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ABSTRACT

The assumption of a linear increasing failure rate

uniquely determines a life distribution which has mathe-

matically tractable qualities. The pertinent features

of this distribution are derived and listed in the paper.

Three methods of estimating the two parameters of the

linear increasing failure rate are derived. For each

procedure a computer program is provided which performs

the necessary calculations. Results utilizing simulated

failure data are listed for two of the methods of parameter

estimation.
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I. INTRODUCTION

A. BACKGROUND

An important aspect of life testing and system reli-

ability predictions is the proper selection of a life

distribution that describes the failure data generated by

the statistical model. An assumption which has wide

application is that the life distribution is exponentially

distributed. Several factors account for the extensive

use of the exponential distribution. Benjamin Epstein

and his associates have developed procedures and models

which can be used when the life distribution of the failure

data is assumed to be exponentially distributed. Further,

the exponential distribution has mathematically tractable

qualities which allow results to be obtained from rela-

tively easy computations.

There are cases where it may be detrimental to assume

that the failure data is exponentially distributed, partic-

ularly when the equipment being tested has an increasing

failure rate; i.e. the instantaneous probability of failure

increases with time or increased stress levels. Failure

data of equipment which behaves in such a manner is not

appropriately described by the exponential distribution;

consequently, there are cases where the assumption of an

exponential distribution may result in false conclusions

about a system's reliability.



Many life distributions are characterized by an increas-

ing failure rate and can be used to describe equipment which

ages. Perhaps the most extensively used distribution in

this class is the Wiebull distribution. In dealing with

equipment which ages, the Wiebull distribution is a better

selection than the exponential distribution.

Regardless of the parameters selected in the Wiebull

distribution, the instantaneous probability of failure at

time zero is zero. This precludes accurate description of

equipment which has a strictly positive instantaneous prob-

ability of failure at time zero. This limitation of the

Wiebull distribution is also experienced if the test is to

begin after the equipment has been in operation for some

time

.

B. PURPOSE

The purpose of this paper is to develop and examine a

life distribution function which is characterized by a

linear increasing failure rate. It is felt that such a

distribution will be appropriate when describing failure

data of some equipment which ages with time or increased

stress levels or both. The assumption of a linear increasing

failure rate (a + 2bt) may accurately describe equipment

which has a strictly positive instantaneous probability of

failure at time zero.

Accurate estimation of the parameters of the failure

rate is paramount if meaningful predictions are to be made



about a system's reliability. Hence, various methods of

estimating the parameters were examined in the paper. All

failure data was simulated by use of the computer. Computer

programs (utilizing FORTRAN IV language) are provided for

each method of parameter estimation examined.



II. SUMMARY AND CONCLUSIONS

A. SUMMARY

The assumption of a linear increasing failure rate

uniquely defines a life distribution which has mathematic-

ally tractable qualities. The first and second central

moments were derived and can be easily evaluated with the

use of standardized normal tables.

Three methods of estimating the two parameters of the

linear failure rate were examined. For each method and a

procedure is outlined and computer programs are listed

which perform the necessary calculations. Tables of results

are shown for the method of moments and fitted truncated

normal approaches to estimating the two parameter failure

rate. These results were gained from failure data which

was simulated by use of the computer. The method of gener-

ating simulated failure data from a life distribution with

linear increasing failure rate is shown in Appendix C.

The third method examined was the maximum likelihood

estimates of the parameters of the linear increasing failure

rate. The derivation of the maximum likelihood estimates of

the parameters is shown in Appendix B. Using simulated

failure data, results obtained for this method were not

accurate and are not listed. Limitations in obtaining the

maximum likelihood estimates for the parameters of the

linear failure rate are described.
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B. CONCLUSIONS

The assumption of a linear increasing failure rate is

more accurate than the assumption of a constant failure rate

(exponential) when describing equipment which experiences

aging. The important features of the life distribution

characterized by a linear increasing failure rate are

mathematically tractable and computational effort required

is not excessive.

The correct assumption that failure data is from a life

distribution with a linear failure rate has an advantage

over the more general assumption of a Wiebull distribution.

The advantage is that given the same failure data, tighter

confidence intervals can be obtained for the parameters of

the linear failure rate when compared to the confidence

intervals for the parameters of the Wiebull distribution.

The method of moments approach is the simplest of the

three methods examined and results (using simulated failure

data) are quite accurate. A possible restriction in using

the method of moments approach is that a large sample size

(50 or more) is needed to attain a high degree of accuracy.

However, for many types of equipment this may not be a

serious restriction.

The maximum likelihood procedure is a mathematically

cumbersome approach, primarily because the maximum likeli-

hood estimates involve the solution of a nth degree poly-

nomial where n is the number of failure times contained in

the data. This makes solving for the maximum likelihood

11



estimates virtually impossible without the use of a computer.

One reason for the inaccuracies in the maximum likelihood

procedure is that a large sample size could not be used in

order to properly simulate the life distribution.

By fitting the truncated normal distribution to failure

data from a life distribution with a linear increasing fail-

ure rate, accurate estimation of the slope of the linear

failure rate is obtained. Intercept estimates are not

accurate, consequently once the slope is estimated, it is

recommended that a relationship developed in the method of

moments and maximum likelihood estimates approach be used

to find an estimate of the intercept.

12



III. FAILURE RATE FUNCTIONS

A. CONSTANT FAILURE RATE

As mentioned earlier, the exponential distribution

has been widely used in life testing studies and programs.

Reasons for its wide application are that calculations

are easily made and methods of parameter estimation are

well known. In this section the exponential distribution

will be defined and pertinent features of the distribution,

as they apply to life testing, will be shown.

The exponential family of distributions has probability

density functions (p.d.f.) of the following form

(t;c)
•ct

t <

t >

where the parameter c_ is strictly positive. The cumulative

distribution function (c.d.f.) for the exponential is

G(t) =

1-e
-At

t <

t >

R(t) is the probability of survival to age t, which is

1 - G(t). It is assumed that components are tested until

they fail; hence, R(t) is Identical with component reli-

ability. In the exponential case the reliability at time t

is

13



t <

e"
Xt

t >0

The failure rate at time t is denoted by z(t) and has a

heuristic interpretation of the instantaneous probability

of failure at a time t, given that the component has not

failed prior to time t. z(t) is defined as the ratio of

the p.d.f. to the component reliability, which in the expo-

nential case is

{t) R(t)

The exponential family of distribution is the only

family of distributions which has a constant failure rate.

The constant failure rate is frequently referred to as the

"memoryless" property and has the following interpretation.

The instantaneous probability of failure in some time

interval (t,t+At) is independent of t; consequently, when

an item has been on test or in service for some time t and

it has not failed, the item's instantaneous probability

of failure is the same as when the item was new. For this

reason care must be exercised when the assumption of an

exponential distribution is made.

B. LINEAR INCREASING FAILURE RATE

The assumption of a linear increasing failure rate will

be appropriate in describing some equipment which exper-

iences aging or fatiguing. In this section the assumption

m



of a linear increasing failure rate will be the starting

point in deriving characteristics of the life distribution

(t)
-d^CRtt)) . a + 2bt

Integrating both sides of the equation yields

ln(R(t)) = -/ (a+2bt)dt

t
-/ (a+2bt)dt

e
°

= R(t)

By evaluating the integral, the reliability at time t is

t<0

e
-(at +bt ) t>Q

The c.d.f. is

R(t) = <

F(t) =

t<0

!_ e
- (at+bt

> fc >0

Since the distribution is strictly continuous the p.d.f. is

f(t;a,b)

t<0

(a +2bt)e-
(at+bt ) t>

where parameters a and b are positive.

If the parameter b is allowed to be zero, the p.d.f. is

recognized as the exponential distribution with parameter a,

15



Also by observing the p.d.f. when the parameter a is

allowed to be zero it is recognized as the Wiebull distri-

bution with parameter p = 2 and r = 1 where the p.d.f. of

the Wiebull distribution is defined as

h(t;p,r) = (

• r-1 -pf
rpt e ^

t<0

t>0

where $ is the c.d.f. of a standardized

The life distribution (denoted F) characterized by a

linear increasing failure rate has an expected value of

normal function. The second central moment is found to

be i (l-aE(T)). The derivation of E(T) and E(T 2
) are

shown in Appendix A.

16



IV. ESTIMATES OF LINEAR FAILURE RATE

A. STATISTICAL MODEL

The assumed statistical model consisted of a number, n,

of identical components which were put on test and remained

on test until failure. Each failure time is a random vari-

able T which has a density function fm(t) characterized by

a linear increasing failure rate, a + 2bt. The data gener-

ated (failure times) was the data used to estimate the

parameters of the linear failure rate. It was assumed that

stress and environmental levels remained constant throughout

testing.

B. METHOD OF MOMENTS

The approach for the method of moments technique of

estimating the parameters is to use the failure data to

estimate the first and second central moments of the

distribution F. Equating these estimates to the expres-

sions derived for the first and second central moments

results in two equations with a and b as unknowns. Simul-

taneous solution of these two equations results in the

estimates of a and b.

The first moment of the distribution is estimated by

1
n

Mt = — I t. where t. represents the failure time of the
1 n i=1

i i

ith item in the random sample of size n. The second moment

1
n

2
is estimated by M = - Z t. .

d n 1=1 x

17



Using these estimates and the expression for the first

and second central moments the following two equations are

obtained:

2

M = — - — MH
2 b b

H
l

Simultaneous solution for a and b in these two equations

result in the estimates of a and b_. Since the equations

are not in a closed form, an iterative technique was

employed.

A computer program which performs the indicated calcu-

lations for the method of moments technique is shown at

the end of this paper. Utilizing simulated failure data

the technique was tested and results for interesting

parameter values are shown in Table I.

C. FITTED TRUNCATED NORMAL DISTRIBUTION

The second technique examined in estimating the

parameters a and b is to fit failure data to a truncated

normal distribution. Motivation for this approach comes

from the fact that for some parameter values of the trun-

cated normal distribution the failure rate is nearly linear.

This characteristic and other features of the truncated

normal distribution are shown In an article by B. J.

Flehinger and P. A. Lewis (Ref. 4). Consequently, it was

felt that failure data from the life distribution F could

18



be used to estimate the parameters u and a of the truncated

normal distribution. Utilizing these estimated parameter

values the failure rate function of the truncated normal

distribution could be evaluated to determine slope and

intercept estimates.

The truncated normal distribution truncated at time zero

has a p.d.f. defined as

h(t;u,a ) = <

,yS7
2a'

-(t-y) :

t<0

t>0

where the truncated factor A is defined as

2a
/ — e

2
dw = *(-£)

/2W 2 /2¥
a

The c.d.f. of a truncated normal distribution is

t<0

a

and the reliability is defined as

f. t<0

R(t)

(*=*)/ t>0

Hence by definition the failure rate becomes

19



1 (t-u) 2

,. v h(t) 1 ^ 2a
2 _ nz(t) = R(ty

=
,t- U) / 2

e ^°

Using simulated failure data from the life distribution

2
F, estimates of u and a of the truncated normal distribu-

tion were obtained by utilizing a method outlined by Cohen

(Ref. 2). Basically, Cohen's method uses statistics x and

2
s which estimate the mean and variance of a normal distri-

bution which is not truncated. A correction factor is then

_ 2
used on x and s . Once these are determined the estimates

2
of y and a of the truncated normal distribution are ob-

tained by the following relationships

y = x + H(x - x )

a = s - H(x-x )

Where H is the correction factor which is a function of x

2
and s and x : x is the point at which the normal distri-

o' o ^

bution is truncated (x = for a life distribution).

Cohen has tabulated the function (H) in his article.

Once maximum likelihood estimates of the truncated

normal distribution are obtained from failure data, they

can be used to estimate a and b in the following manner.

The failure rate function of the truncated normal distri-

bution is evaluated at time zero: this becomes the estimate

of a, the intercept. Next a time t is selected and the

failure rate function is evaluated at time t . The estimate
o

of b is determined by evaluating

20



z(t ) - z(0)
b = ~^

This procedure was programmed and the program is sup-

plied at the end of the paper. Results of testing the

procedure utilizing simulated failure data are shown in

Table II.

D. MAXIMUM LIKELIHOOD ESTIMATES

A third method of estimating the parameters a and b of

the life distribution F is the maximum likelihood estimates

(MLE). The mathematics of the procedure becomes quite cum-

bersome and MLE solutions are nearly impossible without the

aid of a computer. The derivation of the MLE of a and b_ Is

shown in Appendix B. The remaining part of this section

will show the results of the derivation and indicate some

of the difficulties and restrictions when obtaining MLE of

a and b

.

Let T , i=l,2,...,n be a random sample of size n from
i

the life distribution F with parameters a and b. The joint

p.d.f. of this random sample is

n -(at.+bt.
2

)

fT (t.) = n (a+2bt.) e
x 1

1
1 1=1

x

The values of b which are necessary conditions for »

maximizing the joint p.d.f. are the solutions to the follow-

ing equation

21



n

.* 5 H—- ' 1 (1)
1 x

n+b(2t. Z t, - E t/)
1

J=l
J J=l

J

Upon expanding this equation and solving for b, the MLE,

the degree of difficulty becomes apparent, specifically; the

solution b requires solving a polynomial of degree n (sample

size). Not obvious is the fact that the coefficients of

this polynomial become quite large as the sample size is

increased.

Sufficient conditions for a maximum are not derived.

Rather, the joint density function is to be evaluated for

each positive value of b_ which is a root of equation (1).

The value of b which maximizes the joint density functions

is the MLE. Once b is obtained, a is solved for from the

relationship which is derived in Appendix B, namely;

n n p
Z t T

+ b Z t T
= n

J=l J J=l J

A program which performs the calculations in obtaining

the MLE of a and b is supplied at the end of the paper.

The solution of the n degree polynomial is obtained by

the Newton-Rhapston method. The sub-routine which calcu-

lates the roots cannot solve polynomials of degree 48 or

higher, hence, this is an upper limit on the sample size

which can 'be evaluated. The sub-routine used was IBM sub-

routine RTBLSP and is not listed. A second and more

22



restrictive constraint in using the MLE technique is that

the coefficients of the polynomial become exceedingly large

31and exceed the number 2~* which is the largest number

which can be stored in an IBM 360 computer. This constraint

becomes active when the sample size is approximately 25.

Results of testing the MLE procedure using simulated

failure data are not encouraging. It is felt that a major

factor for the inaccurate estimates is that a large enough

sample size could not be generated in order to accurately

simulate the life distribution. Results are not shown.

E. TABLES OF RESULTS

Tables I and II contain the results of estimating a

and b using the method of moments (Table I) and fitted

truncated normal (Table II) techniques. For each combination

of parameters a and b, the programs would use the value

azero and bzero to generate simulated failure times from

the life distribution F. Once failure data was generated,

the program would estimate the parameters from the simulated

failure data (failure times). These estimates are designa-

ted ahat and bhat. For example, the first case in Table I

shows that bzero and azero are .005 and .010 respectively.

Estimates of these parameters are .005 and .013. For each

case 100 failure times were generated and used in estimating

the parameters.

The results in Table I indicate that the method of

moments is an accurate way of estimating the parameters a

23



and b. Estimates of the slope (bhat) are exact for the ten

cases with azero equal to ,010. As azero increases to .030

estimates of the slope become high by as much as 16$ in

cases 26 and 27. Intercept estimates (ahat) are not as

accurate as the slope estimates, however, they are accept-

able. Estimates of the intercept are better when azero is

.030 as compared to the smaller value of 0.10 for azero.

Table II contains the results of the fitted truncated

normal technique. Slope estimates are more accurate than

intercept estimates. It can be seen that in many cases

slope estimates (bhat) are exact. Bhat is lQ% higher than

bzero in the worst case (case 30). Intercept estimates

(ahat) are not accurate and in many cases the estimates

are off by as much as a factor of ten.

24



TABLE I

METHOD OF MOMENTS

n = .LOO

|cASE BZERO BHAT AZERO AHAT CASE BZERO BHAT AZERO AHAT

1 .005 .005 .010 .013 16

17

18

19

20

21

22

2 3

24

25

26

27

28

29

30

.030 .032 .020 .022

2 .010 .010 .010 .014 .035 .038 .020 .021

3 .015 .015 .010 .014 .040 .043 .020 .028

4 .020 .020 .010 .015 .045 .047 .020 .027

5 .025 .025 .010 .015 .050 .052 .020 .027

6 .030 .030 .010 .016 .005 .007 .030 .029

7 .035 .035 .010 .017 .010 .013 .030 .030

8 .040 .040 .010 .017 .015 .018 .030 .034

9 .045 .045 .010 .019 .020 .024 .030 .030

10 .050 .050 .010 .019 .025 .029 .030 .028

11 .005 .006 .020 .022 .030 .035 .030 .032

12 .010 .012 .020 .028 .035 .040 .030 .031

13 .015 .017 .020 .024 .040 .044 .030 .030

14 .020 .022 .020 .022 .045 .049 .030 .030

15 .025 .027 .020 .022 .045 .054 .030 .033

25



TABLE II

PITTED NORMAL APPROXIMATION TECHNIQUE

n = 100 t

o :
] = 5

:ase BZERO BHAT AZERO AHAT CASE BZERO BHAT AZERO AHAT

1 .005 .005 .005 .025 16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

.030 .033 .015 .064

2 .010 ,010 .005 .035 .035 ,038 .015 .068

3 .015 .015 .005 .042 .042 ,046 .015 .073

ll .020 .020 .005 .046 .045 .051 .015 .077

5 .025 .027 .005 .050 .050 .056 .015 .081

6 .030 ,031 ,005 .056 .005 .006 .025 .043

7 .035 .036 .005 ,060 .010 .011 .025 .053

8 .040 .044 ,005 .064 .015 .017 .025 .059

9 .045 .049 .005 ,068 ,020 .023 .025 .063

10 .050 .054 .005 .071 .025 .028 .025 .070

11 .005 .006 .015 .035 .030 .033 .025 .074

12 .010 .010 .015 043 .035 .038 .025 .079

13 .015 .016 .015 .048 .040 .044 .025 .082

14 .020 .020 .015 .055 .045 .050 .025 .083

15 ,025 ,027 ,015 .060 .050 .059 .025 .088
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APPENDIX A

DERIVATION OF MEAN AND E(T 2
)

In order to determine the first central moment of the

life distribution F a well known theorem was used, namely,

E(T) - / t f(t) dt = / R(t) dt

In the case of the distribution F, the expected value is

-
e
-ut +bt

2
) dt

by factoring a b and completing the square in the exponent,

the integral becomes

& r
-b(t+*)2

-e / e dt

Except for the constant term this integral has the

general form of a normal density function. Multiplying by

one in the form /jF" //tJ[ yields
b / b

2

\3r °° -b(t+^-)
2

4b <T f /b" e
2b

dt
b 7T

where now the integrand is recognized as the normal density

a 1function with mean - — and variance yr- . Making the

27



necessary transformation to standardize the normal density

and recalling that

2

x _1_ -\
<S>(x) = / /p— e dw

_oo

the mean of the distribution P becomes

2
a

E(T) = e
W /^~ (1- $(—))

b
/2b

Since the standardized normal function is symmetric about

zero, the expected value can be written as

a
2

b
/2b

The second central moment is by definition

00 2v
E(T 2

) = / t
2
(a+2bt) e

" (at+bt } dt

which can be evaluated by the integration by parts method.

and dV =

(at+bt 2
)

Let u = t
2

and dV = ( a+2bt )e~
(at+bt

^dt, hence du = 2tdt

and V -e

2
o n /,n% f ^ °° °° -(at+bt )

E(T 2
) = t 2

e
-(at+2bt)

!
+ f 2t e dt

By using L'Hospital's rule, the first term on the right side

of the equation may be shown to be zero, hence



E(T
2

) = /" 2t e"
(at+bt2)

dt

= i f 2bt e-
(at+bt2)

dt + f (|-|)e- (at+bt2
)dt

b b b

= i /" (a+2bt) e"
(at+bt2)

- | /" e"
(at+bt2)

dt
D D

The first integral is one, since it is the density function

of F and the second integral is the E(F) derived above.

Therefore

E(T2
) = 1 - | E(T)

29



APPENDIX B

MAXIMUM LIKELIHOOD ESTIMATES

Let T . , i = 1,2,,.., n be a random sample of failure

times from the life distribution F which has a linear

increasing failure rate. The joint p.d.f. of the failure

times is the product of the marginal density functions

n -(at.+bt 2
)

f
T

(t. ;a,b) = n (a+2bt ) e (1)
i i=l

The logarithm of the joint p.d.f. is

n n n
p

ln(f^ (t.)) = L = £ ln(a+2bt.)-a £ t.-b I tf
L
±

x 1=1 i=l
1

i=l
x

The necessary conditions for a maximum are found by taking

the partial derivatives and equating them to zero.

3T
n

1
n

4t = E g xot t - Z t, = (2)
da ._-, a+2bt. . , i

aT n 2t n o

If = ^ iT2bir -
Jj

< • ° (3)

Multiplying equation (2) by a and equation (3) by b and

adding the two equations results in

n n p
L t, + b E tf (4)

i=l
1

i-1
x

30



Solving for a and substituting into equation (2) gives an

equation in b_ which will yield necessary conditions for

maximizing the likelihood function. The resulting equation

after simplification is

n
1

£ = i

i=l n+b(2t. Z t,-E t
2
T )1

J
J

J
J

(5)

When solving for values of b which are roots to this equa-

tion, it becomes apparent that it is necessary to solve a

n degree polynomial in b. For example, if n = 3, the

equation after expanding and simplifying became

t
1
t
2
t^b 3 + 2(t

1
t
2
+t

1
t^+t

2
t^)b 2

+ 3(t
1
+t

2
+t^)b =

The equation for a general n can be written

n-1

k=0
n-k

, n-k , k . k-l N nb (n -kn ) = (6)

where
n-k

V /

denotes the sum of the product of combinations

of n failure times taken n-k numbers at a time, e.g., if

n is four and k is one it denotes

- t^t^t^ +
^i^2

1:

4
+

^i^3^4
+ ^2^3^4

Another example is if n is six and k is zero

6

i,.
l

6|
t

" t
l
t
2
t
3
t
4
t
5
t
6
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The n degree polynomial in b which is equation (5)

or (6) can be solved by the use of an IBM program which is

called RTPLSB. This program utilized the Newton-Rhapston

method and solves polynomials up to degree 48.

The positive roots of equation (5) can be substituted

into equation (1) and the root which maximizes equation (1)

becomes the maximum likelihood estimate for b. The MLE of

a is determined from equation (4) with b being substituted

for b .
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APPENDIX C

FAILURE TIME SIMULATION

In order to obtain simulated failure times from a life

distribution which has a linear increasing failure rate, a

theorem which is stated in Lindgren (Ref. 5, p. 27*0 was

used: if T is a continuous random variable with distri-

bution function G(x), then U = G(T) and G(u) = P [G(T)<u] = u

for 0<_u<_l. That is, U is distributed uniformly over the

Interval (0,1). It can also be shown that if U is uniform

(0,1) then 1 - U is also uniform (0,1). Consequently, in

the case of the distribution with the linear increasing

failure rate the following relationship is true

P[R(T) > x] = x 0<x<l

= 1 x<0

= x>l

where T is a R.V. with distribution F(t), and, R(t)=l-F(t)

If x is a random number from the interval (0,1) then <

o

simulated failure time can be obtained by solving

-(a T+b T
2

)

R(T) = e ° ° = xn

where a and b are pre-selected parameter values. Solvingoo
for T yields
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-a ± /si - 4b„ ln(x )

o

2b
o

Since In x is negative and the parameters a and b^ are
o oo

always positive there will be one positive and one negative

solution to the equation. The negative failure time can be

disregarded.
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MFTHOO OF MOMENTS TFCHNIOUF

IMPLICIT RE*L*8( A-H),REAL*R<P-Z I

OIMENSION PHE(40),T(500)
DATA ohe/. 4801, .4404,. 4013 .* 363 2 ..' 3 264, . 2 912 .. 2 5 78,

l.?266,, 1917,. 171 It ,1469,. 1251 ,. 105 6,, 088 5. .0 735,. C606t
1,0495,. 0401,. 322,, 0256, ,0 202,. 01 5 8,. 012 2, .0100, .OORO.
1.0C5 4,.0040,.002 9,.on?2,,0016/

100 REA0I5.10I AZER0,B7FP0
10 FORMAT(2F5.M

IF(AZERU.GE..50>GO TO 1003
C
C ***CALCULATE THE EXPECTED VALUF OF T
C

EXPONT = A7FRfJ**2/(4.*BZERO)
ARGNOR =AZEP0**2/< 2. *fJSQRT(BZER01

)

INORM=100,*ARGNOR/!0
IF( INOOM.LT.l ) IN0RM=1
IF( IN0RM,GT,^0HNORM = 30
TMEAN=nEXP(EXP0NT)*DS0RT(3, 1417/BZERO )*PHE ( INO"M)

C
C ^-CALCULATE THE FSTIMATFO 1ST ANO 2N0 MOMENTS
C

IX=65539
SUMM=0.
N=100
On 200 1=1,

N

CALL RANOU( IX, IY,YFL>
IX=IY
TEMP=OLOG( YFL)
ARG=AZERO*AZERO-^. *BZERO*TEMP
RAO=DSQRT( ARG)
T(I )={-AZERO+RAD)/( ?,*8ZER0)

200 CONTINUE
XM1=0,
XM2=0.
On 300 1=1,

N

XM1=XM1 *T( I

)

XM2=XM? + T( I )*T( I )

30^ CONTINUE
XN=N
XMI=XM1 /XN
X*2=XM2/XN

C
C *+*CALCULATF EXPECTED VALUE OF T SQUARED
C

S C CM0M=1<, /RZERO-(AZFQO*TMEAN)/BZERO
C
C **'SOLVE FOP BHAT
C

BHAT = .r-01
40f CONTINUE

DUMM=( ( 1.-BHAT+XM2) /XM1)**2
ARGPHE = DI)MM/(2,*DSQPT( BHAT) )

I ARG=10 0,*ARGPHP/10
IARG=IARG*1
IF( IARG.GT.30 ) IARG=30
IF( IARG,LT.l) IARG=1
P0WER=0UMM/(4.*RHAT)
IF(P0WFR.GT.160. )P0WER=160.
F0N=DFXP(POWER)*DS0RT(3.1417/BHAT)^PHE( IAPG)
IF( EQN.LT.XM1 IGO TO 500
BHAT=BHAT+,001
IF(BHAT.GE.25)GC TO 999
GO TO 400

500 C n NTINUE
C
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C ***CALCULATF A HAT
C

AHAT = ( W-BHAT*XM? ) /XM1
C

Gn TO 100
qoq WRTTf=(6,?0)
"»« c nRMAT(«RHAT R^ACH r O .?^'»
1000 STOP

END
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FITTED TRUNCATFO NORMAL TFCHNIQUF

IMPLICIT RE*L*«(A-H),REAL*8<0-Z)
DIMENSION T<500) ,PHE< 30) ,CORR(88)

101 READ(5,10)A7ERO,B7ERO
10 F0RMAT(2F5,4)

DATA PHE/. 4801,. 4404,. 40 13,. 36 32,. 3264,. 2 912 ,. 2 578

,

1,22 66, ,1917,, 171 I,, 1469, . 125 1 ,. 105 6, . 0885. , 0735,. 0606,
1.0*95, .0401,. 32 2,. 0256,. 0202,. 01 5 8,. 0122,. C100,.00*0,
1. 005 4.. 0040,. 002 9.. C02 2,. 00 16/
DATA CORP/. 0001,, 001,. 0001 ,,0001, ,000 1 , , 000 I ,, 0001

1,. 0001,, 0001,. 00 11 ,.001 4, ,0024, .0034,, 00 5 2,, 00 70
l,.O0 91,.O09<5,.0148,.O183,.0 225,01268,.O319,,0^8,.0445
1,, 0514,. 0598,. 0683,. 0778,. 08 56,. 1000,, 110 8,.,1224,. 1377
1,. 15 17,. 163 5,. 1864,. 2042,. 2234,. 2439,. 2 705,. 2945,. 3201
13473,. 3764,.,4074,. 440 2,. 4751,. 5 121,. 5593,. 60 12,, 6453
I,. 691 8,. 75 9,. 80 30,. 8577,. 92 68 ,. 9875 , 1 , 064 , I , 144
1,1.2 30, 1,319, 1,413, 1,512,1.633,1.742,1.881 ,1 ,981
It 1. 9 99, 2. 30 1, 2, 41 1, 2, 65 1, 2. 90 1,3. 171, 3. 32 1,3. 361
1,3.9 21 ,4, 2 51,4. 961,5. 331, 5, 942, 6. 361, 7.0 M ,7.741
1,8.491,9.2 8 1, 10.41,11.61/
N = 500
IF(A7ER0.GT.,45)G0 TO 1000

C
C *** GENERATE FAILURES USING PARAMETERS AZERO AND B7FR0
C

IX = 6553<*
DO 100 1=1,

K

CALL RANDU( IX,IY,YFL)
IX=IY
TEMP=DLOG( YFL)
ARG=AZER0*AZER0-4. *8ZER0*TEMP
RAD=DSQRT( ARG)
T(

I

)=(-AZEPC*RAD)/(2.*BZFR0)
100 CONTINUE
C
C «** CALCULATE THF SAMPLE MEAN AND VARIANCE
r

X8AR=0,
SBAR=0,
XN=N
DUMM=0,
DO 200 1=1, IM

X3AR=XBA0+T( I

)

200 CONTINUE
X8AR=XBAR/XN
DO 300 1=1,

N

DUMM=(T( I )-XBAR)**2
S8*R=SBAR+0UMM
DUMM=0,

300 CONTINUE
SBAR=SBAP/XN

C ** CALCULATE THF ESTIMATE CORRECTION FACTOR
C

THETA=SBAR/(XBAR*XBAR)
JARG=10C0. *THETA/10
XMEAN=XBAR-CORR( JARG)*XBAR
XVAR=SRAR+CORR(JARG)*XBAR*XBAR
STDEV=DSQRT(SBAR)

C *** EVALUATE FAILURE PATE FUNCTION AT TIME ZFRO(AHAT)
C

TIME=0.
1 CONTINUE

ARGPHE= ( TI ME-XMEAN1 /STDEV
IARG1= 100.*ARGPHE/10
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I ARG=IABS< IARG1 \

IARG=I ARG+l
IF( IARG-LT. l.AND.IARG.GT.OI IARG=1.
I
p

(

I

ARG,GF,?0) IARG=?0
XNORM=PHF( 1ARGJ
IF( IARG1 .LT.O)GO TO 3
CONTINUE
Fy\RG=-l.*(T!MF-XMeANI**?/(2.*XVARl
ZRJNCT=( 1.0/ (XNORM* 9SQRT( 6.2 R* XV AP ))) 'OFXPtFXAOO)

c

c « < *
f

IF( TIMF.GT,0)GO TO
AHAT=ZFUNCT
TIMF=1,
GO TO 1

XNORM= XNORM + .5
f,n TO ">

CONTINUF

CALCULATF ESTIMATF

i o"6'o

RHAT=( ZFUNCT-AHAT

)

GO TO 101
STOP
FNO

OF BZFPO

/TIMF
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MAXIMUM LIKELIHOOD ESTIMATES TECHNIQUE

IMPLICIT REAL*8( A-H ) . R E AL* 8< 0- Z

)

DIMFNSTON A(54),U<54),V<54), C0NV(54),T(50) ,TPA(54)
1TPBI 54) ,AA( 501 ,CORR(50) , I COUNT (40) ,XJOINT(50I

1 READI5, 10)N,AZER0,BZER0
IFfN.GF.SniGO TO 1000
I^LAG=0
A(N*1)=0.
AAIN+1 )=0.

C
C ***GENERATE FAILURE TIMES
C

I X = 659
00 100 1 = 1,

N

CALL RANDUI IX, IY,YFL)
1 X=IY
TEMP=DLOG(YFL )

ARG=AZFR0*AZER0-4.*BZER0*TEMP
RAO=OSQRT( ARG)
T ( I)=(-AZER0+RAD)/(?,*3ZER0)

100 CONTINUE
f
C ***CALCULATE SUM AND SUM OF SQUARED FAILURF TIMES
C

SUM=0,
SUMSQ=1.
00 200 1=1 ,N
SUM=SUM+T(

I

)

SUMSQ=SUMSQ+T( l)**2
200 CONTINUE
C
C ***CALCULATE CCEFFICIENTS FOR AHAT ANO BHAT
C

SUMA=0,
SUMB=0-
PR0DA=1.
PRH0B=1.
DO 300 1=1 ,N
TRB( I )=?,*T< I )*SUM-SUMSQ
TRA( I)=ISUMSQ/(2.*T ( I) ) )-SUM
SUMA=SUMA*TRA( I

)

SUMR=SUMB+TRB(

I

)

ppf)DB=PROOB*TRB( I )

P«ODA=PRODA*TRA< I

)

300 CONTINUE
A(1)=PR0DB
AA( 1)=PR00A
DO 400 J=1,N
K = N-J
IF(K,EQ.l)GO TO 20
CALL CHOOZ(N,K,TRB,TRA,X,Z)
A( J+1)=X
AA( J+l I =Z

400 CONTINUE
GO TO 30

20 CONTINUE
30 A(N)=SUMB

AA(N)=SUMA

C '"CALCULATE CORRECTION FACTOR FOR COEFFICIENTS
C

LN=N-1
DO 500 1=1, LN
M=I-1
CORRU + 1 )=N**I-I*N**M

500 CONTINUE
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C0RR(1 ) = 1.
OP 600 1=1,

N

A( I)=A( I )*CCRR( I 1

AA< I )=AA( I )*CORR(I )

600 CONTINUE
C
C ***CALCULATF R p OTS IF NTH DEGREF POLYNOMIAL
r

CALL RTPLSB(N, A,U, V,CONV, IER)
WRITE(6,40» IER
WRITE (6, 60) (U( T) , V< I ),CONV( I ) , I=1,N)
IF( IFLAG,FQ,1 I GO TO 1

C
C - ^* CALCUL ATE AHAT
C

IFLAG=1
^0 101 1=1,

N

A(I )=AA( I)
101 CONTINUE

GO TO '02
C
C '^EVALUATE JOINT P,D.F, FOR EArH POSITIVE ROOT
C
5^5 CONTINUE

SUMM=0,
POWFR=o,
DO 700 I=1,N
IF{U( I) *LE,0, )G0 Tn RO^
00 BOO J=l ,N
P0WER = -1,*( AZEPn*T( Jt+U( I >*T( J)**2J
TF( POWER. OF, 170, >P0WER=17Q,
SUMM = SUMM+( AZERO+2. *UU )*T( J )

) * DFX P ( POW ER

)

POWER=0.
800 CONTINUE

XJOINT( I ) =SUMM
SUMM=0.

70^ CONTINUE
GO to 1

1000 STOP
END
IMPLICIT RFAL*8( A-H) , PEAL*B(0-Z)

SUBROUTINE CH007(N,K,TRR.TRA,X, Z)
1 MENS I ON TRR<^5) ,TPA(45) ,IA(40) ,IB(401

NN = N
KK = K
L = i

x=o.
z=o,
IA( 1 )=1
PRA=1.
PPR=1.

* I R( L ) = I A(L)
IF(|..E0,KK)GO TO 12
IA(L+l » = IA(L)-H
IF( IAIL + 1) .E0.NN+UG0 TO Q
L=L + 1

GO TO 3
° L=L-1

IF(L.FQ,0)GO TO 21
GO TO 1?

12 CONTINUE
OP 40 1=1, KK
PPA=PR.\*TRA< IBID)
PRR=PRR*TRR( IB( I )

)

40 CONTINUE
X=y+PRR
7=7+PRA
P»R=1.
P<?A=1.

1
"* IA(L )=IA(L )!
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IF( IA(U.EQ.NN*1 )G0 TO 9
on to ^

21 RETURN
END
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