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ABSTRACT

An algorithm for zero-one integer programming

problems with more than one objective functions is

developed, implemented and tested. For a

multiob jective problem the notion of optimality must

be replaced with that of efficiency. A solution is

said to be efficient if (1) it satisfies the

constraints and (2) no other solution satisfying them

scores as well with respect to all objective functions

and better with respect to at least one cf them. In

the presented algorithm, the problem variables are

partitioned into two sets; those whose coefficients in

the objective functions are all of the same sign, and

the remainder. A tree search implicit enumeration

algorithm based on this partition is developed and

computational results are presented.
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I. INTRODUCTION

Before addressing the multiob jective function prcblem,

the tree-search method for one objective function problems

will be reviewed. Much work has been done in this area, and

different algorithms are described in references

[1,2,3,4,5,6,7,8].

The problem generally is formulated as follows:

mm

s. t.

and

Z=cx+cx+...+ ex112 2 n n

a x +a x + ... +a x >b i=1,2,...,m
i1 1 i2 2 in n i

x takes the values or 1 for all j.

J

(1)

By reassigning subscripts and applying suitable

transformations on the variables the problem can always be

transformed to meet the following additional requirements.

a) c >0 for all j. (If some c <0 then we substitute
j j

x =1-y )

.

3 J

b) c >c if l>k
1 k

For a zero-one integer program -chere are 2 candidate

solutions. All these solutions are ordered in a diagram as

shown in Fig. 1 for n=4.





Figure 1.

Each nods in the graph of Fig. 1 represents a candidate

solution. Inside each node there are indices indicating the

solution with x =1 for these indices and x =0 otherwise. An
J J

index i is also associated with every arc. This index

indicates the variable x =1 for the nods where ths arc
i

terminates, and x=0 for the node where the arc starts.

Values of all other variables are the same in both nodes.





Define lsvel i of the graph to be the set of nodes which

have i digits representing them. By convention level is

the level which has only the node 0. It is easily verified

that if there are n variables the highest level will be

level n.

n
Note that level i contains

( ) nodes and that there is a
i

symmetry in the structure of the graph so that the level

n/2, for n even, or the level (n/2±1/2), for n odd, have the

biggest number of nodes and this number decreases

symmetrically as we go from the middle to the lowest and

highest levels.

If there exists a chain from a node Ni to a node Nj,

then Ni is said to be predecessor of node Nj and Nj is said

to be successor cf node Ni. All solutions are partially

ordered by the predecessor-successor relationship.

One solution is said to "dominate" another if the

objective value assscciated with the first is better than

that associated with the second.

Since x takes the value or 1 , the value cf the
J

objective function Z is the sum of these coefficients c for
J

which x is 1; also since c >0 for all j, the nodes in
J j

higher numbered levels represent worse (greater) values for

Z than their predecessors do. Conseguently if a solution is

feasible or if it is dominated by another feasible solution,

there is no need to test its successors since they are

dominated

.

For example consider the node 1 in level 1. Its Z value





is c , and if this solution is feasible it dominates its
i

successors in level 2, namely nodes 12 with Z=c +c , 1 3 with
1 z

Z=c +c and node 14 with Z=c +c , and their successors in13 14
level 3 (nodes 123,124 ind 134) and in level 4 (node 1234).

Another rounding relation appears from the fact that the

objective function is formulated in an increasing order of

the values of the coefficients c . So for example if c <c
J

2 3

solution 2 dominates solution 3 and solution 24 dominates

solution 34 even though these solutions are not related to

each other with a predecessor-successor relationship.

In references [7,8] the interested reader will find

example problems and more details for the one-objective

problem, tree-search type algorithms.

10





II. THE MCLTIOBJECTIVE FUNCTION PROBLEM

When there are more than one objective function, the

notion of optima must be replaced with that cf efficiency.

A solution is said to be "efficient" if:

(1). It satisfies the constraints, and

(2) . No other solution which also satisfies all cf the

constraints scores at least as well with respect tc all

criteria and better with respect to at least one of them.

A single objective implicit enumeration problem will

have a unique optimum criteria value, but a mult icriterion

problem can be expected to have more than one set of

efficient criteria. For example consider a problem with two

"minimizing" objective functions, Z and W. There may

exist twc solutions such that Z X <Z 2 and W i >H 2
; in other

words solution (1) is tetter for the objective function Z

and worse for the objective function W. This means that

both solutions must be considered in the choice of the final

solution. Reference [9] gives an approach to this type of

problem.

This thesis addresses the problem of finding all cf the

efficient solutions, using a tree-search type algorithm.

11





A. DIFFERENCES WITH THE ONE-OBJECTIVE FUNCTION PROBLEM

Formulation of the problem for the multiobjective case

is as follows:

rain z =c x +c x + ... +c x ls 1 # 2 # ...,p
i 11 1 12 2 in n

(2)
s.t. a x +a x + ... +a x >b i=1,2,...,mH 1 i2 2 in n i

and x takes the values or 1 for all j.
J

Clearly the constraints have the same formulation as

before; and the only difference from the single objective

case is that now there is more than one objective function.

Eecause of this difference the problem can net be formulated

in increasing order of magnitute of the coefficients c
ij

To illustrate that consider the following two objective

functions

:

Z=3x +Ux +5x +. . .12 3

W=4x -3x +5x +. . .

X 2 3

It is clear that reordering W in an increasing order of

the coefficients c destroys the ordering in the objective
ij

function Z.

The second tactic the one-objective function algorithms

use to reduce testing, is the formulation of the problem so

that c >0 for all j. Unfortunately no transformation can
j

12





make c >0 for all j and for all i; in the example abcve if
ij

one substitutes x =1-y in order to make c >0 , then there
2 2 22

is an opposite effect in the first objective function,

making c <0 . Only if c <0 for all i is this
12 ij

transf or maticn possible.

So in the general case one cannot have positive coefficients

in all objective functions, and algorithms for the

multiob ject ive problem must address this greater generality.

E. DEALING JilTH NEGATIVE COEFFICIENTS IN SOME OF THE

OEJECTIVE FUNCTIONS

Return now to the graph of Fig. 1 , which has been

constructed for the one-objective case, and study the

relationship between the nodes in the multiob j ective

problem. Consider two nodes connected with an arc as in

Fig. 2.

solutions which are

these two

The

associated with

nodes are:

Z =c +c and
12 12

Z =c +c +c =Z +c
123 1 2 3 12 3

It is clear that the

relationship of these two

solutions depends only on the

sign the coefficient c has.
3

Figure 2

13





If c >0 then the solution Z dominates the solution Z
3 12 123

and if c <0 f Z is dominated by the solution Z
3 12 123

Consider now two objective functions Z and W and suppose

that the coefficient c >0 (for the function Z) , while c <0
13 23

(for the function W) . No dominating relation can be

established between the two pairs of solutions {Z ,W } and
12 12

{Z ,w } since Z <Z and w >W
123 123 12 12

3

12 123

Of course if c was non-negative for all i the solution

(12) would dominate the solution (123) and if the first one

was feasible , there would be no reason to test the second

one.

The above example easily can be extended to the general case

and the following theorem can be established.

THEOREM 1. In a mult iob jective problem, the solution

which is associated with some node "a" in a

level k, dominates the solution of some

successor of node "a", node "aj", in the next

level k+1, if and only if the coefficients c
ij

of the objective functions which are associated

with the index j, are nonnegative for all i.

The proof of this

theorem follows directly

from the above discussion

and will be emitted.

The notation is

illustrated in Fig. 3.

Figure 3

14





The next theorem, a direct result of Theorem 1, provides

useful insight into the problem.

THEOREM 2. In a mult iob jective problem, a solution

associated with a node "a"="ij...", such that,

there exist c <0 for some m, c <0 for seme 1,
mi Ij

and generally there exists some negative

coefficient associated with each one cf the

digits which form the node "a", cannot be

dominated from any other solution in the graph,

so it must be tested.

23^

/

PROOF. The proof will be illustrated with the example

in Fig. 4.

The node "123" can be

formulated either from

node "12" and the digit 3

associated with the arc

which connects the two

nodes, or frcm nodes "13"

or "23" and the digits 2

or 1 correspondingly. If

the digits 1,2 and 3 are

all associated with seme

negative coefficient, it

follows directly from

theorem 1 that no predecessor solution dominates

solution "123", so it must be tested.

Figure k

the

The problem will now be reformulated and a tree-search

algorithm to solve it will be developed.

15





C. FORMULATION OF THE PROBLEM

The following two transformations are required in order

tc formulate the problem in a desired form.

a)If for a given j c <0 for all i, then substitute
ij

x = 1-y to make the coefficients nonnegative.
j J

b) If c <0 for some i and c >0 for seme 1 and c >0
ij lj ik

for all i, formulate the problem so that j<k. In other

words shift the negative coefficients tc the left, by

renaming the variables or reassigning subscripts.

The following notation will be followed in the remainder

of this paper when dealing with a problem with n variables,

p objective functions and m constraints.

SN= { 1 ,2 , . . . , f} is the set of the first f digits (f<n)

for which there exist at least one negative coefficient in

some (but not in all) objective functions associated with

them.

SP= {f + 1 ,f +2 ,. . . ,n} is the set of digits which are

associated with no negative coefficients.

From Theorem 2, it is necessary to test all nodes which

have digits only from the set SN, so when representing the

set of the solutions by a graph, as was dene in the one

objective case, it is reasonable to consider these nodes as

a separate graph. This graph "A" will contain all nodes

which are combinations of the first f digits, so it will

f
have 2 nodes.

16





A graph M B" with nodes which are combinations of the digits

from the set SP can also be constructed.

THEOREM 3. The set of all possible solutions of an

integer zero-cne multiob jective function

problem can be represented as the cartesian

product of the nodes of two graphs A and B.

Graph A is constructed of all combinations of

the digits from the set SN and no dominating

relation exists between its nodes. Graph B is

constructed from all combinations of the digits

from the set SP, and its nodes have the same

predessessor-sucessor relationship as the nodes

of the graph which represents the solutions of

the problem (1 )

.

f
Proof. It is clear that graph A has 2 nodes and that

n-f
graph B has 2 nodes.

n
Their cartesian product is 2 nodes as is expected for a

problem of n variables. No repetition of a node can appears

in these products, since nodes from two sets have no element

n
in common; so the 2 nodes represent the set cf all possible

solutions for the n-variables problem. The fact that no

domination relation exists between the nodes cf the graph A

is a direct result of Theorem 2. On the other hand the

structure of the graph B is analogous cf the structure of

the graphs fcr the one-objective function problems, because

no negative coefficients are associated with the nodes of

this graph.

The cartesian product set, which is the set of all

f
nodes, can be partitioned into 2 subsets, each the product

17





of a node of graph A with all of the nodes cf graph E. The

succession graph over the resulting set contains only arcs

associated with all nonnegative coefficients; normal

dominance tactics may he employed.

This consideration of the problem by two graphs is very

interesting and very helpful because it links the

multiob jective problem with the one objective case.

This is so because, as is apparent from Theorem 2, in any

type of algorithm, all nodes of graph A must he tested; on

the other hand as long as graph B has tne structure cf tne

graph fcr the one-objective function problem, all the

research which has been dene in this area can be used for

the multiob jective problem, keeping in mind that here the

coefficients can not be aranged in increasing order.

These two graphs provide an indication cf the size of

the problem. Of course in the worst case, it might oe

n
necessary tc test all the 2 solutions, but even in the best

case it is "necessary to test all the solutions which are

f
associated with the nodes of the graph A, e.g. 2 solutions.

Normally f is a small number, because the objective

functions have small inclination between each other.

18





III. SMALL SCALE PROBLEMS. AN EXAMPLE.

Consider the following example mul tier iter ion problem,

expressed in the canonical form set out in the preceding

section:

mm

mm

subject to:

A:

E:

C:

and

Z1= x +2x + 2x +3x +4x12 3 4 5

Z2=-2x - x +2x + x +3x12 3 4 5

X+X+X+X+X>112 3 4 5

-x +3x +2x +2x -3x >0
1 2 3 4 S

x - x +2x - x + x >012 3 4 5

( 3 )

x takes the value or 1 for all j

3

A. TOTAL ENUMERATION

First, all possible 2 =32 solutions will be explicitly

enumerated and some statistics will be calculated in order

to provide an indication of the redundancy obtained with the

tree-search algorithm in the required work. For this

purpose Table 1 has been constructed, where first each

constraint is checked for feasibility; if one constrairt is

not satisfied there is no reason to proceed further. If the

solution is feasible, then its value is calculated and

stored in the proper column. In the last column are kept

the current efficient solutions.

19





T

node

1

2
3
4
5
12
13
14
15
23
24
25
34
35
45
123
124
125
134
135
145
234
235
245
345
1234
1235
1245
1345
2345
12345

solution

1 C

1

c
1 1

1 c
1

1 c
1

1

1

1 1

1 1

1 1

1

1

1

c
1 1

1 1

1 1

1

1

1

1

1

1 1

1

1 1

1

1

1 1

1

1

1 1

1 1

1

1

1 1

1 1

1 1

<j

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

totals

n 1
y n
y y n I

y y y i

y y n
y n
y y y i

y y y i

y y y i

y n
y y y i

y y n
1

y y y
y y y
y n

y n

y y y
y y n I

y n
y y y i

y n

y n
y y y

j

y y *
y y n )

y y y 1

y y y
y y y
y y y
y y y
y y

1

1

y y

32 31

|

23
!

|

1

ef f icnt

value sltns

( 2, 2
) ( 2, 2)

i U ( 3,-3)

( 4, 1

[§: 3!

( 5,-r

( 6, 1,

i I: Z\

(9,6!
8,
9, 2

(10, 1

10, 4'

11, 5;

(12, 3)

2a

TABLE 1

20





From Table 1 the following statistics are obtained:

i. Number of examined solutions: 32

ii. Constraints examined for feasibility: 32+31+23=86

iii. Calculated values of the obj. functions: 2*18=36

iv. Compared solutions for efficiency: 24*2=48

Note that in this problem the solution (12) was found

very early and since this solution dominates all other

solutions except the solution (3) , the number of comparisons

for efficiency was reduced to 24. Of course this is net the

typical case. Figure 5 illustrates the bounding

relationships between the solutions, and the reader easily

can verify that generally more comparisons are required in

order to obtain the set of efficient solutions { (3) and

(12) } for the example problem.

1

I

-4

12 45

123

12345

1345

2345

o ; O
Al235 O 345

,23b ; cP
5

^234

' 3b $
25

O
34

14Q 23Q ,

12* >br --{
36

22

Figure 5
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E. THE TREE-SEARCH PRCCEDDRE

Consider now a tree-search type algorithm in order to

reduce the required amount of work. Following the notation

introduced for theorem 3:

SN={ 1,2 } an d SP={ 3,4,5 } .

As theorem 3 states, the set of ail possible solutions

will be the cartesian product of the two graphs A and B of

Fig. 6

.

a ©

®

GRAPH A
GRAPH B

Figure 6

22





As has been seen, all solutions cf graph A must be

tested in combination with the nodes of graph B.

Now a logical sequence to visit the nodes cf the graphs is

as follows:

First a node from the graph A is selected as the rcot of

the graph which is constructed from the combination cf this

node with the nodes of graph B. Then this new graph is

searched, testing these nodes which are net bounded. For

example consider the composite graph formed from graph B and

ncde (2) cf graph A. First solution (2) is tested. If

necessary, its immediate successors (23) , (24) and (25) are

tested; some of their successors may also require testing,

and so on

.

To reduce testing it is necessary to determine whicn

nodes are dominated. The following rules apply:

RULE 1. If a node is feasible there is no need to test

its successors in higher levels.

For example if node (24) is feasible it is unnecessary

to test nodes (234), (235) and (2345).

RULE 2. If a solution is dominated by one of the

current efficient solutions ( i.e. solutions

which up to this point have been found to be

feasible and not dominated ) then there is nc need

to test its feasibility or tc examine its

successors

.

Let us apply now the preceding to solve the example

problem. The procedure is illustrated in Table 2.

23





: node feasibility

i—m

—

I b |

value |

3

4

5

1

13

14

15

2

23

24

25

12

total

I

—

i y y

y n

I n

i

Y y

I

Y y

I

Y n

I

j
y y

i

ITI 6 !

I

current

ef ficnt

sins

excluded

nodes

(2, 2)

(3, 1)

(4, 3) |

(1,-2)
|

(3, 0) |

I

(4,-1) I

(5, 1) I

(2,-1)
I

(<*,"!)
j

(5, 0) |

(6, 2)
|

(3,-3)

(2, 2) I 34,35,345

(3, 0) *

(4,-1) *

I (3,-3)

45

134,135, 1345

145

234,235,2345

245

123,124, 125, 1234
1235,12345, 1245

TABLE

First tc te examined are the combinations of .the node

(0) of graph A with all nodes of graph B, testing for

feasibility until finding the first feasible solution. Node

(0) is net feasible so node (3) is tested (see also Fig. 6).

This node is feasible and according the Rule 1, it is

unnecessary to test its successor nodes (34), (35) and

(345) . From this point on there is a current efficient

solution, sc when node (4) is examined first its value

{3, 1 } is calculated and it is determined if it is bounded

from the current efficient solution. Because it is not, its

feasibility is examined. Since node (4) is not feasible and

is not dominated, neither Rule 1 nor Rule 2 can be applied

24





to exclude its successors from testing. The next node (5) ,

which has a value { 4, 3 }, is dominated by one of the

current efficient values { 2, 2 }, so it is net necessary to

test its feasibility and its successor node 45 can be

ignored.

Proceeding in this manner Table 2 is completed, yielding

the following statistics:

i. Number of examined solutions: 13

ii. Constraints examined for feasibility: 8+7+6=21

iii. Calculated values of the obj. functions: 2*12=24

iv

.

Compared solutions for efficiency: 19*2=38

Compared with the results from Table 1, here only 407c as

many solutions were examined, only 24% of the constraints

for feasibility were calculated, and 67% as many values of

the objective functions were calculated. Note that here,

the solution (12) which dominates most of the ether

solutions, was the last one which has been tested, while

before it was tested very early; nevertheless the number of

comparisons made was significantly . reduced

.

Here are some more rules which improve the efficiency of

the algorithm in small scale problems.

RULE 3. Consider a graph B containing a feasible

node (a) which dominates another node (b) . If

some solution (ma) is feasible, there is nc need

to test the node (mb), since it is dominated from

the node (ma) .

In the example node 3 dominates node 5 . Since

node 13 was found to be feasible it was possible to avoid

testing node 15 .

Single objective implicit enumeration (ref [7]) ccirmcnly

25





takes advantage of the following two observations; since

they deal strictly with the constraints, they are directly

applicable tc multicriterion implicit enumeration as well.

Observasion 1. Consider a node (a) with x =1 if j is
J

in (a) and x =0 otherwise. All the successors of
j

node (a) must have x =1 for j in (a) ; these
j

variables are fixed for the successors of

node (a) ; all others are said to be free

variables as they may take either cf the values

or 1. If (a) is not feasible, it is possible

that there are not enougph free variables left to

satisfy a given constraint.

For example assume that a given constraint is

-x -x +x +x >1 and node (12) is under consideration. In
1 2 3 *

this case even with x =x = 1 the constraint is still not
3 *

satisfied. when this happens, there is no need to test the

successors of node (12).

Observasion 2. When a subset of variables is fixed,

then a given constraint may force some other

variables to be fixed also.

For example let a constraint be 2x -x -x <0 in an12 3

n-variable problem. Consider node 1 . In crder to satisfy

the given constraint, all the successors of node 1 must have

x =1 and x =1. Thus there is no need to test nodes (12) and
2 3

(13), and among their successors , there is need to test

only node (123) and its successors.
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IV. LARGE SCALE PROBLEMS

As lcng as ths problem dees not have too many variables,

one can easily constract the graphs A and E and keep track

of the solutions which must be tested or not. But for 0-1

integer problems the number of possible solutions grows
n

exponentially ( 2 ) with the number of variables (n) . Thus

for n=5 there are 2 =32 candidate solutions, but for n=10

there are more than one thousand and for n=30 more than one

billion.

A. AN AECITIVE ALGORITHM

From the above discussion it follows that for large

problems, it is necessary to use a procedure to generate

those nodes (or solutions) , and only those, which must be

tested.

The structure cf the graphs A and B, and the nature of

the problem, suggests an algorithm of additive and/or

recursive type. In the example illustrated in the previous

section, the procedure followed was to test a node and if

one of the bounding rules held, to exclude from testing a

set of successor nodes.

Here the procedure is slightly changed. A list of nodes to

be checked is maintained, and after testing a given node, if

none of the bounding rules apply, the successors of this

node in the next level only, are added tc the list. The

nodes at highest levels are not added since, if it is

required for them to be tested, they will be generated when
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their immediate predecessors are investigated. A convenient

way to keep track of the nodes which must te generated, in

crder to be protected from duplications, is as follows:

Consider two nodes with the property that the

designation cf the second is the designation of the first

plus an additional index larger than the larger index cf the

first. The second node is said to be a direct lexicographic

successor of the first. The "successors" of a node include

its direct lexicographic successors, their direct

successors, and so on. All solutions are partially ordered

by this relationship. For the graphs which are considered

as the product of a node of graph A with all nodes of graph

B, each node dominates its lexicographic successors. Links

of the direct lexicographic succession in figures 1 and 6

are shown as solid lines; they constitute a tree rooted at

and spanning all the nodes of the graph.

The above technique permits the calculation of the

values of the objective functions and the values cf the

constraints by the following recursive equations:

Zo (i) =Zo (i-1) + C(j)

(
4

)

Zc (i) =Zc (1-1) +A(u)

Where: Zc: denotes the vector of objective functions

i: denotes the level of the graph

C(j): denotes the vector cf coefficients cf the

objective functions which are associated

with x
J

Zc: denotes the vector of constraint values.

A(j) : denotes the vector cf the coefficients of

the constraints which are associated with

x

J
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As an illustration, in the example problem from the

previous section, the above values for the code 23 in level

2 are as follows:

Zo (2) = { 4, 1 }

Zc(2)={ 2, 5, 1 }

Now to calculate these values in the next level 3 for

the nodes generated from node 23, nodes 234 and 235, it is

only necessary to add the proper coefficients in the values

of the previous level. For node 234, C
(
j) =C (4) = (3 , 1) and

MJ)=A(4) = (1, 2, -1) .

Thus :

Zc(3)= Zo(2) +C(4) =
[ (4 + 3) , (1 + 1)} = (7, 2) and

ZC(3)= Zc(2) +A(4) = {(2 + 1) , (5+2) , (1-1)} = (3, 7, )

Analogously for the node 235:

Zo (3)= ( 8, 4) and

Zc |3) = (3, 2, 2)

The following notation is introduced tc help in the

formulation of a step by step algorithm which employs these

technigues.

SNT1, SNT2 = The sets of nodes to be tested in graphs A

and B respectively.

SES = The set of currently efficient solutions.

SOH = Solution on hand.

Now the algorithm can be formulated as fellows:
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STEP 0: (initializations)

.

5ES=empty; SNT2=empty;

SNT1={ d| d is a node from graph A }.

STEP 1:

If SNT1 = empt.y then stop

SNT1=SNT1-ak where ak is some node in SNT1

whose the last digit is k.

SNT2={ ak }

STEP 2: (pick the SOH)

If SNT2=empty go to Step 1

SNT2=SNT2-ak where ak is some ncde in 5NT2

STEP 3: (check for dominance)

i. SOH= ak

ii. Calculate Zo for SOH using ( 4 )

.

iii. If SES is empty go to step 4.

iv. If SOH is bounded by some solution in SES

then SNT2=SNT2-alk for all l=k- 1 ,k-2 ,

.

. . ,f +1 and

gc to Step 2.

STEP 4: (check for feasibility)

.

i. Calculate Zc for SOH using ( 4 )

.

ii. If SOH is not feasible gc to Step 5.

iii. Put Zo for SOH in SES.

iv. Eliminate from SES all these solutions

which are bounded from SOH.

v. SNT2=SNT2-alk for all l=k- 1 ,k-2, . . . , f + 1

.

Go to step 2.

STEP 5: (Generate next level successors)

SNT2=SNT2U {ak j | j = k+1 ,k+2, . . . ,n if k>f

j=f+1,f+2,. . . ,n if k<f}

.

Gc to step 2.
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Table 3 summarizes the application of this algorithm to

the previously used example.

STEP 0: SES=empty; SNT 1= {0 , 1

,

2 , 1 2} ; SNT2=empty

STEP 1: SNT1= {1,2,12} (Node ak is node 0).

SNT2= { }

.

STEP 2: SNT2 is not empty so SNT2=SST2-0=empty

.

STEP 3: i. SOH =

ii. Zo (0) = (0,0)

iii. SES is empty so go to Step 4.

STEP 4: i. Zc (0) = (0,0,0)

ii. Since B=(1,0,0), SOH is not feasible.

Go to Step 5

.

STEP 5: We have k=0 and f=2 so SNT2= (3,4,5}

Go to Step 2

.

STEP 2: SNT2=SNT2- (3) ={4,5} (We examine solution 3).

STEP 3: i. SOH=(3)

ii. Zo (1) =Zo (0) +C (3) = (0 + 2, 0+2) » (2, 2).

iii. SES=empty so go to Step 4.

STEP 4: i. Zc ( 1 ) =Zc (0 ) +A (3 ) = (1 , 2 , 2) .

ii. Since B=(1,0,0), SOH is feasible,

iii. SES={ (2,2) }.

Go to Step 2.

STEP 2: SNT2= { 5 } (we examine now node (4) ) .

STEP 3: i. SOH= (4) .

ii. Zo (1)= (0 + 3,0 + 1) = ( 3,1 ) .

iv. SOH is not bounded.

STEP 4: i. Zc (1) = (0+1 ,0 + 2,0-1) = (1 ,2,-1) .

ii. SOH is not feasible. Go to Step 5.

STEP 5: We have k=4 so SNT2=SNT2U{ 45 }={ 5,45 }.

Go to Step 2.

STEP 2: SNT2= { 45 } (We test now ncde 5).
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STEP 3: i. SOH= (5)

ii. Zo (1) =
( 4, 3 )

iv. SOH is bounded from the solution (2,2) .

SNT2=SNT2- (45) =empty ( ak = 5 and l = k-1 = <4 ).

Go to Step 2

.

STEP 2: SNT2=empty so go to Step 1.

From this point the reader should not have any

difficulty following the way Table 3 has been filled in.

Note that in the construction of Table 3, in order to

calculate the values of Zo and Zc for a node with more than

two digits, two or more values (if they appear in the table)

are added. So for example, to calculate the value of Zc for

the node (23), the corresponding values of Zc for the nodes

(2) and (3) are added. The calculation of the value of Zo

is analogous.

So, for the nodes for which the required information already

appears in the table, the equations (4) can te replaced by:

Zc =Zc +Zc
aj a j

Zo =Zc +Zo
aj a j

ana

(5;

where aj is the node with last digit j and the rest of

the digits in the string a. Note that j can also be

considered as a string of digits and that the digits which

form the node can be partitioned in more than two

substrings, for which the values of the corresponding nodes

must be added to calculate the values for the examined node.
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E. IMPLEMETATION USING THE COMPUTER

In this chapter the structure a computer program must

have to solve the mult iob jective problem will be examined.

In the previous sections the values cf Zc and Zc were

calculated recursively using the equations (4) , and the next

level successors of each node were lexicographicaly

generated by successively concatenating tc the node all

digits which are greater than its last digit. Working with

the computer it is important to keep in storage only that

information which is required to proceed with the following

steps. There are two approaches to search' a graph and to

generate its nodes.

One approach is to search the graph level cy level. First

all the information which corresponds to the level 1 is

stored. From this information for the n nodes, the

n
information for the next level ( ) nodes is produced and

2

kept in memcry in order to generate the information for the

next level, and so on. Another approach is to search the

graph depth first, keeping in storage one only ncde from

each level. When the generated node has its last digit

equal tc n , the procedure backtracks in the previous level

and the graph is searched again all the way down until a

node with a last digit of n is generated. As an example, in

a problem with 5 variables the nodes , 1 , 12, 123 , 1 234 and

12345 are first generated, and then the procedure backtracks

and replaces in level 4 node 1234 with the next successor of

node 123, node 1235. Since again the last digit is equal to

n, the procedure goes back two levels and from node 12

generates ncdes 124 and 1245; from here two levels back
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again and frcm node 12 generates now node 125, and sc on.

In the first approach, the number of nodes which must be

kept in storage changes from level to level and its maximum

n
value is ( ) where l=n/2 for n even or 1= n/2±1/2 for n

odd. In the second approach the number is constant and it

is equal tc n + 1 . labie 4 gives an indication of these

numbers.

n 5 6 7 10 15 20

n
10 20 35 252 6435 184756

n+1 6 7 8 11 16 21

TABLE 4

In the FORTRAN program of the appendix, the second

approach has been used.
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APPENDIX k

The computer program for the implemeta tion of the

algorithm has been written in FORTAN, the most popular

language for the Operation Researchers. The algorithm for

this program is nearly that described in the previous

section; th€ sets are implemented as arrays which are

searched and updated when required. A block structured

language such as PASCAL or PLI, permiting the use of sets

and array comparisons, would allow a clearer, more faithful

representation.

The program consists of the main program and the

subroutine CHILD. In the main program, the solution is

first tested for feasibility. If it is feasible, the next

node is generated from graph A (node 1) , and the value of

the solution is added to the set of efficient solutions

(SES) . If the solution is not feasible, its first

successor node is generated from graph B (i.e. the node

which represents the digit f+1) . This is the initial step.

From now en the recursive equations (4) can be used since

the values of Zo and Zc in level are both zero. After the

successor to node has been generated either in graph A or

in graph B, the subroutine CHILD is called to test this node

and to return to the main program the order to generate

(IGNRT=1) or to not generate (IGNRT=0) its successors

(children). Depending on the value of the parameter IGNRT,

the main program searches, always depth first, the graphs

and generates the next solution to be tested by the

subroutine CHILD. From the main program twe parameters are
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passing to the subroutine. The parameter j corresponds to

the level of the node from which the examined node has been

generated, and the parameter m indicates the last digit in

the examined node.

The subroutine CHILD works as follows. First the values

cf the objective function for the examined node are

calculated. If the SES is empty, the feasibility of the node

is examined and if it is feasible IGNR1=0 is returned.

Otherwise the order to generate the child is given tc the

main program. The subroutine continues to test for

feasibility, until finding the first feasible solution.

This solution is added to SES and from that point the

program tests first if the examined node is dominated by

some node in SES and then, if it is net, it tests its

feasibility. If a solution is not dominated and it is

feasible, then it is added in to SES and the solutions which

are dominated by the new solution are removed from SES. The

variable HSES keeps track cf the number of solutions which

are in SES. The values of the variables for the solutions

in SES are stored in the array X1, so that the program is

able to print both the values of the objective functions and

the solutions to which they correspond.

Using this program the example problem has been solved

and the nodes which have been tested are printed, so that

the reader tc can compare these results with the cnes

obtained from Table 3. The only difference here is that

node 45 has been tested; in Table 3 the fact that node 5 was

bounded, eliminated the need to test the node 45. The

reason is that as long as the graphs are tested depth first,

after node 4 has been tested node 45 is generated first and

then node 5.

It must be noticed that this program can be used to

solve one objective function problems also; the variable NO,
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which corresponds to tha number of the objective functions,

is given the value 1.

The results from 17 problems run on the ISM 360 computer

of N.P.S. have been summarized in Table 5.

10

25

na no

2

3

2

3

4

3

3

3

2

3

4

1

3

2

3

3

2

2

3

4

4

4

4

6

4

5

4

4

4

7

4

4

4

4

3

3

number

of sins

tested

14

21

64

64

58

58

163

346

377

97

2 53

388

175

224

232

331

7U7

12049

number of cpu

efficient time

solutions S€C .

2 0. 24

1
I

0. 33 |

0.66

0.68

5 0.80

3
I

0. 64

2 1. S1

4 3. 67

5 | 3.39

4 1. 14

13 3. 68

1 3.43

3 2. 42

2 2. 23

8 2. "74

2 4. 19

7 2. 53

7 14. 72

TABLE 5
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THIS PROGRAM SO. VES A MULTI OR ONE-CE JECT I VE FUNCTION
INTEGER ZERO-CNE MINIMIZATION PROBLEM, FORMALIZED IN
THE CANONICAL FORM.

CREATOR: AGGELOS C. SIMOPOULGS
MAJOR HELLENIC ARMY
DECEMBER 1977

THE FOLLOWING NOTATICN hAS BEEN USEE

N = NUMBER OF VARIABLES IN THE PRCELEM
NA = NUMBER OF VARIABLES ASSOCIATEC WITH

NEGATIVE COEFFICIENT
NB = N-NA
NO = NUMBER OF OBJECTIVE FUNCTIONS
NC = NUMBER OF CONSTRAINTS

ZQ(N+l,NO) =

AT LEAST ONE

ZC(N+l,NCi =

ARRAY CONTAINING THE VALUES CF
CBJ. FUNCTIONS IN EACH LEVEL
ARRAY CONTAINING THE VALUES CF
CONSTRAINTS IN EACH LEVEL

SES(**»NO) = SET OF AT MOST ** EFFICIENT SLNS
IFLSES = FLAG; INDICATES IF SES IS EMPTY OP NCT
IFLAG1 = FLAG; INCICATES IF SLN
NSES = CURRENT NUMBER CF SLNS IN
>1(**,N) = CONTAINS THE VALUES

** SOLUTIONS IN SES
NX1 = CURRENT NUMBER CF SLNS IN

C IS
SES
CF THE

THE

THE

FEASIBLE OR NOT

VARIAELES FCR

LCA(NA+1) =

LCBlNB+1) =

MA = CURRENT
LA = CURRENT
LB = CURRENT

XI

LAST DIGIT CF A NCCE IN
EACH LEVEL CF THE GRAPH
AS ABOVE FOR GRAPH "B"

GRAPH "A" FCR

LAST DIGIT IN A
LEVEL CF GRAPH
LEVEL CF GRAPH

NCDE
"A"
"B"

C(NC,N) = MATRIX OF COEFFICIENTS
A(NC,NJ = MATRIX OF COEFFICIENTS
E(NC) = THE e VECTCR FOR THE

FCR THE 0. FUNCTIONS
FOR THE CONSTRAINTS
CONSTRAINT EQUATIONS

THE FOLL
FRCELEMS
ANC 10
NUMBER
MUST BE
CQRPESPCN
IF AN ERR
SURE THAT
CF THE
ARRAYS XI
FOR BIGG
MUST BE
ABCVE.

CWIN
UP T
CCNS
F TH
CHA
DING
OR
THE
PRO
AND

ER P
CHA

G PROG
C 25
TRAINT
E VARI
NGED
LY TO
CCURS
INPUT

GRAM,
SES M

ROBLEM
NGED

RAM
VARI

EQ
ABLE
EACH
GIVE
AND
CAT

THEN
LST
S T
ACCO

HAS
ABLES»
CATION
S N,
TIME
SUITA
THE

A IS
THE

BE INC
HE DE
RDING

BEEN
5

S.
FORM

TO NF
BLE C
USER
ACCC

FIRST
REASE
CLARA
TO

£PRAN
CBJEC
CEPE

ATS 1
K Q

LTFUT
HAS

RCING
CIM

C.
TICNS
THE

GEO T
TIVE F
NDING
201 A
AND (

'check
TO TH

ENS ION

ANC
NOTATI

C SOLVE
LNCTIONS
ON THE

NC 12C2
N+DF5.C

ED TO BE
E FORMAT

CF THE

FCRMATS
ON GIVEN
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c

c
c

c
c
c
c
c
c
c
c

c
c
c
c
c

c
c

c
c
c

BLCCK DATA
INTEGER X(25 J

DIMENSION Z0(26,5),ZC(26,10)
CCMMON /S/ X,IFLSES, I FL AG1 , NX1 , NSES, MA, L A , L E , ZC , ZC
DATA X,IFLSES, IFLAG1 , NX1 , NS ES ,MA, L A , LE , ZC , ZC

1 /29*0,3*1, 390*0./
END

INTEGER X( 25) ,Xl( 15 0, 25 ) , LD A ( 6 ) , LDB(26)
DIMENSION Z0(26,5) , ZC126, 10) ,C(5,25),A(10,25),B(10>

t

1 SES(150,5)
CCMMON /S/ X,IFLSES, IFLAG1 ,NX1,NSES,MA,LA,L3,ZC, ZC
CCMMON /SI/ SES,N,N0,NC,C,A,B,X1

READ (5,1000 N,NA,NO,NC
READ (5,1001) ( (C (I, J) ,J=1,N) ,1 = 1, NO)
READ (5,1001) ( ( A( I, J) , J = 1,N ),I = 1,NC)
READ (5,1002) ( B( I ) ,1=1 ,NC)

WBITE(6,110C)
WRITE (6, 1201 J ((C(I,J),J=1,N),I = 1,N0)
WRITE(6,1101)
WRITE (5, 120 2) ( ( A ( I , J )

,

J=l , N ) , B ( I ) , I =1 , NC )

WFITE(6,il05)
C
C
C
c
1200 FORMAT 1/6X, 25(13))
1000 FORMAT (415)
1001 FORMAT (10F8.3)
1002 FCRMAT (10F8.3)
1201 FCRMAT (5F5.0)
1202 FCRMAT (6F5.0)
HOC FCRMAT (//12X,

•

COEFFICIENT MATRIX FOR THE',
1 IX,' OBJECTIVE FUNCTIONS' //)

1101 FCRMAT (//12X, 'COEFFICIENT MATRIX FOR THE',
1 • CONSTRAINTS'//)

1102 FCRMAT ( / // /12X ,
» THE SLNS FOR THE ABOVE PROELEM ARE')

1103 FCRMAT ( / /5X ,
• VALUE :

• , 5F8 .2 )

1104 FCRMAT (/ 1 2X , SOLUTI ON :
' , 25 14

)

1105 FCRMAT (///12X,'THE FCLLOWING SLNS HAVE BEEN TESTED')
1106 FCRMAT (///12X,'NG FEASIBLE SOLLTICN WAS FOLNC')
C
C
C
c
c
C MISCELLANEOUS
C
C
C

IF (NA. EQ.O ) NA = 1
IF (NA.EQ.N) NA=N-1
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c
c
c

2
C
C
C
c
c

c
c
19

c
c
c
c
c
20

??

c
c
c
c
c
120

130
135

138

C
C
139

TEST SOLUTION FIRST

WRITE (6,12C0) (X(I),I=1,N)
DO 2 I=ltNC

IF (e(I ) .GT.O. ) GO TO 20
CONTINUE

OTHERWISE SOLUTION IS FEASIBLE

DO 3 I=l t N
Xl(l,I)=0

CONTINUE
N>1 = 1

DO 4 I=1tN0
SES( 1,1 ) =0.

CONTINUE
NSES=1
IFLSES=1

IFLAG1=1
LA = 1

GENERATE NODES FRCP GRAPH A

DC 30 JA=LA T NA
^B=NA+1
IF ( IFLAG1 .NE.l ) GO TO 120
L3=JA+1

DO 22 II=MB,N
X ( I I ) =0

CONTINUE
X(MA)=1
WRITE(6,12C0) (X(I),I=1,N)
CALL CHILD ( J A T MA , I GNRT

)

IF ( IGNRT.EG.O) GO TO 25

GENERATE NOCES FRCV GRAPH 8

DO 130 J8=LB,N
X(MB)=1
WRITE(6,1200) (X( I ) ,1-1 ,N)
CALL CHILD( JS,M6 , IGNRT)

IF ( IGNRT. EQ .0) GC TO 139
LD8( je)=MB
IF (MB.EQ.N) GO TC 135
MB=MB+1

CCNTIMUE
LB=J3-1
IF I IFLAG1 .EQ.O) LB=L8+1
IF ( LB.EC.JA) GC TO 25
IF ( IFLAG1.EQ.C) LB=LB-1
LLB=LDB(LB)

DO 138 K=LLB,N
X(K )=0

CONTINUE
MB=LLB+1
GO TC 12C

IF (MB.EG.N) GO TO 135
X(MB)=0
LB = JB
MB=MB+1
GO TO 12C
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c
C RETURN TO GRAPH A
C
c
25 IF (IFLAG1.NE.1) GO TO 19

LCA( JA)=MA
IF (MA.EQ. NA) GO TO 35
NA=MA+1

30 CONTINUE
35 LA=JA-1

IF (LA. ECO) GO TO 80
LLA=LDA(LA)

CO 38 KA=LLA,NA
X(KA)=0

38 CONTINUE
MA=LLA+1
GC TO 20

C
C
C PRINT OUT THE SOLUTIONS
C
C
80 IF (NSES.EQ.O) GO TO 95

WPITE(6, 11021
DO 85 I=1,NSES

hRITE(6,1103) ( SES( I, J) ,J=1,N0)
WRITE(6,1104) (Xl( I, IJ) , IJ=1,N)

85 CONTINUE
GC TO 9 8

95 MFITE(6 f 1106)
98 STCP

END
C
C
C
C
C
C THE SUBROUTINE CHILD TESTS A SOLUTION FOR DOMINATION
C AND FEASIBILITY AND RETURNS TO THE MIN PROGRAM THE
C CRCER TO GENERATE OR NOT GENERATE THE SUCCESSCRS OF
C THE CORRESPONDING NODE
C
C
c

SLBROUTINE CHILD (J,M,IGNRT)
INTEGER X(25) ,X1( 150,25)
DIMENSION 20(26,5) , ZC ( 26, 10 ) , C ( 5 , 25 ) , A ( 1 , 25 ) , B ( 10

)

1 SES(15C,5)
COMMON /S/ X,IFLSES, IFLAG1 ,NX1 , NS ES , MA , LA , LB , ZQ, ZC
CCMMON /SI/ SES,N,NO, NC,C,A,B,X1

C
C

DO 202 1=1, NO
Z0( J+lt I )=Z0( J, I)+G ( I,M)

202 CONTINUE
C

IF (IFLSES.EQ.O) GO TO 210
C
C
C TEST IF THE SLIS IS DOMINATED
C
C

DO 205 K=1,NSES
ICNTR=0
DO 204 1=1, NO

IF (ZOCJ+li I) .LT.SES (K,I) ) GO TC 2C5
IF (ZC( J+ltl) .EQ.SES(Ktl) ) I CNTP= ICNTR + 1

204 CONTINUE
IF (ICNTR.EQ.NO) GO TO 205
GO TO 220

2C5 CONTINUE
C
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c
c
c
c
21C

212

215
C

C
C
c
c
c

CHECK FOR FEASIBILITY

DO 212 1=1, NC
ZC( J+l, I )=ZC( J, I )+A(I,M)

CONTINUE
DO 215 1=1, NC

IF (ZC( J + 1,I ) .LT.B( I) ) GC TO 230
CONTINUE

IF (IFLSES.EQ.O) GC TC 315

UPDATE SES AND XI

302
C
C
C
c
C

N>1=NSES+1
DO 302 1=1,

N

XKNXlvI )=X( I)
CONTINUE

ELIMINATE DOMINATED SLNS FROM SES ANC XI

K = l

305

DO 310 1=1 ,NSES
ICNTR=0
DC 305 11=1, NC

IF (SES( I, II) .LT.ZO( J+l, II ) ) GO TC 306
IF (SES( I, II

)

.EQ.ZO( J+1,I I) J ICNTR=ICNTR+1
CONTINUE
IF (ICNTR.EQ.NO) GO TO 306
GO TO 310

C
C OTHERWISE KEEP THE SLNS IN SES AND IN XI
C
206

308

309

310

312

313

315

317

318

C
C
220

C
230

DC 308 IK=1,NC
SES(K,IK)=SESl I ,IK)

CONTINUE
DO 309 IN=1,N

XI (K,IN)=X1( I, IN)
CONTINUE
K = K + 1

CONTINUE
DO 312 IK=1,NC

SES(K, IK)=Z0( J + l, IK)
CONTINUE
DO 313 IN=1,N

X1(K,IN)=X1(NX1,IN)
CONTINUE

NSES=K
GC TO 220

DO 317 IK=1,NC
SES(1, IK)=Z0( J+l, IK)

CONTINUE
NSES=1
IFLSES=1

DO 318 1=1 ,N
Xl( 1,1 )=X( I)

CONTINUE
NX1 = 1

IGNRT=0
PETURN

IGNRT=1
RETURN

ENC
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COEFFITIENT MATRIX FCR THE CEJECTIVE FUNCTIONS

1 . 2 • 2* 3. 4.
-2. -1. 2. 1. 3.

COEFFICIENT MATRIX FCR THE CCNSTRAINTS

1.
1.

1
3

-1

•

•

•

1.
2.
2.

1. 1. 1.
2. -3. 0.
1. 1. 0.

THE FOLLOWING SLNS HAVE BEEN TESTED

C C

c 1

c 1

c 1 1

1

c

1

c 1

1

c

c 1

C c 1

c c 1

THE SLNS FOR THE A6GVE PROBLEM ARE

VALLE: 2.0C 2.CC

SOLUTICN: C 1 C

VALLE: 3.0C -3.00

SOLUTICN: 1 1 C
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