V

j= -0.378

A = -7.2.vlO-3M

. /=-7.8.\T0 -u

m = -3.9xl0~!u

n = -\.6x\0~ht

o = -4.1.X-10- 3
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Ordered Submarine

6
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Yaw
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Yaw \
i _

Figure 75. Cascade Compensated Control Model for Horizontal Motion

1. Decoupling

Since this signal flow graph creates 13 loops to be handled, it is considered to

take u as 10 ft.,'sec. at the beginning of the calculation in order to reduce the amount

of required algebraic work.

Applying Mason's gain rule to the signal flow graph given in Fig. 76. the input-

output relation for yaw will be as follows

}•«"'
r -1.6.yK)~V -5AvlO~-y -6.S.vlO~

5
5 - 6.5.vl0~*

P S . n «-,r 4 , IX -,onr 3 , ,, , , -, , 2 - -~ ...-5dr s~ + 0.1755 +0.3S855 +0.022.S -5.77*10 '5
(49)

In factorized form, the same equation will be

-l.O.vlO [s + 0.1 176 + />.6222)(5 + 0.1 176 -j().6222)(s + 0.102)

.s(5 + 0.0587 +j0.6\52){s + 0.0587 -jU.b\52){s + 0.0602 )( 5 - 0.0025J
G„ = (50)

As can be seen from the transfer function, there is a real pole in the right half

plane which is very near to the origin. The characteristic equation roots arc

-0.05S+/0.6I5

-0.018+/0.020

-0.1

-0.022
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Figure 76. Signal Flow Graph for Horizontal Equations of Motion

The root locus plot and open loop Bode plot for G are given in Fig.s 77 and

78.

The root locus plot shows that there is a very small gain range where the system is sta-

ble. The Bode plot also agrees that the system is unstable with 15 degrees negative phase

margin and there reallv is a small gain ranee over which the svstem will be stable with

a small damping.

Since it is obvious that a gain adjustment will not be enough to get the desired

response out of the system, the cascade compensation will be required. In order to

100



com pi

oovt**

YAW/RUDDER
NO COMPENSATOR

t>c suit" nun m
KPL fTWI llfftlNW WftT

0.05M999J
O.OS^WW

-0. 06019991
0.003V3OO0
0.00000000

O.IIS20000

00000000
o.e
o.

rtc smelt r&au m
*x awu part t>c rtuuxiw

ROH. HWI IffSIMtl PUTT

:§:!!££ -MBWB
-O.lOltWW o.

o

to
• J-* O *o

«...

r |f
1 II 1 v .

>

•

. .

ft

II

>

*

o"

to

X

I
"

•

1

M
ft

E
t

ft

ft

ft

ft

ft

ft

ft

\O"

o"

o
o ,_-X- —

)

fd
1

\
-0.200-0.175 -0.150 -0.125 -0.100 -0.075

RERL AXIS
-0.050 -0.02S 0.000 0.02S

vaw
Figure 77. Root Locus Plot for —:— .

Or

KM



3SUHd
coei- 0'0>2-

I L-O

(TO* O'OZ O'O 0*02-

(80) 3QniIN9yW
O'OV- 0*09-

Fis Open Loop Code Plot for
ynw

102



increase phase margin a first order lead compensator is to be added to the forward path.

Using cascade compensator design techniques, the first trial would be

Q.l 5 + 0.01 _ (5 + 0.01)

0.01 5 + 0.1
1U

5 + 0.1
{ }

There will be no gain adjusment at this point.

The Bode plot for the compensated system is given in Fig. 79. The phase margin

is 40 degrees and that is about the maximum phase which can be acquired with only one

cascade compensator. The root locus plot shows that the compensator has moved a lot

of root locations to the left half plane and it is given in Fig. 80.

Since the root locus and Bode plots show very reasonable damping and stability,

it is considered that the compensated system is ready for the simulation. The DSL sim-

ulation program which is used for the validation of the linear model (Appendix E), is

updated with the designed cascade compensator. This program is given in Appendix G

including required modifications.

2. Simulation

The same plane actuators which were used for the stern and bow planes, are

used for the rudder in the simulation program. But since the input is totally different, it

is necessary to design a dilfcrcnt criteria for the limiter. The first run was made without

any limiter. then using trial and error, the best limiter choice is appeared to be:

lim =0.070 when u < 12 Kts.

lim =0.050 when 12 < u < IS Kts.

lim =0.035 when u > 18 Kts.

The complete model which is used in the simulation program is given in Fig. 81.

'lest run results which were achieved with different sets of speed and course, are

given in Figures 82 to 90. The roll response is also given in order to make sure that

submarine docs not exceed maximum allowable roll limits. Each run is explained briefly

below:

Run No. 1:

Using 6 Kts. forward speed and 10 degrees course change, the maximum re-

quired rudder angle was 82 degrees. Therefore it is necessary to use a limiter on the error

signal.
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Figure 81. Block Diagram for Compensated Linear Model in Horizontal Motion

Run No. 2:

Using the limiter which was mentioned above and for 15 degrees course change,

the maximum required rudder was 33 degrees. It takes 46 second to get 15 degrees course

alteration with only 2.5% overshoot.

Run No. 3:

This time the system is tested with the same speed for a 90 degree course change

which is one of the commonly used commands in a submarine. It takes 214 sec. to ex-

ecute this connnand which is in the specified limits. The overshoot is 1.5% and maxi-

mum required rudder angle is also 33 degrees.

Run No. 4:

In order to get the speed range in which the compensated system stays in the

required specifications, the forward speed is increased to 10 Kts. For a 15 degree course

change the time to execute the command is 22 sec with 1.9 feet overshoot.

Run No. 5:

for 90 degrees course change with 10 Kts. forward speed the time to execute the

command is 103 sec. with 1.5% overshoot. Maximum required rudder angle is still 33

degrees. As can also be seen from Fig. 86 the maximum roll is about 3 degrees.
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Runs No. 6 and 7;

These runs were made with 15 Kts. forward speed for 15 and 90 degrees course

changes. While the required time decreases with increasing speed, the overshoot in-

creases. But the results arc still in the specification limit as can be seen from Fig.s S7 and

88. The maximum roll angle is 5 degrees lor 15 Kts. forward speed which is also rea-

sonable. The maximum required rudder angle is 23 degrees for this case.

Runs No. S and 9:

These runs were made with 20 Kts. forward speed also dictated the speed range

for the compensated system because it becomes too oscillatory after 20 Kts. which is not

desirable. It is necessary to add another cascade compensator to the forward path in

order to get enough damping for speeds higher than 20 Kts. It is to be noted that using

a limiter also helps to keep the roll angles small. In this case the maximum rudder angle

is only 16 degrees because of the limiter effect. With this limited rudder angle the maxi-

mum roll is only 8 degrees. Even though it is not intended to control the roll, the limiter

supplies an indirect control on the roll response.

Finally it is considered that the designed automatic control for the linearized

horizontal motion using cascade compensator design techniques, is satisfactory for the

speed range of 6 to 20 Kts. This design should be checked in the actual non-linear sys-

tem.
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V. VALIDATION OF THE COMPENSATED NON-LINEAR MODEL

The main purpose o[ this study was to show that it is possible to design a

compensator based on the linearized version of a non-linear model and then to com-

pensate the actual non-linear model with this designed compensator. In the previous

chapters the required compensators were designed for the linear models on vertical and

horizontal motions. These compensators had to be checked with the actual non-linear

model to sec that the system will really work with them.

The complete DSL simulation program for the non-linear model was already written

and used by Rcf 3 and Ref. 5. It is also used for this study to compare linearized models

with the non-linear model. In order to check the validity of automatic control systems,

the DSL simulation program is to be modified including the compensator and limitcr

algorithms in it. The modified version of the DSL program for the compensated non-

linear model is given in Appendix I.

A. SIMULATION

Lor the test runs to check the designed compensators, the same limitcr values are

used. Since the actual and commanded velocities ( U and UC ) are two different pa-

rameters and U is always somewhat less then UC, it is concluded to take actual speed

U as the parameter for the limitcrs. This will give more accurate plane deflections de-

pending on actual forward speed.

The non-linear simulation program was run at 6, 10, 12, 15 and 20 Kts. for various

depth, pitch and yaw commands. A di\ing submarine can give hundreds of maneuver

variations in three dimensional motions. Since it is not possible to include all of them:

only the most common commands and the commands which were used in Chapter 2.3

and A arc included for comparison purposes.

The trim values for the ordered speed are carefully calculated from RcL 5 and im-

plemented in the non-linear model.

Test run results which were achieved for different sets of speeds and commands are

given in Figures 91 to 106. Each run is explained briefly below:

Runs No. 1-4:

The simulation program was run for 10 and 100 ft. depth changes at 6 Kts. com-

manded forward speed. As can be seen from Fig. 91 the non-linear model completes a

10 ft. depth change 10 sec. after the linear model docs. It completes a MM) ft. depth
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change 20 sec. alter the linear model and overshoots for both case are on the specifica-

tion limits. I here is also a 1 It. steady state error for both cases.

At the same speed the simulation program was run for 15 and 90 degree course

changes. As can be seen from Fig. 92 the non-linear model takes about 100 seconds to

achieve a 15 degree course change with no overshoot and a slight undershoot. Also the

required time to make a 90 degree course change is more than 360 seconds lor the non-

linear model. These two case are also non-acceptable.

The main reason for this failure is the decreasing forward speed due to the plane

deflections. I he forward speed, depending on the amount of the rudder deflection, ac-

tually drops up to 4 Kts. while achieving a course change maneuver. The same thing also

happens for a depth change maneuver due to the stern and bow planes. The

compensators were designed for actual 6 Kts. and higher speeds and they do not meet

the specifications for less than 6 Kts. forward speed.

Under these circumstances no more investigations were made at 6 Kts. At this point

it is concluded to operate at 10 Kts.

Runs No. 5-8:

As can be seen in big. 93 the non-linear model completes a 10 ft. depth change in

42 seconds with 1 ft. overshoot at 10 Kts. It completes a 100 ft. depth change in 106

seconds with 3.5% overshoot. These numbers satisfied the required specifications and

they are nearly the same as for the linear model with a little time lag.

As can be seen in fig. 94 the non-linear model makes a 15 degree course change in

25 seconds with 0.8 degree overshoot which is less than the linear case. For a 90 degree

course change the time is 205 seconds with no overshoot. Again due to the rudder drag

force, the time to reach the commanded course is much larger but more realistic than the

linear case. Since the constant speed assumption which is used for the linear model is

no longer valid for large perturbations, this is really expected. On the other hand the

designed cascade compensators can still control the actual non-linear system effectively

enough and in fact, with less overshoot which is very important from the point of this

study.

Runs No. 9-12:

In order to have an idea about speed deviation due to the plane deflections, four

runs were performed for 10 and 100 feet depth change and 15 and 90 degree course

change at 10 Kts. As can be seen in Fig. 95 there is an appreciable difference between

the drag forces created by rudder and bow, stern planes. This is expected since the rudder

has a lot more surface than the other planes. For a 15 degree course change the forward
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speed drops abruptly to 9.3 Kts. and goes back to it's original value in a relatively small

time. For a 90 degree course change, the forward speed drops up to 9 Kts. and stays al-

most constant, for about 150 seconds which is the greatest cause for the slower course

change rate.

Runs No. 13 and 14:

Since the linear model assumes no cross-coupling between vertical and horizontal

motion, these runs are performed only for the non-linear model. Cross-coupling effects

on depth and pitch angle are shown in Fig. 96 at 10 Kts. for 15 and 90 degree course

change commands. For both commands, the submarine stays in the 5 feet depth and 2

degrees pitch error limitations.

Run No. 15:

One of the most difficult maneuver for a submarine is to change depth while

achieving a course command. Results of such a maneuver are given on fig. 97 and Fig.

9S. A simulation run for simultaneous 90 degree course and !<)<) It. depth change com-

mands, shows that the time to reach 90 degree course change is about 40 seconds longer

than the usual condition but it docs not affect the depth change. Because of the rudder

elfect only a small depth error appears until the submarine settles on the desired course.

As can be seen in Fig. 98 the non-linear submarine's roll and pitch responses arc

somewhat non-regular but still in reasonable limits for this case. The forward speed de-

viation due to the plane drag forces is also given in Fig. 98. Speed drops up to S.3 Kts.

and this gives an explanation for lower course change rate.

As a result for this run. even though the designed control systems interact, they can

work well simultaneously.

Runs No. 16 and 17:

In order to be able to compare fixed rudder effects on depth and pitch angle, two

simulations were performed for 15 degree and 35 degree fixed rudder commands in the

same fashion as in Chapter 4 at 12 Kts. For 15 degree rudder the pitch and depth errors

stay in specified limits but for 35 degree rudder these errors arc not allowable. Simulation

results for this case are given in Fig. 99.

Runs No. IS and I
1
):

Figure 100 gives the simulation results for a 15 and a 90 degree course change at 15

Kts. for both linear and the non-linear models. The yaw response for 15 degree course

change is almost the same as the response for 10 Kts. with a little more overshoot and

oscillation. On the other hand the non-linear model shows a better response with less

overshoot for both cases.



Runs No. 20 and 21:

Figure 101 gives the simulation results for a 10 and a 100 feet depth change at 15

Kts. Surprisingly there is almost no difference between linear and non-linear model for

the 10 feet depth change. But for the 100 ft. depth change the non-linear model has a

faster response than the linear model. This is unusual and created by different limiter

behaviors on bow planes at this specific forward speed.

Runs No. 22 and 23:

In a real submarine a depth change command usually comes with a pitch command

in order to reduce the time to get the desired depth. Figure 102 gives the results of such

a command for 100 feet depth change with 5 degree down pitch angle at 6 and 15 Kts.

For both cases the submarine reaches the desired depth 35 seconds before the case for

which no pitch command is given. But as a trade-off the overshoots are over 10%. Also

the pitch command has to be reduced to zero before the desired depth is reached in order

to avoid too much overshoot and a steady state error on depth. This is done 10 feet

before the desired depth is reached, for 6 Kts and 50 feet before for 15 Kts.

Runs No. 24 and 25:

Finally the compensated non-linear system was checked at 20 Kts. For a 15 and a

90 degree course change, the yaw responses of the compensated submarine are given in

Fig. 103. Once again the non-linear model gives a better but slower response then the

linear model. For the 15 degree course change the yaw responses of both models become

too oscillatory due to the high speed. But the compensator still works well enough to

control the submarine.

Runs No. 26 and 27:

Figure 104 gives the compensated submarine depth responses for a 10 and a 100 feet

depth change at 20 Kts. There is a 0.8 feet steady state error for both cases which is

created by the system dynamics due to the high speed. The control system design is

based oil 10 ft., sec. ( 6 Kts.) forward speed. At 20 Kts. the transfer functions which

describes the submarine dynamics might have very different characteristics. Conse-

quently it is concluded that the upper speed limit for this design is 20 Kts. In fact, the

control system works up to 25 Kts. without exceeding design specification limits.

The compensated submarine pitch responses for the same runs are given in Fig. 105.

The linear and non-linear models show very similar pitch behavior and pitch angles do

not exceed the given 2 degree limit even for this high speed.

As a result of this chapter it has been shown that the designed automatic control

system for the linearized model can also work cfTectivelv on the actual non-linear model.
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10 FEET DEPTH CHANGE UC = 6 KTS.
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Figure 91. Compensated Submarine Depth Responses at 6 Kts.



15 DEC COURSE CHANGE UC = 6 KTS.
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Figure 92. Compensated Submarine \z\\ Responses at 6 Kts.
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10 FT. DEPTH CHANGE UC = 10 KTS.
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Figure 93. Compensated Submarine Depth Responses at 10 Kts.
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15 DEC COURSE CHANGE UC = 10 KTS.
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figure 9-4. Compensated Submarine Yaw Responses at 10 Kls.
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FORWARD SPEED DEVIATIONS UC = 10 KTS.
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Figure 95. Deviations from the Commanded Speed for Non-Linear Submarine
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CROSS-COUPLING EFFECT ON DEPTH UC = 10 KTS.
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Figure 96. Cross-Coupling Effects for the Non-Linear Submarine at 10 Kts.
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YAW RESPONSE FOR 90 DEC AND 100 FT. CHANGES
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ROLL AND PITCH RESPONSE UC = 10 KTS.

ROIL
PITCH

100 200

TIME (SEC.)

JOO

FORWARD SPEED DEVIATION

N
t

100 200

TIME (SEC.)

300

figure 98. Roll. Pitch and Speed Response for Multi-Manevuer Submarine.
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CROSS-COUPUNG EFFECT ON DEPTH U = 12 KTS
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Figure 99. Depth and Pitch Response for Fixed Rudder Commands U= 12 Kts.
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15 DEC COURSE CHANGE UC «= 15 KTS.

NONLINEAR MODEL
Dunn Linnci10 UNLAIt UUUbL

N

ff-K
e>
LUD _w B

£<
>-

* - 1

o 1 1 I 1 1 1 1

100 200 300

TIME (SEC.)

90 DEC COURSE CHANGE UC = 15 KTS.

3 -

R s -

o
too
r ? _
*:
<
>-

1/
oM

i i i i i i i

100 200 300

TIME (SEC.)

Figure 100. Compensated Submarine Yaw Responses at 15 Kts.
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10 FT. DEPTH CHANGE U = 15 KTS
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Figure 101. Compensated Submarine Depth Responses at 15 Kts.
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1 00 FT. DEPTH CHANGE WITH 5 DEC PITCH ANGLE
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Figure 102. Depth Change with 5 Deg. Down Pitch Angle for Non- Linear Sub.
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15 DEC COURSE CHANGE UC = 20 KTS.
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Figure 103. Compensated Submarine Yaw Responses at 20 Kls.
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10 FT. DEPTH CHANGE U = 20 KTS.
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Figure 104. Compensated Submarine Depth Responses at 20 Kts.
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PITCH RESPONSE TO 10 FT. DEPTH CHANGE
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Figure 105. Compensated Submarine Pitch Response to Depth Change Commands
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VI. CONCLUSIONS AND RECOMMENDATIONS FOR FURTHER

WORK

A. CONCLUSIONS

The linearization of given non-linear differential equations of motion in six degrees

of freedom, designing two automatic control systems using cascade compensator design

techniques for vertical and horizontal motion of a submarine and finally investigating

cross-coupling effects due to the rudder deflections were the main concerns in this study.

It has been shown that using linearized equations to design an automatic control for

the actual non-linear system is possible for the submarine problem. Also cascade com-

pensation, using a single loop technique, which was mainly the Bode plot design in this

study, is possible and practical for automatic pitch, depth and yaw control of small

submarines.

The designed control systems for both planes satisfied the design specifications for

a speed range from 8 to 20 Kts. That means the compensated system is rather insensitive

to speed deviations. Therefore all problems related to gain switching, like cluttering and

discontinuities in plane angles, are avoided. This is especially important because the

forward speed changes significantly during maneuvers.

The implementation of the designed compensators into hardware has the following

desirable features:

1. Minimal Instrumentation: Since rate information is not required, no inertial guid-

ance system is necessary. Only a regular gyro for course and simple sensors for

depth and pitch angle are needed.

2. Low Cost. Weight and Size: The simplicity of the compensator transfer functions

makes them easily realizable in physical hardware at low manufacturing cost.

Weight and size requirements are very small, another important factor especially

for small coastal submarines. A wide speed range is covered by one fixed

compensator and no changes in parameters are necessary.

3. Reliability: The automatic controller can be realized with a set of physical com-
ponents with a well known high reliability. High component reliability and a small

number of components will generally result in a high system reliability.

B. RECOMMENDATIONS FOR FURTHER WORK
1. The designed control system in this study can keep the pitch and depth errors in

reasonable limits for small rudder deflections and course changes. But larger deflections

still create an appreciable amount of depth and pitch error at high speeds which is not
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corif n

desirable lor near surface operations. It might be worthwhile to improve this design to

get a sufficient control on cross-coupling effects for all kinds of heavy maneuvers. This

can be done using different sets of parameters for the compensators and limiters and or

increasing the numbers of compensators for the vertical control of the submarine.

2. In some operational conditions it is very important to reach a desired depth as

soon as possible in a submarine. Therefore an additional pitch angle command is given

which has an enormous effect on depth change rate. For the present design it is possible

to give both depth and pitch command at the same time but the watch olficcr has to

decide where to change the pitch command to zero. Otherwise, depending on the forward

speed and commanded pitch angle, the submarine might not stay on desired depth.

The present design can be modified using a new algorithm which can decide where

and in what fashion to decrease the pitch angle automatically in order to get desired

depth and stay there without any unacceptable overshoot and steady state error.
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APPENDIX A. DEFINITIONS OF SYMBOLS

SYMBOL DEFINITION

A clot over any symbol signifies differentiation

with respect to time.

B Buoyancy force which is positive upwards.

m Mass of the submarine including the water in the

free lloating spaces.

Overall leneth of the submarine.

U Linear velocity of origin of body axes relative

to an earth-fixed axis svstem.

Component of U along the body x-axis.

Component of U along the body y-axis.

w Component of U along the body z-axis.

Command speed.

Longitudinal axis of the body fixed coordinate

axis system.

Transverse axis of the body fixed coordinate

axis system.

Vertical axis of the body fixed coordinate axis

svstem.
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Distance along the x axis of an earth-fixed

axis svstem.

COpif* y±i

Xo Distance along the y axis of an earth-fixed

axis svstem.

^0 Distance along tlie z axis of an earth-fixed

axis svstem.

Component of angular velocity about the body

fixed x-axis.

Component of angular velocity about the body

fixed y-axis.

Component of angular velocity about the body

fixed z-axis.

The z coordinate of the center ofbuoyance

( CI3 ) of the submarine.

Angle of attack.

P

Sb

5r

Sb

Angle of drift.

Deflection of bow or fairvvater planes.

Deflection of rudder.

Deflection of stern planes.

n The ratio -— .

Pitch ansle.
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'A

-A

Yaw ancle.

Roll angle.

Mass density of sea water.

W Weight of water blown from a particular

ballast tank identified by the integer assigned

to the index i.

CO Angular velocity.

lime.

v„ Location along the body x-axis of the center

of mass of the i"' ballast tank when this tank is

filled with sea water.

Propulsion force.

Moment of inertia of a submarine about the

x-axis.

Moment of inertia of a submarine about the

y-axis.

Moment of inertia of a submarine about the

z-axis.

All K's

All M's

Non-dimensional constants each of which is assigned

to a particular force term in the equation of motion

about the body x-axis.

Non-dimensional constants each of which is assigned

to a particular force term in the equation of motion

about the bodv v-axis.
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All X's Non-dimensional constants each of which is assigned

to a particular force term in the equation of motion

about the bodv z-axis.

AH X's Non-dimensional constants each of which is assigned

to a particular force term in the equation of motion

alone the bodv x-axis.

All Y's Non-dimensional constants each of which is assigned

to a particular force term in the equation of motion

alone the bodv v-axis.

AllZ's Non-dimensional constants each of which is assigned

to a particular force term in the equation of motion

alone the bodv z-axis.
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APPENDIX B. HYDRODYNAM
EQl

. AXIAL FORCE

XQQ = -0.000200 XRR
XUDOT = -0.000150 XVR
XUU = 0.0 XVV

XDSDS = -0.002500 XDBDB

XWWN = 0.0 XDR2N

-0.000090 XRP = 0.000250

0.011000 XWQ = -0.007500

0.006500 XDRDR = -0.002800

-0.002600 XVVN = 0.0

0.0 XDS2N = 0.0

B. LATERAL FORCE

YPT" = 0.0 YPQ = 0.000200 YPDOT = -0.000300

YRDOT = 0.000090 YVDOT = -0.011000 YV/R/ = -0.007300

YWP = 0.007500 YR = 0.003000 YRDR = 0.0

YP s= -0.000700 YUU = 0.0 YV/V/ = -0.060000

YV = -0.021000 YDR = 0.006200 YWV = -0.065000

YVS = 0.0 YRN = 0.0 YVN = 0.0

YVAVN = 0.0 YDRN = 0.0

C. NORMAL FORCE

ZRR = -0.001500 ZRP = -0.000900 ZQDOT = -0.000200

ZWDOT = -0.007500 ZVR = -O.OOSOOO ZW/Q/ = -0.006000

ZQ = -0.004500 ZQDS = 0.0 ZVP -0.007000

zuu = -0.000100 ZVV = 0.000650 ZW/W/ = -0.030000

zw = -0.011000 ZDS = -0.005000 ZDB -0.002500

Z/W/ = 0.0 ZWW = 0.0 ZVS 0.0

ZQN = 0.0 ZWN = 0.0 ZWAWN = 0.0

ZDSN = 0.0 Z+VP = 0.0

142



D. ROLLING MOMENT

KP/P/ = -0.0000008 KQR = -0.000100 KPDOT = -0.000003

KRDOT = -0.000007 KVDOT = -0.000250 KWP - 0.000250

KR = -0.000040 KP = -0.000035 KUU = o.o

KV/V/ = -0.000900 KV = -0.000700 KDR = 0.O00070

KWV = 0.003500

E. PITCHING MOMENT

MRR = -0.0005500 MRP = 0.000150 MQDOT = -0.000400

M 4- RP = 0.0 MWDOT = -0.000200 MVR -0.002000

M/W/Q = -0.002000 MQ = -0.002500 MQDS = 0.0

MVP = 0.000900 MUU = 0.000040 MVV 0.015000

MW/W/ = -0.005000 MW = 0.003000 MDS -0.002500

MDB = 0.000500 M/W/ = 0.0 MWW 0.0

MQN = 0.0 MWN = 0.0 MWAWN = 0.0

MDSN = 0.0

F. YAWING MOMENT

NPQ = -0.0004000 NPDOT = -0.000007 NRDOT = -0.000500

NVDOT = 0.000300 N/V/R = -0.004500 NWP = -0.000200

NR = -0.003000 NRDR = 0.0 NP = -0.000005

m;u = 0.0 NV/V/ = 0.014000 NV = -0.007500

NDR = -0.003000 NWV = 0.015000 NRN = 0.0

NVN = 0.0 NVAVN = 0.0 NDRN = 0.0

G. OTHERS

Al = -0.00 1000 A2 = -0.000950 A3 = 0.001950

LC = 415.0 ML = 0.00S7445 BZI5 = 0.0010114

IX = 7.31LvlO~ 6 IY = 5.6S67.vlO-< 1 IZ = 5.6867x10 4
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APPENDIX C. STANDARD EQUATIONS OF MOTION

A. AXIAL FORCE

in{u - ir + wq) = — l\X
qqq
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B. LATERAL FORCE

SRI

m{y - wp + w) = 4" ^t Yff + }>]

<° ,3+ t'

P ,3
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C. NORMAL FORCE
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D. ROLLING MOMENT

l*P + (Iz~ 1y)<1r = T l^ k'pP + Kqr (
l
r + KPKp\p]P\p\l

CO^rER j£*J
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E. PITCHING MOMENT
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F. YAWING MOMENT
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G. AUXILARY EQUATIONS
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APPENDIX D. SIMULATION PROGRAM FOR LINEARIZED

VERTICAL EQUATIONS OF MOTION
THIS PROGRAM SIMULATES THE LINEARIZED SUBMARINE EQUATIONS
IN THE VERTICAL PLANE.

TITLE SUBMARINE EQUATIONS FOR THE VERTICAL PLANE

* AXIAL SPEED
CONST U=8. 445
INITIAL

DS=0.
DB=0.0

DERIVATIVE
DB=0. 0*STEP(0)
DS=0. 0*STEP(0)
THETA=INTGRL(0. 08726, Q)
DEPTH = INTGRL(. 0,ZDOT)
Q=INTGRL(. 0,QDOT)
ZDOT=INTGRL( -0. 736,ZDDOT)
Yl=-1. 728E-3*U*ZDOT
Y4=-0. 706*U*Q
Y5=(0. 0128-(1. 728E-3)*U*U)*THETA
Y2=-6. 667E-4*U*U*DS
Y3=-3. 873E-4*U*U*DB
ZDD0T=Y1+Y2+Y3+Y4+Y5
Y0=1.884E-5*U*ZD0T
Y9=-6. 365E-3*U*Q
Y6=3. 193E-6*U*U*DB
Y7=-1.465E-5*U*U*DS
Y8=((l. 884E-5)*U*U-2.522E-3)*THETA
QD0T=Y0+Y8+Y6+Y7+Y9
DEP=INTGRL(.0,ZDOT)

CONTROL FINTIM=360
PRINT 1. ,THETA, DEPTH , ZDOT
SAVE . 1 , W , ZDOT , THETA , DEP
GRAPH( DE=TEK6 18 )TIME , THETA , DEP
LABEL INITIAL CONDITION RESPONSE IN. PITCH=5 DEG. U=5 KTS.
GRAPH(DE=TEK618)TIME , ZDOT
LABEL INITIAL CONDITION RESPONSE IN. PITCH=5 DEG. U=5 KTS.
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APPENDIX E. SIMULATION PROGRAM FOR LINEARIZED

HORIZONTAL EQUATIONS OF MOTION
THIS PROGRAM SIMULATES THE LINEARIZED SUBMARINE EQUATIONS
IN THE HORIZONTAL PLANE.

Vr

TITLE SUBMARINE EQUATIONS FOR THE HORIZONTAL PLANE
»v

* AXIAL SPEED
CONST U=30. 4

INITIAL
DR=0.

DERIVATIVE
Yl=l. 89*RDOT
Y2=-6. 3*PDOT
Y3=-0. 291*U*R
Y4=-0. 035*U*P
Y5=-2. 563E-3*U*V
Y6=7. 568E-4*U*U*DR
VDOT=Y 1+Y2+Y3+Y4+Y5+Y6
Y7=-0. 679*RDOT
Y8=-0. 0584*VD0T
Y9=-9.347E-3*U*R
Y10=-8. 179E-3*U*P
Y11=-3.942E-4*U-'V
Y12=3.942E-5*U*U*DR
Y13=0. 236-PHI
PD0T=Y7+Y8+Y9+Y10+Y11+Y12-Y13
Y14=-6. 553E-3*PDOT
Y15=6. 767E-4*VD0T
Y16=-6. 767E-3*U*R
Y17=-4. 511E-6*U*P
Y18=-4. 076E-5*U*V
Y19=-l. 631E-5*U*U*DR
RDOT=Y14+Y15+Y16+Y17+Y18+Y19
P=INTGRL(. 0,PDOT)
V=INTGRL(. 0,VDOT)
R=INTGRL(. 0,RDOT)

* PHI=INTGRL(0. 43633, P)
PHI=INTGRL(0. 0,P)
XI=INTGRL(. 0,R)

DYNAMIC
IF(TIME.GE. 10) DR = 0. 611
IF(TIME.GE.40) DR = -0.611
IF(TIME.GE. 70) DR = 0.

DRDEG = DR*57. 296
ROLDEG= PHI*57. 296
YAWDEG= XI*57. 296

CONTROL FINTIM=360
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PRINT 1. ,V,YAWDEG,ROLDEG
SAVE 0. 1,V,YAWDEG,R0LDEG,DRDEG
GRAPH( DE=TEK6 1 8 )TIME , YAWDEG , ROLDEG
LABEL FORCED RESPONSE TO 35 DEG. RUDDER U=18 KTS.
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COPIt:

APPENDIX F. SIMULATION PROGRAM FOR THE COMPENSATED

SYSTEM IN VERTICAL MOTION
THIS PROGRAM SIMULATES THE COMPENSATED SUBMARINE MOTIONS
IN THE VERTICAL PLANE.

Vf

*
*

TITLE SUBMARINE SIMULATION
PARAM Kl = 0. 015
PARAM K2 = 2.0
PARAM UC = 10.4
PARAM Z0R= 100.

PARAM P0R= 0.

it

DERIVATIVE
PITCH=INTGRL(0.0,Q)
DEPTH = INTGRL(. 0,ZD0T)
Q=INTGRL(. 0,QD0T)
ZDOT=INTGRL(-0. 736,ZDDOT)
Yl=-1. 728E-3*U*ZD0T
Y4=-0. 706*U*Q
Y5=(0. 0128-( 1. 728E-3)*U*U)*PITCH
Y2=-6.667E-4*U*U*DS
Y3=-3. 873E-4*U*U*DB
ZDD0T=Y1+Y2+Y3+Y4+Y5
Y0=1. 884E-5*U*ZDOT
Y9=-6. 365E-3*U*Q
Y6=3. 193E-6*U*U*DB
Y7=-l. 465E-5*U*U*DS
Y8=(( 1. 884E-5)*U*U-2. 522E-3)*PITCH
QD0T=Y0+Y8+Y6+Y7+Y9
DEP=INTGRL(.0,ZDOT)
ZER = Z0R - DEPTH
PER = POR - PITCH
ZERR= LIMIT(-LIM,LIM,ZER)
PERR= LIMIT(-LIM,LIM,PER)

DYNAMIC
IF(UC. LT. 15. ) LIM = 35.

IF(UC. GE. 15. ) LIM = 25
IF(UC. GE.25. ) LIM = 15.

^COMPENSATOR GCi:

Cll = -K1---ZERR

C12 = LEDLAG(0. ,1. o, 0. 1,C11)
DB = REALPL(0. ,. 667 ,C12)

'•'COMPENSATOR GC22
C21 = -K2*PERR
DS = REALPL(0. ,•<367',C21)
DSDEG = 57. 296'VDS
DBDEG = 57. 296'''DB
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PITDEG = 57. 296*FITCH
CONTROL FINTIM=360
SAVE 0. 1, DEPTH, ZDOT, PITDEG, DSDEG,DBDEG
PRINT 1. , PITDEG, DEPTH, ZDOT, DSDEG,DBDEG
GRAPH(DE=TEK618)TIME, PITCH, DEPTH
LABEL 100 FT. DEPTH CHANGE U=6 KTS.
GRAPH( DE=TEK6 18 ) DBDEG , DSDEG
LABEL 100 FT. DEPTH CHANGE U=6 KTS.
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^N^ COME

APPENDIX G. SIMULATION PROGRAM FOR THE COMPENSATED

SYSTEM IN HORIZONTAL MOTION
THIS PROGRAM SIMULATES THE COMPENSATED SUBMARINE MOTIONS
IN THE HORIZONTAL PLANE.

TITLE SUBMARINE SIMULATION FOR THE HORIZONTAL PLANE
•ft

PARAM Kl = 1. 00
PARAM LIM = 0. 065
PARAM U = 30. 4

PARAM 0RYAW=0. 2618

DERIVATIVE
Yl=l. 89*RD0T
Y2=-6. 3*FDOT
Y3=-0. 291*U*R
Y4=-0. 035*U*P
Y5=-2. 563E-3*U*V
Y6=7. 568E-4*U*U*DR
VD0T=Y 1+Y2+Y3+Y4+Y5+Y6
Y7=-0. 679*RDOT
Y8=-0..0584*VDOT
Y9=-9. 347E-3*U*R
Y10=-8. 179E-3*U*P
Yll = -3. 942E-4*U*V
Y12=3. 942E-5*U*U*DR
Y13=0. 236*PHI
PDOT=Y7+Y8+Y9+Y10+Y11+Y12-Y13
Y14=-6. 553E-3*PDOT
Y15=6. 767E-4*VDOT
Y16=-6. 767E-3*U*R
Y17=-4. 511E-6*U*P
Y18=-4. 076E-5*U*V
Y19=- 1. 631E-5*U*U*DR
RDOT=Y14+Y15+Y16+Y17+Y18+Y19
P=INTGRL(. 0,PDOT)
V=INTGRL(. 0,VDOT)
R=INTGRL(. 0,RDOT)
PHI=INTGRL(0. 0,P)
XI=INTGRL(. 0,R)

DYNAMIC
IF(U. LT. 20. 3)
IF(U.GE. 20. 3)
IF(U. GE. 30. 4)
ERR = ORYAW -

LERR= LIMIT(
^COMPENSATOR GC11

LCI A = -K1*LERR

LIM=0. 070
LIM=0. 050
LIM=0. 035
XI

LIM, LIM, ERR)

156



COPIfO

LC1B = LEDLAG(0. ,100. ,10. ,LC1A)
DR = REALPL(0. ,. 667,LC1B)
DRDEG = DR----57. 296
R0LDEG= PHI*57. 296
YAWI)EG= XI*57. 296

CONTROL FINTIM=360
PRINT 1. ,V,YAWUEG, DRDEG, ROLDEG
SAVE 0. 1,V,YAWDEG, ROLDEG, DRDEG
GRAPH(DE=TEK61 8 )TIME , YAWDEG, ROLDEG
LABEL 15 DEGREE COURSE CHANGE U=18 KTS.
GRAPH ( DE=TEK6 18 )TIME , DRDEG
LABEL RUDDER RESPONSE TO 15 DEG. COURSE CHANGE U=18 KTS.
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APPENDIX II. SIMULATION PROGRAM TOR NON-LINEAR

EQUATIONS OF MOTION

*THIS PROGRAM SIMULATES NON-LINEAR EQUATIONS OF MOTION IN SIX DEGREES
*OF FREEDOM FOR A SUBMERGED SUBMARINE
Vr

TITLE NONLINEAR SIX DEGREE OF FREEDOM SUBMARINE SIMULATION
PARAM UC = 18. 58
>'.-

*BALLAST TANKS CONTAINS FOR DIFFERENT AXIAL SPEEDS
•it

*FOR 5 KTS
*ARAM AT = -0. 800E-5
'•-ARAM FT = 0. 800E-5
*ARAM AU = 1. 400E-5
*FOR 6 KTS
*ARAM AT = -1. 03E-5
''"ARAM FT = 1. 03E-5
*ARAM AU = 2. 500E-5
"FOR 8 KTS
-••-ARAM AT = -1. 85E-5
'•ARAM FT = 1. 85E-5
'•-ARAM AU = 4. 50E-5
''•"FOR 9 KTS
''"ARAM AT = -2. 35E-5
'•ARAM FT = 2. 35E-5
*ARAM AU = 5. 70E-5
'•'FOR 10 KTS
PARAM AT = -2. 85E-5
PARAM FT = 2. 85E-5
PARAM AU = 7. 00E-5
*FOR 12KTS
''•"ARAM AT = -4. 138E-5
'•-ARAM FT = 4. 138E-5
*ARAM AU = 9. 7 7E-5
''•'FOR 18KTS
*ARAM AT = -8. 400E-5
''•'ARAM FT = 8. AOOE-5
*ARAM AU = 1. 80E-4
''•FOR 2 5 KTS
*ARAM AT = -9. 080E-5
••-ARAM FT = 9. 080E-5
"ARAM AU = 2. 100E-4

'"^RECALCULATED COFACTORS

PARAM DEL=. 18901E-16, COFAA=. 212502E-14, COFAB = 0.0, COFAC =0.0
PARAM COFAD = 0.0, COFAE = 0.0, COFAF = 0.0, COFBA = 0.0
PARAM COFBB=. 153152E-14, COFBC=0. 0, C0FBD=-. 186106E- 10 , COFBE = 0.

PARAM C0FBF=. 17543E- 12, COFCA=0.0, COFCB=0.0, COFCC =. 1 1665E- 14
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PARAM COFCD = 0.0, COFCE=-. 999506E-13 ,COFCF = 0.

FARAM COFDB=-. 905797E-16 ,COFDC=0. 0, COFDD=. 294191E-
PARAM COFDF=-. 224359E-13 ,COFEA=0. 0, COFEB = 0.0,
PARAM COFED = 0.0, COFEE=. 19562E- 13 , COFEF = 0.

PARAM COFFB=. 162929E-17, COFFC=0.0, COFFD=-. 31859 IE

PARAM COFFF =. 179521E-13

0, COFDA = 0.0
11, COFDE = 0.

COFEC=-. 58035E-18
0, COFFA = 0.

13, COFFE = 0.

*HYDRODYNAMIC COEFFICIENTS AND SUBMARINE CHARACTERISTICS

00095, A3 = .00195PARAM LC = 4

PARAM IX=7.

3

PARAM XUDOT
PARAM XDRDR
PARAM XRP
PARAM YVDOT
PARAM YV1R1
PARAM YPQ
PARAM ZWDOT
PARAM ZVV
PARAM ZDS
PARAM ZRP
PARAM KPDOT
PARAM K1V1V
PARAM KDR
PARAM MODOT
PARAM MVV
PARAM tfWDOT

PARAM NRUOT
PARAM NR
PARAM NVV
PARAM BZB
INCON YADOT
INCON DS =

CONTRL FINTI
PRINT 1. ,V,Y

INITIAL
LC2
IZX
IYX
IZY

15. 0, ML = . 0087445, Al = -0

114E-6,IY=5. 6867E-4, IZ = 5.

=-. 00015, XVR = . Oil, XWQ =
=-. 0028 , XDSDS=-. 0025 ,XDBDB=
= . 00025
=-. Oil, YWP = . 0075, YV =

=-.0073, YP =-. 0007,YRDOT=
=. 0002, YWV =-. 065
= -. 0075, ZVP =-. 007, ZS =
=. 065, ZQ =-. 0045,ZW1Q1=
= -.005, ZDB =-. 0025,ZQD0T=
=-. 0009
= -3.E-6,
=-. 0009,
= 7.E-5,
= -. 0004,
=. 015,
=-. 0002,
=-5. E-4,

KQR =-. 0001,KRDOT=
KP =-3. 5E-5, KR =

KWP = 2. 5E-4
MRP =. 00015, MS =

MQ =-. 0025,M1W1Q=
MDS =-. 0025, MDB =

NPQ =-4.E-4,NPD0T=

. 001, A2 = -.

6867E-4
-. 0075, XVV =

-. 0026, XQQ =-

-.021, Y1V1V=
. 00009, YPDOT=

-. 0001, ZW =

-. 006, ZVR =

-.0002, Z1W1 =

-7.E-6, KTP1P=
-4.E-5, KVDOT=

4. E-5, MW
.002, MVR
0005, M1W1
7.E-6, NV

= -.003, N1V1R =-. 0045, NP =-2. E-6 ,NVDOT
= . 015, NWP =-. 0002
= 1. 011413E-3
= 0.0, RODOT = 0.0, PIDOT = 0.0

, DB = 0. 0, DR =0.

M=360. ,DELT=. 01,DELS=. 5

AWGRA , ROLGRA , DEPTH , PITGRA

LC**2
I Z - 1

X

IY-IX
IZ-IY

. 0065, XWW =. 002
. 0002, XRR=-. 00009

-. 06, YR = . 003
-. 0003, YDR =. 0062

=-.on, zwiv;i=-.03
=-. 008, ZRR =-. 0015

0. 0, ZWW = 0.

=-8.E-7, KV =-. 0007
=-. 00025, KVW=. 0035

= . 003, M1W1W=-. 005
=-. 004, MRR=-. 00055
= 0. 0, MVP =. 0009
=-. 0075,N1V1V=. 014
=. 0003, NDR =-. 003

DYNAMIC

IF(TIME.GE. 10) DR =0. 611
IF(TIME.GE. 10) DB =0. 611
IF(TIME. GE. 40) DR =-0. 611
IF(TIME. GE. 40) DB =-0. 611
IF(TIME.GE. 70) DR =0.

IF(TIME. GE. 70) DB =0.

DERIVATIVE

'•PRECALCULATION FOR EQUATIONS OF MOTION
-.v

PA1 = XDRDR*U-'--U*DR--'-DR/LC
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PA2 = XDSDS*U*U*DS*DS/LC
PA3 = XDBDB*U*U*DB*DB/LC
PB = YDR*U*U*DR/LC
PC 2 = ZDS*U*U*DS/LC
PC3 = ZDB*U*U*DB/LC
PD = KDR*U*U*DR/LC2
PE2 = MDS*U*U*DS/LC2
PE3 = MDB*U*U*DB/LC2
PF = NDR*U*U*DR/LC2
PA = PA1 + PA2 + PA3
PC = PC2 + PC3
PE = PE2 + PE3
ABV = ABS(V)
ABW = ABS(W)
ABP = ABS(P)
ABQ = ABS(Q)
ABR = ABS(R)
VVWW= V*V + W*W
AVW = SQRT(VVWW)
ABWP=FCNSW(W,-1. ,0. ,1. )

ABVP=FCNSW(V,-1. ,0. ,1. )

SA1 =+LC*(XQQ*Q**2 + XRR*R**2 + XRP*R*P)
SA2 =+(ML*V*R + XVR*V*R + XWQ*W*Q -ML*W*Q)
SA3 =+(XW*V**2 + XWW*W**2)/LC - SIN(PITCH)*( AT+FT+AU)
SA4 =+(Al*U**2 + A2*U*UC + A3*UC**2)/LC
SB1 =+LC*YPQ*P*Q
SB2 =+(YWP*W*P + YV1R1*ABR*AVW*ABVP +ML*W*P - ML*U*R)
SB3 =+(YWV*W*V + Y1V1V*AVW*V)/LC + SIN(ROLL)*COS(PITCH)*( AT+FT+AU)
SB4 =(YR*R +YP*P +YV*V/LC)*U
SCI = LC*R*(ZRR*R + ZRP*P)
SC2 =+(ZVP*V*P + ZVR*V*R + ZW1Q1*ABQ*AVW*ABWP + ML*U*Q - ML*P*V)
SC3 =+(ZWW*W**2 + ZW*V**2 + ZW1W1*W*AVW + U*Z1W1*ABW + U*U*ZS)/LC
SC4 = ZQ*U*Q + ZW*U*W/LC + C0S(PITCH)*C0S(R0LL)*( AT+FT+AU)
SD1 =+(KQR*Q*R + K1P1P*ABP*P) - IZY*Q*R
SD2 = ( KWP*W*P-BZB*SIN(R0LL)*C0S( PITCH) )/LC
SD3 =+(KlVlV*V*AVW + KVW*V*W + KS*U**2)/LC2
SD4 = ((KP*P + KR*R)/LC + KV*V/LC2)*U
SE1 = (MRP-'-P + MRR*R + IZX*P)*R
SE2 = ((MVR*R + MVP*P)*V + M1W1Q*AVW*Q - BZB*SIN(PITCH) )/LC
SE3 =(MW*V**2 + MWW*W**2 + M1W1W*AVW*W +M1W1*U*AVW + U**2*MS)/LC2
SE4 = MQ*U*Q/LC + (MW*U*W -( 175. 5*FT-219. 5*AT)*COS( PITCH)*. .

.

C0S(R0LL))/LC2
SF1 = (NPQ-IYX)*P*Q
SF2 =+(NWP*W*P + N1V1R*AVW*R)/LC
SF3 = (NWV*W + N1V1V*AVW)*V/LC2
SF4 = (NP*P+NR*R)*U/LC+(NV*U*V+( 175. 5*FT-219. 5*AT)*COS( PITCH)*. . .

SIN(ROLL))/LC2
SA = SA1 + SA2 + SA3 + SA4
SB = SB1 + SB2 + SB3 + SB4
SC = SCI + SC2 + SC3 + SC4
SD = SD1 + SD2 + SD3 + SD4
SE = SE1 + SE2 + SE3 + SE4
SF = SF1 + SF2 + SF3 + SF4
ZA = SA + PA
ZB = SB + PB
zc = SC + PC
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ZD = SD + PD
ZE = SE + PE
ZF = SF + PF

>v

'"'EQUATIONS OF MOTION

UUOT =(COFAA*ZA+COFAB-'-ZB+COFAC*ZC+COFAD*ZD+COFAF.*ZE+COFAF*ZF)/DEL
VDOT =( COFBA--'-ZA+COFBB*ZB+COFBC*ZC+COFBD*ZD+COFBE*ZE+COFBF*ZF) /DEL
WDOT =(COFCA*ZA+COFCB*ZB+COFCC*ZC+COFCD*ZD+COFCE*ZE+COFCF*ZF)/DEL
PDOT =(COFDA*ZA+COFDB*ZB+COFDC*ZC+COFDD*ZD+COFDE*ZE+COFDF*ZF)/DEL
QUOT =(COFEA-v ZA+COFEB-'-ZB+COFEC-->ZC+COFED-'v ZD+COFEE--vZE+COFEF--'-ZF)/DEL

RDOT =(COFFA^ZA+COFFB''-ZB+COFFC''-ZC+COFFD"ZD+COFFE'vZE+COFFF^ZF)/DEL
>v

*AUXILARY EQUATIONS
-v

ZODOT =-U^SIN(PITCH)+V'vCOS(PITCH)^SIN(ROLL)+WlVCOS(PITCH)^COS(ROLL)
PIDOT = Q*COS( ROLL) -R*SIN( ROLL)
YADOT = (R-'-COS(ROLL)+Q^SIN(ROLL))/COS(PITCH)
RODOT = P+YADOT*SIN( PITCH)
U = INTGRL(UC,UDOT)
V = INTGRL(0. ,VDOT)
W = INTGRL(0. ,WDOT)
P = INTGRL(0. ,PDOT)

Q = INTGRL(0. ,QDOT)
R = INTGRL(0. ,RDOT)
DEPTH = INTGRL(0. , ZODOT)

* ROLL = INTGRL( 0.43633, RODOT)
ROLL = INTGRL(0. 0, RODOT)
PITCH = INTGRL(0. 7854, PIDOT)
PITCH = INTGRL( 0.0, PIDOT)
YAW = INTGRL(0. , YADOT)
DBGRA = DB*5 7. 296
DSGRA = DS*57. 296
DRGRA = DR*5 7. 296
PITGRA= PITCH*57. 296
ROLGRA= ROLL*57. 296
YAWGRA= YAW*57. 296

SAVE 0. 1,V, DEPTH, YAW, PITGRA, ROLL, ZODOT
GRAPH(DE=TEK61S)TIME, DEPTH, ZODOT, PITGRA
LABEL NI. PITCHO. 04RAD. U=18. 58 FT/SEC. NO PLANES
GRAPH( DE=TEK6 1 8 )TIME , ROLL , YAW ,

V

LABEL INI.ROLL=0. 1 RAD. U=18. 580 FT/SEC. NO PLANES
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APPENDIX I. COMPENSATED NON-LINEAR MODEL

*THIS PROGRAM SIMULATES THE COMPENSATED NON-LINEAR SUBMARINE IN SIX
^DEGREES OF FREEDOM

TITLE COMPENSATED NONLINEAR SIX DEGREE OF FREEDOM SUBMARINE SIMULATION
PARAM KH = 1. 00
PARAM Kl = 0. 015
PARAM K2 = 2.

PARAM UC = 18. 69
'"'ARAM ORYAW= 1.5 726
PARAM ORYAW=0. 2618
'•'PARAM ZOR=10.
PARAM POR=0.
it

'•'BALLAST TANKS CONTAINS FOR DIFFERENT AXIAL SPEEDS
•>(

''•"FOR 5 KTS
*ARAM AT = -0. 800E-5
*ARAM FT = 0. 800E-5
*ARAM AU = 1.400E-5
'>FOR 6 KTS
'•ARAM AT = -1.030E-5
'•ARAM FT = 1. 030E-5
'VARAM AU = 2.500E-5
'•'FOR 8 KTS
'•'ARAM AT = -1. 85E-5
''ARAM FT = 1. 85E-5
'''ARAM AU = 4. 5E-5
'TOR 9 KTS
PARAM AT = -2. 35E-5
PARAM FT = 2. 35E-5
PARAM AU = 5. 7E-5
'"'FOR 12KTS
*ARAM AT = -4. 138E-5
'''ARAM FT = 4. 138E-5
'•'ARAM AU = 9. 77E-5
'''FOR 18KTS
''ARAM AT = -8. 400E-5
''ARAM FT = 8.400E-5
''ARAM AU = 1. 80E-4
'''FOR 2 5KTS
*ARAM AT = -9. 080E-5
'''ARAM FT = 9. 080E-5
vARAM AU = 2. 100E-4

•'PRECALCULATED COFACTORS
•it

PARAM DEL=. 18901E-16, COFAA=. 212502E-14 , COFAB = 0.0, COFAC =0.0
PARAM COFAD = 0.0, COFAE = 0.0, COFAF = 0.0, COFBA = 0.0
PARAM COFBB=. 153152E-14, COFBC=0.0, COFBD=-. 186106E- 10 , COFBE = 0.0
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PARAIi COFBF=. 17543E-12, COFCA=0.0, COFCB = 0. 0, COFCC =. 11665E- 14

PARAM COFCD = 0.0, COFCE=-. 999506E-13 ,COFCF = 0.0, COFDA =0.0
PARAM COFDB=-. 905797E- 16 ,COFDC=0. 0, COFDD=. 29419 IE- 1 1

,

COFDE = 0.0
PARAM COFDF=-. 224359E-13 ,COFEA=0. 0, COFEB = 0.0, COFEC=-. 58035E- 18

PARAM COFED = 0.0, COFEE=. 19562E-13 , COFEF = 0.0, COFFA = 0.0
PARAM COFFB=. 162929E-17, COFFC=0.0, COFFD=-. 318591E- 13

,

COFFE = 0.

PARAM COFFF =. 179521E-13

*HYDR()DYNAM][C COEFFICIENTS AND SUBMARINE CHARACrERISTICS

PARAM LC = 415. 0, ML = . 0087445, Al = -0.,001, ,k2 = -. 00095, A3 = . 00195
PARAM IX=7.3114E-6,nr=5.6867E-4, IZ = 5. 1S867E-4
PARAM XUDOT = -. 00015, XVR = .011, XWQ = -.0075

, XVV = . 0065 , XWW ==.002
PARAM XDRDR = -. 0028, XDSDS:=-. 0025,XDBDB= -. 0026, XQQ =-. 0002, XRR=-. 00009
PARAM XRP = . 00025
PARAM YVDOT = -. Oil, YWP = .0075, YV = -. 021, YlVlV=-.06, YR == . 003
PARAM YV1R1 = -. 0073, YP =-. 0007,YRD0T= . 00009, YPDOT=-. 0003 , YDR == . 0062
PARAM YPQ =. 0002, YWV = -. 065
PARAM ZWDOT = -.0075, ZVP =-. 007, ZS = -.0001, ZW =-.011, ZW1W1== -.03
PARAM ZW =.065, ZQ = -.0045,ZWlQl= -. 006, ZVR =-. 008, ZRR =•-.0015
PARAM ZDS =-. 005, ZDB =-. 0025,ZQD0T= -. 0002, ZlWl = 0. 0, ZW = 0.

PARAM ZRP = -. 0009
PARAM KPDOT = -3.E-6, KQR =-. 0001,KRDOT= -7.E-6, KlPlP=-8.E-7 , KV =•-.0007
PARAM K1V1V = -. 0009, KP =-3. 5E-5, KR =-4.E-5, KVDOT=-. 0002.5,KVW=. 0035
PARAM KDR = 7.E-5, KWP = 2. 5E-4
PARAM MQDOT = -. 0004, MRP =. 00015, MS ~4.E-5, MV =. 003, 1ilWlW= -. 005
PARAM MVV =. 015, MQ = -. 0025,M1W1Q= -. 002, MVR =-.004, MRR=-. 00055
PARAM MWDOT =-. 0002, MDS =-. 0025, MDB =

. 0005, M1W1 = 0. 0, MVP =. 0009
PARAM NRDOT = -5.E-4, NPQ =-4.E-4,NPD0T= -7.E-6, NV =-.0075 ,N1V1V==. 014
PARAM NR = -. 003, N1V1R =-. 0045, NP = -2.E-6, NVDOT =. 0003, NDR = -. 003
PARAM N\v"V =. 015, NWP = -. 0002
PARAM BZB = 1. 011413E-3
INCON YADOT = 0.0, RODOT = 0.0, PIDOT =

INCON DS = 0. , DB = 0.0, DR =0.0
CONTRL FINTIM=360. ,DELT=. 01 ,DELS=.

5

PRINT 1. ,YAVDEG,ROLDEG, DEPTH, PITDEG,U

0.

NITIAL
LC2 = LC''f*2

IZX = IZ-•IX

IYX = IY-•IX

IZY = IZ-IY

-••-ERROR LIMIT CALCULATION
j'r

DYNAMIC
IF(U. LT. 15. ) LIMVER=35.
IF(U. GE. 15. ) LIMVER = 25

IF(U. GE. 25. ) LIMVER = 15.

IF(U. LT. 20. 3) LIMHOR=0.070
IF(U. GE. 20. 3) L1MII0R=0. 050
IF(U. GE. 30. 4) LIMHOR=0. 035
HER = ORYAW - YAW
ZER = ZOR - DEPTH
PER = POR - PITCH
ZERR= L1MIT( -LIMVER, LIMVER, ZER)
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.OOvt

HERR= LIMIT(-LIMHOR,LIMHOR,HER)
•ft

DERIVATIVE

''-PRECALCULATION FOR EQUATIONS OF MOTION
*

PA1 = XDRDR*U*U*DR*DR/LC
PA2 = XDSDS*U*U*DS*DS/LC
PA3 = XDBDB*U*U*DB*DB/LC
PB = YDR*U*U*DR/LC
PC 2 = ZDS*U*U*DS/LC
PC3 = ZDB*U*U*DB/LC
PD = KDR*U*U*DR/LC2
PE2 = MDS*U*U*DS/LC2
PE3 = MDB*U*U*DB/LC2
PF = NDR*U*U*DR/LC2
PA = PA1 + PA2 + PA3
PC = PC2 + PC3
PE = PE2 + PE3
ABV = ABS(V)
ABW = ABS(W)
ABP = ABS(P)
ABQ = ABS(Q)
ABR = ABS(R)
VVWW= V*V + W*W
AVW = SQRT(VVWW)
ABWP=FCNSW(W,-1. ,0. ,1. )

ABVP=FCNSW(V,-1. ,0. ,1. )

SA1 =+LC*(XQQ*Q**2 + XRR*R**2 + XRP*R*P)
SA2 =+(ML*V*R + XVR*V*R + XWQ*W*Q -ML*W*Q)
SA3 =+(XVV*V**2 + XWW*W**2)/LC - SIN(PITCH)*(AT+FT+AU)
SA4 =+(Al*U**2 + A2*U*UC + A3*UC**2)/LC
SB1 =+LC*YPQ*P*Q
SB2 =+(YWP*W*P + YV1R1*ABR*AVW*ABVP +ML*W*P - ML*U*R)
SB3 =+(YWV*W*V + Y1V1V*AVW*V)/LC + SIN(ROLL)*COS(PITCH)*( AT+FT+AU)
SB4 =(YR«R +YP-P +YV*V/LC)*U
SCI = LC*R*(ZRR*R + ZRP*P)
SC2 =+(ZVP*V*P + ZVR-V-R + ZW1Q1*ABQ*AVW*ABWP + ML*U*Q - ML*P*V)
SC3 =+(ZWW*W**2 + ZW*V**2 + ZW1W1*W*AVW + U*Z1W1*ABW + U*U*ZS)/LC
SC4 = ZQ*U*Q + ZW*U*W/LC + COS (PITCH) -COS (ROLL) ''"(AT+FT+AU)
SD1 =+(KQR*Q*R + K1P1P*ABP*P) - IZY*Q*R
SD2 = (k^P*W*P-BZB*SIN(ROLL)*COS( PITCH) )/LC
SD3 =+(KlVlV*V*AVW + KVW*V*W + KS*U**2)/LC2
SD4 = ((KP*P + KR*R)/LC + KV*V/LC2)*U
SE1 = (MRP*P + MRR*R + IZX*P)*R
SE2 = ((MVR*R + MVP*P)*V + M1W1Q*AVW*Q - BZB*SIN( PITCH) )/LC
SE3 =(MW*V**2 + MWW*W**2 + M1W1W*AVW*W +M1W1*U*AVW + U**2*MS)/LC2
SE4 = MQ*U*Q/LC + (MW*U*W -( 175. 5*FT-219. 5*AT)*C0S(PITCH)*. . .

COS(ROLL))/LC2
SF1 = (NPQ-IYX)*P*Q
SF2 =+(NWP*W*P + N1V1R*AVW*R)/LC
SF3 = (NWV*W + N1V1V*AVW)*V/LC2
SF4 = (NP*P+NR*R)*U/LC+(NV*U*V+(175. 5*FT-219. 5*AT)*COS( PITCH)*. . .

SIN(ROLL))/LC2
SA = SA1 + SA2 + SA3 + SA4
SB = SB1 + SB2 + SB3 + SB4
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sc = SCI + SC2 + SC3 + SC4
SD = SD1 + SD2 + SD3 + SD4
SE = SE1 + SE2 + SE3 + SE4
SF = SF1 + SF2 + SF3 + SF4
ZA = SA + PA
ZB = SB + PB
ZC = SC + PC
ZD = SD + PD
ZE = SE + PE
ZF = SF + PF

-•EQUATIONS OF MOTION

UDOT =(COFAA*ZA+COFAB' 'ZB+COFAC--'^ZC+COFAD''-ZD+COFAE
VDOT =(COFBA*ZA+COFBB--'ZB+COFBC'-'ZC+COFBD--''ZD+COFBE
WDOT =(COFCA*ZA+COFCB*•ZB+COFCC->-ZC+COFCD--'-ZD+COFCE
PDOT =(COFDA*ZA+COFDB--•ZB+COFDC-'ZC+COFDD--'ZD+COFDE
QDOT =(COFEA*ZA+COFEB''-ZB+COFEC-•'ZC+COFED'•-ZD+COFEE
RDOT =(COFFA*ZA+COFFB'•-ZB+COFFC--•-ZC+COFFD--''-ZD+COFFE

;'-ZE+COFAF-"-ZF)/DEL
frZE+COFBF*ZF)/DEL
'-ZE+COFCF"ZF)/DEL
'•ZE+COFDF*ZF)/DEL
*ZE+COFEF*ZF)/DEL
*ZE+COFFF*ZF)/DEL

*AUXILARY EQUATIONS
it

ZODOT =-U"->SIN(PITCH)+V^COS(PITCH)'vSIN(ROLL)+W'vCOS(PITCH)''-COS(ROLL)
PIDOT = Q*COS( ROLL) -R*SIN( ROLL)
YADOT = (R*COS(ROLL)+Q*SIN(ROLL))/COS(PITCH)
RODOT = P+YADOT*SIN( PITCH)
U = INTGRL(UC,UDOT)
V = INTGRLCO. ,VDOT)
W = INTGRLCO. ,WDOT)
P = INTGRLCO. ,PDOT)

Q = INTGRLCO. ,QDOT)
R = INTGRLCO. ,RDOT)
DEPTH = INTGRLCO. 0, ZODOT)
ROLL = INTGRLCO. 0,RODOT)
PITCH = INTGRLCO. 0, PIDOT)
YAW = INTGRLCO. , YADOT)

'-COMPENSATOR GC11
Cll = -K1*ZERR
C12 = LF,DLAG(0. ,1. 0,0. 1 ,C11)
DB = REALPL(0. ,. 667, C12)

''"COMPENSATOR GC2 2

C21 = -K2*FER
DS = REALrLCO. 667, C21)

'-COMPENSATOR GC
CI = - KH----HERR

C2 = LEDLAGCO. ,100.
,

DR = REALPLCC). ,. 667

DBDEG = DB*57. 296
DSDEG = DS*57. 296
DRDEG = DR---57. 296
PITDEG= PITCH- -57. 296
ROLDEG= ROLL*5 7. 296

10. ,C1)
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YAWDEG= YAW*57.296
SAVE 0. 1,V,ZD0T, DEPTH, PITDEG,ROLDEG,YAWDEG,DRDEG,DSDEG,DBDEG
GRAPH(DE=TEK618)TIME,ROLLDEG,YAWDEG,V
LABEL 15 DEGREE COURSE CHANGE U=10 KTS.
*GRAPH(DE=TEK618)TIME,PITDEG, DEPTH, ZDOT
'•-LABEL 10 FEET DEPTH CHANGE U=10 KTS.
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