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Protecting against Biological 
Terrorism: Statistical Issues in 
Electronic Biosurveillance

Ronald D. Fricker, Jr., and Henry Rolka

In the post-9/11 world, biological ter-
rorism (or bioterrorism) is of increas-

ing concern to government and public 
health officials. To address this threat 
adequately, policymakers have recog-
nized it is important to put in place sys-
tems that provide the earliest possible 
detection of an act of bioterrorism and 
real-time, ongoing information about 
its location and spread so the public 
health and medical communities can 
efficiently and effectively treat those 
affected.

Focusing on just the goal of early 
detection, it is a difficult problem to reli-
ably extract a bioterrorism event “signal” 
from spatially and temporally varying 
natural disease incidence “noise” while 
simultaneously maintaining a low false 
signal rate. For example, in “Syndromic 
Surveillance: Is It Worth the Effort?”—
published in CHANCE, vol. 17—Stoto, 
Schonlau, and Mariano evaluated the 
performance of a number of statistical 
methods to temporally detect a simu-
lated bioterrorism event and concluded, 
“Our simulation study gives some indica-
tion of the size and speed that outbreaks 
must attain before they are detectable, 
and the results are sobering.”



CHANCE        5

What Is Electronic 
Biosurveillance?

Syndromic surveillance is defined by the 
Centers for Disease Control and Pre-
vention (CDC) as “...surveillance using 
health-related data that precede diagno-
sis and signal a sufficient probability of 
a case or an outbreak to warrant further 
public health response.” While this is 
not a universally accepted definition—it 
is, in fact, considered a bit outdated by 
some at the CDC—it is a worthwhile 
place to start our discussion, as it focuses 
on a number of important ideas.

First, syndromic surveillance is 
health surveillance, not military, regu-
latory or intelligence surveillance. It 
uses “health-related” data, a construct 
that encompasses a variety of data, 
including counts of individuals coming 
into medical facilities, over-the-coun-
ter medication sales, and aggregate 
laboratory test results. Second, the 
data and associated surveillance gen-
erally precede diagnosis or ‘case’ con-
firmation. The goal of a syndromic 
surveillance system is to gather data in 
advance of diagnostic case confirma-
tion to give early warning of a possible 
outbreak. Clearly, once a definitive 
diagnosis has been made, the need for 
detection becomes moot. Third, the 
process must provide a signal of “suf-
ficient probability” to trigger “further 
public health response.” Syndromic 
surveillance is not supposed to pro-
vide a definitive determination that 
an outbreak is occurring. Rather, it is 
supposed to signal that an outbreak 
may be occurring, indicating a need 
for further evidence or triggering an 
investigation by public health officials 
(i.e., the CDC or a local or state public 
health department).

Broadly speaking, syndromic surveil-
lance is intended to provide early disease 
or bioterrorism warning. However, the 
term syndromic surveillance as currently 
used is something of a catch-all for vari-
ous types of new surveillance systems 
and paradigms that are now feasible 
due to mainly advances in computer and 
information technology. Biosurveillance 
has a much longer history for naturally 
occurring diseases (as opposed to the 
deliberate, malicious release of a toxin) 
and other traditional public health phe-
nomena. Indeed, the field of epidemiol-
ogy traces its roots back to John Snow, 
a London physician in the 1800s. Dr. 

Figure 1. John Snow’s map. Pump locations are indicated by circled dots, and the bars 
represent the number of cholera deaths at each location. In the center of the map (and 
in the center of a large cluster of deaths) is the Broad Street pump.  

Snow determined cholera was transmit-
ted by a contaminated water supply in 
the London cholera epidemic of 1854. 
One way he demonstrated this was to 
simultaneously plot on a map the num-
ber of cholera deaths by city address and 
the locations of each of the city’s water 
pumps. As shown in Figure 1, the result 
was a clear visual association between 
areas of higher death rates from cholera 
and certain water pumps.

In many ways, we can think of syn-
dromic surveillance as the modern, 
automated equivalent of Dr. Snow’s 
map. Two important differences, which 
we will return to later in this article, are 
that today’s syndromic surveillance sys-
tems are being put in place in advance 
of an outbreak and they are intended to 
actively search for possible outbreaks. 
Traditionally, epidemiological studies—
including Dr. Snow’s analysis—are ret-
rospective studies initiated to address 
a specific population risk event. Syn-
dromic surveillance is intended to be 
prospective. Conducting a retrospective 
study to understand the cause of a dis-
ease or outbreak is hard enough; trying 

to define a system that will effectively 
detect a variety of possible outbreaks 
that have not yet occurred—from natu-
rally occurring diseases to bioterrorism 
attacks—is a daunting task.

In the post-9/11 world, many believe 
there is a critical need for syndromic 
surveillance. The CDC states on its syn-
dromic surveillance web site, “Though, 
historically, syndromic surveillance has 
been utilized to target investigation of 
potential cases, its utility for detecting 
outbreaks associated with bioterrorism 
is increasingly being explored by public 
health officials.” More recently, syn-
dromic surveillance and bioterrorism 
outbreak detection are considered part of 
the broader concept of electronic biosur-
veillance that encompasses both “early 
event detection” and “situational aware-
ness.” Early event detection includes 
the detection of both natural and man-
made health events using syndromic 
surveillance as well as many other types 
of information and data. Situational 
awareness is the real-time analysis and 
display of health data to monitor the 
location, magnitude, and spread of an 
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outbreak, in addition to the availability 
and application of public health and 
medical resources in response to the 
outbreak. Succinctly put, early event 
detection is about finding and identify-
ing an outbreak, and situational aware-
ness is about managing the response 
to it. The CDC and many state and 
local health departments are actively 
developing and fielding electronic bio-
surveillance systems, such as the CDC’s 
BioSense system shown in Figure 2. As 
described on the CDC’s BioSense web 
site (www.cdc.gov/biosense):

“BioSense is a national program 
intended to improve the nation’s 
capabilities for conducting 
near real-time biosurveillance, 
enabling health situational aware-
ness through access to existing 
data from health care organiza-
tions across the country. The 
primary objective is to expedite 
event recognition and response 
coordination among federal, state, 
and local public health and health 
care organizations by providing 
each level of public health access 

to the same data, at the same 
time. In other words, if a bioter-
rorism event or a disease outbreak 
occurs, every level of public health 
will be able to see health care 
data from their community in near 
real-time.”

However, many challenges in devel-
oping and fielding electronic biosurveil-
lance systems, particularly large-scale 
systems, remain. Some of these chal-
lenges involve legal and regulatory 
issues, some involve personal privacy 
and proprietary information issues, and 
others are related to the technological 
and managerial challenges of assem-
bling and managing such systems. And 
there are also a plethora of statistical 
challenges that must be solved to field 
and operate effective electronic biosur-
veillance systems. 

An Example: Applying 
Existing Statistical Methods

In 1931, in Economic Control of Qual-
ity of Manufactured Product, Walter A. 
Shewhart developed the concept of 
the control chart, a graphical statistical 
tool most commonly used to control 
manufacturing processes. The success 
of Shewhart’s method lies in its simplic-
ity. Essentially, one establishes control 
limits and, so long as various statistics 
derived from the data—sequentially 
observed over time—fall within the con-
trol limits, the process is assumed to be 
in control. If one or more fall outside 
the control limits (or perhaps in certain 
patterns), then the process is examined 
to determine whether it is out of control 
and requires adjustment. Shewhart’s 
work gave rise to the field of statistical 
process control (SPC) and a large and 
still growing literature of research into 
myriad statistical methods for control-
ling processes.

Shewhart’s method often is thought 
of as a sequential hypothesis test. At 
each time period, a statistical test is 
conducted to determine whether the 
underlying population parameter—
often the mean—has changed. As any 
hypothesis test (and all SPC meth-
ods), it is subject to Type I and Type II 
errors. In the context of SPC, a Type 
I error occurs when the methodology 
indicates the process is out of control 
when, in fact, it is not. A Type II error 
occurs when the method should signal 

Figure 2. Screen shots of CDC’s BioSense system, taken from www.cdc.gov/biosense 
and www.cdc.gov/biosense/publichealth.htm  
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the process is out of control, but fails 
to do so. And, because in SPC we are 
conducting a continuing sequence of 
tests until a signal is raised, a Type I 
error (often referred to as a false alarm) 
must eventually occur—even if the 
process always stays in control.

In the SPC literature, the metric 
most commonly used to evaluate the 
performance of an SPC method is the 
average run length, or ARL. The ARL 
under the assumption that the parame-
ter of interest has not changed is referred 
to as the in-control ARL; it is the average 
time to a false alarm. When comparing 
SPC methods, the control limits are 
set first so the various methods have 
equal in-control ARLs, then their out-of-
control ARLs for various out-of-control 
conditions are compared. For a given 
in-control ARL, methods with shorter 
out-of-control ARLs are preferred. 

Advances in Statistical 
Process Control

There have been many advances in SPC 
since Shewhart’s seminal work. Indeed, 
over decades of research, many methods 
have been developed and evaluated, 
particularly in the context of controlling 
manufacturing processes. In fact, the 
various quality-control movements (e.g., 
TQM) of the past and the ongoing Six 
Sigma methodology have their roots in 
statistical process control.

Two popular alternatives to 
Shewhart’s methods are the cumulative 
sum (or CUSUM) and the exponentially 
weighted moving average (EWMA). 
Roughly speaking, the CUSUM works 
by summing up observations over time 
(though there are important details 
to the method that involve subtract-
ing a quantity at each time period and 
“reflecting” the cumulative sum at zero). 
The EWMA is also a summation of the 
data over time, but of a different sort. At 
each time period, the EWMA calculates 
a weighted average of the EWMA’s value 
from the previous time period and cur-
rent observation.

For our purposes, the specific math-
ematical details of the methods are not 
as important as the fact that each proce-
dure has different strengths. Shewhart’s 
method generally outperforms the oth-
ers when the out-of-control shift is large. 
In contrast, the CUSUM is usually bet-
ter when the out-of-control shift is small 

and sustained. And the EWMA can be 
made to perform much like either the 
Shewhart or the CUSUM, depending 
on how a weighting parameter is set.

Most of the well-known methods 
are univariate in nature, meaning they 
operate on only one stream of data—
say the output from one manufacturing 
process or from one machine. How-
ever, multivariate methods also have 
been developed that operate on mul-
tiple data streams simultaneously. For 
example, in 1947, Harold Hotelling 
published a Shewhart-like methodol-
ogy for multivariate observations that 
was an outgrowth of research related 
to the manufacture of bomb sights in 
World War II. Since that time, research 
has included the development of vari-
ous multivariate generalizations of the 
CUSUM and EWMA, as well as other 
multivariate SPC methods.

Introduction to Statistical Qual-
ity Control, by Doug Montgomery, is 
the authoritative introduction to the 
field of SPC. “The Use of Control 
Charts in Health Care and Public 
Health Surveillance” by Bill Woodall 
that recently appeared in the Journal 
of Quality Technology is an excellent 
review of the use of control charts 
broadly applied to health care and 
public health surveillance.

SPC Applied to Syndromic 
Surveillance

An informed rational decisionmak-
ing strategy is needed to identify and 
respond to analytic health risk indica-
tions in biosurveillance data. One com-
ponent of this strategy is to apply existing 
statistical process control methods to 
health-related data. This approach is 
not without difficulty and controversy, 
because the health-related data and 
the underlying “disease processes” are 
generally more complicated and less 
controllable than manufacturing pro-
cesses for which SPC was developed 
and to which it has been traditionally 
applied. However, the standard SPC 
methods are being applied in actual 
syndromic surveillance systems, and so 
here we illustrate their application and, 
in particular, how the performance of 
these methods is evaluated in the con-
text of syndromic surveillance.

Specifically, we consider the appli-
cation of simultaneous univariate 

CUSUMs and a multivariate CUSUM 
(MCUSUM) method designed to look 
for increases of disease incidence in 
emergency room “chief complaint” 
data. (For readers interested in the 
technical details of the methods, and 
for additional results, see “Direction-
ally Sensitive Multivariate Statistical 
Process Control Methods with Appli-
cation to Syndromic Surveillance in 
Advances in Disease Surveillance” 
at www.isdsjournal.org.) A chief com-
plaint is a broad categorization that 
captures the primary symptom or rea-
son the patient sought care, such as 
respiratory complaint, gastrointestinal 
complaint, or unspecified infection. 
The purpose of the comparison is to 
evaluate whether it would be more 
effective to use simultaneous indi-
vidual CUSUMs, each applied to a 
different data stream—say each type 
of chief complaint at each hospital—or 
whether a multivariate method that 
evaluates a series of data streams—say 
all chief complaints at each hospital or 
one type of chief complaint across mul-
tiple hospitals—performs better. In 
terms of the evaluation, “better” means 
that for a given in-control ARL fixed 
for all procedures being compared, the 
procedure that tends to have the short-
est out-of-control ARLs across a range 
of out-of-control conditions would be 
the better method. This notion also 
may be roughly thought of as the best 
sensitivity over a range of conditions 
for a set level of specificity.

Figure 3 shows how the two meth-
ods—the multivariate CUSUM (“mod. 
MCUSUM”) and the simultaneous uni-
variate CUSUMs (“Indiv. CUSUMs”)—
can be compared via simulation. Here, 
observations were simulated from a 
six-dimensional multivariate standard 
normal distribution in Mathematica, 
where the random observations were 
generated using the “MultinormalDis-
tribution” function. In this comparison, 
the out-of-control condition consisted 
of the mean increasing linearly in one 
dimension by δ (as shown on the x-axis) 
at each time period, with the in-control 
ARLs (where for the in-control mean we 
have δ = 0) set to 100.

What this simulation result shows 
is, for the out-of-control condition 
specified, the simultaneous univariate 
CUSUMs outperform the multivariate 
CUSUM for all possible δs. Other simu-



8        VOL. 19, NO. 4, 2006

lations for different types of changes in 
the mean, for example a linear increase 
in multiple dimensions, result in the 
MCUSUM outperforming the simulta-
neous individual CUSUMs.

The point here is that conducting 
a series of these types of simulations, 
which explore a variety of out-of-con-
trol behaviors, provides insight into the 
performance characteristics of the vari-
ous methods. That is, under the ideal-
ized simulation conditions, it provides 
researchers and practitioners with infor-
mation about whether and when each 
method should be preferred. This type 
of simulation comparison is commonly 
conducted in the industrial SPC lit-
erature. However, they are not widely 
accepted in the public health world for 
a number of reasons, including a lack of 
information about how to realistically 
simulate the “in-control” behavior of 
health data.

To address this criticism, one might 
also demonstrate how the procedures 
perform under real-world conditions by 
applying the methods to actual data—in 
this case, from five hospitals located 
in a large metropolitan area. The data 
consists of respiratory chief complaint 
counts by hospital for 2.5 years from 
October 1, 2001, to March 31, 2004. 

Applying the procedures to these data, 
which capture naturally occurring inci-
dent rates and variation within hospitals 
and the covariation between hospitals, 
provides insight into real-world perfor-
mance (although it, too, is subject to 
various challenges).

The Data

Figure 4 shows estimated mean respira-
tory chief complaint counts by hospital. 
Each point on each line is a four-week 
moving average using the data for two 
weeks prior and two weeks after the date 
plotted. A number of features of the data 
are clear from the figure, including:

• The hospital moving averages do not 
exhibit an increasing or decreasing 
trend, indicating the long-term inci-
dence rate for respiratory chief com-
plaints is relatively constant.

• Yet, there are visible ‘events’ in the 
data that persist for periods of time. 
For example, there are peaks across 
most or all the hospitals in January–
February 2002 and December 2003–
January 2004 that likely correspond to 
flu outbreaks.

• These events are consistent with the 
CDC’s aggregate data on “percent-

age of visits for influenza-like ill-
ness reported by sentinel physicians” 
for the South Atlantic region of the 
United States, where large outbreaks 
occurred in February–March 2001 
and December 2003–January 2004, 
with a much smaller flu season out-
break in mid-February to mid-March 
2003.

• The hospital counts are weakly posi-
tively correlated. Using the first six 
months of the data, the covariances 
between all pairs of hospitals were 
between 0.0 and 0.24.

In addition, there are significant dif-
ferences in mean counts between hos-
pitals, indicating some hospitals either 
serve larger populations or serve popula-
tions with higher respiratory illness rates 
(or both), as well as significant variation 
in the raw counts (see Figure 5) around 
the smoothed mean. 

Evaluating Performance

Figure 5 displays the signal times for 
the two methods—the MCUSUM 
and the simultaneous univariate 
CUSUMs—when they are run retro-
spectively on the respiratory data from 
April 1, 2002, to March 31, 2004. 
The figure shows the raw data with 
the smoothed means (of Figure 4) and 
first signal times overlaid. (“First signal 
time” means repeated signals within 30 
days of the first signal are suppressed 
for plot clarity.) The signal times for 
the MCUSUM are indicated by the 
dark vertical lines with the specific 
dates at the top. The signal times for 
the simultaneous individual CUSUMs 
are indicated by the diamonds plot-
ted on the relevant smoothed mean. 
For example, Figure 5 shows the first 
signal for the MCUSUM occurred on 
November 15, 2002, and one of the 
individual CUSUMs also signaled on 
the same day.

What Figure 5 generally shows is that 
the MCUSUM and the simultaneous 
individual CUSUMs performed simi-
larly on this data. As we just discussed, 
both schemes signaled on November 
15, 2002. Similarly, on December 16, 
2003, the MCUSUM signaled, after 
which four of the individual CUSUMs 
signaled, the earliest of which was also 
on December 16. And, on September 
26, 2003, the MCUSUM signaled, after 

Figure 3. Results of a simulation comparison of a multivariate CUSUM (mod. 
MCUSUM) method versus the application of simultaneous univariate CUSUMs (Indiv. 
CUSUMs), one to each dimension. The out-of-control condition consisted of the mean 
in increasing in one dimension linearly by δ at each time period with the in-control 
ARLs set equally to 100. For this out-of-control condition, the simultaneous univariate 
CUSUMs had smaller ARLs than the multivariate CUSUM for all possible δs.
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Figure 5.  Plot showing when the MCUSUM and individual CUSUMs first signaled when run on the actual respiratory chief 
complaint data. The vertical lines are the signal times for the MCUSUM. The diamonds indicate the signal times for each CUSUM. 
“First signaled” means repeated signals within 30 days of the first signal are suppressed for plot clarity. 

Figure 4.  Smoothed respiratory “chief complaint” counts by hospital. Each point is a four-week moving average using the data 
for two weeks prior and two weeks after the date, and each line represents one hospital.



10        VOL. 19, NO. 4, 2006

which two of the individual CUSUMs 
signaled, the earliest at September 27—
a difference of just one day.

There are two MCUSUM signals 
that diverge from the simultaneous 
individual CUSUMs. On February 25, 
2003, the MCUSUM signaled, while 
none of the individual CUSUMs did. 
And, on May 16, 2003, the MCUSUM 
signaled, before which two individual 
CUSUMs signaled (April 14 and May 
15), but also after which one CUSUM 
signaled, on May 27. In spite of these 
small differences, the general result is 
that both the MCUSUM and the simul-
taneous individual CUSUMs perform 
very similarly with consistent signals.

While the multivariate CUSUM 
and simultaneous individual CUSUMs 
exhibited similar performance on the 
real hospital data, in more abstract 
simulation evaluations (such as in Fig-
ure 4), each seemed to demonstrate a 
separate specific strength: The modi-
fied MCUSUM is slightly better at 
detecting small shifts in many or all 
dimensions, while the simultaneous 
individual CUSUMs seem better at 
detecting a shift in only one dimension. 
This suggests a strategy of using both 
in combination, where in the public 
health arena, for example, individual 
hospitals might monitor their own 
trends using individual CUSUMs, 
while a city, county, or state public 
health department might monitor an 
area using the MCUSUM. Or, perhaps 
a public health department might use 
both the individual CUSUMs and the 
MCUSUM simultaneously, but inter-
pret their signals differently: An indi-
vidual CUSUM signal indicates the 
possibility of a localized event, while 
a MCUSUM signal indicates the pos-
sibility of a larger, area-wide event.

Many (Statistical) Issues 
Remain To Be Solved

While, at first glance, the application 
of SPC methods to health-related data 
seems to be an immediate solution to 
the biosurveillance problem, electronic 
biosurveillance is a less well-defined 
and more operationally complex prob-
lem than those for which SPC was origi-
nally developed, hence there are many 
technical and other issues that need to 
be solved or resolved. One way to group 
the challenges is to consider three broad 

categories: definitional, developmen-
tal, and implementational. Important 
quantitative and statistical issues cut 
across all these areas, but particularly 
the first two.

Definitional Challenges

As we mentioned in the introductory 
section, the term syndromic surveil-
lance is something of a catch-all for 
various types of new health surveil-
lance. Such systems were originally 
intended to detect abnormalities in 
health-related data that would war-
rant further evidence or public health 
investigation. As first conceived, the 
procedures were expected to be capa-
ble of reliably detecting abnormalities 
representing medium to large popula-
tion events in a relatively short time, 
sometimes expressed in hours or a 
small number of days. However, some 
research has raised questions that are 
driving syndromic surveillance systems 
development to optimize outbreak 
detection and response in conjunc-
tion with more traditional approaches, 
such as the ‘sentinel physician.’ (For 
example, an ‘influenza sentinel physi-
cian’ provides regular reports to public 
health agencies during the flu season 
on the number of patient visits each 
week and the number of patients with 
influenza-like illness. For syndromic 
surveillance, one can imagine a similar 
system of alert clinicians that report 
unusual findings directly to the public 
health communities.)

At issue is whether syndromic sur-
veillance systems as originally conceived 
can achieve the necessary speed of out-
break detection while simultaneously 
maintaining reasonably low false alarm 
rates. This is partially due to the fact 
that electronic biosurveillance, as com-
pared to other surveillance paradigms, 
lacks the maturity that comes with 
operational refinement over decades 
of use. It is also due to the need for 
progress in advancing the technological 
enablers for data acquisition timeli-
ness and geographic coverage. And, as 
we have previously discussed, there is 
a need for additional methodological 
development in order to fully exploit 
the information embedded in these 
data and to statistically characterize the 
degree of event (un)certainty in order 
to determine when to engage a public 
health response to a signal.

When Does an Electronic 
Biosurveillance System Add Value? 

Speed-of-detection questions aside, a 
critical question statisticians can help 
the public health community address 
is under what circumstances the vari-
ous statistical detection methods can 
usefully detect an outbreak at all. Fig-
ure 6 illustrates the issue. Remember 
that one goal of biosurveillance is early 
event detection in advance of a medi-
cal diagnosis. Hence, if the outbreak is 
sufficiently large, geographically con-
centrated, and/or easy to diagnose, a 
medical or public health practitioner 
is likely to be equally fast or faster at 
detecting the outbreak than a statistical 
algorithm. In contrast, if the outbreak 
is very small and/or diffuse, a statisti-
cal algorithm operated in isolation is 
unlikely to detect the outbreak—at least 
in the short time desired of a syndromic 
surveillance system. The result of these 
restrictions is that statistical methods 
will be of value only when the outbreak 
is large/concentrated enough to statisti-
cally detect, but not so large that the 
outbreak is obvious, combined with the 
situation where identification of the type 
of outbreak is sufficiently hard to diag-
nose, making the medical profession 
likely to miss it for some time. 

Thus, in conjunction with the public 
health community, statisticians can con-
tribute to the development of electronic 
biosurveillance, syndromic surveillance, 
and other early event detection systems 
by helping to determine under what con-
ditions and for what types of outbreaks 
the dotted region in Figure 6 exists. 
Statisticians also can help determine 
when it is of sufficient size that the 
implementation of a particular detection 
method for a particular type of outbreak 
in a biosurveillance system is worth-
while. This is a clear role and responsi-
bility for statisticians and the statistical 
community in advancing biosurveillance 
effectiveness in efforts to protect the 
public health.

What Else Might an Electronic 
Biosurveillance System Do? 

Whether or not syndromic surveillance 
or other early event detection systems 
turn out to be useful for outbreak detec-
tion, appropriately designed systems 
also may be useful for establishing 
and maintaining situational aware-
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ness. Situational awareness occurs 
when an individual or organization 
has a complete understanding of his/
her/its environment. It is particularly 
important for effective decisionmak-
ing in complex, dynamic environments 
that are constantly changing. In terms 
of public health surveillance, in the 
event of an outbreak, public health 
officials will require critical informa-
tion about the location, magnitude, 
and, in the case of a communicable 
agent, spread of the agent to effec-
tively mitigate the effects of the out-
break. Only with superior situational 
awareness will public health officials 
be able to quickly and effectively man-
age their resources, identify outbreak 
sources and causes, identify affected 
and at-risk populations, and effectively 
isolate contagious populations.

However, note that it does not follow 
that electronic biosurveillance systems 
designed and optimized for early event 
detection will necessarily be effective at 
providing situational awareness or vice 
versa. For example, effective early event 
detection is more analytically focused, 
requiring sophisticated statistical meth-
ods to signal unusual trends and clusters 
and a system for public health officials 
to easily dig into the data once a signal 
has been raised in order to quickly deter-
mine whether an actual outbreak has 
occurred. In contrast, systems designed 
to promote situational awareness are 
likely to be more focused on descrip-
tive statistics, and will probably require 
sophisticated data and information dis-
plays that effectively summarize the 
status of public health resources and 
population health indicators.

These possible foci for an electronic 
biosurveillance system, while related, 
are not the same. A common feature 
requirement for both purposes is the 
ability to quickly ‘slice and dice’ through 
data, creating views that support deci-
sions about a variety of query types. 
Statisticians can help the public health 
community clearly distinguish between 
these functions, their requirements, 
and the necessary features of a system 
designed to support one or the other 
of these goals. A key to fulfilling this 
responsibility and providing such a ser-
vice is the ability to communicate and 
interact successfully with stakeholders 
who may not be trained in statistical 
thinking but who are domain experts 

or skilled in other scientific and techni-
cal disciplines necessary for successful 
surveillance outcomes.

In addition, analytic biosurveillance 
findings are frequently the result of com-
plex combinations of data inference and 
deductive reasoning that draw and fuse 
information from multiple sources. For 
example, the Department of Homeland 
Security has established the National 
Bio-Surveillance Integration System 
(NBIS), designed to analyze surveil-
lance information from people, animals, 
plants, food, and the environment. This 
information will be monitored continu-
ously and come from expanded and 
enhanced systems across the federal 
government and international sources. 
This creates formidable potential for 
situational awareness, but also exponen-
tially expands the analytic complexity 
challenges (www.whitehouse.gov/omb/
budget/fy2006/dhs.html). Thus, it also 
would be of great value to design sys-
tems and methods that allow users to 
think broadly about evidence in data and 
scientific logic.

What Is a Biosurveillance System 
Supposed To Detect, and How Fast? 

A fundamental problem with elec-
tronic biosurveillance is that, even if 
we restrict its purpose to detecting out-
breaks, no specific performance goals 
have been defined. Rather, there is just 
the overarching fuzzy purpose for such 
a system to signal disease outbreaks 
in a more timely and informative way 
than we could without it. Statisticians 
understand that numerous alternative 
hypotheses are more difficult to sup-
port with evidence from data than one 
narrow specific alternative. Real- or 
near real–time biosurveillance systems 
that are supposed to produce a signal 
for all possible types of disease out-
breaks at any location or concentration 
at any time have fallen prey to “the 
mother of multiple alternative hypoth-
eses,” and hence are doomed to suffer 
from decreased detection ability and 
high false signal rates.

Statisticians can help the public 
health community understand the util-

Figure 6.  Is there a sufficiently large region in the diagnosis difficulty/speed vs. 
outbreak size/concentration region where syndromic surveillance systems (or other 
early event detection systems) would add value to justify current claims and hopes 
for such systems?  
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ity of being more specific about defining 
outbreak alternatives. That is, the better 
the public health community can define 
which diseases are of interest to monitor 
and how their outbreaks are likely to be 
manifested in the data being monitored, 
the better the analytical community will 
be able to define methods with the abil-
ity to best detect the specified outbreak 
with fewer false alarms.

Of course, it also is important to 
employ robust methods capable of 
detecting a variety of outbreak events, 
particularly with the prospect of delib-
erate bioterrorism attacks designed 
to be difficult to detect. But absent 
any clear statement of a set of spe-
cific objectives, the performance of 
detection algorithms in syndromic 
surveillance systems will be, at best, 
haphazard and, at worst, ineffective.

Developmental Challenges

How To Assemble and Interpret 
Electronic Biosurveillance Data? 

Electronic biosurveillance system 
data are almost exclusively administrative 
or ‘secondary use’ data gathered for some 
purpose other than health surveillance. 
It is essentially available data that is 
logically thought to contain information 
that can be exploited for public health 
surveillance. It is frequently aggregated 
into or identified via arbitrary admin-
istrative boundaries, such as residence 
ZIP code or hospital visited. It is difficult 
at best, and often impossible, to link 
records for individuals across multiple 
hospital visits for an individual patient 
or between individuals’ laboratory and 
pharmacy data. The data also can be 
subject to influences that have little or 
nothing to do with underlying health 
phenomenon, such as a sales promotion 
for an over-the-counter medication or 
“worried well” seeking medical attention 
in the aftermath of media coverage for 
some phenomenon. Often, measures 
are little more than aggregate counts 
over time by region. 

Thus, there are many obvious research 
questions that need to be addressed: 
What do various counts mean? Can 
they be meaningfully converted into 
rates, and can and should those rates 
be risk adjusted for the underlying 
population? What is the best way to 
smooth across jurisdictional boundar-
ies, particularly for small jurisdictional 

areas? When should smoothing be used? 
For the majority of data that cannot 
be linked, should the “unlinked data 
source” problem be addressed, and, if so, 
how? The unlinked data source problem 
refers to the fact that, because most or 
all the syndromic surveillance data is 
unidentifiable, the extent of information 
overlap is unknown across data streams. 
For example, if a system uses over-the-
counter sales, emergency room, and 
laboratory test data, it is not known to 
what extent the same people and their 
reactions to illness are manifested in the 
different sources.

Given that syndromic surveillance 
data are intended to be imprecise mea-
sures of some unobserved incidence of 
disease, what is their correlation with 
known outbreaks? That is, what is known 
about how much disease incidence sig-
nal is contained within the data? What 
types of nondiagnosis health-related 
data are most sensitive to the various 
types of disease outbreaks of interest? 
How should the data be assembled so 
as to maximize the likelihood of detect-
ing an outbreak signal, or, conversely, 
what should be avoided or minimized 
that would tend to mask such a signal? 
How should data “lag time” and “time 
alignment” be addressed? Lag time is 
the time between an actual outbreak 
and the outbreak’s manifestation in the 
data being monitored. Time alignment 
refers to the fact that an outbreak may 
manifest itself at different times in dif-
ferent data streams. For example, an 
outbreak may appear earlier in over-the-
counter pharmaceutical sales data than 
for emergency department data. 

What Is the Baseline State of Disease 
Incidence?

Industrial SPC methods are generally 
founded on the assumptions that much 
of the manufacturing process can be (at 
least broadly) controlled, particularly 
when the parameters of the SPC meth-
ods are first set to in-control conditions. 
Further, in an industrial setting, upon 
the signal of a procedure, the process 
can be evaluated to determine whether 
it needs to be adjusted or whether the 
signal was simply a false alarm.

The syndromic surveillance prob-
lem is not as simple. First, “in-control” 
is a nebulous concept as no control is 
actually exhibited over the process. For 
example, seasonal and other naturally 

occurring and uncontrollable effects—
including population changes—affect 
the observed outcomes. Second, it 
often is difficult and sometimes impos-
sible to definitively identify various 
out-of-control conditions, even retro-
spectively. For example, identifying the 
start and end of the winter flu season 
in a particular region of the country is 
nontrivial and can be subject to debate. 
Isolating the underlying baseline dis-
ease incidence during this period is 
thus difficult at best. Further, from 
a bioterrorism detection perspective, 
the “normal” or baseline state includes 
naturally occurring “abnormal” events, 
such as the flu season.

This difficulty is additionally com-
pounded in electronic biosurveillance 
systems with data that may be only 
loosely correlated with weak indica-
tors of the actual underlying population 
health. It thus goes almost without say-
ing that identifying an “out-of-control” 
outbreak state is made significantly 
more difficult when it is hard to char-
acterize the “in-control” natural state. 
Thus, although SPC logic is applicable, 
an evolution of the methodology is in 
order to address the varying require-
ments implicit in the public health data 
and problem context. 

What Are the Issues in Detection 
Algorithm Design?

In spite of the fact that what is known 
about how outbreaks will be mani-
fested is limited, we can discuss some 
of the issues and challenges that need 
to be addressed in the design of effec-
tive detection algorithms. The first is to 
consider the temporal and spatial com-
ponents of disease outbreaks. Effective 
algorithms will likely need to account 
for these two aspects simultaneously. 
Most of the industrial SPC method-
ology is only temporally oriented. In 
contrast, traditional clustering methods 
tend to ignore the temporal dimension. 
Kulldorf ’s SaTScan (www.satscan.org) is 
both spatial and temporal, but originally 
designed to be applied retrospectively 
on a static database (vs. repeated appli-
cations to a dynamic data stream in a 
surveillance context). This leaves a wide-
open area ripe for new research.

Then, there is the question of the 
whether multiunivariate methods or true 
multivariate methods should be used, 
and under what conditions each is to be 
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preferred. As we discussed in the previ-
ous section, tradeoffs occur between 
the options, depending on whether 
an outbreak occurs across multiple 
jurisdictions or is best identified via 
changes in multiple data streams, for 
example. For multivariate methods, 
research is still required—at least for 
industrial SPC-based multivariate 
methods—to derive and character-
ize the performance of methods that 
are not direction invariant, meaning 
they can identify increases in disease 
incidence, but will not signal when 
decreases occur. 

Most SPC procedures, including 
those previously described here, have 
been developed under the assumption 
that successive observations are inde-
pendent. In industrial applications, this 
often can be reasonably well achieved 
by taking observations sufficiently far 
apart in time. For syndromic surveil-
lance, data that exhibit characteristics 
such as seasonal cycles or other trends, 
such independence assumptions are 
more dubiously made. For example, 
many naturally occurring communi-
cable diseases exhibit a seasonality 
component, such as a spike in cases in 
the winter. However, the timing, dura-
tion, and magnitude of these spikes 
often are not predictable.

The lack of a clear-cut baseline state 
combined with data that likely have a 
periodic component suggests methods 
that compare predicted rates from esti-
mated baseline rates. Such methods are 
likely to require the use of a time gap in 
the data used for baseline estimation so 
data from an undetected outbreak does 
not contaminate the baseline estimate. 
However, it is not well understood how 
to design such time gaps into detection 
methods, what the tradeoffs are for 
longer vs. shorter gaps, and whether 
simpler methods without the gap can 
perform just as effectively. 

How To Judge Algorithm Performance? 

As it is difficult to characterize the 
normal or baseline state of disease 
incidence (and their associated biosur-
veillance system data measures) and 
the likely outbreak conditions have not 
been specified, it is rather difficult to 
evaluate and compare the performance 
of the various detection methods. Com-
pounding this is a general desire by the 
public health community to see meth-

ods demonstrated on ‘real’ data. Yet, due 
to confidentiality and privacy concerns, 
there is a lack of general availability of 
such data to the research community. 
The result is a need for reasonably real-
istic pseudo-data that the public health 
community finds convincing but that, at 
the same time, is reproducible and can 
be released for general use. In order to 
generate such data, more fundamental 
research is required to better understand 
and characterize the various baseline 
states of disease incidence and the likely 
outbreak conditions.

Given such data, the research com-
munity must establish a common set 
of metrics to be used to evaluate the 
performance of the various detection 
algorithms. As we have discussed, the 
industrial SPC community uses aver-
age run length, though due to the likely 
autocorrelation in syndromic surveil-
lance data and an inability to “reset” 
the process to an in-control condition 
(resulting in multiple signals over short 
periods of time related to one abnormal 
condition), the ARL measure may or 
may not be appropriate in this applica-
tion. Other measures, such as average 
time between first signals, need to be 
rigorously defined and then accepted 
for widespread use.

Conclusions

Electronic biosurveillance systems are 
under development and being imple-
mented around the country. These appli-
cations and the analytical methods used 
within them are motivated by a need for 
improved public health surveillance, not 
only for bioterrorism, but also to improve 
responsiveness to natural disease out-
breaks (e.g., avian flu and SARS).

Initial system implementations have 
been driven largely by advances in com-
munications and computer technol-
ogy that now facilitate the real-time or 
near real–time collection and aggrega-
tion of health-related data. While in all 
these systems it is common to bring 
together various types of health and 
health-related data, exactly what these 
data are to be used for is still relatively 
undefined. Some efforts are focused 
on looking for changes in the rate of 
disease incidence, some are focused on 
changes in counts, some are focused on 
detecting clusters of disease events, and 
some are focused on detecting individ-
ual events. Each of these has different 

implications for the types of outbreaks 
that will be best detected.

Because goals of biosurveillance 
are evolving in specificity, the cur-
rent state of detection research is that 
each researcher defines his or her own 
assumptions and conditions and tests 
his or her algorithm under those condi-
tions only. It is as if the choice of nail 
is dictated by the hammer at hand, 
rather than the best hammer being 
chosen to optimally drive the requisite 
nail. As the eighth report by the Com-
mittee on Government Reform, titled 
Strengthening Disease Surveillance, 
stated, “Successfully operating the 
elaborate, elegantly sensitive surveil-
lance network of the future will require 
unprecedented levels of human skill, 
fiscal resources, medical information, 
and intergovernmental cooperation.” 
The statistical profession has much to 
offer and formidable responsibility in 
this endeavor.
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