

Calhoun: The NPS Institutional Archive DSpace Repository

A study of the effect of engine size on heat rejection

Smith, Harrison B.; Nardone, Henry J.; Bohner, Earl A.
California Institute of Technology
https://hdl.handle.net/10945/14645

A STUPY OF THE FPRECT OF ENGINE SIZE ON HEAT REJECTION
 HARRISON B. SMITH HENEY J. NARECNR PARL A. BOHNER DCNALLD W. WILKINSON RUGENE B. MITCHELL.

Lil.ery
U. S. Naval Postgraduate School

Monterey, California

$$
2,0+1+10+1
$$

8854

Librery
U. S. IT..v.l Toutcmardautn School Micaic...j, Co _.....tal

> by

HARRISON B. SMITH, LIEUTENANT, U. S. COAST GUARD B.S., U.S. Coast Guard Academy, 1944

HENRY J. NARDONE, LIEUTENANT, U. S. NAVY B.S., Rhode Island University, 1946

EARL A. BOHNER, LIEUTENANT, U. S. NAVY B.S., Georgia Institute of Technology, 1944 DONALD W. WILKINSON, LIEUTENANT, U. S. NAVY University of Michigan, 1945

EUGENE B. MITCHELL, LIEUTENANT, U. S. NAVY B.S., University of South Carolina, 1946

Submitted to the Department of Naval Architecture and Marine Engineering on 16 May 1952 in partial fulfillment of the requirements for the degree of Naval Engineer.

ABSTRACT

A STUDY OF THE EFFFCT OF ENGINE SIZE ON HEAT REJECTION

by

Harrison B. Smith Henry J. Nardone Earl A. Bohner Donald W. Wilkinson Eugene B. Mitchell

Lieutenant, U. S. Coast Guard Lieutenant, U. S. Navy Lieutenant, U. S. Navy Lieutenant, U. S. Navy Lieutenant, U. S. Navy

Submitted for the Degree of Naval Engineer in the Department of Naval Architecture and Marine Engineering on May 16, 1952.

A theory has been formulated which states that the rate of heat rejection from the cylinder gases of an internal combustion engine may be approximated by the equation

$$
\begin{equation*}
q=\operatorname{constant}\left[\ell^{2} \Delta T C_{p}\left(f_{i} e S\right)^{n}\left(\frac{l}{M}\right)^{n-1}\right] \tag{1}
\end{equation*}
$$

where n is an exponent less than unity. For a given engine operating at constant fuel air ratio and water jacket temperature equation (I) takes the form

$$
\begin{equation*}
q=\operatorname{constant}(S \times I M E P)^{n} \tag{2}
\end{equation*}
$$

The theory predicts that geometrically similur engines all have the same value of n. The relation between heat rejection and engine size for geometrically similar engines operating at the same piston speed and IMEP is given by

$$
\begin{equation*}
\frac{g}{\ell^{2}}=\text { COnstant }(l)^{n-1} \tag{3}
\end{equation*}
$$

The purpose of this thesis was to investigate the validity of the theory with respect to the effect of engine size on heat rejection. Three geometrically similar spark ignition internal combustion engines installed in Sloan Laboratory were used in this investigation.

The results of this study give, for the M.I.T. G.S.E., a value of .6 for the exponent n defined in equation (2) and a value of .9 for n in equation (3). By theory these two values should be the same. The results, therefore, indicate that as engine size increases, more heat per unit area is rejected than predicted by theory.

Since this study represents the first attempt to correlate engine size and heat rejection, it is recomended that further studies be conducted on the M.I.T. G.S.E. with particular emphasis on the effects of friction, spark advance, and thermal efficiency on heat rejection. It is further recommended that attempt be made to measure separately the heat rejected to the cylinder walls, cylinder head, lubricating oil and in the exhaust gas.

Professor J. C. Newell
Secretary of the Faculty Massachusetts Institute of Technology Cambridge 39, Massachusetts

Dear Professor Newell:
In compliance with the requirements for the degree of Naval Engineer from the Massachusetts Institute of Technology, we hereby submit a thesis entitled, "A Study of the Effect of Engine Size on Heat Rejection."

ACKNOWLEDGEMENT

The authors acknowledge with gratitude the suggestions, assistance, helpful advice, and criticisms given by:

Professor A. R. Rogowski
Professor C. F. Taylor
Professor W. A. Leary
Professor R. D. Douglass
Professor W. H. McAdams
Mr. J. C. Livingood
Mr. D. S. Doremus
Mr. J. A. Caloggero

TABLE OF CONTENTS

Page
Abstract 11
Letter of Transmittal Iv
Acknowledgement V
Nomenclature 1
Introduction 4
Procedure 13
Results 20
Discussion 36
Conclusions 47
Recommendations 48
Appendix 50
A. Description of Engines and Associated Equipment 51
B. Water Flow Measurement 65
C. Air Flow Measurement 70
D. Fuel Flow Measurement 77
E. Fuel and Lubricants 83
F. Original Data and Summary of Calculations 84
G. Bibliography 105

NOMENCLATURE

a, b, c,	Constant
BHP	Brake horsepower
BNEP	Brake mean effective pressure
BPSA	Best power spark advance
${ }^{\circ} \mathrm{BTC}$	Degrees before top center
Cp_{p}	Specific heat at constant pressure
D	Diameter
e	Volumetric efficiency
E_{c}	Lower heating value of fuel
F	Fuel air ratio
FHP	Friction horsepower
FMEP	Friction mean effective pressure
G	Mass velocity
GSE	Geometrically similar engines
h	Brake scale absolute reading
h	Coefficient of heat transfer between fluid and surfece
$\mathrm{h}_{\text {i }}$	Local individual coefficient of heat transfer for the inner surface.
h_{0}	Local individual coefficient of heat transfer for the outer surface
IHP	Indicated horsepower
IMEP	Indicated mean effective pressure
k	Thermal conductivity of fluid
k_{W}	Thermal conductivity of cylinder wall
K	Overall dynometer constant
K	Orifice flow coefficient
ℓ	Characteristic dimension
m	Exponent

$y=-2+\sqrt{2}$Fis
\square

 Hithurin \qquad < \qquad里 2
(2)

$\frac{2}{2}+2+2+2+2$
nm Mechanical efficiency
ϕ Function
μ Absolute viscosity
ρ Density

INTRODUCTION

The principle of similitude has been used as a tool by the Naval Engineer and Naval Architect since the days of William Froude, in 1870, to predict the performance of ships and propellers from the results of small scale model tests. The concept of dimensional analysis and its application to controlled model experiment have become a powerful tool in producing a practical solution to design problems in many engineering applications.

In the past twenty years a considerable amount of theory has been developed [I] concerning the performance and behavior of geometrically similar internal combustion engines. The validity of certain relations such as weight, gravity and inertia stresses can be demonstrated by mathematical proof [2] , but the more complex relationships of heat rejection, combustion and detonation, friction and wear cannot be predicted by. theory alone nor proved mathematically. The M.I.T. Geometrically Similar Engines, described in Appendix A, have therefore been built as a means of attacking these and other complex problems through controlled experimentation on equipment which faithfully fulfills the conditions of similitude as they are presently understood.

Because of high cyclic temperatures existing inside the cylinder of an internal combustion engine while operating, it is necessary to remove heat from the cylinder and associated metal parts to prevent destruction.

Numbers in brackets refer to reference numbers.

This is universally accomplished by circulating a cooling fluid, usually water, oil, or air, in or around the cylinder walls and heads. In a closed loop water cooling system some means must be provided for removing the cylinder heat from the cooling fluid before it can be recirculated. In order to design such a means, it is desirable to be able to predict the amount of heat which must be removed from a given engine and how this amount of heat will vary as the size of the engine is varied. The purpose of this study is to determine by experimentation with the M.I.T. Geometrically Similar Engines the effect of engine size on heat rejection. Although the problem is here applied specifically to the internal combustion engine the broader implication to the problem of relating size and behavior of any power unit is obvious.

The general relation for the heat transferred from one fluid through a solid wall to another fluid was first expressed by Newton as

$$
\begin{equation*}
d q=U d A \Delta t \tag{1}
\end{equation*}
$$

For this case, considering no foreign material such as scale on either side of the solid wall, the local overall heat transfer coefficient U may be defined as follows:

$$
\begin{equation*}
\frac{1}{u}=\frac{1}{h_{i}}+\frac{x_{\omega}}{h_{w v}}+\frac{1}{h_{0}} \tag{2}
\end{equation*}
$$

where h_{i} and h_{0} are the "local individual coefficients of heat transfer"* for the inner and outer surfaces
*McAdams, W. H., Heat mransmission, McGraw-Hill, N.Y., 1942.

147 14
hen lime liter

Ten

$$
=
$$

\square
\qquad

Tand sen
$2-2-2+2$

$$
\ln \operatorname{men}
$$

men
1
$1+2$
respectively, and x_{W} and k_{w} are the thickness and thermal conductivity of the solid wall. The terms of equation (2) may be considered as resistances to heat flow. Since the thermal conductivity of metals, k_{w}, is large compared to X_{w} in engines of usual size, the resistance $\frac{x_{u}}{k_{w}}$ is small. In the case of an engine cooling system, where heat must be transferred from a hot gas through the cylinder, to a coolant, the value of h_{0} may also be very large compared with h_{i} as long as the coolant in contact with the wall remains a liquid. Therefore, with h_{0} and k_{w} large, as is the case for an engine, h_{1} becomes the controlling factor in determining the overall coefficient U, and hence the amount of heat transferred. In order to determine a relationship for h_{i}, let us compare the geometry of an engine cylinder with the geometry of shapes for which heat transfer study has been made. The engine cylinder most closely approximates a pipe. For this case McAdam in reference [6] gives by dimensional analysis

$$
\begin{equation*}
\frac{h D}{k}=\varphi\left(\frac{D G}{\mu}, \frac{C_{p} \mu}{k}\right) \tag{3}
\end{equation*}
$$

which may be rewritten as

$$
\begin{equation*}
\frac{h l}{k}=\varphi\left(\frac{\rho u l}{\mu}, \frac{c_{p} \mu}{h}\right) \tag{4}
\end{equation*}
$$

Assuming a power function McAdam rewrites (4) in the following form

$$
\begin{equation*}
\frac{h l}{h}=\operatorname{constant}\left(\frac{\rho u l}{\mu}\right)^{n}\left(\frac{C_{p \mu}}{h}\right)^{m} \tag{5}
\end{equation*}
$$

Since from (1)

$$
\begin{align*}
& h=g g_{A} \Delta T \tag{6}\\
& \frac{e l}{l_{A \Delta T}}=C_{\text {ensor }}\left(\frac{\rho u l}{\mu}\right)^{n}\left(\frac{c_{\rho} \mu}{R}\right)^{m} \tag{7}
\end{align*}
$$

or

$$
\begin{equation*}
q=a A \Delta T(\rho u)^{n} \frac{k}{l}\left(\frac{l}{\mu}\right)^{n}\left(\frac{C_{p} \mu}{k}\right)^{m} \tag{8}
\end{equation*}
$$

For gases

$$
\begin{equation*}
\frac{C_{p} \mu}{k}=\text { Constant }, k=\left(C_{p} \mu\right) \cdot \text { Constant } \tag{9}
\end{equation*}
$$

Then equation (8) may be written as

$$
\begin{equation*}
q=b A \Delta T C_{p}(\rho u)^{n}\left(\frac{l}{\mu}\right)^{n-1} \tag{10}
\end{equation*}
$$

Applying equation (10) to the transfer of heat from gases in an internal combustion engine through the cylinder walls, if we take the density of the gases in the cylinder as represented by inlet density times volumetric efficiency, and the velocity as represented by piston speed, and the heat transfer area as proportional to l^{2} we get

$$
\begin{equation*}
q=b\left(\ell^{2}\right)(\Delta T) C_{p}\left(\rho_{i} e S\right)^{n}\left(\frac{l}{\mu}\right)^{n-1} \tag{11}
\end{equation*}
$$

where ΔT is some mean gas temperature minus the wall
temperature, ρ_{i} is the inlet density, e the volumetric efficiency, S the average piston speed, μ some mean gas viscosity, and l some characteristic dimension.

Equation (ll) is an approximation at best and its application involves theoretical difficulties. The velocity of the gas during exhaust blowdown at the exhaust valve is equal to the speed of sound in the gas and is independent of the piston speed. $\Delta T, C_{p}, \rho, \mu, U, \beta$, and the speed of sound vary continuously during the cycle. Further, the temperatures of the surfaces in contact with the gases are not all the same. However, despite the limitations involved, experiments on individual engines [1] , where l the size factor is a constant, have shown that equation (ll) gives a good approximation for the rate of heat transfer from cylinder gases. The authors propose to determine in this study whether or not equation (11) may be used to approximate the rate of heat transfer for an engine in which the size is varied. By using the three Geometrically Similar Engines, we have in effect, one engine whose size has been varied. Geometric similarity is confined to the engines themselves; however, associated equipment is such that similarity of operating conditions may be maintained.

To the best of the authors' knowledge these engines are the only set of geometrically similar engines in existence; as no prior work on heat rejection has been done using these engines, this study represents the
first attempt at direct experimental verification of equation (ll) with size as a variable.

In order to obtain data which may be correlated with engine size, the effect of other variables appearing in equation (ll) must be eliminated by maintaining them similar or constant for the three engines. This involves maintaining the specific heat C_{p} and the viscosity μ of the working gas, ΔT, the temperature difference between the working gas and the cylinder wall, and the product ($\rho_{i} e S$) constant. C_{p} and μ are functions of the gas temperature. Therefore if the average gas temperature is constant, C_{p} and μ will be constant. The gas temperature is a function of the fuel air ratio, if the compression ratio and thermal efficiency are constant. With compression ratio and fuel-air ratio constant, the thermal efficiency is dependent on spark advance. The point of optimum spark advance (greatest output) varies with load and with speed. If spark advance is maintained constant, thermal efficiency will vary with load and speed. Varying thermal efficiency will vary the exhaust gas temperature, and hence vary the average gas temperature. However, theory predicts [I] and experiments have verified [3] that, at constant load and speed, similar engines have the same thermal efficiency at the same spark advance. Therefore, for similar conditions of operation, speed and load, thermal efficiency and average gas temperature will be constant, and therefore C_{p} and M, the viscosity, will both be constant. In addition,
俋
the results of other experiments indicate that the change in the rate of heat transfer is not large when the spark advance is changed a small amount [1]. In view of the above, it appears that the error introduced by using a constant spark advance for all the engines at all conditions of load and speed may be neglected. As the size of the engine is varied, another difficulty is encountered. For geometrically similar cylinders of different sizes $\&$ varies as $\triangle T A(l)^{n-1}$ or $\Delta T(l)^{n+1}$, if all other conditions are constant. By dimensional analysis it may be shown that for heat flow through any solid body, in this case the cylinder wall,

$$
\begin{equation*}
q=k_{\omega} l \Delta T_{\omega} f\left(R_{1}, R_{2}, R_{3}, \cdots R_{n}\right) \tag{12}
\end{equation*}
$$

where R_{1}, R_{2}, R_{3}, are ratios describing the shape of the body, and ΔT_{w} is temperature drop in the cylinder wall. If equations (ll) and (12) are to give the same results, and assuming that the gas temperature is the same in bach case, ΔT_{w} in equation (12) must be varied as l^{n} to keep ΔT in equation (II) constant. This means that in order to have the same temperature drop across the cylinder walls of similar engines, the temperature of the cooling fluid would have to be lowered as l is increased. This may be impracticable or undesirable when changes in size are made. However, if the thermal conductivity of the cylinder wall is large, the temperature drop through the wall will be
\qquad
 \qquad
\ldots
\qquad In
$x+5 \operatorname{lit}$
\qquad

anion
small if its thickness is a reasonable size. Since this is the case, the drop through the wall will be small in comparison with the total temperature drop from the gas to the cooling fluid. Therefore as an approximation the temperature difference ΔT in equation (11) may be considered constant for the three engines.

The product (ρ_{i} e S) in equation (11) is not dependent on size and must be held constant if correlation with size is to be obtained. At constant gas temperature and thermal efficiency, as has been assumed, the mean gas density represented by ($\rho_{i} e$) is proportional to the indicated mean effective pressure. Consequently, equation (11) may be written in the form

$$
\begin{equation*}
\frac{q^{2}}{l^{2}}=\operatorname{CONST}(\text { MMEP } \times S)^{n}(l)^{n-1} \tag{13}
\end{equation*}
$$

The IMEP is equal to the sum of friction mean effective pressure, which may be measured, and the brake mean effective pressure which may be measured and controlled. The piston speed, S, may be measured and controlled, therefore the product (IMEP) $\times(S)$ may be measured and varied for each engine within the limits of its operating range. At any operating point where the product (IMEP) $\times(S)$ is the same for the three engines the effect of this variable will be constant and may be eliminated. It is seen that the effect of all factors not dependent on size in equation (11) may be eliminated.
(1)

The equation in its simplest form relating engine size to heat rejection may, therefore, be written as

$$
\begin{equation*}
8 / l^{2}=\text { constant }(l)^{n-1} \tag{14}
\end{equation*}
$$

Equation (ll) predicts that heat rejection, with ρ_{i}, e, S, l, C_{p}, and M constant, is dependent on ΔT. Neglecting the variation in the temperature drop through the cylinder wall as size is varied, ΔT, with the gas temperature constant, is dependent on the average jacket temperature. Therefore, if heat rejection is plotted against the average jacket temperature, this curve may be extrapolated to the point at which no heat will be rejected. The temperature of the jacket at this point should be the same as the average temperature of the working gas in the cylinder.

PROCEDURE

The experimental procedure used was to maintain similarity of operating conditions between the three engines. The data obtained were such that correlation between engine size and heat rejection could be obtained by eliminating the effects of non-related variables by maintaining their effects constant. If curves of heat rejection plotted against the product of the load and the speed factors ($\rho_{i} \in S$) for each engine ($\ell=$ constant) are obtained, cross plots may be drawn at constant ($p_{i} e S$), over a range of values, yielding curves of heat rejection plotted against the size factor ℓ.

The procedure described above, yielded information relating heat rejection to the output of the engine. The same procedure also yielded information relating heat rejection to the input to the engine, which, at constant fuel air ratio may be measured by the amount of air taken by the engine.

Likewise, data were obtained by which heat rejection may be related to the jacket temperature or ΔT, the effect of other factors being eliminated as far as possible. This was achieved by maintaining speed, air consumption at constant fuel air ratio, and all other operating variables constant or similar for the three engines while the average jacket temperature was varied independently.

In order to preserve similarity between the engines, lubricating oils were used with varying viscosity so that

the ratio (μ / \boldsymbol{l}) at $250^{\circ} \mathrm{F}$ was constant for the three engines. For all runs, data were taken only after conditions had stabilized. The length of time between readings and the number of readings taken were determined by the degree of stability attained. During all runs at least 2 observers were present to maintain precise control and to insure nearly simultaneous data observation. For most runs satisfactory stability was easily obteined and maintained. The actual values chosen for each of the operating variables in each series of test runs and the measuring means are given below.

Friction runs:

FNEP was measured by motoring each engine. This was done with electric dynamometers, and a hydraulic scale. Piston speed was arbitrarily varied over a range of 600 ft/minute to $2000 \mathrm{ft} /$ minute and FMEP was measured at constant exhaust pressure and three inlet pressures for each piston speed. Thus a family of curves was obtained for each engine from which the FMEP may be read for any speed or inlet pressure by interpolation or extrapolation.

Firing runs on the $2 \frac{1}{2}{ }^{\prime \prime}$ engine indicated that with an inlet air temperature of $150^{\circ} \mathrm{F}$, which was used for friction runs on that engine, fuel evaporation was incomplete. Therefore a value of $160^{\circ} \mathrm{F}$ was chosen, and this value was used for the friction runs for the $6^{\prime \prime}$ engine. However, as the inlet air temperature has small effect on the pumping friction only, it was decided that the friction data obtained for the $2 \frac{1}{2}{ }^{\prime \prime}$ and $4^{\prime \prime}$ engines were adequate, for the purpose intended.
 $8=4$
2 47
$=1$ -

 \qquad 4 \qquad nen
 2
 \square -

\qquad

$2=$

 0

The dynamometer zero position was determined by taking an average of 20 steady state zero positions reached after displacement from rest. The dynamometer coupling was disconnected during this determination. After a zero reading was found, the scale was adjusted to read zero. SUMMARY OF OPERATING VARIABLES

Variable	Value	Means of Measurement
		Standard ASME square
Air consumption	Not controlled	edged orifice. (\triangle P air
Air inlet temperature	$160^{\circ} \mathrm{F}$	by water manometer) Thermocouple in inlet pipe
Main bearing temperature	Not controlled	Thermocouple
Air inlet pressure	$28^{\prime \prime} \mathrm{Hg} \text { to } 10^{\prime \prime} \mathrm{Hg}$ (absolute)	Mercury manometer
Exhaust pressure	$1{ }^{\prime \prime} \mathrm{Hg}$	Mercury manometer
Oil sump temperature	$150^{\circ} \mathrm{F}$	Meraury thermometer
Main bearing oil supply temperature	Not controlled	Mercury thermometer
Oil pressure	50 psi	Bourdon pressure gauge
Piston speed	600-2000 ft./min.	Stroboscope and tachometer
Water circulation rate through jacket	. $04 \mathrm{lb} / \mathrm{sec} / \mathrm{in}^{2}$	ASME standard orifice
Water jacket temperature	$145^{\circ} \mathrm{F}$	Mercury thermometer
FMEP	Variable	Dyn. \& Hydraulic scale. Scale reading by mercury manometer.

Heat Rejection Runs:
The procedure for firing runs was similar to that for friction runs in that piston speed was arbitrarily varied over a range of $600 \mathrm{ft} . / \mathrm{min}$. to $2000 \mathrm{ft} . / \mathrm{min}$. and inlet pressures were varied at each speed to give a range of BMEPS. Operating conditions were controlled as far as possible so that the friction curves would be directly applicable to obtain the IMEP at which the engine was
operating during each run.
At low speeds some difficulty was experienced in maintaining stable conditions at low brake loads. This difficulty was partially eliminated by changing the size of the air orifice for low loads. The orifice sizes chosen were such that the pressure drop across the orifices were sufficient to insure accurate air measurements.

The cooling water system used was so designed that only a portion of the water being circulated was cooled. The cooled water was then mixed with the uncooled water and recirculated through the engine. This was done in order to obtain a large temperature difference and thus increase the accuracy of the heat rejection measurement. The portion of the water to be cooled was determined arbitrarily, but, was such that a large temperature drop across the cooler was obtained while maintaining constant circulation rate through the engine water jacket. The recirculating portion of the cooling water system was insulated to prevent excessive unaccountable heat losses. The fuel-air ratio chosen was . 078 pounds fuel per pound of air. This value, being a rather rich mixture, was chosen so that unavoidable variations in fuel-air ratio would have a little effect as possible on heat rejection. Fuel-air ratio of .078 also makes it possible for later workers to enter these data on Hottel charts in studying fuel-air cycles of similar engines. Although a previous investigation [3] indicated that the fuel-air ratio for best power for these engines is .073, it was decided that
a richer mixture would probably insure more nearly similar conditions. It was also observed from brake reading that .073 is lower than the actual best power fuel-air ratio. The gasoline used was a commercial unleaded automotive fuel. An unleaded fuel was used to prevent lead deposits on the heat transfer surfaces which would alter the heat transfer characteristics of the surfaces during the period of testing. Before taking any data, the cylincer heads were removed and cleaned to remove the lead deposits resulting from previous firing of the engines. The cooling system was flushed with detergent and refilled with a weak rust prevention solution (potassium chromate).

After investigating previous work on these engines [3] it was found that best power spark advance varied from twenty to forty degrees depending on bore, PPM, and F. It was decided that 25 degrees spark advance was a good mean value at which all engines would operate satisfactorily at all conditions planned; therefore this value was used for all runs.

The spark plugs assigned to the engines are as follows:
$6^{\prime \prime}$ engine - Champion 7 or equivalent
$4^{\prime \prime}$ engine - Champion J8 or equivalent
$2 \frac{1}{2}^{\prime \prime}$ engine - Champion Y-4A or equivelent

These plugs represent the medium heat range, being neither hot nor cold. Because the iow density of charge at the higher vacuum runs makes wide spark gap desirable, a gap of $.035^{\prime \prime}$ was selected for all engines and all runs.

SUMMARY OF OPERATING VARIABLES

Variable
Air consumption
Air inlet temperature
Air inlet pressure
Main bearing temperature
Exhaust pressure
Oil sump temperature
Oil to bearings supply temperature

011 pressure
Fuel - air ratio
Fuel flow rate
Fuel temperature
Piston speed
Water circulation rate through jacket

Water jacket temperature
Water circulation rate through cooler

Water temp. difference through cooler

BMEP

Value
Measured variable
$160^{\circ} \mathrm{F}$
As noted above
Not controlled
1" Hg
$150^{\circ} \mathrm{F}$

Not controlled
Approx. 50 psi
.078
As required for const. F

Not controlled $600 \mathrm{ft} . / \mathrm{min}$. $2000 \mathrm{ft} . / \mathrm{min}$.
$.04 \mathrm{Ib} / \mathrm{sec}^{2} / \mathrm{in}^{2}$
$145^{\circ} \mathrm{F}$ average

Measured variable

Measured variable
Measured variable

Means of Measurement Standard ASME square edged orifice. ($\triangle P$ air by water manometer)
Thermocouple
Mercury manometer
Thermocouple
Mercury manometer
Mercury thermometer

Mercury thermometer
Bourden pressure gauge
Calculated
Calibrated rotameter
Mercury thermometer
Stroboscope

ASME standard orifice
Mercury thermometer

Calibrated rotameter

Mercury thermometer Dynamometer and hydraulic scale. Scale readings by Mercury manometer.

Heat Rejection at Varying Jacket Temperature:
Data were taken at only one condition of speed and
load. A piston speed of $1200 \mathrm{ft} / \mathrm{min}$. and inlet pressure of $3^{\prime \prime} \mathrm{Hg}$. vacuum when the average jacket temperature was 145° were chosen as operating points. As the jacket temperature was varied from 145°, the air consumption
was maintained at the same value, rather than the inlet pressure. This was done to eliminate dependence on equal volumetric efficiencies for similarity between the three engines. Unequal volumetric efficiencies were possible because of the dissimilar air intake systems. Otherwise operating procedure was the same as for the heat rejection runs described above. Data for as wide a range of average jacket temperatures as was possible to obtain, with the equipment used, were taken.

RESULTS

Figure I Friction MEP (Motoring) versus Piston Speed, $2 \frac{1}{2}{ }^{n}$ G.S.E.
Figure II Friction MEP (Motoring) versus Piston Speed, 4^{n} G.S.E.
Figure III Friction MEP (Motoring) versus Piston Speed, 6" G.S.E.
Figure IV Friction MEP (Motoring) versus Piston Speed, Three G.S.E.
Figure V Heat Rejection versus (S) (IMEP)
Figure VI Output versus Input
Figure VI-A Output versus Input
Figure VII Heat Rejection versus Air Flow - Ma
Figure VIII Heat Rejection versus Air Flow - Ma/l ${ }^{2}$
Figure IX Heat Rejection versus Size at Constant Air Flow
Figure $X \quad$ Size versus Heat Rejection at Constant Piston Speed
Figure XI Heat Rejection versus Air Consumption
Figure XII Heat Rejection versus Cylinder Head Temperature with Constant Water Jacket Temperature
Figure XIII Heat Rejection versus Water Jacket Temperature
Figure XIV Heat Rejection versus Cylinder Head Temperature with Various Water Jacket Temperatures

,

,
,

.

,

DISCUSSION

Friction

In order to ascertain IMEP for the heat rejection runs it was decided to measure BMEP by the dynamometer and add FMEP read from curves to obtain IMEP. The curves were constructed from data obtained by motoring the engines, and fair correlation of the individual engines was obtained. However, when the data are plotted for the three engines at constant inlet pressure there is poor correlation of results. Theory states that FMEP due to viscous friction will be equal for similar engines when the ratio of the lubricant viscosity to a characteristic dimension is the same for each engine. FMEP due to coulomb friction is considered proportional to load, represented by IMEP, and should also be equal for similar engines.

Determination of FMEP firing from motoring test data is a questionable procedure. Such factors as lower gas pressure in the cylinder, lower piston and cylinder temperature, cleaner and cooler oil on the cylinder walls and the different pressure differential during the exhaust process make a correlation of motoring and firing friction uncertain. However, the errors introduced by these factors are not all in the same direction and their effects tend to cancel. Therefore, in many cases, it may be justified to take motoring friction as approximately equal to firing friction.

The results of the friction runs are shown in Figures I, II, and III. Figure IV shows a comparison of the FMEP
for each engine at the same conditions. This comparison clearly shows that the friction for the three engines was not in accordance with theory. This fact has previously been reported by Gaboury et al. in reference [3] , and is not entirely unexpected considering the complex nature of friction and the difficulty in maintaining the ratio of oil viscosity to the linear dimension constant.

Heat Rejection

Figure V is a plot of equation (13) for each engine, l a constant. This curve clearly shows the effect of size on heat rejection. As theory predicts, the rate of heat rejection from the smaller engines per unit area is greater than that for the larger engine. One of the variables of this curve is IMEP. There is some doubt as to the accuracy of the measurement of this quantity, because of the inherent inaccuracies present in taking motoring friction as a measure of firing friction.

As a check on the accuracy of the measurement of FMEP, Figures VI and VI-A were plotted. These are plots of input versus output as measured. If, as theory predicts, indicated efficiencies for similar engines are equal at similar conditions, these plots would result in a single line for the three engines. In the actual plot of Figure VI there was a marked difference in output for a given input with change in size. If the three engines do not have equal efficiencies for similar conditions, the deviation from a single straight line could be explained on this basis. The deviation could also be explained if

It were to be determined that the values of IMEP used are actually in error. This latter explanation is probably the true one. Other investigators [3] have reported differences in motoring friction and firing friction. The assumption that motoring friction would be sufficiently accurate was apparently unjustified in this case.

Therefore, rather than attempting to correlate heat rejection for a given output, the measurement of which is doubtful, a plot which shows the relation between heat rejection from the engines and inputs to the engines was made. This plot is shown in Figure VII. At constant thermal efficiency, which may properly be assumed when conditions are similar, output is proportional to input. In this Figure VII, input is measured by the air consumption of the engines. In order to obtain correlation between the various engines the plot shown in Figure VIII was made. This plot which eliminates the uncertainties due to output measurement, provides a valid basis for determining the effect of size on heat rejection.

Figure VIII is similar in form to Figure V, though the curves for the three engines are more closely grouped. For a given engine, ℓ constant, equation (13) may be reduced to

$$
\begin{equation*}
\frac{q}{l^{2}}=\text { const. }[(\operatorname{MEP})(S)]^{n} \tag{15}
\end{equation*}
$$

Theory predicts that the value of n in equation (15)

is the same for similar engines. In Figure VIII, equation (15) plots as a straight line for each engine. The slopes of the curves give values of $.688, .651$, and .578 for the exponent n for the $2 \frac{1}{2}{ }^{n}, 4^{\prime \prime}$ and $6^{\prime \prime}$ G.S.E. respectively. The difference in values of n may be explained by considering the variation of thermal efficiencies caused bu using constant spark advance. A lower thermal efficiency, at constant fuel air ratio, means a higher exhaust temperature. A higher exhaust temperature raises the average ΔT. Since the rate of heat flow is proportional to the temperature difference, a lowering of thermal efficiency would result in a greater heat flow. With a spark advance of 25° used in this study, it is likely that for a given engine the thermal efficiency at low speed would be greater than at high speeds. Considering this, it appears that a higher rate of heat flow was actually present at high speed than would have existed had spark advance been adjusted with speed to maintain constant thermal efficiency. The order of magnitude of the error introduced by neglecting this consideration is believed to be small; however the tendency of compensating for this error would be to rotate each line in a clockwise direction about the lower end. If theory is correct in predicting a greater rate of heat rejection from the smaller engine, the curve for the $2 \frac{1}{2}{ }^{n}$ engine would be rotated a little more than the curves for the larger engines. This would tend to make the exponents \boldsymbol{n} more nearly equal for the three engines. Therefore, it is concluded that similar

engines do have a constant value for the exponent n in equation (15). This value is approximately .6 for the M.I.T. G.S.E.

Figure XI shows the relation of heat rejection to input on the basis of total rather than heat rejection per unit area as is shown in Figure VII. The orientation of the curves with respect to each other is different from Figure VII because of the difference in total heat transfer surfaces of the three engines. The values of n obtained from these curves are the same as those read from Figures VII and VIII.

Figure VIII may be used as a basis for determining the effect of size with other conditions similar or constant. This may be done by making a cross plot at constant rate of air flow per square inch. The results of such a cross plot are shown in Figure IX. The two curves plotted were taken at different points of constant input. The slope of these curves should be the exponent (n - l) in equation (14). The fact that the slopes are different may be explained by considering the effects which made the various n's different in Figure VIII. The correction to Figure VIII discussed above would tend to make the slopes of the curves in Figure IX more nearly equal. The actual values of n found from the cross plots vary from . 96 to .832. These values are in variance with the value predicted by theory. Theory predicts that the value of n should be the same as those obtained from plotting equation (15).

In order to check the conclusions which may be based on the results shown in Figure IX, Figure X was plotted. Figure X is a plot of actual measured rate of heat rejection from each engine at constant piston speed and inlet pressure versus engine size. Under these conditions, the thermal efficiency of each engine is constant. With constant F, all factors except size in equation (ll) are constant for the three engines. The values of n so obtained from curves in Figure X are -90 and .805. The difference between the two values so obtained may be explained by inherent inaccuracies in experimental measurement. These values of n obtained by this method are substantially in agreement with those obtained by the cross plots of Figure IX and both are in variance of the value .6 predicted by theory. This study indicates that the theory is correct in predicting that a large engine will reject less heat per unit area of heat transfer surface than a smaller engine, but that the theory is in error in predicting the order of magnitude of the effect of engine size.

The results of this study are not in complete accordance with theory. As pointed out in the introduction, the basic equation of heat transfer was applied to an internal combustion engine in spite of the formidable theoretical difficulties involved in so doing. If the cyclic operation of an internal combustion engine and the other complications involved do in truth prevent the application of an equation derived for flow in pipes to

an engine, then there is reason to expect results in variance with theory.

Before concluding on the basis of experimental results that the theory is inadequate, the complete applicability of the data must be established. There are sources of error for which the data collected do not account. One of these errors is due to the fact that a portion of the heat rejection measured was not from the working gas but rather from mechanical friction in the cylinder. The heat rejection was not measured during the motoring friction runs except for the $6^{\prime \prime}$ engine. Within the limitations of experimental accuracy, data collected for the $6^{\prime \prime}$ engine motoring indicated that the heat rejection from the cylinder varied from about $36 \mathrm{BTU} / \mathrm{min}$ at lowest speed to $250 \mathrm{BTU} / \mathrm{min}$ at highest speed. A portion of this heat was due to the incoming air being at a higher temperature than the jacket water. To separate heat from this source from the heat due to friction is impossible. In any case, the applicability of the motoring data to the firing runs is subject to question. However, if a correction were made for friction heat, the tendency would be to decrease the heat flow at higher speeds. Another source of error is due to some heat from the working gas going to the lubricating oil and some by conduction to the engine foundation. These quantities of heat were not measured. If this correction were applied the result would be opposite In sense to the correction due to friction heat.

Whether the two corrections would cancel each other is not known. For lack of better information, it may be assumed that the results shown by this study are approximately correct as far as these two errors are concerned.

The largest source of heat loss in an internal combustion engine is the heat in the exhaust gases. No attempt was made to measure the temperature of the exhaust gases of the engine nor to account for the additional heat transfer due to the high velocities existing during the exhaust process. The theory however, also neglects these considerations.

The most probable source of error is inherent in the assumption that since the fuel air ratio was constant at all times, the gas temperature was constant. The theory as advanced acknowledges the difference in ΔT due to variation in cylinder wall thickness. Therefore the results should not be corrected for this difference in the various engines. Allowing this approximation, ΔT is dependent on the jacket temperature and the gas temperature. Jacket temperature was accurately controlled and was in fact maintained constant. Fuel-air ratio was accurately controlled within the degree of accuracy of the equipment used, and may be considered constant. However, the fuel supplied was proportional to the inlet air only. The inlet air on the suction stroke, is mixed with the residual gases in the cylinder. The conditions of similarity require that exhaust pressure be

maintained constant, which was accurately done. As inlet pressure is varied, the gases in the cylinder are composed of varying proportions of inlet air and residual gas. At very low inlet pressures, the proportion of inlet air to residual gas is less that at higher inlet pressures. Considering this, it may be concluded that the gas temperature is indeed less at a low inlet pressure than at a high inlet pressure. The effect of this variation of gas temperature on heat transfer would depend on the order of magnitude of the temperature variation. Neither theory nor experimental results account for this variation. However, the fact remains that this condition does exist in any actual engine. Therefore, if the theory is applicable, no correction to experimental results is required.

In view of the above discussion it is considered that the experimental data obtained is applicable and the experimental results may be compared with predicted results. Therefore the conclusion that engine size does not have the magnitude of effect predicted by theory is justified.

Cylinder Head Temperatures
Theory of heat flow states that as the amount of heat flow across a body increases, the temperature drop across the path of flow must increase. Figure XII, a plot of cylinder head temperature versus heat flow per unit area, for each engine, clearly shows the proportionality of heat flow and temperature drop. A size effect is clearly
indicated though the correlation is not clear.
Theoretically the curves should intersect the axis at the jacket temperature, the point at which the temperature difference and consequently the heat flow are zero. The curves do not intersect at $145^{\circ} \mathrm{F}$ at the axis for two reasons; first, the ordinate is total heat per unit area through the cylinder walls and head rather than through the head alone, and second, the ordinate also contains heat due to piston friction. If the ordinate of the curves are reduced by the amount of heat flow through the walls the curves would be lowered and the slope decreased. If a correction for friction is made, since there is more friction at high speeds, the slopes would be decreased. Therefore, the combined effect of these two corrections would be to lower and rotate the curves clockwise, tending to bring their intersection closer to the predicted point. Heat rejection at various jacket temperatures

In order to justify the assumption that a constant overall temperature difference existed in the three engines, runs at constant IMEP and piston speed were made while varying average jacket temperature. Theoretically, if the curve of heat rejection versus jacket temperature is extrapolated to zero heat rejection, the jacket temperature at this point will be equal to the mean gas temperature in the cylinder.

The results of these runs are shown in Figures XIII and XIV. While fairly good curves were obtained for

420

each engine, and a size effect was clearly indicated, the correlation between engines was obscure. When extrapolation ia attempted in Figure XIII, no common point of intersection is found. Figure XIV, in which cylinder head temperature is plotted against heat rejection gives no better results. This curve would not be expected to give pertinent information unless the ordinate were heat rejection through the head alone rather than total heat rejection.

The difficulty in obtaining a common point of intersection in Figure XIII may be due to the fact that either extrapolation is not justified, because of the narrow range of temperatures which could be used, or the data on which the curves are based are unreliable. At the higher jacket temperature runs, boiling of the cooling water in the jacket was detected. Accurate water flow measurement under such conditions was difficult.

Considering the above, conclusions based on information in Figure XIII are not justified. If the range of possible jacket temperatures were extended by the use of a cooling fluid with a higher boiling point, more reliable data could be obtained.

CONCLUSIONS

1. Heat transfer theory, as applied to internal combustion engines, in the form of equation (11), may be used to approximate heat rejection from the cylinder gases.
2. Similar engines, considered independently, act as theory predicts. The value of n in equation (15) is approximately .6 for the M.I.T. G.S.E.
3. Large engines reject less heat per unit area than small engines.
4. The effect of engine size on heat rejection per unit area is less than predicted by theory. The value of n in equation (14) is approximately .9 for the M.I.T. G.S.E.
5. Motoring friction may not be taken as a measure of firing friction for the M.I.T. G.S.E.

RECOMMENDATIONS

In order to augment the information resulting from this study and to provide a basis for future studies using the M.I.T. G.S.E., it is recommended that:

1. An attempt be made to correlate heat rejection data obtained in this study with IMEP measured by indicator cards rather than by motoring friction and BMEP.
2. Heat rejection due to friction be measured during motoring.
3. A cooling circuit be engineered whereby heat rejection to the oil in the crankcase can be measured.
4. An attempt be made to measure separately the heat rejection through the cylinder walls and through the cylinder head.
5. The effect of the use of varying spark advance with load and speed to obtain constant efficiency, as opposed to the use of constant spark advance to maintain similar areas exposed to the burning gases, be studied.
6. Heat rejected in the exhaust gas be measured.
7. Additional thermocouples be installed in the cylinder heads and walls in order to better approximate the temperature drop across them.
8. The range of possible jacket temperatures be extended by the use of a coolant with a high boiling point. 9. The validity of selecting lubricating oils with a single temperature used as a basis for selecting equal $\frac{\mu}{l}$ ratios be investigated and compared with the feasibility of having a series of lubricating oils with equal ratios at several different temperatures or using a lubricant, perhaps one of the silicons, in which temperature has less effect on viscosity.
9. The use of contact oil seals in these engines be discontinued in order to attempt to eliminate uncertain performance in friction forces. It is suggested that a non-contact labyrinth type seal be investigated as a possible replacement.
10. Future studies be made, with the heat rejection cooling system installed by the authors, in order to supplement the experimental data in this study relating heat rejection and engine size.

APPENDIX

APPENDIX A

DESCRIPTION OF ENGINES \& ASSOCIATED EQUIPMENT

| Table A-I | Description of Engines |
| :--- | :--- | :--- |
| Figure A-I | M.I.T. Geometrically Similar Engines Disassembled |
| Figure A-II | M.I.T. Geometrically Similar Engines Assembled |
| Figure A-III | M.I.T. Geometrically Similar Engines Assembled |
| Figure A-IV | Schematic Diagram of G.S.E. \& Dynamometer |
| Figure A-V | Schematic Diagram of Hydraulic Scale Installation |
| Figure A-VI | Schematic Diagram of Heat Rejection Circuit |
| Figure A-VII | $2^{\prime \prime} 2^{\prime \prime}$ M.I.T. Geometrically Similar Engine |
| Figure A-VIII | $4^{\prime \prime}$ M.I.T. Geometrically Similar Engine |
| Figure A-IX | $6^{\prime \prime}$ M.I.T. Geometrically Similar Engine |

年

DESCRIPTION OF ENGINES \& ASSOCIATED EQUIPMENT

The three geometrically similar engines used in this study were designed and built under the supervision of the Mechanical Engineering Department of The Massachusetts Institute of Technology. They were built to provide a means of study of the effect of size on engine characteristics; to verify a rapidly growing theory of similar engines, and to evolve a more rational approach to engine design.

Geometrically similar engines are defined as engines of different sizes, whose corresponding dimensions bear the same ratio as some characteristic dimension and whose corresponding parts are constructed of the same material. In the case of the M.I.T. engines all linear dimensions are in ratio of the bore diameters, which is the dimension used to identify the individual engines. See Table A-I for detail dimensions. Great care was taken in design to preserve geometric similarity even down to screw thread sizes. C. F. Taylor in Reference (2) describes these engines in considerable detail. It is believed that these are the only completely geometrically similar research engines in existence.

The engines under study, Figures A-I, A-II, and A-III are single cylinder, four stroke cycle, spark ignited internal combustion engines. They are mounted on spring supported bed plates located in individual test cells and are equipped with suitable operating controls and

instrumentation.

Associated equipment includes a double shell vaporizing tank for mixing fuel and air at any desired temperature; a water jacketed exhaust tank with a valve for controlling exhaust pressure; a circulating oil pump provides high velocity circulation through the crank-case and oil heatercooler, a second pressure pump is installed to service the main bearings and cylinder. The four and six inch engines are provided with remote control electrically operated throttle valves, and the two and a half inch engine with a manually operated valve.

Brake measurements are made by rheostat controlled dynamometers equipped with hydraulic scales. Figures A-IV and $A-V$ show schematically the engine and dynamometer set up and the hydraulic scale installation respectively. See also Figures A-VII, A-VIII, and A-IX. The $4^{\prime \prime}$ engine is provided with a conventional direct current dynamometer while the $2 \frac{1}{2}{ }^{\prime \prime}$ and the $6^{\prime \prime}$ engines are equippea with alternating current dynamometers with magnetic speed control clutches.

The cooling water circuit redesigned and installed by the authors was suggested by Professor Rogowski. It is shown schematically in Figure A-VI and photographically in Figures $A-V I I, A-V I I I$ and $A-I X$. This redesigned cooling system provides a large flow, high velocity, small temperature rise main circuit through the cylinder, and a small flow, large temperature drop secondary parallel circuit through the rotameter and heat exchanger. This system ensures that jacket surfaces are adequately cooled and

-

scrubbed free of gas bubbles and also provides a large temperature difference secondary circuit. The heat rejected is measured in the secondary circuit by accurately measuring the flow through the rotameter and the temperature difference between the water to the rotameter and the water from the heat exchanger. (See Figure A-V). This large temperature difference, of the order of fifty degrees, and an accurately measured nominally large flow provides a reasonably accurate method of determining the heat rejected. This system eliminates the uncertainties involved in measuring the heat rejected to a stream having a small temperature rise as was the case with the original cooling system. This rise, eight to ten degrees, through the cylinder was considered to yield questionable data and therefore the new circuit was designed and installed.

TABLE A-I

DESCRIPTION OF ENGINES

Figure A-I
M.I.T. Geometrically Similar Engines Disassembled

FIGURE A-II

FIGURE AIII

3

Figure A-VII
2豙" M.I.T. Geometrically Similar Engine

Figure A-VIII
4" M.I.T. Geometrically Similar Engine

-

Figure A-IX
6" M.I.T. Geometrically Similar Engine

APPENDIX B

WATER FLOW MEASUREMENT

Figure B-I Water Orifice Calibration
Figure B-II Water Rotameter Calibration

APPENDIX B
 WATER FLOW MEASUREMENT

Water oiroulating through the engines was maintained at equal velocities and measured by means of A.S.M.E. standard water orifices. Water to and from the cooler and surge tank was measured by Fischer and Porter Rotameters. Calibration data was taken at 150° F. which was the average temperature through the rotameter during runs. Flow was measured by electrical timer scale for the lower rates and by beam balance and stop watch for higher rates. The floats used had an average zero sappression of fifty percent of maximum flow.

Repeat calibration data was taken at other temperatures to find the effect of variation in viscosity and density. When data taken at 720F. was plotted it showed a regular plus error of about three percent compared to the 150° calibration curve.

Calibration data was also taken at higher temperatures but in the range from 150° to 200° it was found that the combined effects of viscosity, specific gravity, and cavitation gave erratic results, although the error in the temperature range in which the runs were made at no time was in excess of four percent. It is suggested that this condition might have been improved by maintaining the rotameter under pressure by throttling at the surge tank. Water Orifice and Water Rotameter calibration curves are appended as Figures $B-I$ and $B-I I$ respectively.
黾

APPENDIX C

AIR FLOW MEASUREMENT

Figure C-I Air Orifice Calibration Curve, $2 \frac{1}{2}{ }^{\prime \prime}$ G.S.E. Figure C-II Air Orifice Calibration Curve, $4^{\prime \prime}$ G.S.E. Figure C-III Air Orifice Calibration Curve, $6^{\prime \prime}$ G.S.E.

APPENDIX C

AIR FLOW MEASUREMENT

Air flow to all engines was measured by ASME square edged orifices with flange taps located one inch from the upstream and downstream faces of the orifice. The equation for flow through this type orifice is

$$
W=.1145 D_{2}^{2} K Y \sqrt{\frac{P_{1}}{T_{1}} G Y \Delta P}
$$

Reference [7]
where
$W=$ flow rate, lb. mass/second.
$D_{2}=$ orifice diameter, inches.
K = flow coefficient, dimensionless, Table 6, Reference [7].
Y = expansion factor, dimensionless, Table 37, Reference [7].
$P_{1}=$ static pressure before orifice, inches Hg . abs.
$T_{1}=$ temperature before orifice, OF absolute.
$G=$ specific gravity of gas (1.00 for air).
$y=$ super compressibility factor, dimensionless, Figure 11, Reference
$\Delta P=$ pressure drop across orifice, inches $H_{2} 0$.

Flow coefficient K

This coefficient combines the discharge coefficient $C=\frac{\text { actual mass rate of flow }}{\text { theoretical mass rate of }}$ flow the velocity of approach factor $\frac{1}{\sqrt{1-\left(\frac{D_{2}}{D_{2}}\right)^{4}}}$ where D_{1} is the diameter of the pipe. Expansion factor, Y.

This factor takes into account uncontrolled expansion of the gas after the orifice due to reduced pressure in that region. A table values of Y has been
determined experimentally, Reference (7), and found to fit the following empirical formula.

$$
Y=1-\left[\begin{array}{ll}
0.41 & 0.35\left(\frac{D_{2}}{D_{1}}\right)^{4}\left(\frac{\Delta P}{P_{1}} \cdot \frac{1}{K}\right)
\end{array}\right]
$$

where $K=\frac{C_{p}}{C_{V}}$. Pressure drop across orifice, ΔP.
ΔP was measured by water manometers. No
readings were taken at less than $3^{n \prime}$ of water. For the lower air flows orifice plates were replaced with plates of smaller diameter. Super-compressibility factor \bar{J}.

This factor corrects for departure from perfect gas conditions

$$
y=\frac{\text { actual density }}{\text { theoretical density }}
$$

Correction curve.
A flow curve was plotted for standard conditions and mean Reynold's number. This curve was then corrected for the particular Reynold's number at each flow rate. Reynold's number.

$$
R_{e}=\frac{\rho u D_{x}}{12 \mu}
$$

ρ - fluid density before orifice, $\frac{\# \text { mass }}{\mathrm{ft}^{3}}$
\boldsymbol{u}. velocity before orifice, ft/sec
$\boldsymbol{\mu}$ - fluid viscosity before orifice, \# mass
Precision.
For flows measured, accuracy is considered to be within $\pm 1.5 \%$. Calculations were made for average conditions in the engine cells. Errors due to departures from temperature, pressure, and humidity in the laboratory were not considered to be significant.

Curves of air flow vs. manometer reading are shown, for the various engines, in Figures $C-I, C-I I$, and $C-I I I$.

APPENDIX D

FUEL FLOW MEASUREMENT
Figure D-I Fuel Rotameter Calibration Curves, $2 \frac{1}{2}{ }^{\prime \prime}, 4^{n}, 6^{\prime \prime}$, G.S.E.
Figure D-II Fuel Rotameter vs. Air Manometer for Constant Fuel Air Ratio $2 \frac{1}{2} "$ G.S.E.
Figure D-III Fuel Rotameter vs. Air Manometer for Constant Fuel Air Ratio 4" G.S.E.
Figure D-IV Fuel Rotameter vs. Air Manometer for Constant Fuel Air Ratio 6" G.S.E.

APPENDIX D

FUEL FLOW MEASUREMENT

Fuel was measured with Fischer and Porter Rotameters. The Rotameters were calibrated with fuel at room temperature, and curves of fuel flow versus Rotameter reading plotted. From the air calibration curve and the fuel calibration curve cross curves of pressure drop across air orifice in inches of water versus Rotameter reading for constant fuel air ratio of .078 were plotted. Errors due to departure from pressure and temperature conditions for which curves were plotted were found to be insignificant. These curves permitted quick and accurate adjustment of fuel air ratio. Fuel Rotameter curves are shown in Figure D-I, and cross curves for constant fuel air ratio are shown in Figures D-II, D-III, and D-IV.

,
屋

APPENDIX E

FUELS AND LUBRICANTS

APPENDIX E

FUELS AND LUBRICANTS

In all runs a premium grade unleaded gasoline was used. The octane number was 91.5 to 92 by research method and 80.5 to 81.5 by motor method.

Similitude with respect to lubricating oils was achieved by mixing SAE 20 and SAE 60 as follows:
2年" 100% URSA P 20 (Texaco Symbol)
$4^{\prime \prime} \quad 54 \%$ URSA P 60, 46\% P 20
6" 95% URSA P 60, 5% P 20
properties of the mixtures are listed in the following table,

> Viscosity S.U.S.

Engine	$100^{\circ} \mathrm{F}$	$130^{\circ} \mathrm{F}$	$210^{\circ} \mathrm{F}$	Gravity
$2 \frac{1}{2}^{\prime \prime}$	349	160.3	52.8	.88
$4^{\prime \prime}$	828	339.0	76.2	.89
$6^{\prime \prime}$	1665	627.0	114.1	.90

Oils used were straight mineral, paraffin base, distilled with no additives.

It was determined by Gaboury et al. reference [3] that the above oils had the same $\frac{\mu}{l}$ at $250^{\circ} \mathrm{F}$. This temperature was selected arbitrarily to attempt to satisfy lubrication requirements regarding viscous friction. A crankcase inlet temperature of 150° was selected and maintained throughout the runs.

APPENDIX F

ORIGINAL DATA AND SUMMARY OF CALCULATIONS
FRICTION
Table F-I
Motoring Friction Summary $2 \frac{1}{2}{ }^{\prime \prime}, 4^{\prime \prime}, 6^{\prime \prime}$ G.S.E.
Table F-II, F-III Friction Data $2 \frac{1}{2}{ }^{\prime \prime}$ G.S.E.
Table F-IV, F-V Friction Data $4^{\prime \prime}$ G.S.E.
Table F-VI, F-VII Friction Data $6^{\prime \prime}$ G.S.E.
HEAT REJECTION
Table F-VIII Heat Rejection Calculations $2 \frac{1}{2}{ }^{n}$ G.S.E.
Table F-IX
Table F-X
Table $\mathrm{F}-\mathrm{XI}$
Heat Rejection Data
$2 \frac{1}{2}{ }^{\prime \prime}$ G.S.E.
Table F-XII, F-XIII
Table F-XIV
Table F-XV, F-XVI

Heat Rejection Data
Heat Rejection Data
Heat Rejection Data
$4^{\text {" }}$ G.S.E.
$4^{\prime \prime}$ G.S.E.
6" G.S.E.

HEAT REJECTION AT VARIOUS JACKET TEMPERATURES
Table F-XVII Summary of Calculations

Table F-XVIII
Table F-XIX
Table F-XX

Heat Rejection Data
Heat Rejection Data
Heat Rejection Data

2雲" G.S.E.
4^{n} G.S.E.
6n G.S.E.

TABLE F-I

MOTORING Friction Summary

	$\begin{aligned} & \text { Speed } \\ & \text { iston } \\ & \hline \end{aligned}$	$\begin{aligned} & 4^{\prime \prime} \text { G.S } \\ & \text { DYN } \\ & \text { REAOING } \end{aligned}$	$\begin{aligned} & \text { DYN } \\ & \text { LOAD } \end{aligned}$	FMEP
$P_{i}=-3^{\prime \prime} \mathrm{Hg}$				
IV	600	3.42	6.58	21.60
IIII	840	3.25	6.75	22.15
TV.	1020	2.65	7.35	24.10
XV	1200	2.20	7.80	25.59
IVII	1500	1.27	8.73	28.60
$P_{i}=-10^{\prime \prime} \mathrm{Hg}$				
[5]	600	2.93	7.07	23.20
EII	840	2.52	7.48	24.58
Itict	1020	2.14	7.86	25.80
EVI	1200	1.70	8.30	27.20
VII	1500	1.00	9.00	29.55
SVIII	1800	-. 50	10.50	34.42
$P_{i}=-18^{\prime \prime} \mathrm{Hg}$				
I	600	1.93	8.07	26.50
III	840	1.77	8.23	27.00
III	1020	1.56	8.44	27.65
I	1200	1.17	8.83	28.98
VIII	1500	. 52	9.48	31.10
巩	1800	-. 85	10.85	35.60

	Piston Speeo	$\begin{gathered} 6^{" 1} G \\ \text { DYN } \\ \text { READING } \end{gathered}$	SE DYN LOAD	FMEP
	$P_{i}=-4^{\prime \prime} \mathrm{Hg}$			
I	720	3.20	6.80	26.45
III	1080	3.00	7.05	27.20
7III	1320	2.50	7.50	29.20
SIII	1560	2.26	7.74	30.10
III	1800	1.50	8.50	33.05
	$P_{i}=-10^{\prime \prime} \mathrm{Hg}$			
II	720	2.95	7.05	27.42
I	1080	2.55	7.45	29.00
IIII	1320	2.10	7.90	30.72
Y	1560	1.75	8.25	32.10
III	1800	. 95	9.05	35.20
$P_{i}=-16^{\prime \prime} \mathrm{Hg}$				
III	720	2.61	7.39	28.78
IV	1080	1.95	8.05	31.32
IT	1320	1.60	8.40	32.70
II	1560	1.30	8.70	33.85
X	1800	. 45	9.55	37.20

FRICTION RUNS 2 $\frac{1}{2}^{\prime \prime}$ GSE

TABLE F-IX
21 MARCH 1952
88. OBSERVERS: Mitcuell

CELL TEMP. $79^{\circ} \mathrm{F}$
BAROMETER $763 \mathrm{mmHg} \quad 21.9^{\circ} \mathrm{C}$

I | | $\mathrm{FI} / \mathrm{MLN}$ | | |
| :---: | :---: | :---: | :---: |
| 1250 | 1 | 1020 | |
| 1315 | 2 | 1020 | |
| 1321 | 3 | 1020 | |
| 1346 | 4 | 1020 | |
| 1352 | 5 | 1020 | |

164
164
164
164
164

	151	150
150.5	150	
164	150	150
150	150	
164	150	150
	151	150
164	151	150
164	150	150
165	151.5	150
162	151	159
164	150	150

146	175	148	2.58	11.2	-2.0	1.0
150	175	150	2.58	11.2	-2.0	1.0
150	175	150	2.60	11.2	-2.0	1.0
148	175	146	2.60	11.2	-2.0	1.0
148	175	148	2.60	11.2	-2.0	1.0
150	177	150	2.1	4.7	-10.0	1.0
151	177	151	2.09	4.7	-10.0	1.0
150	177	150	2.12	4.7	-10.0	1.0
153	177.5	151	2.15	4.65	-10.0	1.0
150	177	151	2.19	4.65	-10.0	1.0
150	177	150	2.19	4.65	-10.0	1.0

24 March 1952

$\underline{P_{i}=-18^{\circ} \mathrm{Hg}}$

III | 1033 | 2 | 1020 | 164 | 152 | 150 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 1045 | 3 | 1020 | 164 | 150 | 150 |
| 1054 | 4 | 1020 | 168 | 151 | 150 |
| 1058 | 5 | 1020 | 165 | 151 | 150 |

150	174
150	174
150	175
150	175
150	181
150	181
150	181
150	181
150	187
150	185
150	185
150	185
150	185

150	1.45	1.03	-18.15
150	1.60	1.03	-18.10
150	1.61	1.15	-18.10
150	1.58	1.15	-18.10

$P_{i}=-21 \mathrm{Hg}$		
位1115		1200
1120	2	1200
1125	3	1200
1130	4	1200
$P_{i}=-18 \mathrm{Hg}$		
(1215	1	1200
- 1210	2	1200
1247	3	1200
1252	4	1200
1255	5	1200

167	150	150
167	149	150
167	149	150
167	150	150
168	150	150
168	150	150
168	149	150
168	149	150
168	150	150

150	2.45	15.2	-2.0	1.0	0
150	2.48	15.25	-2.0	1.0	0
150	2.45	15.3	-2.0	1.0	0
150	2.43	15.3	-2.0	1.0	0
150	1.0	1.55	-18.0	1.0	0
150	1.25	1.45	-18.10	1.0	0
150	1.25	1.50	-18.05	1.0	0
150	1.15	1.50	-18.00	1.0	0
150	1.20	1.50	-1800	1.0	0

18.0	150
18.0	150
18.0	150
18.0	150
18.0	150
18.0	150
18.0	150
18.0	150
18.0	150
18.0	150
18.0	150
18.0	150
18.0	150

150.0	144	1275	
150	148	1275	
150	148	1275	
150	148	1275	
150	148	1275	
150	148	1275	
150	148	1275	
150	148	1275	
150	148	1275	
150	147	1275	
150	148	1275	
150	146	1275	
150	146	1275	
150	146	1275	
150	146	1275	
150	146	1500	
150	146	1500	
150	146	1500	
150	146	1500	
150	146	1500	
150	146	1500	
150	146	1500	
150	146	1500	
150	146	1500	
150	148	2250	59
150	148	2250	59
150	148	2250	59
150	148	1875	58
150	148	1875	57.8
150	148	1875	58
150	148	1875	58.5
150	148	1875	58.5
150	148	1875	58.5

$P_{i}=-10^{\prime \prime} \mathrm{Hg}$			
II	1425	1	1020
	1430	2	1020
	1438	3	1020
	1530	4	1020
	1535	5	1020
	1642	6	1020

165	151	150
164	151	150
164	150	150
165	151.5	150
162	151	149
164	150	150

18.0
18.0
18.0
18.0
18.0
18.0

150.0	144	1275	
150	148	1275	
150	148	1275	
150	148	1275	
150	148	1275	
150	148	1275	
150	148	1275	
150	148	1275	
150	148	1275	
150	147	1275	
150	148	1275	
150	146	1275	
150	146	1275	
150	146	1275	
150	146	1275	
150	146	1500	
150	146	1500	
150	146	1500	
150	146	1500	
150	146	1500	
150	146	1500	
150	146	1500	
150	146	1500	
150	146	1500	
150	148	2250	59
150	148	2250	59
150	148	2250	59
150	148	1875	58
150	148	1875	57.8
150	148	1875	58
150	148	1875	58.5
150	148	1875	58.5
150	148	1875	58.5

1275
1275
1275
1.0
1.0
-
18.05
18.02
18.00
18.00
18.00

Watameter
ROTAMETER
REAOING

TABLE FY

TABLE F- VIII

$L^{2}=6.25$

TABLE FIX

HEAT REJECTION CALCULATIONS - $6^{\prime \prime}$ GSE. $\quad l^{2}=36$

Ruw	$\begin{gathered} \Delta T_{\mathrm{H}_{2} \mathrm{O}} \\ { }^{\mathrm{F}}{ }^{2} \end{gathered}$	Rotameter Reading	$\begin{aligned} & W_{\text {H2O }} \\ & \text { \#/mut } \end{aligned}$	\dot{Q} BTU/MIN	$h_{\text {braxe }}$ "Hg	BMEP $3.89 \mathrm{ho}$	$\begin{gathered} h_{\text {FRICTIOO }} \\ \leftarrow \text { FROM } \end{gathered}$	$\begin{aligned} & \text { FMEP } \\ & \text { CURUES } \rightarrow \end{aligned}$ $3.89 h_{f}$	himoicateo $h_{s}+h_{s}$	IMEP $3.89 h_{\text {wo }}$	$\begin{aligned} & 1 H P \\ & \frac{N H}{1000} \end{aligned}$	S FT/MIN	(S)IMEP)	\dot{Q} / l^{2}		Ma/l ${ }^{2}$
C	44	31.6	15.42	679	22.8	88.10	6.63	25.8	29.43	110.6	17.7	720	79500	18.89	. 0284	.000789
C 2	44	43.5	12.54	771.5	22.18	86.10	6.78	26.4	28.96	112.45	23.2	960	108000	21.45	. 0387	. 001075
3	52	44.3	17.70	920	23.26	90.50	6.98	27.2	30.24	113.70	30.24	1200	141,100	25.60	. 0496	. 001378
4	49	44.6	17.75	780	14.25	55.50	7.50	29.2	21.75	84.70	21.75	1200	101,700	21.70	. 0356	. 000990
5	40	45.2	17.85	714	8.90	34.60	780	30.3	16.70	64.90	16.70	1200	17,850	19.85	. 0275	. 000764
6	58	39.5	16.89	977	23.53	91.50	7.20	28.0	30.73	118.50	33.80	1320	157,600	27.15	. 0558	. 001550
7	55	39.5	16.84	926	19.10	74.40	7.40	28.8	26.50	102.10	29.10	1320	136,200	25.70	. 0478	. 001928
8	49	39.5	16.84	825	12.40	48.25	7.81	30.4	20.21	78.65	22.20	1320	109,000	22.90	. 0356	. 000987
9	56	380	16.57	927	11.80	4595	8.30	32.3	20.10	78.25	26.10	1560	122,000	25.75	. 0425	. 001178
10	60	38.0	1657	993	16.20	65.00	7.92	30.8	24.62	95.80	32.0	1560	149,400	27.60	. 05275	. 001461
11	67	38.0	16.57	1109	23.80	9250	7.58	29.5	31.38	122.00	40.7	1560	190,700	30.80	. 0662	. 001835
12	71	39.0	16.75	1190	21.40	83.25	8.33	32.4	29.73	115.65	44.5	1800	208,000	33.01	. 0736	. 002090
13	67	37.0	16.38	1096	16.30	63.45	8.61	33.5	24.91	96.95	37.3	1800	174,000	30.40	. 0624	. 001730
14	60	37.0	16.38	982	11.20	43.55	9.10	35.4	20.30	78.95	30.4	1800	142000	27.25	. 0487	. 001339
15	32	54	19.40	621	17.45	67.90	6.84	26.6	24.29	44.50	14.6	720	68000	17.25	. 02351	. 000653
16	32	54.5	19.48	623	12.30	47.80	7.30	28.4	19.60	76.20	15.7	960	73100	17.60	. 02589	. 000718
17	37	54.5	19.48	720	16.95	65.90	7.04	27.4	23.99	93.30	19.2	960	89600	20.00	. 0322	. 000893

ASME STD. SQ.EDGE

ORIFICE DIA=.413"

Spark Advance 25° bTC.
HEAT REJECTION RUNS $2 \frac{1}{2}$ G.S.E.

B-4	1032	20	1875	1500	421	160	210	+4.8	20.6	-3	1.0	0	18.0	139	148	148	152	85^{-}	30.7
	1032	21	1875	1500	421	160	213	+4.95	20.6	-3	1.0	0	18.0	139	152	152	151	83	31.0
	1042	22	1875	1500	429	161	215	- 5.0	20.65	-3	1.0	0	18.0	139	157	152	151	83	51.0
	1052	23	1875	1500	429	161	215	-4.95	20.65	-3	1.0	0	18.0	139	152	152	157	83	30.7
	1002	24	1875	1500	430	161	315	-4.95	20.68°	-3	1.0	0	18.0	139	153	153	151	83	50.7
B-5	1340	25	1875	1500	385	161	2/3	- 5.80	10.00	-10	1.0	0	18.0	140	$13^{\circ} 0$	148	$13^{\circ} 0$	99.5	34.6
	1350	26	1875	1500	388	160	214	-5.70	10.00	-10	1.0	0	18.0	140	$15^{\circ} 0$	148	150	95	34.7
	1400	27	1875	1500	385	160	214	-5.75	10.00	-10	1.0	0	18.0	140	150	150	150		34.7
	1415	28	1875	1500	386	160	214	-5.75	10.00	-10	1.0	0	18.0	140	152	150	$10^{\circ} 0$	94.5	34.8

DYNAMOMETER ZERO AT O"Mg HEAT TREJECTION TEUNS 4"G.S.E. TIME RUN RPM

 SPEED
FT/MN

$B-6$	1540 1550 1600	$\begin{aligned} & 29 \\ & 30 \\ & 31 \end{aligned}$	1875 1875 1875°	1500 1500 1500	$\begin{aligned} & 336 \\ & 325 \\ & 336 \end{aligned}$	$\begin{aligned} & 162 \\ & 162 \\ & 161 \end{aligned}$	$\begin{aligned} & 210 \\ & 210 \\ & 210 \end{aligned}$	$\begin{aligned} & 3.5^{\circ} \\ & 3.45 \\ & 3.45 \end{aligned}$	$\begin{aligned} & 3.6 \\ & 3.5 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 5.9 \\ & 5.85^{\circ} \\ & 5.85 \end{aligned}$		1.0 1.0 1.0	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 18 \\ & 18 \\ & 18 \end{aligned}$	$\begin{aligned} & 141 \\ & 141 \\ & 141 \end{aligned}$	$\begin{aligned} & 150 \\ & 150 \\ & 150 \end{aligned}$	$\begin{aligned} & 150 \\ & 150 \\ & 150 \end{aligned}$	$\begin{aligned} & 149 \\ & 149 \\ & 149 \end{aligned}$	$\begin{aligned} & 105 \\ & 105 \\ & 106 \end{aligned}$	34.5 34.6 34.4
	1625	32	2250	1800	412	160	225	14.25^{\prime}	15.85	10.8	-8.5	1.0	0	18	139	150	150	$16^{\circ} 0$	96	50
8-7	1635	33	2250	1800	412	160	225	14.2	16.0	10.8	-8.5	1.0	0	18	139	150	150	150	97	50
	1645	34	2250	1800	412	160	225	14.1	16.0	10.8	-8.5	1.0	0	18	139	150	150	18%	97.2	so

4 APRIL 1962
OBSERVERS: MITCHELL, WIGKINSON BAROMETER $767.0 \mathrm{~mm} N$ TEMP. 21.25 ${ }^{\circ} \mathrm{C}$

0000000000000
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18

139	152
139	149
139	150
142	150
142	150
141	150
141	150
138	150
138	150
138	150
138	150
138	150
139	152
139	150
139	151
140.5	150
140.5	150
140.5	150

15
149
150
150
150
150
150
150
150
150
150
150
157
147
149
150
150
150
150
150
150
150
149
150
15
150
150
150

152	92	44.8
152	93	44.3
152	93	44.6
149	111	33.6
149	111	33.6
149	105	32.8
149	105	32.5
151	88	46.8
151	88	47.2
151	88	46.7
152	90.5	37.7
152	90.5	57.8
150	98	47.9
150	98	48.2
150	98	48.0
149	103	34.5
149	103	34.4
149	103	34.5

4.1
4.3
4.6
3.6
3.6
$32.8-$
3.5
46.8
7.2
6.7
7.7
7.8
47.9
48.2
34.5
34.4
34.5

TABLE F-XIV
HEAT REJECTION RUNS 4"G.S.E.
AIR ORIFICE ASME STD. DIA...461"

	DYNAMOMETET EERO AT O"Hg HEAT REJECTION RUNS 4"G.S.E. AIR ORIFICE ASME STD. DIA...461" PISTOW K TEMPERATURES ${ }^{\circ} \mathrm{F}$ \qquad + PRESSURES INCHES Hg+t TEMPSRATUTES S ${ }^{\circ} \mathrm{F}$ \qquad																			
	TIME	RUN	RPM	speed FT/MIN	CYAmern		号	$\begin{aligned} & \text { DYN } \\ & \text { "Hg } \end{aligned}$	$\begin{aligned} & \text { (} \triangle P \text { P) } \\ & \text { "HzO } \end{aligned}$	$p_{\text {. }}$ intancé	$\operatorname{Pex}_{\text {Exids }}$	$\mathcal{F B}_{\text {primice }}$	(AD)NA	ime	Macen eitive incór	orcfinter jcurpo	$\mathrm{H}_{2} \mathrm{OTO}$ Rorin	$\mathrm{N}_{2} \mathrm{Of}$ raay cacete	$\mathrm{H}_{2} \mathrm{O}$ rexporve 	
B-18	1035 1050	$\begin{aligned} & 55 \\ & 56 \end{aligned}$	$\begin{aligned} & 750 \\ & 750 \end{aligned}$	$\begin{aligned} & 600 \\ & 600 \end{aligned}$	$\begin{aligned} & 305 \\ & 304 \end{aligned}$	$\begin{aligned} & 160 \\ & 160 \end{aligned}$	$\begin{aligned} & 165 \\ & 165 \end{aligned}$	$\begin{aligned} & 16.65 \\ & 16.6 \end{aligned}$	5.85 S.85	$\begin{aligned} & -8.0 \\ & -8.0 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 18.0 \\ & 18.0 \end{aligned}$	$\begin{aligned} & 143.0 \\ & 143.0 \end{aligned}$	$\begin{aligned} & 149 \\ & 149 \end{aligned}$	$\begin{aligned} & 150 \\ & 150 \end{aligned}$	$\begin{aligned} & 148 \\ & 148 \end{aligned}$	$\begin{aligned} & 118 \\ & 118 \end{aligned}$	$\begin{aligned} & 34.85 \\ & 34.85 \end{aligned}$	$\begin{aligned} & 4.52 \\ & 4.52 \end{aligned}$
8-16	$\begin{aligned} & 1105 \\ & 11155 \\ & 1130 \end{aligned}$	$\begin{aligned} & 57 \\ & 58 \\ & 59 \end{aligned}$	$\begin{aligned} & 750 \\ & 750 \\ & 750 \end{aligned}$	$\begin{aligned} & 600 \\ & 600 \\ & 600 \end{aligned}$	$\begin{aligned} & 278 \\ & 277 \\ & 277 \end{aligned}$	$\begin{array}{r} 160 \\ 160 \\ 160 \end{array}$	$\begin{aligned} & 162 \\ & 162 \\ & 162 \end{aligned}$	$\begin{aligned} & 9.2 \\ & 9.2 \\ & 9.2 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.0 \\ & 3.0 \end{aligned}$	-13.35 -13.35 -13.35	$\begin{aligned} & 1.0 \\ & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 18.0 \\ & 18.0 \\ & 18.0 \end{aligned}$	$\begin{aligned} & 142.5^{\prime} \\ & 143 \\ & 143 \end{aligned}$	$\begin{aligned} & 149 \\ & 148 \\ & 149 \end{aligned}$	$\begin{aligned} & 150 \\ & 149 \\ & 150 \end{aligned}$	$\begin{aligned} & 147 \\ & 147 \\ & 147 \end{aligned}$		30.35 29.95° 2995	$\begin{aligned} & 3.29 \\ & 3.29 \\ & 3.29 \end{aligned}$
3-17	$\begin{aligned} & 1210 \\ & 1225 \end{aligned}$	$\begin{aligned} & 60 \\ & 61 \end{aligned}$	$\begin{aligned} & 750 \\ & 750 \end{aligned}$	$\begin{aligned} & 600 \\ & 600 \end{aligned}$	$\begin{aligned} & 320 \\ & 317 \end{aligned}$	$\begin{aligned} & 160 \\ & 160 \end{aligned}$	$\begin{aligned} & 166 \\ & 166 \end{aligned}$	$\begin{aligned} & 21.9 \\ & 21.9 \end{aligned}$	$\begin{aligned} & 8.25 \\ & 8.25 \end{aligned}$	$\begin{aligned} & -4.5 \\ & -4.5 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	0	$\begin{aligned} & 18.0 \\ & 18.0 \end{aligned}$	$\begin{aligned} & 142 \\ & 142 \end{aligned}$	$\begin{aligned} & 149 \\ & 149 \end{aligned}$	$\begin{aligned} & 150 \\ & 150 \end{aligned}$	$\begin{aligned} & 148 \\ & 148 \end{aligned}$	$\begin{aligned} & 112 \\ & 112 \end{aligned}$	$\begin{aligned} & 30.5 \\ & 30.5 \end{aligned}$	$\begin{aligned} & \operatorname{siz} \\ & 5.2 \end{aligned}$

4 APRIL, 1952
TABLE F-XV
ASME STD. SQUARE EDGED ORIFACE DIAM. . $20^{\prime \prime}$
OBSERVERS: SMITH, BOHNER
BAROMETER $766.8 \mathrm{~mm} H G$
TEMP. $21.5^{\circ} \mathrm{C}$
HEAT REJECTION RUNS 6"G.S.E

time	RUN	RPM	PISTON SPEED FT/MIN	CYL. HEAD	TEMPER INLET AIR	ratures MN. BRNG. inlet oil	IN - F MN. BRNG	OIL FROM sump	DYN. REAOING	$\begin{aligned} & (\triangle P)_{A \mid R} \\ & " H_{2} O \end{aligned}$		SSURES IN Pe Exhaust	$\begin{aligned} & N{ }^{N H G \rightarrow} \\ & (\Delta P)_{H_{2} \mathrm{O}} \end{aligned}$	↔TEM $\mathrm{H}_{2} \mathrm{O}$ TO ENGINE	MPERATURE $\mathrm{H}_{2} \mathrm{O}$ FROM ENGINE	URES IN $\mathrm{H}_{2} \mathrm{O}$ TO ROTAMETER	$\begin{aligned} & \text { OF } \xrightarrow{\mathrm{H} O \text { FROM }} \\ & \text { COOLER } \end{aligned}$	$\mathrm{H}_{2} \mathrm{O}$ ROTA.	FUEL TEMP. ${ }^{\circ} \mathrm{F}$	FUEL ROTAmeter	
1400	13	1300	1560	534	160	151	208	150	16.7	15.1	-6.5	1	17.4	140	150	150	90	38.0	86	8.35	
1405	14	1300	1560	533	161	151	208	160	16.7	15.1	-6.5	1	17.4	140	150	150	90	38.0	86	8.35	C 10
1410	15	1300	1560	533	160	151	208	150	16.7	15.1	-6.5	1	17.4	140	150	150	90	38.0	86	8.35	
1425	16	1300	1560	554	159	151	207	150	23.8	23.6	-2.2	1	17.4	139	151	151	84	38.0	86	10.8	
1430	17	1300	1560	554	159	151	207	150	23.8	23.6	-2.2	1	17.4	139	151	151	84	38.0	86	10.8	C 11
1435	18	1300	1560	559	160	151	207	150	23.8	23.6	-2.2	1	17.4	139	151	151	84	38.0	86	10.8	
1505	19	1500	1800	off scale	160	151	213	150	21.4	29.1	-2.7	1	17.4	138	152	152	81	39.0	86	12.1	
1510	20	1500	1800	off gcale	160	151	213	150	21.4	29.2	-2.7	1	17.4	138	152	152	81	39.0	86	12.1	C 12
1515	21	1500	1800	off scale	160	151	213	150	21.3	29.2	-2.7	1	17.4	138	152	152	81	39.0	86	12.1	
1540	22	1500	1800	554	160	151	213	150	16.3	20.9	-6	1	17.4	139	151	151	84	37.0	86	10.1	
1545	23	1500	1800	556	160	151	213	150	16.2	21.0	-6	1	17.4	139	151	151	84	37.0	86	10.1	C 13
1550	24	1500	1800	556	159	151	213	150	16.4	21.0	-6	1	17.4	139	151	151	84	37.0	86	10.1	
1610	25	1500	1800	529	158	151	212	150	11.2	13.0	-10	1	17.4	140	150	150	90	37.0	86	7.6	
1615	26	1500	1800	524	158	151	212	150	11.2	12.9	-10	1	17.4	140	150	150	90	37.0	86	7.6	C 14
1620	27	1500	1800	524	160	151	213	150	11.2	12.9	-10	1	17.4	140	150	150	90	37.0	86	7.6	
ASM	s	Sa	RE EO	DGED OR	ace	DIAM. . 6	6141				-						11 APR OBSERV BAROM TEMP.	RIL, 19 VERS: Meter 23.	52 $\begin{aligned} & \text { SMITH } \\ & 766.6 \\ & 3^{\circ} \mathrm{C} \end{aligned}$	BOHNER mm	

1455	1	600	720	414	160	151	169	150	17.45	15.5	-6	1	17.4	142	148	148	116	54.0	81	2.95	
1500	2	600	720	415	159	151	170	150	17.45	15.4	-6	1	17.4	142	148	148	116	54.0	81	2.95	c 15
1505	3	600	720	415	159	151	170	150	17.45	15.4	-6	1	17.4	142	148	148	116	54.0	82	2.95	
1525	4	800	960	426	159	151	179	150	12.5	18.6	-9.9	1	17.4	142	148	148	116	54.5	82	3.4	
1530	5	800	960	428	160	151	180	150	12.3	18.6	-9.9	1	17.4	142	148	148	116	54.5	82	3.4	C 16
1535	6	800	960	428	160	151	180	150	12.3	18.6	-9.9	1	17.4	142	198	148	116	54.5	82	3.4	
1540	7	800	960	428	160	151	180	150	12.3	18.6	-9.9	1	17.4	142	148	148	116	54.5	82	3.4	
1600	8	800	960	444	161	151	180	150	17.0	28.6	-6.3	1	17.4	141	149	199	112	54.5	82	4.6	
1605	9	800	960	445	161	151	180	150	16.9	28.6	-6.3	1	17.4	141	149	149	112	54.5	82	4.6	C 17
1610	10	800	960	446	160	151	180	150	17.0	28.7	-6.3	1	17.4	141	149	149	112	54.5	83	4.6	
1615	11	800	960	445	160	151	180	150	16.9	28.6	-6.3	1	17.4	141	149	149	112	54.5	83	4.6	

ASME STD. SQUARE EDGED ORIFACE DIAM. . $920^{\prime \prime}$
 DYNAMOMETER ZERO READING: O"HG HEAT REJECTION RUNS G" G.S.E.

TIME	RuN	RPM	PISTON SPEED FT/MIN	CYL.HEAD	TEMPERA inlet AIR	TURES MN. BRN INLET OL	\cdots	OIL FROM SUMP	DYN. REAOING	$\begin{gathered} (\triangle P)_{A I R} \\ " H_{2} O \end{gathered}$	P_{i} intake	P_{e} EXHAUST	$(\Delta P)_{\mathrm{H}_{2} \mathrm{O}}$	$\mathrm{H}_{2} \mathrm{O}$ TO ENGINE	$\mathrm{H}_{2} \mathrm{O}$ FPINM ENGINE	$\mathrm{H}_{2} \mathrm{O}$ TO ROTA. METER	$\mathrm{H}_{2} \mathrm{O}$ FROH COOLER	$\mathrm{H}_{2} \mathrm{O}$ ROTA.	$\begin{aligned} & \text { FUEL } \\ & \text { TEMP. } \\ & \text { ©F } \end{aligned}$	FUEL ROTA. METER
1005	1	600	720	446	160	151	168	150	22.4	4.2	-2	1	17.4	141	149	149	105	31.6	79	4.0
1010	2	600	720	446	160	151	168	150	22.45	4.4	-2	1	17.4	191	149	149	105	31.7	79	4.0
1015	3	600	720	445	159	151	168	150	22.8	4.3	-2	1	17.4	141	149	149	105	31.7	79	4.0
1020	4	600	720	446	160	151	168	150	22.75	4.4	-2	,	17.4	141	199	149	105	31.5	79	4.0
1030	5	600	720	446	160	151	168	150	22.85	4.4	-2	1	17.4	191	199	149	105	31.7	79	4.0
1300	6	800	960	468	160	151	180	150	22.1	8.05	-2	1	17.4	141	149	149	105	43.6	79	5.85
1310	7	800	960	468	160	151	180	150	2215	8.0	-2	1	17.4	141	149	199	105	43.5	80	5.85
1315	8	800	960	470	160	151	181	150	22.23	8.1	-2	1	17.4	141	149	199	105	43.6	80	5.85
1325	9	800	960	470	160	151	181	150	22.25	8.1	-2	1	17.4	141	149	149	105	43.5	80	5.85
1423	10	1000	1200	509	159	151	192	150	23.8	13.4	-2	1	17.4	140	150	150	98	44.0	80	7.8
1929	11	1000	1200	511	160	151	192	150	23.1	13.3	-2	1	17.4	140	150	150	98	44.2	81	7.8
1434	12	1000	1200	511	159	151	193	150	23.2	13.5	-2	1	17.4	140	150	150	98	44.5	83	7.8
1939	13	1000	1200	510	161	151	193	150	23.1	13.4	-2	1	17.4	140	150	150	98	44.5	83	7.8
1945	14	1000	1200	509	161	151	193	160	23.1	13.4	-2	1	17.4	140	150	150	98	44.5	83	7.8
1505	15	1000	1200	470	163	151	194	150	14.3	6.8	-8	1	17.4	141	149	149	105	43.5	83	5.3
1510	16	1000	1200	471	160	151	194	150	14.3	6.8	- 8	1	17.4	191	199	149	105	44.8	82	5.3
1530	17	1000	1200	470	160	151	194	150	19.2	6.85	-8	1	17.4	191	149	149	105	44.7	83	5.3
1535	18	1000	1200	470	160	151	194	150	14.2	6.85	-8	1	17.4	141	149	149	105	44.4	83	5.3
1605	19	1000	1200	441	160	151	195	150	8.9	3.9	-12	1	17.4	141	149	149	109	45.3	82	3.7
1615	20	1000	1200	444	160	151	195	150	8.9	4.0	-12	1	17.4	141	149	149	109	45.3	82	3.7
1620	21	1000	1200	442	160	\| 51	105	150	8.9	4.0	-12	,	17.4	141	149	149	109	45.1	83	3.7
1625	22	1000	1200	443	160	151	195	150	8.9	4.0	-12	1	17.4	141	149	149	109	45.1	83	3.7

4 APRIL 1952
OBSERVERS: SMITH, BOHNER
BAROMETER 766.8 mm H6

1125	1
1140	2
1145	3
1205	4
1215	5
1220	6
1240	7
1245	8
1250	9
1320	10
1325	11
1335	12

1100	1320
1100	132
1100	13
1100	18
1100	13
1100	13
	1100
	1100
	1100
	1300
1300	13
	1300

1320	539	158	151	193	150	23.4	17.0	-2
1320	537	161	151	106	150	23.6	16.8	-2
1320	530	161	151	196	150	23.6	16.8	-2
1820	516	160	151	197	150	19.1	12.4	-5
1320	517	160	151	197	150	19.1	12.4	-5
1320	517	160	151	197	150	19.1	12.4	-5
1320	480	159	151	200	150	12.4	6.8	-10
1320	481	160	151	200	150	12.4	6.8	-10
1320	481	160	151	200	150	12.4	6.8	-10
1560	507	159	151	209	150	11.8	9.85	-10
1560	507	160	151	209	150	11.8	9.85	-10
1560	507	160	151	209	150	11.8	9.85	-10

17.4	140	150	150
17.4	140	150	150
17.4	140	150	150
17.4	140	150	150
17.4	140	150	150
17.4	140	150	150
17.4	140	150	150
17.4	140	150	150
17.4	140	150	150
17.4	140	150	150
17.4	140	150	150
17.4	140	150	150

TEMP.	39.5	81	8.9	
92	39.5	81	8.9	C
92	39.5	82	8.9	
92	39.5			
		39	39.5	82
9.4				
95	39.5	83	7.4	C
95	39.5	83	7.4	
101	39.5	80	5.3	
101	39.5	80	5.3	$C 6$
101	39.5	81	5.3	
94	38.0	84	6.5	
94	38.0	84	6.5	$C 9$
94	38.0	84	6.5	

SUMNAAY

HEAT REJECTION AT VARIOUS JACKET TEMPERATURES $2 \frac{1}{2} " G . S . E$.

	esta Deider	Cce . 619	EFFECT			JACKET		TEMPERATURE					HEAT		TEJECTION			4"G.S.E.		
	Time	TUN	RPM	piston speed FT/ Mod	cyc.ref	Arr	ano	$\begin{aligned} & \text { DYN } \\ & \text { rHg } \end{aligned}$	$(\triangle P)$ are	FUEL eormuerce amanc	Pintake	$\underset{E_{E M R U T}}{P_{E}}$	Prime	$(\Delta)_{1 / 2} 0$	H_{2}	Maw orivers	Oic fen	H20 ${ }^{1}$	Momed	$\begin{aligned} & \text { Ho } \\ & \text { Hemurnce } \end{aligned}$
	1104	1	1500	1200	388	160	184	24.7	12.55	9.81	-3.0	1.0	0	18	140	145	144	150	81.55	12.8
B-i	11114	3	1500	1200	390 390	160 160	185	24.7	12.55	9.81	-3.0 -3.0	10	O	18 18	140	150 150	150 150	150 150	82.0	12.8
																150	150	150		
$B-i i$	1146 1201	$\begin{aligned} & 4 \\ & 5 \end{aligned}$	$\begin{aligned} & 1500 \\ & 1800 \end{aligned}$	$\begin{aligned} & 1200 \\ & 1200 \end{aligned}$	$\begin{aligned} & 408 \\ & 409 \end{aligned}$	$\begin{aligned} & 160 \\ & 160 \end{aligned}$	$\begin{aligned} & 190 \\ & 190 \end{aligned}$	$\begin{array}{r} 24.9 \\ Z 4.9 \end{array}$	$\begin{aligned} & 12.50 \\ & 12.50 \end{aligned}$	$\begin{aligned} & 9.80 \\ & 9.80 \end{aligned}$	$\begin{aligned} & -3.0 \\ & -30 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	0	18	$\begin{aligned} & 160 \\ & 160 \end{aligned}$	$\begin{aligned} & 150 \\ & 150 \end{aligned}$	$\begin{aligned} & 150 \\ & 150 \end{aligned}$	$\begin{aligned} & 170 \\ & 170 \end{aligned}$	$\begin{aligned} & 102 \\ & 102 \end{aligned}$	$\begin{aligned} & 11.8 \\ & 11.7 \end{aligned}$
B-iii	$\begin{aligned} & 1246 \\ & 1301 \end{aligned}$	7 8	$\begin{aligned} & 1500 \\ & 1000 \end{aligned}$	$\begin{aligned} & 1200 \\ & 1200 \end{aligned}$	416 416	$\begin{aligned} & 160 \\ & 160 \end{aligned}$	$\begin{aligned} & 190 \\ & 190 \end{aligned}$	$\begin{aligned} & 25: 1 \\ & 25: 1 \end{aligned}$	$\begin{array}{r} 12,40 \\ 12,40 \end{array}$	$\begin{aligned} & 9.78 \\ & 9.78 \end{aligned}$	$\begin{aligned} & -3.0 \\ & -3.0 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 18 \\ & 18 \end{aligned}$	$\begin{aligned} & 181 \\ & 180 \end{aligned}$	$\begin{aligned} & 150 \\ & 150 \end{aligned}$	$\begin{aligned} & 150 \\ & 150 \end{aligned}$	$\begin{aligned} & 190 \\ & 189 \end{aligned}$	$\begin{aligned} & 131 \\ & 130 \end{aligned}$	$\begin{aligned} & 20.7 \\ & 20.5 \end{aligned}$
	1345	11	1500	1200	369	160	188	24.65	12.48	9.80	-3.0	1.0	0	18	133	149	149	143	90.5	36.9
$B 75$	1400	12	1500	1200	366	160	188	24.5	12.40	9.78	-30	1.0	0	18	131	150	150	140.5	89	36.8
	1410	13	1500	1200	369	160	188	34.5	12.40	9. 78	-3.0	1.0	0	18	129	150	15	139	87	36.7
	1420	14	1500	1200	369	160	188	24.5	12.40	9.78	-3.0	1.0	0	18	129	150	150	139	87	36.8
$B \cdot v i$	1441 1456	$\begin{aligned} & 15 \\ & 16 \end{aligned}$	1500 1500	$\begin{aligned} & 1200 \\ & 1200 \end{aligned}$	$\begin{array}{r} 356 \\ 356 \end{array}$	160	188	24.2 24.2	12.40	9.78 9.78	-3.0 -30	1.0	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	18	114	$\begin{aligned} & 150 \\ & 150 \end{aligned}$	$\begin{aligned} & 150 \\ & 150 \end{aligned}$	$\begin{aligned} & 124 \\ & 124 \end{aligned}$	81	58.5

APPENDIX G

BIBLIOGRAPHY

BIBLIOGRAPHY

1. Taylor, C.F. and Taylor, E.S.; The Internal Combustion Engine: International Textbook Company, 1938 revised 1948.
2. Taylor, C.F.; "The Effect of Size on the Design and Performance of Internal Combustion Engines", ASME paper 49-A-116 Presented 27 Noverber-2December 1949.
3. Gaboury, W.D.; Meyer, O.F.; Greenlee, P.E.; Salassi, J.W.; and Wiggins, R.; A Study of Friction and Detonation in Geometrically Similar Engines, M.I.I. thesis 1950
4. Taylor, C.F.; Heat Transmission in Internal Combustion Engines, unpublished.
5. Riekert, P. and Held, A.; Heat Transfer in Geometrically Similar Cylinders; NACA technical memorandum number 977, May 1941.
6. McAdams, W.H.; Heat Transmission, McGraw-Hill, 1942
7. Leary, W.A.; Measurement of Air Flow by Means of ASME Square Edged Orifice with Flange Taps; Sloan Laboratory, M.I.I.
8. Theory of the Flowrator, catalog section 98-A, 1947, Fischer and Porter CO., Hatboro, Pa.
9. Breed, E. and Cowdery, J.R.; A Study of the Laws of Similitude Using the Six Inch G.S.E., M.I.T. thesis 1949.
10. Lobdell, I.W. and Clark, R.E.; A Study of the Principle of Similitude Using the Four Inch G.S.E.; M.I.I. thesis 1949
11. Mikel, F.G. and McSwiney, D.D.; A Study of the Laws of Similitude Using the Two and One-Half Inch G.S.E.; M.I.I. thesis 1949.
12. Taylor, E.S. and Draper, C.S.; A New High Speed Indicator, Mechanical Engineering, March 1933.
13. Aroner, R. and O^{\prime} Reilly, P.J.; An Investigation of Friction in M.I.T. Four Stroke Geometrically Similar Engines, M.I.T. thesis 1951.

thesS58

A study of the effect of engine size on I.N.M.

32768002
DUDIEY KN2 009268
DUDLEY KNOX LIBRARY

