
Calhoun: The NPS Institutional Archive
DSpace Repository

Theses and Dissertations 1. Thesis and Dissertation Collection, all items

2005-01

On Lagrangian meshless methods in
free-surface flows

Silverberg, Jon P.
Monterey, California. Naval Postgraduate School

https://hdl.handle.net/10945/1724

This publication is a work of the U.S. Government as defined in Title 17, United
States Code, Section 101. Copyright protection is not available for this work in the
United States.

Downloaded from NPS Archive: Calhoun



UNIVERSITY OF CALIFORNIA AT BERKELEY, CA 94720-1740
Computational Marine Mechanics Laboratory                Tel. (510) 642-8347       Telefax (510) 642-5539

COLLEGE OF ENGINEERING

MECHANICAL ENGINEERING
Fluid Mechanics

On Lagrangian Meshless Methods
in Free-Surface Flows

by

Jon  P.  Silverberg

Report CMML-2005-1
Master of Engineering Project Report
Advisor:  Professor R. W. Yeung

January 2005



On Lagrangian Meshless Methods
in Free-Surface Flows

By

Jon P. Silverberg

INDIVIDUAL RESEARCH PROJECT

Submitted in partial satisfaction of the requirements for the

degree of

MASTER OF ENGINEERING

in

Ocean Engineering

in the

GRADUATE DIVISION

OF THE

UNIVERSITY OF CALIFORNIA AT BERKELEY

December 2004

Approved by thesis supervisor:

Professor Ronald W. Yeung
Department of Mechanical Engineering
and Ocean Engineering Graduate Group



Abstract

Classically, fluid dynamics have been dealt with analytically because of the lack of nu-
merical resources (Yeung, 1982). With the development of computational ability, many
formulations have been developed which typically use the traditional Navier-Stokes equa-
tions along with an Eulerian grid. Today, there exists the possibility of using a moving grid
(Lagrangian) along with a meshless discretization.

The first issue in meshless fluid dynamics is the equations of motion. There are currently
two types of Lagrangian formulations. Spherical Particle Hydrodynamics (SPH) is a method
which calculates all equations of motion explicitly. The Moving Particle Semi-implicit (MPS)
method uses a mathematical foundation based on SPH. However, instead of calculating
all laws of motion explicitly, a fractional time step is performed to calculate pressure. A
proposed method, Lagrange Implicit Fraction Step (LIFS), has been created which improves
the mathematical formulations on the fluid domain. The LIFS method returns to Continuum
mechanics to construct the laws of motion based on decomposing all forces of a volume.
It is assumed that all forces on this volume can be linearly superposed to calculate the
accelerations of each mass. The LIFS method calculates pressure from a boundary value
problem with the inclusion of proper flux boundary conditions.

The second issue in meshless Lagrangian dynamics is the calculation of derivatives across
a domain. The Monte Carlo Integration (MCI) method uses weighted averages to calculate
operators. However, the MCI method can be very inaccurate, and is not suitable for sparse
grids. The Radial Basis Function (RBF) method is introduced and studied as a possibil-
ity to calculate meshless operators. The RBF method involves a solution of a system of
equations to calculate interpolants. Machine expenses are shown to limit the viability of
the RBF method for large domains. A new method of calculation has been created called
Multi-dimensional Lagrange Interpolating Polynomials (MLIP). While Lagrange Interpolat-
ing Polynomials are essentially a one-dimensional interpolation, the use of “dimensional-cuts”
and Gaussian quadratures can provide multi-dimensional interpolation.

This paper is divided into three sections. The first section specifies the equations of
motion. The second section provides the mathematical basis for meshless calculations. The
third section evaluates the effectiveness of the meshless calculations and compares two fluid-
dynamic codes.
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Chapter 1

Equations of Motion

Eulerian fluid dynamics calculates the flow of fluid through a given volume. Lagrangian
dynamics calculates the movement of discrete volumes in a flow. We will utilize Lagrangian
forms of equations to model highly deformable flows, while tracking the movement of discrete
volumes. All types of Lagrangian formulations will use a variation of the Navier-Stokes
equations.

1.1 Navier-Stokes Equations

Continuum mechanics provides a context to construct the laws of motion. We will use
balance laws of linear momentum, angular momentum, and mass (Chadwick, 1999). The
basic postulate for linear momentum on a material volume is from Newton’s second law
(Johnson, 1990):

There exists a frame of reference for which, at any instant, the rate of change of
linear momentum of a material volume, Ω, is equal to the resultant force acting
on the mass in that volume.

∑
F = F ∂Ω + FΩ =

D
Dt

∫∫∫
Ω

ρudΩ (1.1)

in which F is a force vector, ∂Ω is the surface of the material volume, D
Dt

is the material
derivative, ρ is the density of the fluid, and u is the velocity vector.

Cauchy developed the idea of a stress tensor, σ, in which:

F ∂Ω =

∫∫
∂Ω

σ · ndS FΩ =

∫∫∫
Ω

fdΩ (1.2)

where n is the outward unit normal and f are the body forces. By use of the divergence
theorem we can relate the surface integral to a volume integral.∫∫

∂Ω

σ · ndS =

∫∫∫
Ω

∇ · σdΩ (1.3)
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Therefore, our balance of linear momentum can be expressed as:

D
Dt

∫∫∫
Ω

ρudΩ =

∫∫∫
Ω

∇ · σdΩ +

∫∫∫
Ω

fdΩ (1.4)

Dealing with only volume integrals, the integrand must vanish within the fluid, and we get
Cauchy’s equation of motion:

D
Dt

ρu = ∇ · σ + f (1.5)

To locally conserve angular momentum, we specify that the stress tensor is symmetric.

σ = σT (1.6)

Finally, we will specify conservation of mass.

D
Dt

∫∫∫
Ω

ρdΩ = 0 (1.7)

Using the transport theorem and specifying that the integrand is zero throughout the fluid,
we can express conservation of mass as:

Dρ

Dt
+ ρ∇ · u = 0 (1.8)

1.1.1 Constitutive relations

We will specify a Newtonian constitutive relation (Newman, 1977).

σ = −pI + µD (1.9)

in which p is the pressure, I is the identity tensor, µ is the viscosity coefficient, and D is the
symmetric deformation tensor.

[σ] =

 −p 0 0
0 −p 0
0 0 −p

 + µ

 2∂u
∂x

∂u
∂y

+ ∂v
∂x

∂u
∂z

+ ∂w
∂x

∂v
∂x

+ ∂u
∂y

2∂v
∂y

∂v
∂z

+ ∂w
∂y

∂w
∂x

+ ∂u
∂z

∂w
∂y

+ ∂v
∂z

2∂w
∂z

 (1.10)

1.1.2 Boundary Conditions

Our fluid domain (Ω) is shown in figure (1.1). There are two boundary conditions on the
domain. Dirichlet boundary conditions apply to the free surface. Neumann boundary con-
ditions apply to the surface next to the wall. The walls are not a part of the fluid domain,
but serve to administer the Neumann boundary conditions.

2



Figure 1.1: Domain used in equations of motion

A diagram of the domain

• The fluid domain Ω is shown in blue

• There are Neumann boundaries Γt and
Dirichlet boundaries Γd

• There is closure such that ∂Ω = Γt ∪ Γd

• Outward unit normals are shown as n

1.1.3 Lagrangian Forms

Part of the ease of Lagrangian coordinates is being able to keep the material derivatives
instead of using a convection term. In doing so, we express the equations of motion for
discrete volumes of fluid. These individual volumes move with the flow of the fluid. If we
enforce water fluid properties such that Dρ

Dt
= 0, then the law of motion is simply: (Brodkey,

1995)

a =
1

ρ

(
∇ · σ + f

)
(1.11)

where a is the acceleration vector which is equal to the material derivative of velocity. If we
use explicit time-stepping, we can obtain:

δu =
δt

ρ

(
∇ · σ + f

)
(1.12)

in which,

un+1 = un + δu (1.13)

Position vectors are therefore:

xn+1 = xn + δtun+1 (1.14)

The continuity law is:

− ρ (∇ · u) = 0 (1.15)
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1.2 Spherical Particle Hydrodynamics

Monaghan first suggested the use of individual particles in the calculation of fluid dynamics.
Each particle interacts with neighboring particles according to the law of motion. (Mon-
aghan, 1994)

SPH is calculated in a fully explicit manner. Using eqn(1.11), we calculate σ explicitly
as a function of particles a and b:

− σ
ab

=
pa

ρ2
a

+
pb

ρ2
b

+ Πab (1.16)

Pressure is calculated as an equation of state for a very “stiff” gas. It is a function of the
density calculated at a time step n versus the standard density (ρ0):

pn
a = B

((
ρn

a

ρ0
a

)γ

− 1

)
(1.17)

The parameter γ is set arbitrarily at 7, and the coefficient B is somewhat defined by the
speed of sound. Density is calculated for each particle as:

ρa =

∫
madΩa (1.18)

Both bulk and shear viscosity are calculated through:

Πab =
−αcµab + βµ2

ab

1/2 (ρa + ρb)
(1.19)

The parameter µab roughly tries to simulate the laplacian operator, α introduces the viscosity,
c is the speed of sound, and β is usually set to zero.

Boundary conditions for SPH are treated in an ad-hoc approach. Boundary particles are
treated no differently than any other particle, regardless of if it is on the free surface or is
next to a wall. The most common way to ensure that particles in SPH do not violate wall
boundaries is through an extra force. When a particle comes near a wall, a repulsive force
pushes on the particle such that it does come into the wall. The degree of force required,
however, must be set for different types of simulations.

The basic algorithm for this method is shown in table 1.1.
There have been very good results with the SPH equations including dam collapse and

breaking waves (Monaghan, 1994). Furthermore, SPH has been shown to be robust in
“floating object” problems including a falling wedge penetrating water as well as a wave
interaction with a floating box (Doring et al., 2002).
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INITIALIZE the domain

CALCULATE the initial density, (ρ0) eqn(1.18)

FOR EACH time step, n
CALCULATE the density, (ρn) eqn(1.18)
EVALUATE the pressure, (pn) eqn(1.17)
EVALUATE the viscosity, (Πn) eqn(1.19)
EVALUATE the motion, δu eqn(1.12)
UPDATE the velocity, (un+1) eqn(1.13)
UPDATE the position, (xn+1) eqn(1.14)

END

Table 1.1: SPH Algorithm

1.3 Moving Particle Semi-Implicit

The MPS equations are a variation on SPH in that instead of pressure being calculated
explicitly, it is solved via Poisson’s equation (Yoon et al., 1999). This is done by a fractional
step which splits the laws of motion into two parts and uses the continuity equation to
connect the two.

The first fractional step is defined as:

u∗ = un +
δt

ρ

(
ν∇2un + ρg

)
(1.20)

The second fractional step is defined as:

u∗∗ = −δt

ρ
∇pn+1 (1.21)

In order to calculate the second fractional step, we must find a way to calculate the
pressure. This can be done by first finding the change in density due to the first fractional
step

∂ρ∗

∂t
= − 1

δt

ρ∗ − ρ0

ρ0
(1.22)

Pressure is calculated as a solution to Poisson’s equation. There is only one boundary
condition in which particles on the free surface have Dirichlet conditions where the pressure
is set to zero. Particles near walls do not have a boundary condition, but are instead treated
by the field equation. The right hand side of the field equation is the divergence of the first
fractional velocity:

∇2pn+1 =
ρ

δt

∂ρ∗

∂t
(1.23)
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Finally, the total velocity is the summation of fractional velocities:

un+1 = u∗ + u∗∗ (1.24)

Boundary conditions in MPS have more treatment than in SPH. First, particles on the free
surface have the pressure set to zero. Particles next to the walls, however, do not have any
boundary conditions. Instead, the walls are treated as fluid particles which are stationary.
This procedure is easy to implement, however it violates the equations of motion. The laws of
motion are expressed in terms of integrals over a fluid domain as well as material derivatives.
When a derivative is calculated which is not material, than the equation of motion is invalid.

The basic algorithm for this method is shown in table 1.2.

INITIALIZE the domain

CALCULATE the initial density, (ρ0) eqn(1.18)

FOR EACH time step, n
EVALUATE the first fractional velocity, (u∗) eqn(1.20)
CALCULATE the density, (ρ∗) eqn(1.18)

CALCULATE the change in density, (∂ρ∗

∂t
) eqn(1.22)

SOLVE for pressure, (pn+1) eqn(1.23)
EVALUATE the second fractional velocity, (u∗∗) eqn(1.21)
SUMMATE the fractional velocities, (un+1) eqn(1.24)
UPDATE the position, (xn+1) eqn(1.14)

END

Table 1.2: MPS Algorithm

Again, good results have been obtained for a sloshing tank (Yoon et al., 1999), breaking
waves (Lo and Shao, 2002), and wave generation (Gotoh and Sakai, 1999). However, it
should be noted that the differential equation (1.23) only has boundary conditions on one
side of the fluid and is therefore an ill-posed boundary value problem.

1.4 Lagrange Implicit Fraction Step

The LIFS equations were created to use the principles of SPH and MPS, but to improve the
mathematical foundations. For each force term in the balance of linear momentum, we break
it into a corresponding explicit and implicit velocities. We then solve the continuity equation
for the implicit velocities which ensures that the momentum equation does not result in a
change in density.

To reiterate our explicit procedure, we take the Lagrangian conservation of momentum

6



and break it into discrete time steps:

a =
1

ρ

(
∇ · σ + f

)
(1.25)

δu =
δt

ρ

(
∇ · σ + f

)
(1.26)

un+1 = un + δu (1.27)

We assume that the constitutive relation eqn(1.9) and our summation of forces is linear:

σ = −pI︸︷︷︸
σ̊

+ µD︸︷︷︸
σ̂

(1.28)

For each time step, we will define intermediate velocities based on the forces which con-
tributed to them:

δu = δũ + δû + δů (1.29)

The tilde velocity is the motion due to body forces, the hat velocity is the motion due to
viscosity, and the spherical velocity is the motion due to pressure.

δũ =
δt

ρ
f (1.30)

δû =
δt

ρ
∇ · σ̂ (1.31)

δů =
δt

ρ
∇ · σ̊ (1.32)

In each time step, we have both implicit and explicit parts. We define the body forces
explicitly and due only to gravity:

δũ = (δt)
(
g
)

(1.33)

The hat velocity is explicitly defined from viscosity calculated from the current velocities:

δû = (δt) ν∇2un (1.34)

The spherical velocity is calculated implicitly from the pressure (Yeung and Ananthakrish-
nan, 1992):

δů = −δt

ρ
∇pn+1 (1.35)

We can obtain the pressure through the continuity equation,

Dρ

Dt
+ ρ∇ · un+1 = 0 (1.36)

Dρ

Dt
+ ρ∇ · (un + δũ + δû + δů) = 0 (1.37)
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Assuming ρ is constant in time, we separate the explicit and implicit velocity terms (Anan-
thakrishnan and Yeung, 1994):

∇ · δů = −∇ · (un + δũ + δû) (1.38)

By applying our constitutive relation into our spherical velocity, the continuity equation
becomes:

∇ ·
(

δt

ρ

(
∇pn+1

))
= ∇ · (un + δũ + δû) (1.39)

Because we are working with incompressible fluid, we can show that:

∇ · un = 0 (1.40)

Furthermore, since the body forces are simply a constant scalar field:

∇ · δũ = 0 (1.41)

Therefore, the only term left is due to viscosity. This can be found to be Poisson’s equation:

∇2pn+1 =
ρ

δt
∇ · δû =

1

δt

∂ρ̂

∂t
(1.42)

This can be setup as a boundary value problem by making specifications on the field equations
and the boundary conditions:

1) ∇2pn+1 =
ρ

δt
∇ · δû in Ω

2) pn+1 = 0 on Γd, the free surface

3) un+1 · n = 0 on Γt, the walls

(1.43)

The third prescription can be found through:

un+1 · n = 0

(un + δũ + δû + δů) · n = 0

δů · n = − (un + δũ + δû) · n (1.44)

Now, we insert eqn(1.35) into eqn(1.44). We express the directional derivative in the n
direction as: ∇n.

∇np
n+1 =

ρ

δt
(un · n + δũ · n + δû · n) (1.45)

We can also simplify this equation in that un · n = 0. Therefore, our boundary condition is:

∇np
n+1 =

ρ

δt
(δũ · n + δû · n) (1.46)
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An algorithm for the Lagrange Implicit Fraction Step method is shown in table 1.3.

INITIALIZE the domain

FOR EACH time step, n
EVALUATE the body forces for δũ eqn(1.33)
EVALUATE the viscous forces for δû eqn(1.34)
EVALUATE the divergence for the BVP eqn(1.42)
EVALUATE the flux BCs for the BVP eqn(1.46)
SOLVE Poisson’s equation for pn+1 eqn(1.43)
EVALUATE the spherical forces for δů eqn(1.35)
EVALUATE the motion, (δu) eqn(1.29)
UPDATE the velocity, (un+1) eqn(1.13)
UPDATE the position, (xn+1) eqn(1.14)

END

Table 1.3: LIFS Algorithm

An interesting aspect is when dealing with an inviscid fluid. When this occurs, δû = 0.
Therefore, the field equation becomes Laplace’s equation:

∇2pn+1 = 0 (1.47)

Furthermore, the flux boundary conditions are only a function of body forces:

∇np
n+1 =

ρ

δt
δũ · n (1.48)

If we set viscosity to zero, we can simplify the algorithm, shown in table 1.4.

INITIALIZE the domain

FOR EACH time step, n
EVALUATE the body forces for δũ eqn(1.33)
EVALUATE the flux BCs for the BVP eqn(1.48)
SOLVE Laplace’s equation for pn+1 eqn(1.47)
EVALUATE the spherical forces for δů eqn(1.35)
EVALUATE the motion, (δu) eqn(1.29)
UPDATE the velocity, (un+1) eqn(1.13)
UPDATE the position, (xn+1) eqn(1.14)

END

Table 1.4: LIFS Inviscid Algorithm

9



Chapter 2

Methods of Computation

After the equations of motion are set, the problem becomes how to calculate the equations
between particles. Because all the methods are “meshless,” problems of constructing grids
are alleviated. However, the question of how particles interact still remain.

The laws of motion, for a meshless method, are extremely dependent on how the par-
ticles interact. In essence, the methods of computation represent an interpolation of the
solution between particles. The better the interpolation, the better the solution matches the
appropriate laws.

For every method of computation, what we wish to find is a continuous function f̂(x) as
a function of discrete values, f(x = xı) ≡ f(xı). Methods of computation typically have the
form of finding a continuous function by multiplying a “kernel” (w) by a value (a) evaluated
at each discrete location.

f̂(x) =
n−1∑
=0

wı(r)a(x) (2.1)

These methods use a nodal-centered position vector as an important value in the weighting
function. We will define the radius, rı, as the Euclidean norm of two position vectors:

rı ≡ ‖xı − ξ

‖ (2.2)

Most particle methods evaluate a function g with the origin centered at the particle location
xı. The argument for the function is the distance from another point ξ


to the particle center.

We will define the notation for this function g as a function of the radius:

g(xı, ξ
) ≡ g(rı) ≡ gı(r) (2.3)

All of these methods of computation are discretely calculated via the use of matrices. For
each method of computation, the desired properties of each method includes at least the
formation of a matrix which can perform interpolation, (w), as well as matrices which can
calculate gradients (dwx and dwy). Furthermore, both the MPS and the LIFS equations
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require the calculation of the Laplacian operator. This operator can be represented in matrix
form as ddw.

Every one of these matrices required by the equations of motion will be constructed
through the use of the following methods. The Monte Carlo Integration (MCI) method
calculates both the interpolation and derivatives based on a process of averaging neighbors.
The Radial Basis Function (RBF) method calculates these operators by first solving a linear
system of equations. After one matrix is inverted, all differencing operations can be per-
formed. Multi-dimensional Lagrange Interpolating Polynomials (MLIP) calculates operators
in a meshless manner by creating Lagrange Interpolating Polynomials and their derivatives.

2.1 Monte Carlo Integration

The Monte Carlo Integration method is the traditional method for calculating interpolants
in a meshless manner. The principal behind the MCI method is that information about one
particle is stored in its neighbors. Therefore, we can use a weighted average of the neighbor
particles to not only obtain the interplant, but also to find derivatives.

2.1.1 Formulation

By using an interpolating weighting function, discrete values can be found from the neighbors
in the fluid volume (Ω). The weighting kernel w at each node ı is a function of the distance,
r, and the extent of the kernel, h. The extent of the kernel, h, determines how many other
particles are used in the calculations. We will define h as a resolution parameter. As the
resolution parameter increases, more neighbor particles are used in the calculations, and the
stability of the calculations increases. As the resolution parameter decreases, less neighbor
particles are used, and the accuracy of the calculations increases.

f̂(x) =

∫
Ω

f(ξ)wı(r, h)dΩ (2.4)

2.1.2 Prescriptions on the kernel

There are three prescriptions on the weighting kernel. The first is that the function, w, is
normalized, such that energy is not added nor subtracted from the system.∫

Ω

wı(r, h)dΩ = 1 (2.5)

The second prescription is that the weighting function must become the Dirac delta function
as the interaction radius, h, becomes small:

lim
h→0

∫
Ω

f(ξ)wı(r, h)dΩ = f(x) (2.6)
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Figure 2.1: Monte Carlo Integration

A diagram of Monte Carlo Integration

• The red particle is the particle to which
integration is being performed

• The white particles are neighbor parti-
cles

• The length h represents the maximum
interaction of the center particle on the
surrounding particles

The third prescription is that the weighting function has a finite radius:

lim
|r|→h

wı(|r|, h) = 0 (2.7)

This third prescription allows us to redefine our limits of integration. Instead of the entire
fluid domain (Ω), we can redefine the integration to take place only in the domain of each
“particle”, (Ωp). Furthermore, if our kernel is smooth and continuous we can take the

derivative of f̂ . Because of finiteness, we find that the operation is passed only to the kernel
since w(h, h) = 0.

∇f̂(x) =

∫
Ωp

f(ξ)∇wı(r, h)dΩp (2.8)

2.1.3 Evaluation

Weighting kernels typically have compact support and are smooth to various degrees of
differentiability. Therefore, kernels are mostly based on either splines or Gaussian curves.
We will choose a variation on a Gaussian kernel in which:

wı(r, h) =
h√
2π

exp

(
−r2

2h2

)
+

r

2

(
1 + erf

(
r√
2h

))
(2.9)

∇kw(r, h) =
rk

2

(
1 + erf

(
r√
2h

))
(2.10)

∇2w(r, h) =
1

h
√

2π
exp

(
−r2

2h2

)
(2.11)
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We can implement the MCI method using three steps. The first step is to initialize the
kernel matrices. The second step is to use the kernel to calculate derivatives. The final step
is to set up a matrix to invert and solve a linear system.

Table 2.1 shows the initialization routine for the MCI method. All of the matrices for
calculating operators are created here: interpolation (W ), x-gradient (dWx), y-gradient
(dWy), and laplacian (ddW ).

FOR i = 0 to (n-1)

FOR j = 0 to (n-1)

CALCULATE r[i,j] eqn(2.2)
CALCULATE W[i,j] eqn(2.9)
CALCULATE dWx[i,j] eqn(2.10)
CALCULATE dWy[i,j] eqn(2.10)
CALCULATE ddW[i,j] eqn(2.11)

NEXT j

NEXT i

Table 2.1: MCI Initialization Algorithm

Table 2.2 shows how derivatives of a nodally-specified function, f , may be calculated
with the operators (dWx) and (dWy). If the kernel was not normalized, we can fix this by
dividing the resulting vectors by the sum of the absolute value of the kernel.

FOR i = 0 to (n-1)

FOR j = 0 to (n-1)

dfdx[i] = dWx[i,j] * f[j] eqn(2.8)
dfdy[i] = dWy[i,j] * f[j] eqn(2.8)

NEXT j

NEXT i

Table 2.2: MCI Derivative Calculation Algorithm

Table 2.3 gives an algorithm of how a boundary value problem can be solved with the
MCI method. This algorithm is used to solve equations such as eqn(1.43). This linear system
of equations has the form of multiplying a matrix ([K]) by the solution vector ({a}) to obtain
the forcing vector ({f}):

[K] {a} = {f} (2.12)

Before calculations begin, each particle must be identified as being a member of the field
equation or a boundary particle. Boundary particles are then separated for having Dirichlet
or Neumann boundary conditions. Particles having Neumann conditions have two values
associated with them indicating the normals to the wall in the x and y directions (nx and
ny).
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FOR i in the field equation

FOR j = 0 to (n-1)

K[i,j] = ddW[i,j]

NEXT j

NEXT i

FOR i having Dirichlet conditions

FOR j = 0 to (n-1)

K[i,j] = W[i,j]

NEXT j

NEXT i

FOR i having Neumann conditions

FOR j = 0 to (n-1)

K[i,j] = dWx[i,j] * nx[i] + dWy[i,j] * ny[i]

NEXT j

NEXT i

{a} = INVERSE([K]) * {f}

Table 2.3: MCI Partial Differential Equation Solution Algorithm

2.1.4 Conclusions

The Monte Carlo Integration method is very easy to implement in a code. However it suffers
from three difficulties:

1. Because values are obtained from averaging the neighbors, derivatives near the bound-
aries of the material will not be correct. The MCI method inherently requires a sym-
metric distribution of nodes around each particle to correctly calculate derivatives.
When nodes are vacant on a given side of the particle, the derivatives will be poorly cal-
culated. There are various ways of dealing with this problem (Bonet and Kulasegaram,
2002), however the complexity is more severe than claimed.

2. Although values of functions can be obtained by multiplying each particle by a “mass,”
different sized particles produce values which are not correct. The MCI method works
best with many small particles, and larger particles will not be evaluated correctly.

3. Since the method is based off of averaging values from neighbors, there is an inherent
viscosity associated with the method. We could reduce the averaging of values by
making the value h very small so as to use less particles. In fact, the kernel reproduces
the exact value when h → 0. However, when we reduce h to conserve energy in the
system, we lose resolution. When we lose resolution, we lose stability, especially in the
calculation of derivatives. Hence, there is a contradiction.

14



2.2 Radial Basis Functions

Instead of using averages from neighbors, it is possible to calculate interpolants by first
solving a system of equations for known values. By doing this, we can ensure behavior of
the Dirac delta function at each node. Furthermore, by applying differencing operators to
the system of equations, we can also calculate derivatives of the interpolants. Problems
associated with the geometric distribution of points in the MCI method can be alleviated,
however, problems of computation may arise.

2.2.1 Formulation

We say that our continuous function, f̂ , is a linear combination of a basis function, φ, and
an unknown weighting value, λ (Cheng et al., 2003).

f̂(x) =
n−1∑
=0

φı(r)λ(x) (2.13)

To perform interpolation, we specify that f̂(x = xı) = f(xı). Using this prescription, we
solve eqn(2.13) to find the weights, λ. Because all values of the weighting functions are
nodally based, derivatives may pass directly to the basis function.

∇f̂(x) =
n−1∑
=0

∇φı(r)λ(x) (2.14)

The laplacian is treated in the same way.

∇2f̂(x) =
n−1∑
=0

∇2φı(r)λ(x) (2.15)

Once the weights, λ, are known, derivatives can be found simply by evaluating eqn(2.14).

2.2.2 Prescriptions on basis functions

Two types of basis functions may be chosen. Local basis functions are similar to those used
in the MCI techniques. Types of local basis functions include Gaussian curves or inverse
multiquadrics. They result in sparse matrices, but have extremely poor convergence on the
boundaries. Equation (2.16) shows a Gaussian basis function.

φ (rı) = e−r2
ı (2.16)

Global basis functions have the form that distant particles have more influence than neigh-
boring particles. Types of global basis functions include thin plate splines and multiquadrics.
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While global basis functions mean that particles have more influence from distant particles
than they do from neighboring particles. Equation (2.17) shows a thin plate spline function.

φ (rı) = r2
ı log rı (2.17)

Multiquadrics can be shown to have exponential convergence (Cheng et al., 2003), however,
the matrix which results may be poorly conditioned and very full. Multiquadrics have been
found in Lagrangian meshless methods to produce the best calculations. The parameter
n involved in multiquadrics affects the type of kernel. If n is small, the kernel becomes a
compact, inverse multiquadric. If n is large, the kernel becomes very global. The kernel for
multiquadrics is (when n = 3):

φ (rı) =
(
h2 + r2

x + r2
y

)n−3/2
(2.18)

The gradient is:

∇kφ (rı) = (2n− 3) rk

(
h2 + r2

x + r2
y

)n−5/2
(2.19)

The laplacian is:

∇2φ (rı) = (2n− 3)
(
2h2 + (2n− 3) r2

) (
h2 + r2

x + r2
y

)n−7/2
(2.20)

2.2.3 Evaluation

We may use Radial Basis Functions to solve a partial differential equation via collocation
(Fedoseyev et al., 2002). We will use matrix notation using Einstein summation. For the
field equation we have:

∇2f̂ı =
(
∇2φ(rı)

)
λ (2.21)

For the flux boundaries, we solve:

∇fı = (∇φı) λ (2.22)

For Dirichlet boundaries, we solve:

fı = φıλ (2.23)

Table 2.4 shows the initialization routine for the RBF method. The algorithm is identical
to the initiation routine for the MCI method in that the same sort of operators are created.

Table 2.5 shows how derivatives may be calculated using RBFs. What is required first is
the weights λ. Afterwards, the differential operators are simple to evaluate.

Table 2.6 gives an algorithm of how a boundary value problem can be solved with Radial
Basis Functions. This algorithm, like that for the MCI method, involves solving an equation
[K] {λ} = {f}.
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FOR i = 0 to (n-1)

FOR j = 0 to (n-1)

CALCULATE r[i,j] eqn(2.2)
CALCULATE phi[i,j] eqn(2.18)
CALCULATE dphix[i,j] eqn(2.19)
CALCULATE dphiy[i,j] eqn(2.19)
CALCULATE ddphi[i,j] eqn(2.20)

NEXT j

NEXT i

Table 2.4: RBF Initialization Algorithm

{lambda} = INVERSE([phi]) * {f} eqn(2.13)
FOR i = 0 to (n-1)

FOR j = 0 to (n-1)

dfdx[i] = dphix[i,j] * lambda[j] eqn(2.14)
dfdy[i] = dphiy[i,j] * lambda[j] eqn(2.14)

NEXT j

NEXT i

Table 2.5: RBF Derivative Calculation Algorithm

FOR i in the field equation

FOR j = 0 to (n-1)

K[i,j] = ddphi[i,j]

NEXT j

NEXT i

FOR i having Dirichlet conditions

FOR j = 0 to (n-1)

K[i,j] = phi[i,j]

NEXT j

NEXT i

FOR i having Neumann conditions

FOR j = 0 to (n-1)

K[i,j] = dphix[i,j] * nx[i] + dphiy[i,j] * ny[i]

NEXT j

NEXT i

{lambda} = INVERSE([K]) * {f}

Table 2.6: RBF Partial Differential Equation Solution Algorithm
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2.2.4 Conclusions

Radial Basis Functions suffer difficulties in the form:

1. A local basis will not properly calculate derivatives on the boundaries. This is the same
difficulty as found with the MCI method. Therefore, a global basis function must be
utilized.

2. Global basis functions suffer from massive ill-conditioning. Conditioning numbers
O(17) are common. Furthermore, when particles begin to move and two particles
move very close to each other, the matrix will become singular.

3. Global basis functions do not have a good physical interpretation. A particle should
have more influence from its neighbor than it does from the furthest particle.
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2.3 Multi-dimensional Lagrange Interpolation Polyno-

mials

The difficulty with the MCI method is that while we desire great accuracy with h → 0, we
also desire stability and resolution when h is very large. Different sized particles can not be
used as this will create problems with particle “vacancies.” Furthermore, derivatives on the
boundaries are poorly calculated. However, what is desirable is that the matrices are very
sparse and are not expensive to calculate.

Radial Basis Functions alleviate the accuracy problems with MCI methods. However,
we get further problems in that an extra matrix must be inverted for every calculation. Not
only is the matrix full, but it usually has a very poor conditioning number. Finally, the
physical interpretation of radial basis functions is that distant particles have more influence
on a particle than neighbor particles. This can lead a fluid simulation to become unstable.

Instead, a new method is devised using a series of Lagrange polynomial interpolations.
The purpose of the MLIP method is to extend the resolution to interpolate for many particles,
while still retaining the property of a Dirac delta function. Furthermore, the matrix to be
inverted maintains the properties of being sparse and diagonally dominant.

2.3.1 Formulation

Suppose that instead of individual “particles” or “nodes” of fluid, we discretize our domain
into actual finite volumes. To represent the specified partition of fluid, we use a set of
quadrature points within each volume.
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Ω

Figure 2.2: MLIP Integration

A diagram of integration

• The red particle is center of the integra-
tion volume, Ω

• The white particles are neighbor parti-
cles

• The length h is the interaction radius

• The blue particles are the positions for
Gaussian quadrature

Our purpose is to relate the deformations of each volume to all others. The Lagrangian
interpolation formula expresses a one-dimensional function g(x) as a polynomial ln(x) of
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degree n in a linear equation with a second function f(x) (Hildebrand, 1987).

g(x) = l0(x)f(x0) + l1(x)f(x1) + · · ·+ ln(x)f(xn) =
n−1∑
k=0

lk(x)f(xk) (2.24)

The lagrangian coefficient function lı(x) is a solution of this system of linear equations which
also has the property of lı(x) = δı. The coefficient function can be expressed by the monic
polynomial:

π(x) = (x− x0)(x− x1) · · · (x− xn) (2.25)

The solution for the coefficient function becomes:

lı(x) =
π(x)

(x− xı)π′(xı)
=

k−1∏
k=0
k 6=ı

x− xk

xı − xk

(2.26)

Changing variables of g(x) = f(x), we obtain:

f(x) =
n−1∑
=0

l(x)f(x) + E(x) (2.27)

The associated error with this interpolation is:

E(x) = π(x)
fn+1(ξ)

(n + 1)!
(2.28)

If we now desire to calculate the one-dimensional integral, we can express it through a
Gaussian quadrature as a function of a weight W

f̂ =

∫
Ω

w(x)f(x)dx ≈
n−1∑
=0

Wf(x) (2.29)

The weight W can be evaluated as the weight from a quadrature point w(x) and the Lagrange
interpolation:

W =
n−1∑
ı=0

wı(x)lı(x) (2.30)

Written in index notation and using Einstein’s summation convention,

f̂ =

∫
Ω

w(x)f(x)dx ≈ wılıfı (2.31)

In one-dimension, the integration occurs within the limits of each particle’s size. However,
particles “interact” with other particles outside of the integration domain via the interpo-
lating polynomial l.
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Taking derivatives of the Lagrange polynomial, we get:

dlı(x)

dx
=

m−1∑
m=1
m6=ı

1

x− xm

k−1∏
k=0
k 6=ı

x− xk

xı − xk

(2.32)

d2lı(x)

dx2
=

n−1∑
n=1
n6=ı

1

x− xn

m−1∑
m=1

m6=ı6=n

1

x− xm

n−1∏
k=0
k 6=ı

x− xk

xı − xk

(2.33)

2.3.2 Multi-dimensional evaluation

In multiple dimensions, we perform the interpolation for each quadrature point in the par-
ticle’s volume. Since the Lagrangian polynomial is inherently a one-dimensional function,
dimensional “cuts” must be performed. For each quadrature point, in two-dimensions, we
divide the surrounding region into two cuts (x and y). We include or exclude points in a
cut based on the angle to the point (eqn(2.34)). Each cut uses one-dimensional Lagrangian
interpolation.

θı ≡ arctan(xı − ξ

) (2.34)

Figure 2.3: Dimensional-cut for the MLIP method

A diagram for multi-dimensional interpolation

• The blue point is the quadrature point
to perform the interpolation

• The green particles are neighboring vol-
umes to be interpolated

• The white particles are excluded from
the directional interpolation

• The gray sectors represent the spaces to
be interpolated

• The red squares are the calculated “in-
terpolation points”

The interpolating polynomial for each cut passes through every point we give to it.
Therefore, if we have a large number of points, the order of the polynomial will become
extreme, and the interpolation will become chaotic. Therefore, we will limit the number of
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points used in the interpolation to be parabolic. These points will be called “interpolation
points.”

For each dimensional-cut, we can divide the area into 3 sectors to provide 3 interpolation
points. We can calculate the position of the sectors by constructing a histogram for each cut.
Each sector from the histogram contains a set of points which influence each center. The
location of each “interpolation point” is determined by a weighted average of the particles
in each sector.

Table 2.7 shows the algorithm to create a histogram for a dimensional cut. In brief, we
create a MCI smoothing technique with a very large smoothing radius. By multiplying the
weighting kernel by a penalty vector initially containing values of unity, we can find the most
“dense” sector for each cut. After we find the most dense area, we modify the penalty vector
to be negative at that location. We repeat the process with the modified penalty vector to
find the next most dense sector.

function makebins(x,y)

FOR i = 0 to n

FOR j = 0 to n

r[i,j] = radius(x,y) eqn(2.2)
w[i,j] = exp(-abs(r[i,j]))

NEXT j

penalty(i) = 1.

NEXT i

FOR bin = 0 to 2

location_of_max = max(w*penalty)

points[bin] = x(location_of_max)

penalty[location_of_max] = -100

NEXT bin

RETURN(points)

Table 2.7: MLIP Sectoring Algorithm

Now that we have each cut divided into sectors, we need to interpolate for each “interpo-
lation point” of each sector. We can interpolate for each point by either MCI or RBF. RBFs
have been shown to provide the most accurate interpolations within each sector of each cut.
By using RBFs for each sector, we obtain the influence for each point by inverting a very
small (and not ill-conditioned) RBF interpolation matrix. Table 2.8 shows the algorithm
for performing a local sector interpolation. The inputs for the function are a matrix of the
distances, r for each particle in a sector to each other, and a vector of the distance rcenter

from each particle to the “interpolation point” of the sector.
The procedure for this method is best performed in a particle-by-particle basis. For

each particle, we call an initialization algorithm and then multiply the resulting Lagrange
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function weight(r,r_center)

FOR i = 0 to n

FOR j = 0 to n

weight[i,j] = phi(r[i,j]) eqn(2.18)
NEXT j

wbin[i] = phi(r_center[i]) eqn(2.18)
NEXT i

w = wbin * INVERSE(weight)

RETURN(w)

Table 2.8: MLIP Local Sector Interpolation Algorithm

polynomial vectors by the sector weight. This algorithm for each quadrature point ı is shown
in table 2.9.

FOR j = 0 to (n-1)

CALCULATE r[j] eqn(2.2)
CALCULATE theta[j] eqn(2.34)

NEXT j

FOR k = 0 to dim

CREATE points[k] algorithm(2.7)
FOR p = 0 to 2

CALCULATE w[j,p] algorithm(2.8)
NEXT p

l += Lagrange(points[k]) * w[j,p] eqn(2.26)
dl[k] = dLagrange(points[k]) * w[j,p] eqn(2.32)
ddl += ddLagrange(points[k]) * w[j,p] eqn(2.33)

NEXT k

Table 2.9: MLIP Initialization Algorithm

Besides the initiation routine, we can solve an equation or calculate derivatives in the
same manner as with the MCI method using algorithms shown in Tables 2.2 and 2.3.

2.3.3 Conclusions

1. The MLIP method has the desirable property of having a relatively large interaction
radius with other particles, but preserves the Dirac delta property.

2. The matrices created using the MLIP method are sparse and diagonally dominant.
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This is extremely beneficial for machine storage and the expense to invert.

3. The use of directional cuts and choosing interpolating points has the potential of pro-
ducing spurious and incorrect results. However, by using quadrature points for each
particle, the effect of any incorrect results can be seriously reduced.

4. There is a considerable amount of overhead in performing the initialization routine.
However, by using a language such as C++, the sparsity of the method can be utilized
in a particle-by-particle manner through the creation of a particle class.
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Chapter 3

Results

To evaluate meshless Lagrangian methods, there are two components which must be tested.
The first component to be evaluated is the accuracy of the computational methods. We
will evaluate the accuracy of the Monte Carlo Integration, Radial Basis Functions, and
Multi-dimensional Lagrange Interpolating Polynomials. For the same type of function, the
computational methods were tested on different types of particle arrangements.

The second component of the meshless Lagrangian methods to be evaluated is the accu-
racy of the fluid dynamic models. The equations of motion were applied to different types of
simulations. We will evaluate the properties of the Moving Particle Semi-implicit equations
as well as the Lagrange Implicit Fraction Step equations.

3.1 Methods of Computation

There were three different particle distributions used for testing methods of computation:

• Full structured grid

• Sparse structured grid

• Unstructured grid

The simulation involved using a function f from eqn(3.2) and creating an interpolation,
gradients, and Laplacian operators for each method. The function from eqn(3.2) is set up to
be similar to the pressure from a breaking dam problem. It is a solution of a boundary value
problem (eqn(3.1)) with a domain (Ω): x = (1, xmax) and y = (1, ymax). The free surface is
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considered to be on x = xmax and y = ymax. The walls are on x = 1 and y = 1.

1) ∇2f = 0 in Ω

2) f = 0 on Γd, the free surface

3)
∂f

∂x
= 0 on x = 1

4)
∂f

∂y
= −64 on y = 1

(3.1)

The solution to this boundary value problem is our function f :

f =
1

4

(
a (x− 1)2 − a (xmax)

2) (
128 (y − 1)− a (y − 1)2 − 128ymax + a (ymax)

2) (3.2)

with the parameter a given as a function of the domain:

a = 16
4x2

max −
√

16x4
max − x2

maxymax

x2
maxymax

(3.3)

Figures 3.1-3.4 show the function f as well as the analytical derivatives.
The discrete interpolation was conducted for all three methods of computation.

• Monte Carlo Integration

• Radial Basis Functions

• Multi-dimensional Lagrange Interpolating Polynomials

Error estimates for an analytical function g and an interpolated value ĝ are given by:

error =

∑n−1
ı=0 |g(x = xı)− ĝ(xı)|∑n−1

ı=0 |g(x = xı)|
(3.4)
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Figure 3.1: Function f of eqn(3.2)

2
4

6
8

10
12

2
4

6
8

10
12

−15

−10

−5

0

Figure 3.2: ∇2f of eqn(3.2)
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Figure 3.3: ∂f
∂x of eqn(3.2)
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Figure 3.4: ∂f
∂y of eqn(3.2)
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3.1.1 Full structured grid

The structured grid involves 144 particles. It has a range from 1 to 12 in both x and y axes.
Figure 3.5 shows the arrangement of particles.
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Figure 3.5: Full structured grid

For all results shown below, the analytical values are shown by a colored surface. The
discrete values shown numerically are represented by blue circles. When a mesh for the
interpolated values can be created, these values are linked together by a transparent surface.
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A) Monte Carlo Integration

Figure 3.6 shows the MCI interpolation on a structured grid as obtained by eqn(2.9). Notice
that there is a small amount of error between the true value and the interpolated value. This
is due to an averaging between nodes. Figure 3.7 shows the Laplacian interpolation on a
structured grid from eqn(2.11). There is a considerable amount of error at the boundaries.
However, the error in the center of the domain is almost negligible.

Figure 3.6: MCI: f̂ on a full structured grid Figure 3.7: MCI: ∇2f̂ on a full structured grid

Gradients are obtained from algorithm(2.2). Figure 3.8 shows the gradient in the x
direction on a structured grid. There is an extreme amount of error on x = 1. Figure 3.9
shows the gradient in the y direction on a structured grid. The same extreme error is also
present on y = 1.

Figure 3.8: MCI: ∂f̂
∂x on a full structured grid Figure 3.9: MCI: ∂f̂

∂y on a full structured grid

In terms of the derivatives in the MCI method, boundary points suffer from accuracy
because of a vacancy of points on a given side. This error is increased when the value of the
gradient is very large.
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B) Radial Basis Functions

Figure 3.10 shows the RBF interpolation on a full structured grid as obtained by eqn(2.13).
There is no error for the interpolation since the values are solved for via Gaussian - elimina-
tion. Figure 3.11 shows the Laplacian interpolation on a structured grid. There is a small
amount of error on the boundaries, but it is still very good.

Figure 3.10: RBF: f̂ on a full structured grid Figure 3.11: RBF: ∇2f̂ on a full structured grid

Figures 3.12 and 3.13 show the gradients in the x and y directions. There is almost no
error on these grids.

Figure 3.12: RBF: ∂f̂
∂x on a full structured grid Figure 3.13: RBF: ∂f̂

∂y on a full structured grid

31



C) Multi-dimensional Lagrange Interpolating Polynomials

Figure 3.14 shows the interpolation from the MLIP method. The matrix generated by the
function on this structured grid is the identity matrix. Figure 3.15 shows the Laplacian.
There is very little error in the Laplacian.

Figure 3.14: MLIP: f̂ on a full structured grid
Figure 3.15: MLIP: ∇2f̂ on a full structured
grid

Figures 3.16 and 3.17 show the gradients in the x and y directions. There is almost no
error on these grids.

Figure 3.16: MLIP: ∂f̂
∂x on a full structured grid Figure 3.17: MLIP: ∂f̂

∂y on a full structured grid
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3.1.2 Structured sparse grid

The sparse grid is generated via a quadtree method (Wang et al., 1999). The quadtree
method is set up to search for particles near boundaries. Particles near boundaries are
subdivided until a suitable mesh division is created.

The quadtree method has very nice characteristics of placing more particles where needed.
Furthermore, where a large number of particles are unnecessary, these areas are left to only
a few particles having very large masses. There were only 70 particles used in the sparse
grid.
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Figure 3.18: Sparse structured grid

33



A) Monte Carlo Integration

Figure 3.19 shows the MCI interpolation on a sparse grid. Because of the large separation
between points, the interpolation actually improves on this grid due to less averaging. Figure
3.20 shows the Laplacian interpolation on a sparse grid. In calculating derivatives, the
averaging of method breaks down for “large particles.” There is a tremendous amount of
error, and the method is entirely unusable for this grid arrangement.

Figure 3.19: MCI: f̂ on a sparse structured grid
Figure 3.20: MCI: ∇2f̂ on a sparse structured
grid

Figures 3.21 and 3.22 show the gradients. Gradient operations in the MCI method
perform poorly between differently sized particles.

Figure 3.21: MCI: ∂f̂
∂x on a sparse structured grid Figure 3.22: MCI: ∂f̂

∂y on a sparse structured grid
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B) Radial Basis Functions

Figure 3.23 shows the RBF interpolation on a sparse grid. Problems of “large particles” as-
sociated with the MCI method are fully alleviated. However, because of the large differences
in the sizes of particles, the eigenvalues of the matrix become more separated, leading to a
larger conditioning number in the matrix to be inverted from algorithm(2.6). The condition-
ing number to solve the boundary value problem is 3(10)9. Figure 3.24 shows the Laplacian
interpolation on a sparse grid. The error on the boundaries remains, but is still acceptable.

Figure 3.23: RBF: f̂ on a sparse structured grid Figure 3.24: RBF: f̂ on a sparse structured grid

Figures 3.25 and 3.26 show the gradients in the x and y directions. There is almost no
error on these grids.

Figure 3.25: RBF: ∂f̂
∂x on a sparse structured

grid
Figure 3.26: RBF: ∂f̂

∂x on a sparse structured
grid
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C) Multi-dimensional Lagrange Interpolating Polynomials

The MLIP method works well on a sparse grid work well while also alleviating the problems
of the MCI method. Furthermore, the eigenvalues in the resulting matrix do not have the
same problems as associated with Radial Basis Functions. The conditioning number to solve
the boundary value problem is only 214. Figure 3.28 shows the Laplacian interpolation on a
sparse grid. There is even less error than with the Radial Basis Functions, but small errors
remain on the boundaries.

Figure 3.27: MLIP: f̂ on a sparse structured grid
Figure 3.28: MLIP: ∇2f̂ on a sparse structured
grid

Figures 3.29 and 3.30 show the gradients in the x and y directions. There is almost no
error in the calculation of gradients.

Figure 3.29: MLIP: ∂f̂
∂x on a sparse structured

grid
Figure 3.30: MLIP: ∂f̂

∂y on a sparse structured
grid
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3.1.3 Unstructured grid

This unstructured grid is set to simulate action after particles have been moved slightly
relative to an initially structured grid as in figure 3.5. Some particles move very close to
other particles, while other particles move further apart.
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Figure 3.31: Unstructured grid

37



A) Monte Carlo Integration

Figure 3.32 shows the MCI interpolation on a structured grid. The error present in the
structured grid is the same error in the unstructured grid. However, the amount of error
does not change dramatically after particles have been moved.

Figure 3.32: MCI: f̂ on an unstructured grid Figure 3.33: MCI: ∇2f̂ on an unstructured grid

Figures 3.34 and 3.35 show the gradients in the x and y directions. The error on the
boundaries is still present, however, the error in the middle of the mesh changes only slightly.

Figure 3.34: MCI: ∂f̂
∂x on an unstructured grid Figure 3.35: MCI: ∂f̂

∂y on an unstructured grid
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B) Radial Basis Functions

Figure 3.36 shows the RBF interpolation on a disordered grid. There is no error in this
interpolation. However, figure 3.37 shows the Laplacian interpolation on a disordered grid.
Because certain particles are too close to one-another, the calculations can break down and
produce very spurious results. When applied to a fluid code, this can cause the simulation
to break down.

Figure 3.36: RBF: f̂ on an unstructured grid Figure 3.37: RBF: ∇2f̂ on an unstructured grid

Figures 3.38 and 3.39 show the gradients in the x and y directions. The calculation of
gradients is still very good.

Figure 3.38: RBF: ∂f̂
∂x on an unstructured grid Figure 3.39: RBF: ∂f̂

∂y on an unstructured grid
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C) Multi-dimensional Lagrange Interpolating Polynomials

The interpolation, figure 3.40, is shown to be exact, while the Laplacian, figure 3.41 shows
the smallest degree of error from any method.

Figure 3.40: MLIP: f̂ on an unstructured grid Figure 3.41: MLIP:∇2f̂ on an unstructured grid

The gradients, shown in figures 3.42 and 3.43 show excellent accuracy for a disordered
mesh.

Figure 3.42: MLIP: ∂f̂
∂x on an unstructured grid Figure 3.43: MLIP: ∂f̂

∂y on an unstructured grid
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3.2 Fluid Codes

For a meshless Lagrangian method, we may use a combination of any equation of motion and
method of computation. In total, there are nine different combinations we can use, shown
in table 3.1.

Equations of Motion Method of Computation
Spherical Particle Hydrodynamics (SPH) Monte Carlo Integration (MCI)

Moving Particle Semi-implicit (MPS) Radial Basis Functions (RBF)
Lagrange Implicit Fraction Step (LIFS) Multi-d Lagrange Interpolating Polynomials (MLIP)

Table 3.1: Equations of Motion and Methods of Computations

The codes chosen for testing some of the theories included:

A MPS and Monte Carlo Integration (MPS - MCI)

B Lagrange Implicit Fraction Step and Radial Basis Functions (LIFS - RBF)

The SPH equations were not investigated because a large amount of research has already
been conducted on the subject. Instead, it was decided to investigate implicit codes which
did not use an equation of state to calculate the pressure. Multi-dimensional Lagrange
Interpolating Polynomials also were not used because an efficient C++ algorithm has not
been written yet.

The MPS - MCI code was written in C++. The code made use of the sparsity of the MCI
method, and its evaluation was very quick. The LIFS - RBF code was written in Matlab.
Because of Matlab’s robust matrix inversion, it was utilized since the matrices involved in
Radial Basis Functions are very full and ill-conditioned.

Two types of experiments were performed using both methods. Each experiment was
used to evaluate the accuracy and robustness of the codes. To simplify the problem as well
as to investigate the accuracy of the simulations, viscosity was set to zero. This was done to
evaluate if there was any numerical damping involved in the computations.
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3.2.1 Dam Break

The dam break involves a water column of height H and length x0 in which one side of the
column is released at time t = 0+. This simulation allowed for the evaluation of boundary
conditions as well as a comparison to experimental data.

y

x

H

x0

Ω

Figure 3.44: Diagram of Dam Break Experiment
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A) Moving Particle Semi-Implicit and Monte Carlo Integration

The propagation of the water can be compared to published results (Shao and Lo, 2003),
shown in figure 3.45. English units were used in the simulation with g = 32.2ft/s2 and
ρ = 1.99slugs/ft3.

Figure 3.45: Comparison of dam breaks

Figure 3.46 shows the propagation of the water as it decays from its initial position.
Identification of the free surface particles utilized inherent defects in Monte Carlo Integration.
Particle vacancies were identified by a lack of symmetry in the derivative matrices, dwx and
dwy. If the lack of symmetry was over a given limit, the particle would be tagged as being
on the free surface.

Figure 3.47 shows the water column hitting another wall on the opposite side. As the
water descended from the opposite wall, a small vortex was created in the bottom right corner
of the fluid. The presence of this vorticity indicated that there was numerical damping in
the Monte Carlo integration technique.
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Figure 3.46: Initial decay of water column using MPS - MCI
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Figure 3.47: Water column hitting a wall using MPS - MCI
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B) Lagrange Implicit Fraction Step method and Radial Basis Functions

The water column collapse shows promise for the LIFS method with the inclusion of correct
boundary conditions on the fluid. Figure 3.48 shows the pressure distribution (as contour
lines) as well as the velocity (as vectors) when t = 0+.

However, the use of Radial Basis Functions proved to be both slow and unstable. Figure
3.49 shows the subsequent decay of the water column. As a particle would approach another
particle, the calculations would degenerate because of a singular matrix in Radial Basis
Functions.

Figure 3.48: Initial pressure distribution in the water column using LIFS - RBF
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Figure 3.49: Propagation of water column using LIFS - RBF
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Finally, the identification of free surface particles was only done at the beginning of the
simulation. Because a particle was not re-tagged if a free-surface particle fell into the fluid,
a free-surface particle would not obey wall boundaries. Figure 3.50 shows the consequences
of not re-identifying boundary particles.

Figure 3.50: Degeneration of LIFS - RBF solution due to boundary condition mistracking

48



3.2.2 Sloshing Wave

The sloshing wave experiment had an initial condition of particles arranged in a sinusoidal
fashion. Because the fluid was inviscid, the oscillations of the fluid should continue in forever.
Furthermore, in a given period, the particle arrangement should always regenerate the initial
condition.

The specific shape of the initial domain is given by figure 3.51. In the initial position, we
can calculate the maximum hydrostatic at (x, y) = (0, 0) as:

p = ρg (h0 + η) (3.5)

x

y

h0

l

η

Ω

Figure 3.51: Diagram of Sloshing Wave Experiment
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A) Moving Particle Semi-Implicit and Monte Carlo Integration

The MPS method showed that there is a large amount of numerical damping in the sine-wave
calculations. The simulation also required an unnecessary amount of particles. Because a
sparse grid could not be utilized with the Monte Carlo method, particles in lower portion
of the domain had to be calculated, but had little consequence on the free surface. These
particles remained present so that the Monte Carlo method would not break down. The loss
of kinetic energy can be shown in figure 3.52.

Figure 3.52: Loss of kinetic energy in MPS-MCI in the sloshing wave experiment

Figures 3.53 and 3.54 show the first period, T of the oscillations. In much later oscilla-
tions, small vortices were seen in the bottom corners of the domain.
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Figure 3.53: MPS-MCI Sloshing solution at t/T = 0 (top), = 1/4 (bottom)
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Figure 3.54: MPS-MCI Sloshing solution at t/T = 1/2 (top), = 3/4 (bottom)
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B) Lagrange Implicit Fraction Step method and Radial Basis Functions

The sloshing simulation shows that the algorithm from the LIFS method is viable, however,
the use of Radial Basis Functions in large deformation problems is not. The pressure and
velocity vectors at time t = 0+ are shown in the upper figure 3.56. The enforcement of flux
boundary conditions in the partial differential equation results in a correct calculation of
pressure.

Pressure at (x, y) = (0, 0) can be compared between both methods in figure 3.55. Because
flux boundary conditions are not enforced, the MPS equations need a number of iterations to
correctly calculate the pressure. This occurs when a fluid particle “falls” into a wall particle
to such a point that the field equation can correctly reproduce the required boundary force.

The propagation of the sinusoid is seen in figures 3.56.

Figure 3.55: Comparison of pressure normalized by hydrostatic pressure eqn(3.5)
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Figure 3.56: Propagation of the sinusoid using Radial Basis Functions
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However, after large deformations, the calculations involved with RBFs create the situa-
tion that particles in the field equation come too close to each other. The problem with this
is that the RBF calculations become unstable, and the simulation breaks down. Figure 3.57
shows the creation of a singularity in pressure near (x, y) = (60, 40).

Figure 3.57: Degeneration of solution due to singularity in Radial Basis Functions

55



3.3 Conclusions

3.3.1 Methods of Computation

The Monte Carlo Integration method posed two sets of problems. First, the calculation
of derivatives, especially on the boundaries produced very poor results. Mathematically,
derivatives in the MCI method require an infinite domain. If we have a vacancy on any
portion of the domain, the calculation of derivatives will not be accurate.

As a consequence, flux boundary conditions from the MCI method cannot be used to
solve a system of equations. Therefore, the LIFS method is not usable with Monte Carlo
Integration.

Secondly, the MCI method needs a constant spacing of particles to obtain accurate deriva-
tives. This prohibits the use of differently sized particles in a simulation. By not being able
to use differently sized particles, the application of the MCI method for any real naval hy-
drodynamics or full three-dimensional aerodynamics problems is severely limited.

Radial Basis Functions alleviate many of the geometric problems associated with the
MCI method. However, the machine costs associated with inverting a full and ill-conditioned
matrix limits the amount of particles which could be used in calculations. The cost to invert
an RBF matrix can never be less than O(n3). This cost also prohibits the application of
RBFs for any simulation with a large number of particles.

Furthermore, if a grid deformed too much, the matrix could become singular, and the
simulation would break down. It is recommended that Radial Basis Functions be used in an
Eulerian type simulation where a matrix could be inverted only once per simulation.

Multi-dimensional Lagrange Interpolating Polynomials were created to preserve the nice
machine characteristics of the MCI method, while performing more accurate interpolation.
The result is a method which was shown to provide accurate interpolation, however, it is
relatively untested. The machine expense of performing local-interpolation for each sector
is justified by the very low conditioning numbers of the resulting matrices needed to solve a
boundary value problem.

3.3.2 Fluid Codes

The MPS equations combined with the MCI method was shown to provide a stable and
robust technique. However, the lack of a flux boundary condition for the differential equation
meant that the problem was ill-posed. Pressure calculations needed multiple time steps to
allow for a fluid particle to “enter” a wall particle. Once the force from the wall-particle
sufficiently repelled the fluid particle enough, the pressure calculation would be satisfied.
Although the differential equation is ill-posed, the MPS-MCI code still works because the
field equation enforced on the wall boundary particles reaches an equilibrium after enough
time steps.

Furthermore, in the inviscid calculations, small vortices would occur as a result of smooth-
ing from the MCI technique. Ultimately, this would lead to a decay of energy in the system.
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The LIFS equations combined with RBFs showed that the inclusion of flux boundary
conditions meant that every time step was capable of correctly calculating the pressure-field.
In fact, the LIFS equations differed from MPS only in the initial formulation of the velocity
components. By including the velocity components in the calculation of pressure, a well-
posed boundary value problem was formed. Furthermore, by separating the influence of
viscosity from the other forces, it was possible to form a more efficient inviscid algorithm.

3.3.3 Recommendations and Future Work

Boundary conditions still pose a problem for meshless Lagrangian fluid dynamics. The
identification of a particle being either on the free surface or the wall needs to occur for
each time step. If not, a free surface particle is capable of “falling-through” a wall, since its
pressure is always set to zero. The identification of boundary particles on a sparse, meshless
grid is not trivial. One possible solution could be a quadtree “remeshing” of the domain
after a certain amount of deformation. While this would be an efficient solution which is
also capable of preserving boundaries, this violates a certain trait of the formulation in being
meshless.

A second problem is in the free-surface particles. Because all free-surface particles have
zero pressure, the pressure gradient perpendicular to the normal of the free surface is always
zero. For the breaking dam experiment, this means that the free-surface particles were not
capable of supporting each other from the influence of gravity. Instead, they will always fall
into each other. We could realize that the pressure for a free surface volume is not actually
zero within the volume, but only on the outer surface of that volume. A possible solution
could include creating “phantom” free surface particles in an outward normal direction one
unit length away. These phantom particles would have zero pressure, allowing the “free-
surface” particles to have a pressure able to support one another.

A third problem developed where a particle was both against the wall and on the free
surface. In terms of solving the system of equations, a resolution could include using the
flux boundary conditions in the system, but while also applying a penalty term in case the
pressure was not zero. This problem could also be resolved by the creation of the “phantom
particles” for the free surface.
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Appendix A

Algorithms

The appendix is divided as follows: Appendix A details the program flow of the MPS-MCI
and LIFS-RBF codes. Appendix B details the inputs and outputs to the codes. Appendix
C shows the codes contained on the CD.
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A.1 MPS-MCI Algorithm

eqn(1.14)

Initialize MCI kernels table(2.1)

Initialize MCI kernels table(2.1)

Initialize the domain

For each time step, n

Evaluate u∗ eqn(1.20)

Calculate ρ0 eqn(1.18)

eqn(1.22)

Identify free surface particles

Solve for pn+1 eqn(1.23)
and table(2.3)

Evaluate ∂ρ∗/∂t

Update position xn+1

Evaluate u∗∗ eqn(1.21)
and table(2.2)

Next time step, n

Summate un+1 eqn(1.24)
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A.2 LIFS-RBF Algorithm

eqn(1.13)

Initialize the domain

For each time step, n

Initialize RBF kernels

Evaluate body forces δũ

Identify boundary particles and normals

eqn(1.33)

table(2.4)

Evaluate fluxes eqn(1.48)

Update position xn+1

Next time step, n

Solve for pn+1

Evaluate spherical forces δů
eqn(1.35)
and table(2.5)

and table(2.6)
eqn(1.47)

Evaluate motion δu eqn(1.29)

eqn(1.14)

Update velocity un+1
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Appendix B

Code Explanation

B.1 MPS-MCI Algorithm

The MPS-MCI code takes an ASCII input file for arguments to the domain and environ-
mental variables. An example file is shown as dam-break.input:

-32 .01 4

1 0 2 1 1 10 20

2 0 2 0 0 30 0

2 0 2 0 1 0 30

2 0 2 30 1 30 30

On the first line, the first number is the acceleration due to gravity. The second number is
the value of δt. The third number is the number of “domains.”

The subsequent lines are inputs to the “domains.” The first number qualifies if the
domain is water (1) or a wall (2). The second number is a “modification” to the domain.
The modification does nothing when mod=0. The modification changes the domain into a
sloshing experiment when mod=1. The third number is the density of each domain.

The following four numbers in the line detail the geometry of each domain. The numbers
are inputed as x0, y0, x1, y1.

The output from the program are two files. The created file, out.avi, is a movie of the
simulation. The second created file, output, is an ASCII file showing the maximum velocity,
maximum pressure, and kinetic energy of the system for every time step.

B.2 LIFS-RBF Algorithm

The inputs to the LIFS-RBF code are written directly into the file lifsrbf.m. The variables of
δt, gravitational acceleration, and density may be modified in line 11 of the file. To perform
a sloshing experiment, the lines 17-25 should be uncommented. To perform a dam-breaking
experiment, the lines 29-36 should be uncommented. Output is sent to a variable mov. This
can be turned into an animation by using Matlab’s built-in movie to avi function.

63



Appendix C

File Listing

The CD included with this thesis contains the MPS-MCI code, the LIFS-RBF code, the
methods of computation algorithms, and this document. Presently, this CD is also posted
at: www.redcoopers.net

The folder “MPSMCI” contains the MPS-MCI code:

1. main.cpp, and classes.* are the main computational functions for the MPS-MCI algo-
rithm. The Numerical Recipes toolkit is used for mathematical functions and arrays.
This toolkit is available for purchase from www.nr.com. The GLUT library is also used
to display the simulations to the screen.

2. avi*.*, opengl.*, and utility.* are files used to generate movies of the simulations.

The folder “LIFSRBF” contains the LIFS-RBF code:

1. lifsrbf.m is the main code.

2. rbf kernel.m and radius.m are functions to compute the RBF operators.

3. sparseinput.m, octree.m, and uniquer.m are functions to create a sparse mesh.

4. printf.* are utilities written in C for Matlab for printing to the screen. printf.mexmac
must be recompiled for a machine.

The folder “MOC” contains the methods of computation testing algorithms:

1. grad 2d.m is the main code.

2. radius.m calculates the distances between every particle.

3. mci kernel.m is the code to generate MCI operators.

4. rbf kernel.m is the code to generate RBF operators.

5. lip kernel.m is the main function to generate MLIP operators. It uses the files liprbf kernel.m,
makebins.m, and Lagrange*.m as utilities.

6. sparseinput.m, octree.m, and uniquer.m are functions to create a sparse mesh.
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