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ABSTRACT

The estimation of the parameters of a linear statistical

model is generally accomplished by the method of least

squares. However, when the method of least squares is

applied to nonorthogonal problems the resulting estimates

may be significantly different from the true parameters.

The method of ridge regression may provide better estimates

in these cases; however, a probability distribution of the

ridge estimator is presently not known. The form of such a

distribution is dependent upon how the ridge parameter, k,

is selected. Two possible objective methods of choosing k

are examined to determine if either one leads to a useful

probability distribution.
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I. BACKGROUND

The following conventions will be used throughout.

Unless otherwise noted, capital letters and Greek letters

will refer to matrices and vectors while lower case letters

will refer to scalars.

A. INTRODUCTION

The use of linear statistical models is widespread in

scientific fields of all kinds. Generally, the linear

statistical model is postulated as

Y = X3 + e (1)

where Y is an n x 1 vector of n observed values of a

dependent variable, X is an n x p matrix containing n

values for each of p predictor (independent) variables,

3 is a p x 1 vector of p unknown parameters (or coefficients)

to be estimated from data, and e is an n x 1 vector repre-

senting experimental errors. Usually, the experimental

error is assumed to have a multivariate normal distribution

with mean equal to zero and variance covariance matrix

2 2
equal to a I where a is the scalar value of the common

variance of the experimental errors. This assumption

will be made throughout this paper.

In practice, the modeling problem is to estimate the

parameters 3 from data Y and X. The most common method of





doing this is called least squares estimation or some-

times ordinary least squares (OLS) . The latter designation

will be used in this paper.

Under certain fairly general and common conditions

OLS is an adequate method of estimating 3. However, when

the data is "ill-conditioned" or nonorthogonal OLS may

yield poor estimates of the true parameters.

Ridge regression (RR) has been proposed [Ref. 1] as an

alternative estimation method that might yield better esti-

mates under conditions where OLS does poorly.

B. ORDINARY LEAST SQUARES

For convenience, it is assumed that the elements of X

are scaled such that X'X has the form of a correlation

matrix. This is done by forming from each element x. . a

new element x'. such that

x' . .
= (x. .

- x.)/s (2)
ij v

13 y' Xj < J

where x. is the mean value of the elements of the j

—

3

independent variable and s is its standard deviation
x
j

times an appropriate constant such that the diagonal

elements of X'X are equal to one. The OLS estimator of

3 is then

3 = (X'X)"
1
X , Y (3)





-

1

A

so long as (X'X) exists. 1 The estimator 3 is unique,

unbiased and is the best linear unbiased estimator (BLUE)

of 3 (it has the minimum variance among all linear un-

biased estimators of 3) so long as E (Y) = X3 and

2 2
E(Y -X3 ) (Y -X3)' = a I where a is a scalar, as assumed

previously.

The OLS estimator 3 is commonly used and is particularly

useful when it can be assumed that Y is a multivariate

normal vector with mean vector X3 and covariance matrix

2
a I. In this case, it can be shown 2 that the maximum

likelihood estimator of 3 is the same as the OLS estimator

and furthermore, since 3 is a linear function of the elements

of Y, 3 has a multivariate normal distribution with mean

2 -1
vector equal to 3 and covariance matrix a (X'X) . This

latter characteristic of 3 allows the use of hypothesis

tests and the computation of confidence bounds.

Unfortunately, in some cases X'X is "ill-conditioned"

and OLS yields poor estimates. This typically occurs when

an experiment is poorly designed or there are economic or

physical restraints causing strong correlations among the

predictor variables. In this case X'X, in its correlation

matrix form, will not be orthogonal.

; For a derivation and details of properties of the OLS
estimator, see, for example, Ref. 2.

2 For example, see Ref. 2, page 182.





Hoerl and Kennard [Ref. 3] address the eigenvalues of

X'X (denoted by A,, j = 1, 2 p) and point out that

nonorthogonal data are characterized by the smallest eigen-

value Omin ) being much less than unity and that, since

a /A - is a lower bound for the mean squared distance
' mm n

between 3 and 3, then for X'X nonorthogonal, the difference

between 3 and 3 has a high probability of being large.

When X'X is nonorthogonal 3 is characterized by one or more

of the following difficulties, for example:

(1) large variance,

(2) large magnitude of residual errors,

(3) incorrect signs of parameter
estimates.

C. RIDGE REGRESSION

A. E. Hoerl suggested [Refs. 1 and 4] that the large

variance of 3 for nonorthogonal data could be reduced by

the addition of a constant k > to the diagonal elements of

X'X, thus yielding

3* = (X'X + kl)"
1

X'Y (4)

as as estimator. Equation (4) is derived in Appendix A.

Note that for k equal to zero the estimator 3 is equal

to the OLS estimator 3. Therefore, OLS can be thought of

as a special case of ridge regression. 3 Hoerl suggested

3 See Appendix B for a discussion of an even more
general estimator.
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the name "ridge regression" for this procedure because of

its mathematical similarity to some of his earlier work

[Ref. 5] on quadratic response functions. Appendix A

contains a derivation of the ridge regression estimator.

1. Mean Squared Error

The rationale behind using the ridge estimator is

to minimize the mean squared error (MSE) associated with

the estimate instead of minimizing the sum of squares of

residuals as is done in OLS. 1
* Hoerl and Kennard show

that the mean squared error is given by

MSE = Variance + (Bias)
2

(5)

Furthermore, they show that variance is a monotonically

decreasing function of k, that the squared bias is a

monotonically increasing function of k and that the rate

of change of variance, for nonorthogonal data and small k,

is considerably larger than the rate of change of the

squared bias. Figure 1 is a graphical illustration of

these relationships. Hoerl and Kennard argue that it is

possible to find some k >^ such that the variance is

greatly reduced while only a small amount of bias is intro

duced, thus yielding a smaller MSE than if OLS (k = 0)

''In the case of unbiased estimation, which OLS is,
these are equivalent criteria.

11





FIGURE 1

MEAN SQUARED ERROR FUNCTIONS
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were used. Indeed they show that if 3' 3 is bounded, then

such a k always exists.- Thus, proper use of ridge regres-

sion on nonorthogonal data insures a reduced MSE of

estimation.

The problem remains to select an appropriate

value of k. Hoerl and Kennard [Ref. 6] suggest the use of

two graphical devices as aids to determining an appropriate

value of k. The first is the ridge trace, a two-dimensional

plot of the elements of 3 as functions of k and the second

is an estimate of the squared length of the coefficient

vector 3 3 . The ridge trace is used to gain an under-

standing of the underlying correlations between the various

predictor variables while the plot of 3 3 is used to

subjectively determine a suitable range of values of k.

A typical ridge trace is illustrated in Figure 2 and a

typical plot of 3 3 is depicted in Figure 3. Notice

that 3 3 , in Figure 3, decreases steeply for small k

(k < 0.2) but in the range about 0.3 to 0.4 has become

much less sensitive to further increases in k.

2. Alternative Methods of Choosing k

The previously described method of subjectively

choosing a suitable value of k is the current method in

use and appears to be useful. A major problem arises,

however, because the method denies to the analyst know-

ledge of the probability distribution of 3 and, therefore,

any probabilistic inferences concerning the resulting

13





FIGURE 2

TYPICAL RIDGE TRACE
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FIGURE 3

TYPICAL PLOT OF THE
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estimator. Hoerl and Kennard have suggested a general form

of ridge regression [Ref. 3] and an iterative method of

determining k. In addition, Hemmerle [Ref. 7] has derived

a closed form solution based on this method. Another

possibility is to use the ridge trace or the plot of

3 3 quantitatively to calculate a point value for k in

such a way that the marginal probability distribution, f^*,
3

may be determined. Two such methods using the ridge trace

are examined in the next section.

16





II. PROPOSED OBJECTIVE RULES FOR CHOOSING k

The slope (rate of change) of the ridge trace curves

or the absolute change of the ridge trace curves over a

specified interval may be used to determine a value of the

ridge parameter, k, objectively. These criteria are

discussed here.

Either of these criteria may be sensitive to the

behavior of each coefficient 3-. In general, $• is not

monotonic in k, although they all approach zero as k is

increased without bound. It has been noted by Marquardt

and Snee [Ref. 8] that it is not uncommon for one or more

3- to increase in absolute value as k is increased. (See,

for example, 3
fi

in Figure 2.) Therefore, the ridge trace

should be examined by the analyst to detect any behavior

of 3- that might adversely affect the proper selection of k

even though the ridge trace is not to be used directly to

select a specific value of k.

a*
It is clear that 3 is distributed multivariate normal

if Y is distributed multivariate normal and a specific

value of k is selected a priori. However, whenever the

value of k is dependent on a data sample its value will

not generally be the same for each data sample. Therefore,

k is a random variable. Let K denote this (scalar) random

variable.

17





The marginal probability distribution of 3 may be

derived from the joint probability distribution of K and

3 which can be determined by

f^a f„* • fv (6)

3 ,K 3 /K *

if the conditional distribution of 3 given K, fg* ,„, and

the marginal distribution of K, f„, are known. As stated

above, when K is given, the distribution of 3 is known.

It remains to determine the marginal of K, f^. Clearly,

this distribution depends on how K is related to Y. The

procedure will be to find a mapping from the range of Y

into the range of K which gives the marginal distribution of

K. With this distribution and the known conditional distri-

bution of 3 given K, the joint distribution of 3 and K may

be determined. It is convenient to consider the cumulative

distribution function, F„(k), since, if the functional

relationship of K to Y, K = h(Y), is known then

F
K
(k) = P[K < k] = P[h(Y) < k] = P[Y £ R

k ] (7)

where R, is a region in the space of Y corresponding to

h(Y) <_ k. Thus if R, can be determined then, since the

marginal distribution of Y is known, F
K
(k) = P[YeR, ] can

be determined and f^ may be determined from F^ by

differentiation. It remains to determine R, corresponding

18





to a specified region in the space of K and an objective

rule for mapping from Y to K.

A. ABSOLUTE VALUE CRITERION

The practical range of the ridge parameter is taken to

be < k < 1 in the literature. It seems reasonable then

to choose the smallest value of k such that all 3-(k) are

close to their respective values at k = 1. In other words,

|3*(k) - 3*(1)| < 6.; i = 1, 2, . . ., p (8)

where 6 . is a constant selected by the analyst. The cri-

terion expressed by (8) means that the ridge trace curves,

3-, at k are within 6. of their value at k = 1 beyond which

there is no interest. Here 6. refers to the i— scalar

component of a p x 1 vector, 6. Suppose that at some

k = k
fi

the m— component of the left hand size of (1) is

the one whose absolute magnitude is largest. Define a

p x 1 vector x such that t = ±5 , as appropriate, and the

other components of x are equal to the corresponding values

of |3 i
(k

Q
) - $ .(1) I . Then equation (8) can be rewritten

in vector form

3 (k
Q

) - 3 (1) = x (9)

19





B. DERIVATIVE CRITERION

Another potential criterion to use for selecting k is

to require that the slopes of all $. be "flat enough" in

the sense that

33, (k)

-j| = 6
i;

i = 1, 2, . . ., p (10)

where 6. is as previously defined. Define m such that the

f-V>

m— component of the left hand side of (10) is the one

whose absolute magnitude is largest and define a p x 1

vector 7T such that Trm = ±<5m , as appropriate, and the other

components of tt are equal to the corresponding values of

33 .

9k
''

Then equation (1) can be written, in vector form

4!£i-* ai)

20





III. PROBLEM

The problem is to determine the probability

distribution of K given Y. It is proposed to determine

this by attempting to derive and examine the functional

relationship of Y and K.

A. ABSOLUTE VALUE CRITERION

The criterion expressed by equation (9) may be stated,

by substituting from equation (4)

(X'X + kI)'
1
X'Y - (X'X + I)"

1
X'Y = x (12)

and by factoring

[(X'X + kl)"
1

- (X'X + I)"
1
]X'Y = t (13)

but, as shown in Appendix C, equation (C-4) , the expression

in brackets may be expanded to

(X'X + kI)"
1
[(X'X + I) - (X'X + kl)] (X'X + I)"

1
(14)

Therefore, by canceling terms and simplifying, equation (13)

becomes

(1 - k)(X'X + kI)"
1
(X»X + I)

_1
X'Y = x (15)

21





If k f 1 and if (X'X + kl)" 1
and (X'X + I)"

1
exist, then

X'Y = (_i-
1-)(X'X

+ kI)(X'X + I)t (16)

The task then is to solve the linear equations in (16)

for Y in order to determine R, . Unfortunately, equation (18)

represents p linear restraints (hyperplanes) on n unknown

variables where, in general, n > p. Furthermore, x is a

function of Y. Thus, R, is not easily determined under

this criterion.

B. DERIVATIVE CRITERION

The criterion given by equation (11) may be stated by

substituting from equation (4)

|^[(X'X + kI)
_1

X'Y] = 77 (17)

or since ^X ' X + kI )
= x

-(X'X + kI)~
2
X'Y

8tt

9¥ (18)

Now, if (X'X + kl) is not singular then

X'Y = (X'X + kl)
2

|£ (19)

22





where the negative sign has been dropped since the

criterion actually specifies the absolute value of the

components of the derivative and the notation of tt accounts

for proper signs.

Equation (19) is similar to equation (16) , as it should

be since the criteria are similar, and the same difficulties

are encountered in determining R, as for the previous

criterion. In addition, the derivative of it will be

difficult to determine. Therefore, the derivative

criterion does not lead to a useful result either.

23





IV. NOTES ON THE FULL BAYESIAN RIDGE ESTIMATOR

The full Bayesian ridge estimator (FBRE) is suggested

by Eskew [Ref. 9] and is given as

3* = (X'X + kI)"
1
(X'Y + k3

Q
) (20)

where 3 n
is a prior estimate of 3. There are two interesting

properties of £ not noted by Eskew.

First suppose that the prior $ n
is chosen to be the

OLS estimate 3. Then

3* = (X'X + k!)"
1
[X'Y + k(X'X)

_1
X'Y] (21)

and hence

3* = (X'X + kl)
_1

[l + k(X«X)" 1 ]X'Y (22)

But

[I + k(X'X)"
1

]
= (X'X + kI)(X'X)

_1
(23)

Substituting (23) into (22)

3* = (X'X)'
1X'Y = 3 (24)

24





Thus if the OLS estimator is used as a prior estimate

for the FBRE, equation (21), then the resulting estimate is

equal to the OLS estimate.

Now, suppose that any prior estimate 3 n
is used in

equation (21) but the resulting estimate is then used as a

prior in (21) to compute another estimate. If this pro-

cedure is repeated indefinitely, in the limit the result

will again be the OLS estimator regardless of what prior,

3~, was initially used. The proof of this is shown in

Appendix B.

25





V. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS

The determination of a probability distribution of the

ridge estimator, 3 , is desirable in order to facilitate

the use of hypothesis tests and the computation of confi-

dence bounds concerning 3 . The probability distribution
~*

of 3 depends on the objective rule used to select the

ridge parameter, k. Neither of the two objective rules

examined here appears to lead to a simply determined

probability distribution.

B. RECOMMENDATIONS

The search for a useful probability distribution of

3 should be pursued further. In particular, the closed

form solution for k presented by Hemmerle [Ref. 7] may

prove fruitful. Other possibilities include investigating

other criteria based on the ridge trace such as minimizing

the sum of squares, over all i = 1, 2, . . ., p, of the

difference between 3-(k) and 3^(1). Also, the same

criteria applied to the ridge trace could be considered

for the squared length of 3 .

26





APPENDIX A

DERIVATION OF THE RIDGE REGRESSION ESTIMATOR

The residual sum of squares for any estimator can be

written

<D(3) = (Y - X3)' (Y - X3) = e'e (A-l)

In ridge regression it is desirable to minimize the

residual sum of squares subject to an acceptable length,

c, of the regression vector 3 . Expressed as a Lagrangian

restraint problem this is

min $'(3*) = (Y - X3*) ' (Y - X3*) + k(3*'3* - c) (A-2)

where k is the inverse of the Lagrangian multiplier.

Taking partial derivatives of $' with respect to 3

and setting them equal to zero

33

4*- [Y'Y - Y»X3 - 3 X'Y + 3 X'X3 + k3 3 ]
(A-3)

33

Hence

= -(Y'X)' - X'Y + 2X'X3 + 2k3 (A-4)

27





or

2X'Y = 2X'X6* + 2kI3* (A-5)

Therefore,

X'Y = (X'X + kl)$* (A-6)

Now, if (X'X + kl) is non-singular (which k is selected

to ensure) , then

3* = (X'X + kI)
-1

X'Y (A- 7)

28





APPENDIX B

FULL BAYESIAN RIDGE ESTIMATION

A. BACKGROUND

Eskew [Ref. 9] points out that ridge estimation is

equivalent to minimizing the squared differences between

the regression estimates and a prior estimate of zero

subject to a constraint on the sum of squares and suggests

that a non-zero prior might be more reasonable. Following

this line of reasoning he derives the full Bayesian ridge

estimator (FBRE)

jg 1

3 = (X'X + kl) (X.'Y + k6
Q

) (B-l)

where 3 n
is a prior estimate of the true parameters 3.

Note that the ridge estimator is a special case of FBRE

where the prior is taken to be zero.

Eskew shows that the variance of the FBRE is the same

as the variance of the ridge regression estimator (RRE)

while the squared bias of the FBRE is less than that for

the RRE, thereby resulting in a reduction of mean squared

error.

B. ITERATIVE USE OF THE FULL BAYESIAN RIDGE ESTIMATOR

Suppose that the FBRE is calculated using any prior,

6
n

, and then the result, $_, , is used as a prior to

calculate another FBRE, 3_2
. If this procedure is repeated

29





m times the result may be written

m
j$ = (1/k) H (kA)

1
X'Y + (kA)

m
6 n

(B-2)
-hu

i=1 u

where A = (X'X + kl)~ . It is interesting to determine the

form of 8 in the limit as m approaches infinity. Since A

and X'X are positive definite matrices their eigenvalues

are positive. Let X. > be an eigenvalue of A and p. >

be an eigenvalue of X'X. Hoerl and Kennard show the rela-

tionship between X. and p. to be

X. = l/(p. + k) (B-3)

Now there exists an orthogonal p x p matrix P with P'P = I

such that

P'AP = diag(X
1

, A
2

, . . ., X ) (B-4)

or since the eigenvalues of kA are kX. and the eigenvalues

of A are (X.)

P'(kA) P = diag(k
1
X
1

, k
2
X
2

, . . ., k X ) (B-5)

Now

P'[ lim(kA)
m
]P = lim P' (kA)

m
P (B-6)

30





The right hand side of (B-6) is the limit of the right hand

side of (B-5). By substituting from equation (B-3) a

typical diagonal element is < [k/(p. + k)]
m

< 1, since

p^^
> for all i = 1, 2, . . ., P. Therefore, each of the

elements of the right hand side of (B-5) approaches zero

as m approaches infinity. Hence

P' lim(kA)
m

P = (B-7)
IIH-co

This can only occur if

lim(kA)
m

= (B-8)
m-*»

Therefore, the last term of equation (B-2) is zero in the

limit. Now define a matrix function S = S(kA) where

S = XI (kA)
1

(B-9)
i=l

DeRusso, Roy, and Close [Ref. 10] show that S(kA) converges

if and only if S(kX.) converges for all kX., the eigenvalues

of kA. Clearly this will occur if and only if

kX I < 1 (B-10)
max

'

v '

31





Substituting equation (B-3)

|k/(Pmin + k)| < 1 (B-ll)

or, after some algebra

p - > -2k and p . > (B-12)mm mm v J

Since Pmin is an eigenvalue of a positive definite matrix,

X'X, then Pmin > and both conditions of (B-13) are met.

Therefore S(kA) does converge. To see what it converges to,

define S 1 = S + I and multiply S' on the left by (I - kA)

(I - kA)S' = (I - kA)(I + kA + (kA)
2

+ . . .) (B-13)

and multiplying the right hand side out

(I - kA)S' = [I + kA + (kA)
2 +...]- [kA + (kA)

2
+ . . .]

= I (B-14)

Then

S' = (I - kA)"
1

(B-15)
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Then

S = [I[(kA)
_1

- I]kA]
_1

- I

= (l/k)A'
1
[(l/k)A"

1
- I]"

1
-I (B-16)

Substituting A = (X'X + kl)" 1

S = [(l/k)X'X + I] [(l/kJX'X]'
1

- I

= kCX'X)"
1

(B-17)

Substituting S into equation (B-2)

lim 8 = (l/k)k(X'X)"
i
X l Y (B-18)

m-><»

Therefore

lim L* = (X'X)'
1
X , Y = 6 (B-19)

m+<»

Thus the iterative procedure, starting with any prior $ ,

converges to the OLS estimator, g.
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APPENDIX C

MISCELLANEOUS MATRIX ALGEBRA AND CALCULUS

Let A, B, and C denote m x n matrices. Denote their

inverses by A , B , and C" , respectively.

A. MATRIX ALGEBRA

First, note that

since

C(A + B)"
1

= (AC
-1

+ BC'
1 )" 1

(C-l)

C(A + B)"
1

= [(A + B)C" 1 ]" 1
(C-2)

Also

since

= (AC
-1

+ BC"
1 )" 1

(C-3)

A"
1

± B"
1

= A"
1^ ± A)B

_1
= B"

1
(B ± A)A" 1

(C-4)

A'
1
(B ± AJB'

1
= (A

-1
B ± IJB

-1

= (A"
1

± B'
1
) (C-5)
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and

B
_1

(B ± A)A
_1

= (I ± B"
1A)A" 1

= (A
-1

± B"
1

) (C-6)

B. MATRIX CALCULUS

Let A(t) , B(t), and C(t) denote m x n matrices whose

elements may be functions of the scalar variable t. Let
t i

A(t) and B(t) denote the derivatives of A(t) and B(t),

respectively, with respect to t.

The following are shown to be true by DeRusso, Roy,

and Close [Ref . 10]

.

and

^ A(t)B(t) = A(t)B(t) + A(t)B(t) (C-7)

d_.A_1 (t) = -A'
1
(t)A(t)A"

1
(t) (C-8)
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