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Elastic Curves on the Sphere

Guido Brunnett

Department of Mathematics

Naval Postgraduate School

Peter E. Crouch

Center for Systems Science and Engineering

Arizona State University

January 28, 1993

Abstract

This paper deals with the derivation of equations suitable for the

computation of elastic curves on the sphere. To this end equations

for the main invariants of spherical elastic curves are given. A new

method for solving geometrically constraint differential equations is

used to compute the curves for given initial values. A classification of

the fundamental forms of the curves is presented.

1 Introduction

Two current trends in Geometric Modeling are concerned with

• the development of spline techniques on surfaces (see [14], [12], [10])

• the use of nonlinear spline curves of minimal elastic energy for the

modeling of smooth shapes (see [2], [3], [4]).

This paper blends both topics in considering elastic curves on the sphere.

In euclidean space an elastic curve can be viewed as an arc length para-

metrized "cubic" spline in tension, i.e. an elastic curve is a critical point of

the functional

<I> {y) = / <y",y" > +v <y\y' > ds .(1)
Jo



in the space F of smooth maps

y:[0,/]-»R", \y'\ = l

y(0) = P
,
y(l) = Pi, y'(0) - V&, y'(l) = Vx

where P , Px € Rn
, V 6 TPoRn

, V
7
! € TPlRn

, cr € R are fixed and / is

variable. Expressing y" in the Frenet frame yields the functional $ in the

form

*(y)= l\<s)Y + ads (2)

which explains the interest in elastic curves as those curves that minimize

bending.

The notion of cubic splines can be generalized to curves on a Riemannian

manifold M by replacing the usual derivative of the tangent vector field

y' by the covariant derivative compatible with the metric of M (see [13]).

Generalizing the functional (1) in this way, one obtains the concept of elastic

curves on arbitrary manifolds. In the case of surfaces embedded in R3 the

algebraic value of the covariant derivative of the tangent vector field y' of a

surface curve y is called the geodesic curvature Kg of y (see [5] and section

2). Therefore we may define an elastic curve on a surface S : A C R2 —» R3

as an extremal point of the functional

$ (y)= [\K
3
(s)y + crds, (3)

Jo

in the subset F of F formed by curves lying on S.

In section 3 a set of differential equations for elastic curves on the sphere is

derived. This set includes a differential equation for the geodesic curvature of

spherical elastica. Since the normal curvature of a spherical curve is constant,

the differential equation for the geodesic curvature suffices to compute the

ordinary curvature of a spherical elastica. Furthermore, a formula is given

that expresses the squared torsion of a spherical elastica as a rational function

of its curvature.

In section 4 we describe the numerical algorithm used to integrate the

set of differential equations derived in section 3. The equations have a very

particular structure defined by a number of constants of motion, and in

particular they constrain the elastic curves to lie on the sphere. We employ

an algorithm introduced by Crouch and Grossman [8] which preserves the

constraints exactly.

Since Euler's fundamental work on plane elastic curves it is known that

these curves can be classified according to their shape. The tools developed

in this paper enable us to present the fundamental forms of spherical elastica

in the last section.



2 Geometric Preliminaries

Let S : U C R —* R3 denote a regular parametric surface and N the unit

normal vector field of S. A curve x : I C R —* R3
is a curve on the surface

5 if and only if x = 5 o c where c : / —> (7 is a plane curve in U. The unit

normal of S along a surface curve x will be denoted by n := N o c.

The Darboux frame &i,&2>&3 along x is the orthogonal frame defined by

bi(t) = |p|j|r, 62(0 = »(*) x &i(t), 63 (i) = n(t).

The equations that express the derivatives 61,62,63 in the Darboux basis

&!, 62 , ^3 are given by:

6'
:
= lL>K

5
&2 +^n&3, (4)

&2 = -^K5 6! +CJT5 &3 , (5)

63 = -ujKnb1 -uTg b2 (6)

with w(*) = |2:'(t)|.

The functions K
g

. Kn and r
g

are called geodesic curvature, normal cur-

vature and geodesic torsion. The geodesic torsion and the absolute value of

geodesic and normal curvature are invariant under reparametrization of the

surface.

The geodesic curvature of a surface curve x at a point x(t) is the ordinary

curvature of the plane curve generated by orthogonal projection of x onto

the tangent plane of S at x(t). It can be computed using the formula

k„ =
[x',x", n)

9 '
\x'P

(7)

A surface curve with identically vanishing geodesic curvature is called a

geodesic of the surface.

The absolute value of the normal curvature of x at a point x(t) is the

curvature of the intersection of S with the plane through x(t) spanned by

the vectors x'(t) and n(t). While the geodesic curvature is the curvature of a

surface curve from a viewpoint in the surface, normal curvature measures the

curvature of the curve that is due to the curvature of the underlying surface.

If k denotes the ordinary curvature of the space curve x the identity

k
2 = < + *1 (8)

holds.



The geodesic torsion of a surface curve x at a point x(t) is the torsion

of the geodesic that meets x at x(t) with common tangent direction. A
curvature line of x, i.e. a curve with a tangent vector that points into one of

the principal directions of the surface, is characterized by vanishing geodesic

torsion.

3 The differential equations of spherical elas-

tica

Let 5 be a parametrization of a patch on a sphere S2 C R3
of radius r and

center such that

S = rN

and x be an arc length parametrized (i.e. |x'| = 1) curve on S. Then

x = rn = rb3 .

In this situation (6) implies that

Kn = ,
Tg = 0. (9)

r

Since the absolute value of Kn and r
5
are invariant under reparametrization,

these equations imply that any spherical curve is a curvature line with con-

stant normal curvature.

We consider the variational problem of minimizing

/ (k
5 (s))

2 + a ds
Jo

in the space F of C°° smooth maps

r,:[0,/]-S2 , 1^1 = 1

y(0) = Po, !/(l) = Pu y'{0) = V
, y\\) = Vx

where P , Pi £ S2, Vo G Tp S2, V\ G Tp^2, cr G R are fixed and / is

variable.

From (4) one obtains the relation

rci
a «2 + .

1

so that we wish to minimize the functional

rl

\b[(s)\
2 + 6ds

-4



where

* = ,-!

under the constraints

IM
2 = 1) h = x

'i \

x
\

Hence, we can apply the Euler-Lagrange equations to the functional

F =
16'J

2 + 6 + A(|6
1 |

2 - 1) + ii(\x\
2 - r

2
) + 2 < A,x' - b, >

to obtain the differential equations which govern the extremals:

fix-A' = Q (10)

A&!-&;' = A. (11)

Combining these equations yields

A'fcj + \b[ -b'C = fix. (12)

The derivatives of 6} expressed in the Darboux basis are given by:

b[ = K
g
b2 63 (13)

K = *;*2 - («? + ^)*i (14)

V" - (-3/c
5 k')6i + (/c'

/

-/Cj -—

«

5 )62

1, , 1

+ ;K + ^) &3. (15)

Substituting these derivatives and x = r&3 into (12) and rearranging gives

(A' + 3K
3
K

/

)b1

3 1+ (Ak
5 -< + /c +—

«

5 )6
r2

2 1

2

-
(7

+ /t +
;K + -))63 = 0.

Finally, the linear independence of the vectors 6l5 62 and 63 implies that

\ = J-k) + C (16)

and



In order to determine the constant C in terms of the tension parameter

cr, we consider the boundary condition

F <'> -
d

£ (l)Al) -S (,)6 ' ( '> =

°

for the extremal x. This condition is implied by the fact that the total length

/ of the curve is variable in the variation (see, e.g., [1]). Thus,

- *J(0 - p + s - 2 < MO, *'(0 >= o- (is)

Substituting A according to (11) into the scalar product < A,x' > yields

<A(/), *'(/)> - <\b l {l)X{l)>-<h'{{l)Ml)>

= A + (k3 (1))
2 + I

= -4k«))
2 +^+c.

Substituting this expression for the scalar product into (18) we obtain

c + i-^t-?)- (
19)

These results are summarized in the following theorem.

Theorem 1 An elastic curve x under tension a on the sphere of radius r

satifies the differential equations

x[\ [ 1/r \

x'n -1/r K
3 (20)

-Kg J

where x\ = x, x-i = rx' , x$ = x x x' and where the geodesic curvature Kg of

x is a solution of

<+^ + (^-f)«. = « (
21

)

The curvature of a spherical elastic curve can be obtained from (8) and the

fact that the normal curvature of spherical curves is constant. The squared

torsion of a spherical elastica can be expressed as a rational function of its

curvature.

Theorem 2 The curvature k and the torsion r of a spherical elastic curve

obey the relation:

rW--!<«-!(± -,)«« + I(f -§) + <*.



Proof: For the invariants k and r of an arc length parametrized curve x in

R3 the relation

r/c
2 = [&!,&;,&'/] (22)

holds where [a,b,c] denotes the determinant of three vectors in R3
.

For a spherical curve b\ and b" can be expressed in the Darboux basis as

follows:

&' = Kg b2 b3
r

K = -(£ + «J)*i + <»»

Substituting the derivatives into (22) and squaring yields

1

7'

Since the differential equation (21) can be integrated to

ft)
1
= ft - i«; -£ -

f)«2,

one obtains the claimed equation using (8).

4 Tracking elastic curves on the sphere

The problem we consider here is that of numerically integrating equations

(20) and (21) in Theorem 1. One can of course simply integrate the equa-

tions using a standard numerical package, such as an IMSL Runge Kutta

routine. However, the system of equations possesses a very special structure.

As pointed out in [3], equation (21) may be integrated directly in terms of

Jacobi's elliptic functions. We give more details of this process in the next

section where we classify the various extremals. As for equation (20) we

note that the components of the state vector \x\,x^, xJ]
T

satisfy algebraic

constraints consistent with the fact that the matrix [a
-

!, x 2 i £3] is simply a

multiple r, of a rotation matrix. When a standard integration package is

applied to the set of differential equations (20) and (21), these constraints

are not preserved exactly, and in particular the norm of the vector x^ will

not remain at the constant value r. This is a particularly important fact

when we wish to integrate the equations over a large number of time steps

and visualize the resulting curves.

We have therefore made use of a new class of integration algorithms de-

veloped by Crouch and Grossman [8], and Crouch, Yan and Grossman [7]



which do indeed preserve such structures. The algorithms are therefore called

geometrically exact [6]. We briefly indicate the important aspects of these

geometrically stable algorithms which pertain to the equations (20) and (21).

Suppose that we wish to numerically integrate an ordinary differential equa-

tion on R" given by the equations:

i(t) = F(t,x(t)), a-elT, x(0) = a- o (23)

where
N

F{t,x) = J2
aJ {^ x

)
AA x

) (24)

n > A'*, A
3
are vector fields on R" and a° are functions on R x Rn

. Suppose

that in addition we are given a set of functions on Rn whose numerical values

are constant along solutions of the equation (23) and that the level sets of

these functions are manifolds. Denote the level set through Xq by M . It is

convenient to assume the slightly stronger assumption that the vector fields

Aj are everywhere tangent to M . We also assume that there is an oracle that

can integrate any vector field of the following form, to any desired accuracy:

Z(x) = J2<*
JMx)- (25)

i=i

Here aJ are real numbers. We define vertor fields Fp by setting:

and note that Fp
is simply the vector field F with coefficients "frozen" at

the point p. If we denote the flow of any vector field Z by (t,x) —> 6z(t,x),

R x Rn —> R", then since the vector fields Aj are everywhere tangent to M
,

it follows that x E M implies that 6pP (t,x) € M for all p and for all t for

which the flow is defined.

We now introduce the (explicit) geometrically exact Runge Kutta algo-

rithms as described in [8]. Let Xk = x(tk) be a point of the integral curve

x of (23). Then, define vector fields on Rn by freezing coefficients of F at

various points as follows:

N
Fi( x ) = J2

aJ(
<
t^ x k)Aj(x )

3=1

N
F2{x) = YL^^k + hc2i,0Fl (hc2i,x k))Aj(x)

j=l

8



F3 {x) = ]>>''(** + h{c31 + cZ2),eF2 {hc^OFl (hczu p)))Aj(x),

3=1

etc. Second, we define the numerical integration algorithm via an update

rule:

z*+i = 0Fr
{hcT ,9Fr_ :

(hcr_u --- ,6Fl {hcu x k ))) (26)

where h is the "step length" and c, and c
tj are constants to be determined.

'These constants are determined from the "consistency equations," obtained

by making the Taylor expansions in /i, about h = 0, of both sides of (26),

using on the left hand side the expression x k+i = 9F(h^x k ). If the coefficients

of h
x agree up to i = (/, then q is said to be order of the resulting algorithm.

Note that in general we have r > q, while for classical Runge Kutta schemes

we can always take r = q. Note that the update rule defined by equation

(26) has the property that if x k lies in A/, then so does x k+i since each flow is

defined by a vector field F with frozen coefficients. In the special case where

?/ — N, M = R" and A
x
= e, is the standard ith basis vector in Rn

, the

algorithm reduces to the form of a classical explicit Runge-Kutta algorithm.

In the paper [8] the consistency equations are derived for the geometri-

cally exact Runge Kutta algorithms via a careful geometric analysis of the

equations (26). The results show that a geometrically exact third order ex-

plicit Runge Kutta algorithm can be obtained for r — 3 and is determined

by five independent consistency equations, in the six constants defining the

algorithm. The equations have multiple solutions, all of which are solutions

to the equations which determine the classical explicit Runge Kutta algo-

rithms. Thus, all solutions define classical algorithms, but the solutions are

not ones traditionally found in the literature. We have used the following

solution of all five equations:

Cl = l, c2 = -2/3, c3 = 2/3,

c21 = -l/24, c31 = 161/24, c32 = -6.

In the special case of the set of equations (20) and (21), defining the

elastica on a sphere, we use a hybrid algorithm in which equations (20) are

integrated using the third order geometrically exact Runge Kutta algorithm

described above by freezing the coefficients K
g

. These coefficients are then

updated by integrating equation (21) using elliptic functions.

In equation (20), M is the three dimensional submanifold of R9 deter-

mined by the equations

< X\jXi >= r
2

, < Xi,x 2 >= 0, < Xx,x3 >= 0,

<2 2 ,2 2 >=1, < 22,^3 >=0, <ar 3,a;3>=l.



The solutions of (20) for any initial condition x(Q) = x £ M lie completely

in M. This follows from the fact that the functions

fi=<xu Xi>, f2 =<xu x2 >, h=<x x ,xz >,

f4 =< X 2 ,X 2 >i J5 —< x2tX3 >, /6 =< X3, X3 >

satisfy the system of differential equations

f[ = 2/a

ti = /4 + s/3-(l/r 2

)/!

fz
= h — Kgh

f'<
= 2n

9h - (2/r
2
)/2

/s
= ^fe-(l/r2

)f3 -K9f4

fe = -2«,/5

which has the unique solution

/i = r
2

, /a = 0, f3 = 0, /, = 1, fB = 0, /6 = 1.

Since this argument does not specify the function ac5 , it follows that the flows

of the vector fields F\ — Fz with frozen coefficients are mappings into M as

needed in formula (26).

Furthermore, the vector fields Aj in equation (20) are linear, so that F is

given by an expression of the form

F(x) = '£V(t
i
x)B

i
x (27)

3=1

where Bj are matrices and b1 are functions. Freezing the functions b3 to values

f3
3 yields a system of linear differential equations with constant coefficients:

Thus, the flow 9Fi of the vector field F, (i= 1,2,3) is given by

^F.C?) =exp(td)q

and (26) takes the special form

xk+i — exp(c3 /iC3) ' ex.\>{c2hC2 ) exp(cihC\) • x^.

10



Since 6
1 = \/r is constant and b

2 — K
g
depends only on t, the matrices C

x

are given by

Ci = C(t k ), C2 = C(t k + hc2l ), C3 = C(t k + h(c31 + c3i )) I
where C(t) := 12j=i V{i)Bj. C can be considered as a 3 x 3 skew symmetric

matrix with matrix components that are themselves 3x3 matrices. Therefore

the standard formula for the exponential of a 3 x 3 skew symmetric matrix

can be used to compute the flow of each vector field:

exp{t(f)S{c)) = I + sm{t<j>)S{c) + (1 - cos{t<f>))S{c)
2

where S(c) is the skew symmetric matrix satisfying S(a)b = bxa, and \c\ = 1.

Regarding the performance of the geometrically stable integration method

it is clear that this method is computationally more expensive than a classical

algorithm with the same number of stages and step length. The exact cost

of the new integration scheme can be found in [6]. However, if we compare

the performance of the geometrically stable method with the classical fourth

order Runge-Kutta algorithm on the problem of spherical elastica, it turns

out that a slightly increased step length for the new method suffices to out-

perform the classical integration method. Using MATLAB implementations

of both algorithms we found that the geometrically stable method needs an

average value of 1001 Mflops for one complete step while the fourth order

Runge-Kutta only uses an average value of 768 Mflops per step. Therefore,

one can statistically achieve the same performance by using an increased step

length of h « 1.3038 /i/?a' f°r the new method. Taking into account that the

proposed algorithm not only delivers points that lie exactely on the sphere

but that are also approximately equally spaced along the tracked curve, the

geometrically stable method seems to be a good choice for the integration of

spherical elastica.

A performance comparison of the new integration scheme with a more

sophisticated classical method, the IMSL Runge Kutta implementation, can

be found in [71.

5 Classification of spherical elastica

Acting on the suggestion of D. Bernoulli, L. Euler derived differential equa-

tions for plane elastica and classified the fundamental forms of these curves

(see [9], [11]). A curvature analysis of the various fundamental cases has been

given in [3].

In this section we classify the forms of spherical elastica based on the

differential equation (21) for the geodesic curvature. This equation is of the

11



same form as the equation for the curvature of plane elastica and can be

solved in terms of Jacobi's elliptic functions in the form:

Kg (s) = Km dn(«m (s - sm )/2
1

1
2

)

where the positive parameter I
2 of the elliptic function is given by

t> =
2(K- +f

2 - g)
(29)

(see [3]). The parameter Km represents the amplitude of the periodic curva-

ture function and sm denotes the value at which Ac(sm ) = Km .

To obtain a representation of the curvature in terms of Jacobi's functions

with parameter /
2 smaller than 1, one uses the formula

«,M = Km cn{yJ(Kl + 2/r*-a)/2(s - sm ) I

i) (30)

if <j < 0.5/c
2
^ + 2/r 2

. Since the function en has zeros while dn is positive, the

above case distinction reflects the main division of elastic curves into those

where the geodesic curvature changes sign and the other with constant sign

of their geodesic curvature.

The change of the forms of spherical elastica while Km is fixed and a in-

creases is shown by figures 1-8. The maximum value of the tension parameter

a for a real elastic curve on a sphere is according to (29) a = Km + 2/r 2
.

This choice of a corresponds to the dashed circle that is shown in all figures

for the purpose of orientation. The second curve in figure 1 has a negative

tension parameter of high absolute value (<r = —10000). In comparison to

figure 2 where a = —30 we observe that decreasing the tension parameter

has the effect of lowering the amplitude of the curve as it is known from

the euclidean case (see [3]). The oscillation of the curve in figure 1 is of

too low amplitude to be visually observed and the curve can not be distin-

guished from the geodesic determined by the initial conditions. (Note, that

the geodesic curvature (30) is far from getting flat for a —* — oo but in fact

approaches a cos function that oscillates with a period that decreases with

a.)

A curve with positive tension parameter is shown in figure 3 where a =
2/r 2 = 2. The displayed curve is a special case because the parameter

l//
2 = 1/2. Here the geodesic curvature is given by the lemniscate function:

Kg (s) = Km coslemn(>cm (s - sm )/2).

In figures 4 and 5 it is illustrated that with increasing positive a the

bays of the curves start to overlap until a figure-8-configuration is reached

12
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Figure 1: Km = 4, a = -10000

1.5

where all double points of the curve coincide. This happens for a parameter

a % 7.849.

While a increases further the curve proceeds through the figure-8-shape

forming a series of loops with alternating sign of geodesic curvature (see

figure 6). These loops recede from each other until in the limiting case, when

a = 2/r 2 + 0.5k^, the curve forms a single loop (see figure 7). Here the

geodesic curvature is given by

K
g
{s) - Km sech{Km (s - sm )/2).

Figure 8 shows that the single loop transforms into a series of loops with

the same sign of geodesic curvature. With increasing a the loops come closer

together and finally collapse into a circle when a = 2/r -f k^.
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