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ABSTRACT

This report investigates subsonic cliffuser performance, with

emphasis on conical and annular geometries. A correlation is

presented which aids in the prediction of performance . Two an-

nular diffusers were designed and tested to help substantiate the

correlation.
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I. INTRODUCTION

The diffuser is a device used in fluid mechanical systems to

convert kinetic energy into static pressure by decelerating the

flow. There are several basic straight-walled diffuser shapes

such as conical, two dimensional and annular as shown in Figure 1.

Much attention has been given to two dimensional diffusers and

several successful correlations have been developed, but annular

and conical diffusers have not been as exhaustively studied and

good new correlations would be very useful to the designer.

A. A GENERAL DESCRIPTION OF THE FLOW

A diffuser should convert kinetic energy of the flow into

pressure with a minimum of losses due to viscous effentrs. Also it

is desirable to make optimum use of the geometric area ratio,

because the area ratio prescribes the amount of diffusion that is

possible under ideal conditions. Bernoulli's equation relates

the total fluid energy to the static pressure and kinetic energy;

and if the flow experiences no losses due to friction or other

non isentropic processes the total energy of the fluid remains

constant. Any decrease in velocity will cause the static pressure

to rise, so that in an ideal diffuser all kinetic energy losses

show up as pressure gains. Unfortunately, most fluids experience

losses, and the goal of any flow analysis is to keep track of the

fluid energy whether it is dissipated or converted from flow

energy into static pressure. Dissipation of kinetic energy takes





place inside the boundary layers where large velocity gradients

exist so that the viscous effects become important.

The boundary layer is a thin region adjacent to the wall in

which the velocity increases from zero to the free stream value.

Since the fluid in the boundary layer is moving slower than that

in the free stream, it does not have as much kinetic energy as the

bulk of the flow. The transverse velocity gradients that are

present give rise to shear stresses which are related to the veloc-

ity gradients through the coefficient of viscosity for laminar

flow. In a turbulent boundary layer the shear stresses arc not

related to the gradients in such a simple fashion. However, it is

possible to model turbulent flow as an average motion plus time

dependent fluctuations whose average value is zero. When the

boundary layer equations arc modified for turbulent flows, addi-

tional shear stress terms are present known as Reynolds stresses.

These Reynolds stresses are in fact the predominant stresses for a

turbulent boundary layer.

Since the flow in diffusers is constantly decelerating, due to

increasing area, the flow faces an increasing pressure as it

traverses the channel. To overcome the increasing pressure the

flow must transform kinetic energy into pressure. However, as

mentioned the flow in the boundary layer is not as energetic as

the free stream, but it feels the same longitudinal pressure gradi-

ent. When the fluid near the wall does not have the energy to

overcome the pressure rise, the flow higher up in the boundary

layer must pull it along by shearing action. In this sense the

turbulent boundary layer is more capable of meeting an adverse

10





pressure gradient than a laminar one because of the additional

Reynolds stresses. For this reason it is advantageous for dif-

fusing flows to be turbulent in order to withstand the decelera-

tions imposed in a diffuser. A point is reached, however; where

the outer layers can no longer pull the inner layers, and the flow

is forced away from the wall and separation results. Large scale

separation with recirculating flow causes intolerable losses in a

diffuser and is to be avoided. Any time the boundary layer does

not have sufficient energy to overcome the pressure gradient it

will separate, so it is necessary to find out something about the

way the pressure gradient behaves in a diverging channel.

Bernoulli's equation is written as follows

*t = ? * i -i
v *"

(1)

Since the boundary layer feels the same pressure distribution as

the free stream, it is only necessary to calculate the free stream

pressure distribution which shall be calculated here assuming

inviscid one dimensional flow in the core. Taking the derivitive

of (1) gives

dp/d* r - VdV/d* ™

with continuity and constant density

or

dA/A=-^A •* \H/» (-vV/OJA w

11





replacing (4) in (2)

with continuity

or

d(fftfi*)/d*" <Hlt%)ldK - (24,7

A

3
) c/A/dx w

(7) shows that the pressure gradient is the strongest at the inlet

of a diffuser since the area gradient, 0^»/uX , is very nearly

constant for a given straight walled diffuser. This is compatible

with the state of the boundary layer which is "young" at the en-

trance of the diffuser and is able to overcome large pressure gra-

dients. The large initial gradient suggests that a boundary layer

should be as thin as possible at the entrance to a diffuser for

best performance; i.e., avoidance of early separation. This fact

has been substantiated by many researchers by increasing the inlet

boundary layer thickness and noting a decrease in performance,

Kline IRef . 1 /. Returning to the expression for the pressure gra-

dient, (7), it can be seen that the gradient may be high initially.

But a large area gradient also insures that the pressure gradient

term will decrease rapidly, because the denominator of (7) contains

the local area raised to the third power. Although a general

description of the flow conditions in a diffuser has been given,

the task remains to determine losses due to the factors considered

above

.

12





B. REVIEW OF PREVIOUS WORK

Many attempts over the years have been made to explain and

predict the actions of the flow in the diffuser. As the previous

section suggests, it is not a simple process. The major stumbling

block is that the phenomenon of turbulence is not well understood,

and to predict separation the growth of the boundary layer must be

calculated. In order to bypass the turbulent flow calculations,

more empirical methods and simplifications have been used to pre-

dict performance. One of the simpler techniques is that of the

equivalent cone angle method as described in Gleason {Ref. 4]

.

Basically, all flow cross sections are related to an equivalent

conical flow with a corresponding wall divergence angle. If the

wall divergence angle, which is a direct function of pressure gra-

dient, is below a certain value the diffuser is judged sound.

This method is widely used for design but has not always proved

adequate . The next level of effort has been directed towards gen-

erating performance plots.

After testing a sufficient number of diffusers of a given type,

constant pressure recovery lines were plotted on a graph of perti-

nent geometric parameters such as wall angle versus length.

Kline lRef. 5j has done extensive work in this area for two dimen-

sional diffusers and Sovran and Klomp (Ref.
6
J have done the same

thing for annular diffusers. Through flow visualization techniques

Kline I Ref 5
J
has been able to generate a plot showing the expected

flow regimes for different two dimensional geometries, Figure 6.

The line of first stall, a-a, is presented as the optimum perform-

ance line, because at or just after this point the boundary la\

13





has overcome as much of the pressure gradient as possible and is

nearing large scale separation or transitory stall. No similar

flow regime graphs have been developed for the annular or conical

geometries

Several years ago Kline lRef. 1J developed a more analytic

approach to the problem. He has attempted to solve the turbulent

equations in predicting performance. The boundary layer and con-

tinuity equations have been combined into a mementum integral

equation and used with several shear correlations to work up a set

of five linear first order differential equations with non linear

coefficients. However, the solutions of these equations alone do

not predict the performance, a stall criterion is needed. Kline

has combined several parameters including boundary layer thickness

and rate of area growth into a parameter. When this parameter

decreases to a certain value stall is said to occur. The param-

eter has no physical basis, but it does correlate line a-a of the

flow regime chart. In Reference 1 many reports have been analyzed

and the criterion in fairly successful for 2D-diffusers . The

variation in performance with inlet boundary layer thickness is

also demonstrated. Though Kline appears to be fairly successful,

the method is rather approximative and requires the solution of a

large set of equations. However, Vavra fRef. 8j has developed a

performance parameter which is easy to calculate from geometry and

can be derived from basic principles.

14
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II. DERIVATION OF THE SHAPE PARAMETER OMEGA

Vavra \Ref. 8/ presented the basic derivation, and Gapp ^Ref . 3/

did a thorough development which is presented below.

The momentum theorum

I i* t v.- ( Ut v:- -{#fh- [Zrds ( 8)

was applied to the differential flow element of Figure 2 to yield

tyAVKV + J^-GM?) V*

After expanding and rearranging terms where Wj ILH. and ",, are the

outward pointing normals of each respective side and •£ is the

tangent vector, the theorum gives

-f
AV dV B - A dp - VC dl (io)

rearranging

dp = -fVdV- T c «/L/A (ii)

or

d CWi.) + dp/-/ = t- V /f) ( C /A) dL (12)

Equation (12) may be derived for an annular diffuser as well.

From Figure 2 (a) for an annulus

dl
4

=• AL cos* ( l3 )

A, = A/Cos V

17





From Figure 2 (b)

Also C "VfT C f° r small divergences. Replacing (13), (14), and

(15) in (12)

?- C' dL, /fA ,

So finally considering only sections normal to the axis and

omitting the prime

as before. From the first law of thermodynamics

Q - d U.4 p u '/ * fc - V
y CJ p - O K- //op - •

'

or

^?/-/ = di-Tds (17)

Replacing (17) in (12) gives

<JL+ d CVV1^ - Tds, = (-?/f) ( CM) ^ L as)

combining the enthalpy and velocity derivatives into the total

enthalpy form

d+l = Tds - < ?/f) (C/A) dL (19 >

Since the idealized one dimensional process is adiabatic, with no

18





energy input through the walls, the total enthalpy is constant and

its derivative is zero. Therefore (19) reduces to

Tds = (£//) (c/A) Jl (2°)

The shear losses in a turbulent boundary layer are not easily

determined, but they do give an indication of overall losses. An

average shear stress coefficient was defined for the entire chan-

nel to reflect these losses.

<\f
- 2W /i i V" (21)

or using continuity

2"
My = C^A) tv,

1 /"/**" (22)

Replacing (22) in (21) yields

TJS * (Cp/2.) (^V/MMC^L (23)

Now a similar differential entropy change will be developed from

purely thermodynamic considerations for an adiabatic polytropic

compression. Referring to Figure 3, the polytropic efficiency is

defined to be ^?> ~ Cl I ;'-:or using the isentropic relations for a

differential compression

(T+ dTu )/T =. ( P + d ?/F )
* (2^)

Expanding in a binomial series and neglecting higher order terms

tyfr-f

Replacing (25) in (24) and rearranging

dT^/dT = (T/dT)(c![>/i>)¥ (26)

19





using -j?- - dT\ s / dT
dT/T - fr-l) /&/>*) ^P/P (27)

awIntroducing the perfect gas law and C& 2 J2.£~ into the first 1

of thermodynamics yields -

Tds ~ R ( V/fr-i) dT- (l^T/j>) dj>

or

ds = R [C W)r-i)dT/T - dp/f] (28 )

The final differential entropy form results by using (27)

in (28)

<U/r = (" '/-^ -/) dp/p w>

In order to combine the geometric and thermodynamic developments

the differentia] entropy changes. (29) and (23), can be equated

(cx/zt) sV* CdL ~ K. ( Vy* - A
p/f>

C3W'

Introducing the dimensionless referred mass flow rate M -" /»* f «'<- '
t

r PA
into (30) yields » ' '

(t//) C 'Atp -O dp/ p
again using the perfect gas law ~f

• / ***•
'

20
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rearranging

For a polytropic process y^n = constant so (33) becomes

The equation is now in a suitable form to be integrated. Vavra

has called the left side aX
%
and integrated it from the channel

entrance to exit along s streamline so that the constant total

enthalpy assumption is valid

/ <U, = / (*/z.)tof (a, x /a x
) cdL (35)

As previously discussed C is a constant representing, shear losses

and may be brought outside the integral. Also referred flow is a

constant for a given flow rate

.

) aX, - ( c-^ / 2L. ) n^
r

j \^ • / ft j v-w u (36)

The integral of (3 6) contains geometric characteristics of the

diffuser and has been defined as the shape parameter omega (*Xw)

.

Or f'"(A l /A)'
1

( c'A,)dL (37)
©

The product Si,C r must be related to diffuser performance for

JTj^ "to be useful. In order to do this the right side of (3 4)

must also be integrated.

dX x * ( '/>-/) C *//»,)
^ d( P/p.)

Integrating as before from entrance to exit.

Xz
= / ^Y^ "/ ) ( fy )

^ J O/h) OS)

21





By assuming constant polytropic efficiency and n constant

tfL
= (fyp -]) (H/*\4l) ( (fy?

t ) -0 (39)

For the differential change p r p 4. ^, p with &p, 4,4 fo and

again using a binomial expansion

f C?,+ Ap)/P#! " ~ ' * C n4"'/») ^ /?\ + higher order terms

(40)

replacing in (39)

equating (3 6) and (40)

substituting for ^v%— according Lu the definition

gives

or

Since constant total enthalpy was assumed there is no change in

total temperature so rewriting (28)

ds = - £. ( J Pt / h) ^
equating (29) and (28a)

22





(29a) is in a suitable form to be integrated and is a straight-

forward log. p ip

or

again using

with the usual expansion for logs; i.e. ln(l+x) = x, (43) becomes

*P/P, ( '^p-') - -4P* /P*, w
or

All flow considered was incompressible with M<J<L so

replacing ('16) in (42)

or

Oi/ M //is/.'-) -

JLC* '

.

(M8)

23





However Cr> = coefficient of pressure

c
p = ( T^-?,)/(if^) («)

Cp" = pressure recovery if the process followed the t
, to

P% line of Figure 3, i.e. ideal.

For isentropic flow &PV = O so (50) becomes

Cp. rr ( f/iV, * - //i Vj-)/<tfV,*) = I - ^//»J*" (50a)

Replacing (50a) in (37) gives

using (49) and (48) in (51) yields

(52) is the basic result of the theory. The amount a flow

departs from isentropic conditions has been shown to be a product

of the geometric parameter omega and an average shear stress

coefficient.

24
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f-s diagram foran adiabatic compression
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III. ORIGINAL SUGGESTION FOR USE OF OMEGA

Once equation (52) was derived, Vavra Qlef. 8^J investigated

some two dimensional data by plotting the losses as a function of

the shape parameter. His plot is reproduced in Figure 4. It can

be seen that the losses tend towards a minimum value in the neigh-

borhood of an omega of ten. For this reason Vavra suggested that

an omega of ten might be a good diffuser design value.

In an earlier investigation of the shape parameter,

Gapp fRef. 3^J reduced the* annular data of Sovran and Klomp TRef . 6/

so that a plot similar to Figure 4 could be generated as shown in

Figure 5. Although the plot shows the same trends as Vavra'

s

graph, there does not seem to be a value of omega to insure mini-

mum losses. Additional two dimensional data of Kline IRef. 5/ was

also plotted and has very similar characteristics, but does not

offer any firm evidence that one value of omega is to be strongly

preferred over any other. A somewhat different approach was to

plot lines of constant omega on the two dimensional flow regime

chart Fox and Kline ("Ref. 5J, Figure 6. It was seen, however, that

a given value of omega did not necessarily indicate the state of

the flow. Although the above evidence indicates that Vavra'

s

original suggestion of how best to represent losses as a function

of omega was not the best implementation of the shape parameter, it

does not adversely reflect on the validity of omega as a good

parameter. Omega has a definite physical significance which is

fundamentally different from previously suggested parameters

embodying all pertinent geometric characteristics. A dc.i\





of the physical meaning of omega has already been given and an

additional aspect of omega will be given in a later section.

The effort to achieve small losses as reflected in a minimum

value of uAj C, may not always be the chief goal of a particular

diffuser. The ideal pressure recovery coefficient is a function of

area ratio and as such is a measure of the maximum diffusion ob-

tainable for a particulr geometry. If the designer wishes a dif-

fuser to convert a large portion of the flow evergy into pressure,

a larger area ratio is called for. However if only a modest rise

is called for with a fairly uniform exit profile the reverse is

true . The application calling for a large pressure rise may be

able to tolerate higher losses when maximizing recovery while the

need for a uniform velocity profile will tend to require minimum

losses In proposing a theory or correlation for performance the

two above conditions must be considered so that an optimum design

criterion may be formulated. Before investigating diffuser

characteristics further a somewhat simpler derivation of omega will

be given to relate the shape parameter to diffuser performance in

a different way than previously derived.

29
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IV. AN ALTERNATE DERIVATION OF OMEGA

The non dimensional group used to define omega was a logical

consequence of the combination of the momentum theorem for an

arbitrary channel and the expression for a differential entropy

rise in an adiabatic polytropic compression. The derivation was

necessarily lengthy and the expression for omega may be obtained

from a more basic approach.

For the same one dimensional channel flow of Figure 2

p
-t

" p+ *i^ (53)

^ =• -/ AV =
-ft

A,V, (st)

Taking the derivative of (S3) with respect ro length and assuming

constant total pressure

dP^ ~ dp + -eVdV ~ o (55)

and from continuity for constant densiry

v cJrt = -A dv

or
I ./ — V _ »/!. v Si \ I A

(56)vdl/- (-V^/A) J A

replacing (56) in (55) gives

fV^dA/n ~d?> (57)

and using the definition of mass flow from (54)

dp - (ftey/f tA*)M^f^(A*/X*)cl± </!-(5«)

d U

33





rearranging

d?/(i fO ~ * (A,/A^(^(dA/jL)dL (so)

and integrating both sides

C
?

. = 2. (
U
(A,/A)

1

(*/*,) (JA/Jl) dl (60)
o

The integral in (60) looks very much like the definition of omega,

but the area rate of change must be related to the wetted perimeter

for each diffuser type.

A. CONICAL

A(L> = ^rr (\L, i LTAA/e)* (61)

combining (63) and (62) yields

C(l) = ( d &/ & C\ /tAsj e (6«+)

and replacing (64) in (60)

C*&: s
2. f (A^/A*) C(l) t*a/(> <^ -ir/?V^Jli(G5)

Therefore for the conical case the ideal pressure rise is a

function of the wall angle and omega. The factor relating

Ca* to omega has been defined as PARM-C

.

34





B. TWO DIMENSIONAL

or

2&, i CCL) -I WfL) C67)

combining (66) and (67)

AA/dL~ C(L) TA*/e (I ~ 2-W(*-)/c<L) ) (68)

C
?i

•= fi-TAA,o C\-I.W<l\/<>cl))(%)*( ^Jc/L (69)

Equation (69) is also similar to the expression for omega, but an

investigation has shown that Cp. is not related to omega by a

simple constant analogous to that of the conical diffuser.

C . ANNULAR

An annulus is a complicated shape, but it shares certain

fundamental geometric characteristics of the cone such as axial

symmetry. In fact, an annular diffuser is nothing more than a

conical diffuser with an axisymmetric center body. For an annular

diffuser:

+~ Zrr ( fcrj tAa/Oo -
ft. HI TAdOl) (70)

CCL) - I77- [ £>(L) -f &x(L^ [

35





dA/SL -
I? taa/ e* M*-) -r^u/e

L x̂ (D) ] ao (72)

By examining the factor relating area gradient to the local cir-

cumference in (72) , it can be seen that an expression similar to

(65) can be derived, for annular diffusers. The factor is defined

as PAR4A.

By referring to Figure 7 and making use of the theorum relating

similar triangles from geometry it can be seen that PARMA may also

be expressed as a function of the inlet geometry.

PASLhA - TA tid« (
' £T\/LU) i~ - T*«»l (&H>/U\)l

RRAT = inlet radius ratio = &**!/ pL7'l

It can be seen that PARMA is constant for a given annular diffu^er

family. A family is defined as a set of diffusers with constant inner

and outer wall angles and the same radius ratio. For example all

diffusers with wall angles of 15 and 20 degrees with a radius

ratio of one half would comprise one family while all diffusers

with wall angles of 10 and 25 degrees with a radius ratio of .7

would comprise another family. The previous derivation may be

used in (52)

-TLCjf. = C p
. -C p (52)

36





or

P4B-W (\ - cP/Cf>i) (52a)

Although the previous derivation of omega does not allow direct

calculation of performance, it does give a better understanding of

the shape parameter. Once the above derivations were formulated

a parameter study was undertaken to observe the response of omega

to certain geometric factors for each diffuser shape.
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V. PARAMETER STUDY

The parameter study was done with the aid of several computer

programs which are listed and explained in Appendix A. To do a

complete study would have been a major undertaking with all the

associated variables of conical, two dimensional, and annular dif-

fusers. However, a representative study was done by varying each

parameter a reasonable number of times to establish trends. The

conical diffuser was the simplest shape and was studied first.

The conical variables were taken as inlet area, length, and

wall angle; but to have a manageable amount of data the inlet area

was set equal to unity and the other parameters were varied.

Figure 8 shows that omega is a strong function of wall angle and

past a certain non dimensional length, the wall angle dominates.

For a high divergence angle the characteristic length is short be-

fore a constant omega is achieved while the opposite is true for

the lower divergence angles. The wall angle is inversely propor-

tional to the final value of omega as shown in Figure 8. An

interesting fact about Figure 8 is that an omega of ten results

for a wall angle of about three degrees. Conical diffusers with

small divergence angles have low losses, but they do not neces-

sarily have the highest pressure recovery for lengths common in

practice. A better look at omega in relation to flow conditions

was found by plotting constant omega lines on the two dimensional

flow regime chart of Fox and Kline [Ref .

5
J.

Figure 6 was briefly mentioned earlier, but there are

aspects of the plot that were not discussed. For the t

39





dimensional geometry, omega was found to be dependent on angle,

length, and inlet geometry. As Figure 6 demonstrates, a particu-

lar value of omega in the two dimensional regime can indicate a

full range of flow conditions from uns tailed to large transitory

stall. In addition to not indicating conditions in the two

dimensional diffuser, the constant omega line takes on different

values depending upon the inlet geometry.

Finally the characteristics of annular diffusers were studied.

The annular diffuser is the shape of most interest for turbo-

machinery applications and unfortunately is the least understood.

There are numerous parameters to vary: wall length, radius dif-

ference, mean radius, inner wall angle, and outer wall angle.

Due to the large number of variables no plots analogous to

Figure 6 and Figure 7 wpre apparent to show omega trends. However,

one graph which combined inlet geometry and wall angles was plot-

ted versus non dimensional length. Figure 9 has the advantage of

incorporating as many geometric parameters as possible into a

meaningful group by plotting area rate of change versus length at

a constant value of omega. The area rate of change is about con-

stant for a given set of wall angles and inlet geometry as can be

seen from (70) when ( "T7^a/^6* "TA^/ l0jcan be neglected,

and it is also related to the pressure gradient. The plot shows

the same general trends as the other two geometries by indicating

the omega dependence on area rate of change and length. The

figures all show that high omegas can only be achieved with low

area rate of change, but several geometric conditions may result

in low values. A diffuser may be very short or have a hi
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gradient in the case of a low omega value . Although the parameter

study indicated geometric trends, it did not offer any insights

into performance. To gain an understanding of diffuser perform-

ance the published data was analyzed more closely.
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VI . DATA CORRELATIONS

Previous attempts to predict or explain diffuser performance

relied on a number of parameters and graphs that were rather

unweildy to use, or an oversimplified approach such as the equiv-

alent cone angle method was employed. Gapp Qlef . 3J looked at the

data of Sovran and Klomp fRef . 6~J in the manner suggested by

Vavra [Ref. 8j and tested several diffusers, but he was unable to

develop a method of prediction based on his work. It has been

shown in previous sections that the parameter omega has physical

significance in relation to diffusing flows, and it was reasonable

to assume that omega is in some way reJ.ated to performance. If

some means of determining the shear term, Cr, could be found;

equation (52) would give performance directly. Several attempts

were made to arrive at a technique for determining Cn, but some

other methods of predicting performance from curves bear mention-

ing first.

If JX C.p is small the recovery is very close to ideal, but

^XV.Cp must be minimized for a given area ratio to insure maximum

pressure recovery. This fact suggested a possible utilization of

the original plot of Vavra. By drawing lines of constant area

ratio on an -/!. versus jTLCf graph, an optimum omega range can

be determined at the given area ratio. For the given area ratio,

the omega range would guarantee minimum losses and maximum pros-

sure recovery close to the desired one. A plot such as Figure 10,

which is a line of area ratio two from the data of Sovran and

i+4





Klomp LRef. bj, would result. It shows an omega range of five to

eight for minimum losses. Unfortunately Sovran and Klomp did not

have a wide range of area ratios, and to do the required testing

to generate other data would be very costly and time consuming.

Another plot was discovered, but it did not have a wide

range of applicability. However, it is worth mentioning since it

correlated a large amount of the annular data of Sovran and Klomp

.

The non dimensional area gradient, ( </$/</L ) //* R-, is related to

the pressure gradient, as shown in (57) . After several attempts

to relate the area gradient to losses a graph such as Figure 11

was plotted. It is a plot of non dimensional area gradient versus

losses for a given non dimensional length, and a straight line

resulted for a range of lengths. The resultant straight lines

'o6>

relate all the annular data. Figure 12(a) is a list of symbols

used in Figures 12 - 15. However, considerable scatter is evident

in addition to some definite trends. Two distinct lines are vis-

ible and some data considerably off both curves. The two distinct

lines correspond to families with inlet radius ratios of .55 and

.70 respectively. The data below the lines are from families with

inner and outer wall angles that differ by no more than two degrees

These plots are of limited value at best and are rendered even

more questionable because the diffusers with the best recovery,

the families with similar inner and outer wall angles, do not even

fall on the curves

.
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The independent derivation of omega introduced a geometric

parameter that related the ideal recovery to omega (see

equations (52) through (72) . The parameter, PAR 1!, had a different

form for each class of diffuser, but in all cases it corresponded

to the quotient of the area gradient and circumference for a

given axial station. If the shear stress coefficient could be

determined, the theory of Vavra would give performance directly

from equation (52) . To see if the parameter, which has been desig-

nated PARMA and PARMC, had any relation to the shear stress coef-

ficient, Figure 14 was plotted with the conical data of Cockrell

and Markland (Ref . 2J and annualar data from Sovran and Klomp.

The conical data consisted of twenty-four diffusers which were

tested at two boundary layer thicknesses and approximately eighty

annular diffusers. No information was given concerning the exact

dimensions of the inlet boundary layer for the annular tests, but

all the annular diffusers were tested on the same apparatus with a

thin inlet boundary layer. The set of conical diffusers which is

displaced upwards on the curve had a thicker inlet boundary layer

and exhibited the expected higher losses. Some scatter is evident

in the figure for the longer annular diffusers, but a definite

curve is discernable

.

Once Figure 14 was established, the next logical step was

Figure 15. To enable the direct determination of recovery from

a known omega, PAR4 was plotted versus the quotient of pressure

recovery and omega. Again a good curve with small scatter resulted

The conical data with the thick inlet boundary layers were dis-

placed downwards as expected. Figure 15 differs from the
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annular correlation in that the data fall close to the line, and

the wide scatter attributed to families with similar inner and

outer wall angles is not present. Also the curve does not seem to

depend on inlet radius ratio. With Figure 15 and a knowledge of

geometry for a conical or annular diffuser with a thin inlet

boundary layer thickness, the pressure recovery can be determined.

Besides predicting the recovery, the correlation presented in

Figure 14 can be utilized in the development of optimization

criteria. The designer is often faced with the problem of maxi-

mizing the recovery for a given length. The annular case will be

discussed, but the development for a conical diffuser is similar.

It was shown that

JLC, s Cp< ~Cj> and Cyi = £>^fc.U SL

Combining the equations gives

Cp = Cp ( I
- Cx /M%-y) (73 )

However, Figure 14 shows that Cr is a function of PAR4. The curve

is of the form C r » <<(PAfr ,+) , where cL and b arc
T

constants that can be determined from polynomial curve fitting

techniques used in numerical analysis. Also the ideal recovery

coefficient can be shown to be a function of inlet conditions and

non dimensional length.

Pi

47
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By replacing (7 4) in the expression for the ideal recovery coef-

ficient and combining this result with an expression for Cx- as

suggested, the pressure coefficient will be expressed as a function

of inlet geometry and non dimensional length. When an expression

has been developed, the theory of maxima and minima of a function

may be used. By taking the derivative of Cp, with respect to non

dimensional length and setting the resultant expression equal to

zero, the recovery could be maximized. To obtain a given recovery

in a minimum length, the correlation could be employed in a similar

fashion.
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FAMILY SYMBOL
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VII. EXPERIMENTAL WORK

A. EXPERIMENTAL EQUIPMENT

Two annular diffusers- were designed and tested in order to

provide further data in the evaluation of any trends or correla-

tions discovered from analysis of the literature. The diffusers

were designed with the aid of program DESIGN which is listed in

the appendix. With a given inner wall angle, fifteen degrees, the

program varied the outer wall angle and length to maintain a given

area ratio and calculated omega for each case. Both diffusers had

an area ratio of three and an inner wa3.1 angle of fifteen degrees.

Model one had an axial length of 7.73 inches with an outer wall

angle of nineteen and one half degrees, and model two had an outer

wail angle of eighteen degrees wiLli an axial length of 0.35 inches.

Both diffusers had an inlet huh radius, Rhl, of 1.875 inches and

an outer inlet radius, Rtl, of 3.123 inches. Model one had an

omega of four and model two had an omega of five. Both were con-

structed from phenolic resin. The above information is summarized

in Figure 16. Figure 17 is a photograph of the inner body and

model two. In order to supply a uniform flow to the diffusers, a

contraction cone was designed by the method described in Ref . 7

and was also fabricated from phenolic resin. Figure 18 is a photo-

graph of the contraction cone and model one. The inner body was

supported by three struts mounted in the cone as can be seen from

the overall drawing of the assembly in Figure 19

.
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Static pressure taps were placed at intervals of two inches

with each station having three taps one hundred and twenty degrees

apart on the inner and outer bodies. Two stations one hundred and

twenty degrees apart were also provided one half inch from the in-

let plane to made radial surveys. A survey station was also lo-

cated 8.25 inches upstream from the diffuser inlet station to make

cross sectional velocity provile measurements and detailed measure-

ments of the boundary layer. Hot wire anemometer techniques were

used for these measurements and the static pressures were read

from a manometer board. A United Sensor cobra probe was used to

measure the inlet dynamic head and it is shown with the hot wire

and model in an overall view of the assembly in Figure 20.

The flow delivery system consisted of an axial compressor, two

settling chambers, flow straighteners, anrl an eight inch pipe.

The compressor was an Allis-Chalmers twelve stage axial compres-

sor which operated at a pressure ratio of three to one. After

leaving the compressor, the air was cooled and sent through flow

straighteners into a large plenum. After passing through a flow

straightener the air passed through a sharp edged-orifice for flow

measurements. Before being supplied to the eight inch pipe, the

air passed through the second plenum. After leaving the eight

inch pipe the flow entered the contraction cone and then the model.

Meriam micromanometers indicated the pressure readings for flow

rate calculations

.
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B. EXPERIMENTAL RESULTS

Any irregularities in the inlet velocity progile to a diffuser

can cause separation and poor performance, therefore it was neces-

sary to insure that the inlet profile was uniform. The hot wire

was used to make a survey at the measuring station on the contrac-

tion cone to measure the profile and boundary layer thickness

.

The contraction device provided a uniform inlet flow, as can be

seen by the measurements of the velocity distributions at the sta-

tion 8.25 inches upstream of the diffuser inlet presented in

Figure 21. The boundary layer thickness was about .2 inches and

the displacement thickness was calculated to be .051 inches and

the momentum thickness .014 inches. The flow at the inlet plane

of the diffuser is also important. It was checked with a hot wire

and the velocity profiles for both model? were found to hp rather

flat as shown in Figure 22. The assurance of uniform inlet flow

was important for the possibility of comparing this data with the

other existing data. Uncontrolled non- uniformities resulted in

flow separation at the diffuser inlet in previous tests with a

badly designed contraction device.

The most important result of a diffuser test is the pressure

recovery of the models. The static taps allowed a measurement of

pressures around the inner and outer bodies and the cobra probe

was used to measure the inlet dynamic head. The pressure coef-

ficient is defined as

Cp - c ?*.-*,) l%,

where PL is taken as atmospheric pressure. Both diffuse

ideal recovery doefficient of .989. The non-dimensional - .
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pressure distribution for model one is shown in Figure 23 . The

recovery and losses are also shown on the graph. Model two also

had good recovery as shown in Figure 2M-. The tests are presented

in Figures 14 and 15. It can be seen that they agree with the

published data presented in these figures.
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Figure 17 Inner body nnd model two

pigure 18 Contraction cone and model one
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VIII. CONCLUSIONS AND RECOMMENDATIONS

Diffuser performance was investigated in order to obtain a

simple correlation to use for design purposes which related dif-

fuser geometry to performance. From analysis of the available

experimental data a geometric parameter suggested by Vavra,

uJ\mt (Section II, p. 17), was used to relate the important per-

formance quantities to geometry in a simple manner. A correlation

relating the available experimental conical and annular diffuser

data was finally established between diffuser geometry and per-

formance without, considering the status of the inlet boundary

layer. The method of utilization of the correlation in minimizing

the diffuser length for a specified pressure recovery, and maxi-

mizing recovery for an available length, was also indicated.

Two diffusers were designed and tested to provide additional

experimental data and results were found to agree with the

developed correlation. More diffusers should be designed and

tested in the region of the correlation where the data are not

plentiful. The influence of the inlet boundary layer and Reynolds

number must be investigated, since it is felt that these two fac-

tors are among the causes of the scatter in the derived correlation
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APPENDIX A

Program Design was formulated to aid in the design of the

diffusers mentioned in the experimental section. The purpose of

the program was to vary the outer wall angle from sixteen to

twenty- two degrees in increments of one quarter while always main

taining a specified area ratio. This procedure was done for

three different area ratios. The program calculated omega for

each wall angle combination by the use of a numerical integration

scheme which employed an external function.

List of Symbols

Al - inlet area

A2 - outlet area

A - area

C - circumference

I - logical control variable

RH1 - inlet inner radius

RT1 - inlet outer radius

AHR - inner wall angle in radians

ATR - outer wall angle in radians

RT2 - outlet outer radius

RH2 - outlet inner radius

XU - upper limit on omega integration

XL - lower limit on omega integration

A5 - (Al/A)**3

A6 - 2*(C/A1)

Y - omega
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Parameter Study Programs

There were three programs to complete the parameter study, and

the program of each diffuser type is basically the same. The same

integration scheme was used to calculate omega as the pertinent

parameters were varied. PARSTUDY 1 was for annular diffusers,

PARSTUDY2 for two dimensional and PARSTUDY3 for conical diffusers.

The main device used was a set of nested do loops and the variables

in these programs were identical to those in the previous programs

except as follows

.

PARSTUDY1

ALFAH - inner wall angle
ALFAT - outer wall angle
LDELR - dimensionless length
TAT - tangent of outer wall angle
TAH - tangent of inner wall angle
DPT P - rH f fr^<->r"",c' b'^tw001"

1 vnnor> pnrl nutpr inlpt radius

PARSTUDY2

LW1 - non dimensional length
Bl - inlet dimension
Wl - inlet dimension

PARSTUDY3

R - inlet radius
LR - non dimensional length

Program DATA was the most extensively used program in the

thesis and allowed the determination of all necessary numerical

parameters for the annular diffuser data of Sovran and Klomp

.

The numerical integration scheme was used in this program to

calculate omega, and the same symbols in the external function
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were used as in DESIGN. The data was read from data cards and the

parameters listed in the table of symbols were calculated.

List of Symbols

FAM - diffuse r wall angle combination (family of Sovran and Klomp)

AT - outer wall angle

AH - inner wall angle

RRAT - inlet radius ratio

DIML - dimensionless length

AR - area ratio

CPI - ideal recovery coefficient

CP - pressure recovery coefficient

I - logical control variable

nrr - • H . r„

RT1 - inlet outer radius

RH1 - inlet inner radius

DADX - area gradient

BARL - diffuser length

Y - omega

RM - mean radius

Al - inlet area
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DESIGN

E
R
I

R
P
A
A
A
A
T
T
C
D
C
B
A
B
R
D
R
P.

B
STAR

X
X

A

C
Y

FN!)

11

r
>

6

7

XTFPN
EAL*4
=0
Tl= 3.
Hl = 1 .

2=49.
HR=1 5
T=16
TR=AT
A1R---S
WR«S
= TATR
= RT1-
2=D**
= 2 * fi *
=C**?
3 =6**
H? = (-
IFL=(
T2=( A
=DIF!
IGL=(
l NUM
U=BIG
L=0
= .5*<
D« XII-
= .484
= •040
C=.41
* Y . C
C=.3

=Y + . 1

C = .16
= Y + . 1

= D*( Y
1 NT EC
R I T I (

ORMAT
2.2X,
T=AT +
F(A1

Tf
= 1+1.
R I T F (

PPM AT
F ( I • E?

F ( I . F
F ( I

2 = ^o
o to"
2 = 68.

TO
Tnp
ND

AL FCT
L

123
R7<5

. / 5 7 • 3

Z57.3
IN< *\TP )/COS( ATR)
I N(AHR )/COS( AHP

)

/TAMP
RH1*C
2-A2/3.141
r
2
C
-1
'2-4-.*A*C2
-6 + 63* *.5) /<2.*A)
RH2-RH1 ) /TAHR
v2/ ^ . 1 A 1 fRH2**2)**.5
/C'1S( ATR)
R+DIFL )/?.
IFRICAL INTFGRATION ROUTINE
-L

6 t ll )

(///i20X, 'NEW
iQ.l. ) GO TO 6
0.2. ) GO TO 'S

TO. 3) GO TO 7
I

}

5

1

FUNCTION FCT(X t TATR,TAHR )

RT1=3.123
PHI =1 .875
X1=PTI**?-PH1**2.
X2=(RT1 +-X*TAT3 ) **2.
X 3=(RH1 +X#TAHP ) **2

.

A5=( Xl/( X2-X?) )**3.
*6=2.*( ( X2**.5 ) (

x

FCT= " ' A6
RETU

S) ) /vi

//GO.S KS

.
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c

c
//
//
//

CONICAL PARAMETER STUDY

PARSTUDY1

IMPLICIT REAL*4(L)
FXT ru NAl FCT
WRITE (6 t 17)

17 FORMAT ( 'l'l
Al = l.
R=( 1./3.141 )**.5
ALFA=1.
LR=1.
DD1 [=1,15
DO 2 J =1,10
ALFAR=ALFA/57.

3

TAN=S^ (ALFAR ) /COS ( ALE AR)
XU = l R*^
A^ = 3, 1A1*( P. + v

u

J
= T A*N ) **2

CP!=1.-1./AR**2
X L = i f

A = .0 :
* (XU+.XL)

D=XU-XL
C=.484C 801*0
Y=. 0406371 9* ( K-CT( A + CTANMFCT (A-C ,TAN) )

C = o 4 1

8

r 10ft *

D

Y = Y + . 13030 03* (FCT< A +C,TAN)+FCT( A-CTA'J) )

C=.3C66 807*0
V=Y+. 0903240 3* (FC1 ( A+C, rAN)+FCl (A-C,TAN) >

C=. 1621267*
Y = Y+ . 1 6 1 7 3 0* ( F C T ( A +C , T AM ) FC T ( A-C , T AN ) )

Y = 0*;Y4 . L601197*FCT(A, TANJ )

WRITE (6 ,3)Y,LR

,

ALFA t
^

3 FORMAT <
' OMEGA =' ,F0. 2, 2X, • L/R= • ,F5.2,2X, • ALFA=» t F5.2 t2

1 X , • R = « , F 4 , 3 )

ALFA=ALFA+1.0
2 CONTINUE

ALFA=1 ,0
LR=LR+1 .0

] CONTINUE
STOP
END

FUNCTION FCT(X,TAN)
Al=! .

R=( 1./3.141 )**.5
A= 3. 1 41 *(R+X*TAN)**2
X1=(A1/A>**3
C=2«*3. 141* (P+X*TAN)
X2=C/A1
FCT=X1*X2
RETURN
END

//GO. SYS IN DO *
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TWO DIMENSIONAL PARAMETER STuny

PARsruny?

4

2

I SOLICIT RFAL*4ll )

EXTERNAl FC1
ALFA=I oC
A 1 = 1 .

L W 1 = 1 •

81 = 1.
on i m=i,7
DO 2 N=] ,7
OH 3 1=1,6
ALFAR=ALF A/ 57. 3
TAN=S INI \LFAR)/CUS (ALTAR)
W 1=1./ R 1

L = L W 1 * W

1

AR=A1+2.*L*TAN*B1
CPI=1 .-l./AR**2
XU = L
XL=C. (.

A=.5*< XU + Xl )

D=XU-XI
C = . 484-jBOI *D
Y=.C 40 63 719*<FCT|A+CtTAN,E 1 , W] )+FCTl A-C r TAN, El ,Wl )

)

C=. 4180 156*0
Y=Y+. 1 3030 53*1 FCT( A+f. , TAN, HI ,W1 ) +FC T I A-C t T AN, Bi , Wl ) )

C=.3l 66 «57 ;: D
Y=Y+.()9l 32'*C3*f FCTI A+C , TAN, 81 , W 1 ) +FCT ( A-C , T AN , Bl , Wl ))
C=. 1621 267*0
Y= '--.

] U • 7 \5* I
U CT( A+C,TAN,B1,W] ) +FCT ( A-C , T AN, B 1 , Wl ) )

Y = ;- ( Y«-. 165119 7* FCT IA,1 AN, Bit Wl ) )

WK I Tf ( 6 . 4) Y, LW 1 , Wl , 81 , AL F A
FORMAT I ' OMEGA=« ,F5.2,2X, 'L/W 1=

•

,

F5. 2, 2X , Wl= • ,F 5. 2 , 2X
It »R1 = » tF4. 2t2X,»ALFA = « ,F4.1)
8 1 = 8 1 1 .

CONTINUE
81=1.
ALFA=AI FA+2 .

r

CONTINUE
B 1 = 1

.

ALFA=] .0
LWl =LW1 + 2.
CONTINUE
ST HP
END

FUNCT ION FCTIX , TA'l, BltWl )

Al = l.
A=A1+2.*X*TAN*B1
X 1 = I A 1 / A > * * 3

C =2 . * W 1 + 2. * 3H- 4. * X* TAN
X2=C/A1
FCT=X1*X2
RETURN
I ;n

//GO. SYS IN 00 *
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c

c

ANNULAR PARAMETER STUDY

PARSTUDY3

IMPLICIT REAL*4(-LI
EXTERNAL fT T

WRITE(6,2«5)
25 FORMAT (

• 1«

)

Al=20.
A I FAH = '"/i
ALFAT=1 . V57.3
LOELR=l . 3

R I - 2 .

DO 1 M=l,7
J

N = J + 1

DO 3 K=N f 22»5
on 4 1 = 1,4
R0= (M/ 3. 14 L+P 1**2 ) **. 5
DELR=PO-RT
A | FATR=ALFAT*5 7.3
Al FAHR=Al FAH*5 7.3
TAT = S I'M ALFAT >/COS ( M.FAT)
TAH=SIN(Al FAH) /CMS ( ALFAH)
XU=L DtLR*DELP
AR= ( 3. l 4 1* ( ( RR+XU*TAT ) **2- ( R I +XU*TAH)**2 J ) /Al
CPt= !..-( 1 ./AR ) **2
DA r^X^2. *RO*TAT -2.*R I *TAH
DIFF=( (TAT)**2-(TAH)**2) *2.
XL =0.0
A- • 5* ( XU+XL )

D=XU-XL
C=.484 ' SO] *D
Y=.f.,406 37i9*(FCT(A + C,RI,R0,TAT t TAHH-FCT(A-CtRI,R0,TAT,

I T AH ) )

C= . 4 1 8 '

1 5 6 * n
Y=Y+.C9 32 A' 8*(FCT ( A+C,K I , RO, T AT

,

TAH) +FCT ( A-C t R I iPn,T/,
1T,TAH))
C=. 3066 857 r

Y=Y + .1303<-53*( FCT1 A+C t RI * ROtTAT ,TAH l+FCT ( A-C t RI #R0, TAT
1 ,TAH)

)

C=. 1621267*0
Y=Y+.156173 5*(FCT(A+C,RI iROtTAT,TAH)+FCT(A-C,RI,Rn t TAT

1 , TAH) )

Y=D*(Y+.165119 7*FCT( A, RI,RO,TAT f TAH) J

WRITE (6,5)Y,LDF LR, OADX
5 FORMAT C '

i 'OMEGA= , tF5.2,3X,'LDFLR= , ,F6.2,3X, • DADX='

,

1 F 5 . 2 )

Rl=Rl+2.0
4 CONTINUE

RI=2.
ALFA1 =ALFAT+5./57.

3

3 CONTINUE
d [=2.0
ALFAH=ALFAH+5. /57.

3

Al FAT = ALFAH + 1 . /
r-7. 3

2 CON! INUE
RI=2.0
ALFAH=( .0
ALFAT=1 .0/57.3
LDELR=LDELR+2.

1 CONTINUE
ST:iP

FUNC1 I .IN FCT(X, RI , PO,TAT t TAH)
Ai = ?, .

X2= ( :0+X*TAT )*
' ?

x l = ( r i •» x • t \
l '

)
- ' 2

A3 = 3.1A1*(X2-X1 )

X3=(A1**2)/(A3 * * )

X 4=2. *3 • 141* ( ( X I **. 5) « ( X2**. 5)

J

FCT=X3*X4
TU r'N
D

i S Y S I N " l
'

*
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DATA REDUCTION FROM SOVRAN AND KLOMP

45
1

IC

90

77

4
7
6

EXTERN
P F A L * 4
RTl=7.
WRITF

(

FORMAT
READ! 5
FORMAT
QCF=CP
P H I = RT
DELR=R
ATR=AT
AHR=AH
TATP = S
TAHR=S
DADX=2
BARL=D
XU=RAR
XL = • C'

A=.5' :

( VIH-XL )

XL
• 301*0
L;6371«*< ECT( A+C, ATR, AHR,RH1 )4-FCT( A-C, ATR, AHR, RH]

AL FCT
L

6 5

6,45)
( 1» )

t 10 1 FAM,AT, AM, RRAT,DIML, AR,CPI t CP,

I

(3F5.2,F3.2,F5.2,F5.3,2F4.3, II

J

I-CP
1*RRAT
Tl-RMl
/57*3
/57. 3

I N( \TR )/COS( ATR

)

i N( AHK )/COS ( AHR )

. *(RT1*TATR-RH1*TAHR)
IML*< RT1-RH1

)

L

D=XU-
C=.4B4
Y=.('4

1) )

C=.4l
Y = Y + .

1 H 1 ) )

C = . 3
Y=V+.

11))
C=. lft

Y = Y+.
Y=D*<

PA?1^ (

PAR11=
PAR2=(
PAR21=
PAR4A=
PAR 5= (

rF = c \ p

WRITE <

I IRMAT
L3,3X,
WR ITF(
FORMAT
I F ( I . E

GO TO
W R I T L (

FORMAT
IF( I.F
GO TO
STOP
END

30156*0
I 9032408* (FCT ( A+C , ATP t AHR, RH1 )+FCT ( A-C , AT R , AHR ,

.'..

U 66 857*0
] 30 30 53*(FCT( A+C , ATR , AHR, RH1 )+Ff.T ( A-C, ATR, AHR,RH

21 ?6 7*0
1 56] 735*( FCT ( A + C, ATP, AHR, PHI ) )

Y+ . ] 6-311 97*FCT( A,ATR,AMK,RHi ) )

DADX-1.5) /OELR
GCF/ PARI
DADX/D£LR)**2,
0CF/PAR2
?*(TATR-RRAT*TAHR )/( 1

.

+RPAT )

CP/CP I ) *PAR4A
•'1 A*<1 .-CP/CP I >

5 , 99 ) F A
-

i , PA S 4 A , C F , P A -' 5 , Y
' • , •FA",= ',F^.2,3X, «P,-

»CP/OMEGA=' , E10.3,3X, • UMEGA=» , F5. 2 I

ft, 77)
( / )

0.1) GO TO 4
6
6,7)
(///,?! X, ' NEW FAMILY' ,/// )

0.?) GO TO 8
1

(
• • , , FA't=',F5.2,3X, »PAR4A=« ,E10.3,3X, »CF =

FUNCTION FCT(X , ATR,AFR,RH1 )

Q T 1 = 7 . b 5
XI ^T] **2-RMl**2.
TATR=SIN( ATf- 1 /CCS ( A "TR)

TAHR=S I'M AHR ) /COS < AHR)
X2=(RT1+X* TATR) **2.
X3= (RH1 + X*T \HQ )

-'"^
•

V>=< XI / ( X2-X3) )-- 3.
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AC»=2.*« (X2**.5) +(X3**.5))/X1
FCT=A5» : A6
RETURN
END

//GO ) *
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