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ABSTRACT

The robustness of the Student's t-test is investigated

under the violation of the assumption of equality of

variances. With the aid of computer simulation, Type I

and Type II error rates and the resulting statistical

inference are studied and the effects of unequal variances

on rejection rates and the power of the test are determined

Limits are determined on' the degree of violation of the

equality of variances that still leads to a satisfactory

result when Student's distribution is used.
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I. INTRODUCTION

In investigating the robustness of the Student's

t-test, it is necessary to initially discuss the underlyinj

distribution used by the test, the t distribution. Prior

to 1908 statistical analysis was greatly dependent on

knowing the population variance a
2 for most procedures.

The random variable

z = ( x - u ) /_n
a

1-1

was used extensively. To develop z, the hypothesized

population mean u is subtracted from the sample mean x

and the resulting value is multiplied by the square root

of the sample size n and divided by the population standard

deviation a. The statistic z has a normal distribution

with mean zero and standard deviation equal to one, N(0,1),

if x is distributed normally with mean equal to u and

standard deviation equal to a 2
, i.e., N(u, a 2

). When x

has any distribution other than N(u, a 2
), then z approaches

a N(0,1) as n->°° according to the central limit theorem.

In 1908 Gosset, publishing under the pseudonym of

"Student", developed a procedure which modified z for

instances where the population variance a 2 was unknown.

He estimated a 2 using the unbiased estimator

E ( x. - x) 1-2

n-1 i=l





Gosset then considered the random variable

t = (x - y) /FT

1-3

As Meyer (17) notes, the probability distribution of the

random variable t is more complicated than that of z

because both the numerator and denominator of t are random

variables whereas z is simply a linear function of the

random sample Xi,...,Xn .

In an effort to obtain the probability distribution

of t, Gosset considered these facts:

1. z has a N(0,1) distribution.

2 , 2
2. n

v = £ (x
1

- x)~/o" has a Chi-square distribution
i=l

L

with (n-1) degrees of freedom.

3. z and v are independent random variables.

He defined

t = z d = n-1 1-4

/v/d

and found the probability density function (pdf) of t as

given by

h
d
(t) = r[(d + 12/2] h + t

2. - (d + 1 )/2__<t<<
r(d/2) /~Fd [ d"

J

1-5

where V denotes a Gamma function where V (n+1) = n! =

f°° e~ xx
ndx. This distribution is known as the Student's

t-distribution with d degrees of freedom.





The pdf h, is symmetric with a mean of zero and

resembles the normal distribution. Dixon and Massey (3)

show that even though on the average s
2 is equal to a 2

,

more than half the time s
2 is actually less than a 2

x '

because of the kurtosis of the distribution of s 2
.

x

Lindley (14) has proven through a rigorous mathematical

argument that as the sample size n becomes large the

density of the t distribution tends to have a distribution

N(0,1).

Because of its importance, especially as the underlying

distribution for the Student's t-test, the t -distribution

has been tabulated.

In the problem of testing the hypothesis that the

means of two normal populations are equal the most commonly

used test is the Student's t-test. The test as developed

by Gosset formulates the following random variable:

x - y ^2 L_ +
n
x

i

~Cnx 1) s
2

+ (n
y

- 1) s
2 '

y

n

n
x

+ n
y
-2

•

1-6

where n , n are defined as the sample sizes drawn
x y

respectively from normal populations X and Y.





The variables x and y are the sample means of the

populations X and Y respectively and s^ and s^ are the

unbiased sample variances of the X and Y populations

respectively.

The underlying distribution for this statistic has the

same t-distr ibut ion as the statistic shown in (1-3) because

x - y is a normal random variable and the entire denominator

is a pooling of the sums of the squared deviations from the

means of both samples which provides the best unbiased

estimate of the common population variance.

To test the hypothesis the absolute value of the

t statistic compiled from the samples is compared to a

particular value from the t distribution which has

associated with it a probability of a more extreme value.

Where the observed absolute value of t, |

t

Q |

, is greater

than the tabulated |t| value, a hypothesis that the two

population means are equal, is rejected. However, if the

value of the observed |t
Q |

statistic is less than the

tabulated |t| value, the hypothesis is accepted.

In order to use this particular test for equality of

means, as intended, the theory requires certain assumptions

be met. The first assumption dictates that the random

samples drawn from each population must be independent.

Secondly, Gosset stated that the underlying populations

from which the samples are taken must be normally distributed

The third and seemingly most severe assumption, is that the

variances of both populations must be equal.





This paper is concerned with a detailed empirical

study of the ability of the t-test to give correct results

to the question of whether or not the means of two normal

populations are equal when the third assumption of equal

variances is violated. The robustness of the t-test, or

its ability to withstand this violation of assumption is

investigated for various degrees of violation of the

assumption of equal variances. Under this condition,

certain error rates are investigated. One type of error

rate is the fraction of instances the test implies that

the means of two normal populations are not equal when

in fact they are equal. The second type of error rate

is the fraction of instances that the test implies that

the means of the two normal populations are equal when

in fact they are not equal. The power of the t-test or

its ability to detect the difference between two population

means, is a function of the second type of error rate and

is equal to one minus the fraction of errors of the second

kind.

The investigation of these error rates is conducted

for both equal and unequal sample sizes and the ratio

of the population variances is allowed to vary over a

wide range of values.





II. BACKGROUND

A. STATISTICAL INFERENCE AND HYPOTHESIS TESTING

The evaluation of the robustness and power of a test

requires some elementary knowledge in the area of statistical

inference and especially hypothesis testing. Generally the

observations or random samples drawn from one or more

populations are arithmetically manipulated by a particular

method to obtain information about the underlying populations

This single number calculated from sample data is referred

to as a statistic. From this statistic certain inferences

can be made about either a particular parameter of a single

population under study or whether equality exists between

the same parameters of two or more populations.

The t-test falls into the second major area of

statistical inference called hypothesis testing. The test

is applied to the common statistical problem of determining

whether or not the means of two normally distributed popula-

tions are equal. The test begins with the hypothesis that

the means are equal and then from the value of the statistic,

the decision is made whether the hypothesis is accepted or

rejected. From the t statistic developed in 1-6 it should

be observed that in testing the hypothesis the direct

concern is not with determining the actual value of the

means of the two distributions but instead in determining

whether a difference exists between the two means.





There are certain basic properties that any method

used for hypothesis testing must be required to possess.

The first property is that when any hypothesis test is used

there should exist only a small probability that the results

obtained from the method lead to an erroneous conclusion.

In other words, in the case of the t-test, if indeed the

means are equal, there should be only a small probability

that when applying the test the statistical inference leads

to the assertion that the means are not equal. The second

requirement states, that if a difference does exist between

the two means, there should be a very high probability that

this fact is detected by the test. Sverdrup (26) points

out that in effect these two requirements are competing

with one another, and in choosing any test of hypothesis

both considerations must be balanced against one another.

On one hand there is a strong desire to claim that the two

means are equal when in fact they are equal. However, at

the same time an equally strong desire exists which con-

centrates on detecting the smallest possible difference

between the two means in an attempt to assert that the

two means are not equal when they are not equal. If the

first requirement is too strongly adhered to then the

probability of detecting a difference between the means

when it exists is decreased, thereby weakening the second

requirement. Conversely, when the test attempts to detect

10





extremely small differences between the two populations

means, the probability of asserting that the means are

not equal, when in fact they are equal, will increase.

In hypothesis testing a statement whose erroneous

rejection it is particularly desirable to avoid, is

called the null hypothesis, and is generally denoted by

H . In the case of the t-test the null hypothesis is
o J r

therefore the statement that the means of the two popula-

tions are equal. If the' means are equal it is not

desirable to conclude from statistical inference that they

are not equal. If the means are truly not equal it is not

desirable to conclude that they are after using the test.

This situation is schematically shown in Table 1.

Table 1

ERRORS IN HYPOTHESIS TESTING

TRUE SITUATION

NULL HYPOTHESIS
TRUE

NULL HYPOTHESIS
FALSE

ACCEPT NULL
HYPOTHESIS

TEST
INDICATES

REJECT NULL
HYPOTHESIS

NO ERROR TYPE II ERROR

TYPE I ERROR NO ERROR

11





A Type I error results when the null hypothesis is

rejected when in fact it is true and a Type II error

results when the null hypothesis is accepted when in fact

it is false. Symbolically the probability of making a

Type I error is denoted by a and the probability of

committing a Type II error is denoted by $. The

probabilities associated with making a Type I or Type II

error should be as small as possible.

The critical importance in understanding these two

criteria is the fact that they will be the basis of the

evaluation for the t-test during this study. When two

populations meet all three of the assumptions necessary

for use of the t-test, the test results in a certain fraction

of Type I and Type II errors which are unavoidable. This

investigation examines in detail how these fractions

change when the assumption of equal variances is violated.

B. SIGNIFICANCE LEVEL

The tabulated t value mentioned earlier will now be

referred to as the critical t value or t cr ^ t
. The particular

value of t cr ^ t
is choosen such that a fraction a of the

distributional values of the t distribution lie beyond

|t -
,

| . This is the result of having the null hypothesis

H
o
:y x

= y y and cnoos i n g the alternative hypothesis

H -y f u . That fraction of the distributional values
1 x y

lying outside of |tcrit |
is equal to a , the probability

associated with a Type I error.

12





If the two population means are equal and the t value

resulting from the t-test lies outside of the interval

( _t crit' t crit^ '
the test produces a Type I error. This

is due entirely to chance with a probability equal to a

and this type I error is unavoidable in an a fraction of

the cases run.

The signficance level of the test is equal to one

minus the probability of making a Type I error and is

written symbolically as 1-a.

C. POWER OF A TEST

The probability of committing a Type II error is

denoted by 3. This is the proportion of acceptances of

the null hypothesis when in fact the hypothesis should be

rejected. The power of any test is defined as 1-3. As 3

increases the power decreases and conversely as 3 decreases

the power of the test increases. It results that when two

normal population means are almost equal the power of the

test is small and the power increases as the difference in

the means increases. As the difference between the means

does increase the power of the test asympotot ically

approaches 1.0. When no difference exists between the

population means then 3 equals 1-a.

The power of any statistical test is a function of

certain factors. The principle factor influencing the power

is the variance of the respective populations being tested.

13





The test being evaluated could be influenced by the largest

variance of the two populations, the magnitude of the

difference between the two population variances or the size

of the pooled variance for both populations. A second

factor influencing the power of a test is the size of

the samples taken from both populations and whether or not

these sample sizes are equal. The sample sizes have a

strong influence on the size of the pooled variance. The

pooled variance (pv) is defined as

(nx -l)s| + (n -l)s2
pv = . 2-1

n + n -2
x y

When the sample sizes are equal the pooled variance is

simply one-half of the sum of the variances from both

populations. When the sample sizes are not equal then

the size of the pooled variance is most effected by the

sample having the larger number of observations.

14





III. VIOLATION OF ASSUMPTIONS

A. PREVIOUS INVESTIGATIONS

Very few investigations have been carried out to study

the effect of dependent random samples on the Student's

t-test. Scheffe' (25) discusses a violation of this

nature and proves that the effect of a serial correlation

on inference about means can be serious and, therefore,

should be considered when using the test. With respect

to the normality assumption it is usually reasonable to

assume normally distributed populations because even

when populations are not normal Scheffe -' (25) has demon-

strated that the effect of a violation of this nature is

very slight when making inferences about means.

The most interesting and most complex results arise

when the assumption of equal variances is violated.

Circumstances often exist where group to group homogeneity

of variances is not to be expected and is the exception

rather than the rule.

For the particular case where non-homogeneity of

variances is known to exist, different methods have been

proposed as alternatives to the t-test. When the relative

scale factor of the two populations is known appropriate

weighting of the sums of squares gives an exact solution.

In the case where the relative scale factor is unknown

different criteria have been advocated.

15





Welch (30) has discussed in detail the often employed

alternative statistic

n-v n.

£

X
(X

4
- X) £ (Yj - Y)

i=l i=l

nx (nx
- 1)

+
n (n - 1)

3-1

He demonstrates that when c^ 2
f a 2 the t statistic

developed in 1-6 does not have an underlying t distribution

and that 3-1 results in less bias than the general t

statistic when the variances are not equal.

Fisher (5) has proposed another solution to the

problem of testing the hypothesis \\ x = u
y

using the

concept of fiducial distributions but the validity of

this approach has been questioned by Bartlett (1)

.

Each of these alternatives was developed because

the contention exists that the t-test is not generally

applicable to testing the equivalence of means when the

variances of the two populations may not be equal. This

study is not concerned with comparing these alternatives

with the t-test, it will attempt to determine the necessity

of using these alternatives. The t-test may prove to be

robust enough to withstand such a high degree of violation

of the assumption of equal variances that these alternatives

are not necessary.

16





Welch (29) made the first detailed study of the t-test

and its robustness when faced with a violation of the

assumption of equal variances. He concentrated on only

the resulting a level and used an approximation method to

arrive at his results. When the sample sizes were equal,

Welch's conclusion was that the rejection rate arrived

at when the variances are different does not differ

significantly from the specified rate. The approximation

used, set the variation of one population to zero and even

under this extreme condition the test never became seriously

biased. In terms of frequencies, Welch has stated that

for equal sample sizes and a difference in population

variances, if the test were performed numerous times the

number of rejections of a true hypothesis would not be

significantly different than the actual number of expected

rejections for a prescribed a level. Using the t-test

as an example, if the test were applied many times to two

normal populations with equal means, the number of Type I

errors expected would be equal to the fraction a of the

total number of iterations of the test. If the two popula-

tion variances were in fact different, approximately this

same number of expected Type I errors would result. There-

fore, the violation of the assumption of equal variances

does not bias the test seriously when the sample sizes are

equal. This investigation attempts to verify empirically

the truth of Welch's statements.

17





Welch also examined the case where the sample sizes

were not equal. Using the same approximation method he

made the following observations. When the larger sample

has the larger variance the difference between the two

means tends to be underestimated. This implies that the

probability of making a Type II error increases, and

consequently the power of the test will decrease. When

the larger sample has a smaller variance the difference

between the two means tends to be overestimated and a

greater percentage of Type I errors result. The foregoing

result could be summarized to state that the true rejection

rates becomes significantly different than the specified

rates for unequal sample sizes and unequal population

variances

.

Gronow (9) likewise made an exhaustive study of the

rejection rate of the t-test when the assumption of equal

variances is violated. He used a different method of

approximation then Welch, but his study resulted in confirming

what Welch had previously stated. A bias will result in the

rejection rate for populations with unequal variances and

different sample sizes.

In both of these previous investigations, Welch and

Gronow were hampered by the fact that they had to use an

approximation method to arrive at their conclusions.

Consequently, they were forced to look at extreme cases and





draw conclusions. The ratio of variances was set either

at 0, 1 or oo, and then through a mathematical argument they

arrived at a result. This approach leaves many fine points

unanswered. For instance, Welch used equal sample sizes

of ten observations each and made his conclusions concerning

the lack of bias with respect to rejection rates. The

question of what happens with rejection rates for equal but

smaller sizes remains unanswered. Is there a variance

ratio large enough to cause the "true" rejection rate to

differ significantly from the specified rate? For the

same reason the use of extreme cases did not yield enough

information to draw definitive conclusions concerning

the power of the t-test under varying variance ratios.

The rapid development of high speed computers within

the last ten years has been largely responsible for making

detailed studies in this area more feasible. Murphy (19)

used computer simulation to test the actual rejection rates

while comparing the t-test to two alternatives, the Permutation

Test and the Aspin-Welch Test. At a specified a level of

0.05 he substantiated Welch's and Gronow's work concerning

the bias inherent in the test when the sample sizes differ

and population variances are not equal. During his

investigation, Murphy used 500 iterations for each case

studied.

19





B. AREAS OF INVESTIGATION

These previous investigations into the characteristics

of the t-test aid and encourage further study. The mathe-

matical results furnished by Welch and Gronow beg for

substantiating data in the form of numerous applications

of the t-test under various degrees of violation of the

assumption of equal variances. This investigation attempts

to provide this needed data while it studies the effect

of unequal variances on the robustness of the test. It

should be restated that robustness of a test is concerned

with the fraction of Type I and Type II errors exhibited

by the test. A study of Type I and Type II error rates

and the power of the test determines the effect of this

violation on robustness.

The rejection rates of the test are studied for

varying degrees of unequal variances. The ratio of the

two population variances is termed the scale factor k,

and this scale factor is allowed to range over intervals

determined from the investigation. With equal and unequal

sample sizes an attempt is made to find the particular

value of k, if one exists, where the actual or estimated

"true" rejection rate differs significantly from the

specified a level of 0.05. A second method for finding

a particular k value is used. An accumulation of observations

are made for certain other a levels and combining these

20





figures results in the formation of the tail of an empirical

frequency distribution which is compared to the tail of

the theoretical t distribution to determine if the violation

of the assumption of homogeneity of variance causes the

t-test to produce an empirical distribution which differs

significantly from the t distribution. Once again the

attempt is made to find a particular value of k which marks

a point where the empirical frequency distribution no longer

parallels the t distribution.

The investigation attempts to substantiate Welch's

conclusion that for unequal samples the t-test quickly

becomes invalid under the violation of the assumption

of equal variances, or to show that the validity of the

test is only violated at such an extreme scale factor that

in effect the test is valid in most circumstances. A

test is valid if it functions as intended with respect

to the two criteria in hypothesis testing. This means

that the values of a and 3 are the primary measures of

effectiveness for this investigation.

The power of the test is also investigated in the

cases of equal and unequal sample sizes. It is desirable

to determine if the power of the test decreases as the

scale factor varies from k=l, and further, if the power does

decrease, is the change due to the violation of the

assumption of equal variances or is the decrease in some way

related to the actual variance present in both samples?

21





IV. METHODS AND PROCEDURES

A. METHODS

Computer simulation was used to carry out the

investigation. The investigation took the form of pro-

gramming numerous "cases" through the computer. Each

case, which was iterated 50,000 times, consisted of the

following elements:

1. Two samples drawn from each of two standard

normal populations, X and Y. The sample sizes were

nx and n
y , and ranged in size from five to fifteen obser-

vations each and were not always equal.

2. A scale factor k equal to the ratio of variances,

°x I °v wnere k was allowed to vary discretely over a

determined range. The values of the variances from the

two normal standard populations, N(0,1) were adjusted to

achieve the desired scale factor.

3. A difference in means of the two populations

which was allowed to range from zero to five, in 0.5

increments, which resulted in 11 different values.

As an example, a single case would consist of nx = 10,

n = 8, k = 5 and y - y = 3.5. For this case, 50,000

iterations were performed and the following data were

gathered: the rejection rates for the critical values

of the t distribution associated with a levels of 0.1,

22





0.05, 0.02, 0.01, and 0.001 were compiled. At the

level of 0.05, the estimate of the "true" rejection rate

a t and the estimate of the "true" power of the test l-0
t

were calculated .

Initially, 5,000 iterations were performed for each

case. This was done to arrive at some indication of what

value the scale factor had to obtain to force the test

to produce invalid inferences. When this tentative scale

factor was determined for each pair of sample sizes the

number of iterations was increased to 50,000 and the

scale factor was allowed to vary from one to this tentative

value in increments of 0.25.

Two different criteria were used to determine the

"validity" of the t-test at various scale factor or k

values. First a study was made of the differences

between the estimated "true" rejection rate resulting

from the 50,000 iterations and the expected rejection

rate at a single a level of 0.05. These two rejection

rates were compared to determine at what k value they

became significantly different. The test used to conduct

this comparison had a significance level of 0.975.

The second method used to determine the "validity"

of the t-test was more stringent then the comparison of

rejection rates at a single a level. The second method

took the rejection rates compiled at the five a levels,

23





0.10, 0.05, 0.02, 0.01, and 0.001 and from these figures

constructed the tail of an empirical frequency distribution.

This developed empirical distribution was then compared

to the tail of the t distribution to determine at what

k value the two distributions became significantly different

A Chi Square Goodness -of -Fit Test with four degrees of

freedom and a significance level of 0.975 was used to

conduct the comparison.

Also during the 50,000 iterations for each case

the estimated "true" rejection rate for Type II errors

was being compiled and converted into a value for the

power of the test. Appropriate cases were combined to

develop power curves for graphic comparisons.

B. PROCEDURES USED

Sample generation was accomplished with a Gaussian

Normal Generation Program on file with the computer center

at the Naval Postgraduate School. The program was

developed by Marsaglia, MacLaren, and Bray (15). The

authors stated that in theory the Gaussian method they

developed is completely accurate in that the procedure

employed returned a random variable with exactly the

required distribution, and in practice the result is an

approximation influenced only by the capacity (word

length) of the computer used.

24





The accuracy of the random variables generated was

tested by studying the first four moments, mean, standard

deviation, skewness, and kurtosis on 35 samples of 10,000

numbers each. Each sample generated a distribution with

normal characteristics. A x Goodness-of -Fit Test with

nine degrees of freedom and a 0.99 significance level

was also used to test the 35 samples. Using this test

the samples were tested against a N(0,1) population and

no significant differences resulted between any of the

samples and this N(0,1) population. These investigations

seemed to give adequate indication that the numbers being

generated were from N(0,1) population.

The actual method of obtaining the information called

for in the study consisted of using the FORTRAN Program

included in Appendix A. In the program the sizes of the

two samples were initially established. Sample sizes

ranged from five to fifteen observations and nx and ny

could be set to any value within the range. Initially both

samples were drawn from a N(0,1) population using the

Gaussian Normal Generation Program. By multiplying each

observation of one sample by a standard deviation value a,

and adding a constant, c, to the result, the underlying

population of the sample was transformed into a desired

normal population, N(c,a 2 ). The two normals, N(0,1) and

N(c,a ) now had a variance ratio of 1/a 2 and a difference

25





in means equal to c. The two samples were then subjected

to the t-test and the resulting t statistic was tabulated

for the appropriate rejection rates. This iteration was

cycled 50,000 times. At the conclusion of the iterations

the value for the difference in means was incremented,

the standard deviation value remained the same, and another

case with 50,000 iterations was performed. When all

values for the differences in means had been exhausted,

a new value for the standard deviation was read into the

program and the entire process repeated. This procedure

was continued until all desired variance ratios were

generated

.

Tabulation of the rejection rates consisted of testing

the resulting t statistic against appropriate critical

values. The particular critical values chosen were not

only a function of the desired a level but also the number

of degrees of freedom for the particular case. The degrees

of freedom for any case were equal to the total number

of observations from both samples minus two, (i.e.,

nY + n._ - 2) . This number of degrees of freedom results
x y

from the fact that there are nx - 1 independent deviations

from the mean in the first sample and n
y

- 1 in the second

and a total of nx + ny - 2 independent deviations from the

mean to estimate the populations' variances.

26





V. RESULTS

A. ESTIMATED "TRUE" REJECTION RATES

1 . Equal Sample Sizes

The initial objective in this study was to

investigate what effect a violation of the assumption

of homogeneity of variances would have on the rejection

rate of the t-test, at a = 0.05. At what k value would

the estimated "true" rejection rate differ significantly

from the expected rejection rate?

Initially the cases for equal sample sizes were

studied. Samples of size five, ten, and fifteen were

chosen. It was assumed that information gathered at

these levels would cover the complete spectrum of possible

results encountered in the use of the t-test. Table 2 below

gives the results of the estimated "true" rejection rates

of the t-test over the range of scale factors, when samples

of equal sizes were used.

Table 2

ESTIMATED "TRUE" REJECTION RATES FOR a = 0.05,
EQUAL SAMPLE SIZES

k 1/9 1/7 1/5 1/3 1 3 5 7 S

nx n
y

5 5 .0686 .0656 .0564 .0556 .0494 .0542 .0600 .0662 . OC

10 10 .0578 .0536 .0512 .0540 .0440 .0474 .0530 .0616 .Of

15 15 .0558 .0554 .0554 .0532 .0486 .0514 .0536 .9486 .0=
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The values given in Table 2 are the fraction of

rejections of 5,000 iterations in each case. With an a

level of 0.05, the expected rejection rate is exactly 0.05.

Even in the cases where all the assumptions are completely

satisfied the expected rejection rate can only closely

approximate 0.05 because the number of rejections is a

random variable from a binomial distribution with parameter

p = .05. The occurence of a rare event has positive

probability and therefore small deviations from 0.05

can occur for the expected rejection rate. It can be seen

that as k deviated from one in both directions, the

estimated "true" rejection rate also increased with respect

to the a level of 0.05. This occurence was true for each

of the equal sample sizes. As the sample sizes themselves

increased and more information was available to the t-test,

there seemed to be a less rapid growth in the difference

between the "true" and specified rejection rates.

The k values in Table 2 were developed by setting

the variance of the Y population equal to one and then

allowing the variance of the X population to change in

order to effect the desired variance ratio. This meant

that even for equal sample sizes k values of k = 1/9 and

k = 9 were not exactly the same. For both scale factors

the magnitude of the ratios of the two population variances

is the same but the pooled variance present in case k = 1/9





is 5/9 and in the case k = 9 the pooled variance is 5.

This same type of difference is present in other compli-

mentary pairs of k values, 1/3 - 3, 1/5 - 5, and 1/7 - 7.

In observing the data though there appears to be no corre-

lation between the size of the pooled variance and a

change in the estimated "true" rejection rate. It was

concluded that the primary cause for a change in the

estimated "true" rejection rate was a change in the scale

factor value.

The primary objective of the investigation was

to determine those values of k at which the estimated

"true" rejection rate begins to differ significantly

from the specified a level. A Chi Square test with one

degree of freedom and a significance level of 0.975 was

used to determine the fraction, and number of "true"

rejections that if achieved by the test, would imply that

the two rates could be considered significantly different

The x statistic was developed from the case shown below.

NUMBER OF CASES REJECTED NUMBER ACCEPTED

OBSERVED A B

EXPECTED 250 4750
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The expected number of rejections, 250 comes from the fact

that 5,000 iterations were performed for each case and the

critical t value used produced a specified a level of 0.05.

Five percent of 5,000 is 250, the expected number of

rejections

.

Using a 0.975 significance level for the x^ test

meant that if the number of observed rejections, A, became

greater than 319 or less than 181, a significance difference

between the estimated and specified rejection rates would

be implied. Three hundred and nineteen is exactly 6.38

percent of 5,000, and 215 is exactly 3.62 percent of 5,000.

With these critical percentages of .0638 and

.0362 and the data from Table 2, the following observations

can be made. For the sample sizes of five observations

the critical value of k, where the estimated "true" rejection

rate becomes significantly different from the specified

rate appears to occur for a k value between five and seven.

For equal sample sizes of either 10 or 15 observations each

the sought after critical k value appeared to lie beyond

k = 9. It was decided to conduct the investigation for

these two equal sample sizes for k values between one and

nine

.

The more detailed study was now conducted. For

equal sample sizes of 5, 10, and 15 observations the k

intervals (1,5), (1,9), and (1,9) respectively were

3





investigated. In each case the variance ratio was incremented

from one to the upper limit of the interval in 0.25 steps.

At each scale factor value 50,000 iterations were performed.

For 50,000 iterations and an a equal to 0.05, the critical

number of rejections became either 2718 or 2282. For any

k value producing a number of rejections greater or less

than these two figures respectively, the implication would

result that the estimated "true" rejection rate was

significantly different from the expected rejection rate.

At the same time the 50,000 iterations produced

rejection rates for the other specified a levels, 0.10,

0.02, 0.01, 0.001. With these rates it was possible to

develop an empirical frequency distribution. By comparing

this empirical distribution with the t distribution it

was possible to determine, in a second manner, a critical

k value where the two distributions became significantly

different

.

The results of using these two criteria for

testing the validity of the t-test for the various equal

sample sizes under varying k values is contained in Table 3.

The k values listed include all the pertainent information

needed in the investigation.
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Table 3

VALIDITY RESULTS FOR THE t-TEST WITH EQUAL SAMPLE SIZES.
50,000 ITERATIONS AT EACH k VALUE

n = n 5 10 15
x y Criteria Criteria Criteria

k A B A B A B

1.00 2502 A 2455 A 2420 A
1.25 2434 A 2503 A 2490 A
1.50 2589 A 2545 A 2484 A
1. 75 2526 A 2514 A 2425 A
2.00 2588 A 2 56 2 A 2656 A
2.25 2614 A 2 571 A 2490 A
2.50 2679 R 2564 A 2569 R
2.75 2737 R 2576 A 2537 A
3.00 2819 R 2597 A 2545 A
3.25 2758 R 2650 R 2572 A
3. 50 2917 R 2730 R 2627 R
3.75 2904 R 2716 R 2575 A
4.00 2887 R 2706 R 2774 R
4.25 2946 R 2686 R 2580 R
4.50 2954 R 27 26 R 2693 R
4.75 3030 R 2722 R 2640 R
5.00 3179 R 2745 R 2671 R
5.25 2779 R 2671 R
5.50 2845 R 2693 R
5. 75 2651 R
6.00 2860 R
6.25 2688 R
6.50 2773 R
6.75 2683 R
7.00 2734 R
7.25 2708 R
7.50 2752 R
7.75 2726 R
8.00 2881 R
8.25 2730 R

A - Estimated "true" number of rejections at
single a level of 0.05, critical number
2718 or 2282 (a= 0.025)

B - Outcome of testing H that the empirical
distribution equals the t distribution
(a = 0.025)
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In each of the cases of equal sample sizes, as the

scale factor k, increased the estimated number of "true"

rejections for an a level of 0.05 also increased. For

equal sample sizes, five observations each a definite

k critical value between 2.50 and 2.75 was determined where

the estimated "true" rejection rate differed significantly

from the expected rejection rate of 2,500 rejections in

50,000 iterations. For samples of ten observations each

such a definitive break is not so evident. At k = 3.50

the two rejection rates are significantly different while

for k = 3.75, 4.00, and 4.25 the rates are not signifi-

cantly different. For k values greater than 4.25 the two

rates are consistently significantly different. The assump-

tion of the result at k = 3.50 is an extreme random

occurrence, results in concluding that the estimated "true"

rejection rate begins to differ significantly from the

expected rejection rate at a scale factor of k between

4.25 and 4.50. Such a random occurrence is also assumed

to have occurred in the case of 15 observations each and

k = 4.00. This particular case yielded rather inconclusive

results and it can only be determined that the critical k

value sought for lies in the k range from 5.75 to 6.75.

The results of using this less stringent requirement

can be summarized in Table 4.
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Table 4

CRITICAL k INTERVALS DETERMINED UNDER THE CRITERIA OE
EQUAL REJECTION RATES

EQUAL SAMPLE SIZES . CRITICAL INTERVAL
n = k*

5 2.50-2.75
10 4.25-4.50
15 5.75-6.75

In evaluating the robustness of the t-test with

respect to a significant difference between the developed

empirical distribution and the t distribution the resulting

critical k intervals determined were less in all cases than

the k intervals discussed in the previous paragraph. For

the case nx = ny = 5 , the k value where the two distributions

became significantly different occurred in the interval

2.25 to 2.50. In the case nx = ny = 10, the hypothesis

that the two distributions were equal was accepted up to

a k value between 3.00 and 3.25. A variance ratio greater

than 3.25 produced a rejection of the hypothesis without

exception. In the case n = n = 15 such an exact k
x y

interval could not be determined. Rejections of the

hypothesis occurred at k equal to 2.50, 3,50, and values

greater than or equal to 4.00. Assuming that this case

is as robust as the case for ten observations in each

sample, the rejection at k = 2.50 could be considered

an extreme random occurrence. Because of the rejection

of the hypothesis at k = 3.50 no concise 0.25 k interval
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appears to exist. Therefore it was only concluded that

the critical k value sought after must lie in the interval

between k = 3.25 and k = 4.00.

The results of using this more stringent requirement

are summarized in Table 5 below.

Table 5

CRITICAL k INTERVALS DETERMINED UNDER THE CRITERIA OF
EQUAL DISTRIBUTIONS

EQUAL SAMPLE SIZES CRITICAL INTERVAL
n= k*

5 2.25-2.50
10 3.00-3.25
15 3.25-4.00

Even for the most stringent criteria and the

smallest equal sample sizes, five observations, the k*

found was between 2.25 and 2.50. This means that the

variances of the two normal distributions under study can

differ in magnitude by a factor greater than two and the

t-test can still give valid answers. Increasing the

observations to 15 in each sample allows the variances

to differ in magnitude by a factor of approximately four,

and the t-test still continues to produce valid inferences.

Reducing the stringency of the criteria for validity

increases the degree of violation of the assumption that

the t-test can withstand. With respect to estimated "true"

rejection rate, and equal sample sizes this segment of the

investigation indicates that the t-test is extremely robust
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2 . Unequal Sample Sizes

Welch (29) had predicted that for unequal sample

sizes a violation of the homogeneity of variance assumption

would result in a strong bias and invalidate the t-test

rapidly. Unequal sample sizes were studied in the same

manner as the equal sample size cases. Initially 5,000

iterations were performed to obtain an indication of what

range of k values were needed to be included in a more

detailed study. These initial results are contained in

Table 6.

Table 6

ESTIMATED "TRUE" REJECTION RATES FOR a = 0.05,
UNEQUAL SAMPLE SIZES, a*=l

k
n
x

n 1/9 1/7 1/5 1/3 1 3 5 7

8 6 .0944 .0924 .0870 .0748 .0498 .0432 .0378 .0398
10 6 .1226 .1116 .1056 .0844 .0504 .0290 .'0240 .0242
13 6 .1652 .1586 .1270 .1074 .0462 .0180 .0154 .0140
15 6 .1898 .1764 .1634 .1126 .0526 .0162 .0114 .0082
15 10 .0968 .1020 .0930 .0782 .0512 .0330 .0294 .0274
15 12 .0840 .0736 .0708 .0646 .0482 .0356 .0364 .0392
11 8 .0944 .0936 .0826 .0710 .0490 .0324 .0360 .0350

The bias characteristic of the test is evident from

the data of Table 6. Remembering that k, the scale factor,

is defined as ax /a*, the table shows that whenever the larger

sample nx has the larger variance, k = 3 , 5 , 7 , or 9 , the

estimated "true" rejection rate is less than the specified

rate. When the sample nx has the smaller variance, k = 1/3,
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1/5, 1/7, or 1/9, the estimated "true" rejection rate is

greater than the specified rate. This observation is true

in all cases and is an actual data confirmation of Welch's

mathematical conclusions.

To explain this result, the formula for the

t statistic must be further examined where

(nx
- 1) S 2 + (n - 1) S

2

nx
+ n

y

Of importance is the first term of the denominator. This

quantity is called the pooled variance and is the critical

term in explaining the results in Table 6. To obtain the

desired scale factor k the variance for the Y population was

maintained at one and the variance for the X population was

allowed to vary to achieve the particular scale factor.

For any of the unequal sample cases in Table 6 with k = 1,

the pooled variance term of the t statistic came out to

a certain average result. Now as k increased from one

through nine the sample variance of the X population, s
x ,

also increased. This caused the pooled variance term to

also increase and with the remaining term of the denominator

and the numerator remaining relatively constant the average

t statistic decreased. As the t statistic decreased a

greater proportion of the results fell within the critical
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interval (-t , t . ), and the probability of a
crit crit

t statistic greater than t critical decreased. The

estimated "true" rejection rate therefore decreased. In

an opposite manner, as s decreased, k = 1 to 1/9, the

average t statistic increased and a greater proportion

of the results fell outside of the critical interval

causing the estimated "true" rejection rate to increase.

In the pooled term the sample variances is weighted

by (n - 1). Now for any particular k value, as nx in-

creases the change in the estimated "true" rejection rate

is accelerated. As an example, for k = 3, in all the

cases where n = 6 the estimated "true" rejection rate is

less than the specified rate. Proceeding down the column,

as n increases the difference between the two rates is

increasingly more pronounced. This is due to the increased

2weight applied to s as n increases.

This same bias was investigated by developing

the scale factor k by a different method. In this instance

the variance for the X population was set equal to one and

the variance of the Y population was allowed to vary in

order to develop the desired scale factor values. The

same type of bias characteristics were obtained and are

shown in Table 7. In a majority of the data points the

bias was slightly more pronounced in each direction when

compared to similar points in Table 6 but they do not





appear to be significantly different. When the bias

caused the estimated "true" rejection rate to be greater

than the specified level the bias was even greater in

the cases where a* = 1 . This difference, though slight,

between the two approaches can be explained. In Table 7

the smaller sample size n is drawn from the population

with the changing variance. Statistically, this smaller

sample provides less information about the underlying

population, with the resulting mean standard deviation

being greater than the case where the sample variance of

the larger sample is varied, thus the bias is more

pronounced

.

Table 7

ESTIMATED "TRUE" REJECTION RATES FOR a = 0.05,
UNEQUAL SAMPLE SIZES, a£ = 1

nv n 1/9 1/7 1/5 1/313579
8 6 .1038 .0886 .0864 .0788 .0498 .0446 .0380 .0388 .0420

10 6 .1312 .1172 .1142 .0854 .0504 .0310 .0258 .0236 .0252
13 6 .1608 .1556 .1340 .1070 .0462 .0212. .0130 .0146 .0114
15 6 .1818 .1866 .1542 .1198 .0526 .0172 .0112 .0078 .0086
15 10 .1028 .1042 .0976 .0786 .0512 .0312 .0284 .0324 .0232

The explaination of the bias characteristics

discussed for the case resulting in Table 6 also applies

for the method of generating the scale factor in this case.

The same results hold in that the greater the difference

between sample sizes the more pronounced the bias.
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In searching for a critical k value in each of the

unequal sample size cases, the initial 5,000 iteration test

revealed that in every case except for nx = 8 , ny
= 6 , the

estimated "true" rejection rate became significantly

different from the expected rejection rate at k values less

than 3.00. Therefore the initial k values tested for

50,000 iterations ranged over the interval from 1/3 to 3.

If any case indicated a critical k value existed outside

of this interval then the range could be increased. From

the results contained in Table 8 it is evident that no

increase in the k range was necessary for any of the cases

studied.

Table 8

VALIDITY RESULTS FOR THE t-TEST WITH UNEQUAL SAMPLE SIZES,
50,000 ITERATIONS AT EACH k VALUE

nx -ny
8-6 10-6 13-6 15-6 15- 10 15-1 2

Criteria Criteria Criter ia Criter ia Criteria Criteria
k A B A B A B A B A B A B

0.333 3 661 R 4428 R 5401 R 5926 R 3963 R 3312 R
0.364 3516 R 4261 R 5113 R 5547 R 3851 R 3321 R

0.400 3402 R 3949 R 4870 R 5278 R 3660 R 3214 R
0.444 3250 R 3872 R 4434 R 4 94 6 R 3455 R 5063 Pv

0.500 3110 R 3672 R 4076 R 4460 R 3350 R 3004 R
0.571 2997 R 3392 R 3874 R 4110 R 3161 R 2789 R
0.666 2811 R 3060 R 3477 R 3591 R 2992 R 2825 R
0.800 2726 R 2766 R 2958 R 3034 R 2785 R 2633 R
1.000 2501 A 2524 A 2418 A 2481 A 2392 A 2440 A
1.250 2411 R 2196 R 2052 R 2016 R 2302 R 2308 R

1.500 2168 R 2020 R 1852 R 1722 R 2108 R 2321 R
1.750 2173 R 1872 R 1504 R 1448 R 1958 R 2160 R

2.000 2105 R 1792 R 1436 R 1214 R 1883 R 2088 R
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n
x
-n 8-6 10-6 13-6 15-6 15-10 15-12

y Criteria Criteria Criteria Criteria Criteria Criteria
k A BA BA BA BA BA B

2.25 2037 R 1644 R 1289 R 1163 R 1769 R 2094 R
2.50 2016 R 1563 R 1145 R 1014 R 1681 R 2146 R
2.75 1995 R 1575 R 1083 R 922 R 1731 R 2115 R
3.00 2008 R 1490 R 1032 R 854 1622 R 2069 R

A - Estimated "true" number of
rejections at single a level
of 0.05, critical number
2718 or 2282 (a= 0.025)

B - Outcome of testing H that
the empirical distribution
equals the t distribution
(a= 0.025)

Table 8 continued

Using either criteria for testing the validity of

the t-test for different k values the results indicated

that for unequal sample sizes the robustness of the t-test

is poor. For every case the slight increase in k to a

value of 1.25 caused a violation of the criteria that the

developed empirical distribution and the t distribution

must not be significantly different. The less restrictive

criteria that the estimated and expected rejection rates

be equal was violated at k value very close to one. Only

in the case nx = 15, ny
= 12 could a k value in the range

1.25 to 1.50 be tolerated by the test.
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These results demonstrate rather emphatically

Welch's predictions that for unequal sample sizes a

violation of the homogeneity of variance assumption

would result in a strong bias and invalidate the t-test

rapidly. The t-test was not able to withstand a violation

of the assumption to any degree and the robustness of the

test in this instance must be considered extremely poor.

B. POWER

The power of the t-test was investigated in a similar

method as the Type I error rate. Cases were studied for

both equal and unequal sample sizes and various degrees

of violation of the assumption of equal variances. The

Type II error (B) of accepting the null hypothesis when

in fact it should be rejected because the populations

means are not equal was used to develop the power of the

t-test, 1-3 and conclusions were made through comparisons

of graphic results. In all cases an a level of 0.05 was

used.

The primary question asked in the investigation was

what effect did a violation of the equal variance assump-

tion have on the power of the test? Was a change in the

power directly related to the degree of the violation or

did there exist a more important factor in determining

the power of the test? As discussed in Chapter 2 the

power of any test is influenced by a combination of

factors, variances, and sample sizes.
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1 . Equal Sample Sizes

The results illustrated in Graph 1 are for equal

sample sizes, 15 observations each and are typical of each

of the other equal sample size cases of five and ten

observations. Data gathered for each of these cases are

contained in Table 9. Graph 1 indicates that as k increased

in value from one to nine the power of the test decreased.

This is a predictable result because of the increased

variance present in the X population. Also shown though

in Graph 1 is the result that as k decreased from 1 to

1/9 the power of the test increased. To explain this

result it should be remembered that the desired k values

were achieved by maintaining a„ constant and equal to 1

and programming a£ equal to specific values. This means

that as k increased from 1/9 to 9 the pooled variance

(2-1) also increased, and as can be seen the power of

the test decreased. In the range from k = 1/9 to k = 1

there was a relatively small decrease in the power but

this is explained by the fact that the variance of the X

population had to increase in relatively small increments

to achieve the desired k values. Therefore in this range

the size of the pooled variance increased only slightly.

Power decreased appreciably in the range k = 1

to k = 9 because of the relatively large increases in the

variance of the X population. The pooled variance also

exhibits this relatively large increase over this same

range of k values.
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The conclusion made from these observations is

that a violation of the assumption of equal variances does

not directly influence the power of the t-test. There is

a significant difference in the power for k=l/9 and k = 9

even though the degree of violation is the same in both

cases. The power of the test is directly a function of

the size of the pooled variance and the less the amount

of pooled variance the greater the power of the test.

To emphasize the contention that the size of the

pooled variance is the primary factor influencing the

power of the t-test, Graph 2 is provided. Two sets of

curves are plotted. There are two curves with scale

factors equal to 3 and 7 and they are compared to two

curves (K) where the scale factor is equal to one and

therefore no violation of the assumption exists but the

size of both population variances are equal to 3 or 7.

For k=3 the pooled variance is equal to 2. For K=l,

oiy=a£ = 3 the pooled variance is equal to 3. The power

of the k=3 curve is greater than for K=l and the variances

equal to 3, but this same curve (K>1) exhibits more power

than the curve k=7 which has a pooled variance equal to 4.

This demonstrates that the degree of violation of the

assumption has little to do with determining the power of

the test and that the pooled variance is the critical

element in this determination.
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In all of the equal sample size cases the larger

the sample size the greater the power of the test for an

equal value of the pooled variance. This is a well

documented result.

2 . Unequal Sample Sizes

Welch (29) has written that a strong bias exists

in the t-test, when the assumption of equal variance is

violated, and the samples are not equal. This bias has

been shown in the results of the estimated "true"

rejection rates above. This same bias carries over to

the power of the t-test under the same circumstances.

Graph 3 shows the power curve which results for

various k values, of unequal samples size fifteen and

six. The k values were achieved by maintaining the

variance of Y equal to one and allowing the variance of

X to range from 1/9 to 9. As in the case of equal sample

sizes the power of the test is a function of the size of

the pooled variance.

It should be noted that in the range of k from

1/9 to 1/3 the power of the test is extremely high but

is achieved at the expense of an increase in the fraction

of Type I errors when the two population means are equal.

Here exists a good example of the conflict that develops

when the fraction of Type II errors is decreased to the

point where the rate of Type I errors becomes unacceptable

For k in the range 3 to 9 the power decreased with an

increase in the fraction of Type II errors and as a
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consequence the Type I errors decreased to a point where

the rejection rate becomes significantly different from

the expected rate. Similar results were obtained for

the other unequal samples tested.

Also included in Graph 3 is a plot of the power

curve for equal sample sizes n =15, n =15, and k=l. Inx y

comparing this curve to the similar k=l curve for n =15,

n =6, it can be seen that the power decreased because of

the loss of information due to the fewer observations

obtained for the Y population.

Graph 4 shows two cases where the total number

of observations from both populations is about equal,

but the difference between the sample sizes is not equal.

In one case the total number of observations is 19 with

nx =ll and n =8, the difference between sample sizes being

three. In the second case the total number of observations

is 21 with nx =15 and n = 6 and, therefore, the difference

between sample sizes is 9.

For k=l both cases have equal pooled variances

and the power curves are almost identical. For k=l/7 the

case nx =15, n =6 has a smaller pooled variance than the

case nx =ll, n =8 and as a result has a slightly higher

power curve. For k=5 the relative size of the pooled

variances is reversed and as a consequence the power curves

are also reversed.
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In Graph 5 three different cases are compared.

For k=l each of the cases has a pooled variance equal to

one but the power curves are not identical because the

total number of observations in each case are not equal.

As the number of observations decreases , the power also

decreases

.

As the degree of violation of the assumption

was increased to k = 5 the pooled variance in each case

is no longer equal. For nx =15, n =6, the pooled variance

is 3.95; nx=15, n =10 the pooled variance is 3.44, and for

nx=15, n =15 the pooled variance is 3.03. At k=5 the

relative relationship of the three power curves has

changed somewhat from the case k=l. Under a changing

degree of violation of the assumption a larger number

of total observations causes a less rapid growth in the

size of the pooled variance. This in turn results in a

less rapid deterioration of the power of the test with

an increasing degree of violation.

In all cases the power changed as a function of

the size of the pooled variance. The same conclusion as

was made in the case of equal sample sizes can be made

here, that the power of the test is a function of the

pooled variance rather than a function of the violation

of the assumption of equality of variances. For unequal

sample sizes though, the violation of the assumption causes
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a marked bias, and this is reflected in the power curves

by either an increase or decrease in the a region of the

curve at the point where the population means are equal.

Table 9

RESULTS FOR THE POWER OF THE t-TEST FOR
EQUAL SAMPLE SIZES AND VARIOUS k VALUES

n nv 0.0 0.5 1.0 1.5 ^.0 2.5 3.0 3.5 4.0 4.5 5.0

k = l/9

5 5 .069 .182 .477 .792 .953 .994 1.0
10 10 .058 .276 .697 .929 .999 1.0
15 15 .056 .429 .942 1.0

k=l/7

5 5 .066 .176 .458 .784 .950 .992 .999 1.0
10 10 .057 .243 .694 .917 .999 1.0
15 15 .055 .431 .941 .999 1.0

k=l/5

5 5 .056 .160 .453 .763 .944 .988 .999 1.0
10 10 .054 . 220 .675 .901 1.0
15 15 .055 .408 .930 1.0

k=l/3

5 5 .056 .156 .398 .715 .919 .987 .998 1.0
10 10 .054 .215 .655 .850 .998 1.0
15 15 .053 .369 .896 .999 1.0

k=l

5 5 .049 .110 .291 .544 .784 .929 .985 .999 1.0
10 10 .054 .190 .570 .889 .989 .996 1.0
15 15 .049 .253 .752 .976 1.0

k=3

5 5 .054 .085 .177 .324 .514 .697 .836 .925 .970 .992 .998
10 10 .055 .127 .333 .616 .845 .960 .999 1.00
15 15 .051 .169 .460 .794 .961 .996 1.0
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nx n
y

k=5

Ay

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

5 5 .060 .084 .145 .240
10 10 .057 .100 .234 .448
15 15 .054 .131 .330 .647

370 .526 .675 .796 .885 .937 .975
682 .859 .947 .990 1.0
858 .971 .994 1.0

k=7

5 5 .066 .077 .128 .207 .295 .425 .557 .675 .787 .872 .931
10 10 .056 .091 .187 .351 .567 .753 .889 .958 .982 .990 .999
15 15 .049 .114 .267 .517 .746 .907 .976 .995 1.0

k=9

5 5 .062 .080 .124 .183 .268 .360 .485 .598 .699 .789 .869
10 10 .059 .083 .174 .301 .471 .653 .805 .904 .965 .989 .996
15 15 .051 .098 .223 .436 .651 .841 .944 .985 .995 1.0

Table 9 continued
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k=3

k=5

Table 10
RESULTS FOR THE POWER OF THE t-TEST FOR

UNEQUAL SAMPLE SIZES AND VARIOUS k VALUES

nx n
y

0.0 0.5 1.0 1.5 2.0 2.5 3,.0

k=l/9

8 6 .094 .277 .671 .929 .994 .999 1, .

10 6 .123 .337 .746 .957 .997 .999 1, .

13 6 .165 .394 .805 .976 .999 1.00
15 6 .190 .433 .831 .981 .999 1.00
15 12 .084 .425 .92 5 .998 1.00
11 8 .094 .339 .800 .982 .999 1.00

k=l/5

8 6 .087 .242 .636 .912 .993 .999 1,.0

10 6 .106 .301 .701 .941 .994 1.00
13 6 .127 .361 .759 .968 .999 1.00
15 6 .163 .385 .798 .974 .999 1.00
15 12 .071 .407 .893 .998 1.00
11 8 .083 .311 .761 .976 .999 1.00

k=l/3

8 6 .075 .218 .590 .887 .987 .999 1 .0

10 6 .084 .265 .656 .933 .993 .999 1 .0

13 6 .107 .305 .710 .955 .996 1.00
15 6 .113 .318 .747 .963 .999 1.00
15 12 .065 .356 .868 .995 1.00
11 8 .071 .280 .725 .962 .999 1.00

3.5 4.0 4.5 5.0

8 6 .043 .075 .196 .423 .660 .834
10 6 .029 .075 .210 .436 .694 .872
13 6 .018 .060 .194 .439 .728 .903
15 6 .016 .049 .187 .468 .736 .930
15 12 .036 .133 .397 .749 .933 .992
11 8 .032 .094 .271 .539 .812 .942

8 6 .037 .060 .150
10 6 .024 .051 .126
13 6 .015 .037 .120
15 6 .011 .030 .108
15 12 .036 .090 .267
11 8 .036 .067 .193

949 .985 .996 .999 1.0
969 .993 .999 1.0
978 .997 1.00
985 .998 1.00
999 1.00
989 .999 1.00

280 .471 .666 .808 .916 .967 .992 .999
277 .490 .676 .849 .939 .982 .994 .999
279 .506 .727 .884 .962 .992 .998 1.0
276 .518 .743 .909 .971 .995 .999 1.0
555 .794 .948 .992 .999 1.00
384 .623 .809 .925 .980 .996 .999 1.0
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nx

k=7

8

n
y

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

6 .040 .058 .117 .220 .362 .526 .691 .819 .904 .962 .989
10 6 .024 .041 .095 .197 .363 .546 .724 .856 .936 .973 .990
13 6 .014 .026 .076 .190 .363 .576 .756 .884 .961 .988 .997
15 6 .008 .023 .072 .188 .374 .584 .778 .903 .970 .991 .999
15 12 .039 .080 .212 .418 .674 .854 .952 .991 .999 1.00
11

k=9

8

8 .035 .053 .140 .296 .48 5 .696 .836 .932 .978 .995 .999

6 .043 .053 .098 .181 .291 .436 .579 .736 .828 .902 .955
10 6 .022 .037 .079 .164 .288 .437 .605 .764 .865 .931 .970
13 6 .012 .024 .060 .146 .272 .454 .630 .798 .897 .960 .992
15 6 .007 .020 .053 .130 .277 .453 .6 53 .813 .920 .969 .993
15 12 .037 .075 .174 .352 .570 .765 .901 .965 .993 .999 1.00
11 8 .032 .056 .121 .248 .387 .580 .736 .872 .939 .979 .995

Table 10 continued
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VI. SUMMARY AND CONCLUSIONS

This paper has investigated the robustness of the

Student's t-test under violation of the assumption of the

homogeneity of variances. The estimated "true" rejection

rate and the estimated power of the test have been studied

for the cases of equal and unequal sample sizes. Extensive

use of computer simulation was made to conduct the study

in each area of interest.

It was observed that the determination of the point

at which the estimated "true" rejection rate became

significantly different from the specified rate was

dependent upon the criteria used. Two different criteria

were established:

A. The total number of rejections at a single a level

of 0.05.

B. The k value where the empirically generated

distribution became significantly different from the tail

of the t distribution.

It was also observed that the criteria became more

stringent and difficult to satisfy from A to B. Consequently,

for any case, the k critical intervals decreased when criteria

B is applied instead of criteria A.
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Table 11
LIMITS ON ROBUSTNESS OF t-TEST WITH RESPECT TO SCALE

FACTOR VALUES, EQUAL SAMPLE SIZES

Criteria Criteria
n
x

n
y

A B

5 5 2.50-2.75 2.25-2.50
10 10 4.25-4.50 3.00-3.25
15 15 5.75-6.75 3.25-4.00

Concerning the estimated "true" rejection rates for

"large" equal sample sizes of close to 15 observations

each, it can be seen that even under the most stringent

criteria, the ratio of the two population variances can be

between 3.25 and 4.00 and the t-test will still provide

an accurate statistical inference. Even at the small but

equal sample sizes of five observations each, the magnitude

of the variance ratio is great enough to imply that the

t-test is fairly robust with respect to Type I rejection

rates when the assumption of equality of variances is

violated.

The test loses its robustness dramatically when sample

sizes are unequal and a violation of equal variance occurs.

Welch's predicitions have been verified by data generated

by simulation. When the larger sample has the larger

variance the difference between the two means tends to be

underestimated and the estimated "true" rejection rate

falls below the specified level. When the larger sample
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has the smaller variance the difference between the two

means tends to be overestimated and the estimated "true"

rejection rate will be greater than the specified level.

With respect to power, the simulation has shown that

the power of the test is a function of the pooled variance

of the two populations and that it is not directly related

to the degree of the violation of the assumption. This

conclusion is valid for both equal and unequal sample

sizes

.
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APPENDIX A

The following is a detailed description of the FORTRAN

program used in this investigation. A sample program for

a single case is contained on page 63.

The first term, I DUMMY = is the beginning seed

needed to activate the normal random number generator.

The investigator must then enter the desired sample sizes

for NX and NY. A quantity for the code name VAR is next

read into the program. VAR is the standard deviation that

has to be applied to one of the two samples to effect the

desired variance ratio. The VAR value is printed on the

computer output at this point in the program.

The value for the variable name DMEAN is next read

into the computer. This value establishes the desired

difference in population means used in studying the power

of the test. In those instances when the estimated "true"

rejection rate was investigated with the population means

equal, DMEAN was set equal to 10. A DO loop is next

entered and within each cycle of the DO loop, the variable

names NUMACC, LPER10, LPER05, LPER02, LEER01, and LPER00,

used to tabulate the empirical frequency distribution, were

set equal to zero. In studying the power of the test, the

DO loop incremented the difference in the population means

by a factor of 0.5 for each cycle.
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The program next enters the actual iteration DO loop

which causes 50,000 different pairs of samples to be tested

by the t-test. NX observations, drawn from a N(0,1)

population, make up the sample representing the X population.

Each of these observations is multiplied by the value VAR

and then the value 10 is added. This causes the sample to

appear to have been drawn from a N (10, VAR) population.

NY observations are then drawn from the same initial

N(0,1) population and make up the sample representing the

Y population. To these observational values the value

represented by the variable DMEAN , is added. This causes

the NY sample to appear to have been drawn from a N (DMEAN, 1)

population.

With these two samples the t-test is then used to test

the hypothesis that two population means are equal. The

resulting absolute value of the observed t statistic is

set equal to the variable name ATOBS. ATOBS is then

compared against appropriate critical values of the t

distribution. These appropriate critical values are

functions of the desired a level, 0.10, 0.05, 0.02, 0.01,

and 0.001 and the number of degrees of freedom for the

samples being tested, NX + NY - 2. When the ATOBS value

is greater than a particular critical value, a rejection

of the null hypothesis occurs at that a level and the

corresponding variable name associated with the particular

a level of the empirical frequency distribution, is

incremented by one

.
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The number of the 50,000 iterations in which the t-test

concludes in accepting the null hypothesis, is tabulated

by the variable name NUMACC. This is done for an a level

of 0.05. From NUMACC the fraction of Type II errors is

calculated and also the power of the test.

At the conclusion of 50,000 iterations for each case,

NUMACC, 3 and the power of the test are printed out. Also

the values of the empirical frequency distribution which

have been developed from 'the test results are printed.
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FORTRAN IV G LEVEL 18 MAIN DATE = 70126

21

DIMENSION X(15)

,

Y(15)
I DUMMY =

NX = 15
NY = 6

DC 100 N = 1,9
READ (5, 5) VAR
FORMAT (F6. 4)
WRITE (6,21) VAR
FORMAT (//15X,F10 .4//)
DMEAN =4.5
DC 100 M = 1,11
DMEAN = DMEAN + . 5

NUMACC =

LPER10 =

LPER05 =

LPER02 =

LPER01 =

LPERCC =

DC 50 I = 1,50 (CO
DC 10 J = 1, NX

10 X(J) = GRN(IDUMMY)*VAR + 10
X(J) = X(J)
DC 2 K = 1,NY
Y(K) = GRN(IDUMMY)

2 Y(K) = Y(K) + DMEAN
PCOLX = (NX-1)*(SX(X,NX,XBAR))**2
PCCLY = (NY-1)*(SX(Y,NY,YBAR))**2
TLOW1 = SQRT( (PCOLX +POOLY) / (NX+NY- 2)

)

TLOW2 = SQRT((1.0/NX)+(1.0/NY))
TOBS = (XBAR-YBAR)/(TLOWl*TLOW2)
ATOBS = ABS(TOBS)
IF (ATOBS .LT. 1.729) GO TO 30
LPER10 = LPER10 + 1

IF (ATOBS .LT. 2.093) GO TO 30
LPER05 = LPER05 + 1

IF (ATOBS .LT. 2.539) GO TO 50
LPER02 = LPER02 + 1

IF (ATOBS .LT. 2.861) GO TO 5

LPER01 = LPER01 + 1

IF (ATOBS .LT. 3.883) GO TO 50
LPEROO = LPEROO + 1

GO TO 5

3 NUMACC = NUMACC + 1

50 CONTINUE
BETA = NUMACC/ 5 00 0.0
POWER = 1.0 -BETA
WRITE (6,601) NUMACC, BETA, POWER

60 FORMAT ( 1 10 , 10X , 2F14 . 6)
WRITE (6,61) LPER10,LPER05,LPER02 ,LPER01, LPEROO

61 FORMAT (5110/)
100 CONTINUE

STOP
END
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