
Calhoun: The NPS Institutional Archive
DSpace Repository

Theses and Dissertations 1. Thesis and Dissertation Collection, all items

1970

A computer program for solution of sequence
dependent routing problems using a
branch-and-bound algorithm.

Jackson, Richard Alan
Monterey, California ; Naval Postgraduate School

https://hdl.handle.net/10945/14927

This publication is a work of the U.S. Government as defined in Title 17, United
States Code, Section 101. Copyright protection is not available for this work in the
United States.

Downloaded from NPS Archive: Calhoun

A COMPUTER PROGRAM FOR SOLUTION OF SEQUENCE
DEPENDENT ROUTING PROBLEMS USING A

BRANCH-AND-BOUND ALGORITHM

by

Richard Alan Jackson

•

United States
Navai Postgraduate School

THESIS
A COMPUTER PROGRAM FOR SOLUTION OF
SEQUENCE DEPENDENT ROUTING PROBLEMS
USING A BRANCH -AND-BOUND ALGORITHM

by

Richard Alan Jackson

September 1970

Tku> document hcu> be.m appiovzd ^on pubtic k<l-

tdOJbn and 6ala; i£}> cLUtAibutLon -i& wntlmitzd.

T136458

A Computer Program For Solution of

Sequence Dependent Routing Problems

Using a Branch -And -Bound Algorithm

by

Richard Alanjackson
Lieutenant, United States Navy
.I.E., University of Florida, 1964

Submitted in partial fulfillment of the

requirements for the degree of

MASTER OF SCIENCE IN OPERATIONS RESEARCH

from the

NAVAL POSTGRADUATE SCHOOL
September 19 70

LTBRAR?'^
NAVAL POSTGRADUATE SCTTOOI?

MONTEREY, CALIF. 93940

ABSTRACT

An algorithm for the solution of sequence-dependent routing

problems is presented and programmed in FORTRAN IV for use on digital

computers. Solutions, computation times and iteration requirements

are summarized and discussed for eleven test cases.

With specific modification of the input data, a typical traveling

salesman closed-loop problem may be solved by the same program.

TABLE OF CONTENTS

I. INTRODUCTION 7

II. THE ALGORITHM 9

III. PROGRAMMING CONSIDERATIONS 17

IV. THE COMPUTER PROGRAM 21

V." TEST PROBLEMS 24

A. SEQUENCE-DEPENDENT PROBLEMS 24

B. TRAVELING SALESMAN PROBLEMS 26

VI. COMPUTATIONAL RESULTS 32

VII. CONCLUSIONS 35

APPENDIX A: COMPLETE COMPUTER SOLUTION FOR TEST 3 6

PROBLEM NO. TWO

APPENDIX B: TYPICAL SOLUTION OUTPUT 3 7

APPENDIX C: COMPOSITION OF COMPUTER CARD DECK 41

APPENDLX D: DESCRIPTION OF VARIABLES USED IN 42

COMPUTER PROGRAM

APPENDIX E: COMPUTER PROGRAM 45

APPENDIX F: MODIFICATIONS TO COMPUTER PROGRAM 60

FOR DYNAMIC STORAGE ALLOCATION

BIBLIOGRAPHY 67

INITIAL DISTRIBUTION LIST 68

FORM DD 1473 69

4 (@M < A)

LIST OF SYMBOLS AND ABBREVIATIONS

X - a subset of all feasible solution vectors

Y - a subset of X

Y - the complement of Y with respect to X

W(X) - a bound on the objective function for all possible solution

vectors in X

leg k - one of the sequence of arcs which form a complete route

(the k-th leg of a route between N nodes is that arc (i,j) which
is traversed between the k-th and (k + l)-st nodes visited

in sequence on the route)

arc(i,j) - a directed path from node i to node j

A , (a..) - the matrix of costs of traversing arc (i,j) on the k-th leg

of the route

M , (m..) - the current working matrix of costs of traversing arc (i,j)

on the k-th leg of route. (Initially M, = A, but M, is
k k k

changed by the operations of the algorithm)

g = Xa summed over the set of (i,j:k) for committed arcs and legs
ij

M' - the reduced form of M,
k k

q(i ,3 :k) - the reducing constant for M

9 (i , j :k) - the second smallest element in M'
P P k

9 (i ,j :k) = max 9 (i ,j :k) where k is uncommitted
o o o , P P

x - represents plus infinity as a matrix element

ACKNOWLEDGEMENT

It is with pleasure that I wish to acknowledge the staff and the

operators of the W. R. Church Computer Facility at the U.S. Naval

Postgraduate School for their gracious assistance and guidance during

all stages of testing the computer program. The author is particularly

indebted to William Erhman of the staff who provided the Assembly

Language program included in Appendix F for dynamic allocation of

storage space based upon the number of nodes in a given problem and

the number of iterations desired.

I. INTRODUCTION

The algorithm programmed in this thesis, presented by DeHaemer

[Ref. 1], uses the branch-and-bound technique to find the optimal

route between N nodes . It determines the beginning and ending nodes

and passes through each node exactly once. The criterion for optimality

is to minimize total cost in traversing the (N-l) arcs of the route where

the cost of traversing each arc is a.., which is a function of the k-th

position in the sequence of arcs forming the route.

The purpose of this paper was to construct a computer program

which would solve the general class of sequence-dependent routing

problems using the above mentioned algorithm, given the matrices of

all possible costs for each leg of the route. The difficulty in solving

this class of problems has been in finding a method of selection of

tours which avoids evaluation of all the (N-l) ! possible tour costs in

determining an optimal route.

Although several algorithms for typical traveling salesman

problems have been proposed and programmed for a computer [Ref. 2],

this paper presents the first program and results using the algorithm

presented in the next section.

The operational results of solving several test problems are

given along with a discussion of the limitations of the computer program.

It is assumed that the reader is familiar with the branch-and-bound

technique. References 1 and 3 discuss general background of branch-

and-bound methods.

TYPICAL SEGMENT OF TREE

W(0O = 7

W(Y)-13 W(Y) = 14 W(Y) = 14

Notation:

W(X) - a lower bound on objective function for all possible solution vectors

attached to base node X of tree

Y - right-hand nodes with notation as follows (i , j : k) (i.e. , k-th leg

of route ig_ from i to j)

W(Y) - lower bound associated with node Y

Y - left-hand nodes with notation as follows (i,j:k) (i.e. , k-th leg

of route is not from i to j)

W(Y) - lower bound associated with node Y

Note: For computer application, right-hand nodes are labeled with

positive numbers and left-hand nodes are labeled with negative

numbers .

Figure 1

8

II. THE ALGORITHM

The basic method employed by the algorithm is the branch-and-

bound technique. The set of all possible routes through N nodes is

broken up into smaller and smaller subsets and a lower bound on the

cost of the best route in the subset is obtained. The bounds are then

used as guides in determining further partitions into smaller subsets

until the algorithm eventually isolates one or more subsets which are

complete routes whose costs are less than or equal to the lower bounds

for all other subsets. These routes are then declared optimal.

The algorithm generates a tree whose nodes represent subsets of

routes as illustrated in Figure 1. The base node of the tree establishes

an absolute lower bound on all possible routes. Each branch or segment

of a branch is a complete route or subset of a complete route respectively

An example tree for an entire problem as generated by the computer

program may be seen in Appendix A.

It is assumed that the set of matrices A can be specified for all

(N-l) legs of the route. A problem with N nodes requires that (N-l)

legs of a route be determined. Each leg k of a route is specified as

being an arc (i,j) which is a directed path from node i to node j.

The algorithm as used for the computer program is listed here in

complete detail. The first three test cases in Section V. A. are worked

out in some detail in Ref . 1 and sufficient background of the algorithm

may also be found in the same reference. The only modifications made

9

here in this algorithm are in the branching rule of step 8, elaboration

of step 7 for the computer program, and in the branching to step 7 from

step 4 when sufficient legs of a route are known so that a complete

route may be specified.

The Steps of the Algorithm

Step 1:

The initial setup of the algorithm is made as follows:

1. Set A, = M fork = 1,2 , (N-l).
k k

2. X is the set of all possible routes.

3 . Set Z = oo and Leg = . Z will be the cost of the
o o

optimal route at the end of the algorithm.

Step 2:

Find the minimum element in each matrix and reduce the

matrices. An absolute lower bound on the cost of all

tours is found.

1 . For each leg k , k = 1 ,2 , . . . , (N-l), find i , 1 , and
k k

q(i, ,3, :k) such that q(i, , j. :k) = min min m. .

.

k k k k ij
i 3

1

'k k
2. Reduce M to M, where m.. = m - q(i , j, :k) for

k k 13 ij k k

all i, j , and k.

3. Label node X with W(X) = *Lq(i, ,j,:k) summed over

k = 1,2..., (N-l) . This label is the absolute lower

bound on the cost of all tours.

10

Step 3:

Choose the subset for the next tree extension as follows:

'k
1. (i ,j :k) = min m.. for each k where leg k is

13 * Vk
uncommitted

.

2. 9 (i ,j :k)= max (i , j :k) where k ranges over the
o o o p p

uncommitted legs

.

3. Then Y = (i ,j :k)andY = (i , j :k) are the next
o • o o o o o

branches from X

.

Step 4:

Label Y by W(Y) = W(X) + 9 (i ,j :k) .

o o o

Step 5:
1

Since an arc is to be committed to a leg, a new set of

restricted matrices are formed by the following actions:

1 . Delete M, .

k
o

2. a. Delete all elements in M, ^ , except row j .

k + 1 °
o

b. Delete columns i and j in M,
,

.

o o k + 1
o

Step 5 of the algorithm was accomplished in the computer

program through the use of the variable matrix ARCCOM and the variable

DEL which allowed only certain matrices and certain elements in these

matrices to be considered in the succeeding steps.

11

3. a. Delete all elements in M, , except column i
k - 1 o
o

b. Delete rows i and j in M, ,

o o k -1

4. Delete rows i and j and columns i and j in all M,
o o o J

o k

except in M, , and M,
k + 1 k - 1
o o

5. Relabel the matrices as M, .

k

6. Leg k is now committed to arc (i ,i) .

o o

7. If (N-3) legs have been committed, go to Step 7 .

Step 6:

Initiate procedures to determine what the next leg of the

route should be

.

1 . For each k where leg k has not been committed to a

route, find i , j , and q(i ,j :k) such that q(i ,j :k)

k
min min m ,

.

i

2 . Reduce M, to M. for those legs k which are not
k k

committed and for all i,j of uncommitted arcs where

'k k
m. . = m.. - q(i , j :k) .

ij ij k k

3. Label Y by W(Y) = W(X) - !£q(L ,j,:k) summed over k
k K.

for uncommitted legs.

12

Step 7:
2

Ascertain whether a route has been determined and if it

has an upper bound which is equal to or less than Z .

o

1. Increment leg by one since a leg has been committed.

2. If (N-2) legs of route have been committed and W(Y)^=.

Z , goto Step 10 .

o

3. If (N-2) legs of route have been committed and W(Y)>

Z , go to Step 8 .

4. If (N-2) legs of route have not been committed and

W(Y) ^. Z , go to Step 8, substep 4.

5. If (N-2) legs of route have not been committed and

W(Y) > Z , go to Step 8 .

o

Step 8:

Determine the node X from which to branch as follows:

1. Make the last Y node non-terminal since it is either

the end of a complete route or the end of a segment of

a complete route which has a cost which is greater

than Z . Therefore, a search of Y nodes for suitable
o

branch points must be made. Go to substep 2.

2
Note that when (N-2) legs of route have been committed, the

last leg is automatically determined and hence computation ends when
(N-2) legs are known.

13

2. Choose the lowest numbered left-branch node with a

label W(Y) 4=. Z and branch from this node X. Go to
o

Step 9 . For all Y nodes with labels W(Y) > Z ,

o

consider them non-terminal since they would all lead

to higher cost routes . If there is no Y node which is

a candidate for branching, go to substep 3.

3. All nodes have been made non-terminal by substeps 1

and 2 of this step and hence the optimal route has been

found. STOP .

4. If substep three of Step 7 was satisfied, make last Y

node to be the node X from which to branch. Make Y

node non-terminal and set W(X) = W(Y) . Go to Step 3 .

Step 9:

Set up the cost matrices and label node X as follows:

1. Set leg = 0. Then determine number of legs committed

on limb of tree from which branch is to occur and set

leg = to the number of Y nodes on the limb.

2. Compute g = ^.a.. summed over the set of (i , j:k) for

committed arcs and legs at this point in the tree.

3. If no legs have been committed, set M = A, , otherwise

serM
k
= A

k
.

4 . Carry out substeps 1 thru 4 of Step 5 for each of the

committed arcs and legs .

14

5. Block paths which are not allowed (i.e. , those left-

hand nodes encountered on this branch of tree are

forbidden nodes)

.

6. Carry out Step 6 substeps 1 and 2 .

7. Label X with W(X) = g +^(i, /J, :k) summed over k for

the uncommitted legs

.

8 . Go to Step 3 .

Step 10:

Determine complete route which has been found.

1 . Arrange the committed arcs and legs to determine

missing leg and arc on this leg.

2. Make last Y node non-terminal since a route was

determined

.

3. Set Z =W(Y). Go to Step 8 , substep 2.
o

End of Algorithm

A flow chart of the algorithm is in Figure 2 .

15

FLOW CHART OF ALGORITHM

C START
J

Step 1

Set Ak = Mk for all k.

X is the set of all routes

Zo = 00 Leg

Step 2

Find minimum element in

each matrix and reduce Mk
to M}

c

W(X) = sum of reducing

constants

Label X with W(X)

Step 3 I
Choose subset for next tree

extension by finding

9(i ,j :k)=max 9(rpJ p :k)

Y=(i /Jo: k o) Y= (io/Jo: ko)

Step 4

Label Y by
W(Y) = W(X) 8(io/ Jo=ko)

Step 5 I
Form new set of Mk by

restricting arcs and legs

previously committed in

subset under consideration

Step 6

Find minimum element in

new set of Mk and reduce

Mk to Mfc

Label Y by
W(Y) = W(X) + sum of

reducing constants

Form the

matrices

branch under consider

ation

set of reduced

M^ for the

Step 10

Set Z = W(Y) Complete
route and obtain route
cost. Make note of
best route

.

YES

Step 7
Have

(N-2) legs
been committed

and is

W(Y)£Za
?

NO

Figure 2

16

III. PROGRAMMING CONSIDERATIONS

The first decision that had to be made before programming of the

algorithm began was what computer language would be most appropriate.

Since one of the primary purposes of this project was to explore the

feasibility of computerized solutions using the algorithm rather than to

3
develop an efficient program for large-scale problems, FORTRAN IV was

chosen as the language due to its ease of application.

One of the important factors to consider for computer applications

is requirement for storage space. The strategy used for selection of

the branch point in Step 8 can have a direct effect on storage require-

ments . There are two basic strategies which may be used:

Strategy 1 : Branch from the lowest bound. This strategy is the

one used in the original algorithm [Ref. 1] and has the advantage that

the total computation required to reach optimality is minimized in the

sense that any branching performed is also that which must be performed

under any alternate policy. Its primary disadvantage is that no terminal

nodes are discarded and hence storage requirements may become ex-

cessive. In addition, it brings Step 9 of the algorithm into play more

often which requires time to backtrack through the tree and set up the

matrices for a further branch from the chosen node.

Large-scale here is considered to be when the number of nodes,

N, is greater than 20.

17

Strategy 2 : Branch always from the latest Y node if a complete

route has not been determined and discard nodes from storage that are

no longer in contention for branch points or for the optimal route. This

is known as a "branch to the right" policy. It has as its primary

advantage that the amount of computer storage required is minimized

since nodes are discarded when they are no longer required. Also,

Step 9 of the algorithm will not be called upon as frequently as under

Strategy 1

.

Strategy 1 was originally employed, but for the few test cases

considered, the number of iterations and time required to obtain the

optimal route was in general greater than that required under Strategy 2

and hence the program presented uses Strategy 2.

As mentioned in Reference 1, a very useful feature of this routing

algorithm is that one can stop at any point after the first complete route

has been determined and have a feasible tour, although it may not be

optimal. In the computer application of the algorithm, it may be the

case that sufficient storage space or time required to reach the optimal

solution may not be available. Hence, if one is willing to accept a

suboptimal solution such as a solution below a given cost, this given

cost could be input to the program and as soon as a solution that has a

cost less than this amount has been found, computation can be halted.

This may be found to be extremely useful when dealing with large-scale

problems where to pay for sufficient computer time to reach the optimal

solution might be prohibitive [Refs . 1 and 5]. Note that in test problem

18

Number 11, a solution within 4% of the known optimal solution was

obtained in a very short period of time, but that nearly 300 minutes

and 25,000 iterations later, the same solution was found and the optimal

route had still not been located.

Although Reference 1 gives a modification to the basic algorithm

for symmetric matrices, the modification was not incorporated in the

program presented here.

For test problems 1-10 presented in Section V, storage require-

ments did not become excessive as will be discussed in more detail

under Section VI on computational results.

19

3 4-.

H ro

ID w
c>

tn

PL. -a a
s CO

rv

o
CO

T1 tn

c c E

ID

u f() S-i

£ ro
o

o (0

N m CD *

m -a Cm N
ID

m T5
i • C

CO a a i=! ro

g r; 3
O —

i

u
o

Id

to

0)

H u o w
W b

CD 5
a, ^

to

W
ro

O
Im

a c • CO
-M .—

1

H 4-> C ^

:-.

PQ
|D

u —i ro

3 rn

£3
CO

G
O

CD

CO u X ra CD
CD (1) Jm -M
Pm £ X! CO

C
+-"

oo w
CO

a,
g
o ID

0) I)

CO

CO a

Cm

CO

b h-l
^

, , <u
H-l ro u
CD <4-l

Oh o

CD

a
:> +_>

CD

hJ G X w
w "d ^
ft fc £i 3

CD ro co

2 0) £ .

E T5 CT>

o £
£ CO

H
D

E

o
rr e

CO CO

CD C
«- 5CQ

|D
tn

CO r O u.
ro CD

Pm CD Cm

f y y

CD

H E
'.o 4-J

G
nH

pq 3

^
H
P CO

rj G
:r.

rn
.:.

.J /-'

:o U

N
c
fC

u
CD

2 CD

c E
H 3 ° E
V o v- O
C)

u CD O
ru 4-1 Gw
M-l ^ CD

£ •rH

CD ^H to

ID
CD

C £ CD

»!PS
1

fcs

OJ Ih

ID CO CO

to CD

Q &$

I

c
2 o
h-l (_,

--<

o «5lg is ECO

w 5 ° o
o, Q, XS "t!

H
ID

O
out

o

on

an

ent

ir

PC
PQ

ID
'"rite oluti ertin

CO
^ co a

Y Y

r\

\J w

20

IV. THE COMPUTER PROGRAM

The computer program is entirely integer in nature except for the

variables used in conjunction with the timing routine. A detailed

description of the major variables used in the program may be found in

Appendix D. Originally, the program was compiled using the FORTRAN

G-level compiler and consisted of a main program where the major

portion of all iterations was accomplished, and two subroutines, one

used for Step 5 of the algorithm and the other for output.

It was noted that the FORTRAN H-level compiler generated an

object code which was superior to the G-level compiler, particularly

for extensive looping and arithmetic operations which were present in

this type of program. An attempt was made to compile the identical

program using this H-level compiler but the program size combined with

its complexity was too large for the compiler to accommodate. At this

point, the program was broken up into a main program and eight sub-

routines, all of which the H-level compiler could handle. The computer

program flow along with a brief description of the subroutines is illus-

trated in Figure 3 .

Maximum storage utilization was attained by specifying that

nearly all variables be INTEGER*2 . This meant that the principal

iteration information for the tree which was maintained for purposes of

being able to branch from any node was limited to numbers less than

or equal to 32,767. This limitation applies to bounds on nodes and

21

number of iterations; hence node numbers, since node numbers are

directly related to iterations. All right-hand nodes are labeled by

positive numbers which identify them with the iteration on which they

were obtained and likewise, left-hand nodes are labeled by negative

numbers

.

Another limitation of the program as presented is that the number

of nodes be equal to or less than 20. The number of tours which can

be expected to be obtained is limited to 30. The first tour is obtained

by branching to the right immediately until a complete tour is specified

which takes place on the (N-2)-nd iteration. All future tours must have

cost equal to or less than the previous tour or they are not considered

or counted as a tour for the purposes of the program.

All of the limitations discussed are limits of the computer program

as presented and may be easily modified by changing the appropriate

DIMENSION statements. Iteration information contained in the matrices

YTAB and YBTAB which is used for constructing the branch point becomes

the primary storage-limiting factor when the number of iterations is

expected to be in the thousands. For 150 iterations, which was used

for the first eight test problems, the entire program required 114,000

(114K) bytes of storage. Each increment of 100 iterations above the

150 used requires 1 . 8K bytes of storage and therefore 2500 iterations

as used for test problem Number 9 required 42K more bytes which led

to a program size of 156K.

22

For the typical traveling salesman problems discussed in the

next section, the optimal route as expressed by the computer output

has been adjusted to reflect the actual route which excludes the dummy

node (N+l). Typical computer solution output for both a sequence-

dependent case and a typical traveling salesman case may be found

in Appendix B

.

A timing routine used in Reference 4 is included in the program

for purposes of obtaining actual problem solution times which excludes

all input and output buffering times.

The program follows the algorithm step by step. Documentation

is interspersed throughout to enable a casual reader to understand the

basic program flow. The entire program may be found in Appendix E.

Appendix C contains the make up of the computer card deck.

In order to provide dynamic allocation of storage space based

upon the number of nodes in a given problem and the number of iterations

desired, modifications to the basic program presented in Appendix E

have been provided in Appendix F. Details on the specific changes are

given in Appendix F . The primary advantage of these modifications is

that the user does not have to change all of the variable specifications

and dimension information cards in the 8 primary routines each time

different values for N and ITS are used (N is the number of nodes; ITS

is the number of iterations desired) . Only the appropriate job control

language (JCL) card which specifies the storage and time requirements

for the execution of the program must be changed.
23

V. TEST PROBLEMS

A. SEQUENCE DEPENDENT PROBLEMS

The first three test cases were problems whose description places

them into the class of sequence-dependent routing problems. Problems

1 through 3 were taken directly from DeHaemer [1]. Problems 1 and 2

consisted of matrices which were asymmetric. In problem 3, all

matrices were symmetric. As was noted in Section III, the computer

program does not provide for special treatment of symmetric matrices,

but it was desirable to include symmetric matrices as test problems.

Problem No . 1

Suppose an itinerant salesman must be routed so that his

travel expenses are minimized while visiting 5 different cities . He

must complete a leg of his route on each of 4 consecutive days. Travel

expenses vary as a function of the day on which the travel occurs. At

certain times, no public transportation is available and the costs reflect

the price of the available charter transportation. All possible costs

have been tabulated for each of the 4 traveling days and are presented

in Figure 4 .

M
n

M. M. M...
2

—
3

—
4

45 12345 12345
1 x 3 11 14 6 x 6 11 12 7

2 10 x 7 9 15 13 x 5 10 13

3 23 12 x 29 4 26 24 x 15 14

4 22 24 13 x 5 21 8 20 x 18

5 16 19 20 26 X 9 16 23 29 X

X 6 14 9 29 x 17 11 22 9

16 x 24 8 15 28 x 16 19 10

7 25 x 3 17 24 20 x 21 6

5 18 15 x 13 15 14 12 x 1

26 12 23 2 x 14 16 7 13 X

Problem No. 1: Initial Set of Cost Matrices

Figure 4

24

Problem No. 2

This problem has the same framework as problem 1 except

that there are 6 different cities and thus there are 5 legs of the route.

The matrices of all possible costs are tabulated in Figure 5.

M.

12 3 4 5 6

1 x 40 24 32 28 12

2 36 x 20 36 4 32

3 24 32 x 8 16 16

4 12 20 20 x 24 16

5 8 32 12 8 x 8

6 16 24 16 20 12 X

M,

12 3 4 5 6

x 10

9 x

6 8

3 5

2 8

4 6

M.

12 3 4 5 6

x 30 18 24 21 9

27 x 15 27 3 24

18 24 x 6 12 12

9 15 15 x 18 12

6 24 9 6 X 6

12 18 12 15 9 X

M.

1 2 3 4 5 6

1 x 20 12 16 14 6

2 18 x 10 18 2 16

3 12 16 X 4 8 8

A 6 10 10 X 12 8

5 4 16 6 4 X 4

6 8 12 8 10 6 X

12 3 4 5 6

x 50 30 40 35 15

45 x 25 45 5 40

30 40 x 10 20 20

15 25 2 5 x 30 20

10 4 15 10 x 10

20 30 20 25 12 x

Problem No. 2: Initial Set of Cost Matrices

Figure 5

Problem No. 3

Figure 6 contains a set of four symmetric cost matrices

from which a minimal cost route is desired.

25

1 2 3 4 5

1 X 3 11 14 6

2 3 x 7 9 15

3 11 7x29 4

4 14 9 29 x 5

5 6 15 4 5 X

1 2 >. 4 5

X 6 11 12 7

6 X 5 10 13

11 5 X 15 14

12 10 15 X 18

7 13 14 18 X

1 2 3 4 5

x 3 14 9 29

3 x 24 8 15

14 24 X 7 17

9 8 7 x 5

29 15 17 5 x

1 2 3 4 5

x 17 11 9 22

17 x 16 10 19

11 16 x 4 21

9 10 4 x 1

22 19 21 1 X

Problem No. 3: Initial Set of Cost Matrices

Figure 6

These first three examples are discussed in more detail along

with sample calculations in Ref. 1.

It would have been desirable to have larger test problems for

which an optimal route was known. In order to avoid the lengthy hand

computations involved in the setup and solution of a larger problem,

it was thought that the typical closed-loop traveling salesman problems

which have known optimal solutions and are abundant in the literature

could provide additional test cases.

B. TRAVELING SALESMAN PROBLEMS

By appropriate modification of the input data, the typical closed-

loop traveling salesman problem (hereafter referred to as TSP) can be

solved by the program. It was necessary that the problem be structured

in a manner such that the route would be closed as opposed to the open-

ended route determined by the algorithm, visiting each node exactly

once. Since the optimal route in a TSP is independent of the starting

node, it was observed that the addition of one dummy node and hence

one dummy leg attained the desired results. This can best be illustrated

by an example.
26

Suppose the following matrix of costs between 4 nodes was

given:

1 2 3 4

1

2

x 2

5 fx"

6 3

"4l
3 2 13 x 51

4 il7. 2__x[

N - 4

No. of legs = N - 1 = 3

It is assumed, as is usually the case in the TSP, that the matrix is

the same for each leg. Consider the following set of four matrices

which have one additional dummy node (node 5) besides the original

4 from above

.

M M, M, M"2 3 4

: 2 3 4 5 12345 12345
X 2 6 3 X
X X X X X

X X X X X
X X X X X
X X X X X

X X
1

x Jx f
X X

Tl x
x I 3 X 5 i x

*\z. _2_ _X] X

X X X X X

X X X X X
::

r -
IX ~4l X

:•: |3 X 5i X
X [7._2_ Jil X
X X X X X

X X X X X

xxxx5 N = 5

x x x x 2

x x x x 1 No. of legs

x x x x x N-l = 4

The number of nodes is now 5 and hence 4 legs are required to complete

a route. Matrix M is used to force the algorithm to choose leg one

with an arc leading from node 1, to one of the other original nodes,

nodes 2, 3, or 4 , since all other arc choices on the first leg have

prohibitive costs associated with them. Matrix M is a dummy leg

which is used to form a closed-loop. The only entries of significance

4
in M. are those in the last column, column 5. These m._ values

4 i5

represent the costs of going from any node to node 1, since leg one

began with an arc leading from node 1. Since the only "acceptable"

values are m
25

5,m=2,andm lasm. r
= oo for i = land 5

i5

27

the optimal route will be forced to close on node 1 as desired. Matrices

M and M are identical and are designed to prevent any arc from

originating at node 1 or node 5 and to prevent any arc from terminating

at node 1 or node 5, and therefore rows 1 and 5 and columns 1 and 5

have infinite values. Note that the dotted lines in M and TvT contain
2 3

the original matrix less row 1 and column 1, as illustrated by the

dotted lines in the original matrix.

The general pattern which emerges is that the matrix for leg 1

would contain all infinite values except for those arcs leading from

node 1 to all the other original nodes. The last matrix would contain

all infinite values except for the last column which would be the same

as the first column of the original matrix with the infinite value below

it. The intermediate matrices would be the same as the original matrix

less row 1 and column 1 with an entire border of infinite values added

to them

.

With the above modifications, the following traveling salesman

problems were solved as though they were sequence-dependent routing

problems. (Only the original matrix is given.)

Problem No. 4 [Ref. 6]

12 3 4 5

1 x 5 6 10 8

2 5 x 5 12 12

3 6 5 x 8 10

4 10 12 8x6
5 8 12 10 6 x

Problem No. 4: Initial Cost Matrix

Figure 7

28

Problem No. 5 [Ref. 6]

1 2 3 1 s 6

1 X 4 3 7 7 (>

2 4 X 2 5 7 7

3 3 2 X 5 6 6

4 7 5 5 X 3 5

5 7 7 6 3 X 3

6 6 7 6 5 3 X

Problem No. 5: Initial Cost Matrix

Figure 8

Problem No. 6 [Ref. 5]

12 3 4 5 6

1 x 27 43 16 30 26

2 7 x 16 1 30 25

3 20 13 x 35 5

4 21 16 25 x 18 18

5 12 46 27 48 x 5

6 23 5 5 9 5 x

Problem No. 6: Initial Cost Matrix

Figure 9

Problem No. 7 [Ref. 2]

12 3 4 5 6 7 8 9 10

1 x 51 55 90 41 63 77 69 23

2 50 x 64 8 53 46 73 72

3 30 77 x 21 25 51 47 16 60

4 65 6 x 2 9 17 5 26 42

5 94 5 x 41 31 59 48

6 79 65 15 x 17 47 32 43

7 76 96 48 27 34 0x0250
8 17 27 46 15 84 x 24

9 56 7 45 39 93 67 79 x 38

10 30 42 56 49 77 72 49 23 x

Problem No. 7: Initial Cost Matrix

Figure 10

29

Problem No. 8 [Ref. 2]

1 2 3 4 5 6 7 8 9 10 11 12 13

1 X 57 72 15 66 49 53 28 60 60 65 12

2 x 82 40 24 31 4 21 59 33 59 27

3 92 35 x 98 80 57 67 48 84 86 77 26

4 77 76 64 x 67 36 94 70 63 29 46

5 74 95 14 63 x 14 47 24 98 24 80

6 96 5 4 44 x 86 54 28 36 22 41 73

7 99 76 44 92 35 36 x 25 35 33 37 42

8 93 73 37 73 76 73 94 x 92 59 52 58

9 24 70 91 94 60 8 73 52 x 94 81 65

10 67 53 23 51 77 66 11 x 52 86 21

11 19 95 50 79 84 79 37 45 8 x 57

12 74 29 92 13 54 78 61 46 69 40 x 29

13 60 43 25 42 15 19 87 75 53 52 67 x

Problem No. 8: Initial Cost Matrix

Figure 11

Problem No. 9 [Ref. 3]

1 2 3 4 c 6 7 8 9 10

1 x 24 18 22 31 19 33 25 30 26

2 15 x 19 27 26 32 25 31 28 18

3 22 23 x 23 16 29 27 18 16 27

4 24 31 18 x 19 13 28 9 19 27

5 23 18 34 20 X 31 24 15 25 8

6 24 12 17 15 10 x 11 16 21 31

7 28 15 27 35 19 18 x 21 21 19

8 13 24 18 13 13 22 25 x 29 24

9 17 21 18 24 27 24 34 31 x 18

10 18 19 29 16 23 17 18 31 23 x

Problem No. 9: Initial Cost Matrix

Figure 12

30

Problem No . 10 [Re f. 7]

1 2 3 4 5 6 7 8 9 10

1 X 28 57 72 81 85 80 113 89 80

2 28 x 28 45 54 57 63 85 63 63

3 57 28 x 20 30 28 57 57 40 57

4 72 45 20 X 10 20 72 45 20 45

5 81 54 30 10 x 22 81 41 10 41

6 85 57 28 20 22 x 63 28 28 63

7 80 63 57 72 81 63 X 80 89 113

8 113 85 57 45 41 28 80 X 40 80

9 89 63 40 20 10 28 89 40 X 40

10 80 63 57 45 41 63 113 80 40 X

Problem No. 10: Initio 1 Cost Mati"ix

Fi gure 13

Problem No. 11 [Ref. 2]

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1 x 29 41 9 18 6 42 48 74 43 51 7 36 93 58 11 51 61 30 44

2 29 x 72 72 50 39 60 34 25 46 25 35 14 20 35 83 27 86 95 30

3 41 72 x 70 54 35 59 88 19 72 87 38 24 68 63 80 58 40 89 24

4 9 72 70 x 60 20 24 73 79 51 43 58 4 47 29 22 48 27 88 91

5 18 50 54 60 X 17 74 93 76 30 55 84 42 47 9121 59 24 80

6 6 39 35 20 17 x 26 60 32 63 84 21 26 96 75 14 13 51 16 83

7 42 69 59 24 74 26 x 97 65 64 13 23 3 78 15 30 56 22 13 58

8 48 34 88 73 93 60 97 x 63 27 42 62 32 20 26 5 80 52 47 36

9 74 25 19 79 32 65 63 x 71 91 5 85 51 72 53 8 49 90 39

10 43 46 72 51 76 63 64 27 71 x 66 30 57 8 71 19 25 10 83 40

11 51 25 87 43 30 84 13 42 91 66 x 9 26 6 99 33 8 99 92 31

12 7 35 38 58 55 21 23 62 5 30 9 x 86 27 34 72 45 59 32 77

13 36 16 24 4 84 26 3 32 85 57 26 86 X 12 28 24 60 19 12 20

14 93 20 68 47 42 96 78 20 51 8 6 27 12 x 19 77 14 22 54 77

15 58 35 63 29 47 75 15 26 72 71 99 34 28 19 x 22 75 28 72 64

16 11 83 80 22 91 14 30 5 53 19 33 72 24 77 22 x 62 79 97 47

17 51 27 58 48 21 13 56 80 8 25 8 45 60 14 75 62 x 91 59 75

18 61 86 40 27 59 51 22 52 49 10 99 59 19 22 28 79 91 x 87 4

19 30 95 89 88 24 16 13 47 90 83 92 32 12 54 72 97 59 87 x 32

20 44 30 24 91 80 83 58 36 39 40 31 77 20 77 64 47 75 4 32 x

O]Dtimal Solution: 1-12-11-17 -6-16-8- 15- 7-19-5-9-3-20-18-10
14-2-13-4- 1

O]Dtimal Route "Cost" = 246

I>roblem No. 11: Initial Cost IV atrix

Figure 14

31

VI. COMPUTATIONAL RESULTS

Table I presents summary statistics for the eleven test problems

considered. Optimal routes obtained verified the known results which

are in the respective references from which the problems were taken,

with the exception of test problem Number 7. Reference 2 indicates

that the optimal route for this problem is as specified in the notes for

Table I with an optimal route cost of 33. This program obtained the

optimal route indicated in the table with a route cost of 28 which is 5

cost units superior to the previous known result.

The type of problem is either sequence-dependent (SD) or

traveling salesman problem (TSP) as discussed in Section V. The

number of complete tours obtained by the program is significant in that

after the first tour is obtained by branching only to the right, a suc-

ceeding tour found must have a cost equal to or less than the best tour

located so far in the computational procedure. It is somewhat repre-

sentative of the "speed" of convergence towards the optimal solution.

The number of iterations required is actually the number necessary to

verify that the best route found by the program is the optimal route.

The iteration number on which the optimal route is located is in general

far lower than the total number of iterations required for verification

(note test problems Numbers 9 and 10).

Test problems Numbers 4,5, and 10 have alternate routes

indicated, but these routes are mirror images of one another and hence

32

CD

6 —^ CO

H X! n lo m ^ o o
O1 O
.5 u

CO LO CD CD —

i

o t>- CO
CO CM <—1 LO CO LO CD CM oo n ton ^ o LO LO CO CD CD

c ° OJ

c co o o o o 1—

1

CNI ST ^ CO ^r O
p r—

t

—

1

o o-> -

LO LO CO
ro 1—

1

1

o- 1

,_, ,_, r-H i—

t

1

| | 1 | 1
LO i—

1

"cD CD in CD OJ CM o- r-H 1

P.
1 1 1

^r

CO

CD •

to

C
CD

CD

JO

CD
1

CO

CO

1 1

CO

1

CD
1

CO

CO i-H

1o
1—

1

5 ! ,-h CO 1—

1

o LO CD CD r-«
14-1

1

O co
CO r-H

© CM4-J V

1

9 o

1 6
•5 H

JO

<* r-H --H

1 1 1

LO CO LO LO OJ

r—i i—

i

CD CO
1 1

LO CM

1—

1

CM

CD
1

CD

1

LO

O 1

i-H CM

r-H

1

LO

CO
1

o
1—

1

1

CD

O
i—

1

LO
CD

CO

o
CM

o t
sT ID ^ ^ CO

1 1 1 1 1

co i—i co co ^r
l l l 1 l

CM LO
1 1

LO
1

CO
1

OJ

o
r>- oj

l i—

i

CO 1

CD

CO

CD
i

CO

ro

C
CD

P '

i_ r-H

CO
1

CD
1

N CO N CM LO
1 1 1 1 1

r-H CM r-H r-H i—

I

CO CD
1 1 1 I

CO
1

o-
1

OJ
1

sS

"co tf

X! rH

LO i-H

1 1

CD CM
r-H H

, ,

fO -m CO

.1 g

O =

OJ CO CD CM CM CM CM CO
+
CO o LO 00 CO

CD ^
X) ^

r-H CO •—
1 CO CO CO OJ CD CM OJ

1—

1

o-
CO

o-
co

CO

X5 c T5
C CD C
O T3 3
o

a 3
to CO CO Xl' O LO CO 1—

1

i—

1

r—

1

I-H CD CD o ^
CD 1—

1

r—

1

CO i—

I

CO CM LO i—

I

HH CM
CO

O
S-i

CD o o CO LO +j CD
O CM
c

^
CO

X
o Ih

C
O

a CD

X)

6

CO CM CO CO t\ CD OJ CD ^ r-H o
ex ^ m CM H H CM ^ CM LO "st

1 CO CD

< o c, .—

i

^f CD O
3 CD CM "^ LO

£ S t—

1

CM

*
cH o w "2

C . P 4-J

H O
H N H N CM co LO CM l>- CD CO

o i—

I

+-> £
fD

s—

CD

P

CM

S
o

CO

CD CO CO LO CD C-. r>* ,_, ^r ^ r-H r-+

o-g r-H 1-1 r-H r-H CM

U £ S
£
(0

i—

I

D»
CD xj

H Cu

_ _ _ Cu CU Q-, a, cu CU Cu PL,

O Q Q Q co CO CO CO CO co CO CO
i-i

Cu
CO CO CO H H H H H H H H

6
fc

"A r-H CXI CO ^r LO LO o- (X) CD o c-H

r—h

w
CD

-2 e
2 5H a, S

6
CD

X!
O a

P
C
(0 •

£ u CD

m © Xi

© A
CD x) o
W

CD

S o

X
CO

(1)

-H O
CD CD m
> »-

fD -M W
h fD X

u
ra ^
o c X
O fo ^
1 X!

OJ
T3
CD co

1

J

CO CO n
O CD o C
•—< .—

i

(1)

° 0)— c
fO o

CD
c^

n
CD

fD
u
o. -2

XI
CD p ro

>, U r—

1

e
4-> CO C!) O

T3CD

.2 -O^ o
U u o (

(1) m O
OL, C
CO ^H

X) S U
a
CD

CO

H fD

. P
G o
CD fD

c: a CO

x;
o 4

ra

X
CO

<4H

O

o ° CO

CD
o g CO

> o

CD fi

g Oh*

t-i

o

ro

P

o

C)

P
rv

4h

CO
S-i

o

6

O

%
r-H

1

-a to D'
el) n OJ

CD CD

^ cx
cy >,

CD)-

M
O

CO

C
n

P en
1

OJ

TD 4^ U
ra o

S'S
fD ro E 1—

1

S .2

&£

o
ro

X
J

o
r-v.

1

V-. n i

CD CD P to
10 -rH n j-i

i

XJ u m LO
co o XI

CD CO r-H

ro

W
£
P

CD

O . .

S -H OJ CO -r +

33

are identical. This fact is due to the symmetric nature of the input

matrices combined with the fact that the matrices are the same for all

legs of the route excluding the dummy legs. It would be desirable to

eliminate consideration of any future route which would be an image of

a route previously located, but this feature was not incorporated into

the program. Tor the sequence-dependent symmetric case, test problem

Number 3, only a single route is found as the matrices for each leg are

symmetric, but different for each leg.

Since only a few cases were presented, it would be difficult to

attempt to draw any conclusions with respect to expected time required

for. solution of a problem of given size. However, it was observed

that the time required for a solution rises rapidly as the number of nodes

increases as discussed in Reference 2. The computer storage require-

ment for test problems 1 through 9 was a moderate 154K, but problem

Number 10 required 392K. Test problem Number 11 was run for approxi-

mately 300 minutes and 2 5,000 iterations which required 546K bytes

of storage and the optimal solution was never reached. This matrix is

symmetric and hence the number of iterations could be reduced by

taking this fact into account.

Test problems 7 and 8 terminated in just a few iterations but the

zeroes in the matrix were placed somewhat strategically. In problems

9 and 10, the entries in the matrix are nearly all two digit numbers

which are close to each other in magnitude and hence there is no clear-

cut minimum route as in problems 7 and 8, and thus the number of

iterations runs up into the thousands .

34

VII. CONCLUSIONS

The bra nch-and -bound algorithm and the computer program

presented can successfully find the optimal route for a variety of

sequence-dependent routing problems when the matrices of all possible

costs for each leg of the route are known.

Although it is admitted that the computer program, as written

in FORTRAN IV, may not be the most efficient for large-scale problems

due to storage requirements and processing time, it does provide a

basis for further programming effort using this algorithm. Although no

attempt was made to delete nodes from storage once the node bound

was observed to be above the current least upper bound on a complete

route, larger scale problems would demand such reduction.

In the case of symmetric matrices, a programming method must

be devised to delete consideration of arc (j,i) when arc (i,j) has been

committed to a leg as this just leads to excessive computation and

excessive iterations. It is recommended that a lower-level language,

such as Assembly Language, be utilized to improve efficiency with

respect to both time and storage requirements since the algorithm

deals primarily with integer arithmetic operations .

35

APPENDIX B

CASE NO. 2

EXAMPLE 2 FRCM REFERENCE 1

NUMBER OF NODES = 6

NUMBER OF LEGS = 5

TYPE PROELEM: SEQUENCE-DEPENDENT

MATRIX Ml MATRIX M2 MATRIX M3

*** 40 24 32 28 12 *** 10 6 8 7 3 *** 30 18 24 21 9

36*** 20 36 4 32 9*** 5 9 18 27*** 15 27 3 24

24 32*** 8 16 16 6 8*** 2 4 4 18 24*** 6 12 12

12 20 20*** 24 16 3 5 5*** 6 4 9 15 15*** 18 12

8 32 12 8*** 8 2 8 3 2*** 2 6 24 9 6*** 6

16 24 16 2C 12*** 4 6 4 5 3*** 12 18 12 15 9***

MATRIX M4 MATRIX M5

*** 20 12 16 14 6 *** 50 30 40 35 15

18*** 10 18 2 16 45*** 25 45 5 40

12 16*** 4 8 8 30 40*** 10 20 20

6 10 10*** 12 8 15 25 2 5*** 30 20

4 16 6 4*** 4 10 40 15 10*** 10

8 12 8 10 6*** 20 30 20 25 15***

(SEE SOLUTION ON NEXT PAGE)

37

FEASIBLE TCUR NO. 2 IS DECLARED OPTIMAL

LEG FROM TO CCST

1 2 5 4

2 5 1 2

3 1 6 9

4 6 3 8

5 3 4 10

OPTIMAL ROUTE COST = 33

NUMBER OF ALTERNATE OPTIMAL TOURS =

NUMBER OF ITERATICNS REQUIRED = 22

TIME TO COMPUTE SOLUTICN= 0.738816 SECONDS

ITERATION INFORMATION

YTABLE YBARTABLE

NODE FROM WY 10 JO KO TERM WYBAR TERM
1 31 2 5 5 20
2 1 37 3 4 1 35
3 2 37 6 2 4 45
4 3 37 4 1 2 32037
5 -1 26 2 5 1 24
6 5 33 3 4 5 31
7 6 33 6 3 4 37
8 7 33 5 1 2 32033 C
9 -5 30 2 5 3 27

10 9 37 3 4 5 35
11 -6 34 3 4 3 34
12 -9 37 2 5 4 29
13 -12 41 2 5 2 30
14 -13 31 3 4 1 30
15 14 34 4 1 2 32
16 -14 31 5 1 1 30
17 16 47 3 4 5 41
18 -15 35 4 6 2 33
19 -16 41 5 4 1 30
20 -18 51 4 2 2 34
21 -19 32 5 6 1 34
22 21 59 3 4 5 37

38

CASE NO. 6

EXAMPLE FROM ARTICLE BY LITTLE AND OTHERS IN OR JOURNAL 1963

NUMBER OF NCCES = 7

NUMBER OF LEGS = 6

TYPE PROBLEM: TRAVELING SALESMAN CLOSED-LOOP

MATRICES ARE SAME FOR LEGS 2 THRU (N-2) AND APE AS FOLLOWS:

I/J= 12 3 4 5 6 7

1 9999 ^999 Q999 9°99 9999 99^ 9QQ9
2 9999 9^99 16 1 30 25 9999
3 9999 13 9999 35 5 9999
4 9999 16 25 9999 18 18 9999
5 9999 46 27 48 9999 5 9999
6 9999 5 5 9 5 9999 9999
7 9999 9999 9999 9999 9999 9999 999Q

************ **** ************ *******

FEASIBLE TOUR NO. 3 IS DECLARED OPTIMAL

LEG FROM TO CCST

1 1 4 16

2 4 3 25

3 3 5 5

4 5 6 5

5 6 2 5

6 2 1 7

OPTIMAL FQUTE COST = 63

** **** * ** * * * ** ** *** *** * ** ** * * * * ** * *

NUMBER OF ALTERNATE OPTIMAL TOURS =

NUMBER OF ITERATIONS REQUIRED = 46

TIME TO COMPUTE SOLUTION= 2.023424 SECONDS

39

ITERATION INFORMATION

YTABLE

NODE FROM WY 10 JO KO TERM
1 39 1 4 1

2 1 83 3 6 3
3 2 83 4 3 2
4 3 88 2 5 5
5 4 88 6 2 4
6 -1 38 2 7 6
7 6 52 6 2 5
8 7 94 1 5 1

9 -2 60 3 6 4
10 9 65 2 3 3
11 10 65 4 2 2
12 11 65 6 5 5
13 -6 43 5 7 6
14 13 50 1 6 1

15 14 65 3 5 5
16 15 74 2 4 3
17 -7 89 3 6 2
18 -8 83 1 3 1

19 -9 101 3 6 5
20 -13 54 3 7 6
21 20 59 6 3 5
22 21 76 2 4 2
23 -14 45 1 2 1

24 23 63 2 4 2
25 24 68 4 6 3
26 -15 32069 2 4 3
27 -17 83 3 6 3
28 -19 56 2 7 6
29 28 56 6 2 5
30 29 63 5 6 4
31 30 63 4 3 2
32 -20 58 1 6 1

33 32 66 4 7 6
34 -23 62 1 3 1

35 34 79 3 6 2
36 -24 69 2 3 2
37 -27 32080 3 6 4
38 -28 59 5 7 6
39 38 70 4 2 2
40 -32 51 1 2 1

41 40 69 2 4 2
42 -37 61 1 6 1

43 42 107 3 5 3
44 -39 69 4 6 2
45 -40 58 1 5 1

46 45 66 5 6 2

YBARTABLE

WYBAR TERM
33
44

32083
99

32088
38
46
65
49
71

32065
10059

46
44
63
80
51

10021
54
49
65
74
60
60
70
75
56
59
64

32051
32063

50
10033
10016

75
69
61
67
61
53
66
65
74
68
66
80

40

APPENDIX C

COMPOSITION OF COMPUTER CARD DECK

6.

£_
CONTROL CARDS a

DATA DECK
<\

£

/ CONTROL CARDS X)

yASSM. SOURCE DECK/Q| .

CONTROL CARDS
Z\

ORTRAN SOURCE DEC

/ CONTROL CARDS ~7y
V\

v

/
v

/

Variable

Format

Variable

Format

Variable

Format

DATA DECK MAKEUP

4

|

xxxx \
NCASE
14

4 6 12 13 80

• *

N
14

ALIKE ITS

12 16

TITLE (I)

17A4

4 8 4N
xxxx
M(l,

2014

xxxx . . . xxxx \
1,1)^(1,2,1),. ..

Card Type 1 :

First card in

Data Deck

Card Type 2 :

Second card in Data

Deck and first card

of each succeeding

case

Card Type 3 :

Third card on until all matrices

have been defined. N(N-l)

cards for each case; input

matrix for leg 1 first, then

leg 2 , etc . , row by row.

Note: All values are integers and must be right-justified in format

field specified

.

41

APPENDIX D

DESCRIPTION OF VARIA3LES USED IN PROGRAM

PROGRAM CONSISTS OF ALL INTEGER VARIABLES EXCEPT TIMEX
WHICH IS USED IN CONJUNCTION WITH THE TIMING ROUTINE

PROGRAM LIMITATIONS : 20 NODES TOTAL INCLUDING THE
AUGMENTED NODE; NUMBER OF ITERATIONS IS LIMITED BY THE
NUMBER SPECIFIED BY THE FIRST INDEX OF VARIABLE MATRICES
YTAB AND YBTAB IN THE DIMENSION STATEMENTS AND MUST BE
EQUAL TO OR LARGER THAN THE LARGEST VALUE OF THE VARIABLE
-ITS FOR ANY DATA SET IN THE DATA DECK

ft****************************
INPUT DECK REQUIREMENTS : CC = CARD COLUMN

CARD l: F0RMATU4) CC 1-4
NCASE=NUMBER OF CASES TO BE PROCESSED ON THIS RUN

CARD 2: FORMAT (14, 12, I 6, 17A4)

N=NUMBER OF NODES (FORMAT 14) CC 1-4

ALIKE=1 IF ENTRIES IN MATRIX ARE SAME FOR EACH LEG
=0 IF ENTRIES IN MATRIX ARE CIFFERENT FOR EACH
LEG
(FORMAT 12) CC 5,6

ITS = MAXINUM NUMBER OF ITERATIONS DES I RED(FORMAT 16)
(FORMAT 16) CC 7-12

TITLE(I) = A HEADING FOR EACH INDIVIDUAL PROBLEM
(FORMAT 17A4) CC 13-80

CARD 3 THRU END OF DATA SET: FORMAT(20I4)
M(I,J,K) = WORKING SET OF MATRICES: MATRICES ARE

LOADED ONE ROW AT A TIME
(MATRIX FOR FIRST LEG, SECOND LEG, ETC.)

ALL ABOVE DATA IN I FORMAT MUST BE RIGHT JUSTIFIED
IN FIELD SPECIFIED

NCASE = NUMBER OF CASES TO BE PROCESSED ON ONE COMPUTER

RUN

N = NUMBER OF NODES

ITS = MAXIMUM NUMBER OF ITERATIONS DESIRED

ALIKE = IF PROBLEM IS SEQUENCE DEPENDENT TYPE PROBLEM
ALIKE = 1 IF TRAVELING SALESMAN TYPE PROBLEM

L = N-l = NUMBER OF LEGS FOR ROUTE BETWEEN N NODES

LEGREQ = N-2 = NUMBER OF LEGS REQUIRED TO DETERMINE ROUTE

COST(K) = COST OF GOING FROM NODE FM(K) TO NODE TO (K

)

ON K-TH LEG OF ROUTE

TCOST(TOUR) = TOTAL COST OF TOUR NUMBER (TOUR)

42

BEST(K,J) = MATRIX CONTAINING BEST TOUR AT ANY STAGE OF
SOLUTION AFTER FIRST SUBOPTIMAL TOUR HAS BEEN
FOLND(K=LEG OF ROUTE)

J=l IS LEG OF ROUTE
= 2 IS NODE FROM WHICH LEG K BEGINS
=3 IS NODE WHICH ENDS LEG K
= 4 IS THE COST TO GO FROM J = 2 TO J=3

BEST(Ntl) = NUMBER OF LEAST COST TOUR DETERMINED AT ANY
POINT AFTER FIRST TOUR IS LOCATED

BEST(N,2) = CCST OF TOUR NUMBER BEST(N,1)

LEGCCM(K) = K IF LEG COMMITTED
= IF LEG UNCOMMITTED

FM(K) = NODE OF DEPARTURE ON K-TH LEG OF ROUTE

TO(K) = NODE OF ARRIVAL ON K-TH LEG OF ROUTE

ARCCOM (I, J) = 100 IF NEITHER I NOR J ARE ON A COMMITTED
LEG

=-99 IF EITHER NODE I OR NODE J IS ON A
COMMITTED LEG

STEP = STEP NUMBER OF ALGORITHM

ITER = ITERATICN NUMBER

TOUR = NUMBER CF TOUR FOUND BY ALGORITHM, EACH TOUR
HAVING A COST WHICH IS LESS THAN OR EQUAL TO THE
PRECEEDING TOUR

M(I,J,K) = WORKING SET OF MATRICES
= COST (OR OTHER VARIABLE TO BE MINIMIZED) OF
GOING FROM NODE I TO NODE J ON K-TH LEG OF ROUTE

A(ItJtK) = ORIGINAL M(I,J,K) = PERMANENT FILE OF ALL
INPUT MATRICES

MINEL(K) = MINIMUM ELEMENT IN MATRIX K WHEN LEG K IS
UNCOMMITTED EXCLUDING ROWS AND/OR COLUMNS
ASSOCIATED WITH NODES ON COMMITTED LEGS

MIN(K) = CURRENT MINIMUM ELEMENT IN MATRIX K WHEN LEG K
IS UNCOMMITTED (USED DURING SEARCH FOR MINEL(KJ)

IK(K) = ROW CONTAINING MINEL(K)

JK(K) = COLUMN CONTAINIMG MINEL(K)

THETA = MAXIMUM OF THE SECOND SMALLEST ELEMENTS IN ALL
RESTRICTED MATRICES FOR UNCOMMITTED LEGS

MAXEL = CURRENT THETA IN THE DO-LOOP

MAXLEG = LEG FROM WHICH THETA WAS OBTAINED

10 = IK(MAXLEG)

JO = JK(MAXLEG)

LEG = NCOM = CURRENT NUMBER OF LEGS COMMITTED

WX=THE LOWER BCUND LABEL ATTACHED TO THE TREE FOR NODE X

WY=THE LOWER BCUND LABEL ATTACHED TO THE Y NODE OF TREE

WYBAR = THE LOUER BOUND LABEL ATTACHED TO THE YBAR NODE
OF THE TREE

43

ZO = A LARGE NUMBER ORIGINALLY AND REMAINS AN UPPER BOUND
ON THE OEJECTIVE FUNCTION

X(K) = AN ARRAY USED FOR DETERMINING THE FINAL LEG OF
THE ROUTE AND NODES ON THIS LEG

INDEX = NODE NUMBER FROM WHICH TO BRANCH
IS POSITIVE IF BRANCH IS TO BE FROM A Y NODE:
IS NEGATIVE IF BRANCH IS TO BE FROM A YBAR NODE

YTAB(I,J) = A MATRIX CONTAINING INFORMATION ABOUT Y NODES
(I) IN COLUMN J WHERE I = ITERATION WHICH
GENERATED THE NODE

J = 1 IS THE NODE NUMBER
= 2 IS THE NODE FROM WHICH BRANCH WAS MADE
= 3 IS LOWER BOUND LABEL ON NODE Y
= 4 IS THE NODE OF DEPARTURE
= 5 IS THE NODE OF ARRIVAL
= 6 IS THE LEG OF ROUTE
= 7 IS ZERO WHEN THE NODE IS NOT TERMINAL

ONE WHEN THE NODE IS A TERMINAL NODE

YBTABU,J) = A MATRIX CONTAINING INFORMATION ABOUT YBAR
NCDES (I) IN COLUMN J WHERE I = ITERATION
WHICH GENERATED THE NODE AND IS FOUND IN
TEE MATRIX YTAB{ I ,1)

J = 1 IS THE LOWER BOUND LABEL ON YBAR NODE
J = 2 (SANE AS FOR YTAB(I,7))

(NOTE: THE NODE NUMBER IS THE NEGATIVE OF THE
CORRESPONDING Y NODE FOR THE SAME ITERATION, I.)

BB f G, FROM, NCOM : ALL ARE VARIABLES USED IN RECON-
STRUCTING MATRICES WHEN NODE FROM WHICH BRANCH IS TO
OCCUR IS NCT NODE OF PREVIOUS STEP 6

KEY : IS A VARIABLE USED TO CONTROL FLOW OF PROGRAMMING
THROUGH ALGORITHM TO AVOID ADDITIONAL DUPLICATE
CODE WHICH WOULD BE REQUIRED

GOLF, DEL : VARIABLES USED TO DENOTE CURRENT ROW OR
COLUMN OF ARCCOM MATRIX WHICH MAY BE USED FOR
NOT CONSIDERING CERTAIN ELEMENTS OF THE MATRICES

FUNCTION SUBPRCGRAMS USED :

MINO - FINDS NINIMUM OF 2 OR MORE INTEGER*^ ARGUMENTS
AND ASSIGNS A FUNCTIONAL INTEGER VALUE

MAXO - FINDS MAXIMUM OF 2 OR MORE INTEGER*4 ARGUMENTS
AND ASSIGNS A FUNCTIONAL INTEGER VALUE

44

APPENDIX E

COMPUTER PROGRAM LISTING

£#####*£#£:$:*£ ********************************
* *
* *
* A COMPUTER PROGRAM FOR THE SOLUTION *
* OF SEQUENCE-DEPENDENT ROUTING PROBLEMS *
* USING A BRANCH-AND-BOUND ALGORITHM *
* *
* *

C * ***

IMPLICIT INTEGERS (A-Z)
REAL*4 TIMEX
INTEGER** M(20, 20, 19) , THET A, MAXEL , MI NEL (2)

,

MINK 20)

,

1TITLEC17) ,ZC,WY
DIMENSION A (20,20, 19) , COST (20) ,LEGCOM(20) ,TCOST(30)
1FM(20),T0(2C),X(2C) , ARCCOM (20 , 20) , BE ST (20,4)
2YTAB(2 500,7) , YBT AB (250 , 2) , I K (20) , JK (20

)

COMMON T I ME X , M , THF T A , M AX EL , M I NE L , M I N , T I TL E , ZO , WY , A

,

1C0ST,LEGCCM,FM,T0, X , ARCCOM , B EST , YTAB , YBTAB , IK, JK, TOUR,
2AA,N,L, ALIKE, LEGREQ, STEP, I TER , DEL , WX , MAX LEG, LEG,WYBAR,
3I0,J0,KC,ITS, TCOST, INDEX

1 FORMAT (14)
2 FORMAT (14, 12,16, 17A4)

READ(5,1) NCASE

DO 2000 AA = 1, NCASE

C READ INPUT PARAMETERS

READ (5, 2) N, ALIKE, ITS, (TITLE (I) ,1=1,17)

CALL INPUT

CALL ITERTE (£2000)

C OPTIMALITY REACHED : PROCESS A NEW CASE OR TERMINATE

CALL SOLN

2000 CONTINUE
STOP
END

45

SUBROUTINE INPUT

IMPLICIT INTEGER*2(A-Z)
REAL*4 TIMEX
INTEGER** M (20,20, 19) , THETA, MAXEL ,MINEL(20) ,MIN(20) ,

1TITLE(17), ZCtWY

<!AA,N,L,ALlKt,LtbKt:U,bl t V , 1 I tK»UtL»WX,MAXLtb,Lfcb,WYBj
3I0,J0,KC,ITS, TCOST, INDEX
DATA HEAD/ 1,2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,17.
118, 19,20,21,22,23,24/

2 FORMAT (2014)
4 FORMAT (1H1)
5 FORMAT(« 0« ,10X,'CASE NO. ' , I 3 ,// , 1 1 X , 17 A4 , //l IX ,

• NUMBE
1,'R OF NODES = ' ,12,//, 11X, 'NUMBER OF LEGS = ',12)

6 FORMAT («0' , 10X, 'TYPE PROBLEM: SEQUENCE-DEPENDENT')
7 FORMAT

(

•C« ,10X
T

' TYPE PROBLEM: TRAVELING SALESMAN',
1" CLOSLD-LCCP'

)

8 FORM AT ('0' , 15X,

•

MATRIX M 1
' , 14X ,

* MATR I X M2',14X,
l'MATPIX M3» ,14X, 'MATRIX M4 • , 14X , ' M ATR I X M5»)

9 FORMAT (/ ,11X,6I3,5X,6I3,5X,6I3,5X,6I3,5X,6I3)
10 FORM AT (

' 0« ,20X,« MATRIX M 1 « , 20 X , ' M ATR I X M 2',20X,
l'MATRIX M 3' ,20X,

'

MATRIX M 4')
11 FORMAT(/,10X,5I5,5X,5I5,5X,5I5,5X,5I5)
33 FORMAT(11X, 12, 2X, 2215)
37 FORMAT ('0' , 10X, 'MATRICES ARE SAME FOR LEGS 2 THRU ',
1MN-2) AND ARE AS FOLLOWS : •// , 11X, • I /J=» , 221 5

)

39 FORMAT(«0«

)

C INITIALIZATION

DO 101 1=1,

N

COST(I) =
LEGCCM(I) =
FM(I) =mm = o
DO 101 J=1 T K

101 ARCCCM(I ,J) = 100
DEL = 1

ITER =
TOUR =
LEG =
L = N-l
LEGREQ = N - 2

C NOTE: VALUES OF 32000 IN THE PROGRAM ARE USED TO
C INDICATE INFINITE VALUES

ZO = 32000

STEP = 1

C READ INPUT MATRICES FOR ALL L LEGS

IF (ALIKE. EC. 1) GO TO 104
DO 103 K=1,L
DO 1C3 1=1,

N

103 READ (5, 2) (M (I , J , K) , J= 1 , N

)

GO TO 110
1C4 DO 1C5 K=l,2

DO 105 I=1 T N
105 READ(5,2) (M (I , J , K)

,

J=l ,N)

46

DO 106 K=3,LEGREQ
00 106 1=1, N .

DO 106 J=1,N
106 M(I , J,K) = MI,J,K-1)

DO 1C7 I = 1,N
107 READ(5,2) (H (I , J ,L) , J=1,N)

C WRITE OUT INPUT

110 WRITE(6,4)
IF(ALIKE. EQ.O) WRITE(6,6)
IF(ALIKE.EQ.l) WRITE(6,7)
WRITE(6, <5) AA,(TITLE(I),I=1,17),N,L
IF(N.NE. 5. AKD.N.NE.6.0R. ALIKE. EQ.l) GO TO 113
IFCN.EQ.5) WRITE(6,10)
IF(N.EQ.6) WRITE(6,8)
DO 111 1 = 1,

N

IF(N.EQ.5) WRITE(6,11) ((M (I , J , K) , J= 1 , N) , K=l , L

)

111 IF(N.EQ.6) WRITE (6,9) ((M(I,J,KJ,J=1,N),K=1,L)
GO TO 131

113 WRITE(6,37) (HEADU) ,1=1, N)
WRITE(6,39)
DO 117 1=1 ,N

117 WRITE(6,33) I , ((M(I , J , K) , J=l ,N) , K=2 , 2

)

131 CONTINUE

C START TIMER

CALL TIMEIT (0,TIMEX)

C CREATE COPY OF ORIGINAL DATA IN MATRIX A

112 DO 132 K=1,L
DO 132 1=1,

K

DO 132 J=1,N
132 A(I, J,K) = H I,J,K)

C STEP TWO
C FIND MINIMUM ELEMENT IN EACH MATRIX

DO 200 K=1,L
IK(K) =
JK(K) =
MIN(K) = 3 2 COO
DO 190 1=1,

N

DO 190 J =1,N
IF(I .EQ.J) GO TO 190
MINEL(K) = NINO (MIN (K) , M (I , J , K))

116 IF (MINEL(K) .GE.MIN(K)) GO TO 190
IK(K) = I

JK(K) = J
MIN(K) = MIKEL(K)

190 CONTINUE
200 CONTINUE

C REDUCE MATRICES

DO 212 K=1,L
DO 212 1=1,

N

DO 212 J=1,N
IF(I.EQ.J) GO TO 212
M(I,J,K) = N(I,J,K) - MINEL(K)

212 CONTINUE

C LABEL NODES

WX =
DO 230 K=1,L

230 WX = WX + MINEL(K)
RETURN
END

47

SUBROUTINE ITERTE (*)

IMPLICIT INTEGER*2(A-Z)
REAL*4 TIMEX
INTEGER** M(20,20, 19) ,THETA,MAXEL,MINEL(20) ,MIN(20)

1TITLEC 17),ZC,WY
DIMENSION A (20, 20, 19) T CO ST (20) ,LEGC0M(20) ,TC0ST<30)

~-)),ARCC0M(20,20),BEST(20,4)
K ?son.?i . IK(20) , JK(20)

12 FORMAT (' 0* , 10X,

'

MAXIMUM ARRAY STORAGE SPACE EXCEEDED:'
It* ITER=',T6,' AND MATRICES YTAB AND YBTAB ARE DIMEN',
2«S10NED FOR 1

, 17' I TERATI ONS .',//, 1 IX ,• NUMB ER OF ',
3'TOURS OBTAINED =',I3,». BEST VALUE SO FAR IS « , 1 5,
4' FOR TOUR NUMBER' , 13, '.'

)

15 FORM AT ('0« , 10X, • THE INFORMATION OBTAIN BY THE PROGRAM'
1,' SO FAR IS PRINTED OUT BELOW, SOLELY FOR REFERENCE',
2'. BEST ROUTE HAS NOT BEEN FOUND.')

C STEP THREE - - - ITERATION PROCEDURE
C CONSISTS OF STEPS THREE THRU EIGHT

LABEL = 1

500 ITER = ITER + 1

C MAXIMUM ARRAY STORAGE SPACE EXCEEDED: ERROR

IF(ITER. GT. ITS) CALL TIMEIT (-1,TIMEX)
IF{ ITER.GT.IT S) WRITE (6, 12) ITER, IT S , TOUR , BEST (N, 2)

,

1BEST(N,1

)

IF(ITER.GT.ITS) GO TO 840

MAXEL = -10
MAXLEG =
DO 512 K = 1,L
IF(K.EQ.LECCOM(K)) GO TO 512
MIN(K) = 32C00
MINEL(K) = -1
DO 509 1 = 1,

N

DO 508 J=1,N
IF(I.EQ.J) GO TO 508
IF (K.EQ.L) GO TO 505
IF(K.NE.LEGC0M(K+1)-l) GO TO 505
IF(K.EQ.LEGCGM(K-1)+l) GO TO 510
IF(J.NE.FM(K+1)) GO TO 508
IF(ARCCOM(I ,DEL) .LT.100) GO TO 508
GO TO 504

5C5 IF(K.EO.l) CO TO 506
IF(K.NE.LEGC0M(K-1)+l) GO TO 506
IF(I .NE.T0(K-1)) GO TO 508
IF(ARCCOM(DEL, J) .LT.100) GO TO 508
GO TO 504

506 IF(ARCCOM(I ,J).NE. 100) GO TO 508
IF(ARCCGM(J, I) .NE. 100) GO TO 508

504 IF (I.EQ.IK(K) .AND. J.EQ. JK(K)) GO TO 508
MINEL(K) = MNO(MIiNKK) ,M(I ,J,K))

IF(MINEL(K) .GE.MIN(K)) GO TO 508
MIN(K) = MINEL(K)

5C8 CONTINUE
5C9 CONTINUE
510 IF(MINEL(K) .EQ.-l) MINEL(K) = 32000

THETA = MAXC(MAXEL,MINEL(K))

IF(THETA.LE. MAXEL) GO TO 512
MAXLEG = K
MAXEL = THETA

512 CONTINUE

48

C STEP FOUR ITERATION PROCEDURE
C LABEL YBAR BY WYBAR

WYBAR = WX + THETA
LEGCCM(MAXLEG) = MAXLEG
FM(MAXLEG) = IK(MAXLEG)
TO(MAXLEG) = JK(MAXLEG)
JO = TO(MAXLEG)
10 = FM(MAXLEG)
CCST(MAXLEG) = A (I , JO , M AXL EG)

YBTAB(ITER, 1)
YBTAB(ITER, 2)

WYBAR
1

YTAB(ITER,1)

IF(1TER.EQ.1
IF(ITER.GT.l
YTABUTER,'*)
YTAB(ITER, 5)
YTAB(ITER,6)
YTAB(ITER,7)

= ITER
) YTAB(ITER,2)
) YTAB(ITER,2)
= 10
= JO
= MAXLEG
= 1

=
= INDEX

IF LEG JUST DETERMINED ALLOWS A ROUTE TO BE SPECIFIED,
GO TO STEP 7

IF(LEG.EQ.N-3) YTAB(ITER,3) = WX
IFILEG.EQ.N-3) GO TO 700

C STEP FIVE ITERATION PROCEDURE
C DELETION OF ARCS NOT POSSIBLE

DO 513 1 = 1,

N

DO 513 J=1,N
IF(I .EQ.J) GO TO 513
IF((I.EQ.IO.OR.I .EQ.JO.OR. J.EQ.IO.OR. J.EQ. JO) .AND,

1ARCCCM(I, J) .GT.99) ARCCOM(I,J) =-99
513 CONTINUE

GOLF = 1

515 DEL = GOLF
DO 516 F=1,L
IF (FM(F). EC. DEL)
IF (FM(F).EC.DEL)
IF (T0(F). EC DEL)

516 IF (TO(F).EQ.DEL)

GOLF = GOLF
GO TO 515
GOLF = GOLF
GO TO 515

C STEP SIX - - ITERATION PROCEDURE
C FIND MINIMUM ELEMENT IN EACH MATRIX K WHERE LEG K
C IS UNCOMMITTED

DO 630 K=1,L
KEY =
IK(K) =
JK(K) =
IF (K.EQ.LECCOM(K)) GO TO 630
MINEL(K) = -1

602 MIN(K) = 32000
DO 629 1=1,

N

DO 629 J=1,N
IF(I.EO.J) GO TO 621
IF (K.EQ.l .£ND.LEGC0M(2) .EQ.O) GO TO 605
IF (K.EQ.l) GO TO 606
IF <K.EQ.L./*ND.LEGC0M(L-1) .EQ.O) GO TO 605
IF (K.EQ.L) GO TO 610
IF(K.EQ. LEGC0M(K+1)-l. AND. K. NE . LEGCOM (K-l) +1)GOTO 6 06
I F(K. EQ. LEGCOM (K-l) + LAND. K.NE . LEGCOM (K+ 1

) -1) GOTO 610
IF(K.EQ.LEGCCM(K+1) -1 . AND. K . EQ . LEGCOM (K- 1)+l)GOTO 6 09

49

605 IF < APCCCMC I, JJ.LT.IOO) GO TO 621
IF (KEY.EO.C) GO TO 620
IF (KEY.EQ.l) GO TO 622

606 IF (J.NE.FM(K+1)) GO TO 621
IF (ARCCCM(It DEL) .LT.100) GO TO 621
IF (KEY.EQ.O) GO TO 620
IF (KEY.EQ.l) GO TO 622

609 IF(I .EQ.T0(K-1). AN D. J . EQ .FM(K+ 1) . AND . KEY . EO.) G0T0620
IF(I .EQ.TfMK-l). AND.J.EQ.FM(K+1) . AND . KEY . EQ. 1)G0T0622
GO TO 621

610 IF (I.NE.TO(K-l)) GC TO 621
IF (ARCCONMDEL, J). LT.100) GO TO 621
IF (KEY.EQ.l) GO TO 62 2

6 20 MINFL(K) = P I N0(MI N (K) t M (I » J »K)

>

IF (MINEK K).GE.MIN(K)) GO TO 621
IK(K) = I

JK(K) = J
M I N (K) = M I N E L (K)

621 IF (KEY.EQ.l) GO TO 629
IF (I.NE.N) GO TO 629
IF (J.NE.N) GO x 629

REDUCE MATRICES

KEY = 1

GO TO 602
622 IF(I .EQ.J) CO TO 629

M (I , J t K J - N (I , J , K)
-

6 29 CONTINUE
630 CONTINUE

MINEL(K)

LABEL Y BY WY

WY = WX
DO 635 K = 1,L
JF(K.EQ.LECCOM(K)) GO TO 635
WY = WY + MINEL(K)

635 CONTINUE
YTAB(ITER,3) = WY

C STEP = 7
C

INCREMENT NUMBER OF LEGS COMMITTED AND
DETERMINE WHAT STEP IS NEXT

700 LEG = LEG + 1

IFUEG.NE.N/2) GO TO 720
CALL CHECKCS720)
CALL ROUTE (CB00,£340)

720 IE(LEG.GE.LEGREQ.AND.WY.LE.ZO) CALL ROUTE (&800 , & 840)

IF(LEG.GE.LEGREO.AND.WY.GT.ZO) GO TO 799
IF(LEG.LT.LEGREQ.AND.WY.LE.ZO) GO TO 850

STEP 8 SELECT NODE X FROM WHICH TO BRANCH

C MODIFICATION TC ORIGINAL ALGORITHM FOR DETERMINING BRANCH
C POINT - - BRANCH TO THE RIGHT WHENEVER A TOUR IS NOT
C COMPLETED OR BRANCH FROM THE LOWEST NUMBERED YEAR NODE
C WHICH IS A TERMINAL NODE, IN THE ORDER GIVEN.

799 YTAB(ITER,7) =

50

C BRANCH TO RIGHT IS EXHAUSTED, THEREFOR SEARCH YBAR NODES
C FOR A FEASIBLE LABEL (I.E. LABEL. LE.ZO)

800 DO 830 I=LABEL T ITER
IF(YBTAB(I ,4) .EO.O) GO TO 830
IF(YBTA3(I »3) .GT.ZO) YBTABU.4) =
IF(YBTAB(I ,3) .GT.ZO) GO TO 830
LABEL = I

INDEX = YBTAB(1,1)
CALL SETUP (£500)

8 30 CONTINUE
C OPTIMAL ROUTE HAS BEEN FOUND : TERMINAT E

CALL TIMEIT (-1,TIMEX)
RETURN

C . ERROR MESSAGES HAVE BEEN PRODUCED: TERMINATE CASE

840 WRITE<6«15)
RETURN

C BRANCH TO RIGHT IS NOT EXHAUSTED: THEREFOR BRANCH FROM
C Y NODE AND MAKE NODE -Y NON-TERMINAL

850 YTAB(ITER T 7) =
INDEX = YTAP(ITER, 1

)

WX = WY
GO TO 500
END

51

SUBROUTINE SETUP (*)

IMPLICIT INTEGER*2(A-Z)
REAL*4 TIMEX
INTEGER*^ M(20,20,19),THETA,MAXEL,MINEL(20) ,MIN(20),
ttti Efi7t-7r.uv

2
CC
1C0ST,LEGCCM,FM,T0,X,ARCCCM,BEST,YTAB,YBTAB,IK, JK,TOUR,
2AA,N,Lt ALIKE, LEGREQ, STEP, ITER, DEL tWX.MAXLEG, LEG, WYBAR,
^in..m.Kn.iT<;. Trna. TNnFY3 10, JO, KG, I T S, TCO ST, INDEX

C STEP NINE

LEG =
G =
NCCM =

IF(INDEX.LT.O) Y BT AB (- I NDEX , 2) =
IF(INDEX. GT.O) Y TAB (I NDEX , 7) =
DO 901 1=1,

N

LEGCOM(I) -
FM(I) =
T0(I) =

901 COSTU) =
DO 902 1=1,

N

DO 902 J=1,N
902 ARCCGM(I , J) = 100

C STEP 9 SUBSTEP 1

C COMPUTE G=SUM A(I,J,K) FOR COMMITTED ARCS AND LEGS

BB = INDEX
IF(INDEX. LT.O) FROM = YT AB (- I NDEX, 2

)

IF(INDEX. GT.O) FROM = YT AB (I NDEX , 2

)

DO 909 1=1 , ITER
IF (PB.GT.O) GO TO 903
IF (FROM.EG.-l.OR.FROM.EQ.O) GO TO 910
IF (FROM. LT.O) GO TO 908
GO TO 904

C LSED TO START EACK TREE FROM BRANCH NODE AND
C CONSIDER THAT NODE

903 FROM = BB

904 G = G + A(YTAB(FR0M,4) , YTAB (FROM , 5) , YTAB (FROM , 6)

)

LEGCCM(YTAB(FR0K,6)) = YTAB(FR0M,6)
KO = YTAB(FROM, 6 I

FM(YTAB(FROM, 6)) = YTAB(FR0M,4)
10 = YTAB(FROM, 4)
TC(YTAB(FR0M,6)) = YTAB(FR0M,5)
JO = YTAB(FR0M,5)
COST(YTAB(FROM, 6) J = A(IO,JO,KO)
DO 905 AI=i,N
DO 905 BJ=1,N
IF((AI. EQ.IC.OR.AI .EQ. JO.OR.BJ.EQ. IO.OR.BJ.EQ.JO) .AND,

1ARCC0M(AI,BJ) .GT.99) ARCCOM (A I , B J) = -99
905 CONTINUE

NCGM = NCOM + 1

FROM = YTAB(FR0M,2)

BB =-1000
GO TO 909

908 FROM = YTAB (-FROM, 2)
909 CONTINUE

52

C STEP 9 SUBSTEP 2 SETTING UP M(K)

910 LEG = NCCM
DO 911 K=1,L
DO 911 1=1,

N

DO 911 J = 1,N
911 M (I , J , K) = A (I , J , K)

C STEP 9 SURSTEF 3
C DELETE ARCS ANC LEGS COMMITTED

GOLF = 1

912 DEL = GOLF
DO 913 F = 1,L
IF (FM(F) .EC. DEL)
IF (FM(F). EG. DEL)
IF (TO(F).EC.DEL)
IF (T0(F). EC DEL)

GOLF = GOLF
GO TO <U2
GOLF = GOLF
GG TO 912

913 CONTINUE

C STEP 9 SUBSTEP 4 BLOCK PATHS NOT ALLOWED

IF(INDEX.EQ.-1)M(YTAB(1,4),YTAB(1,5),YTAR(1,6)) =3 2000
IF(INDEX. EG. -1) GO TO 919
IF (INDEX. LT.O) M(YTAB (

-

INDEX , 4) , YTAB (- I NDEX , 5) , YTAB

(

1-INDEX,6)) = 32000
IF(INDEX.LT.O) FROM = YT AB (- I NDEX, 2

)

IF(INDEX. GT.O) FROM = YT AB (I NDEX , 2

)

DO 918 1 = 1 T ITER
IF (FROM. EG. 0) GO TO 919
IF (FROM.EQ.-l) GO TO 916
IF (FROM. LT.O) GO TO 917
FROM = YTAB(FR0M,2)

GO TO 918
917 M(YTA3(-FR0M,4),YTAB(-FR0M,5) , YT AB (-FROM , 6)) = 32000

FROM = YTAB (-FROM, 2

)

918 CONTINUE
916 M(YTAB(1,4) ,YTAB(1, 5) ,YTAB(1,6)) - 32000

STEP 9 SUBSTEP 5 FIND MINIMUM ELEMENT IN EACH MATRIX

919 CALL MINELM

WX = G
DO 940 K=1,L
IF (K.EQ.LEGCOM(K)) GO TO 940
WX =WX + MINEL(K)

940 CONTINUE
RETURN 1

END

53

SUBROUTINE ROUTE (*,*)

IMPLICIT INTEGER*.? (A-Z)
RFAL*4 TIMEX
INTEGER** M(20,20, 1^) t THETA , MAXEL , MI NEL (20) ,MIN(20)

,

1TITLE(17),ZC,WY
DIMENSION A (20,20, 19) , COST (20) , LEG COM (20) ,TC0ST(30)
1FM(20) ,T0(2C) ,X<20) , ARCCOM (20 , 20) , 3EST(20,4)
2YTAB<2 500,7) ,YBTAB(2500,2) ,IK(20),JK(20)
COMMON T I ME X , M , T HE T A , M AX EL , M I NEL , M I N , T I T L E , Z , WY , A

,

1C0ST,LEGCQM,FM,T0,X,ARCC0M,BEST,YTAB,Y3TAB, IK, JK, TOUR,
2AA,N,L,ALIKE,LEGREQ,STEP, I TER ,OEL , WX , MAX LEG , LEG , WYB AR

,

3I0,J0,K0,ITS,TC0ST, INDEX

C STEP 10

. 20 FORMAT («0» ,10X,» THE TOUR NUMBER IS EQUAL TO 31, AND 1
,

1« THE VARIABLE TCOST IS ONLY DIMENSIONED FOR 30 TOURS'
2, ' : CASE terminated.

)

21 FORMAT («0» ,5X,«STEP N0.«,I3,» ITER NO.',^,': UPPER',
1» BOUND ON VALUE OF OPTIMAL TOUR IS', 15)

23 FORMAT (• • , 5X, • FE ASI BLE TOUR NO. ',13,' IS AS FOLLOWS:

ZO = WY
WRITE(6,21) STEP, ITER, ZO

C NODE IS MADE NCN-TERMINAL SINCE A ROUTE HAS BEEN
C COMPLETED AND NO BRANCHING CAN TAKE PLACE.

YTABUTER,7) =
TOUR = TOUR + 1

C ERROR MESSAGE: THE NUMBER OF TOURS IS. GT. TCOST DIMENSION

IF(TOUR.GT.30) WRITE(6,20)
IF(TGUR.GT.30) RETURN 2

DO 985 1=1,

N

985 X(I) =

C DETERMINE BY PROCESS OF ELIMINATION AND ORDERING
C WHAT LEG OF ROUTE IS MISSING AND THUS FORM COMPLETED
C ROUTE.

1000 DO 1020 K=1,L
IF (K.EQ.LEGCOM(K)) GO TO 1020
LEGCOM(K) = K
IF (K.NE.l) GO TO 1010
T0(1) = FM(2)
DO 1002 1=1,

L

IF (FM(I).NE.O) X(FM(I)) = FM(I

)

1002 CONTINUE
X(TO(L)) = TO(L)
DO 1003 1=1,

N

IF (X(I) .NE.O) GO TO 1003
FM(l) = I

COST(l) = A(FM(1),T0(1) , 1)
GO TO 1021

1003 CONTINUE
GO TO 1020

1010 IF (K.EQ.L) GO TO 1011
FM(K) = TO(K-l)
TO(K) = FM(K+1)
COST(K) = A(FM(K),TO(K) ,K)
GO TO 1021

1011 FM(L) = TO(L-l)
DO 1012 1=1,

L

IF (TO(I).NE.O) X(TO(I)) = T0(I

)

1012 CONTINUE

54

X(FM(1)) = FM(1)
DO 1013 1=1,

N

IF (X(I) .NE.O) GO TO 1013
TO(L) = I

COST(L) = A(FM(L),TO(L) t L)
GO TO 1021

1013 CONTINUE
1020 CONTINUE

1021 TCOST(TOUR) =
DO 1030 K=1,L

1030 TCOST(TOUR) = TCOST(TOUR) + COST(K)

COMPLETE TOUR IS NOW KNGWN. ENTER IT IN MATRIX BEST

IF(TOUR.EO. 1) GO to 1040
IFtTCOST(TOUR) . GE

.

BEST (N , 2)) GO TO 1060
1040 DO 1050 K=1,L

BEST (K,ll = K
BEST (K,2) = FM(K)
BEST (K,3) = TO(K)

1050 BEST (K T 4) = COST(K)
BEST(N,1) = TOUR
BEST(N,2) = TCOST(TOUR)

1060 RETURN 1

END

55

SUBROUTINE SOLN

IMPLICIT INTEGERS (A-Z)
REAL*4 TIMEX
INTEGERS M(20,20, 19) , THETA, MAXEL T MI NELC 20) ,MIN(20)

,

1TITLE(17), ZC,WY
DIMENSION A (20, 2 0, 19) , COST (20) ,LEGC0M(20) ,TC0ST(30)

1FM(20) ,T0(2C) , X(20) , ARCCOM (20 , 20) , BE ST (2 0,4)
2YTAB<2 500, 7) , YBT AB (2500 , 2) ,IK(20),JK(20)
COMMON T I ME X , M , T HE T A . M AX EL , M I NEL , M I N , T I T L E , Z , WY , A

,

1 COST , L L
: GCCM , I- M , TO, X , AR CCOM , B E ST , YT A B , Y BT AB , I K , JK , TOUR ,

2AA, N,L, ALIKE, LEG RE Q, STEP, ITER, DEL, WX, MAX LEG, LEG, WYBAR.
3 10, JO, KO, ITS, TOO ST, INDEX

4 FORM
5 FORM

15 FORM
1 14)

16 FORM
17 FORM
18 FORM

1' OP
19 FORM
24 FORM
27 FORM
28 FORM
31 FORM

l'NOD
2'WYB

48 FORM
50 FORM
55 FORM

1' SE
56 FORM

1' SE

AT(1H1

)

AT («

AT(•

AT(«0
AT(•

AT («0
TIMAL
AT (

•

AT('

AT('0
AT (•

AT(•

E
AR
AT("0
AT ('

AT (•

CONDS
AT(»0
CONDS

///,25X,

«

ITERATION INFORMATION')
10X 'NUMBER OF ALTERNATE OPTIMAL TOURS = ',

10X,'bEST TOUR SO FAR IS AS FOLLOWS:')
26X, 'ROUTE COST = • , 15)
10X, 'FEASIBLE TOUR NO.', 13,' IS DECLARED',

, 10X, ' *********************************** «

)

7X,3I8,4I5,4X,2I8)
10X, 'LEG' ,5X, 'FROM' ,5X, ' TO' ,5X, 'COST'

)

11X, 12, 7X, 12, 6X, 12, 5X,I4)
27X,

'

YTABLE' , 27X, ' Y6 ART ABLE' ,//,12X,
CM WY 10 JO KO TERM' ,7X,
E R M '

)

10X, 'NUMBER OF ITERATIONS REQUIRED =',I7)
13X, 'OPTIMAL ROUTE COST = «,I5)
10X,'TIME TO COMPUTE SOLUT I 0N= ' ,-6PF 15. 6,

10X,«TIME USED UP SO FAR = «,-6PF15.6,

3) =
1520

16)

IF(ALIKE.EQ.l) BEST(L
IF(ITER. GT. ITS) GO TO
WRITE(6, 19)
WRITE(6,18) BEST(N,1)

1520 IF(ITER. GT. ITS) WRITEC6-
WRITE(6,27)
DO 1550 K=1,L

1550 WRITE(6,28) (BEST(K , J) , J=l , 4

)

IF (ITER. LE. ITS) WRITE (6, 50) BE ST (N, 2)
IF(ITER. GT. ITS) WRITE(6,17) BEST(N,2)
WRITE(6, 19)
IF(ITER. GT. ITS) GO TO 1575
ALT = -1
DO 1530 1=1, TOUR
IF(TCOST(I) .GT.BEST(N,2)) GO TO 1530
ALT = ALT + 1

1530 CONTINUE
WRITE(6,15) ALT
WRITE<6,48) ITER

1575

C WRITE OUT ITERATION INFORMATION

IF(ITER
IFUTER

LE
GT

ITS)
ITS)

WRITE (6, 55) TIMEX
WRITE(6,56) TIMEX

WRITE (6, 4)
WRITE(6,5)
IF(ITER.GT.ITS)
WRITE(6, 31

)

ITER = ITER

DO 1600 1 = 1, ITER
1600 WRITE(t>,24) (YTAB(I , J) , J = l ,7) , (YBT AB (I , J) , J=l , 2)

RETURN
END

56

SUBROUTINE MINELM

IMPLICIT INTEGER*2(A-Z)
REAL*4 TIMEX
INTEGER*^ M i 20, 20, 19) t THETA,MAXEL t MI NELC 20) , MIN< 20)

,

1TITLE(17),ZG,WY
DIMENSION A(20,20, 19) , COST (2 0) ,LEGC0M(20) ,TC0ST(30)
1FM(2 0) , T0(20) ,X<20) , ARCCOM (20 , 20) , BE ST (20,4)
2YTAB(?500, 7) , YBTAB (2500 , 2) , I K(20) , JK (20

)

COMMON T I HEX , M ,THE T A, M AX EL , M I NEL , M I N , T I TL E , ZO, VJY, A ,

1C0ST, LE GCOM, F M, TO, X, ARCCCJM, BEST, YTAB, YBTAB, IK, JK, TOUR,
2AA,N,L,ALIKE,LEGREQ,STEP,ITER,DEL,WX,MAXLEG,LEG,WYBAR,
310, JO, KO, ITS, TCOST, INDEX

DO 630 K = 1,L
KEY =
MINEL(K) = -1
IK(K) =
JK(K) =
IF (K.EQ.LEGCOM(K)) GO TO 630

602 MIN(K) = 32C00
DO 62^ 1=1,

N

DO 629 J=1,N
IF(I.EO.J) GO TO 621
IF (K.EQ.l. £ND.LEGC0M(2) .EQ.O) GO TO 605
IF (K.EQ.l) GO TO 606
IF (K.EQ.L. AND.LEGCOM(L-l) .EQ.O) GO TO 605
IF (K.EQ.L) GO TO 610
IF(K.EQ.LEGC0M(K+1)-1.AND.K.NE.LEGC0M(K-1)+1) GOTO 6 06
IF(K.FQ.LEGCCM(K-1)+1. AND. K. NE . LEGCOM(K +1)-l)GOTO 610
IF(K.EQ.LEGC0M(K+1)-1. AND.K. EQ . LEGCOM (K- 1) +1)GOTO 6 09

605 IF (ARCCOM{ I, J J.LT.100) GO TO 621
IF (KEY. EQ.O) GO TO 620
IF (KEY.EQ.l) GO TO 622

606 IF (J.NE.FM(K+1)) GO TO 621
IF (ARCCOMC I, DEL). LT. 100) GO TO 621
IF (KEY. EQ.O) GO TO 620
IF (KEY.EQ.l) GO TO 622

609 IF(I .EQ.T0(K-1) . AND. J. EQ .FM(K+l) . AND .KE Y . EQ.) GOTO620
IF(I .EG.TO(K-l). AND. J. EQ . FM(K+ 1) . AND . KE Y . EQ. DG0T0622
GO TO 621

610 IF (I.NE.TO(K-l)) GO TO 621
IF (ARCCOM(DEL, J J.LT.100) GO TO 621
IF (KEY.EQ.l) GO TO 622

620 MINEL(K) = MI NO (MI N (K) , M (I , J , K)

)

IF (,MINEL(K) .GE.MIN(K)) GO TO 621
IK(K) = I

JK(K) = J
MIN(K) = MINEL(K)

621 IF (KEY.EQ.l) GO TO 629
IF (I.NE.N) GO TO 629
IF (J.NE.N) GO TO 629

REDUCE MATRICES

KEY = 1

GO TO 602
622 IF(I .EQ.J) GO TO 629

M(I, J,K) = M(I,J,K) - MINEL(K)
629 CONTINUE
630 CONTINUE

RETURN
END

57

SUBROUTINE CHECK

C THIS SUBROUTINE DETERMINES IF A COMPLETE ROUTE CAN BE
C ENUMERATED AFTER ONLY EVERY OTHER LEG HAS BEEN
C DETERMINED, STARTING KITH LEG ONE

IMPLICIT INTEGERS (A-Z)
REAL*4 TIMEX
INTEGER** M(20,20, 19) , THET A , MAX EL , MI NEL (20) ,MIN(20)

,

1TITLE(17),Z0,WY
DIMENSION A (20,20, 19) , COST (20) ,LEGC0M(20) ,TC0ST(30)
1FM(20) ,T0(2C) ,X(20) , ARCCCM (20 , 20) , BEST (20,4)
2YTAB (25'"iri__J00,7) ,YBTAB(250 0,2) ,IK(20),JK(20)
COMMON TIMEX, M, THET A, MAX EL, MI NEL, MI N, TITLE, ZO,WY,

A

:GCGM,FM,TO, X,ARCC nM QCCT VT AQ VQT AD T "

L , ALIKE, LEGREQ, STEP
3 10, JO, KO, ITS, TCO ST, INDEX

UUHHUN I 1 I1C A , H, I MC I tt, H A A. Cl_ » H 1 !\CL , 11 1 IM , i i iLU)tujni , m ,

COST,LEGCOM,FM,TO, X , ARCCOM , 3 EST, YT AB, YBT AB , IK, JK, TOUR,
AA,N,L, ALIKE, LEGREQ, STEP,

I

TER , DEL , WX, MAXLEG, LEG, WYBAR

,

in in !• n . r t c Trncr tmhcy

DO 200 K=1,L,2
IF (LEGCOM(K) .NE.O) GO TO 200
RETURN 1

200 CONTINUE
LAST = N-4
DO 300 K=2,LAST,2
LEGCOM(K) = K
FM(K) = TO(K-l)
TO(K) = FM(K+1)

300 COST(K) = A(FM(K) ,TO(K) ,K)
RETURN
END

58

SUBROUTINE TIMEIT

NN = STARTS CLCCK: NN=-1 STOPS CLOCK

IT = NN + 2
GO TO (20, 1C) .IT

10 CALL TIMGN(MM)
TIMEM = MM
RETURN

20 CALL TIMOFF(MM)
TIME = MM
TIME=(TIMEM-TIME)
RETURN
END

* 26.0

ASSEMBLY LANGUAGE LISTING TO CONDUCT TIMING ROUTINE

TIMEALL CSECT
ENTRY

TIMCN SAVE
USING
LR
ST
LA
L
L
ST
ST
STIMER
L

EXIT RETURN
TIMOFF SAVE

USING
LR
ST
LA
L
TTIMER
ST
L
RETURN
CNOP

TOTIME DC
CLOCKR DS
SAVE1 DS
TEMPI DS

END

TIMON,TI MOFF
(14,12)

T IMON, 12
12,15
12, TEMPI
12,SAVE1
2,0(1,0)
3, TOTIME
3, CLOCKR
3,0(2,0)
TASK,TUINTVL=CLOCKR
13, TEMPI
(14,12),T,RC=0
(14, 12)
TIMOFF, 12
12,15
12, TEMPI
13,SAVE1
2,0(1,0)
CANCEL
0,0(2,0)
13, TEMPI
(14,12) ,T,RC =
0,4
X'7FFFFFFF«
F
ieF

ENTRY VIA -CALL TIMON(N)

ENTER VIA - CALL TIMOFF(N)

59

APPENDIX F

MODIFICATIONS TO COMPUTER PROGRAM FOR
DYNAMIC STORAGE ALLOCATION

The following modifications to the basic program presented in

Appendix E will provide dynamic storage allocation based on the number

of nodes (N) and the maximum number of iterations (ITS) desired for each

case in the computer data deck:

1. The Assembly Language listing on the following pages

should be inserted at the very front of the computer source deck.

2. A new main program which is found after the Assembly

Language listing replaces the original main program. The original main

program becomes SUBROUTINE START and is listed here after the new

main program

.

3. All other subroutines remain the same as before with the

exception of the variable type specification statements, DIMENSION

statements, and COMMON statements. These 6 statements as found

in the new SUBROUTINE START must be used in all the old FORTRAN

subroutines except SUBROUTINE TIMEIT which does not change.

4. The CALLS for the subroutines and the SUBROUTINE definition

cards must be the same as before with the added arguments as found in

the new SUBROUTINE START definition card.

5. The JCL is included as a guide and is unique to the

IBM 360 Model 67 Computer System installation at the Naval Postgraduate

School. The only card which is required to be changed on various

60

runs in the EXEC card. It must contain a region for the GO step which

is large enough to handle the case with the maximum number of iterations

and specify time for the GO step large enough to accommodate the expected

running time for all cases in the data deck.

The makeup of the revised computer deck is on the following page.

61

<I

oc-

z: ii

i-o
ZLU

2h

in —
•~ o
•• o
_l CO
>- IIU~ LU
—'00 rvi

II 00 •-
LUro oo
Uro ^
< II _J
Q.LU »-CQ

OONJZ •>HHQ
— 00-JC0
— idt^ II

CO_J>_J
>-iCOO0l_>
_J *-CdLU
00.-1 ii o:
>-C\JLU_i

LUC_>
Q.LU
O

UJZ
X OOr-421 •>

HO »-||<C0
o< HJZU.
O H-OCOII

Q-J DUJQS
2:- oc^-— wa: »>u.

< ii xmm>-_j.-»c.>
acco •» r-oo .-00LU

luoc: ii mm 2:00a:

<G_00 »• »-h-U_a. ||

Z! •»t-._J_JZ) II ••CD

COCO •>(_)O >~ IL LUQ
Omco«~-~oooz: -
—3 tl — II II -UJw-s
Z-JLULU II c£ II —

•

k-ihh<<<lju || 00 •-

<OS:o-OLCOcc>-<r<">
KUJ »oooo »-oO—
2:c£t-4 * «-<Q •• •>

a »-oo<i;<o •<_!
us:>-qqw<q>-
00000000> II coo0< || >>-00h->-»-'

—OLUOOOO^IDOO l|

Z>UJ5I || || || C II LU
C<-i<h-l-l-WI-U
X II 2hhh>-h<
OO 2L. 00 2:2 Z. 00 ZZ Q. *OQ3DD Z)00
OCl Q
or o
< a
O a ZUQQQD n
O0LUQQQQH-a
»-»x 2:
X LU CD --< CM l

<"} >-*

I- »-il-l-i-a:o—.-<_ir>r>:Da.e>
2:000000000000
oo>-> >->>->-
< 00 00 OO CO O", 00

CD
<5

a:

O
K
00 in

1—

<

O 11

t-H O
SI O

H-l 00

o

^ LU
-0— X
ITiOO h-
r-100

H <t Q
OO- z
O <
•QZO S
OS: <
<-H W- a:
O II O
LUO- O
coo en—
••—

<

a
UD# 1-
_J ZCC
<CC! (-.<«!

UQQ <K-
X S 00

i-z:
ar^z: 3ELU
U__j<-i LUZ

vooo <£-*-*

o>> \-
IJJOOOO \-Tl
X • • a:o
lilt-l- LUCX

cca: 00 CO
cvjoo Z3
O0LLLL HHCO

00
O - z
Q LU

O0

Z O0M <
O0
> K
00 a:
• LU

2: 00
00 z
<. •—

<

62

C ASSEMBLY LANGUAGE PROGRAM USED TO OBTAIN DYNAMIC.
C ALLOCATION CF STORAGE SPACE BASED ON THE INPUT PARAMETERS
C N AND ITS

.LOOP
GSYM
RGSYM
GN

GETARY

GETCORE

CONTI

CONTI Nl

MACRO
REGS
LCLA
LCLC
A NOP
SETC
EQU
SETA
AIF
MEND
CSECT
REGS
STM
LR
USING
LA
ST
ST
LR
LR
USING
L
L
LTR
BC
LA
CR
BH
LR
SLL
LA
GETMA
LR
USING
ST
L
L
CL
BH
ST
SRL
LR
GETMA
LR
USING
LA
LA
LA
L
LTR
BP
CH
BE
B
CH
BE
L
CL
BH
LR
GETMA
ST
LA
ST
ST
LA
LA

GN
GSYM

•£N»
GSYM
GN + 1

(EN LT 16) .LOOP

R14,R12, 12(R1
R 1 2 , R 1 5
GETARY, R12
RlltSAVEAREA
R13,4(R11)

R11 T 8(R13)
R 1 2 , R 1

1

R11.R1 SAVE
ARGS T R11
R2,ANUM
R3,0(R2)
R3,R3
13,NUMERR1
R4,99
R3,R4
NU^ERR2
R4,R3
R4,3
R0,8(R4)

IN P,LV=(0)
R9,R1
SCRATCH, R9
R3,NUM START
R5,ANEXT
R5,0(R5)
R5,=X'000C090
BAONEXT
R5,NEXT
R4,l ISSU
RO,R4

IN R,LV=(0)
R1CR1
CALLLIST,
R7,AL1
R6,L1
R4, ARRY1
R5,0(R7)
R5,R5
CONTIN
R3,=H« 1'
CONTIN1
NUf^ERR3
R3,=H» 1«
NU^ERR4
R5,0(R5)
R5,=X«O0O8000
BACLENG
R0,R5

IN R,LV=(0)
R1,0(R4)
R4,4(R4)
R5,0(R6)
R1,4(R6)
R6,8(R6)
R7,4(R7)

3)

RIO

DOE
YES
NO

DOES

GET

PUT

HUNK

SAVE REGS
GET BASE OUT OF R15

LINK SAVE AREAS

ARGUMENT LIST LOC FROM GETMAIN

GET NUM ARGUMENT
CHECK ITS VALIDITY

NUM NEGATIVE OR ZERO

NUM GT 99
LENGTH OF SCRATCH = 8*IMUM + 8

UNPACKING AND CHECKING CALL LIST

0' ADDRESS NEGATIVE OR GT 768K ?

E GETMAIN FOR NEXT ARGUMENT LIST

GET ADDRESS OF HUNK LENGTH
LAST ONE ?
NOPE

S NUM AGREE ON LAST ONE?

NUM SAY IT IS LAST AND IT ISNT?

LNGTH
0' LENGTH GT 512K OR NEGATIVE?

PUT ADDRESS IN CALL LIST
INCREMENT FOR NEXT LOOP

LTH IN SCRATCH FOR LATER FREEMAN
PUT ADDRESS IN SCRATCH
INCREMENT

LENGTH AND SCRTCH AREA REGS

63

FREECOR

RETURN

NUMERR1

NUMERR2

NUNERR3

NUMERR4

EACNEXT

EADLENG

INSERT

SAVEAREA

MSG1
MSG2
MSG3
MSG4
MSG5
MSG6
ARCS
AERRMSG
ANEXT
ANUM
AL1
ALNLM
SCRATCH
NEXT
NUM
LI
Al
LLAST
ALAST
CALLLIST
ARRY1
ARRYNUM

BCT
SH
MVI
LR
L
BALR
L
SLL
LA
FREEMA
LA
L
L
L
FREEMA
LA
BCT
L
SLL
LA
LA
FREEMA
L
MVI
MVC
L
LM
SR
BR
LA
B
LA
B
LA
B
LA
B
LA
B
LA
L
LA
SR
CVD
UNPK
01
MVC
L
MVC
B
DS
DC
DS
DC
DC
DC
DC
DC
DC
DSECT
DC
DC
DC
DC
DC
DSECT
DC
DC
DC
DC
DC
DC
DSECT
DC
DC
END

R3,GETC0RE
R4,=H'4'
0(P4) ,X»80'
RItRIO
R15,NEXT
R14,R15
R0,NUM
R0,2
R1,ARRY1
IN R,LV=(0)
R5,L1
R6,NUM
R0,0(R5)
Rl ,4<R5)
IN R,LV=(0),A
R5,8(RS) INCR
Rft, FREECOR
RO,NUM
R0,3
RC,8(R0)
Rl , SCRATCH
IN R,LV=(0),A
R7, AERRMSG
0(P7) ,X'40»BL
1(31 ,R7),0(R7
R13,4(R13) AL
R14,R12,12(R1
R15,R15
R14
R6,MSG1
INSERT
R6 T MSG2
INSERT
R6,MSG3
INSERT
R6,MSG4
INSERT
R6 T MSG5
INSERT
R6,MSG6
R4,NUM
R4, 1 (R4)
R4,R3 NUMB
R4,MSG1 PUT I

MSGl+8(3) »MSG
MSGl+lOtX' F0«
MSC6+7(2) , MSG
R7, AERRMSG
0(32, R7) ,0(R6
RETURN
OF
lBF'O 1

OD

GET NEXT ARRAY
PUT HEX 80 ON LAST ADDRESS

PUT ADDRESS OR CALL LIST IN Rl

CALL NEXT ROUTINE
GET RID CF CALL LIST

= (1)
LOOP TO FREE ARRAY CORE

GET LENGTH OF FIRST ARRAY HUNK
GET ITS ADDRESS

= (1)
EMENT POINT TO HUNK LOC AND LGTH

FREE SCRATCH AREA

NUM*8 +8 IN RO

= (1)

ANK CUT ERROR MSG(NORMAL RETURN)
I

L CLEANED UP, RETURN TO CALLING
3) PROGRAM

INSERT APPROPRIATE ERROR MSG
AND RETURN DIRECTLY TO CALLI
PROGRAM

C«
C"
c«
C«
c«
C«

NUM
NUM
NUM
NUM

CF
OF
OF
OF

ADDR NEXT
LENGTH

ARR
ARR
ARP
ARR

ER OF BAD ARGUMENT IN R4
T IN CHARACTER FORM AND CLOBBER
1+6(2) MSG1

CHANGE BOTTOM ZONE TO FOX
1+9 PUT IT IN TEXT OF MSG6

)

AYS - OR
AYS > 99
AYS > NUM GIVEN LNGTS
AYS < NUM GIVEN LNGTS
ROUTINE - OR > 768K
IS - OR > 512K

A(C)
A(0)
A(C)
A(C)
X'80«

,

A(0)
A(0)
F« C»
A(C)
F»C
A(C)

A(C)
A(C)

ADD OF 32 BYTES FOR ERROR TEXT
ADD OF NEXT ROUTINE TO BE CALLED
ADD OF NUM3ER OF HUNKS OF CORE WANTED
ADD CF 1ST HUNK BYTE LENGTH

64

NEW MAIN PROGRAM FOR DYNAMIC ALLOCATION OF STORAGE SPACE

EXTERNAL START
INTEGER*2 AL I KE , A A , NCASE
INTEGERS EPROR(fi) ,6LNK/4H /
DIMENSION TITLE(17)
COMMON/Z/ TITLE, N, ITS, AA, ALIKE

1 FORMAT(IA)
2 FORMAT(14, 12,16, 17A4)

25 F0RMAT(8A4)

READ(5,1) NCASE

DO 10 AA=1, NCASE

READ INPUT PARAMETERS

RE AD (5, 2) N,AL IKE, ITS, { TITLE (I) ,1=1,17)

CALCULATE AMOUNT OF STORAGE REQUIRED FOR VARIOUS ARRAYS

NNNM12 = N*N*(N-1)*2
NNNM14=NN'NM12*2
N15 = 15
N2 = N*2
N4 = N*4
NN2 = N*N2
NA2 = N4*2
ITS72 = ITS*14
ITS22 = ITS*4

CALL ASSEMBLY LANGUAGE PROGRAM FOR OBTAINING STORAGE

CALL GETARY(ERROR, START , Ml 5 , NNNM 14 , N4, N4, NNNM12 , N2 ,N2,
1N2,N2,N2,NN2,N42,ITS72,ITS22,N2,N2)

IF(ERRORd) .NE.BLNK) GO TO 20
10 CONTINUE

GO TO 30
20 WRITE(6,25) ERROR
30 STOP

END

65

C THIS SUBROUTINE, START T IS THE MODIFIED OLD MAIN PROGRAM

C THE FIRST 11 CARDS OF THIS PROGRAM MUST BE USED IN ALL
C OTHER FORTRAN SUBROUTINES EXCEPT SUBROUTINE TIMEIT, AND
C THE CALLS AND CTHER SUBROUTINE CARDS MUST HAVE THE SAME
C ARGUMENTS AS THOSE IN THE CALLS IN THIS SUBROUTINE, WITH
C THE EXCEPTION CF THOSE WITH SPECIAL STATEMENT NUMBERS AS
C ARGUMENTS IN THE OLD PROGRAM, AND THESE MUST APPEAR AT
C THE HEAD OF THE ARGUMENT LIST.

SUBROUTINE START (M, MI NEL , MI N, A, COST , LEGCOM, FM,TO, X ,

1ARCCCM,BEST,YTAB,YBTAB,IK, JK)

IMPLICIT INTEGER*2(A-Z)
REAL** TIMEX
INTEGER** N,ITS
INTEGER** TFETA,MAXEL,TITLE(17) ,ZO,WY
INTEGER** M(N,N,N) , MINEL(N) , MIN(N)
DIMENSION A (N,N,N) ,COST(N) ,LEGCOM(N) , TCOST < 30), FM (N)

,

1TC(N),X(N)

,

ARCCGM(N,N) , BEST(N,*),IK(N),JK(N),
2YTAB(ITS, 7) ,YBTAB(ITS,*)
COMMON T IME X, THE TA

,

MAXEL , ZO , WY , TOU R , L , L EGR EQ , STEP, DEL,
1ITER,WX,MAXLEG,LEG,WYBAR, I , JO , KO, TCOST

,

INDEX
COMMON/ Z/ TITLE,N, ITS, A A, ALIKE

CALL INPUT (M,MINEL,MIN, A, COST , LEGCOM, FM, TO, X,
1ARCC0M,BEST,YTAB,YBTAB,IK, JK)

CALL ITERTE (S2000 , M,

M

INEL ,MIN , A ,COST , LEGCCM , FM, TO, X ,

1ARCC0M,BEST,YTAB,YBTAB,IK, JK)

CALL SOLN (M,MINEL,MIN,A,COST,LEGCOM,FM,TO,X,
1ARCC0M,BEST,YTAB,YBTAB,IK, JK)

2000 CONTINUE
RETURN
END

66

BIBLIOGRAPHY

1^ DeHaemcr, M. J., A Branch-and-Bound Algorithm for the

Solution of Sequence-Dependent Routing Problems , M.S. Thesis,

U.S. Naval Postgraduate School, Monterey, California,

April 1970.

2 . Sweeney, Dura W. , The Exploration of a New Algorithm for

Solving the Traveling-Salesman Problem , M.S. Thesis, Massa-
chusetts Institute of Technology, Cambridge, Massachusetts,
1963.

3. Lawler, E. L., and Wood, E.D., "Branch-and-Bound Methods:
A Survey," Operations Research , v. 14, p. 699-719, 1966.

4 . Arick
, John C . , A Computer Program for Integer Solutions to

Linear Programming Problems , M.S. Thesis, U.S. Naval Post-

graduate School, Monterey, California, October 1969.

5. Little, J.D.C., and others , "An Algorithm for the Traveling

Salesman Problem," Operations Research , v. 11, p. 972-989,
1963.

6. Dantzig, G.B., Fulkerson, D.R., and Johnson, S.M., "Solutions

of a Large-Scale Traveling-Salesman Problem," Operations

Research, v. 2 , p. 393-410, 1954.

7. Dantzig, G.B., Fulkerson, D.R., and Johnson, S.M., "On a

Linear-Programming, Combinatorial Approach to the Traveling-

Salesman Problem," Operations Research , v. 7, p. 58-63, 1959.

67

INITIAL DISTRIBUTION LIST

1- Defense Documentation Center

Cameron Station

Alexandria, Virginia 22314

2. Library, Code 0212

Naval Postgraduate School

Monterey, California 93940

3. Professor R. H. Shudde, Code 55Su
Department of Operations Analysis

Naval Postgraduate School

Monterey, California 93940

4.. Department of Operations Analysis, Code 55

Naval Postgraduate School

Monterey, California 93940

5. LT Richard A. Jackson, USN
U.S. Naval Destroyer School Class 34

Newport, Rhode Island 02 840

6. LCDR Michael J. DeHaemer, USN
USS Whale (SSN-638)

FPO New York 09501

7. Special Projects Office

Department of the Navy (SSP-114)

1105 Crystal Mall

Jerrerson Davis Highway
Arlington, Virginia 20390
Attn: CDR Richard Franzen, USN

No . Copies

68

Security Classification

DOCUMENT CONTROL DATA -R&D
ty classification ol title, body of abstrac t and indexing annotation fiiuM be entered when the overall repnrt Is classified)

orporate author)

Naval Postgraduate School

Monterey, California 93940

Za. REPORT SECURITY CLASSIFIC

UNCLASSIFIED

A Computer Program For Solution of Sequence Dependent Routing Problems Using

a Branch-And-Bound Algorithm

DESCRIPTIVE NOTES (Type ol report andjnclus ive dates)

Master's Thesis; September 1970
f, middle initial, last name)

Richard Alan Jackson

6 RLPOR T D * TE

September 1970

la. TOTAL NO. OF PAGES

70
76. NO. OF REFS

7
CONTRACT OR GRANT NO.

b. PROJEC T NO

>«. ORIGINATOR'S REPORT NUMBER(S)

DISTRIBUTION STATEMENT

This document has been approved for public release and sale; its distribution

is unlimited

.

SUPPLEMENT, 12. SPONSO RING Ml LI T AR Y ACTIVITY

Naval Postgraduate School

Monterey, California 93940

An algorithm for the solution of sequence-dependent routing problems is

presented and programmed in FORTRAN IV for use on digital computers. Solutions

computation times and iteration requirements are summarized and discussed for

eleven test cases.

With specific modification of the input data, a typical traveling salesman

closed-loop problem may be solved by the same program.

DD, F

,T..1473 (PAGE

S/N 01 01 -607-681 1

69

Security Classification

Security Classification

KEY WORDS

Branch-and -Bound

Sequence-Dependent Routing

Traveling Salesman

Routing

IO L E W

DD ,ir..1473 'back,

IO L E W T

70
S/N 0101-807-6821

Security Classification

27 MAY7I 19 7 96
I4JAPR72 iJSLGti l
^0MAY75 2^35
56 JUL 76 2 3 8 17

Thesis

J2f
j3C
Tcomputer program

'
for solution of se-

Lence dependent rout-

ing problems using a

D"anch-and-bound
algo-

rithm.
-» g 7 9 6

27MAY7I 19.641
18 APR 72 '2'-

i AY7 '

2 3 8 1 7
->6 JOI ***

122753
Jackson

A computer program

for solution of se-

quence dependent rout-

ing problems using a

branch-and-bound algo-

rithm.

1.1. E- -/ _ = = a= .

