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ABSTRACT

At the present time the primary method of obtaining solutions to

non-linear differential equations is by means of the digital computer

and numerical techniques, A method is here proposed to find an approxi-

mate mathematical expression through the use of Laplace Transform tech-

niques. Thus, the Laplace Transform concept is extended to the solution

of non-linear differential equations

.
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CHAPTER 1

1.0 Introduction

Laplace Transforms have long been employed in the solution of

linear differential equations. Baycura [ref. 1] proposed a method of

obtaining an approximate solution to a non-linear differential equa-

tion by using a linearized transform to obtain the approximation. In

a later paper [ref. 2] it was proposed that an exact solution might be

found by developing an expression for the Laplace Transform of a non-

linear term. The result was that the solution was not exact, but yery

similar in form.

These results are examined in detail here, and a general expres-

sion for the non-linear transform is developed. Further, the concept

is extended to non-homogeneous equations.

1.1 Applications

A method of obtaining a good approximation to the many non-linear

differential equations which occur in all engineering fields would be

of great utility to the engineer. Having a mathematical expression

which closely approximates the solution would enable the engineer to

analyze the system, and to optimize the design more rapidly, and

without having to rely totally on digital computers.



CHAPTER 2

2.0 Development of the Laplace Transform for Non-Linear Functions

In order to use LaDlace Transform techniques in obtaining an

approximate solution to a non-linear differential equation, expreS'

sions for the transform must be derived.

2.1 The Type of Equation Defined

Consider a general non-linear differential equation of the form

x
(m)

(t)
:

+ ... + a
n

x
n
(t) = f(t) (2.1.1)

/ \ a. L.

where x^ '(t) is the m derivative of x(t); k indicates the derivative

raised to the k power; and x
n
(t) is x(t) raised to the n power

th

2.2 The Method of Successive Integration by Parts

To derive an expression for the transform, use is made of succeS'

sive integration by parts. Consider two time dependent functions,

x(t) and y(t). The integral of their product is given by:

/xy dt = x / y dt - x // y dt dt + x //J y dt dt dt - • •

•

+ (-D
n
x
(n)

/ [/y dt]
n

dt (2.2.1)

where / y dt is an n-fold iterated integral. This equation can

now be used to find a series expression for the Laplace Transform of

x(t) by letting y(t) = e
st

Thus:

xe

o

-st
dt = x

r°° -st
dt - x e"

st
dt dt + x e"

st
dt dt dt -

o J J

(2.2.2)



After integration the series becomes:

r

xe
- st

dt = - 4
St'

xe
st

xe
-st'

(2.2.3)

In evaluating the integral at the upper limit the condition must be

such that:

Limit xe"
st

=

t + °°

(2.2.4)

and similarly for all derivatives of x(t). Thus, evaluating the

integral at the lower limit, the result is:

J
s s

2
s

3

and since:

X(s) = xe"
st

dt

(2.2.5)

(2.2.6)

by definition, an infinite series expression for the transform has

been derived.

2.3 Derivation of an Expression for the Transform of Derivatives

To derive an expression for the transform of a derivative of

x(t), the method just illustrated is used again, with x(t) in place

of x(t). Thus:

'xe"
st

dt = x e~
sl

dt - x
-st

dt dt + x
st

dt dt dt -

o

= *M + xlpi x(o)_

s s 2 s 3
(2.3.1)

Now, by adding and subtracting x(0), and then multiplying by s/s, the

result is:

•-st ..

x dt = s
"x(0)

+
x(01

+ x(Ol +
s s 2 s 3

- x(0) (2.3.2)



The term in brackets is just X(s), so:

cf[x(t)] = sX(s) - x(0) (2.3.3)

a result which is well known. In a similar manner it is found that:

of[x(t)] = s
2 X(s) - sx(0) - x(0) (2.3.4)

This method can be continued and it soon becomes apparent that the

expression for the transform of the m derivative is:

cf[x
(m)

(t)] = s
m
X(s) - s

m"
1

x(0) - s
m" 2

x(0) - ... - sx
(m " 2)

(0)

(m-1)
- x (0) (2.3.5)

2.4 Transform Expression for Integral Powers of a Function

The functions considered thus far have all been linear; now the

functions which cause the non-linearities will be considered. First,

consider the function squared.

l- r
2.-St

x"e dt = x(xe"
st

)dt

= x
f
00

+
xe"

st
dt - x

r? -st
x dt dt + x V st

dt dt dt -

Now, let

h =x f
x"

st
dt

(2.4.1)

(2.4.2)

The integral is the same as Equation (2.2.6), so

l
}

= x(0)X(s)

Now let

I« - x
r

xe"
st

dt dt

and if the inner integral is examined:

xe"
st

dt = x e"
st

dt - x e"
st

dt dt + x

x"
st

x"
st

x"
st

st

(2.4.3)

(2.4.4)

dt dt dt - •••

(2.4.5)
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This result is then put in Equation (2.4.4) to obtain:

I
2

= x [1 r~-st
dt + ^

-st
dt + ^ x

5l
dt + (2.4.6)

Each of the integrals can be evaluated by using the results of Section

2.3, so:

h-^m^h sX(s) - x(0)
1

S3
s
2 X(s) - sx(0) - x(0)

(2.4.7)

If this is expanded and like terms are collected, the result is:

I,
x(0)X(s)

(2.4.8)
2 s

Continuing in this manner it is found that:

ot[x
2
(t)] = [^(0) + *M + *M + ...Jx(s) (2.4.9)

But the term in brackets is just sX(s), so:

<^[x 2 (t)] = sX
2
(s) (2.4.10)

Thus, the transform of the square of a function has been derived. Now

consider:

x
3
e"

st
dt = x x

2
e'

sz
dt - x

r°9 .

x
2
e"

st
dt dt + (2.4.11)

The first integral has already been found, so, from Equation (2.4.10):

xfx
2
e"

st
dt = x(0)sX 2

(s) (2.4.12)

o

The second integral is evaluated in the same manner as Equations

(2.4.4) throuqh (2.4.8). Thus:

- x[Tx 2
e
_st

dt dt = AM s x
2
(s) (2.4.13)

o

The remaining integrals are evaluated in a like manner and the outcome

is:

(2.4.14)of[xMt)] = sX 2 (s)fM +^ +^ + •••]



Once again, the term in brackets is recognized as being sX(s), so the

expression can be written as:

Jf[x
3
(t)] = s

2
X

3
(s) (2.4.15)

If higher powers of the function are examined it soon becomes apparent

that:

cCEx
n
(t)] = s

n"VM (2.4.16)

2.5 Transform Expression for Powers of a Derivative

Since many equations involve a derivative which is raised to a

power, it will be useful to find an expression for the transform of

such a function. First consider the square of the first derivative:

(2.5.1)(x)
2
e"

st
dt = x

r
cc

:e"
st

dt - x
fxe"

st
dt dt + ...

The integral in the first term has been evaluated in Section 2.3, so

this term becomes:

stxe"^ dt = x(0)[sX(s) - x(0)] (2.5.2)

The second term is evaluated in the same manner as Equations (2.4.4)

and (2.4.13). Therefore:

.00 •• .

fxe"
st

dt dt = *M[sX(s) - x(0)]- x (2.5.3)

The remaining terms in the series are evaluated in the same way, so the

transform becomes:

effect)]
2

}
= Csx(s) - x(o)][x(o) + *M + *M +

-.J

= Lsx(s) - x(o)] (s)[^- + 4?1+ ;•*] (2 - 5 - 4)

But the second bracketed term is equivalent to sX(s) - x(0), so the

transform finally becomes:

<£{[x(t)] 2

} = s[sX(s) - x(0)] 2 (2.5.5)

10



It should be noticed that this last expression may be written as:

of{^(t)]
2

} = s#[x(t)]} 2
(2.5.6)

If the foregoing method is applied to the third power of the first

derivative, the result is:

^ff[x(t)]
3

} = s
2
£f[x(t)]}

3
(2.5.7)

If higher powers of the first derivative are examined, it can be

shown that:

ct/[i(t)]
n
} - S

n-l£[[i(t)]} n
(2.5.8)

Now powers of the second derivative will be examined. First consider

the second derivative sguared
r00

(x)
2
e~

st
dt = x xe

bL
dt - x

r?» st
xe dt dt + (2.5.9)

The integral in the first term is known to be s
2 X(s) - sx(0) - x(0).

The second integral is treated in the same manner as Eguations (2.4.4),

(2.4.13), and (2.5.3) and becomes (l/s)[s 2 X(s) - sx(0) - x(0)]. Thus

it is found that:

^/[x(t)] 2
) = Cx(0) + ^M +

x__IOi + ...][s 2 X(s) - sx(0) - x(0)]

(2.5.10)

The first term in brackets can be written as:

x(0)
+

x(0)
= s

= s
2

x(0)
,
x(0)

,
x(0)

, ...

s s 2 s 3

10) + ^iO) + ... . 8{0 )

- sx(0)

- sx(0)[x(0) + S|

,p + x|0l + ...j . s2x(0) . s
-

(0)

,(s2
[x|oi + xM + ...j . sx(0) .

-

(0)j (2611)

This is recognized as being s[s 2 X(s) - sx(0) - x(0)]. Thus:

#[x(t)] 2

} = s£f[x'(t)]}
2 (2.5.12)

= s

= s-

11



2.6 Summary of the Transforms

If Equations (2.3.5), (2.4.16), (2.5.5), (2.5.7), and (2.5.12) are

examined, it can be seen that a general expression can be written for

the transform. Thus:

=f{[XW(t)]
n
} = s

n- 1

#[X <m>(t)]}
n

(2.6.1)

where m = 0, 1, 2, 3, . . . ; and n = 1, 2, 3, ...

12



CHAPTER 3

3.0 Application of the Transforms

The use of the Laplace Transform expression just derived will now

be demonstrated by obtaining solutions to several equations.

3.1 Application to a Non-Linear, Homogeneous Equation

Consider a homogeneous, non-linear differential equation of the

form:

e(t) + Ae(t) + Be
2
(t) = 0; e(0) = V (3.1.1)

Equation (2.6.1) is now used, and the transformed equation is:

sE(s) - e(0) + AE(s) + BsE 2
(s) = (3.1.2)

This expression is now rearranged to give:

BsE 2
(s) + (s + A)E(s) - V = (3.1.3)

This equation is quadratic in E(s), so it may be solved for E(s)

through the use of the familiar quadratic formula. Thus:

(3.1.4)FU) _ -(s + A) ±>/(s t A)
2 * 4BVs

2Bs

Now this result is rewritten to put it into a more convenient and

useful format. Thus:

E(.)-iS*l
2Bs"

1 ± 1 +
4BVs ^
TiW (3.1.5)

Now, if the positive radical is used and is expanded in a binomial

series, the resulting expression for E(s) is:

F / e x V BV 2
s 2B 2W 5B 3W

f , , ,s
E[s) ~ m\ - TiW3" (s+A)s " (s+A) 7

+ "• [3 - ] - b)

Thus, an infinite series expression has been obtained for E(s). Now

the inverse transform is to be found for each term of the series [ref. 3],

1.'



and the resulting expression is

•At
e(t) = Ve" 1 - BVt fl

At1

I

1
' *1

1

+ (BVt) 2 r, 2At

I
3

A
2
t
2

}

12
J

^[1-
5At A

2
t

:

8 8

i A 8
t?l

144 ,

+ . .

.

(3.1.7)

An infinite series approximation has been found for e(t). However, for

the original equation, an exact solution is known [ref. 4]:

e(t) = Ve
-At

1 - BV
e"

At
- 1

-1
(3.1.8)

By expanding the term in brackets, the two solutions may be compared

Thus, after using a binomial expansion, the exact solution is:

e(t) = Ve
-At

yj.
r -At 1

e - 1
B
2
V
2

A 2

B
3
V

3
3

+
A :i

.-At
1

(3.1.9)

Now, if each of the expotentials is expanded in a series, the result is

e(t) = Ve"
At

- ^+ *££- ^+ •••

2\/2 + 2+ B
2
V
2
t LAt.ZAHi.AHi,

(3.1.10)

Notice the similarity between this equation and the approximate solu-

tion in Equation (3.1.7). Each sub-series in the approximate solution

is truncated, since the second term of the s-domain expression yields

two time-domain terms; the third term of the s-domain expression gives

three time-domain terms; and so on.

From an analysis of the parameters A, B, and V, it is apparent

that BV < A, and further, the smaller BV is with respect to A the

better the approximation will be. Table 1 shows a comparison of the

exact and approximate solutions for two sets of B, V, and A. Figure 1

14



shows a graph of the exact and approximate solutions when A = 1.0,

B = 0.125, and V = 1.0.

TABLE 1

A. A = 1.0 , B = 0.,5, V = 1.0

Time Exact Approximate Error

0.0 1.000 1.000 0.000

0.5 0.507 0.473 0.034

1.0 0.279 0.257 0.022

1.5 0.161 0.174 -0.013

2.0 0.094 0.118 -0.024

2.5 0.056 0.057 -0.001

3.0 0.034 -0.010 0.044

B. A = 1.0, B = 0.125, V = 1.0

0.0 1.000 1.000 0.000

0.5 0.578 0.577 0.001

1.0 0.341 0.344 -0.003

1.5 0.203 0.214 -0.011

2.0 0.122 0.139 -0.017

2.5 0.074 0.095 -0.021

3.0 0.044 0.067 -0.023

3.5 0.027 0.048 -0.021

4.0 0.016 0.035 -0.019

4.5 0.010 0.026 -0.016

5.0 0.006 0.019 -0.013

15
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3.2 Application to a Non-Linear, Non-Homogeneous Equation

Consider an equation of the form:

Mv + kv
2 = Mg (3.2.1)

This is the equation of motion of a falling object with the retarding

effect of air resistance considered. It is assumed that the retarding

force is proportional to the velocity squared. If the equation is

written as:

v + hv 2
- g = (3.2.2)

where

v(0) = (3.2.3)

and

h = k/M, (3.2.4)

then an approximate solution to the equation can be found by applying

Equation (2.6.1) as before. Thus:

(3.2.5)

This expression is rearranged to get:

hs
2
V
2
(s) + s

2 V(s) - g = (3.2.6)

Once again the result is a quadratic equation in V(s), and it is

solved for V(s) by using the quadratic formula. Thus:

sV(s) - v(0) + hsV 2
(s) - | =

1
- S

2
± ^js

k + 4qhs 2 l (3.2.7)V(s)=^iT

This equation is now rearranged to get the same form as that used in

Equation (3.1.5):

V(s) -
1

2T7
- 1 i(w^l (3.2.8)

If the term in parentheses is expanded in a binomial series and the

positive sign in front of the radical is used, the result, after

17



simplification, is

.«»U3

V

SuH
( S ) = 3_.2!h.

+ 2^hl_ Sq^h 3
14g

5
h* 42q

6
h

5

...
(

,

S* S
4

S 6 S B S iu S

and the time-domain solution is obtained by findinq the inverse trans-

form of each term of the series. Thus:

So an approximate solution has been found. The exact solution is

known [ref. 5]:

v(t) =

~
_ -2(gh)*t

(3.2.11)

1 +e-2(qh) 2
t_

where (g/h)^ is the terminal velocity of the fallinq object. If the

numerator and denominator of this expression are multiplied by e^ '
,

then:

v(t) =
[|J*

tanh (qh)^t (3.2.12)

The hyperbolic tanqent can be written as an infinite series, and in

this form the exact solution is

i

v(t) = (oh)k (qh)
2
t

3 2(qh) 2
t

5 17(ah)V ... ...

IF TT5"
(3.2.13)

To compare the two solutions, Equation (3.2.10) is rewritten as

v(t) s

(f
(qh)

J 1
,2,

(qh) 2
t

3
HI
8

2(gh) 2
t

5

~T5
[

5
|
l7(gh) 2

t
7

,

272 5T5

(3.2.14)

The series are similar in form, but each term of the approximate solu-

tion is smaller than the correspondinq term in the exact solution. In

order to qet a numerical comparison, consider the fallinq object to be

a spherical rock with density (p) of 2600 kiloqrams/meter 3
. The

followinq parameters must be defined and evaluated [ref. 6]:

M = pV

k = 0.5 p C . A
a d

18



where M is the mass of the object, V is its volume, and A is its

surface area. The other constants are:

p = 1.293 kilograms/meter 3 (Actually, pa is a function of air

pressure and temDerature, but it

will be assumed to be very nearly
constant for this analysis.)

C, = 0.5, the draq coefficient for a sphere

A = ttD
2

, the surface area of a sphere

ttD
3

V = -g— , the volume of a sphere

g = 9.8 meters/second 2
, the acceleration due to qravitv

Thus, if the sphere has a diameter of 0.1 meter, the exact solution is

v(t) = 36.4 tanh 0.27t (3.2.15)

and the approximate solution becomes

v(t) = 36.4 n ?7t (°- 27t )

3

+ (0-27t) 5
(0

:
27t)

7
,

(0.27t) 9

_
/l " 6 50 1008 25920 "

'

' J

(3.2.16)

The comDarison of these two expressions is shown in Table II and a qraph

in Fiqure 2. In the qraph, notice that the exact solution asymptoti-

cally approaches the terminal velocity 36.4 meters/second, while the

approximate solution overshoots that value, and after about seven

seconds decreases monotonically. This is due to the fact that the

highest power term in the series was preceded by a neqative siqn, and

as t became larqe this term overpowered the others. The first term

omitted after the series was truncated was positive, so if it were

included, the graph would end by increasing monotonically. The hump

is caused by the lower degree terms being predominant when t is small.

19



TABLE II

Time Exact Approximate Error

0.0 0.000 0.000 0.000

0.5 4.884 4.885 -0.001

1.0 9.596 9.682 -0.086

1.5 11.839 12.021 -0.182

2.0 17.945 18.679 -0.734

2.5 21.413 22.731 -1.318

3.0 24.373 26.403 -2.030

3.5 26.845 29.649 -2.804

4.0 28.872 32.440 -3.568

4.5 30.510 34.757 -4.247

5.0 31.816 36.598 -4.782

5.5 32.847 37.968 -5.121

6.0 33.656 38.879 -5.223

6.5 34.287 39.337 -5.050

7.0 34.776 39.328 -4.552

7.5 35.153 38.788 -3.635

8.0 35.444 37.574 -2.130

8.5 35.668 35.399 0.269

9.0 35.840 31.750 4.090

9.5 35.972 25.768 10.204

10.0 36.073 16.077 19.996

20
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3.3 Application to an Equation with a Third Degree Non-Linearity

Consider now a non-linear differential equation of the form:

x(t) + w£x(t) + hx
3
(t) = 0, x(0) = A, x(0) = (3.3.1)

After using the transform expression of Equation (2.6.1), the trans-

formed equation is:

(3.3.2)

This is in the so-called "normal" form of a cubic equation, in that

there is no term involving X
2
(s) present. Thus there are solutions

X (s), X (s), and X (s); where:
1 2 3

X = A + B, and X , X = - ^(A+B) ± £fi (A-B) (3.3.3)
1 2 3 <-

and where:

hs
2
X

3
(s) + (sW)X(s) - As =

A ' B
Y2Hs * W?2"

+
27h3^ (3.3.4)

It can be seen that expanding this expression and determining which

root to use is a formidable task. However, it is known from Equation

(2.2.5) that:

X(s) = ><M + M0) +^ + ... (3.3.5)

and if the initial conditions from Equation (3.3.1) are used and if it

is assumed that all higher derivatives can be neglected at t = 0, then

Equation (3.3.2) may be written as:

(3.3.6)

Thus, the degree of the equation has been reduced by one and the solu-

tion can be obtained in the same manner as in the previous two sections

hAsX 2
(s) + (s

2
+co

2
)X(s) - As =

X(s) . (s
2
+u£)

7Ms~
-1 ± 1 +

4hA 2
s

2-2

(S 2 +W2
)

2 (3.3.7)

Then, expanding the term in brackets as in previous solutions, the

result is:

As hAV
X(5j " I^£ "

( S
2 +u£) 3

+
( S *+u£)

5 +
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Now the inverse transform 1s found for each term of the series. For

the first term, then:

-1 As

s 2+w 2
= A cos to t (3.3.9)

The inverse transforms for the succeeding terms are more difficult to

evaluate, as no expression of the form s
n
/(s

2
+w

2
)

n
can be found in the

tables of Laplace Transforms available. However, one handbook [ref. 7]

does have the transform

Tr'
z
t"

z
J
n
_^(w

o
t)

(s
2W) n " In-%

r(n)w
nI^ (3.3.10)

Further, the table [ref. 8] has the relation that

n-l

s
n
g(s) = f

(n)
(t) + I f

(k)
(0)s

n_1 " k
, n = 1, 2, 3, ••• (3.3.11)

k=o

r(k)
if f

v '(0) = for k = 0, 1 , ... , n-l . Thus, these two relations can

be combined to yield the desired inverse transforms. So, for the

second term of the series

s

g(s) =
(s2+w

o
)3

(3.3.12)

and its inverse transform is given by:

f(t) =
njtj; j^t)
2*r(3)

(3.3.13)

^

Then, the Bessel Function is given by [ref. 9]:

2

A%

TTm t
O

}
2 fsin avjt

P^ COS U) t
0) t

(3.3.14)

Upon substituting this expression into Equation (3.3.13), the resultant

Inverse transform of the second term is, after applying Equation

(3.3.11):

hA
f(t) = w^- (3 u> t sin w t + co

2
t

2 cos to t)
OCJ2

(3.3.15)
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This method is then applied to the other terms of the series and the

resulting expression is:

hA 3
,„.. .... , , h

2 A 5

x(t) = A cos y - K-r (3y sin y + y
2 cos y) +

"-^o o

,2 C.,3 ..if

(5
prY sin y

- £$- cos y + ^- sin y +^ cos y

(3.3.16)

where, for convenience, y = w t. Another approximate solution is given

by Cunningham [ref. 10], using the Ritz method. The result is:

x(t) = A cos^/ug + 0.75hA 2
t (3.3.17)

Using the arbitrary values w
i

= 1, h = 1, and A = 1, a comparison of

these two solutions is shown in Table III and a graph in Figure 3.

With the arbitrary values selected, the new method yields good results,

when compared to the Ritz method, up to about one second. Examination

of the series shows that better results could be obtained over a longer

period of time if the quantity A were made less than unity.

In the method originally proposed by Baycura [ref. 1], the trans-

formed equation was the same as that which would result if the relation

X(s) equals A/s were used again in Equation (3.3.2):

X(s) = p +
(

*
; 1}

(3.3.18)

For this expression, then the inverse transform is:

x(t) = cos A/2" t (3.3.19)

assuming that A = h = w = 1. At t = 2, x(t) = -0.951, and at t = 1

,

x(t) = 0.156. Thus, if desired, the equation in s can be reduced to a

linear expression, and this will yield a solution which is not in the

form of an infinite series.
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Time

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

TABLE III

Ritz
Method

Laplace
Method

1.000 1.000

0.965 0.960

0.863 0.844

0.701 0.658

0.490 0.416

0.245 0.134

-0.017 -0.173

-0.278 -0.485

-0.519 -0.786

-0.724 -1.060

-0.880 -1.290

Error

0.000

0.005

0.019

0.043

0.074

0.111

0.156

0.207

0.267

0.336

0.410

3.4 An Equation with a Derivative Raised to a Power

Consider now an equation of the form [ref. 11]:

x(t) + [x(t)] 2 + x(t) + k = 0, x(0) = 1, x(0) =

The transformed equation is found as before, thus:

s
3
X
2
(s) - (s

2 -l)X(s) +f=

This is then solved for X(s) as before, and the result is

xw-JfcU 1 ± 1
-

4ks

T^TT

(3.4.1)

(3.4.2)

(3.4.3)
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The term in brackets is then expanded as a binomial series, but this

time the negative sign in front of the radical is chosen to avoid a

delta function in the solution, so that:

The inverse transform of the first term is k sinh t, but for the suc-

ceeding terms the same difficulty is encountered as in Section 3.3.

However, the table of transforms [ref. 12] lists:

I
-1

(s 2 -l) n

TlV^ I I
n-T(t)

2
n
"^r(n)

(3.4.5)

where I
n
_3.(t) is the modified Bessel function [ref. 13] given by
2

. . y
(t/2)

N+2k

x
N(t) I k!r(N+k+l)

k=o

For the second term of the series, n = 3, N = 3/2, and

I ftl - T l

t/2)h2k

i i

- (t/2) 2 (t/2)
2

(t/2)
2

,
...

and to evaluate the Gamma function [ref. 14]

r(m+^) =.
1.3.5.7.. .(2m-l)

.in ~F

(3.4.6)

(3.4.7)

(3.4.8)

Thus
1

1

t t t ) - Mt/2) 2

+
8(t/2) 2

+
16(t/2)

T 3VtT 15VF 105VW

This result is substituted in Equation (3.4.5) to get:

.tt 4-6 4.8

JC
1 1

3?
4f t

b f

(3.4.9)

(3.4.10)

Examination of this expression shows that the system is unstable, since

the terms are always positive and the series has no limit, increasing

without bound as t becomes large.
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CHAPTER 4

4.0 Conclusions

It has been established that a method for obtaining an approximate

solution to a non-linear differential equation has been derived, and

that the method uses techniques and characteristics inherent to the

Laplace Transform. Further, it has been shown that sufficient accuracy

exists in the approximation to make it useful in many engineering

applications.

As in any approximation which uses a truncated infinite series to

obtain a numerical answer to a problem, extreme care must be exercised

to ensure that the approximation is accurate within a reasonable degree.

This means that the parameters must be examined closely to avoid

exceeding the capability of the approximation. It also means that the

approximation may indeed only be accurate over a small part of the

entire solution.

The results included here are the outcome of what really amounts to

preliminary investigation only. One question that remains is that,

since the solutions obtained in Sections 3.1 and 3.2 are so similar in

form to the exact solutions, and since the solution seems exact in the

Laplace expression, why isn't it, in fact, exact? After all, one major

attraction of the Laplace Transform in solving linear equations is that

the solution may be obtained by manipulating the transformed equation

algebraically, and that is how the solutions were arrived at here. Thus,

it seems that further research must be done in the area of this non-

1 inear transform.

28



BIBLIOGRAPHY

1. Baycura, 0. M. , Approximate Laplace Transforms For Non-linear
Differential Equations , Asilomar Conference on Circuits and
Systems, Proceedings, Pacific Grove, California, 1968.

2. Baycura, 0. M. , Laplace Transforms for Quadratic Non-linearities ,

submitted to, Journal of Mathematical Analysis and Applications,
University of California, Berkeley.

3. Roberts, G. E. and H. Kaufman, Table of Laplace Transforms , p. 223,
equation (18), W. B. Saunders Co., Philadelphia, 1966.

4. Cunningham, W. J., Introduction to Non-linear Analysis , p. 124,
McGraw-Hill, New York, 1958.

5. Ibid ., p. 163.

6. Hoerner, S. F., Flu id- Dynamic Drag , p. 1-8, Hoerner, S. F.,

Midland Park, N. J., 1958.

7. Roberts, G. E. and H. Kaufman, 0£. cit . , p. 213, equation (67).

8. Ibid . , p. 170, equation (12).

9. Selby, S. M. , Standard Mathematical Tables , 15
th

ed., p. 464,

Chemical Rubber Co., Cleveland, 1967.

10. Cunningham, W. J., op_. cit . , p. 161.

11. Thaler, G. J., and M. P. Pastell, Analysis and Design of Non-linear
Feedback Control Systems , p. 137, problem 3-3e, McGraw-Hill, 1962,

12. Roberts, G. J., and H. Kaufman, op_. cit_. , p. 213, equation (68).

13. Selby, S. M. , op_. cit., p. 465, #15.

14. Ibid., p. 393, #478.

29



INITIAL DISTRIBUTION LIST

1. Defense Documentation Center
Cameron Station
Alexandria, Virginia 22314

2. Library
Naval Postgraduate School

Monterey, California 93940

3. Naval Electronics and Communications Systems Command
Washington, D. C.

4. Professor 0. M. Baycura
Department of Electrical Engineering
Naval Postgraduate School

Monterey, California 93940

5. Lieutenant Charles R. Brady, USN

335 First Street
Palisades Park, New Jersey 07650

6. Lieutenant Claus E. Zimmerman
Box 1870
Naval Postgraduate School

Monterey, California 93940

No. Copies

20

30



UNCLASSIFIED
Security Classification

L.

DOCUMENT CONTROL DATA R&D
Security claeilllcatlon of till*, body of mbatrmel and Induing annotation mual be entered when the overall report It elm filled

i Originating activity (Corpormt* author)

Naval Postgraduate School
Monterey, California 93940

2a. REPORT SECURITY CLASSIFICATION

UNCLASSIFIED
2b. CROUP

3 REPORT Tl TLE

Approximate Solutions to Non-L1near Differential Equations Using
Laplace Transform Techniques

4 descriptive NOTES (Type ol report and,lnclu

Master's Thesis
I au tmORIS) (Plrat name, middle Initial, laet name)

Charles R. Brady, Lieutenant, USN

• REPORT DATE

April 1969

7a. TOTAL NO. OF PASES

31

7b. NO OF RE FS

14
Sa. CONTRACT OR 6RANT NO.

b. PROJEC T NO.

•a. ORIGINATOR'S REPORT NUMBER(S)

Sb. OTHER REPORT noiii (Any other numbere tfiaf m%ay be aael0*ed
thle report)

10. DISTRIBUTION STATEMENT

This document has been approved for public release and sale; Its distribution
1s unlimited.

12. SPONSORING MILI T AR Y ACTIVITY

Naval Postgraduate School
Monterey, California 93940

At the present time the primary method of obtaining solutions to non-1 1near

differential equations 1s by means of the digital computer and numerical techniques.

A method Is here proposed to find an approximate mathematical expression through the

use of Laplace Transform techniques. Thus, the Laplace Transform concept 1s

extended to the solution of non-1 1near differential equations.

DD """ 1473i nov as I *t / ej

S/N 0101-807-M1 1

(PAGE 1)

31
UNCLASSIFIED, ,,

Sacurtry Claaaiflcati
*-»l«0»



UNCLASSIFIED
Security Classification

key wo not

Non-11 near Laplace Transforms

Approximate solution

Non-1 1near differential equations

DD,'°?..1473 ">*«)
*> i

32
UNCLASSIFIED

Security Classification















































































































rtord s=n
SH ELF BINDER

Z^ZT Syracuse, N. Y.

Stockton, Calif.



thesB7972

Approximate solutions to non-linear diff

m 111 hum ii

3 2768 001 01945 8
DUDLEY KNOX LIBRARY


