

Calhoun: The NPS Institutional Archive DSpace Repository

Identification for linear electrical power system models

DeVille, Thomas G

: Massachusetts Institute of Technology
https://hdl.handle.net/10945/15746DEINTFICATION FOR LIEAREIECTRICAL POWER SVSTEM MODEIS
byTHOMAS GEORGE DEVILIEB.S., United States Coast Guard Academy(19,66)
SUBNTTTED IN PARTIAL FUIFILINENOF THE PEQUIRENEITS FOR THE DEGREFS OFNECHANICAL E:GIIEER ANDYASTER OF SCIE ICE
st the
YASSACHUSETTS INST ITUE OF TECHMOLOGY
Nay, 1971

DEN IFICAT ION FOR LIIEAR

ELECTRICAL POWER SYSTEM IOODEIS

by
 THOMAS GEORGE DEVILIE

Submitted to the Department of Nechanical Engireering and the Department of Electrical Engineering on Nay 14, 1971, in partial fulfillment of the requirements for the degrees of Nechanical Engineer and Nester of Science in Electrical Engineering.

ABSTRACT

Analyses of electric power systems ordinarily include only a small portion of the entire network. Effects external to the network of interest are modeled as loads or generators. A method is proposed for identifying an equivalent model of the external network without takirg any measurements in the external network itself. The method is simple and could easily be implemented to supplement state estimation techniques.

A linear load flow model which relates real power to voltage phase angle is ceveloped for analyzing the entire network and from this two models are ceveloped for relating measurements within the system of interest to the parameters of the equivalent model. It is found that there are two comporents to the equivalent model. One is a fixed structure and the other is an equivalent power. Since both models for identifying the equivalent network are in the form of an input, output relation with an unknown additive disturbance, a general solution for identifying linear static systems is found subject to certain conditions. Applying the solution to the two models for identifying the equivalent network, it is found that one of the models has an irherent tendency to pronuce consistently biased estimates of the equivalent model parameters. However, that same model has the advantage that it uses data for its input, output that is readily available and relatively accurate.
A. simulation made to test the proposed method is discussed for a sample system and the results agree well in both the actual parameters identified and predicted error. Several important points are discussed with a view toward implementation.

THES IS SUFERVISOR: Fred C. Schweppe
TITIE: Associate Professor of Electrical Engineering
THFS IS SUPFRVISOR: Henry M. Paynter
TITIE: Professor of Nechanical Engincering

My sincere thanks go to both Professor H. H. Paynter and Professor F. C. Schweppe for their assistance in this project. Professor Paynter's advice and encourgement, and Professor Schi:eppe's devotion to the accomplishment of this work are especially appreciated.

I an also very fortunate to have been able to discuss some of the problems encountered with Hichael Hayes.

Finally, I express glatitude to my parents-in-Ia\%, irr. and Urs. T. \because. Corbott, who provided the peace and quiet of their home on many weokends during the scope of this vork and also during the entire course of study at ITT.

Page
ABSTRACT 2
ACKIDNIEDGENE NT. 3
TABIE OF CONEMTS 4
LIST OF FIGURES $A N D$ TABIES 6
SECTION 1. Introduction 7
1.1 General Problem: İentification of Linear, Static Systems 8
1.2 Specific Froblem: Electrical Power Transmission Networks 11
1.3 Contents of Thesis 14
SECTION 2. Electrical Power Transmission Nodels 16
2.1 Nonlinear Load Flow Model. 16
2.2 Linear Real Fower - Voltage Angle Nodel. 20
2.3 Discussion of the Lirear Load Flow Kodel 21
SECTION 3. Nodels for Identification of the Equivalent System 26
3.1 Tie Line Power Flow Nodel. 26
3.2 Boundary Bus Impedarce Model 30
3.3 Sevarating Cwn System Estimation from Equivalent System Identification. 33
3.4 Use of Changes in Variables. 35
SECTION 4. İentification of Iinear, Static Systems 37
4.1 Conditions on the System 37
4.2 Naximum Likelihood Identification. 33
4.3 Ieast Squares Identification 41
4.4 Error Analysis 42
Page
SECTION 5. Identification of Power Systems 45
SECTION 6. Simulation Results 52
SECTION 7. Use in Power Systems-Some Practical Aspects 73
7.1 Use of Bus Power Inputs. 73
7.2 Nocel Verification 73
7.3 Estimating Equivalent Power Injections 75
7.4 Inputs Which Decrease Identification Error 75
7.5 Nodel Reduction When the External System Farameters are Known. 76
7.6 Identification of the Nonlinear Model. 77
SECTION 8. Conclusions 78
8.1 Areas for Further Study. 78
8.2 Summary 79
AFPEIDIX A. Nonlinear Ioad Flow Equations 82
APFE IDIY 3. Iinear Load Flow Equations 85
APFFIDIX C. Nonlinear Ièntification Fquations. 91
APPE D IX D. Naximum Likelihood Identification Equations 97
AFFEIDIX E. Computer Simulation Frogram 103
B IBLIOGRAPHY 134

LIST OF FIGURES AD TABIES

Page
Figure 1.1 Separation of the Entire Retwork into Regions. 12
2.1 Pi Transmission Line Nodel 17
2.2 Electrical Power Network Lumped Vodel. 17
3.1 Equivalent letwork Viewed From BS 32
3.2 Tie Line Power Flow Model. 32
3.3 Boundary Bus Impedance Model 32
6.1 Basic Flow Diagram For Simulation. 53
6.2 letwork Used For Simulation. 57
6.3 Identification Error for Increasing Disturbances 59
6.4 Identification Error for Increasing Measurements 60
6.5 Ietwork Used For Identification of a Iower Voltage Subsystem. 62
Table 2.1 Comparison of Line Power Flows Computed From the Linear and Nonlinear Nodels. 25
3.1 Identification Models. 34
6.1 Identification Error For Increasing Disturbances 65
6.2 Identification Error for Increasing Neasurements 68
6.3 Comparison of ICentification Models. 71
6.4 Identification of a Lover Voltage ietwork. 72

1. IMRRCDUCT ION

Analyses of electrical power transmission networks usually carry the implication that the network under consideration can be isolated from all other networks. In actuality this can seldom be realized since the network is interconnected with one or more outside networks, and whatever happens to the network being analyzed is determined at least to some extent on how it interacts with the others. Therefore, it would be convenient if the effects of all the outside networks on the network of interest could be sumarized by one equivalent network. In most cases the equivalent network would be considerably smaller than all the actual outside networks that it would represent. For instance, if the Now England network were interconnected with the rest of the United States at a half dozen points, as far as the New England network would be concerned, the entire rest of the United States could be shrunk to an equivalent network having a half dozen buses. A method is proposed for finding the equivalent network which could be used for contingency planning and state estimation techniques [3], [4], [5], $[8],[9]$, and $[12]$.

1.1 Genersl Problem: Identification of Linear, Static Systems

When analyzing a system, the usual approach is to surround the system of interest with a conceptual boundary. That within the boundary is idealized in some respect to emphasize certain features. Further, the idealized system is allowed to communicate with the outside only through certain conceptual ports. This idealized representation of actuality is called the system model and by analyzing the model conclusions can be drawn about the actual system. If the contents of the idealized system and what enters through the ports are completely known, then what happens to the idealized system can be found at least in principle. If the model is static, then only what currently enters is necessary to know the current state of the system. In such a case, if only knowledge of the current state is required, then the effect of the system outside the boundary is summarized by what enters through the ports. However, to know what will happen in the future, it is necessary to know what will enter in the future, and it may be that what enters through the ports is at least partly determined by how the system interacts with the outsice. If everything outside the system is also idealized, then everything of interest can be modeled by the two idealized systems. The first, the original system model, represents what is within the boundary. The second, the external system model, represents all that is not represented by the first. Further, the two models can only interact through the originally specified ports. The external system model may be rather extensive and it might be desirable to find an equivalent external model which would interact with the original system model in the same way.

The process of finding the equivalent system model, called identification here, is investigated for a class of linear, static system models. Nore specifically, it is assumed that the model consists of a structure which remains constant and two types of variables, inputs (or causes), and outputs (or effects). The mathematical notation using matrices is simply $\mathbf{Y}=\underline{C} \underline{u}$ where \underline{u} represents an input vector, y represents an output vector, and \underline{C} represents the structure.

If the original system model with its conceptual ports to the outsice is placed in this framework, then it might be possible to separate what exists at or passes through the ports into the same two types of variables. For the model of a physical system, the product of the two variables frequently represents a generalized power passing through the ports. An example would be the voltage level existing at an electrical terminal and the current passing through the terminal. By combining inputs from the ports with inputs internal to the system, the outputs can be evaluated. In the same way knowledge of inputs at the ports, inputs within the external system model, and the structure of the external model allow outputs of the external model to be found. That is, each model may be analyzed independently of the other by knowing what passes through the ports. However, in order to predict future outputs of the original system, knowledge of how the two models interact is necessary. That is the purpose of identifying the equivalent external system model.

The inputs and outputs can be divided into those belonging to the original system, those of the external system, and those common to both. Two general approaches to identifying the equivalent model are investigated. One involves combining both the original and external models

$\operatorname{an}=0 \quad 0=0$
and then identifying the new model using all the inputs not in the external model and only the outputs common to both. Another approach is to use the inputs and outputs at the ports or terminals to identify the equivalent external system separately. Both approaches are analogous to a black box which contains both the external model structure and inputs belorging to the external model. Inputs from the original system enter the black box and outputs are those which are common to both.

1.2 Specific Problem: Electrical Power Transmission Networks

Ordinarily when analyzing electrical power transmission systems, an arbitrary boundary is drawn about some part of the entire network and that part of the system is studied assuming power flowing in through the transmission lines on the boundary is known. The specific problem investigated is that of determining how an interconnected electrical power system affects a particular subsystem. The subsystem will be nemed "Cwn System" and referred to as CS for convenience. The rest will be named "External System" and referred to as XS. Together CS and XS form the entire system named Whole System" or WS. The External System may be the entire outside world as viewed from one region. Or OS may be a higher voltage transmission network looking down into a more complex lower voltage distribution network. XS may also be a relatively extersive region where power and voltage measurements are not made which is surrounded by $O S$ where measurements are made. To aid in analysis notation OS is further subdivided into "Internal System" or IS which has no immediate connections to XS and "Boundary System" which has immediate connections to XS. What is to be determined is an equivalent model for XS nemed "Equivalent System" or ES which will affect CS the same as XS.

It will be assumed that measurements are availabie in CS but not from XS. There are two aspects which set this particular identification problem apart from many others. One is that the identification must be primarily passive. It will not be possible to make any great manipulation of input signals (power flows) that unduly upset the system or do not conform to power consumption requirements. Also it can be expected

Figure 1.I Separation of the Entire Network Into Regions
that power requirements in XS will be about the same as in O, and since the unknown inputs in XS will cause unknown changes in the outputs of $0 S$, "signal to noise ratios" will be about one to one.

1. 3 Contents of Thes is

The basic conventional model which is used for analyzing networks will be developed in Section 2. Variables of interest for this model are real power, reactive power, voltage magnitude, and the relative voltage phase angle. The model is nonlinear and involves cross coupling of all variables. However it will be shown that under certain conditions the effect of voltage magnitude changes on real power is much less than the effect due to phase angle changes, so that an approximate linear model can be developed which relates real power to voltage phase angle. The linear model is not conventional but it is not new either. One of its chief advantages is a very significant reduction of computation requirements. But even though a linear model will be used for identifying the model for Equivalent System, it is still possible to incorporate the identified equivalent linear model in the nonlinear model for Cwn System. In Section 3 the linear model for External System is reduced to an equivalent model. Then two models for use in identifying Equivalent System are developed using the equivalent model. One of the models is attractive from the point of view that it only requires observatiors at the tie lines joining $C S$ to $X S$, but it will turn out that there are inherent problems with this model due to the correlation among variables at the tie lines. Both mocels will be placed in a general form and in Section 4 the solution to the general problem will be found subject to certain conditions. The solution, which has a very simple form, is derived from both an assumed mathematical probability model for the disturbances and the method of weighted least squares. Error analysis equations are also derived to study the source of errors

and find a measure of confidence in the identified parameters. Applying the solution of the general problem to the two specific identification models in Section 5, the effects of the conditions placed on the solution are analyzed. One shortcoming of the more easily implemented model is discussed in terms of independent inputs. A. simulation made to test the proposed methods of identification is discussed in Section 6, and the results show excellent correspondence with the theory. Errors in the identified parameters are within predicted accuracy. Finally, in Section 7 several aspects of the specific problem are discussed which involve increasing identification accuracy and verification of the identified model. It is also pointed out how models for identifying the equivalent system can be valuable by themselves for the purpose of network model reduction.

2. 1 Thnlinear Logd Flow Nodel

In reality an electrical power system consists of a large variety of devices, many capable of storing energy with time constants and natural frequencies spanning a very wide range. However for the purpose of computing power flows in sinusoidal steady state only a few types of components need be considered. The most important of these are the transmission lines which transmit power from points of generation to loads, the transformers, and the buses which form connecting points or nodes for transmission lines, transformers, generating stations, and loads. The values of interest are the power flows and bus voltages. Although the transformers, transmission lines, loans, and sources are capable of storing energy, when the system is in sinusoidal steady state, the usual approach is to treat energy storage devices as complex impedances or admittances and the sources and loads as injectiors of complex power. Hence although the system is oscillating, it can be analyzed as a static network.

A transmission line is of course a distributed parameter device. However as with most such devices, it is possible to model it as a set of lumped elements provided the physical size is small compared to the wavelength of the power trarsmitted. Since the wavelength of 60 hertz alternating current is roughly the distarce between New York and San Francisco, while most transmission lines are far less, lumped element models are quite valid for this purpose. The pi model, comon for this type of distriouted parameter device, is used here and consists of a resistance and inductance in series with shunt capacitance at each end.

U－
年

Figure 2.1 Pi Transmission Line Model

Figure 2.2 Electrical Power Network Lumped Model

Since the system studied is assumed to be in sinusoidal steady state, the capecitances and inductance can be represented as admittances. A bar above a symbol will denote a complex quantity (e.g. $\bar{E}_{i}=E_{i} e^{j D_{i}}=E_{i} \cos D_{i}+j E_{i} \sin D_{i}$). An underlined symbol will denote a matrix or vector. Let

$$
\bar{y}_{i k}=y_{i k} e^{-j \phi_{i k}}=\frac{1}{R_{i k}+j \omega L_{i k}}
$$

be the complex admittance of the series resistance and inductance, and let

$$
\overline{y s}_{i k}=j \omega \frac{C_{i k}}{2}
$$

be the admittance of the shunt capacitance. The current entering the transmission line at the $i^{\text {th }}$ node is $\overline{I L}_{i}=\bar{E}_{i} \overline{y s}_{i k}+\left(\bar{E}_{i}-\bar{E}_{k}\right) \bar{y}_{i k}$. Complex power is $P+j Q=\bar{E} \bar{I}^{*}\left(\bar{I}^{*}\right.$ is the complex conjugate of \bar{I}) so the power entering the transmission line from the $i^{\text {th }}$ node is

$$
\begin{equation*}
P L_{i k}-j Q L_{i k}=\bar{E}_{i}^{*} \overline{I L}_{i k}=\bar{E}_{i}^{*} \bar{E}_{i} \overline{y s}_{i k}+\bar{E}_{i}^{*}\left(\bar{E}_{i}-\bar{E}_{k}\right) \bar{y}_{i k} \tag{2.1}
\end{equation*}
$$

The network model consists of admittances which represent the transmission lines and transformers connected to buses or nodes. Also connected to each node is a current source which represents the load or generator at the bus. Power injections into the buses are positive for generators and negative for loads. As shown in Appendix A, a bus admittance matrix can be formed which represents the relation between the current sources at each bus to the bus voltages. Let $\bar{E}_{b u s}$ be a vector whose elements are the complex bus voltages, $\bar{I}_{\text {bus }}$ a vector of the correspording values of the complex bus current sources, and $\vec{Y}_{\text {bus }}$
the complex bus admittance matrix. Then the relation is $\bar{I}_{\text {bus }}=\overline{\underline{Y}}_{\text {bus }} \bar{E}_{\text {bus }}$ or for the $i^{\text {th }}$ bus, $\bar{I}_{i}=\sum_{k=1}^{N} \bar{Y}_{i k} \bar{E}_{k}$ where there are N buses. Correspondingly, the complex power injected into the $i^{\text {th }}$ bus by the current source at the bus is

$$
\begin{align*}
P_{i}-j Q_{i} & =\bar{E}_{i}^{*} \sum_{k=1}^{N} \bar{Y}_{i k} \bar{E}_{k}=E_{i} e^{-j D_{i}} \sum_{k=1}^{N} E_{k} e^{j D_{k}} Y_{i k} e^{-j \theta} i k \\
& =\sum_{k=1}^{N} E_{i} E_{k} Y i k^{e} e^{-j\left(\theta_{i k}+D_{i}-D_{k}\right)} \tag{2.2}
\end{align*}
$$

The load flow problem is that of given bus power injections, find the bus voltages and the transmission line power flows. It should be noted that even though the network is modeled with linear elements, the power flow equations are nonlinear.

2.? Linear Real Power - Voltage Angle Model

Under certain assumptions it is possible to reduce the complexity of the model. From Equation (2.1) line real power flow is

$$
\begin{align*}
P L_{i k} & =\operatorname{Real}\left\{j E_{i}^{2} y_{i k}+E_{i}{ }^{2} y_{i k} e^{-j \varnothing_{i k}}-E_{i} E_{k} y_{i k} e^{-j\left(\varnothing_{i k}+D_{i}-D_{k}\right)}\right\} \\
& =E_{i}^{2} y_{i k} \cos \varnothing_{i k}-E_{i} E_{k} y_{i k} \cos \left(\phi_{i k}+D_{i}-D_{k}\right) \\
P L_{i k}= & E_{i} y_{i k} \cos \varnothing_{i k}\left[E_{i}-E_{k} \cos \left(D_{i}-D_{k}\right)\right]+E_{i} E_{k} y_{i k} \sin \varnothing_{i k} \sin \left(D_{i}-D_{k}\right) \tag{2.3}
\end{align*}
$$

If it can be assumed that voltage magnitudes do not vary much from nominal operating points, that the transmission line reactance is much greater than the resistance so that $\theta_{i k} \approx 90^{\circ}$, and that voltage angle differences $\left(D_{i}-D_{k}\right)$ are small, then when $\widetilde{F}_{I}=\left(E_{1}\right)_{\text {nominal }}$, and $\tilde{E}_{2}=\left(E_{2}\right)_{\text {nominal }}, P L_{i k} \approx \tilde{E}_{1} \tilde{E}_{2} y_{i k} \sin \left(D_{i}-D_{k}\right)$. For convenience it will be assumed that $\tilde{E}_{1}=\widetilde{E}_{2}=1.0$. Using the approximation for the sine, $\sin \left(D_{i}-D_{k}\right) \approx D_{i}-D_{k}$ for $D_{i}-D_{k}$ small

$$
\begin{equation*}
P L_{i k} \approx y_{i k}\left(D_{i}-D_{k}\right) \tag{2.4}
\end{equation*}
$$

As shown in Apperdix B for such a case a linear load flow equation, $\underline{P}_{\text {bus }}=\underline{Y}_{\text {bus }} \underline{D}_{\text {bus }}$, relates real power injections to voltage angles. For a system with $(K+1)$ buses, $\underline{P}_{\text {bus }}$ is a $K x l$ vector of bus real power injections, $\underline{D}_{\text {bus }}$ is a KxI vector of bus voltage angles, and $\underline{Y}_{b u s}$ is a KxK matrix whose elements are nearly the same as the magnitude of elements of the complex matrix $\overline{\mathrm{Y}}_{\text {bus }}$. The $(K+1)^{\text {th }}$ bus is the reference bus at which the voltage angle is specified. Power injection at the reference bus is such that the algebraic sum of real power injections of all buses is zero. Rom [6] and Rom and Schweppo [8] proposed the

use of this linear load flow model for on-line estimation of voltage angles and transmission line power flows while Baughman and Schweppe [2] showed how its results compare with the nonlinear model.

2.3 Discussion of the Iinear Load Flow Nodel

Although the linear load flow model does not give the exact values of voltage angles obtainable by the nonlinear model nor does it account for voltage magnitude variations, there are some great advantages to using it for real power flow analyses even when the conditions on low line resistance and small voltage magnitude spread are only mildly met. Foremost is the simplicity of calculation. For $(K+1)$ buses the nonlinear model requires an iterative solution of a set of 2 K simultaneous nonlineor equations. The linear model involves K simultaneous linear equations. If the Rewton-Raphson method is used to solve the first, some comparison between the two can be made. The Newton-Raphson method for one iteration is of the form $\Delta a^{m}=\underline{p}^{m} \Delta c^{m}$. Since calculations for solutions of simultaneous linear equations are about proportional to the square of the number of equations, one iteration for the nonlinear model requires about four times the calculations for the linear model. Also the \underline{B}^{m} matrix must be calculated at each iteration whereas $\underline{Y}_{b u s}$ in the linear model remairs fixed for a given system. Finally, depending on the accuracy required, the Newton-Raphson method requires about four or more iterations. Another advantage is the ease with which the linear equations can be manipulated. This will becone very important in transforming the network for finding an equivalent system as it results in much insight. Historically, before digital
computers were in wide use, load flow snalyses were made with calculating boards which used physical components to model the network. The more versatile A-C calculating boards could account for voltage magnitudes and line power losses but were expensive and there were only about 50 in the United States [11]. The linear load flow model is somewhat analogous to the D-C calculating boaros which were more numerous and less expensive. The linear load flow model eccounts for individual bus real power injections while some D-C calculating boards used only one source.

The error involved in using the linear load flow model of course depends on how well the three conditiors are met. The assumption of small voltage angle differences between the ends of a transmission line usually results in the least error. Except in rather rare circurstances, angle differences are within 30° and usually they are within 10°. Comparing the values of the sine of an angle and the angle:

Angle (degrees)	Angle (radians)	Sine
100	$\frac{\pi}{18}=0.1745$	0.1736
200	$\frac{\pi}{9}=0.349$	0.342
300	$\frac{\pi}{6}=0.524$	0.500

Even up to 300 the approximation is within 5 , and under 10° it is within 0.5%.

The error involved in the other two assumptions can be analyzed through the nonlinear equation for line power flow. If the line conductance, $g_{i k}=y_{i k} \cos \varnothing_{i k}$, and the line suseptance, $-b_{i k}=-y_{i k} \sin \varnothing_{i k}$, are used then equation (2.3) is

$$
\begin{equation*}
P L_{i k}=E_{i} g_{i k}\left[E_{i}-E_{k} \cos \left(D_{i}-D_{k}\right)\right]+E_{i} E_{k} b_{i k} \sin \left(D_{i}-D_{k}\right) \tag{2.5}
\end{equation*}
$$

In order to make a rather rough estimate of errors let " 2 " represent either $b_{i k}$ or $y_{i k}$. Then when $\mathrm{PL}_{i k}$ is approximated by $b_{i k}\left(D_{i}-D_{k}\right)$ or $y_{i k}\left(D_{i}-D_{k}\right)$, for small angle differences

$$
P L_{i k} \approx E_{i} E_{i k}\left(E_{i}-E_{k}\right)+E_{i} E_{k} b_{i k}\left(D_{i}-D_{k}\right)
$$

and the relative error for $\widetilde{P L}_{i k} \approx a\left(D_{i}-D_{k}\right)$ is

$$
\begin{aligned}
& \text { relative error }=\frac{\widetilde{P L}-P L}{P L}=\epsilon \\
& \approx \frac{a\left(D_{i}-D_{k}\right)-E_{i} g_{i k}\left(E_{i}-E_{k}\right)-E_{i} E_{k} b_{i k}\left(D_{i}-D_{k}\right)}{E_{i} E_{k} b_{i k}\left(D_{i}-D_{k}\right)} \\
&=\frac{a-E_{i} E_{k} b_{i k}}{E_{i} E_{k} b_{i k}}-\frac{1}{E_{k}} \frac{g_{i k}}{b_{i k}} \frac{E_{i}-E_{k}}{D_{i}-D_{k}}
\end{aligned}
$$

For $E_{i} \approx 1.0$ and $E_{k} \approx 1.0, \epsilon$ is approximately

$$
\epsilon \approx \frac{a}{b_{i k}}-E_{i} E_{k}-\frac{g_{i k}}{b_{i k}} \frac{E_{i}-E_{k}}{D_{i}-D_{k}}
$$

If the voltage drop is expressed as a percentage, $\Delta E=1 C O\left(E_{i}-E_{k}\right)$, and if angle difference is expressed in degrees, $\Delta D=57.3\left(D_{i}-D_{k}\right)$ $\approx 50\left(D_{i}-D_{k}\right)$, the relative error is approximately

$$
\begin{equation*}
\epsilon \approx \tilde{\epsilon}=\left(\frac{a}{b_{i k}}-E_{i} E_{k}\right)-\frac{1}{2} \frac{g_{i k}}{b_{i k}} \frac{\Delta E}{\Delta D} \tag{2.6}
\end{equation*}
$$

The purpose of equation (2.6) is to show how the greatest portion of the error enters the linear transmission line power flow equation (2.4). The term $\frac{a}{b_{i k}}-E_{i} E_{k}$ shows how voltage magnitude changes from nominal
values affect the error, while $\frac{1}{2} \frac{g_{i k}}{b_{i k}} \frac{\Delta E}{\Delta D}$ shows the effect of resistance and voltage drop. Table 2.1 compares line flows as computed both by the nonlinear and linear equations along with actual errors and approximate errors predicted by equation (2.6). It is not immediately obvious whether $b_{i k}$ or $y_{i k}$ (actually $\tilde{E}_{i} \tilde{E}_{k} b_{i k}$ or $\tilde{E}_{i} \tilde{E}_{k} y_{i k}$ where \tilde{E}_{i} and \tilde{E}_{k} are nominal values) should be used for a in $P L_{i k} \approx a\left(D_{i}-D_{k}\right)$.

In view of the relatively small error and much less involved calculations required, and to preserve insight, the linear load flow model is used for the purpose of identifying the equivalent system model.

$\widehat{P L}_{i k}=b_{i k}\left(D_{i}-D_{k}\right)$		
$\hat{P I}_{i k}$	Actual Error	Estimated
.0873	-2.4	-2.0
.0873	-0.2	0.0
.0873	-10.2	-10.0
.0873	0.4	0.0
.0873	-5.8	-4.3
.0349	-10.1	-9.3
.0873	-6.9	-6.0
.0349	-12.3	-12.0

$$
\begin{array}{ccccccccc}
\mathscr{H} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & \dot{-i} & -i & \dot{-i} & \dot{-} & \dot{-i} & \dot{i} & \dot{i} & \dot{i}
\end{array}
$$

$$
\begin{array}{cccccccc}
\text { Y. } & 8 & -1 & 8 & n & 8 & 8 & 8 \\
\hline-i & -i & i & i & 0 & i & i & i \\
-i
\end{array}
$$

$$
\begin{gathered}
E_{1} \\
1.01 \\
1.00 \\
1.05 \\
1.00 \\
1.01 \\
1.01 \\
1.02 \\
1.02
\end{gathered}
$$

Table 2.1 Comparison of Line Power Flows Computed From the Linear and Nonlinear Models
3. NODEIS FOR DENIEICATION OF THE EQUIVAIENT SYSTEM.

3.1 Tie Line Pover Flow Nodel

As previously mentioned, two approsches to finding the equivalent system model will be used. The tie line power flow model views the external system as a separate system and attempts to find an equivalent model by usirg the tie line power flows and bus voltage angles where the boundary around $C S$ crosses the tie lines connecting $C S$ to XS. The bus injections and corresponding bus voltage angles can be separated into 3 groups, those belonging to IS (Internal System), those belonging to BS (Boundary System), and those belonging to XS (External System). Collectively TS and BS form CS (On System). PI and DI are the bus real power injection vector and the bus voltage angle vector respectively whose elements belong to $I S$. Similarly $P B$ and $D B$ belong to $B S$, and $P X$ and DX belong to XS . The letters I, B, and X will usually refer values belonging to $I S, B S$, and X S respectively. Since by earlier definition IS and XS are not immediately connected to each other by trarsmission lines, the linear load flow equations can be written:

$$
\left[\begin{array}{l}
\frac{P I}{P B} \tag{3.1}\\
\frac{P B}{Y X}
\end{array}\right]=\left[\begin{array}{ccc}
\underline{Y I I} & \underline{Y I B} & \underline{O} \\
\underline{Y I B} & \underline{Y B B} & \underline{Y B X} \\
\underline{O} & Y B X ' & \underline{Y X X}
\end{array}\right]\left[\begin{array}{l}
\underline{D I} \\
\underline{D B} \\
\underline{D X}
\end{array}\right]
$$

(The transpose of a matrix will be denoted by $Y^{\prime}=$ transpose of Y). The zero submatrices in the corners are due to the lack of direct coupling between IS and XS. The only coupling between CS and XS is reflected by the submatrix $Y B B$. Since the elements of VRB are values of admittances of transmission lines which have at least one of their
ends connected to buses in $B S$, YBB can be separated into that which belongs to $O S$, YBOS, and that which belongs to XS, YTL, so that $\underline{Y B B}=\underline{Y B \cap}+Y T L$ YTL will be a diagonal matrix whose elemerts will be the admittances of the tie lines connecting $O S$ to XS. Equation (3.1) can be written

$$
\left[\begin{array}{l}
\frac{P I}{\underline{P B}} \\
\underline{P X}
\end{array}\right]=\left[\begin{array}{ccc}
\underline{Y I I} & \underline{Y B} & \underline{0} \\
\underline{Y B}{ }^{\prime} & \underline{Y B C S} & \underline{0} \\
\underline{O} & \underline{0} & \underline{0}
\end{array}\right]\left[\begin{array}{c}
\frac{D I}{D B} \\
\underline{D X}
\end{array}\right]+\left[\begin{array}{ccc}
\underline{0} & \underline{0} & \underline{O} \\
\underline{0} & \underline{Y T L} & \underline{Y B X} \\
\underline{O} & \underline{Y B X} & \underline{Y X X}
\end{array}\right]\left[\begin{array}{l}
\underline{D I} \\
\underline{D B} \\
\underline{D X}
\end{array}\right]
$$

or

$$
\left[\begin{array}{l}
\underline{P I} \tag{3.2}\\
\underline{P B}
\end{array}\right]=\left[\begin{array}{ll}
\underline{Y I I} & \underline{Y I B} \\
\underline{Y I B} & \underline{Y B O S}
\end{array}\right]\left[\begin{array}{l}
\underline{D I} \\
\underline{D B}
\end{array}\right]+\left[\begin{array}{l}
\underline{0} \\
\underline{Y T I} \underline{D B}+\underline{Y B X} \underline{D X}
\end{array}\right]
$$

$\underline{P X}=\underline{V B X} \underline{D} \underline{D}+\underline{V X X} \underline{D X}$

Let PTL $=\underline{Y T I} \underline{D B}+\underline{Y B X} \underline{X X}$

Tie line power flow, PTL, is a vector of length equal to P3 and represents the power which flows out of the buses belonging to BS into the transmission lines which connect $B S$ to $X S$. Solving for $D X$ in equation (3.3) and substituting into equation (3.4)

$$
\begin{aligned}
& \underline{D X}=-\underline{Y X X}^{-1} \underline{Y B X} \underline{D B}+\underline{Y X X}^{-1} \underline{P X} \\
& \underline{P T L}=\underline{Y T L} \underline{D B}+\underline{Y B X}\left(-\underline{Y X X} \underline{X}^{-1} \underline{Y B X}{ }^{\prime D B}+\underline{Y X X}{ }^{-1} \underline{P X}\right) \\
& =\left(\underline{Y T L}-\underline{Y B X} \underline{Y X X}^{-1} \underline{Y B X}{ }^{\prime}\right) \underline{D B}+\underline{Y B X} \underline{Y X X}^{-1} \underline{P X}
\end{aligned}
$$

Define an equivalent external system bus admittance matrix, YEOX, and an equivalent external bus power injection vector, FEOX , such that

$$
\begin{align*}
& \underline{Y E O X}=-\underline{V B X} Y X X X^{-1} Y B X \tag{3.5}\\
& \underline{Y E O X}=\underline{A D X} \underline{Y X} \tag{3.6}\\
& A D X=-Y B X Y X X^{-1} \tag{3.7}
\end{align*}
$$

Then equations (2.2) and (3.4) can be rewritten

$$
\begin{align*}
& {\left[\begin{array}{l}
\underline{P I} \\
\underline{P B}-\underline{P T L}
\end{array}\right]=\left[\begin{array}{ll}
\underline{Y I I} & \underline{Y B} \\
\underline{Y} \underline{Y} & \underline{Y B O S}
\end{array}\right]\left[\begin{array}{l}
\underline{D I} \\
\underline{D B}
\end{array}\right]} \tag{3.8}\\
& \underline{P T L}=(\underline{Y T L}+Y E O X) \underline{D B}-\underline{P E Q X} \tag{3.9}
\end{align*}
$$

Equation (3.8) is simply the linear load flow model for ∞. By ircluding PTL with PB the problem can be solved as usual. Equation (3.9) for PTL shows two contributions. The first, (YTL + YEQX)DB is the port of PTL due solely to the values of voltage angles existing at the buses of BS. The second, PEOX is the equivalent power injections in XS as seen by BS. It is the bus power injections from PX that are routed to $B S$ by the structure of XS. It would be desirable to know both YEOX ard PEQX, but even knowledge of just YE2X would be valuable. For example, if the voltage angles and line power flows in $C S$ were wanted after a charge in bus power injections in \mathbb{C}, then if PX (and thus PEOX) did rot change between times t_{1} and t_{2}, the change could be found by substituting equation (3.9) into (3.8) so that at any tirre t

$$
\left[\begin{array}{l}
\underline{P I}(t) \\
\underline{P B}(t)+\underline{P E O X}(t)
\end{array}\right]=\left[\begin{array}{ll}
\underline{Y} I I & \underline{Y I B} \\
\underline{Y I B} & (\underline{Y B B}+\underline{Y E D X})
\end{array}\right]\left[\begin{array}{l}
\underline{D I}(t) \\
\underline{D B}(t)
\end{array}\right]
$$

and for the charge with $\operatorname{PEQ}\left(t_{2}\right)=\operatorname{PEOX}\left(t_{1}\right)$

$$
t=48
$$

θ

$$
\left[\begin{array}{l}
\underline{P I}\left(t_{2}\right)-\underline{P I}\left(t_{1}\right) \\
\underline{P B}\left(t_{2}\right)-\underline{P B}\left(t_{2}\right)
\end{array}\right]=\left[\begin{array}{ll}
\underline{Y I I} & \underline{Y B} \\
\underline{Y I B} & (\underline{Y B B}+\underline{Y E Q X})
\end{array}\right]\left[\begin{array}{l}
\underline{D I}\left(t_{2}\right)-\underline{D I}\left(t_{1}\right) \\
\underline{D B}\left(t_{2}\right)-\underline{D B}\left(t_{1}\right)
\end{array}\right]
$$

where $\underline{D I}\left(t_{1}\right)$ and $\underline{D B}\left(t_{1}\right)$ are found by measuring $\operatorname{PIL}\left(t_{1}\right)$ and using equation (3.8). On the other hand, if the voltage angles and line power flows in \cap were wanted after a change in the status of one or more transmission lines in $C S$, then if $\widetilde{Y I I}, \widetilde{Y B}$, and $\widetilde{Y B B}$ are the admittance matrices after the change, for $\underline{P I}\left(t_{2}\right)=\underline{P I}\left(t_{1}\right), \underline{P B}\left(t_{2}\right)=\underline{P B}\left(t_{1}\right)$, and $\operatorname{FEQX}\left(t_{2}\right)=\operatorname{FEQX}\left(t_{1}\right)$

$$
\left[\begin{array}{ll}
\underline{Y I I} & \underline{Y I B} \\
\underline{Y I B} & \\
Y B B+Y E Q X
\end{array}\right]\left[\begin{array}{l}
\underline{D I}\left(t_{1}\right) \\
\underline{Y B}\left(t_{1}\right)
\end{array}\right]=\left[\begin{array}{ll}
\widetilde{Y I I} & \underline{Y M B} \\
\widetilde{Y I B} & \widetilde{Y B B}+Y E Q X
\end{array}\right]\left[\begin{array}{l}
\underline{D I}\left(t_{2}\right) \\
\underline{X B}\left(t_{2}\right)
\end{array}\right]
$$

Everything is known except $D I\left(t_{2}\right)$ and $D B\left(t_{2}\right)$ since again $D I\left(t_{1}\right)$ and $D E\left(t_{1}\right)$ can be found by measuring PIL(t_{1}) and using equation (3.8).

As formulated, in equation (3.9) DB is an input vector and PTL is an output vector while FEOX might be thought of as an unknown disturbance. If a series of input, output measurements were taken, then it might be possible to find YEQX. Equation (3.9) will be referred to as the tie line power flow model.

3.2 Boundary Bus Impedance Model

The second approach involves an impedance matrix instead of an admittance matrix. In order to obtain the required form, an equivalent internal system as seen by BS looking into IS will be found which is similar to the equivalent external system. The top row of equation (3.8) is

$$
\underline{P I}=\underline{Y I I} D I+\underline{Y} \underline{B} \underline{D B}
$$

Solving for DI

$$
D I=-\underline{V} I^{-1} Y I B \underline{Y B}+\underline{Y} I^{-1} \underline{P I}
$$

and substituting into the second row of equation (3.8)
$\underline{P B}-\underline{P I I}=\underline{Y} I B^{\prime}\left(-\underline{Y} I I^{-1} \underline{Y} I B \underline{Q B}+\underline{Y} I^{-1} \underline{P I}\right)+Y B C S \underline{D B}$

Using equation (3.9) for PTL and combining terms
$\underline{F B}+\underline{F E O X}-Y I I^{\prime Y I I^{-1} E I=\left(\underline{Y B C S}+Y T I+Y E O X-Y I B ' Y I I^{-1} \underline{Y}\right) D B}$

Define an equivalent internal admittance matrix, YEQI, and an equivalent internal bus power injection vector, PEQI, similar to YE 2X and PEQX by

$$
\begin{align*}
& \underline{Y Q I}=-\underline{Y} I B^{\prime Y I I^{-1} Y I B} \tag{3.11}\\
& \underline{Y E Q I=A Q I P I} \tag{3.12}\\
& A O I=-Y I B^{\prime} Y I I^{-1} \tag{3.13}
\end{align*}
$$

Then equation (3.10) can be rewritten.

$$
\begin{equation*}
\underline{\mathrm{PE} P I}+\underline{P B}+\underline{\mathrm{PEOX}}=(\underline{\mathrm{VEQI}}+\underline{Y B B}+\mathrm{YEOX}) \mathrm{OB} \tag{3.14}
\end{equation*}
$$

PEQI is the power injection of PI which is routed to the buses of $B S$ by the structure of IS. YEQI is the structure of $I S$ as seen by BS. YBB was previously separated into that belonging to $C S, Y B O S$ and that belonging to XS, YTI. If YBCS is further separated into that belonging to $I S, Y B I S$ and that belonging to $B S, Y B B S$ so that $Y B O S=Y B I S+Y B B S$ or $\underline{Y B B}=\underline{Y E I S}+\underline{Y B E S}+Y T L$, then the quantity

$(Y B I S+Y E Q I) D B-$ FEQI

is the power flowing out of the buses of BS into the transmission lines connectirg IS and BS. If ES had no transmission lines unique to itself, then YBBS would be zero. Ey rewriting equation (3.14) with $\underline{Y B B}=\underline{Y P I S}+\underline{Y B B S}+Y T L$
$\underline{P E Q I}+\underline{P B}+\underline{P E O X}=(\underline{Y B I S}+\underline{Y E Q I}) \underline{D B}+\underline{Y B E S} \underline{D B}+(\underline{Y T L}+\underline{Y E D X}) \underline{D B}$

Equation (3.14a) can be considered to be two matrix Thevenin or Norton equivalent circuits, one for $I S$ and one for XS , coupled to the circuit for BS as illustrated in Figure 3.1. If equation (3.14) is solved for DB, then

$$
\underline{D B}=(Y E Q I+Y B B+Y E Q X)^{-1}(P E Q I+P B+P E O X)
$$

As shown in Apperdix B, (YEOI $+Y B B+Y E Q X)^{-1}$ is that part of the Whole System (WS) impedance matrix which relates PB to DB . Therefore denoting 29B for that part of the impedance matrix

$$
\begin{equation*}
\underline{D B}=\underline{Z B S}(\underline{P E O I}+\underline{P B})+Z B B Y P E X \tag{3.15}
\end{equation*}
$$

In this formulation (PEDI + PB) is an input vector, $D P$ is an output vector, and Z3R PEQX is an unknown disturbarce vector. Again if a

$\underline{P E Q I}+\underline{P B}+\underline{P E Q X}=(\underline{Y} Q I+\underline{Y B I S}) \underline{D B}+\underline{Y B E S} \underline{D B}+(\underline{Y E Q X}+\underline{Y M L}) \underline{D B}$
Figure 3.1 Equivalent lietwork Viewed From BS

$$
\text { PRI }=(\underline{Y E Q X}+Y M L) D B-P E Q X
$$

Figure 3.2 Tie Line Power Flow Nodel

$\underline{D B}=\underline{Z B B}(\underline{P E Q I}+\underline{P B})+\underline{Z B S} \underline{P E Q X}$

Figure 3.3 Boundary Bus Impedance \because odel
series of input, output measurements were teken, it might be possible to find ZBE.

For comparison purposes and in order to be able to investigate sources of approximation error later, the aralogous equations for the nonlinear model are developed in Appendix C.

2.3 Separeting Cwn System Estimation From Equivalent System İentification

The tie line power flow model and the boundary bus impedance model are illustrated in Figures 3.2 and 3.3. As shown in Table 3.1, both approaches result in equations of the form $\underline{z}=\underline{H} \underline{\underline{u}}+\underline{v}$ where \underline{u} is the input vector, \underline{z} the output vector, \underline{v} a vector of unknown disturbances, and $\underset{H}{ }$ the structure matrix to be identified. Both \underline{z} and \underline{u} were assumed to be known. However, since the state of $O S$ (i.e. the bus voltages) can be estimated by knowing what power enters from XS through the tie lines, the problem of estimating the state of $0 S$ can be separated from identifying the parameters of the equivalent system. What happens to ©S depends on $X S$, but the effect of $X S$ is summarized by the power flowing through the tie lines. Hence existirg state estiration techniques [5], [8], and [9] can be applied to obtain \underline{z} and \underline{u}. In practice there will be some error essociated with metering power and estimating voltage angles. In such a case let $\underline{v}_{\mathrm{Z}}$ be the error of output estimate and \underline{v}_{u} be the error of input estimate. Then
or

$$
\begin{aligned}
& \left(\underline{z}+\underline{v}_{z}\right)=\underline{H}\left(\underline{u}+\underline{v}_{u}\right)+\underline{v} \\
& \underline{z}=\underline{H} \underline{u}+\left(\underline{v}-\underline{v}_{z}+\underline{H}_{u}\right)
\end{aligned}
$$

$$
\begin{gathered}
-34- \\
\text { Table } 3.1 \\
\text { Identification Nodels }
\end{gathered}
$$

$$
\begin{array}{ccc}
\text { General } & \text { Bound ory Bus } & \text { Tie Line } \\
\text { Yodel } & \text { Impedance } & \text { Power Flow } \\
& \text { Model } & \text { Nodel }
\end{array}
$$

Output	\underline{z}	$\underline{D B}$	$\underline{\text { PIL }}$
Input	\underline{u}	$(\underline{\text { PE }}+\underline{\text { PEQI })}$	$\underline{D B}$
Noise	\underline{v}	$\underline{Z B B}$ PEQX	$-\underline{\text { PEQX }}$
Structure	\underline{H}	$\underline{Z S B}$	$\underline{Y T L+Y E Q X}$

By replacing $\underline{v}-\underline{v}_{z}+\underset{\sim}{\underline{V}}$ with a new unknown disturbance vector $\tilde{\underline{v}}$

$$
\underline{z}=\underline{H} \underline{u}+\underline{\tilde{v}}
$$

the same approaches can be used. The only difference is that there is generally more disturbance associated with identifying \underline{H}.

3.4 Use of Changes in Variables

Up to now $\underset{Z}{2}, \underline{u}$, and \underline{v} have not been associated with time. From now on $\underline{z}(t), \underline{u}(t)$, and $\underline{v}(t)$ will be used to designate a set of $\underline{z}, \underline{u}$, and \underline{v} for a particular time t. The disturbance vector $\underline{v}(t)$ will be treated as a noise term since $\underline{u}(t)$ is analogous to an input signal and $\underline{z}(t)$ is analogous to an output signal corrupted by noise. Ordinarily when working with estimation or identification problems, it is much easier if noise terms have a zero mean. In the two approaches above neither will in general have zero temporal mean noise vectors $\underline{v}(t)$. It is expected that $\underline{v}(t)$ will vary about some value depending on the time of day, the season, etc. However, if the differences in $\underline{Z}(t), \underline{u}(t)$, and $\underline{v}(t)$ are taken between two different times, then it may turn out that the difference or charge $\underline{v}(n)=\underline{v}\left(t_{n+1}\right)-\underline{v}\left(t_{n}\right)$ will have a zero mean. The general equation is then

$$
\begin{equation*}
\underline{z}(n)=\underline{H} \underline{u}(n)+\underline{v}(n) \tag{3.16}
\end{equation*}
$$

where

$$
\begin{aligned}
& \underline{z}(n)=\underline{z}\left(t_{n+1}\right)-\underline{z}\left(t_{n}\right) \\
& \underline{u}(n)=\underline{u}\left(t_{n+1}\right)-\underline{u}\left(t_{n}\right) \\
& \underline{v}(n)=\underline{v}\left(t_{n+1}\right)-\underline{v}\left(t_{n}\right)
\end{aligned}
$$

It will turn out that there are other reasons for using the difference in variables rather than the actual values of the variables. The most significant is that using the actual values may result in subtracting variables whose magnitudes are very lerge compared to their difference.

From now on, any reference to the previously defined symbols for voltage angles or power will refer to the charges of variable between two times rather than the actual values of the variables. Hence the tie line power flow model is

$$
\begin{equation*}
\operatorname{PTL}(n)=(Y T L+Y E Q X) D B(n)-\operatorname{PEQX}(n) \tag{3.17}
\end{equation*}
$$

and the boundary bus impedance model is

$$
\begin{equation*}
\underline{D B}(n)=\underline{Z B S}[\operatorname{PEOI}(n)+\underline{P B}(n)]+2 B B \operatorname{FEOX}(n) \tag{3.18}
\end{equation*}
$$

where

$$
\begin{aligned}
& \operatorname{PTL}(n)=\operatorname{PTL}\left(t_{n+1}\right)-\operatorname{PTL}\left(t_{n}\right) \\
& \underline{P B}(n)=\underline{P B}\left(t_{n+1}\right)-\underline{P B}\left(t_{n}\right) \\
& D B(n)=D B\left(t_{n+1}\right)-D B\left(t_{n}\right) \\
& \operatorname{PEQI}(n)=\operatorname{PEQI}\left(t_{n+1}\right)-\operatorname{PEQI}\left(t_{n}\right) \\
& \operatorname{PEQX}(n)=\operatorname{PEQX}\left(t_{n+1}\right)-\operatorname{EEQX}\left(t_{n}\right)
\end{aligned}
$$

for N sets of measurements $n=1,2, \ldots, N$.

4. DEITIFICATION CF LINEAR, STATIC SYSTENS

4.1 Conditions on the System

Both formulations for identifying the structure of the equivalent system have resulted in the same general equation, $\underline{z}(n)=\underline{H} \underline{u}(n)+\underline{v}(n)$ where there are N sets of input vectors, $\underline{u}(n)$, and output vectors, $\underline{z}(n)$. \underline{H} is the structure matrix and $\underline{V}(n)$ is a pseudo noise vector. The general problem can be stated:

Given: A set of input and output vectors $\underline{u}(n)$ and $\underline{Z}(n), n=1,2, \ldots, N$ Find: The structure matrix \underline{H} and statistical information on $\underline{v}(n)$. Several assumptions on $\underline{u}(n), \underline{v}(n)$, and \underline{H} will be made and later these will be justified when the results are applied to the specific problem. First elements of \underline{H} are assumed to be independent. Specifically it is assumed that \underline{H} is not symmetric. This is certainly not true for the specific problem, but various justifications will be given later. Second, $\underline{v}(n)$ is assumed to be a zero temporal mean process, or $E\{\underline{y}(n)\}=\underline{0}$. where $E\{a\}$ is the expected value of a. Third, $\underline{v}(n)$ is uncorrelated in time, or $E\left\{\underline{v}(n) \underline{v}^{\prime}(m)\right\}=\underline{0}$ for $n \neq m$ (n represents a sequence in time). Fourth, the covariance matrix for $v(n)$ is assumed to be of the form $\frac{l}{c(n)} \underline{R}$, or $E\left\{\underline{v}(n) \underline{v}^{\prime}(n)\right\}=\underline{R}(n)=\frac{1}{c(n)} \underline{R} . \quad c(n)$ can be called a confidence coefficient for the $n^{\text {th }}$ measurement set and indicates the relative noise level for that set. Larger $c(n)$'s indicate less noise. Fifth, $\underline{v}(n)$ is uncorrelated with $\underline{u}(n)$, or $E\left\{\underline{v}(n) \underline{u}^{\prime}(n)\right\}=\underline{0}$. At this point there are many possible approaches to the problem. Two will be used here. One is a tire tested mathematical approoch which assumes a particular probability model for the noise, and the other is an entineering approach, also time tested, which uses no model
for the probability distribution of the noise. It will turn out that both result in the same solution which will have a relatively simple form. The two approaches are:

1. Assume that the noise, $\underline{v}(n)$, has a Gaussian probability distribution (with a zero mean and covariarce of $\frac{l}{c(n)} \underline{R}$). Then find the maximum likelihood estimates of \underline{H} and \underline{R}.
2. Assume no particular probability model for the noise and use the method of weighted least squares to find $\hat{\underline{\underline{E}}}$. Then make a reasonable estimate for R.

The fact that the two approaches result in identical solutions is a well known consequence of using quadratic criteria for optimization and estimation of linear systems. However, in ačition to analytical convenience, it is also well known that in mary instances the Gaussian probability distribution itself is a rather reasonable probability. model.

4. 2 Maximum Likelihood Identification

First the solution will be found for the maximum likelihood approach assuming Galissian noise. There are four known items: the set of input vectors $\underline{u}(n), n=1,2, \ldots, N$, the set of output vectors, $\underline{z}(n), n=1,2, \ldots, N$, the corresponding confidence coefficients, $c(n), n=1,2, \ldots, N$, and the form of the probability distribution function for $v(n), n=1,2, \ldots, N$, which is zero mean Gaussian, with a covariance matrix $\frac{1}{c(n)}$. Note that \underline{R} itself is not known. Therefore if estimates of \underline{H} and \underline{R} can be found, the problem is solved since knowledge of R completely specifies the statistics of $\underline{v}(n)$ when $\underline{v}(n)$ is Gaussian.

The probability distribution function for the $K x l$ vector $\underline{v}(n)$ is

$$
p[\underline{v}(n)]=\left[(2 \pi)^{K} c^{-K}(n)|\underline{R}|\right]^{-\frac{1}{2}} e^{-\frac{1}{2} \underline{v}^{\prime}(n) c(n) \underline{R}^{-1} \underline{v}(n)}
$$

The likelihood function of $\underline{Z}(n)$ for a given \underline{H} and \underline{R} when $\underline{Z}(n)$ and $\underline{\underline{u}}(n)$ are $K x l$ vectors and \underline{H} and \underline{R} are $K x K$ matrices is

$$
p[\underline{Z}(n), \underline{u}(n): \underline{H}, \underline{R}]=\left[(2 \pi) c^{-K}(n)|\underline{R}|\right]^{-\frac{1}{2}} e^{-J[\underline{Z}(n), \underline{u}(n): \underline{H}, \underline{R}]}
$$

where

$$
J[\underline{Z}(n), \underline{u}(n): \underline{H}, \underline{R}]=\frac{1}{2}[\underline{Z}(n)-\underline{H} \underline{u}(n)]^{\prime} c(n) R^{-1}[\underline{Z}(n)-\underline{H} \underline{u}(n)]
$$

Since $\underline{v}(n)$ is uncorrelated in time $\left(E\left\{\underline{\underline{v}}(n) \underline{\underline{v}}^{\prime}(m)\right\}=\underline{0}\right.$ for $n \neq m$), the joint probability distribution function for the set $\underline{V}=\{\underline{v}(1), \underline{v}(2), \ldots, \underline{v}(N)\}$ is the product of the distribution functions for $\underline{v}(1), \underline{v}(2) \ldots, \underline{v}(N)$.

$$
\begin{aligned}
p(\underline{v}) & =p[\underline{v}(1)] p[\underline{v}(2)] \ldots p[\underline{v}(N)] \\
& =\left[(2 \pi)^{N K}|\underline{R}|^{N} \prod_{n=1}^{N} c^{-K}(n)\right]^{-\frac{1}{2}} \times e^{-\frac{1}{2} \sum_{n=1}^{N} \underline{v}^{\prime}(n) c(n) \underline{R}^{-1} \underline{v}(n)}
\end{aligned}
$$

Let $p(\underline{Z}: \underline{H}, \underline{R})$ be the likelihood function of the sets $\underline{Z}=\{\underline{z}(1), \underline{z}(2), \ldots, \underline{z}(N)\}$, and $\underline{U}=\{\underline{u}(1), \underline{u}(2), \ldots, \underline{u}(N)\}$ for a given \underline{H} and R . Then

$$
\begin{equation*}
p(\underline{Z}, \underline{U}: \underline{H}, \underline{R})=\left[(2 \pi)^{N K}|\underline{R}|^{N} \prod_{n=1}^{N} c^{-K}(n)\right]^{-\frac{1}{2}} e^{-J(\underline{Z}, \underline{U}: \underline{H}, \underline{R})} \tag{4.1}
\end{equation*}
$$

where

$$
J(\underline{Z}, \underline{U}: \underline{H}, \underline{R})=\frac{1}{2} \sum_{n=1}^{N}[\underline{Z}(n)-\underline{H} \underline{u}(n)]^{\prime} c(n) \underline{R}^{-1}[\underline{Z}(n)-\underline{H} \underline{u}(n)]
$$

Let $\underline{\hat{H}}$ and $\underline{\hat{R}}$ be the values of \underline{H} and \underline{R} which maximize the likelihood

function when \underline{Z} and \underline{U} are the actual measured sets. As developed in Appendix D these maximum likelihood estimates are

$$
\begin{equation*}
\hat{\hat{H}}=\left[\sum_{n=1}^{N} c(n) \underline{z}(n) \underline{u}^{\prime}(n)\right]\left[\sum_{n=1}^{N} c(n) \underline{u}(n) \underline{u}^{\prime}(n)\right]^{-1} \tag{4.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\hat{R}=\frac{1}{N} \sum_{n=1}^{N} c(n)[\underline{z}(n)-\underline{\hat{H}} \underline{u}(n)][\underline{z}(n)-\underline{\hat{H}} \underline{u}(n)]^{\prime} \tag{4.3}
\end{equation*}
$$

provided the vectors $\underline{u}(n), n=1,2, \ldots, N$ are such that the inverse of $\left[\sum_{n=1}^{N} c(n) \underline{u}^{N}(n) \underline{u}^{\prime}(n)\right]$ exists.

Two things should be noted. First, it is not necessary to know $\hat{\underline{R}}$ in order to find \hat{H}. This is significant in that it is not necessary to solve for $\underline{\hat{R}}$ and \hat{H} simultaneously which would most likely result in greatly increased computation requirements. The second is how $\hat{\mathrm{P}}$ varies with $\hat{\underline{H}}$. The quantity $N[t r a c e(\underline{\hat{R}})]$ is actually $2 \mathcal{L}(\underline{Z}, \underline{U}: \underline{\hat{H}}, \underline{R})$ when \underline{R} is set equal to the identity matrix. As seen in Appendix D, \hat{H} is the value of \underline{H} such that the matrix gradient of J with respect to H is zero. Then

$$
N \frac{\partial}{\partial \underline{H}}[\operatorname{trace}(\underline{R})]=\frac{\partial}{\partial \underline{\hat{H}}}\left[\left.2 J(\underline{Z}, \underline{U}: \underline{H}, \underline{R})\right|_{\underline{R}=\underline{I}}\right]=\underline{0}
$$

or in some respect $\underset{\underline{R}}{ }$ is not sensitive to small errors in \hat{H}.

4. 3 Least Squares ICentification

The Gaussian distribution of $\underline{v}(n)$ was assumed in order to provide a probalistic framework, however the same equations can be obtained by assuming no probability model for $\underline{v}(n)$ and instead relying on the nearly universal method of weighted least squares. The sum of weighted square errors between $\underline{Z}(n)$ and $\underline{H} \underline{\underline{u}}(n)$ is

$$
S=\frac{1}{2} \sum_{n=1}^{N}[\underline{z}(n)-\underline{H} \underline{u}(n)]^{\prime} c(n) \underline{T}[\underline{z}(n)-\underline{H} \underline{u}(n)]
$$

where \mathfrak{I} is an unknown weighting matrix. Since S is the same as $J(\underline{Z}, \underline{U}: \underline{H}, \underline{R})$ when $\underline{T}=\underline{R}^{-1}$, from Appendix D it can be seen that the estimate for H did not depend on R anyway and the value of \underline{H} which minimizes S for given sets $\underline{\underline{Z}}(1), \underline{z}(2), \ldots, \underline{z}(N)$ and $\underline{\underline{u}}(1), \underline{u}(2), \ldots, \underline{u}(N)$ will be the same as the maximum likelihood estimate for \underline{H}. Under such circumstances, a reasonable estimate for $E\left\{c(n) \underline{v}(n) \underline{v}^{\prime}(n)\right\}$ is

$$
\begin{aligned}
\underline{R} & =E\left\{c(n) \underline{v}(n) \underline{v}^{\prime}(n)\right\} \approx \frac{1}{N} \sum_{n=1}^{N} c(n) \underline{\hat{v}}(n) \underline{\hat{v}}^{\prime}(n) \\
& =\underline{\underline{p}}=\frac{1}{N} \sum_{n=1}^{N} c(n)[\underline{z}(n)-\underline{\hat{H}} \underline{\underline{u}}(n)][\underline{z}(n)-\underline{\hat{H}} \underline{u}(n)]^{\prime}
\end{aligned}
$$

which is the same as the maximum likelihood estimate equation (4.3).

4.4 Error Anelysis

The error analysis which follows only uses the covariance of $\underline{v}(n)$.
For both the approach assuming Gaussian noise and the least squares approach, the covariance of $\underline{v}(n)$ was assumed to be $E\left\{\underline{v}(n) \underline{v}^{\prime}(n)\right\}=\frac{I}{c(n)} \underline{R}$. Therefore results of the error analysis are anplicable to both approaches.

When the equation for $\underline{z}(n)$ is substituted into equation (4.2)

$$
\begin{align*}
\underline{\hat{H}} & =\left[\sum_{n=1}^{N} c(n) \underline{H} \underline{\underline{u}}(n) \underline{u}^{\prime}(n)+\sum_{n=1}^{N} c(n) \underline{v}(n) \underline{u}^{\prime}(n)\right]\left[\sum_{n=1}^{N} c(n) \underline{u}(n) \underline{u}^{\prime}(n)\right]^{-1} \\
\hat{\hat{H}}-\underline{H} & =\left[\sum_{n=1}^{N} c(n) \underline{v}(n) \underline{u}^{\prime}(n)\right]\left[\sum_{n=1}^{N} c(n) \underline{u}(n) \underline{\underline{u}}^{\prime}(n)\right]^{-1} \tag{4.4}
\end{align*}
$$

One of the conditions on the solution was that $\underline{v}(n)$ was not correlated with $\underline{u}(n)$. It is interesting to determine the effect when that condition is not met. Let \underline{V} be a weighted average of $\underline{u}(n) \underline{u}^{\prime}(n), n=1,2, \ldots, N$

$$
\begin{equation*}
\underline{N}^{N}=\left[\sum_{n=1}^{N} c(n)\right]^{-1}\left[\sum_{n=1}^{N} c(n) \underline{u}(n) \underline{u}^{\prime}(n)\right] \tag{4.5}
\end{equation*}
$$

If $\underline{v}(n)$ is correlated with $\underline{u}(n)$ so that the weighted average of $\underline{v}(n) \underline{u}^{\prime}(n), n=1,2, \ldots, N$, is

$$
\begin{equation*}
\underline{\underline{N}}=\left[\sum_{n=1}^{N} c(n)\right]^{-1}\left[\sum_{n=1}^{N} c(n) \underline{v}(n) \underline{u}^{\prime}(n)\right] \approx \mathbb{E}\left\{\underline{v}(n) \underline{\underline{u}}^{\prime}(n)\right\} \tag{4.6}
\end{equation*}
$$

Then

$$
\begin{equation*}
\hat{H}-\underline{H}=\underline{M} \underline{\underline{R}}^{-1} \tag{4.7}
\end{equation*}
$$

and as N increases $\hat{H}-\underline{H}$ will not go to zero as would be the case if $\underline{v}(n)$ were not correlated with $\underline{\underline{u}}(n)$. Error is introduced in the form of a bias which is proportional to the correlation of $\underline{v}(n)$ with $\underline{u}(n)$ and inversely proportional to the "power" of $11(n)$.

From equation (4.2) it may be noted that only the $i^{\text {th }}$ element of
$z(n)$ affects the estimate of the $i^{\text {th }}$ element of \mathbb{H}. Similarly from equation (4.4) only the $i^{\text {th }}$ element of $\underline{v}(n)$ affects the $i^{\text {th }}$ row of the error $\hat{H}-\underline{H}$. This reflects the fact that $\underline{\underline{H}}$ was assured to be, in general, not symmetric, and that the $i^{\text {th }}$ element of $\underline{z}(n)$ is affected only by the $i^{\text {th }}$ row of \underline{H} and the $i^{\text {th }}$ element of $\underline{v}(n)$. Iet $\underline{h}_{i}^{\prime}$ be the $i^{\text {th }}$ row of $\underset{\text {. }}{ }$

$$
\underline{\underline{L}}=\left[\begin{array}{c}
\underline{h}_{1}^{\prime} \\
\underline{h}_{2}^{\prime} \\
\cdot \\
\vdots \\
\underline{h}_{K}^{\prime}
\end{array}\right]
$$

Then the estimate of the $i^{\text {th }}$ row of H is

$$
\begin{equation*}
\underline{\hat{h}}_{i}^{\prime}=\left[\sum_{n=1}^{N} c(n) z_{i}(n) \underline{u}^{\prime}(n)\right]\left[\sum_{n=1}^{N} c(n) \underline{u}(n) \underline{u}^{\prime}(n)\right]^{-1} \tag{4.8}
\end{equation*}
$$

and the error is

$$
\begin{equation*}
\hat{\underline{h}}_{i}^{\prime}-\underline{h}_{i}^{\prime}=\left[\sum_{n=1}^{N} c(n) v_{i}(n) \underline{u}^{\prime}(n)\right]\left[\sum_{n=1}^{N} c(n) \underline{u}^{N}(n) \underline{u}^{\prime}(n)\right]^{-1} \tag{4.9}
\end{equation*}
$$

The error covariance between elements of the $i^{\text {th }}$ row and $j^{\text {th }}$ row of \hat{H} is

4

\section*{| - -1 |
| :--- |
| -5 |
 -}

$1=1$

$$
\begin{aligned}
& E\left\{\left(\hat{h}_{i}-\underline{h}_{i}\right)\left(\underline{\hat{h}}_{j}-\underline{\underline{h}}_{j}\right)^{\prime}\right\}=\underline{p}_{i j} \\
& =E\left\{\left[\sum_{n=1}^{N} c(n) \underline{u}(n) \underline{u}^{\prime}(n)\right]^{-1}\left[\sum_{n=1}^{N} c(n) \underline{u}(n) v_{i}(n)\right]\right. \\
& \\
& \left.x\left[\sum_{n=1}^{N} c(n) v_{j}(n) \underline{u}^{\prime}(n)\right]\left[\sum_{n=1}^{N} c(n) \underline{u}(n) \underline{u}^{\prime}(n)\right]^{-1}\right\} \\
& =\left[\sum_{n=1}^{N} c(n) \underline{u}(n) \underline{u}^{\prime}(n)\right]^{-1}\left[\sum_{n=1}^{N} \sum_{m=1}^{N} c(n) \underline{u}(n) \underline{u}^{\prime}(m) c(m) E\left\{v_{i}(n) v_{j}(m)\right\}\right] \\
& \\
& x\left[\sum_{n=1}^{N} c(n) \underline{u}(n) \underline{u}^{\prime}(n)\right]^{-1}
\end{aligned}
$$

Since $E\left\{\underline{v}(n) \underline{v}^{\prime}(m)\right\}=\underline{0}$ for $n \neq m$ and $E\left\{\underline{v}(n) \underline{v}^{\prime}(n)\right\}=\frac{1}{c(n)} \underline{R}$

$$
\begin{equation*}
\underline{P}_{i j}=E\left\{\left(\hat{\underline{h}}_{i}-\underline{\underline{h}}_{i}\right)\left(\hat{\underline{h}}_{j}-\underline{\underline{h}}_{j}\right)^{\prime}\right\}=R_{i j}\left[\sum_{n=1}^{N} c(n) \underline{u}(n) \underline{\underline{\prime}}^{\prime}(n)\right]^{-1} \tag{4.10}
\end{equation*}
$$

Let c be the average of the $c(n)$'s.

$$
c=\frac{1}{\mathbb{N}} \sum_{n=1}^{N} c(n)
$$

Then in terms of $\underline{\underline{U}}$, the weighted average of $\underline{u}(n) \underline{u}^{\prime}(n)$ defined by equation (4.5) the error covariance is

$$
\begin{equation*}
\underline{P}_{i j}=\frac{1}{N} \frac{R_{i, j}}{c} \underline{W}^{-1} \tag{4.11}
\end{equation*}
$$

As might be expected, on the average, the error covariance of the estimate is inversely proportional to the number of measurement sets. In terms of signal to noise ratios, the quantity $c^{-1} R_{i j}$ is a measure of the power of the noise $\mathrm{v}(\mathrm{n})$, and $\underline{\mathrm{N}}$ is a measure of the power of the signal $\underline{u}(n)$.

$=$

5. DDENT IF ICAT ION OF POKER SYSTENS

The problem of identifyine the equivalent admittance matrix and estimating statistics of the equivalent bus power injection vector for the external system model has been placed into a general form, and the solution to the general form has been given subject to certain conditions. The two models for identifying the equivalent system are The Tie Lire Power Flow Model

$$
\underline{\operatorname{PIL}}(n)=(\underline{Y P L}+\underline{Y E Q X}) \underline{D}(n)-\underline{\operatorname{PEQX}}(n)
$$

The Boundary Bus Impedance Nodel

$$
\underline{D B}(n)=\underline{Z B B}[\underline{P E Q I}(n)+\underline{P B}(n)]+\underline{Z B B} \underline{\operatorname{PEDX}}(n)
$$

$$
\text { where } n=1,2, \ldots, N \text {. }
$$

In both models variables such as $\underline{D B}(n)$ are the changes which occur between times t_{n} and t_{n+1}, $\underline{D B}(n)=\underline{D B}\left(t_{n+1}\right)-\underline{I B}\left(t_{n}\right)$. The general problem is

$$
\begin{gathered}
\underline{z}(n)=\underline{H} \underline{u}(n)+\underline{v}(n) \quad n=1,2, \ldots, N \\
E\left\{\underline{v}(n) \underline{v}^{\prime}(n)\right\}=\frac{1}{c(n)} \underline{R}
\end{gathered}
$$

and the solution

$$
\begin{aligned}
& \hat{\underline{H}}=\left[\sum_{n=1}^{N} c(n)_{\underline{z}}(n) \underline{u}^{\prime}(n)\right]\left[\sum_{n=1}^{N} c(n) \underline{u}(n) \underline{u}^{\prime}(n)\right]^{-1} \\
& \hat{\hat{R}}=\frac{1}{N} \sum_{n=1}^{N} c(n)[\underline{z}(n)-\underline{H} \underline{u}(n)][\underline{z}(n)-\underline{H} \underline{u}(n)]^{\prime}
\end{aligned}
$$

was based on the assumptions

1. Elements of $\underset{H}{ }$ are independent of each other.
2. $E\{\underline{v}(n)\}=\underline{0}$
3. $E\left\{\underline{v}(n) \underline{v}^{\prime}(m)\right\}=\underline{0}$ for $n \neq m$
4. $E\left\{\underline{\underline{v}}(n) \underline{v}^{\prime}(n)\right\}=\frac{1}{c(n)} \underline{R} \quad n=1,2, \ldots, N$
5. $E\left\{\underline{v}(n) \underline{u}^{\prime}(n)\right\}=\underline{0}$

Now the effects of these assumptions on each model will be discussed. For both models if symmetry of \underline{H} were taken into account at the beginning it would be necessary to perform matrix inversions of dimension $\frac{1}{2} K(K+1)$ where K is the dimension of H. In developing the error covariance equation for $\hat{\underline{H}}$ it was noted that with $\underline{\underline{H}}$ not symmetric, each row of H is actually identified independently of the other rows of H . With symnetry this is no longer true and the result is that all independent elements of \underline{H} (either unper or lower diagonal must be identified together. The size of the matrix inversion necessary can be significant as the dimension of \underline{H} increases. For example, if the dimension of \underline{H} is 10 , the dimension of the matrix inversion is 10 when \underline{H} is not assumed to be symmetric because as was shown earlier, each row of \underline{H} is identified independently of the other rows and only one matrix is inverted. However, an inversion of dimersion 55 is required when symmetry is accounted for since the 55 independent elements must be identified together. One way to handle symmetry at the end is to treat the $i j^{\text {th }}$ element and the $j i^{\text {th }}$ element of \hat{H} as two estimates of the $i j^{\text {th }}$ element of \underline{H} (for $i \neq j$). Then using the corresponding error variances, the weighted estimates can be combined. Iet a be the ij ${ }^{\text {th }}$ element of \hat{H} and r its error variance, and b the $j i^{\text {th }}$ element of \hat{H}
s

$\square=-=$

\qquad
\qquad

-
$=$
$1+\mathrm{Ca}$

$-$

$x=2-\tan +2 x+2$

$=-1$
$=-$
$=-$
2
-4
$4-8$

$$
1=
$$

$+=$
$=$
1
\geq
$=-1$
$y=-1$
and q its error variance, then the combined estimate c is

Symmetry of $Z B B$ and YEOX is merely the result of reciprocity since they represent passive networks (the sources, $\mathrm{FEQI}, \mathrm{PB}$, and PEQX have been moved outside). However, in the case of $Z B B$ what is ultimately important is the product $Z B B$ (FEQI $+\underline{P B}$). By the principle of reciprocity an input at terminal 1 causes an output at terminal 2 equal to the output at terminal 1 caused by the same input at terminal 2. But because of different demands throughout the network, the input at terminal 2 may never be as large as the input at terminal 1.

Had the actual power injection and voltage angles been used, $\underline{v}\left(t_{n}\right)$ (i.e. PEDX $\left(t_{n}\right)$ or $Z B B \operatorname{PEDX}\left(t_{n}\right)$) would most likely have a non zero mean value. However, because charges in values were used, it may be expected that $\underline{v}(n)$ will have a zero mean value provided all the measurements are not taken when the entire system is moving in the same direction. For the case when the entire system is moving in the same direction, it may turn out that $E\left\{\underline{\underline{v}}(n) \underline{v}^{\prime}(n-k)\right\}=\underline{0}$ for k greater than 1 or 2. That is, $\underline{\mathrm{v}}(\mathrm{n})$ is only correlated with only the last one or two measurent sets. This could be accounted for by a modification to the approach, but it is not anticipated that time correlation of $\underline{v}(n)$ will be a major source of error. Also, when the entire system is moving in one general direction, depending on the sampling interval, there will still probably be some independent movement of certain buses in the opposite direction due to base loaded generators, load fluctuations, etc.

The form of $\underline{R}(n)=E\left\{\underline{v}(n) \underline{v}^{\prime}(n)\right\}=\frac{1}{c(n)} \underline{R}$ was based on the assumption that the covariance of the noise is dependent only on the time interval between measurement sets $\underline{z}\left(t_{n}\right), \underline{u}\left(t_{n}\right)$ and $\underline{z}\left(t_{n+1}\right), \underline{u}\left(t_{n+1}\right)$. It is then reasonable to assume that the covariance of $\underline{v}(n)=\underline{v}\left(t_{n+1}\right)-\underline{v}\left(t_{n}\right)$ is of the form $\underline{R}(n)=\left(t_{n+1}-t_{n}\right)$. There may be error in the measure ments $\underline{z}(n)$ and $\underline{u}(n)$ but it was shown how such error could be lumped with $\underline{v}(n)$. If $\underline{v}_{z}(n)$ and $\underline{v}_{u}(n)$ are the errors of $\underline{Z}(n)$ and $\underline{u}(n)$ respectively, then $\underline{z}(n)=\underline{H} \underline{u}(n)+\underline{\tilde{v}}(n)$
where $\tilde{\underline{v}}(n)=-\underline{v}_{z}(n)+\underset{\sim}{H} \underline{v}_{u}(n)+\underline{v}(n)$
Since $\underline{v}(n)$ is independent of $\underline{v}_{z}(n)$ and $\underline{v}_{u}(n), E\left\{\underline{\tilde{v}}(n) \tilde{v}^{\prime}(n)\right\}=\underline{Q}+\frac{I}{c(n)} \underline{R}$ where $Q=E\left\{\left[\underline{H}_{u}(n)-\underline{v}_{z}(n)\right]\left[\underline{\underline{r}}_{u}(n)-\underline{v}_{z}(n)\right]^{\prime}\right\}$ and should be relatively constant since it depends on measurement error. The measurement error should be in the vicinity of one to ten percent while $\underline{v}(n)$ can be expected to be in the vicinity of 100% of $\underline{\mu}(n)$ so the effect of Q on the estimate of R should be very minor.

The last assumption, that $\underline{v}(n)$ is uncorrelated with $\underline{u}(n)$ can be a source of consicerable error when this condition is not met. The error between \hat{H} and H was shown to be

$$
\hat{\underline{H}}-\underline{\underline{H}}=\left[\sum_{n=1}^{N} c(n) \underline{v}(n) \underline{u}^{\prime}(n)\right]\left[\sum_{n=1}^{N} c(n) \underline{u}(n) \underline{u}^{\prime}(n)\right]^{-1}
$$

For the boundary bus impedance model

$$
\begin{aligned}
& \underline{D B}(n)=\underline{Z B B}[\underline{P E Q I}(n)+\underline{P B}(n)]+\underline{Z B B} \underline{P E Q X}(n) \\
& \begin{aligned}
\underline{\mathrm{v}}(n) \underline{U}^{\prime}(n) & =\underline{Z B B} \underline{P E Q X}(n)[\underline{P E Q I}(n)+\underline{P B}(n)]^{\prime} \\
& =\underline{Z B B} \underline{A Q X}\left[\underline{P X}(n) \underline{P I} I^{\prime}(n) \underline{M Q} I^{\prime}+\underline{P X}(n) \underline{P B}{ }^{\prime}(n)\right]
\end{aligned}
\end{aligned}
$$

while for the tie line power flow model
$\underline{\operatorname{PrL}}(n)=(\underline{Y P L}+\underline{Y E 2 X}) D B(n)-\underline{\operatorname{PEQX}}(n)$

$$
\begin{aligned}
\underline{v}(n) \underline{u}^{\prime}(n) & =-\underline{P E Q X}(n) \underline{D B} \underline{\prime}^{\prime}(n) \\
& =-\underline{A Q X} \underline{P X}(n)[\underline{A Q I} \underline{P I}(n)+\underline{P B}(n)+\underline{E X X} \underline{P X}(n)]^{\prime} \underline{Z B B} \\
& =-\underline{A Q X}\left[\underline{P X}(n) \underline{P I}(n) \mathbb{A Q I ^ { \prime }}+\underline{P X}(n) \underline{P B} \underline{I}^{\prime}(n)\right] \underline{Z B B}
\end{aligned}
$$

- $E D X X X(n) P X X^{\prime}(n) A D X^{\prime} Z P B$

where $\angle 2 X$ and $A O I$ were refineत in equations (3.7) and (3.13). Both models have the term $A D X\left[P X(n) \underline{P I}(n) A Q I+P X(n) P E^{\prime}(n)\right]$ in common. However, the tie line power flow model has the additional term $A Q X P X(n) P X^{\prime}(n) E Q X^{\prime}=$ PEQX (n) PEQX' (n). Orcinarily it would be expected that a change in power injection at one particular bus will be independent of the changes in power injections at all other buses so that $E\left\{\underline{P X}(n) \underline{P I} I^{\prime}(n)\right\}=\underline{0}$ and $E\left\{\underline{P X}(n) \underline{P B}{ }^{\prime}(n)\right\}=\underline{0}$. The exceptions might occur when the entire system is moving in the same direction as discussed earlier. However in the case of the tie line power flow model, $E\{\operatorname{EEQX}(n)$ FEDX' $(n)\}=\underline{R}$ is not zero unless the exterral system bus injections do not change. This causes a bias in the estimate of \underline{H} which depends on the magniture of PEOX (n) in relation to $\operatorname{FEQI}(n)+P B(n)$, but in general it can be expected that the two will be of comparable magnitude so that the bias introduced is in the vicinity of 100%. Using \underline{W} and M as defined by equations (4.5) and (4.6)

$$
\begin{aligned}
M & =\left[\sum_{n=1}^{N} c(n)\right]^{-1}\left[\sum_{n=1}^{N} c(n) \underline{v}(n) \underline{\underline{u}}^{\prime}(n)\right] \\
& \approx\left[\sum_{n=1}^{N} c(n)\right]^{-1}\left[\sum_{n=1}^{N} c(n) \underline{\operatorname{PEQX}}(n) \underline{\operatorname{PEOX}}(n)\right] \underline{Z P B}
\end{aligned}
$$

the bies in the estimate for the tie line power flow model is
$\hat{\underline{H}}-\underline{H}=\underline{M}_{\underline{W}} \underline{N}^{-1} \approx-\underline{R} \underline{Z B B} \underline{W}^{-1}$
so that the estimation equations for $\hat{\hat{H}}$ and $\underline{\hat{R}}$ are really coupled for this model.

The boundary bus impedance model and the tie line power flow model are two specific approaches to the problem of icentifying the equivalent external system model. In the former the inputs are Own System bus power injections and the outputs are boundary bus voltage angles. In the latter the inputs are boundary bus voltage angles while outputs are tie line power flows (which deperds on voltage argles). Eecause it is power which is bought and sold, while voltage angles are determined by the line admittarces and the distribution of bus power injections, it can be seen that bus power injections are the legitimate independent inputs and not voltage angles. This is the cause of the bias in the estimate for the tie line power flow model. Both models need D3(n) but the tie line power flow model uses the tie line power flow vector, PPL(n), which in general will be more accurate a measurement than the estimate for the equivalent injectiors from $I S$, PEQI(n). It is possible to measure PTL(n) directly while the actual value of PEI (n) is dependent on voltage magnituces and transmission line resistance as shown by the nonlinear aralysis in Appendix C. However the solutions for \hat{H} and \hat{R} are more readily found for the boundary bus impedance model.

Obtaining the estimate of YEOX from the estimete of ZBE is straightforward. However, if the estimate of VEOX is to ultimately be used in a linear load flow model for $\cap S$, then as shown in Appendix B, the estimate for ZBB can be used rirectly. If ZOS is the bus impedance

\qquad
$=$
2

4n

IE
\qquad $==$
matrix for N,

$$
\left[\begin{array}{l}
\underline{D I} \\
\underline{D B}
\end{array}\right]=\left[\begin{array}{l}
\underline{Z S S}
\end{array}\right]\left[\begin{array}{l}
\underline{P I} \\
\underline{P B}+\underline{P E Q X}
\end{array}\right]
$$

where

$$
\underline{Z O S}=\left[\begin{array}{ll}
\underline{Y I I}^{-1} & \underline{0} \\
\underline{0} & \underline{0}
\end{array}\right]+\left[\begin{array}{l}
\underline{Y O I^{\prime}} \\
\underline{I}
\end{array}\right] \underline{Z B S}\left[\begin{array}{ll}
A Q I & \underline{I}
\end{array}\right]
$$

6. S INUIAT ION PESULTS

In orcer to test the method proposed, a computer simulation program was developed to generate data, identify the equivalent model, and check how well the identified mociel could predict line flow charges in ©S. Figure 6.1 gives a broad overview of how the simulation was conducted. First, using transmission line data, matrices to be used in the simulation were corputed. These inclure ZuS (impedance matrix for thole System), $A O I, Y I I^{-1},(Y E Q I+Y B C S),(Y E Q X+Y T I), A D X$, and YTL. For convenience, the confidence coefficients, $c(1), c(2), \ldots$, $c(N)$, were all unity. Natrices CHI and SGIN accumulated a running sum of $\underline{z}(n) \underline{u}^{\prime}(n)$ and $\underline{u}(n) \underline{u}^{\prime}(n)$ respectively. In order to simulate the variations in bus power injections throughout the network, $\underline{P}(n)$ (vector of bus power injection changes for wh wen gerated by random numbers having an PIS (root mean square) value which was a fraction of the nominal operatirg value of bus power injections $P_{\text {nom }}$. One fraction, PCTCS, was used for all buses in OS and another, PCTXS, was used for all buses in XS. (i.e. $E\left\{F X_{i}^{2}(n)\right\}=\left[P C T X S \times F X_{n_{n}}\right]^{2}$) This maintained a relative scale for changes while at the sere time it simulated independent changes in power injections. As shown in Section 3, when the linear model is used, the bus voltage angle vector for OS can be found using either

$$
\left[\begin{array}{l}
\underline{D I(n)} \tag{6.1}\\
\underline{D B}(n) \\
\underline{D X}(n)
\end{array}\right]=\underline{Z I S}\left[\begin{array}{l}
\underline{P I}(n) \\
\underline{P B}(n) \\
\underline{P X}(n)
\end{array}\right]
$$

or equivalently

48 2

4|en

$=$
(5)

号

Figure 6.l Basic Flow Diagram For Simulation

8
\qquad -

$$
\left[\begin{array}{l}
\underline{E I}(n) \tag{6.2}\\
\underline{Q B}(n)
\end{array}\right]=\left[\begin{array}{ll}
\underline{Y} I I & \underline{Y} \underline{B} \\
\underline{Y} I B ' & \underline{Y B n S}
\end{array}\right]^{-1}\left[\begin{array}{l}
\underline{P I}(n) \\
\underline{Y B}(n)-\underline{\operatorname{PTL}(n)}
\end{array}\right]
$$

Ordinarily equation (6.2) or its nonlinear analog would be used to estimate the state of $O S$ using real measurements of $P I(n), P B(n)$, and $\underline{P T L}(n)$ (and any other redundant measurements). However, for purposes of simulation equation (6.1) would have to be solved first to find DX (n) in order to generate PTL(n). Since either method results in the same values of $D B(n)$ (in the linear model), equation (6.1) was used to simulate the output of a state estimation for DB(n). The simulatec state estimation for OS results in errorless data. However as discussed earlier the only effect of measurement noise and state estimation errors is to modify the disturbance vector $\underline{v}(n)$.

Everything described up to now was for the purpose of generating data for the identification routine. Usirg generated data, PI(n), $\underline{P B}(n)$, and $\underline{D B}(n)$, the input and output measurement vectors were formed, $\underline{u}(n)=\underline{A Q} \underline{I} \underline{P I}(n)+\underline{P B}(n)$ and $\underline{Z}(n)=\underline{D B}(n)$. These values were also stored for later use in finding $\hat{\hat{R}}$. Running sums of $\underline{z}(n) \underline{u}^{\prime}(n)$ and $\underline{u}(n) \underline{u}^{\prime}(n)$ were maintaine by CHI and SGIN so that at any time the current estimate \hat{H} could be found by $\underline{H}=\underline{C H I} S_{I N}{ }^{-1}$. Using \hat{H} and the stored measurement sets, an estimate \hat{R} was found. Parallel to all of this, the acturl disturbance vector, $\underline{v}(n)$, found by $\underline{v}(n)=\underline{Z B B} \underline{P E Q X}(n)$ $=\underline{Z B X} \underline{P X}(n)$, was used to maintain a running sum of $\underline{v}(n) \underline{v}^{\prime}(n)$ in \underline{R}. The estimated values $\hat{\underline{H}}$ and \hat{R} could then be compared to the actual values $\underline{H}=\underline{Z B B}$ and \underline{R}. In oreer to compare how well the identified model could predict changes in line power flows, the estimate for $Z \underline{S}$,
the impedance matrix relating $\cap S$ bus power changes to $O S$ bus voltage angle changes was found by

$$
\widehat{\underline{Z O S}}=\left[\begin{array}{ll}
\underline{\underline{Y} I I^{-1}} & \underline{0} \tag{6.3}\\
\underline{O} & \underline{0}
\end{array}\right]+\left[\begin{array}{l}
\underline{A Q I} \\
\underline{I}
\end{array}\right] \widehat{Z B B}\left[\begin{array}{ll}
\underline{A O I} & \underline{I}
\end{array}\right]
$$

Again random variations of bus power injections were generated using a nominal base value and estimated bus voltage angle charges found by

$$
\left[\begin{array}{l}
\hat{D I}(n) \tag{6.4}\\
\widehat{D B}(n)
\end{array}\right]=\widehat{Z S S}\left[\begin{array}{l}
\underline{P I}(n) \\
\underline{P B}(n)
\end{array}\right]
$$

were used to estimate line flow changes. The actual bus voltage angle changes using the same bus power changes were found from $\underline{D}(n)=2 / S P(n)$ and were used to find actual line flow changes which could be compared to the values found using the identified model.

Throughout the program, in order to present data in a condensed form, for many variables $(\underline{z}(n), \underline{u}(n), \underline{v}(n)$, actual lire flows, errors in predicted line flows, and generated bus power changes) only the RNS value, the mean, the minimum, and the maximum values were maintained. It should also be pointed out that the basic approach is simple. Only a small portion of the program was involved in the actual identification of \hat{H} and $\underline{\hat{R}}$. The rest is support for generating data and evaluating results.

Using equation (4.11), the estimated error covariance matrix, $\hat{\underline{p}}_{i i}$, of row i of H is for $c(n)=1.0$

$$
\underline{\underline{P}}_{i i}=\frac{1}{N} \hat{R}_{i i} \underline{W}^{-1}
$$

where

$$
\underline{W}^{-1}=\left[\frac{1}{N} \sum_{n=1}^{N} \underline{u}(n) \underline{u}^{\prime}(n)\right]^{-1}=N \times \underline{\operatorname{SGIN}}{ }^{-1}=N \times \underline{S I G V^{\prime}}
$$

Hence the estimated standard deviation of element ij of H is $\left(\hat{R}_{i i} \times \text { SIGVA }_{j j}\right)^{\frac{1}{2}}$. Since $\hat{R}_{i i}$ should be somewhat proportional to the square of PCTXS while SIGMg $_{j j}$ should be inversely proportional to the square of PCTCS, in the case of the linear model with perfect measurements of $\underline{z}(n)$ and $\underline{u}(n)$, identification error is depencent on the ratio of PCTXS to PCTCS (percentage variation of XS bus powers to percentage variation of OS bus powers).

One system presented in a paper [?] was used here to test the method. The system shown in Fipure (6.2) consists of 18 buses. For purposes of simulation Whole System consists of these 18 buses of which buses $1,2,3,4$, and 18 belong to IS, 5 through 7 belong to BS, and 8 through 17 belong to XS. Bus 18 is the reference bus. Other partitionings could be used but this one does result in matrices (YEDX +YTL) and (YEQI + YBRS) which are comparable in size. This avoids a case in which coupling of $B S$ with $I S$ is very much stronger than $B S$ with XS. For this system (YEQI + YBOS) and (YEQX + YTL) are

$$
\begin{aligned}
& Y E O I+Y B \cap S=\left[\begin{array}{ccc}
13.63 & 0.0 & -4.07 \\
0.0 & 9.43 & -9.43 \\
-4.07 & -9.14 & 85.9
\end{array}\right] \\
& Y E O X+Y T L=\left[\begin{array}{lll}
11.5 & -6.14 & -5.36 \\
-6.14 & 14.3 & -8.12 \\
-5.36 & -8.12 & 13.5
\end{array}\right]
\end{aligned}
$$

\approx

$\sqrt{18}$
(9) BUS NUMBER (14) LINE NUMBER (NUMBER BESIDE LINE WITH GRROW
NUMBER BESIDE

Eoth the effects of increasing disturbarces and increasing measurements are simulated here. In Figure 6.3 and Table 6.1 are the results of increasing disturbances (PX (n)). The RIS of bus power changes for $O S$ in each case was 10% of nominal while RFS values of PY (n) were $0 \%, 1.25 \%, 2.5 \%, 5.0 \%, 10 \%$, and 20% of $X_{n o m}$. Another way to sey this is that "signal to noise ratios" were $\infty: 1,8: 1,4: 1,2: 1$, $1: 1$, and $1: 2$ respectively. The sare sequence of random numbers were generated each tire. Inclucer in Table 6.1 are actual values of ZBB, actual errors in identifying it, and the estimated standerd deviations using \hat{R} in equation (4.11). Also included are the values of $(\widehat{Y D O X}+\hat{Y r L})$ estimated from $\widehat{Z B B}$, and the errors of predicting changes in line flows using $\widehat{Z B B}$. In a similar format, the results of increasing the number of measurements are summarized in Fisure 6.4 and Table 6.2 . Changes in both $O S$ and $X S$ bus power injections had RNS values of 10° of the nominal operating point while $\underline{\hat{H}}$ was identified using $16,3 ?, 64$, 128, 256, and 512 measurements.

The results show that not only is identification error comersurate with the noise and number of measurements, but also estimated standard deviation gives an accurate measure of the identification error. Because the same rancom numbers were generated for each value of PCTXS in the first case, the actual errors shown in Figure 6.3 are nearly exactly linear since as was shown earlier, for equal numbers of measurements identification error depends on tie ratio of PCTXS to PCTOS. For the case of increasing measurements in Figure 6.4, ${ }^{2 B R} 11$ does not have a steadily decreasing error as with $28 B_{2 ?}$, but it is still in the rarge of the estimated standard ceviation.

$=$
 $-$

\qquad
\qquad

Her

Ratio of $X S$ bus changes to $O S$ bus changes

Figure 6.3 Identification Erpor For Increasing Disturbences

Firure $5 . L_{\text {G }}$ Identification Error For Increasing lieasurements

To contrast identification moriels, in Table 6.3 the results of identifying $\widehat{Y E Z X}+\underline{Y T L}$ by the tie line power flow model along with the estimated standard deviations are compared with YEQ? + Ym as found from $\widehat{3 B}$ which was identified by the boundary bus impedarce model using the sere data. Besices icentifyirg the wrong values, the tie line power flow model gives inaccurate estirates of error.

In Figure 6.5 is another network presented in a paper by Stagg [9]. ns consists of the higher voltage network and XS is the lower voltage network. The "tie lires" are really transforrers. Using the boundary bus impedance model an equivalent network is identified to replace the 21 buses of $X S$, so that $\cap S$ can be analyzed with 9 buses instead of the original 30. The results in Table 6.4 again show close correspondence between actual error and estimated standard deviation.

The simulation carried out was certainly not fully realistic. However the realistic aspects include

1. Values of bus power changes were found first, then a state estimation for $O S$ was simulated ano appropriate values were passed to the identification portion of the progrem.
2. The effects of increasing reesurements were stucied under the assumption that XS would vary as much as OS.

The simulation was unrealistic in that

1. The nonlirear model was not used to gererate data with the result that a linear identification model was used to find parameters to a linear system. To gererate data from a nonlirear model properly would require a complete load flow for each measurement set. (It would be simple to vary voltage magnitude and voltage angle and ther find bus power, but bus

Figure 6.5 Network Used For Identification of a Lower Voltage Subsystem

> 5n
> $4+$
$=$

14
power must be the specified variable as it is the indepencent input, not voltage angle.)
2. Bus power injections were indepencently generated whereas realistically they will probably be correlated in space and time. There were no conditions on the solution for correlation in space. In fact PEQX (n) itself has a covariance matrix $E\{\operatorname{PEDX}(n)$ PEDX $(n)\}$ which is in general not diagonal. However, the solution did assume no correlation in time. As discussed earlier in Section 5, this effect can be accounted for by modifying the approach.

Based on the results of these and other simulations certain conclusions can be made about the boundary bus impedance model. First, with enough measurements it is possible to identify the equivalent morel under conditions of the simulation (independent movement of the bus injections). The number of measurements may seem rather large but of course the noise is also rather large. The results show that as expected either a decrease in the disturbances by a half or using four times as many measurements approximately halves the error. Secord and possibly even more important, the error predicted by using the estimated $\hat{\mathbb{R}}$ in equation (4.11) agrees very well with the actual answer. This mears that an accurate estimate can be predicted from only the measurements used to irentify $\hat{\underline{H}}$ so that the limits to which $\underset{\underline{\underline{Y}}}{ }$ can be trusted are also known. This is of course not the case with the tie line power flow mociel.

A very irportant question which may arise is how much data would be required to identify the system. The simulation was carried out under inealized circumstances and as was shown earlier, for the
simulation the icentification error for equal numbers of measurements depends only on the ratio of XS bus power changes to $O S$ bus power changes. In actuality however there are upper and lower limits. If data were used from samples taken too close together in time so that changes were small, the effect of measurement noise and state estimation error could become very significant. On the other hand, the system can vary over only so much of a range, so that if the time between measurements were too large, then because of cyclical patterns of power requirements, there might not be much new information after the first few measurements. To determine the amount of data required and the best interval between samples would require a study using actual operating data.
2BB 32
.01301
.0
.0
-.00020
.00007
-.00040
.00014
-.00080
.00029
-.00159
.00057
-.00318

.00115 Actual Frror of Identified Values PCTXS x PX Extimated Standard Reviation using $\frac{\hat{R}}{}$ | ZBB $_{23}$ | ZBB $_{31}$ |
| :--- | :--- |
| .01193 | .00885 |
| .0 | .0 |
| .0 | .0 |
| -.00043 | .00020 |
| .00018 | .00018 |
| | |
| -.00086 | .00040 |
| .00035 | .00035 |
| -.00172 | .00080 |
| .00071 | .00070 |
| | |
| -.00345 | .00159 |
| .00141 | .00141 |
| -.00690 | .00318 |
| .00282 | .00282 |

Row 2
2BB $_{22}$
.05643
0 .00352

.00309 $-.00703$ $-.01406$ | nic |
| :--- |
| |
| | .02470

-.05625

.04940 | O |
| :--- |
| a |
| 0 |
| 0 |

Row 3
ZBB $_{32}$
.01193
.0
.0
-.00148
.00126
-.00295
.00251
-.00590
.00502
-.01181
.01004
-.02362
.02008
 .00617 .01735 .00080
.00087
.00161 8
$\stackrel{N}{\hat{O}}$.00347
.00643
.00694

$$
\mathrm{ZBB}_{13}
$$

ZBB_{21}
02075
0. .00040 .00043 층

${ }^{2 B B} 11$
$.0547 ?$
.0
.0
.00036
.00036
.00073
.00073
.00146
.001 .46
.00292
.00292
.00584
.00584
nt
I Value
A.E.
E.S.D.
A.E.
F.S.D.
A.E.
E.S.D.
A.E.
F.S.D.
A.E.
E.S.D.
A.E.
E.S.D.

教

A.E. -- Actual Error of Identified Values

RNS variation of bus power changes in aS 10% of nominal values
Table 6.1(b) Identification Error For Increasing Disturbances (YEQX + YTL)

LINE
Nominal Line Power Flow
RNS Actual Change
RNS Error

0

of nominal
${ }^{2 B B} 31$ 00018 .00306 .00028
.00213 0
0
8
8
i .00140
.00039 .00099
.00015
.00086

ZBB_{23}
.01193
-. 00021
$-.00047$
00
0
0
88
i
 H
न
-
0
0
.00085
9.8
88
08
i [9000 ${ }^{\circ}$
sonten potytquapi
-- Actual Error of Identified alues \hat{R}
Yot sonter sny aney sojuryo ramod snq SX yub
Table 6.2(a) Identification Error For Increasing Measurements (ZBB)
Row 2
2 ZBB .05643 $-.04029$
.02075 $.0006 ?$.00767 .00026 00527 m

8
0 .00345

.00072 24 .00243 . .00091 .00204 | ∞ |
| :--- |
| $-\frac{1}{7}$ |
| |

2BB $_{13}$
.00885
-.00021
.00281
$-.00035$ n
20
0
0
i m
$\underset{y}{m}$
8

8 -. .00117 .00096 -. 00001 | H. |
| :--- | $-.00007$ -.00469

.00912 .00142 | -1 |
| :--- |
| 8 |
| 8 |
| 8 |

 Both OS
2BB $_{11}$
.05472

RMS values of $O S$ and $X S$ bus power changes 10% of nominal A.E. -- Actual Error of Identified Values $+\overline{1(0 M \bar{K})}$

$$
\dot{\sim} \dot{-} \dot{1} \quad \dot{1} \text { ir } \dot{i}
$$

$\stackrel{+}{\stackrel{\leftrightarrow}{c}}$
Table 6.2(b) İ̇entification Error for Increasing Measurements (YEQX + YTI)
e

$$
=
$$

 ๗̃.

$$
\begin{aligned}
& \text { Error -- RNS value of error in predicting the changes using the identified model. } \\
& \text { Charges in os bus powers were generated by uniformly distributed random numbers } \\
& \text { such that } 0 S \text { powers varied up to } \pm 10 \% \text { of nominal values. } \\
& \text { Table 6.2(c) Identification Error For Increasing Measurements (Line Flows) }
\end{aligned}
$$

Actual Value	11.50	-6.14	-5.36
Error BBIM	.00	-1.37	1.30
Error TIPFN	.30	-14.44	10.66
E.S.D. TIPFM	.19	.40	.39
Actual Value	-6.14	14.26	-8.12
Error EBIM	.07	-1.87	2.97
Error TIPFM	4.52	-19.37	14.18
E.S.D. TLPFM	.2 .4	.52	.51
Actual Value	-5.36	-8.12	13.47
Error BSIM	$.5 ?$	-.52	2.79
Error TIPFM	5.41	-23.24	16.07
E.S.D.TIPFN	.60	1.29	1.26

> Actual Value -- Actual Value of YEQX + YTL
> Error BBI. -- Error in Identifying YEOX + YI using the Boundary Bus Impedance Node $\widehat{Y E D X}+\underline{Y T I}=\widehat{Z B B}-(\underline{Y E O I}+\underline{Y B O S})$
> Error TIPFM, -- Error in Identifying YEOX + VII using the Tie Line Power Flow model
> E.S.D. TIPFM -- Estimated Standard deviation using $\hat{\underline{R}}$ from the Tie Line Power Flow Model

OS and XS varied equal amounts (1C\% of nominal) and the same 256 measurements used for both models.

Table 6.3 Comparison of Identification Models

f.ctual Value	. 0644	. $\mathrm{C4} 40$. $C 491$
Actual Error	-. ccl6	. CCO 4	. 0179
F.S.D.	- C019	. 0020	. 0217
Actual Value	. 0489	. 0665	. 0663
Actual Error	-. C019	. 0007	. 0184
E.S.D.	. C 021	. 0023	. 0244
Actual Value	. 0491	. 0663	. 1122
Actual Error	-. C021	. 0010	. 0272
E.S.D.	. C 225	. 0026	. 0282

E.S.D. -- Estinated Stancard Ieviation using R.

23? Identified by the Eoundery Bus Impedance Vorel
10% variation of bus powers in both XS and CS.
256 measurement sets used.

Table 6.4 Identification of a Iower Voltage letwork
7. USE II: POWFR SVSTEMS-SONE PRACTICAL ASPECTS

7. 1 Use of Bus Fower Inputs

From equation (4.10) which relates the error covariarce of the estimate, it is obvious that the input directly affects the error. For the bourdary bus inpedance model $\underline{u}(n)=\underline{\operatorname{PEQI}}(n)+\underline{P B}(n)$. As discussed creviously and shown in Apperdix C, FF2I(n) really depends on the operating point in a nonlinear manner so that it is possible for FEDI (n) to introduce significant error. The error from $P B(n)$ on the other hand is only due to measurement noise. For this reason, it should turn out that the identification method presented will be most successful when the boundary buses have relatively large power injections (generators or loads) which supply much of the known variation. Or in other words, it would be nice to have good, strong input signals. In actuality IS may be of relatively large size so that contributions of $\operatorname{PI}(n)$ to PEDI $(n)=A O I P I(n)$ from far ecross the network may be of questionable value and accuracy due to the linear approximation of $E P$. Since intuitively, buses in IS closest to BS will have the most affect on PEPI n) and involve the least error, it may be practical to use only part of the contribution of $\mathrm{PI}(n)$ to PEQI(n) and lump the rest with PEDX (n).

7.2 Yodel Verification

Although contrary arguments could be mane, the boundary bus impedance model is probably the better of the tro models since it does not involve estimating a significant biss. However, the tie line power
flow model is still valid for verification purposes. For the boundary bus impedance model from equation (4.3)

$$
\begin{align*}
\widehat{\hat{R}} & =\frac{1}{N} \sum_{n=1}^{N} c(n) \underline{\hat{v}}(n) \hat{\hat{v}}^{\prime}(n) \\
& =\frac{1}{N} \sum_{n=1}^{N} c(n) \widehat{Z B S} \widehat{\text { TEX }}(n) \widehat{\text { PED }}{ }^{\prime}(n) \widehat{\text { YB }} \tag{7.1}
\end{align*}
$$

If $\hat{\hat{P}}$ is premultiplied and post multiplied by $\widehat{Z B B}^{-1}$ then an estimate of . the covariance of PEQX (n) is
low if measurements of PTI(n) were taken at the same times as measuremeets of $\operatorname{DB}(n)$ and $Y E P I(n)+\operatorname{FB}(n)$, and if the estimate of YEQX is

$$
\widehat{Y E Q X}=\widehat{Z B B}^{-1}-Y E Q I-Y B B
$$

then equation (7.3) evaluated for $\widehat{Y E Q X}$ should be close to $\hat{\mathrm{R}}_{\mathrm{PEQX}}$ of equation (7.2).

$$
\begin{align*}
\frac{1}{N} \sum_{n=1}^{N} c(n) \text { PEOX }(n) \text { PEOX } \\
\prime
\end{aligned}(n) \quad \begin{aligned}
= & \frac{1}{N} \sum_{n=1}^{N}\{[\underline{P T I}(n)-(Y T I+Y E Q X) D B(n)] \\
& \left.x[\operatorname{PTL}(n)-(Y T L+Y E Q X) D B(n)]^{\prime} c(n)\right\} \tag{7.3}
\end{align*}
$$

If the two were not close, then the tie line power flow model would be indicating a lack of validity for the estimate of $\widehat{Z B B}$ from the boundary bus impedance model. The tie line power flow model could also be used non-line" once YEQX had been identified to provide a continuing check of the validity of the identified equivalent system. Should the measured value of $\operatorname{PTL}(n)$ vary from (YTL $+\widehat{Y E Q X}) D B(n)$ an amount not commensurate
with $\frac{l}{c(n)} \stackrel{\hat{R}}{\mathrm{R}}_{\mathrm{PEQX}}$, that would indicate a charge in XS had taken place. The charge of course could either be in transmission line status affecting YEQX or a significant change in PX(n) affecting YEQX(n).

7.3 Estimating Equivalent Power Injections

Once YEQX has been identified, the actual values of PEDY (t_{n}) could be estirated. With enough measurements it might be possible to develop an approximate daily pattern for PEDX (t) so that they could be used as pseuco measurements [8] for the purpose of predicting a future power flow situation. If such were the case, the equivalent system could be extended in use from predicting charges in ©S during wich the change PEQX (n) would be small to use in predictirg actual line power flows for given power injections in C .

7.4 Inputs Which Decrease Identification Error

It has been assumed that the identification would be primarily passive in nature (i.e. by "listening" to the system) so that any power charges or voltage angle changes used to identify the equivalent system would be due to changes in the system's load demands. It was also argued that $\frac{l}{c(n)} \underline{R}$ was a reasonable approximation to the noise covariance where $c(n)$ is inversely proportional to the time, $t_{n+1}-t_{n}$, between measurements. However, any large, relatively fast changes in OS would provide an input, output measurement set with relatively little roise ($\operatorname{PEOX}(n)$). These charges could be planned or accidental. If planned changes were used, it would be desirable to obtain a maximum of

```
-
```

㐬
\qquad
$=$
invormation with a minimum of change. For this case it might be possible to formulate the problem in terms of minimizing a cost function subject to a constraint such as finding the inputs $\underline{u}(n) \quad(n=1,2, \ldots, N)$ which minimizes the cost

$$
c=f_{1}(\operatorname{error} \operatorname{in} \underline{\hat{H}})+f_{2}\left[\underline{u}(n) \underline{u}^{\prime}(n),(n=1,2, \ldots, N)\right]
$$

subject to

$$
\underline{z}(n)=\underline{H} \underline{u}(n)+\underline{v}(n) \quad(n=1,2, \ldots, N)
$$

where f_{1} and f_{2} ore scalar functions.

7. 5 Use of the Equivalent Systom When the External System is Known

 Although the linear load flow model was used to solve the problem of finding equivalent systems with no prior knowledge of the external systems, there is still an advantage to using the model when enough is known about the external system so that, for instance YEQX and PEQX could be found analytically for a particular system. The linear model clears the smoke so to speak, so that a good approximate picture can be easily obtained. For example $A Q X$ (and $A Q I$) gives a general overview of how power is routed by the network while a comparison of YEQX with YBR shows at a glance the relative coupling between the two networks.
7. 6 Identification of the Nonlinear Nodel

Use of the linear model may be sufficient to predict line power flows and voltage angles. However, in order to predict the effect of XS on voltage magnitudes within $O S$, the full nonlinear model is necessary. Neveloped in Appendix C are the equations relating complex bus voltages to complex bus power and current injections. The computation required and complexity of identifying the nonlinear equivalent model would likely be very much more than for the linear model. The increased accuracy in predicting real power flows would most likely be minimal, but the linear model cannot predict voltage changes due to the structure of XS.

8. CONCLUSIONS

2. 1 Areas for Further Study

The tie line power flow model pronuces a biased estimate of the equivalent model parameters, however, if an unbiased estimate could be obtained so that accuracy was comparable to the boundary bus impedance model, there would probably be an overwhelming advantage to using the tie line power flow rodel. One of the most important reasons is that it uses variables from a local region only. $\operatorname{PTL}(t)$ is directly measurable and in orcer to find $\mathrm{DB}(t)$ state estimation would be required only in a small area around Boundary Syster. (Fower coming in from the rest of Own System could be treated the same as PIL(t) for purposes of state estimation.) Also the linear tie line power flow model appears to be less of an approximation to its nonlinear analog (see Appendix C) than the linear boundery bus impedance model is to its nonlinear analog. Therefore, it is suggested that a study to find a method for eliminating bias in the tie line power flow model would be worthwhile.

The simulation carried out used a linear load flow rodel for the purpose of generating data used to identify the equivalent model. This simplified the simulation and it also served to eliminate errors which would be caused by variations from ideal conditions (low line resistance and voltage magnitude nearly constant). A more realistic simulation should be made to find how data from a nonlinear model affects accuracy of the identified linear model parameters. Also the net power flow summed over all the tie lines is usually held to a scheduled value. The effect of this on the identification should also be studied.

As mentioned previously, the identification accuracy could be
increased by varying the generation pattern for the purpose of probing the external system. However it would be recessary to maximize information and minimize the variation required. It is felt that one step in the proper direction might be to move one generator at a time since this would eliminate any interference among the irputs. A look at the boundary bus impedance model written in terms of the gereral model
$\underline{Z}(n)=\underline{H} \underline{u}(n)+\underline{v}(n)$ shows that if elements of $\underline{u}(n)$ were all zero except for element i, then the $i^{\text {th }}$ column of $\underset{H}{ }$ would be $\frac{1}{u_{i}(n)}[\underline{Z}(n)-\underline{v}(n)]$. A study into this problem should result in a more sophisticated solution to a rather complex problem.

An obvious extension of identification of the linear model is the identification of the full nonlinear model. It is felt that the complexities involved would be an order of magnitude above that required for identification of the linear model. The accuracy gained in predicting voltage phase angle changes would probably be small, but voltage magnitude charges which have been ignored, would be available from a nonlinear model. If a search type of solution were usez, then of course the solution to the linear model identification would give a starting point.

8. 2 Surmary

The problem of predicting how an electric power network will interact with other networks hes been solved by reducing the entire outsice world down to a relatively small equivalent model. The problem is complicated by the facts that (1.) no knowledge of parameters or variables of the outsice world can be assumed, (2.) identification must be primarily passive, and (3.) "signal to noise ratios" can be expected to be about 1:1.

A linear model for the overall system was developed and its use justified with respect to the more conventional nonlinear model by consicering accuracy versus computation requirements, insight, and complexity of the identification approach required. Two models were then proposed with each having certain advantages and shortcomings. The tie line power flow model uses data which is relatively accurate and locally available, but it produces a biased estimate. On the other hand the boundery bus impedance model produces an unbiased estimate but it requires data from all over the system and also requires manipulation of the equations for own system. It was argued that changes which occur in power and bus voltage angle between two times should be used with the hope of obtainirg a zero mean disturbance and also to avoid the use of matrices whose elements have magnitudes very large compared to the determinant of the matrix. Since both models were in the general form of a linear, static, input-output relation with additive disturbances, a solution to the general problem was found under assumed conditions. Then the solution was applied to the two models and it was shown how the tie line power flow model produces a biased estirate. The simulation made to test the method was discussed showing the excellent correspondence between theory and simulation results. Finally, practical aspects of the problem were briefly discussed including model verification, estimation of the disturbances, system probing, and use of the linear model reduction method for purposes other than identification.

This method is proposed as a means of modeling the outside world and finding the parameters of that model. The actual solution is in a very simple form and could probably be implemented as an extersion of
-81-
state estimation techniques. It is by no meens the idesl answer to how the outsine world should be modeled, but it does allow a prediction of how the outside world will interact with the system of interest.

APPEIDIX A. MNLI:ER LOAD FLOI EQUATIONS

For the pi transmission line model shown in Figure 2.1, the current flowing into the line from bus 1 is

$$
\begin{equation*}
\overline{I I}_{i k}=\bar{E}_{i} \overline{y s}_{i k}+\left(\bar{E}_{i}-\bar{E}_{k}\right) \bar{y}_{i k} \tag{A.1}
\end{equation*}
$$

when the line is connected between buses i and $k . \overline{y s}_{i k}$ is the shunt capacitive admittance, $\bar{Y}_{i k}$ is the series admittance, and \bar{E}_{i} and \bar{E}_{k} are the voltages at buses i and k respectively. All are complex quantities and

$$
\begin{align*}
& \overline{y s}_{i k}=j y s_{i k}=j \omega \frac{C_{i k}}{2} \tag{A.2}\\
& \vec{y}_{i k}=y_{i k} e^{-j \varnothing_{i k}}=\frac{1}{R_{i k}+j X_{i k}} \tag{A.3}\\
& \vec{E}_{i}=E_{i} e^{j D_{i}} \tag{A.4}\\
& \bar{E}_{k}=E_{k} e^{j D_{k}} \tag{A.5}
\end{align*}
$$

where $R_{i k}, X_{i k}$, and $y s_{i k}$ are the resistance, reactance, and capacitive susceptance of the transmission line between buses i and $k . D_{i}$ and D_{k} are the voltage phase angles at buses i and k as measured with respect to a reference. Equation (A.1) can be rewritten

$$
\begin{equation*}
\overline{I I}_{i k}=\bar{E}_{i}\left(\overline{y s}_{i k}+\bar{y}_{i k}\right)-\bar{y}_{i k} \vec{E}_{k} \tag{A.6}
\end{equation*}
$$

By Kirchhoff's current law, the sum of currents entering the transmission lines conrected to bus i must equal the current being injected into the bus by gererators or loads (positive for generators and negative for loads). \bar{I}_{i} is the current injected into bus i.

$$
\begin{equation*}
\bar{I}_{i}=\sum_{k} \overline{T L}_{i k}=\bar{E}_{i} \sum_{k}\left(\overline{y s}_{i k}+\bar{y}_{i k}\right)-\sum_{k} \bar{y}_{i k} \bar{E}_{k} \tag{8.7}
\end{equation*}
$$

Let $\bar{Y}_{-b u s}$ be a complex bus admittance matrix whose diagonal element in row i is the sum of shunt and series admittarces of all lines connected to bus i

$$
\begin{equation*}
\left(\overline{\underline{Y}}_{\text {bus }}\right)_{i i}=\sum_{k}\left(\overline{y s}_{i k}+\bar{y}_{i k}\right)=\bar{Y}_{i i}=\bar{Y}_{i i} e^{-j E_{i i}} \tag{A.8}
\end{equation*}
$$

and whose off diegonal $i k$ and $k i$ elements are the regative value of the series admittance of the line between buses i and k (or zero if there is no line between buses i and k).

$$
\begin{equation*}
\left(\overline{\bar{Y}}_{\text {bus }}\right)_{i k}=-\bar{y}_{i k}=\bar{Y}_{i k}=Y_{i k} e^{-j \theta_{i k}} \tag{A.9}
\end{equation*}
$$

$\overline{\underline{Y}}_{\text {bus }}$ is a symmetric matrix. Then for complex vectors $\bar{I}_{\text {bus }}$ and $\bar{E}_{\text {bus }}$ whose $i^{\text {th }}$ elements are the current injected into bus i and the voltage at bus i respectively, equation (A.7) can be written in matrix form as

$$
\begin{equation*}
\bar{I}_{b u s}=\overline{\underline{Y}}_{b u s} \bar{E}_{b u s} \tag{A.10}
\end{equation*}
$$

When Kirchhoff's current law is applied to the entire retwork, it is obvious that for a system with $\mathrm{K}+\mathrm{l}$ buses, the current injections into K of the buses determine the current injected at the $(k+1)^{\text {th }}$ bus. Similarly, the voltage angles are relative to one another so ore bus must be designated the reference bus for voltage angle whereas the reference for voltage magnitude is ground.

Real and reactive power injected into bus $i, P_{i}+j Q_{i}$, in terms of the current injected and bus voltage is

$$
\begin{align*}
& P_{i}+j Q_{i}=\bar{E}_{i} \bar{I}_{i}{ }^{*} \tag{A.11}\\
& P_{i}-j Q_{i}=\bar{E}_{i} \neq \bar{I}_{i} \tag{A.12}
\end{align*}
$$

where \bar{E}_{i} is the complex conjugate of voltage at bus i. Using equation (4.7) along with (1.8) and (4.9) where $\bar{Y}_{i k}$ is defined, equation (A.12) is

$$
\begin{align*}
P_{i}-j Q_{i} & =\bar{E}_{i} \sum_{k=1}^{K+1} \bar{E}_{k} \bar{Y}_{i k} \\
& =E_{i} e^{-j D_{i}} \sum_{k=1}^{K+1} E_{k} e^{j D_{k}} Y_{i k} e^{-j e_{i k}} \tag{A.13}\\
P_{i}-j Q_{i} & =\sum_{k=1}^{K+1} E_{i} E_{k} Y{ }_{i k} e^{-j\left(e_{i k}+D_{i}-D_{k}\right)} \tag{A.14}
\end{align*}
$$

The load flow equation, (A.14), can be used for networks consisting of transmission lines and fixed tap transformers. However for other circumstarces such as voltage controlled buses, tap changing transformers, and phase shifting transformers the equation must be modified. Stag and El-fbiad [10] is one reference for these and other variations.

The linear approximation for real power flow in a transmission line between bus i and bus k is

$$
\begin{equation*}
P L_{i k}=\widetilde{E}_{i} \widetilde{E}_{k} y_{i k}\left(D_{i}-D_{k}\right) \tag{B.1}
\end{equation*}
$$

where D_{i} and D_{k} are the voltage phase angles at buses i and k as measured with respect to a reference, \tilde{E}_{i} and \tilde{E}_{k} are the nominal values of the bus voltage magnitudes, and $y_{i k}$ is the transmission line admittance magnitude. This approximation is subject to the conditions

1. $D_{i}-D_{k}$ is small.
2. The bus voltage magnitudes तo not vary much from their nominal values.
3. The ratio of transmission line resistance to reactance is small.

For convenience it will be assumed that $\tilde{E}_{i}=\tilde{E}_{k}=1.0$ (or equivalently $y_{i k}$ is normalized for \tilde{E}_{i} and \tilde{E}_{k}) so that equation (B.l) is

$$
\begin{equation*}
P I_{i k}=y_{i k}\left(D_{i}-D_{k}\right)=D_{i} y_{i k}-y_{i k} D_{k} \tag{B.2}
\end{equation*}
$$

Assuming no losses within the bus, by continuity of power the power being injected into a bus (positive for generators and negative for loads) is equal to the algebraic sum of the power flows into the transmission lines conrected to that bus. Let P_{i} be the power injection at bus i, then

$$
\begin{equation*}
P_{i}=\sum_{k} P L_{i k}=D_{i} \sum_{k} y_{i k}-\sum_{k} y_{i k} D_{k} \tag{B.3}
\end{equation*}
$$

Define \underline{P} to be a vector whose $i^{\text {th }}$ element is the power injected into bus i, and define D to be a vector of corresponding bus voltage angles.

Then relation (B.3) becomes

$$
\begin{equation*}
\underline{P}=\underline{Y} \underline{D} \tag{3.4}
\end{equation*}
$$

By comparison with (B.3) it can be seen thet the elements of \underline{Y} are such that the diagonal element of row i is the sum of admittance magnitudes of the transmission lines which are connected to bus $i, Y_{i i}=\sum_{k} y_{i k}$. The off diagonal elements ik and ki are negative value of the admittance magniture of the line between bus i and bus $k, Y_{i k}=Y_{k i}=-y_{i k}$. Therefore the matrix Y is of the form

$$
\underline{Y}=\left[\begin{array}{cccc}
\sum_{k} y_{1 k} & -y_{12} & -y_{13} & \ldots- \tag{B.5}\\
-y_{12} & \sum_{k} y_{2 k} & -y_{23} & \ldots- \\
-y_{13} & -y_{23} & \sum_{k} y_{3 k} & \cdots-\cdots \\
\cdots \cdots \cdots \cdots
\end{array}\right]
$$

Because each bus is usually only conrected to a few of all the other buses, \underline{Y} is normally a sparce matrix. It is readily observable that the sum of all elements of any row or column of \underline{Y} is zero. The bus voltage phase angles must be measured with respect to a common reference so one bus must be designated as the reference bus where voltage angle is specified. Also, because the linear model is lossless, by continuity of power, the algebraic sum of elements of \underline{P} is zero. Yence one row of equation (3.4) is redundant. If bus i is chosen as reference for voltage phase argle, then I et $\underline{D}_{\text {bus }}$ be the vector I with element i deleted, let $\underline{P}_{\text {bus }}$ be the vector \underline{P} with element i deleted, anc let $\underline{Y}_{\text {bus }}$ be the matrix \underline{Y} with row i and column i deleted. Then equation (B. 4) is

$$
\begin{equation*}
\underline{P}_{b u s}=\underline{Y}_{b u s} \underline{D}_{b u s} \tag{B.6}
\end{equation*}
$$

$\underline{P}_{\text {bus }}$ and $\underline{D}_{\text {bus }}$ can be separated into vectors PI and DI for Internal System (IS), $P B$ and $D B$ for Boundary System (BS), and $P X$ and $D X$ for External System (XS). Similarly separating $\underline{Y}_{\text {bus }}$ into submatrices

$$
\left[\begin{array}{l}
\underline{P I} \tag{3.7}\\
\underline{P B} \\
\underline{P X}
\end{array}\right]=\left[\begin{array}{lll}
\underline{Y I I} & \underline{Y I B} & \underline{Y} \underline{X X} \\
\underline{Y I B}{ }^{\prime} & \underline{Y B B} & \underline{Y B X} \\
\underline{Y I X}{ }^{\prime} & \underline{Y P X} & \underline{Y X X}
\end{array}\right]\left[\begin{array}{l}
\underline{D I} \\
\underline{D B} \\
\underline{D X}
\end{array}\right]
$$

However by definition there are no transmission lines between buses of IS and $X S$ so $\underline{V I X}=\underline{0}$.

$$
\left[\begin{array}{l}
\underline{P I} \tag{B.8}\\
\underline{P B} \\
\underline{P X}
\end{array}\right]=\left[\begin{array}{ccc}
\underline{Y} \underline{I I} & \underline{Y I B} & \underline{0} \\
\underline{Y I B}{ }^{\prime} & \underline{Y B B} & \underline{Y B X} \\
\underline{O} & \underline{Y B X} & \underline{Y X X}
\end{array}\right]\left[\begin{array}{l}
\underline{D I} \\
\underline{D B} \\
\underline{D X}
\end{array}\right]
$$

The inverse of the bus admittance matrix $\underline{Y}_{\text {bus }}$ is the bus impedance matrix $\underline{Z}_{\text {bus }}$ such that

$$
\begin{equation*}
\underline{D}_{\text {bus }}=\underline{Z}_{\text {bus }} \underline{P}_{\text {bus }} \tag{B.9}
\end{equation*}
$$

or $\left[\begin{array}{l}\underline{D I} \\ \underline{D B} \\ \underline{D X}\end{array}\right]=\left[\begin{array}{lll}\underline{Z I I} & \underline{Z I B} & \underline{Z I X} \\ \underline{Z I B} & \underline{Z B B} & \underline{Z X X} \\ \underline{Z I X}{ }^{\prime} & \underline{Z B X} & \underline{Z X X}\end{array}\right]\left[\begin{array}{l}\underline{P I} \\ \frac{P B}{X X}\end{array}\right]$
$\underline{Z}_{\text {bus }}$ in terms of submatrices of $\underline{\underline{Y}}_{\text {bus }}$ can be found by solving $\underline{Z}_{\text {bus }} \underline{Y}_{\text {bus }}=I$ for $\underline{Z}_{\text {bus }}$ where I is the identity matrix.

$$
\left[\begin{array}{lll}
\underline{Z I I} & \underline{Z I B} & \underline{Z I X} \tag{B.11}\\
\underline{Z I B} & \underline{Z B B} & \underline{Z B X} \\
\underline{Z I X} & \underline{Z B X} & \underline{Z X X}
\end{array}\right]\left[\begin{array}{ccc}
\underline{Y I I} & \underline{Y I B} & \underline{0} \\
\underline{Y B}{ }^{\prime} & \underline{Y B B} & \underline{Y B X} \\
\underline{O} & \underline{Y B X} & \underline{Y X X}
\end{array}\right]=\left[\begin{array}{ccc}
\underline{I} & \underline{0} & \underline{O} \\
\underline{0} & \underline{I} & \underline{0} \\
\underline{0} & \underline{0} & \underline{I}
\end{array}\right]
$$

Nultiplying the middle row of $\underline{Z}_{\text {bus }}$ by the left column of $\underline{Y}_{\text {ous }}$ (here rows and column will refer to row and column submatrices.)

$$
\begin{equation*}
\underline{Z I B}{ }^{\prime} Y I I+\underline{Z B B} \underline{Y I B^{\prime}}=\underline{0} \tag{B.12}
\end{equation*}
$$

and solving for $2 \mathbb{B}^{\prime}$

$$
\begin{equation*}
\underline{Z I B^{\prime}}=-\underline{Z B B} \underline{Y I B}^{\prime} \underline{Y I I}^{-1} \tag{B.13}
\end{equation*}
$$

Multiplying the middla row of $Z_{b u s}$ by the right column of $\underline{Y}_{\text {bus }}$ and solving for $Z B X$

$$
\begin{align*}
& Z B 3 Y X X+Z B X Y X X=0 \tag{B.14}\\
& Z B X=-Z B B Y X X Y X X^{-1} \tag{B.15}
\end{align*}
$$

Wultiplying the middle row of $\underline{Z}_{\text {bus }}$ by the middle column of \underline{Y}_{b} and solving for $2 B B$ with the use of (B.13) and (B.15)

$$
\begin{align*}
& \underline{Z I B}{ }^{\prime} \underline{V B}+\underline{Z B B} \underline{Y B B}+\underline{Z B X} \underline{Y B X}{ }^{\prime}=I \tag{B.16}\\
& -\underline{Z B B} \underline{Y I B}^{\prime} \underline{Y} I^{-1} \underline{Y I B}+\underline{Z B B} \underline{V B B}-\underline{Z B B} \underline{Y B X} \underline{Y X X}^{-1} \underline{Y B X}{ }^{\prime}=I \tag{B.17}\\
& \underline{Z B B}=\left(-\underline{Y} I B^{\prime} Y I I^{-1} \underline{Y} I B+Y B B-Y B X X X X X^{-1} \underline{Y B X}{ }^{\prime}\right)^{-1} \tag{3.18}
\end{align*}
$$

Multiplying the top row of $\underline{Z}_{\text {bus }}$ by the left column of $\underline{\underline{Y}}_{\text {bus }}$ and solving for ZII with the use of (B.13)

$$
\begin{align*}
& \underline{Z I I} \underline{Y I I}+\underline{Z I B} Y \underline{Y} B^{\prime}=\underline{I} \tag{B.19}\\
& \underline{Z I I}=\underline{Y I I^{-1}}-\underline{Z I B} Y \underline{Y B}{ }^{\prime} Y I^{-1} \tag{3.20}\\
& \underline{Z I I}=Y I^{-1}+\underline{Y I I^{-1} Y I B} \underline{Z B B} \underline{Y I B}^{\prime} \underline{Y I I^{-1}} \tag{B.21}
\end{align*}
$$

Multiplying the top row of $\underline{Z}_{\text {bus }}$ by the right column of $\underline{Y}_{b u}$ and solving for ZIX with the use of (B.13) again

$$
\begin{equation*}
\underline{Z I B} Y \underline{Y B X}+\underline{Z X X} Y X X=\underline{O} \tag{3.22}
\end{equation*}
$$

$$
\begin{align*}
& \underline{Z I X}=-\underline{Z I B} Y \underline{Y} Y \underline{Y X X} \tag{8.23}\\
& \underline{Z I X}=\underline{Y I I^{-1}} \underline{Y I B} \underline{Z B B} Y \underline{Y B X} Y X X X^{-1} \tag{B.24}
\end{align*}
$$

Iet matrices YEOI, YEXX, Q2I, and $A O X$ be defined by

$$
\begin{align*}
& \text { YEOI }=-Y \mathcal{Y B} Y^{\prime} Y^{-1} Y \underline{Y} \tag{B.25}\\
& \text { YEDX }=-\underline{Y B X} X_{X X}{ }^{-1} \underline{Y B X}^{1} \tag{B.26}\\
& A 2 I=-Y I B^{\prime} \underline{Y I I}^{-1} \tag{B.27}\\
& A O X=-Y B X X X X X^{-1} \tag{B.28}
\end{align*}
$$

Then equations for $Z E B, Z I I, ~ Z I B$, ZIX, and ZEX can be written

$$
\begin{align*}
& Z \underline{Z B B}=(\underline{Y E Q I}+\underline{Y B B}+\underline{Y E Q X})^{-1} \tag{B.29}\\
& \underline{Z I I}=\underline{Y I I^{-1}}+\underline{A Q I} \underline{Z B B} A D I \tag{B.30}\\
& \underline{Z B}=\underline{A D I^{\prime}} \underline{Z B B} \tag{B.31}\\
& \text { ZIX }=A Q I \text { RBB } \triangle Q X \tag{3.32}\\
& \underline{23 X}=23 B A O X \tag{3.33}
\end{align*}
$$

Using (B.1C), the equations for DI and DB are

$$
\left[\begin{array}{l}
\underline{D I} \tag{3.34}\\
\underline{D B}
\end{array}\right]=\left[\begin{array}{ll}
\underline{Z I I} & \underline{Z I B} \\
\underline{Z I B} & \underline{Z B E}
\end{array}\right]\left[\begin{array}{l}
\underline{P I} \\
\underline{P B}
\end{array}\right]+\left[\begin{array}{l}
\underline{Z X X} \\
\underline{Z B X}
\end{array}\right] \underline{\underline{P X}}
$$

or using (3.29) through (B.30)

(3.35)

From equation (B.35) the key role of ZBB is covious.

AFPEMDE C. MDIIIEAR MODEL DEITIFICATION

To avoid notation clutter in this appendix, all voltage and current vectors and admittance matrices will be understoon to be complex vectors and ratrices even though there is no bar over the symbol (for a complex quantity) or bar under the symbol (for a vector or matrix). For example E and I are complex vectors.

The complex matrix equation for relatirg bus voltages to bus current injections is

$$
\begin{equation*}
I_{b u s}=Y_{b u s} E_{b u s} \tag{C.1}
\end{equation*}
$$

Ibus and $E_{\text {bus }}$ can be divided into separate vectors for Internal System (II and EI respectively), for Boundary Syster (IB and EB), and for External System (IX and EX). Dividing $Y_{\text {bus }}$ into the corresponding submatrices and noting that by definition of $I S, B S$, and Y, S there is no immediate coupling between $I S$ and $X S$, equation (C.I) can be written

$$
\left[\begin{array}{c}
I I \tag{C.2}\\
I B \\
I X
\end{array}\right]=\left[\begin{array}{ccc}
Y I I & Y I B & 0 \\
Y I B^{\prime} & Y B B & Y B X \\
0 & Y B X^{\prime} & Y X X
\end{array}\right]\left[\begin{array}{c}
E I \\
E B \\
E X
\end{array}\right]
$$

The only coupling between $C S$ and $X S$ is due to YBB which can be separated into two matrices. That belonging to CS will be designated YBCS, and that belonging to $X S$ will be desigrated YTL, so that YBB $=Y B O S+Y T L$. Separating equation (C.2)

$$
\left[\begin{array}{c}
I I \tag{C.3}\\
I B \\
I X
\end{array}\right]=\left[\begin{array}{ccc}
Y I I & Y B B & 0 \\
Y I B^{\prime} & Y B O S & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{c}
E I \\
E B \\
E X
\end{array}\right]+\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & Y T L & Y B X \\
0 & Y B X ' & Y X X
\end{array}\right]\left[\begin{array}{c}
E I \\
E B \\
E X
\end{array}\right]
$$

Removing the equation for $O S$

$$
\left[\begin{array}{l}
I I \tag{c.4}\\
I B
\end{array}\right]=\left[\begin{array}{ll}
Y I I & Y B B \\
Y I B^{\prime} & Y B \cap E
\end{array}\right]\left[\begin{array}{l}
E I \\
E Z
\end{array}\right]+\left[\begin{array}{l}
0 \\
Y T L E B+Y B X E X
\end{array}\right]
$$

The quantity YTL $E B+V B X E X$ is a vector of line current leaving the buses for $B S$ over the tie lines between $B S$ and $X S$. Designating this the tie line vector IFL

$$
\begin{align*}
& {\left[\begin{array}{l}
I I \\
I B-T T L
\end{array}\right]=\left[\begin{array}{ll}
Y I I & Y I B \\
Y I B & Y B O S
\end{array}\right]\left[\begin{array}{l}
E I \\
E B
\end{array}\right]} \tag{C.5}\\
& T M L=Y T L E B+Y B X E X
\end{align*}
$$

Removing the bottom row from equation (c.3)

$$
\begin{equation*}
I X=Y B X ' E B+Y X X E X \tag{C.7}
\end{equation*}
$$

and solvirg for $E X$

$$
\begin{equation*}
E X=-Y X X^{-1} Y B X, E B+Y X X^{-1} I X \tag{c.8}
\end{equation*}
$$

Substituting equation (C.8) into (C.6)

$$
\begin{equation*}
\text { TTL }=Y T L E B-Y B X Y X X^{-1} Y B X^{\prime} E B+Y B X Y X X^{-1} X X \tag{c.9}
\end{equation*}
$$

Define an equivalent external bus admittance matrix YEQX and an equivalent external complex bus current injection vector IEQX by

$$
\begin{align*}
Y E Q X & =-Y B X Y X X^{-1} Y B X ' \tag{C.10}\\
\text { Where } & I E Q X=A Q X I X \tag{C.11}\\
\text { Wh } & =-Y B X Y X X{ }^{-1} \tag{C.12}
\end{align*}
$$

Then equation (C.6) becomes

$$
\begin{equation*}
I T L=(Y T L+Y E Q X) E B-I E Q X \tag{C.13}
\end{equation*}
$$

and if equation (C.13) is substituted into equation (C.5), since $Y B E=Y B O S+Y T L$

$$
\left[\begin{array}{l}
I I \tag{C.14}\\
I B E+I E Q I
\end{array}\right]=\left[\begin{array}{ll}
Y I I & Y I B \\
Y I B^{\prime} & (Y B E+Y E Q X)
\end{array}\right]\left[\begin{array}{l}
E I \\
E B
\end{array}\right]
$$

In the same way, an equivalent complex bus admittance matrix and an equivalent complex bus current injection vector for $I S$ as seen by $B S$ can be found. The top row of equation (C.14) is

$$
\begin{equation*}
I I=Y I I E I+Y I B E B \tag{C.15}
\end{equation*}
$$

Solving for EI

$$
\begin{equation*}
E I=-Y I I^{-1} Y I B E B+Y I I^{-1} I I \tag{c.16}
\end{equation*}
$$

and suostituting into the bottom row of equation (C.14)

$$
I B+I E Q I=-Y I B^{\prime} Y I I^{-1} Y I B E B+Y I B^{\prime} Y I I^{-1} I I+(Y B B+Y E Q X) E B \quad \text { (C.17) }
$$

Defining an equivalent internal complex bus admittance matrix VEQI, and an equivalent internal complex bus current injection vector IERI by

$$
\begin{align*}
& Y E Q I=-Y I B ' Y I I^{-1} Y I B \tag{C.18}\\
\text { IEQI } & =A Q I I I \tag{C.19}\\
\text { where } & A Q I=-Y I B^{\prime} Y I I^{-1} \tag{C.20}
\end{align*}
$$

equation (C.17) becomes

$$
\begin{equation*}
I E Q I+I B+I E Q X=(Y E Q I+Y B B+Y E Q X) E B \tag{C.21}
\end{equation*}
$$

Just as YBB was divided into YTL and YBOS, so also YBOS can be divided into that belonging to $I S$ designated as YEBS, with YZOS $=Y B I S+Y B B S$. Then equation (C.21) is

$$
\begin{equation*}
I E Q I+I E+I E Q X=(Y B I S+Y E Q I) E B+V B R S E B+(Y T L+Y E Q X) E B \tag{C.22}
\end{equation*}
$$

Thus far equations (C.5), (C.13), (C.14), and (C.21) are the pertinent equations in terms of bus current injections. To place them in terms of bus power injections let a diagonal matrix whose elements are the complex conjugate values of bus voltages be

$$
\left[E^{*}\right]\left[\begin{array}{cccc}
E_{1}^{*} & 0 & 0 & \cdots- \\
0 & E_{2}^{*} & 0 & --- \\
0 & 0 & E_{3}^{*} & \cdots- \\
\cdots & & & \cdots
\end{array}\right]
$$

(Note that $[E]$ is a diagonal matrix whose diagonal elements are identical to the elements of the vector E.) Also, let PI and QI, PB and $Q B$, and $P X$ and $Q X$ be the real and reactive bus power injections of IS, BS, and XS. Then because for any bus $i, P_{i}-j Q_{i}=E_{i}^{*} I_{i}$

$$
\begin{align*}
& P I-j Q I=\left[E I^{*}\right] I I \tag{C.23}\\
& P B-j Q B=\left[E B^{*}\right] I B \tag{C.24}\\
& P X-j Q X=\left[E X^{*}\right] I X \tag{C.25}\\
& P T L-j Q T L=\left[E B^{*}\right] I T L \tag{c.25a}
\end{align*}
$$

$$
\begin{align*}
& I I=\left[E I^{*}\right]^{-1}(P I-j Q I) \tag{c.26}\\
& I X=\left[E X^{*}\right]^{-1}(P X-j Q X) \tag{C.27}
\end{align*}
$$

Multiplying equation (C.21) by $\left[E B^{*}\right]$
$\left[E B^{*}\right](E Q I+I B+I E Q X)=\left[E B^{*}\right](Y E Q I+Y B B+Y E X X) E B$

Define equivalent internal and external bus power injection vectors by $P E Q I-j Q E Q I=\left[E B^{*}\right]$ EQ $=\left[E B^{*}\right] A Q I\left[E I^{*}\right]^{-1}(P I-j Q I)$
$P E Q X-j Q E Q X=\left[E B^{*}\right] \operatorname{IEQX}=\left[E B^{*}\right] \operatorname{AQX}\left[E X^{*}\right]^{-1}(P X-j Q X)$

Then (C.28) becomes
$(P E Q I-j Q E Q I)+(F B-j Q B)+(F E Q X-j Q E Q X)=\left[E B{ }^{*}\right](Y E Q I+Y B B+Y E Q X) E B$

SUM PRY
For the following a bar over a symbol denotes a complex quantity while matrices and vectors are denoted by underlined symbols. Using equations (C.5), (C.23), (C.24), and (C.25a) the nonlinear load flow equation for $C S$ is
$\left[\begin{array}{ll}\underline{P I}-j Q I \\ (\underline{P B}-j Q B)-(\underline{P I}-j Q I L)\end{array}\right]=\left[\begin{array}{cc}{[\overline{E I}]} & \underline{0} \\ 0 & {[\overline{E B}]}\end{array}\right]\left[\begin{array}{cc}\overline{Y I I} & \overline{Y I B} \\ \overline{Y I B} & \overline{Y B C S}\end{array}\right]\left[\begin{array}{c}\overline{E I} \\ \overline{\underline{E B}}\end{array}\right]$
which, if $\overline{Y E Q X}$ and PEQX - jOEQX are known, becomes

The nonlinear analog of the linear load flow tie line power flow model for identifying YEQX is

$$
\begin{equation*}
\underline{P T L}-j P T L=\left[\overline{E B}{ }^{*}\right](\overline{Y T I}+\overline{Y E D X}) \overline{E B}-(\text { PEOX }-j Q E X X) \tag{c.34}
\end{equation*}
$$

and the ronlinear anelog of the linear bourcary bus impedarce model is

$$
\begin{gather*}
{[(\underline{P E Q I}-j Q E Q I)+(\underline{P B}-j Q B)]+(\underline{P E Q X}-j 2 E Q X)} \\
=[\overline{E B}][\overline{Y P Q I}+\overline{Y B B}+\overline{Y E Q X}] \overline{E B} \tag{C.35}
\end{gather*}
$$

Repeating the equations for current injections

$$
\begin{equation*}
(\overline{\overline{I E Q I}}+\overline{\underline{E}})+\overline{I E O X}=(\overline{Y E O I}+\overline{Y B B}+\overline{Y E Q X}) \overline{E B} \tag{C.39}
\end{equation*}
$$

$$
\begin{align*}
& {\left[\begin{array}{l}
\overline{\overline{I I}} \\
\overline{\overline{I B}}-\overline{\overline{I I}}
\end{array}\right]=\left[\begin{array}{ll}
\overline{\underline{Y} \overline{I I}} & \overline{Y \underline{Y B}} \\
\overline{Y I B} & \overline{Y B B}
\end{array}\right]\left[\begin{array}{l}
\overline{\underline{E I}} \\
\overline{\underline{E B}}
\end{array}\right]} \tag{c.36}\\
& {\left[\begin{array}{l}
\overline{\overline{I I}} \\
\overline{\overline{I B}}+\overline{\overline{I S O X}}
\end{array}\right]=\left[\begin{array}{ll}
\overline{Y I I} & \overline{\overline{Y I B}} \\
\overline{Y I B}, & (\overline{Y B E}+\overline{Y E O X})
\end{array}\right]\left[\begin{array}{l}
\overline{E I} \\
\overline{E B}
\end{array}\right]} \tag{C.37}\\
& \overline{I M I}=(\overline{Y T I}+\overline{V E D X}) \overline{E B}-\overline{E D X} \tag{c.38}
\end{align*}
$$

APPE:DIX D. MAXDUU: LIYELIHCOD DENTIFICATION EQUETIONS

Given a sequence of input measurements $\underline{u}(1), \underline{u}(2), \ldots, \underline{u}(N)$, a sequence of corresponding output measurements $\underline{Z}(1), \underline{Z}(2), \ldots, \underline{Z}(N)$, a set of conficence coefficients $c(1), c(2), \ldots, c(N)$ which indicate the relative confidence associated with each input/output set, and given the input/output relation

$$
\begin{equation*}
\underline{z}(n)=\underline{H} \underline{u}(n)+\underline{v}(n) \tag{D.1}
\end{equation*}
$$

where $\underline{v}(n)$ is a noise vector having a Gaussian probability distribution with zero mean and covariance $\frac{l}{c(n)} R$, it is desired to find the maximum likelihood estimates of H and R subject to the following conditions:

1. The elements of \underline{H} are independent of one another. (e.g. in general $\underline{H} \neq \underline{H}^{\prime}$)
2. $E\{\underline{v}(n)\}=0$
3. $E\left\{\underline{\underline{v}}(n) \underline{v}^{\prime}(\mathrm{m})\right\}=0$ for $n \neq m$
4. $E\left\{\underline{v}(n) \underline{v}^{\prime}(n)\right\}=\frac{1}{c(n)} \underline{R}$
5. $E\left\{\underline{v}(n) \underline{u}^{\prime}(n)\right\}=0$

The probability distribution function for the $K x l$ vector $\underline{v}(n)$ is

$$
\begin{equation*}
p[\underline{v}(n)]=\left[(2 \pi)^{K} c^{-K}(n)|\underline{R}|\right]^{-\frac{1}{2}} e^{-\frac{1}{2} \underline{v}^{\prime}(n) c(n) \underline{\underline{R}}^{-1} \underline{v}(n)} \tag{D.2}
\end{equation*}
$$

The likelihood function for $\underline{Z}(n)$ and $\underline{\underline{u}}(n)$ given \underline{H} and \underline{R} where $\underline{Z}(n)$ and $\underline{u}(n)$ are $K x l$ vectors, and \underline{H} and \underline{R} are $K x K$ matrices is

$$
\begin{equation*}
p[\underline{z}(n), \underline{u}(n): \underline{H}, \underline{R}]=\left[(2 \pi)^{K} c^{-K}(n)|\underline{R}|\right]^{-\frac{1}{2}} e^{J[\underline{Z}(n), \underline{u}(n): \underline{H}, \underline{R}]} \tag{D.3}
\end{equation*}
$$

where

$$
\begin{equation*}
J[\underline{z}(n), \underline{u}(n): \underline{H}, \underline{P}]=\frac{1}{2}[\underline{z}(n)-\underline{H} \underline{u}(n)] c(n) \underline{R}^{-1}[\underline{z}(n)-\underline{\underline{u}} \underline{u}(n)]^{\prime} \tag{D.4}
\end{equation*}
$$

Using $\operatorname{tr}\{\underline{A}\}$ to mean the trace of matrix A and using the identity $\underline{a}^{\prime} \underline{a}=\operatorname{tr}\left\{\underline{a} \underline{a}^{\prime}\right\}$ where \underline{a} is a vector equation (D.4) can also be written $J[\underline{Z}(n), \underline{u}(n): \underline{H}, \underline{R}]=\frac{1}{2} \operatorname{tr}\left\{c(n) \underline{R}^{-1}[\underline{z}(n)-\underline{Y} \underline{u}(n)][\underline{z}(n)-\underline{H} \underline{u}(n)]^{\prime}\right\}$

Let the sets $\underline{Z}, \underline{U}$, and \underline{V} be such that $\underline{Z}=\{\underline{z}(1), \underline{z}(2), \ldots, \underline{z}(N)\}$, $\underline{U}=\{\underline{u}(1), \underline{u}(2), \ldots, \underline{u}(N)\}$, and $\underline{v}=\{\underline{v}(1), \underline{v}(2), \ldots, \underline{v}(N)\}$. Because $\underline{v}(n)$ is assumed to be uncorrelated in time $\left(\mathbb{E}\left\{\underline{v}(n) \underline{v}^{\prime}(m)\right\}=0\right.$ for $n \neq m$) and because $\underline{v}(n)$ is Gaussian, the joint probability distribution function for \underline{V} is the product of the distribution functions for $\underline{v}(1), \underline{v}(2), \ldots, \underline{v}(N)$.

$$
\begin{align*}
p(\underline{v}) & =p[\underline{v}(1)] p[\underline{v}(2)] \ldots p[\underline{v}(N)] \\
& =\left[(2 \pi)^{M}|\underline{R}|^{N} \prod_{n=1}^{N} c^{-K}(n)\right]^{-\frac{1}{2}} e^{-\frac{1}{2} \sum_{n=1}^{N} \underline{v}^{\prime}(n) c(n) \underline{R}^{-1} \underline{v}(n)} \tag{D.6}
\end{align*}
$$

The likelihood function of \underline{Z} and \underline{U} given \underline{H} and \underline{R} is then

$$
\begin{equation*}
p(\underline{Z}, \underline{U}: \underline{H}, \underline{R})=\left[(2 \pi)^{I K}|\underline{R}|^{N} \prod_{n=1}^{N} c^{-K}(n)\right]^{-\frac{1}{2}} e^{-J(\underline{Z}, \underline{U}: \underline{H}, \underline{R})} \tag{D.7}
\end{equation*}
$$

where

$$
J(\underline{Z}, \underline{U}: \underline{H}, \underline{R})=\frac{1}{2} \sum_{n=1}^{N} \operatorname{tr}\left\{c(n) \underline{R}^{-1}[\underline{z}(n)-\underline{H} \underline{u}(n)][\underline{z}(n)-\underline{H} \underline{u}(n)]^{\prime}\right\}(D . \delta)
$$

It is desired to find the values of \underline{H} and \underline{R} which maximize the likelihood function $p(\underline{Z}, \underline{U}: \underline{H}, \underline{R})$. These values of \underline{H} and \underline{R} are the maximum likelihood estimates $\hat{\underline{H}}$ and $\hat{\underline{R}}$. If the logarithm of the likelihood function is maximize, then so will the function. The log likelihood function is
(2)

$$
\begin{align*}
\ln [p(\underline{Z}, \underline{U}: \underline{H}, \underline{R})]= & -\frac{1}{2} N \ln (2 \pi)+\frac{1}{2} \sum_{n=1}^{N} K \ln c(n) \\
& -\frac{1}{2} N \ln |\underline{R}|-J(\underline{Z}, \underline{U}: \underline{H}, \underline{R}) \tag{D.9}
\end{align*}
$$

A new function can be defined

$$
\begin{align*}
\mathrm{f}(\underline{Z}, \underline{U}: \underline{H}, \underline{R}) & =-2 \ln [\mathrm{p}(\underline{Z}, \underline{U}: \underline{H}, \underline{R})]-N K \ln (2 \pi)+\sum_{n=1}^{N} \mathrm{~K} \ln c(n) \\
& =N \ln |\underline{R}|+2 J(\underline{Z}, \underline{U}: \underline{H}, \underline{R}) \tag{D.10}
\end{align*}
$$

$\mathrm{f}(\underline{Z}, \underline{U}: \underline{H}, \underline{R})$ only has terms which involve \underline{H} or \underline{R}, hence, minimizing $f(\underline{Z}, \underline{U}: \underline{H}, \underline{R})$ is equivalent to maximizing the likelihood function.

To perform the necessary mathematical manipulations certain matrix gradient identities are used from Athens and Schweppe [1]. The matrix gradient for a scalar function of a $K x M$ matrix X is defined for use here as

$$
\frac{\partial}{\partial \underline{X}}[\hat{f}(\underline{X})]=\left[\begin{array}{llll}
\frac{\partial f(\underline{X})}{\partial X_{11}} & \cdots & \frac{\partial f(\underline{X})}{\partial X_{K I}} \tag{D.11}\\
\cdots \cdots & \cdots & \cdots \\
\frac{\partial f(\underline{X})}{\partial X_{1 M}} & \cdots & \cdots & \frac{\partial f(\underline{X})}{\partial X_{K M}}
\end{array}\right]
$$

Two properties of trace of a matrix are

$$
\begin{align*}
& \operatorname{tr}\{\underline{A}\}=\operatorname{tr}\left\{\underline{A}^{\prime}\right\} \tag{0.12}\\
& \operatorname{tr}\{\underline{A} \underline{B}\}=\operatorname{tr}\{\underline{B} \underline{A}\}
\end{align*}
$$

The identities used are

$$
\begin{equation*}
\frac{\partial}{\partial \underline{X}} \operatorname{tr}\{\underline{A} \underline{X}\}=\underline{A} \tag{D.14}
\end{equation*}
$$

$$
\begin{align*}
& \frac{\partial}{\partial \underline{X}} \operatorname{tr}\left\{\underline{A} \underline{X} \underline{B} \underline{X}^{\prime}\right\}=\underline{B} \underline{X}^{\prime} \underline{A}+\underline{B}^{\prime} \underline{X}^{\prime} \underline{A}^{\prime} \tag{D.15}\\
& \frac{\partial}{\partial \underline{X}} \operatorname{tr}\left\{\underline{A}^{-1} \underline{B}\right\}=-\underline{X}^{-1} \underline{B} \underline{A} \underline{X}^{-1} \tag{D.16}\\
& \frac{\partial}{\partial \underline{X}} \ln |\underline{X}|=\underline{X}^{-1} \tag{D.17}
\end{align*}
$$

When $f(\underline{Z}, \underline{U}, \underline{H}, \underline{R})$ is at its minimum value, the matrix gradients of $f(\underline{Z}, U: \underline{H}, \underline{R})$ with respect to \underline{H} and \underline{R} will be zero. Then the maximum likelihood estimates $\underline{\hat{H}}$ and $\underline{\hat{P}}$ will be the solutions for \underline{H} and \underline{R} of

$$
\begin{equation*}
\frac{\partial}{\partial \underline{H}} f(\underline{Z}, \underline{U}: \underline{H}, \underline{R})=\underline{0} \tag{D.18}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\partial}{\partial \underline{R}} f(\underline{Z}, \underline{U}: \underline{H}, \underline{R})=\underline{0} \tag{D.19}
\end{equation*}
$$

for

$$
\begin{equation*}
\mathrm{f}(\underline{\mathrm{Z}}, \underline{U}: \underline{\underline{U}}, \underline{R})=N \ln |\underline{\mathrm{R}}|+2 J(\underline{Z}, \underline{U}: \underline{\underline{H}}, \underline{R}) \tag{D.20}
\end{equation*}
$$

and

$$
J(\underline{Z}, \underline{U}: \underline{H}, \underline{R})=\frac{1}{2} \sum_{n=1}^{N} \operatorname{tr}\left\{c(n) \underline{R}^{-1}[\underline{Z}(n)-\underline{H} \underline{u}(n)][\underline{z}(n)-\underline{H} \underline{u}(n)]^{\prime}\right\}(D .2 l)
$$

First, the gradient with respect to \underline{H} is

$$
\begin{align*}
& \frac{\partial}{\partial \underline{H}} f(\underline{Z}, \underline{U}: \underline{H}, \underline{R})=\frac{\partial}{\partial \underline{H}} 2 J(\underline{Z}, \underline{U}: \underline{H}, \underline{R})=\underline{0} \\
&= \frac{\partial}{\partial \underline{H}} \sum_{n=1}^{N} \operatorname{tr}\left\{c(n) \underline{R}^{-1}[\underline{Z}(n)-\underline{H} \underline{u}(n)][\underline{z}(n)-\underline{H} \underline{u}(n)]^{\prime}\right\} \\
&= \sum_{n=1}^{N} \frac{\partial}{\partial \underline{H}} \operatorname{tr}\left\{c(n) \underline{R}^{-1} \underline{Z}(n) \underline{Z}^{\prime}(n)-c(n) \underline{R}^{-1} \underline{Z}(n) \underline{u}^{\prime}(n) \underline{H}^{\prime}\right. \\
&\left.-c(n) \underline{R}^{-1} \underline{H} \underline{u}(n) \underline{\underline{Z}}^{\prime}(n)+c(n) \underline{R}^{-1} \underline{H} \underline{u}(n) \underline{u}^{\prime}(n) \underline{H}^{\prime}\right\} \tag{D.22}
\end{align*}
$$

Using equations (D.12) and (D.13)

$$
\begin{gather*}
\operatorname{tr}\left\{c(n) \underline{R}^{-1} \underline{\underline{z}}(n) \underline{u}^{\prime}(n) \underline{H^{\prime}}\right\}=\operatorname{tr}\left\{c(n) \underline{\underline{U}} \underline{\left.\underline{u}(n) \underline{z}^{\prime}(n) \underline{R}^{-1}\right\}} \begin{array}{c}
=\operatorname{tr}\left\{c(n) \underline{u}(n) \underline{z}^{\prime}(n) \underline{R}^{-1} \underline{H}\right\} \\
\operatorname{tr}\left\{c(n) \underline{R}^{-1} \underline{H} \underline{u}(n) \underline{z}^{\prime}(n)\right\}=\operatorname{tr}\left\{c(n) \underline{u}(n) \underline{z}^{\prime}(n) \underline{R}^{-1} \underline{H}\right\}
\end{array}\right.
\end{gather*}
$$

Then equation (D.22) is

$$
\begin{equation*}
\underline{0}=\sum_{n=1}^{N} \frac{\partial}{\partial \underline{H}} \operatorname{tr}\left\{-2 c(n) \underline{u}(n) \underline{z}^{\prime}(n) \underline{R}^{-1} \underline{H}+c(n) \underline{R}^{-1} \underline{H} \underline{u}(n) \underline{u}^{\prime}(n) \underline{\underline{H}} \underline{\underline{H}}^{\prime}\right\} \tag{D.25}
\end{equation*}
$$

and using equations (D.14) and (D.15)

$$
\begin{align*}
\underline{O} & =\sum_{n=1}^{N}\left[-2 c(n) \underline{u}(n) \underline{z}^{\prime}(n) \underline{R}^{-1}+2 c(n) \underline{\underline{u}}(n) \underline{u}^{\prime}(n) \underline{H}^{\prime} \underline{R}^{-1}\right] \\
& =2\left[-\sum_{n=1}^{N} c(n) \underline{u}(n) \underline{\underline{r}}^{\prime}(n)+\sum_{n=1}^{N} c(n) \underline{u}(n) \underline{u}^{\prime}(n) \underline{H}^{\prime}\right] \underline{R}^{-1} \tag{D.26}
\end{align*}
$$

Then unless $\underline{R}^{-1}=\underline{O}$ (which would mean infinite noise covariance)

$$
\begin{align*}
& \sum_{n=1}^{N} c(n) \underline{u}(n) \underline{z}^{\prime}(n)=\sum_{n=1}^{N} c(n) \underline{u}(n) \underline{u}^{\prime}(n) \underline{\underline{H}}^{\prime} \tag{D.27}\\
& \underline{\underline{H}} \sum_{n=1}^{N} c(n) \underline{u}(n) \underline{u}^{\prime}(n)=\sum_{n=1}^{N} c(n) \underline{z}(n) \underline{u}^{\prime}(n) \tag{D.28}
\end{align*}
$$

and the value of \underline{H} which maximizes $p(\underline{Z}, \underline{U}: \underline{H}, \underline{R})$ is

$$
\begin{equation*}
\hat{\hat{H}}=\left[\sum_{n=1}^{N} c(n) \underline{z}(n) \underline{u}^{\prime}(n)\right]\left[\sum_{n=1}^{N} c(n) \underline{u}(n) \underline{u}^{\prime}(n)\right]^{-1} \tag{D.29}
\end{equation*}
$$

Taking the matrix gradient of $f(\underline{Z}, \underline{U}: \underline{\underline{R}}, \underline{R})$ with respect to \underline{R}
$\frac{\partial}{\partial \underline{R}} f(\underline{Z}, \underline{U}: \underline{H}, \underline{R})=0$
$=N \frac{\partial}{\partial \underline{R}}|n| \underline{R} \left\lvert\,+\frac{\partial}{\partial \underline{R}} \sum_{n=1}^{N} \operatorname{tr}\left\{c(n) \underline{R}^{-1}[\underline{z}(n)-\underline{H} \underline{u}(n)][\underline{z}(n)-\underline{H} \underline{u}(n)]^{\prime}\right\}\right.$

Using equations (D.16) and (D.17)
$\underline{0}=1 \underline{R}^{-1}-\sum_{n=1}^{N} c(n) \underline{R}^{-1}[\underline{z}(n)-\underline{H} \underline{u}(n)][\underline{z}(n)-\underline{H} \underline{u}(n)]^{\prime} \underline{R}^{-1}$
$=\underline{P}^{-1}\left\{\underline{R}-\frac{1}{N} \sum_{n=1}^{N} c(n)[\underline{z}(n)-\underline{H} \underline{u}(n)][\underline{z}(n)-\underline{H} \underline{u}(n)]^{\prime}\right\} \underline{R}^{-1}$
Again unless $\underline{R}^{-1}=\underline{O}$, using equation (D.29) the value of \underline{R} which minimize $p(\underline{Z}, \underline{U}: \underline{H}, \underline{R})$ is

$$
\begin{equation*}
\hat{\underline{R}}=\frac{1}{N} \sum_{n=1}^{N} c(n)[\underline{z}(n)-\hat{\hat{H}} \underline{u}(n)][\underline{z}(n)-\hat{\hat{H}} \underline{u}(n)]^{\prime} \tag{D.32}
\end{equation*}
$$

Hence \hat{H} and $\hat{\underline{R}}$ or equations (D.29) and (D.32) are the maximum likelihood solutions to the problem.

APPENDIX E. COMPUTER SIMULATION PROGRAM
FXPLANATIMN AND SYMBDL JSED IV TEXT

ACCIIMILATED SUM OF V*V VV
R
PHAT
$Z A$
$X A$
$Y F O I B$
$A O X$
$Y E O X L$.
$Y T L$
$Y O H A T$
MOONI

SIBROUTINES

COODO, ,ODOINPUT NETWORK MATRICES
C,O,OO20.OAIL INPUT IS THROUGH SURROUTINE YINPT CALL YINPT
COOOOOOONOINIT IALITF RANDOM NIJMRFR GEVFRATJR

I）$(N!N S+1)=n, n$
NOS $1=$ NOS +1
NALL $=3 \div$ NAS + NWS＋NL
OJ $21 \mathrm{NT}=1, \mathrm{~N} 2 \mathrm{~T}$
Con GFNERATIOV OF INF ADDITIONA．YEASUREYEVT SET NTOT $=$ NTOT +1
COOOOOSOOOGENERATE FUUS DTWER CHANGES
D］ $23 \mathrm{~T}=1$ ，NOS
$P(I)=P N J M(I) \quad P C T O S * R A N O(-10)$
DJ $24 \quad I=V) S\}$, NWS
DJ $24 I=V I S\}$ ，NWS
$P(I)=P N O M(I): P C T X$
$24 P(I)=P N \cap M(I): P C T X S: R A N D(-$ ？ 0$)$
Cooooonロ०oFMRM VECTORS $Z, X, A N D V$
CoooonoonoupDATE STATISTICS ON 7，X，V，P，AND PL
D］ 31 I＝1，NBS
Coロ०วロロ，○OJPDATF VX，VV，CHI，AND SGINV
$V \times(I, J)=V \times(T, J)+V(I) \div X(J)$
$V V(I, J)=V V(I, J)+V(I) \div V(J)$
CHI（I，J）$=$ CHI（I，J）＋7（I）＊X（J）
$31 \operatorname{SoINV}(I, J)=\operatorname{ScINV}(I, J)+X(I) * X(J)$ D） $25 \quad I=$ ？，NBS
CooosoosonSTARE 2．ANH X FOR LATER USE
XA $(I, N T \cap T)=X(I)$
COOOOOOOOEND GFVERATIOV OF MEASUREMENTS
CONTINUE
$C, 0000000$ OFIVD NTMINAL VALUES IF $Z, X, V, P, A N D P L$ （0） $2 \div I=1, N W S$
$P(I)=\operatorname{PNOM}(T)$
CALL $7 \times V$
STATS（NALL，NZT，NZT＋1）
EGIN SOLUTION FOR ESTIMATES JF H AVD
$I=1 ., N B S$
$J=?, N R S$
$J=I$ ，NRS
$Z \varepsilon$
$Z \varepsilon$
ε
27
CALL
Cr
a
e
e
c
3？．SICMA $(I, J)=\operatorname{SGINV}(I, J)$
Cooo，2000，FIND SICMA＝INVERSE TF SOINV
ALL．MINVD（SIGMA，NBS，DETSG，NDSG） IF（DETSG）4の，113，4？
$3!3$ FJRMAT（18H SRINV IS SINGIILAR） ־STIMATE JF H
$\begin{array}{lll}78 & I=1, N R S \\ & 48 & J=1, N R S\end{array}$
$48 \quad j=$
SUM＝？
SUM）$=$ ก。 0
SUM2 $=$ SUMつ $+V X(I, K) \div S \operatorname{IGMA}(K, J)$
47° SUM＝SIIM＋CHI（I，K）：SIGMA (K, J) BIAS $(I, J)=S 1 J M ?$ $H(I, J)=S U M$
XVTПT＝NTПT
COOOOOO，OOFIND ACTUAL R
COOOODOOORFMOVF 7 ANO X FROM STORAGE
$(r) X_{0}\left(r^{6} I\right) H-(I) Z=(I) Z \quad$ C
DI RHAT $(I, J)=$ O．
Cos：o००OOFINDFSTIMATFD Q
$\begin{array}{ll}\text { DJ } & 63 \\ \text { DJ } & K=1, N T I T \\ I & =1, N B S\end{array}$
$\begin{array}{ll}01 & 63 \\ 1 & =1, N R S \\ 63 & J\end{array}=1, N R S$
$Z(I)=7 \wedge(I, K)$
$X(I)=X A(I, K)$
$X(I)=X A(I, K)$
$D T 62 I=1, N R S$
D． $62, J=1, N B S$
ono EIVO ESTIMATED V
61
e
ち3 RHAT（I，J）＝RHAT（I，J）＋Z（I）\％Z（J） 0］ $04 \quad I=1, N R S$ D丁 ロ́ $J=1$ ，NBS
CAL MODFI (MODNI)+2)
INEMRMATION
CALI DUTPT
GOTO 44
CONT INUE
71 CONTIMIJE
COOOOOOOOCALL LINF PONFR CHECK SUBROUTINE TJ FIVD HJW NEIL COOOOOOOOOTHF IDENTIFIED MODEL PREDICTS LINE FLJN CHANGES CALL PLCHK
46 CJNTINUE 44

COOOOOOOOIF NETWORK MATRICES HAVE NDT AEEN PRFVIOUSLY CALCULATED
COOOOOOOOUSINR LINE MATA，RFMOVE THE C IV CJLUMN I IF THE

Abstract

TWO CARDS NWS，VRS，NX $(Z W S(I, J), J=1, N W S)$ ，NBS $\quad(A R O S(I, J), J=1, N O S)$,$~ N I S$ $(Y I I N V(I, J), J=1, N I S)$,$~ N R S$ $\quad(Y=O I B(I, J), J=1, N R S)$ ，NBS $(Y E O X L(I, J), J=1$, NaS $)$ $(10 \times(T, j), j=1, N \times S)$ $(Y T L(I), I=1, N B S)$ （YI．（I），KHEAD（I），KTAJL．（I），I＝1，VL）

DATA TG RE USED IN SIMULATIJN

REAO 2ी？

READ 2－2々＝人 ？？

27 CONTINIE
C．OOODの口，OFFVFRATE Z，X，V，D，ANO PL FRTM BUS POWER GYAVBES， SUBRDUTINC： $2 X V$
COMMON 7WS

 3NWS，NTS，NIS，NRS，NXS，NL，LINOS，DFTSG，NT，NZT，INVP，PCIJS，PCTXS COMMา $V \operatorname{VX}(5,5), \operatorname{VV}(5,5)$ ， $\operatorname{RIIAS}(5,5), \operatorname{R}(5,5), \operatorname{RHAT}(5,5)$

M） $12 \quad 1=1$ ，NBS
ПATA（1，IT）＝Z（I）

DATA $(1, T B)=X(I)$
OATA（I，IB）$=V(I)$

$\underset{\sim}{\sim}$
$\square A T A(1, I T)=7(I)$
$T B=I I+N R S$
$I B=I B+N B S$
2
2
\vdots
\vdots
\vdots
\vdots
告
IT) $=P(I)$
$=1, \mathrm{NL}$
, II $=P L(I)$

$\stackrel{\square}{\square}$

$2 \quad 2(1)=P 1 .(17)$
$22(1)=P 1 .(17)+P L(14)$
$J N) S=J+N O S$
$V(T)=V(T)+A Q \times([, J)$ мिP(JNOS)
RTTIRN
QHAT $(I, J)=H(I, J)$
ALL MINVI)(YOHAT,NRS, DETYO,NDSG)
IF (DETYO) 62,113,6?
DRINT 213
Fา 62 NBS
D) $62 I=1, N B S$
$Y 2 H A T(I, I)=Y D H A T(I, T)+Y T L(I)$

OJ 63 $J=1, N B S$
YOHAT $(I, J)=Y O 1$
YOHAT $(I, J)=Y O H A T(I, J)-Y E O I B(I, J)$
RETIIRN
CONTINUE

Or 7 I $I=2$, NBS
$\operatorname{YQHAT}(I, J)=H(I, J)$ RETURN
$\begin{array}{lll}m & m \\ m & n \\ m & n\end{array}$
0
-
$\stackrel{C}{-}$
 IF (Ny-1) 16, 16,18

IF(DATA(1, I)-DATA(f, I))21,22, 22
DATA(4, [) DATA(), !
C) TO 24
n

CODOOOOOOOUPDATF MAXIMHM VAIJIFS
?? IF(DATA(1, I)-ПATA(5, I)) 24, 24, 23 23 ПATA(5,I)=DATA(1,I)

$$
8
$$

VALIFS

$-$
$=$
147^{-}

16

$\left(S I N P^{6} S I N I\right) S M Z-\left(T^{6} I\right) H=(P) d O$
$3 i$
$I=3$
$I=1$, ins 5
$=1,5$
16

$$
\text { ORTNT } 130
$$

PRINT I3

$$
\text { 0า } 16 \quad 1=1, N B S
$$

$$
(S I G M A(I, J), J=1, \text { NRS })
$$

PRTNT 2.2. $2, ~(S G I N V(I, ~ J), J=1, N R S)$

$(V X(T, J), J=1, N R S)$
> $52,53,54,551, L$
14,
$3 r^{\circ}$
11,
(CHI $(I, J), J=1$, NBS $)$
$1=1, N B S$

D] $223 \quad I=1, N B S$
$\begin{array}{lll}n & n & n \\ n & n & N\end{array}$ n
in

m $N F N=N: 3$ Mr $\mathrm{N}=\frac{2}{11}$ G] T?
MRND=NR अT TJ Gन TJ PRINT
PR INT
PRIMT n!上
\approx
\approx $\stackrel{\leftarrow}{2}$
$\underset{\sim}{r}$ z
に
C
 0
n

10
m

e

$$
4
$$

$=$

OOOSSV IS THE AMOUNT OS BUS POWFRS ARE TJ MJVEO
OSOXSMV IS THE AMOUNT XS RUS POWERS ARE TO BE MJVEO
XSMV = PCTXS
VALI
IOWS +7 ISI INOS
ISIS $+I$

$u=(\tau+\sin) U$

. r
 D) h2 I = NTSI, NWS
 DO TG $I=1$, NWS

- SORF POWER 10 DATA(1., I) $=$ P(I)
$0000 F I V D$
DJ $16 \quad I=1$, NOS
COOOOOOOOOFIVD ACTUAL BUS VOLTAGE ANGLES n) $16 \quad I=1$, NOS
$D(I)=O$
5). $P(I)=\operatorname{PNOM}(I) \cdots \times \operatorname{SMV}:\left(\operatorname{RAN} \cap\left(\Gamma_{0}\right)-\Pi \circ 5\right) \div 200$ 25
Co000
\because
ก) $16 \mathrm{~J}=1$, NiNS
$16 r)(I)=\cap(I)+Z W S(I, J): P(J)$
COOOOODOOOFIND ACTUAL LINE POWFR FLNW CHANGES IV OS ก) 13 I = , LINBS
$K H=K H F A \cap(!)$
$P L(I)=Y L(I) \because(D(K H)-\cap(K T))$
$I I=I I+$?
CooononoonSTIFF PL IN RJW 1 OF DATA
(1) $70=\left(11^{6}\right.$ I) $V \perp V C \quad 8$
()) $23 \quad \mathrm{I}=1$, NUS
COOOOOOOOOFIND ESTIMATED RUS VOLTAGE ANGLES
NOS
22 SUA = SUM + 7.7SEO (I,J) $2 \cdot P(J)$
FOTND DRFOICTE LINE POWER FLOW CHANGES IN JS (NITHOUT USE JF DEQX) D) $24!=1$, LINOS $K H=K H E A O$ (I)

Hin

CALL STATS(NALL,NLINT,N)
COOOOOOOOFINO NTMINAL OPERATING VALIES
IN PREDICTED PEQX
EPRMR VJMINAL
SPGNDING TO
EFFECT JF
OR2E
THE
DATA CDNTAIN
U CHAVGFS WILL LINE FLOWS

2

In

$8=$

2/21/71
ANI IS A PSFUDI RANDDM NUMBFR GEVERATJR WHICH IS A CIMBINATIJV F SUBRO!ITINES RANDU AND CAUSS FROM THE IBM SCIENTIFIC

$0000 \rightarrow 0001$

 $F(X) 3,2,1$
$X=X$
0
$=1$
RAND $=-60 \%$
$I X=I X \% 65539$
$P A N D=R A N D+Y * 4656613 E-n$
IF(V) $7,7,4$

IF $(I X) 5,6,6$
$5 \quad I X=I X+2.14748 .3647+1$
f) $Y=I X$

14

+in

E

1 m

	70 $55 \mathrm{i}=1, \mathrm{~N}$
	IF (I-K) $50,5.5,5$,
50	$A(I,<)=A(I, K) /(-B I C, A)$
55	CJNTINUF
	P. .DUCF WATRIX
	i) $65 \quad I=1, N$
	$H \cap 1 . n=A(I, K)$
	D) $6.5 \mathrm{~J}=\mathrm{J}, \mathrm{N}$
	IF (I-K) 6 , 65 , 5
$6{ }^{\circ}$	IF (J-K)62, 55,6 ?
62	$\wedge(I, J)=4 \check{L D} \because(K, J)+A(I, J)$
65	C.ONTINIE
	- DIVIDE ROW RY PIVOT
	ก0 $75 \mathrm{~J}=1, \mathrm{~N}$
	IF(J-K) 7 , 75, 70
$7{ }^{7}$	$A(K, J)=A(K, J) / B I G A$
75	CONTINUE
	PRODIJT DF PIVOTS
	$0=\cap \because B I G A$
	REPI.ACE PIVOT BY RECIPROCAL
	A $(K, K)=10^{\circ} / B I G A$
35	C.ONTINUE
	FINAI. ROW AND COLUMN INTERCHANGE
	$K=N$
100	$K=K-1$
	IF (K) 1.50, i50, 105
105	$I=L(K)$
	IF (I-K) 12 , 12, 1"8
109	D] 11: J=1, V
	$H) L D=A(J, K)$
	$\wedge(J,<)=-\Delta(J, I)$
110	$\Delta(), I.)=H \cap L D$
1. 21	$j=M(K)$
	IF (J-K) ifor, 10.125
125	$03135 \quad \mathrm{I}=1, \mathrm{~N}$

$\begin{aligned} & \alpha \\ & c \\ & c \\ & i \\ & z \end{aligned}$

[^0]r
*
18

0
$+5$
14

-
ZWS $(K H, K T)=-Y$
Z.WS $(K T, K H)=-Y$
CONTINUC
CONTINUE
CONTIVUE
CoOOOOOOOOCALCILATE YIIVV USING TEMPORARY MATRIX YWS
\sim
2
2
\sim
\cdots
\sim
in
n
c
c

00 14?
DO 3 , $\mathrm{J}=\mathrm{l}, \mathrm{NI} \mathrm{S}$
CINT $150,(7 W S(I, J), J=1, N I S)$ IF (DET) $37,36,37$

D) $38 \quad I=1 . \mathrm{VI}$
YWS(I, J) =ZWS(
PRINT I MI
$+$
36
36
37
$38 \operatorname{YIINV}(I, J)=Y W S(I, J)$
15:
VIS
YY
GO0.OOOOOOCHECK INVERSTON YII:YIINV SHOULD BE AN IDENTITY MATRIX
$\begin{array}{ll}\text { DO } 1.44 & I=1 \text {, NIS } \\ \text { DO } 1.43 & J=1, N I S\end{array}$
(1) NIS
143 TY $1(J)=7 . Y[(J)+$ TWS $(I, K): Y I I N V(K, J)$
$\because O A L C I H A T E$ ADI ANO PLACE IN ABOS O2 $84 \mathrm{I}=1$, HRS
INTS $S=I+N T S$
D) PI $J=2, N I S$
SUM=n $K=i$, NTS
SUM=SUM + ZWS (INIS,K)"YIINV (K, J)
∞
$\sqrt{2}=$

4

$$
81 \wedge B \cap S(I, J)=-S U M
$$

$$
\begin{aligned}
& 43 \\
& 46
\end{aligned}
$$

$$
\begin{aligned}
& R 2 J=1, N B S \\
& J N T S=J+N T S
\end{aligned}
$$

$$
\begin{aligned}
& A B \cap S(I, J N T S)=i_{0} \cap \\
& A B \cap S\left(I, I N[S)=10_{0}!\right.
\end{aligned}
$$

$$
\begin{aligned}
& \text { AB, } \cap(I, I N[S)=10 \Gamma \\
& \text { PRINT } 1 \cap \mathrm{C}
\end{aligned}
$$

PRINI

$$
\begin{aligned}
& \text { NBS } \\
& (A B
\end{aligned}
$$

CALL MTNVO(ZWS, NWS, DET, NDZW) IF $($ DET $) 43,13,43$
OO $44 I=1$, NWS
$4 \therefore$ PRINT $15^{r_{i}}, \quad(Z W S(I, J), J=1, N W S)$
ZWS*:YWS

$$
\begin{aligned}
& S U M=S U M+Z W S(T, K) \backsim Y W S(K, J) \\
& Z Y I(J)=\text { SUM }
\end{aligned}
$$

$$
A B \cap S
$$

MATRIX
IDENTITY MATRIX
COOOOOMOFIND $7 R A-(-1)$ AND PLACE IN YFEXL
a）92． $\mathrm{I}=1$ ，NRS
TNIS $=$ TNMS

Q2 YEOXL $(I, J)=$ ZWS（INIS，JNIS）
CALL MINVO（YEQXI，VRS，DET，NDSG） IF（DFT） $04,03,94$
FTRMAT（IGH Z．BB IS SINGULAR）
TND $A D X=(Z B B$ 私：$(-1)): Z B X$
$I=1$, NSS
$J=1, N X S$
OOOFIND YEQXL＝YFQX YYTL $=Z B R=(-1)-Y E Q I B+Y T L$
DJ $96 I=1$ ，VBS
D） $96 J=1, N B S$
YEOXL $(I, J)=$ YEOXL $(I, J)-Y E Q T R(I, J)$
YEDIUNCH ALL HATRICES TO RE USED
1）3 $196, I=1, N P S$
YEOXL $(I, I)=Y$ CQ
$(I, J, Z W S(I, J), J=1, N W S)$
$(I, J, \operatorname{AROS}(I, J), J=I, N O S)$ （1） $75 \mathrm{I}=1$ ，NWS
OO $70 \quad 1=1$ ，NBS
\rightarrow $7=1$ NIS
（I，J，YIINV（I，J），$J=1$, NIS） DO $93 \mathrm{I}=1$ ，NBS
（SMN＇I＝「＇（r）I人L）＇J」！ 1 NI do Lウ

yo
$\stackrel{\sigma}{\circ}$
196
60000

$$
\stackrel{\text { ir }}{r}
$$

PUNCH
OJ 75
DJNCH
D 70
PUNCH
DO 78
PINC－
DO 99
∞
$(I, J, Y F O T R(I, J), I=1, N B S)$
(と1 $=S \times$

$$
\begin{aligned}
& \text { SMN } \\
& \text { is " }
\end{aligned}
$$

$$
\text { 1) } \cap 8 \quad I=1
$$

$$
6+7
$$

$$
\begin{aligned}
& 1 \times 1 \\
& (1 H 1) \\
& 6 F 12 \\
& 6 H \\
& 2(5 \mathrm{H}
\end{aligned}
$$

$(I, J, Y E Q X L(I, J), J=I, N B S)$

$$
\begin{aligned}
& (T, J, \wedge \cap \times(I, J), J=I, N \times S) \\
& (I, I, Y T L(I), I=1, N B S)
\end{aligned}
$$

$$
06
$$

$$
\begin{aligned}
& 1 \text { VWrOU } \\
& \text { L VWとUJ }
\end{aligned}
$$

- IIE FJNIC

$$
\begin{aligned}
& \text { IE HONNO } \\
& =1 \quad \angle O \text { CO } \\
& 1 E+J N I I O
\end{aligned}
$$

$$
\begin{aligned}
& 5 \\
& s_{2}^{c} \\
& c \\
& c \\
& 0 \\
& u
\end{aligned}
$$

$$
\begin{aligned}
& 60 \\
& \text { Le } \\
& 60
\end{aligned}
$$

$$
\begin{aligned}
& 1 \text { (} 1^{\prime}=S \times
\end{aligned}
$$

$$
\begin{aligned}
& \text { ع1، = SXN } \\
& \begin{array}{l}
H S) \varepsilon \\
H S) \varepsilon \\
H S) \varepsilon \\
H S) \varepsilon \\
H S) \varepsilon \\
H S) \varepsilon \\
H S 1
\end{array} \\
& \begin{array}{l}
1315 \mathrm{H} \\
13
\end{array} \\
& 117 \mathrm{H}
\end{aligned}
$$

$$
\begin{aligned}
& 1 \\
& \text { PRTNT } 103 \\
& \text { HL() } \\
& \text { CONTIMUE } \\
& \underset{\substack{z \\
\underset{\sim}{z} \\
\underset{\sim}{z} \\
\hline}}{ } \\
& \text { END }
\end{aligned}
$$

B IBLIDGRAPHY

1. Athans, N. and Schweppe, F. C., "Gradient Natrices and Natrix Calculations," N.I.T. Lincoln Lab Tech. Note 1965-53, Lexington, Nass.
2. Baughman, M. I. and Schweppe, F. C., "Cont.ingency Evaluation: Real Power Flows from a Linear Nodel," 700P 689-PNR, Presented at Summer Fower Veeting, Los Angeles, 1970.
3. Enyilicza, E., "A Power System State Estimation With Applications," Power Systems Engineering Group Report 12, Yass. Inst. of Tech., April, 1969.
4. Larson, R. E. and Hajdu, L. P., "Potential Applications and On-Line Implerentation of Power System State Estimation," Wolf Nanegement Services, Palo A.lto, Calif., Contract 14-03-79378, Bonneville Power Administration, Portland, Oregon, Final Report, January, 1969.
5. Larson, R. E., Tinney, W. F., and Paschon, J., "State Estimation in Power Systems, Ft. I: Theory anc Feasibility," IEEE Trans. Vol. PAS-89, pp. 345-352, March, 1970.
6. Rom, D. B., "Real Power Redistribution After System Outages; Error Analysis," Power Systems Engineering Group, Nass. Inst. of Tech., Report 7, August 19, 10,68.
7. Schweppe, F. C., "Uncertain Dynamic Systems," Notes for Course 6.6ć, Nass. Inst. of Tech.
8. Schweppe, F. C. and Rom, D. B., "Power System Static-State Estimation, pt. II: fpproximate Nodel," TEETrans. Vol. PAS-89, pp. 125-130, January, 1970.
9. Stagg, G. U., Dopazo, J. F., Klitin, O. A., and Vanslyck, I. S., "Techniques for the Real-Time Nonitoring of Fower System Operations," IEEE Trans. Vol. PAS-80, pp. 545-555, April, 1970.
10. Stagg, G. W., and El-Abiad, A. H., Computer Nethods in Power System Anelysis, NcGraw-Hill, 1968.
11. Stevenson, W. D., Jr., Elements of Power System Anelysis, NcGraw-Hill, 1962, pp. 171-176, 224-?26.
12. Wildes, J. N., "A Static-State Estimator for a Power Systen "etwork," Power Systems Eneineering Group Report 8, August 19, 1968.

Thesis

 1272460459 DeVille Identification for linear electrical power system models. alonill OISPLAY

Thesis
D459 DeVille
Identification for linear electrical power system models.

[^0]: $H O L D=\wedge(K, I)$
 $A(K, I)=-A(.1$
 $A(. J, I)=H \cap L D$
 GO TO $\}$ O.
 in is

