

Calhoun: The NPS Institutional Archive DSpace Repository

Multicriteria integer zero-one programming : a tree-search type algorithm.

Simopoulos, Aggelos Konstantinou

Monterey, California. Naval Postgraduate School
https://hdl.handle.net/10945/18210

MULTICRITERIA INTEGER ZERO-ONE PROGRAMMING: A TREE-SEARCH TYPE ALGORITHM

Aggelos Konstantinou Simopoulos

NAVAL POSTGRADUATE SCHOOL Monterey, California

THESIS

Multicriteria Integer Zero-One Programming:
A Tree-Search Type Algorithm
by

Aggelos Konstantinou Simopoulos

$$
\text { December } 1977
$$

Thesis Advisor:
S. T. Holl

Approved for public release; distribution unlimited.
T182104 T182105

SECURITY CLASSIFICATION OF THIS PAGE (When DeCE Enfered)

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS
REPORT NUMIER ${ }^{\text {a. GOVT ACCESSION NO }}$	3. RECIPIENT'S CATALOG NUMEER
4. TITLE (mid Subttllo) Multicriteria Integer Zero-One Programming: A Tree-Search Type Algorithm	3. TYPE OF REPORT PERIOD COVERED Master's Thesis; December 1977 6. PERFORMING ORG. REPORT NUMEER
7. AUTMOR(0) Aggelos Konstantinou Simopoulos	3. COntract or grant numbento
9. Performing organization name and adoress Naval Postgraduate School Monterey, California 93940	10. PROGRAMELEMENT, PROJECT, TASK
11. CONTROLLING OFFICE NAME ANO ADDRESS Naval Postgraduate School Monterey, California 93940	12. REPORT DATE December 1977 13. NUMAER OF PAGES 46
14. MONITORING AGENCY MAME A AODRES3(If difformit from Controllini Offlee) Naval Postgraduate School Monterey, California 93940	13. SECURITY CLASS. (ot into opport) Unclassified TBe. DECLABSIFICATION/DOWNGRAOING

16. DISTRIBUTION STATEMENT (OI Lht © Roport)

Approved for public release; distribution unlimited.
17. DISTRIBUTION STATEMENT (Of the ebetrect antered in Block 20, If different tran Report)

18. SUPPLEMENTAMY NOTES

19. KEY wORDS (Conilnue on feveree ide If neceseary and ldenifty by block number)

Optimization Computer Program
Multiobject
Efficiency
Algorithm
20. ABSTRACT (Continue an reverse ofde if neceseary and tdentity by mlock manber)

An algorithm for zero-one integer programming problems with more than one objective functions is developed, implemented and tested. For a multiobjective problem the notion of opti-

mality must be replaced with that of efficiency. A solution is said to be efficient if (1) it satisfies the constraints and (2) no other solution satisfying them scores as well with respect to all objective functions and better with respect to at least one of them. In the presented algorithm, the problem variables are partitioned into two sets; those whose coefficients in the objective functions are all of the same sign, and the remainder. A tree search implicit enumeration algorithm based on this partition is developed and computational results are presented.

Approved for public release; distribution unlimited.

MULTICRITERIA INTEGEF ZERO-ONE ERCGRAMMING: A TREE-SEARCH TYPE ALGORITHM
by

Ag gelos Konstantinou Simopoulos
B. \quad mil Major Hellenic Army
M.S., Téchnical University of Arenenés, 19596

Submitted in partial fulfillment of the reguirements for the degree cf

MASTER OF SCIENCE IN COMPUTER SCIENCE AASTER OF SCIENCE IN OPERATIONS GESEARCH
from the

NAVAL POSTGRADUATE SCHOOL December 1977

ABSTRACT

An algorithm for zero-one integer programming problems with more than cne objective functions is developed, iaplemented and tested. For a multiobjective problem the notion of optimality must $b \in$ replaced with that of efficiency. A solution is said to be efficient if (1) it satisfies the constraints and (2) no other solution satisfying them scores as well with respect to all objective functicns and better with respect to at least one cf them. In the presented algorithm, the problem variables are partitioned into two sets; those whose coffficients in the objective functions are all of the same sign, and the remainder. A tree search implicit enumeration algorithm based on this partition is developed and computaticnal results are presented.

TABLE OF CONTENTS

I. INTRODUCTION. 7
II. THE MULTIOBJECTIVE FUNCTION PROBLEM 11
A. DIFFERENCES WITH THE ONE-OBJECTIVE FUNCTION PROBLEM 12
B. DEALING WITH NEGATIVE COEFFICIENTS IN SOME OF THE OBJECTIVE FUNCTIONS. 13
C. FORMULATION OF THE PROBLEM 16
III. SMALL SCALE PROBLEMS. AN EXAMPLE 19
A. TOTAL ENUMERATION. 19
B. THE TREE-SEARCH PROCEDURE 22
IV. LARGE SCALE PROBLEMS. 27
A. AN ADDITIVE ALGORITHM 27
B. IMPLEMENTATION USING THE COMPUTER 34
Appendix A: COMPUTER PROGRAM 36
LIST OF REFERENCES. 45
INITIAL DISTRIBUTION LIST 46
(a)

C 1

$+$

al

$+=$

$2+2$

ACKNOWLEDGEMENT

I would like to express \mathbb{y} appreciaticn to $m y$ thesis

 advisor LCDR Stephen T. Holl for his continued suppcrt and valuable comments and suggestions that were instrumental in improving the readability and contents of this thesis. Also I would like to thank my thesis second reader professor Gordon Brandley for his direction and guidance.
I. INTRODUCTION

Before addressing the multiobjective function prcblea, the tree-search method for one objective function prcblems will be reviewed. Much work has been done in this area, and different algorithms are described in references [1,2,3,4,5,6,7,8].
The problem generally is formulated as follcws:

$$
\begin{array}{ll}
\text { min } & z=c_{1} x_{1}+c_{2} x_{2}+\ldots+c_{n} x_{n} \\
\text { s.t. } & a_{i 1} x_{1}+a_{i 2} x_{2}+\ldots+a_{i n} x_{n} \geq b_{i} i=1,2, \ldots \\
\text { and } & x_{j} \text { takes the values } 0 \text { or } 1 \text { for all j. } \tag{1}
\end{array}
$$

By reassigning subscripts and afflying suitable transformations on the variables the problem can alwaps be transformed to meet the following additional requirements.
a) $c_{j} \geq 0$ for all j. (If some $c_{j}<0$ then we substitute

$$
\left.x_{j}=1-y_{j}\right)
$$

b) $c_{I}>c_{k}$ if $1>k$.

For a zero-one integer program there are 2^{n} candidate sclutions. All these solutions are ordered in a diagram as shown in Fig. 1 for $n=4$.

Figure 1.

Each node in the graph of Fig. 1 represents a candidate solution. Inside each node there are indices indicating the sclution with $x_{j}=1$ for these indices and $x_{j}=0$ otherwise. An index i is also associated with every arc. This index indicates the variable $x_{i}=1$ for the node where the $\exists=c$ terminates, and $x_{i}=0$ for the node where the arc starts. Values of all other variables are the same in both nodes.

1
 in

161
HF_{2}

Define level i of the graph to be the set of nodes which have i digits representing them. By convention level 0 is the level which has only the node 0 . It is easily verified that if there are n variables the highest level will be lavel n.
Note that level i contains $\binom{n}{i}$ nodes and that there is a symmetry in the structure of the graph sc that the level n/2, for n even, or the level $(n / 2 \pm 1 / 2)$, for n odd, have the tiggest number of nodes and this number decreases symmetrically as we go from the middie to the lowest and highest levels.

If there exists a chain from a node $N i$ to a node $N j$, then $N i$ is said to be predecessor of node $N j$ and $N j$ is said to be successor cf node Ni. All solutions are partially crdered by the predecessor-successor relaticnship.

One solution is said to "dominate" another if the objective value assscciated with the first is better than that associated with the second.
since x_{j} takes the value 0 or 1 , the value cf the cbjective furction Z is the sum of these ccefficients c for which x_{j} is 1 ; also since $c_{j} \geq 0$ for all j, the nodes in higher numbered levels represent worse (greater) values for Z than their predecesscrs do. Consequently if a solution is feasible or if it is acminated ky another feasible scluticn, there is nc need to test its successors since they are dominated.

For exarple consider the node 1 in level 1 . Its z value

is C_{1}, and if this solution is feasible it dominates its successors in level 2 , namely nodes 12 with $2=c_{1}+c_{2}$, 13 with $Z=C_{1}+C_{3}$ and node 14 with $Z=C_{1}+C_{4}$, and their successors in level 3 (nodes 123, 124 and 134) and in level 4 (node 1234).

Another bounding relation appears from the fact that the objective function is formulated in an increasing order of the values of the coefficients c_{j}. So for example if $c_{2}<c_{3}$ solution 2 dominates solution 3 and solution 24 dominates solution 34 even though these solutions are not related to each other with a fredecessor-successor relationship.

In references [7,8] the interested reader will find example problems and more details for the one-objective problem, tree-search type algorithms.

II. THE MELTIOBJECTIVE FUNCTION EROBLEM

When there are more than one objectivefunction, the notion of oftima must be replaced with that cf efficiercy.

A soluticn is said to be "efficient" if:
(1). It satisfies the constraints, and
(2). No other solution which also satisfies all cf the constraints scores at least as well with respect tc all criteria and better with respect to at least one of them.

A single objective implicit enumeraticn problem will have a unique optimum criteria value, but a multicriterion problem can be expected to have more than one set of efficient criteria. For example consider a froblem with two "minimizing" objective functions, Z and w. There may exist twc solutions such that $Z^{1<Z^{2}}$ and $W^{1>}>W^{2}$; in other words soluticn (1) is better for the objective functicn Z and worse for the cbjective function w. This means that both soluticns must be considered in the chcice of the final solution. Reference [9] gives an approach to this type of problem.

This thesis addresses the problem of finding all cf the efficient solutions, using a treє-search type algorithr.
里
略

A.

Formulation of the problem for the multiobjective case is as follows:

$$
\begin{array}{ll}
\min & z_{i}= \\
c_{i 1} x_{1}+c_{i 2} x_{2}+\ldots+c_{i n} x_{n} \quad i=1,2, \ldots, p \tag{2}\\
\text { s.t. } & a_{i 1} x_{1}+a_{i 2} x_{2}+\ldots+a_{i n} x_{n} \geq b_{i} \quad i=1,2, \ldots, m \\
\text { and } & x_{j} \text { takes the values } 0 \text { or } 1 \text { for all j. }
\end{array}
$$

Clearly the constraints have the same formulaticn as before; and the only difference from the single objective case is that now there is more than one objective function. Because of this difference the problem can nct be formulated in increasing order of magnitute of the ccefficients $c_{i j}$. To illustrate that consider the following two objective functicns:

$$
\begin{aligned}
& Z=3 x_{1}+4 x_{2}+5 x_{3}+\ldots \\
& W=4 x_{1}-3 x_{2}+5 x_{3}+\ldots
\end{aligned}
$$

It is clear that reordering W in an increasing order of the coefficients $c_{i j}$ destroys the ordering in the objective function Z.

The second tactic the one-objective function algorithas use to reduce testing, is the formulation cf the prcblem so that $c_{j} \geq 0$ for all j. Unfortunately no transformation can
make $c_{i j} \geq 0$ for all j and for all i; in the example abcve if one substitutes $x_{2}=1-y_{2}$ in order to make $c_{22}>0$, then there is an opposite effect in the first objective function, making $c_{12}<0$. Only if $c_{i j} \leq 0$ for all $i \quad i s$ this transformaticn possible.

So in the general case one cannot have positive coefficients in all objective funcrions, and algorithms for the multiobjective problem must address this greater generality.
E. DEALING AITH NEGATIVE COEFFICIENTS IN SOME OF THE oejective functions

Return now to the graph of Fig. 1, which has been constructed for the one-objective case, and study the relationship between the nodes in the multiobjective problem. Consider two nodes connected with an arc as in Fig. 2.
The scluticns which are associated with these two nodes are:

$$
z_{12}=c_{1}+c_{2} \text { and }
$$

$$
z_{123}=c_{1}+c_{2}+c_{3}=z_{12}+c_{3}
$$

It is clear that the
relationship of these two

solutions depends only on the sign the coefficient C_{3} has.

Figure 2

If $c_{3}>0$ then the solution Z_{12} dominates the soluticn Z_{123} and if $C_{3}<0, Z_{12}$ is dominated by the solution $Z_{123^{\circ}}$ Consider now two objective functions Z and W and supfose that the coefficient $c_{13}>0$ (for the function Z), while $c_{23}<0$ (for the function W). No dominating relation can be establisbed ketween the two pairs of soluticns $\left\{Z_{12}, W_{12}\right\}$ and $\left\{Z_{123}, W_{123}\right\}$ since $Z_{12}<Z_{123}$ and $W_{12}>W_{123}$. of course if $c_{i 3}$ was non-negative for all ithe solution (12) would dominate the solution (123) and if the first one was feasible , there would be no reason tc test the second cne.
The above example easily can be extended to the general case and the following theorem can be estabiished.

THEOREM 1. In a multiobjective problem, the solution which is associated with some node "a" in a level k, dominates the sclution of some successor of node "a", node "aj", in the next level $k+1$, if and only if the ccefficients $c_{i j}$ of the objective functions which are associated with the index j, are nonnegative for alli.

The froof of this theorem follows directly from the above discussion and will be cmitted.
The notation is illustrated in Fig. 3.

Figure 3

The next theorem, a direct result of Thecrem 1, prcvides useful insight into the problem.

THEOREM 2. In a multiobjective problem, a solution associated with a node "a"="ij...", such that, there exist $c_{m i}<0$ for some $m, c_{1 j}<0$ for scme 1 , and generally there exists some $n \in g a t i v e$ coefficient associated with each one cf the digits which form the node "a", cannct be dominated from any other soluticn in the oraph, so it must be tested.

PROOF. The proof will be illustrated with the example in Fig. 4.
The node "123" can be formulated $\in i t h e r ~ f r o m ~$ node " 12 " and the digit 3 associated with the arc which connects the two nodes, or frcm nodes "13" cr "23" and the digits 2 cr 1 correspondingly. If the digits 1,2 and 3 are all associated with scme negative ccefficient, it

Figure 4 follows directly from
theorem 1 that no predecessor solution dominates the solution "123", so it must betested.

The problem will now be reformulated and a tree-search algorithq to solve it will $b \in$ developed.
C. FORMULATION OF THE PROBLEM

The following two transformations are required in crder tc formulate the problem in a desired form.
a)If for a given $j c_{i j} \leq 0$ for all i, then substitute $x_{j}=1-Y_{j}$ to make the cosfficients nonnegative.
b) If $c_{i j}<0$ for some i and $c_{1 j}>0$ for some 1 and $c_{i k} \geq 0$ for all i, fcrmulate the problem so that $j<k$. In other words shift the negative coefficients tc the left, by renaming the variables or reassigning subscripts.

The follcwing notation will be followed in the remainder of this paper when dealing with a problem with n variables, F objective functions and \mathbb{l} constraints.

$$
S N=\{1,2, \ldots, f\} \text { is the } s \in t \text { of the first } f \text { digits (f<n) }
$$ for which there exist at least one negative coefficient in some (but not in all) cbjective functions associated with them.

$S P=\{\hat{f}+1, f+2, \ldots, n\}$ is the set of digits whict are associated with no negative ccefficients.

From Thecrem 2, it is necessary to test all nodes which have digits only from the set $S N$, so when representirg the set of the sclutions by a graph, as was done in the one oojective case, it is reasonable to consider these nodes as a separate graph. This granh "Ã" mill contain all nodes which are combinations of the first f digits, so it will have 2^{f} nodes.

A graph "B" with nodes which are combinaticns of the digits from the set $S P$ can also be constructed.

THEOREM 3. The set of all possible solutions of an integer zero-cne multiobjective function problem can $b \in$ represented as the cartesian product of the nodes of two graphs A and B. Graph A is constructed of all combinaticns of the digits from the set $S N$ and no dominating relation exists between its ncdes. Graph B is constructed from all cominations of the digits from the set $S P$, and its nodes have the same predessessor-sucessor relationship as the nodes of the graph which represents the soluticns of the probím (1).

Proof. It is clear that graph A has 2^{f} nodes and that n-f graph B has $2^{\mathrm{n-f}}$ nodes.

Their cartesian product is 2^{n} nodes as is expected fcr a problem cf n variables. No repetition of a node can appears in these products, since nodes from two sets have no element in common; so the 2^{n} ncdes represent the set cf all possible solutions for the n-variables problem. The fact that no
 is a direct resuit of Theorem 2. On the other hand the structure of the graph B is analogous of the structure of the graphs fcr the one-objective function problems, because no negative coefficients are associated with the nodes of this grafh.

The cartesian product set, which is the set of all nodes, can be partiticned into 2^{f} subsets, each the product

of a node of graph A with all of the nodes cf graph B. The succession graph over the resulting set contains only arcs associated with all nonnegative coefficients; normal dcminance tactics may te employed.

This consideration of the problem by two graphs is very interesting and very helpful because it links the multiobjective problen with the cne objective case. This is so because, as is apparent from Theorem 2, in any type of algorithm, all nodes of graph A must te testeci on the other hand as long as graph B has tine structure cf the graph for the one-objective function problem, all the research which has been done in this area can be used for the multiobjective problem, keeping in mind that here the coefficients can not bearanged in increasing order.

These two graphs provide an indication of the size of the protlem. Of course in the worst case, it might be necessary to test all the 2^{n} solutions, but even in the rest case it is necessary to test all the sclutions which are associated with the nodes of the graph A, e.g. 2^{f} soluticns. Normally f is a small number, because the objective functions have small inclination between each other.

III. SMALL SCALE PROBLEMS. AN EXAMPLE.

Consider the following example multicriterion frcblem, expressed in the canonical form set out in the preceding section:

$$
\begin{array}{ll}
\text { min } & z 1=x_{1}+2 x_{2}+2 x_{3}+3 x_{4}+4 x_{5} \\
\text { min } & z 2=-2 x_{1}-x_{2}+2 x_{3}+x_{4}+3 x_{5}
\end{array}
$$

subject to:
A:

$$
x_{1}+x_{2}+x_{3}+x_{4}+x_{5} \geq 1
$$

E:

$$
-x_{1}+3 x_{2}+2 x_{3}+2 x_{4}-3 x_{5} \geq 0
$$

C:

$$
x_{1}-x_{2}+2 x_{3}-x_{4}+x_{5} \geq 0
$$

and

$$
x_{j} \text { takes the value } 0 \text { or } 1 \text { for all } j
$$

A. TOTAL ZNUMERATION

First, all possibie $2^{5}=32$ solutions will be explicitly enumerated and some statistics will be calculated in order to provide an indicaticn of the redundancy crtained with the tree-search algorithm in the required work. For this purpose Table 1 has been constructed, where first each constraint is checked for feasibility; ir ons constrairt is not satisfied there is no reason to proceed further. If the solution is feasible, then its value is calculated and stored in the proper column. In the last column $a r \in k \in p t$ the current efficient solutions.

node	solution	feasibility			value	efficnt sltns
		a	b	c		
011234512121314152324253435451231241251341351452342352453451234123512451345234512345	$\begin{array}{llllll}0 & 0 & 0 & 0 & 0 \\ 1 & C & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & C & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 \\ 0 & C & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 & 1 \\ 1 & 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1\end{array}$	n				
		y	\%			
		Y	$\frac{\mathrm{Y}}{}$	n	$(2,2)$	(2, 2)
		$\frac{\mathrm{Y}}{7}$	Y			(2, 2)
		$\frac{\mathrm{Y}}{\mathrm{Y}}$	$\frac{\mathrm{y}}{7}$	$\frac{\mathrm{y}}{7}$	$\left\{\begin{array}{l}3,-3 \\ 3\end{array}\right.$	$(3,-3)$
		Y ${ }_{\text {Y }}$	Y	$\frac{\mathrm{Y}}{\mathrm{Y}}$		
		$\frac{9}{7}$	Y	y	(4, 1)	
			Y			
		Y	年	Y	(5,3)	
		Y	\square			
			$\frac{\mathrm{y}}{\mathrm{Y}}$	Y	$(5,-1)$	
				y	$(6,1)$	
		${ }_{\text {Y }}$	n	1		
		Y	y		7. 23	
				${ }^{Y}$	8. 4)	
		$\frac{\mathrm{Y}}{\mathrm{Y}}$	$\frac{\mathrm{y}}{\mathrm{y}}$	$\frac{\mathrm{y}}{}$	$\left(\begin{array}{l}9 \\ 8: 6 \\ 0\end{array}\right)$	
		$\frac{Y}{7}$	$\stackrel{Y}{7}$	$\frac{\mathrm{Y}}{\mathrm{y}}$	10: 23	
					$\left(\begin{array}{lll}10, \\ 11 \\ 12 & 5 \\ \\ \end{array}\right.$	
					12, 3)	
totals		32	31	23		24

TABLE 1

From Table 1 the fcllowing statistics are obtained:
i. Number of examined solutions:

32
ii. Constraints examined for feasibility: $32+31+23=86$
iii. Calculated values of the obj. functicns: $2 * 18=36$
iv. Ccmpared solutions for efficiency: $24 * 2=48$

Note that in this problem the soluticn (12) was found very early and since this solution dominates all other sclutions except the sciution (3), the number cf comparisons for efficiency was reduced to 24. Of course this is nct the typical case. Figure 5 illustrates the bcunding relationshifs between the solutions, and the reader easily can verify that generally wore compariscns are required in order to obtain the set of efficient solutions ((3) and (12) \} for the example problem.

Figure 5
E. THE TREE-SEARCH PROCEDURE

Consider now a tree-search type algorithm in order to reduce the required amount of work. Fcliowing the notation introduced for theorem 3:

$$
S N=\{1,2\}
$$

and $S P=\{3,4,5\}$.

As theorem 3 states, the set of all fusible solutions will be the cartesian product of the two graphs a and B of Fig. 6.

GRAPH A
$G R A P H B$

Figure 6

As has been seen, all solutions cf graph A must be tested in combination with the nodes of graph B. Now a logical sequence to visit the nodes cf the graphs is as follows:

First a node from the graph A is selected as the rcot of the graph which is constructed from the combination of this node with the nodes of grafh B. Then this new graph is searched, testing these nodes which are not bounded. For example consider the composite graph formed from graph B and ncde (2) cf graph A. First solution (2) is tested. If necessary, its immediate successors (23), (24) and (25) are tested; some of their successors may also require testing, and so on.

To reduce testing it is necessary to determine whicn nodes are douinated. The following rules affly:

RULE 1. If a node is feasible there is no need to test its successors in higher levels.

For example if node (24) is feasibie it is unnecessary to test nodes (234), (235) and (2345).

RULE 2. If a solution is dominated ky one of the current efficient solutions (i.e. solutions which up to this point have beer found to be feasible and not dominated) then there is nc need to test its feasibility or tc examine its successors.

Let u afply now the preceding to solve the example frotlem. The procedure is illustrated in Tarle 2.

TABLE 2

First to be examined are the combinations of .the node (0) of graph A with all nodes of graph B, testing for feasibility until finding the first feasible solution. Node (0) is not feasible so node (3) is tested ($5 \in \in$ also Fig. 6). This node is feasible and according the Rule 1, it is unnecessary to test its successor nodes (34), (35) and (345). From this point on there is a current efficient solution, sc when node (4) is examined first its value $\{3,1$ \} is calculated and it is determined if it is bcunded from the current efficient solution. Because it is not, its feasibility is examined. Since node (4) is not feasible and is not dominated, neither Rule 1 nor Rule 2 can be afplied
to exclude its successors from testing. The next node (5), which has a value $\{4,3\}$, is dominated by one cf the current efficient values $\{2,2\}$, so it is not necessary to test its feasibility and its successor node 45 can be ignored.

Procéding in this manner Table 2 is completed, yielding the follcwing statistics:
i. Number of examined solutions: 13
ii. Constraints examined for feasibility: $\quad 8+7+6=21$
iii. Calculated values of the obj. functicns: $2 * 12=24$
iv. Comparea solutions for efficiency: $\quad 19 * 2=38$

Compared with the results from Table 1 , here only 40% as many solutions were examined, only 24% of the constraints for feasibility were calculated, and 87% as many values of the objective functions were calculated. Ncte that here, the solution (12) which dominates most of the cther solutions, was the last one which has been tested, while befcre it was tested very early; nevertheless the number of ccmparisons made was significantly.reduced.

Here are some more rules which improve the efficiercy of the algorithm in small scale problems.

RULE 3. Consider a graph B containing a feasibie node (a) which dominates another node (b). If some soluticn (ma) is feasible, there is nc need to test the node (mb), since it is dominated from the node (ma).

In the example node 3 dcminates node 5 . Since node 13 was found to be feasible it was possible to avoid testing node 15 .
Single cbjective implicit enumeration (IEf [7]) ccmmonly
takes advantage of the following two observations; since they deal strictly with the constraints, they are directly applicable tc multicriterion implicit enumeration as well.

Observasion 1. Consider a node (a) with $x_{j}=1$ if j is in (a) and $x_{j}=0$ otherwise. All the successors of node (a) must have $x_{j}=1$ for j in (a) ; these variables are fixed for the successors of node (a) ; all others are said to be free variables as they may take either cf the values 0 or 1. If (a) is not feasible, it is possible that there are not enougph free variables left to satisfy a given constraint.

For example assume that a given constraint is $-x_{1}-x_{2}+x_{3}+x_{4} \geq 1$ and node (12) is under consideration. In this case even with $\quad x_{3}=x_{4}=1$ the constraint is still not satisfied. When this happens, there is no need to test the successors of node (12).

Observasion 2. When a subset of variables is fixed, then a given constraint may force some other variables to be fixed also.

For example let a constraint be $2 x_{1}-x_{2}-x_{3} \leq 0$ in an n-variable froblem. Consider node 1. In crder to satisfy the given constraint, all the successors of node 1 must have $x_{2}=1$ and $x_{3}=1$. Thus there is no need to test nodes (12) and (13), and among their successors, there is need to test cnly node (123) and its successors.

IV. LARGE SCALE PROBLEMS

As long as the problem does not have too many variables, one can easily constract the graphs a and E and keep track of the soluticns which must be tested or not. But for 0-1 integer froblems the number of possible solutions grows exponentially (2^{n}) with the number of variables (n). Thus for $n=5$ there are $2=32$ candidate soluticns, but for $n=10$ there are more than one thousand and for $n=30$ more than one billion.
A. AN ACDITIVE ALGORITHM

From the above discussion it follows that for large problems, it is necessary to use a procedure to gensrate those nodes (or soluticns), and only those, which must be $t \in s t \in d$.

The structure of the graphs A and B, and the nature of the froblem, suggests an algorithm of additive andor recursive type. In the example illustrated in the previous section, the procedura followed was to test a node and if one of the bounding rules held, to exclude from testing a set of successor nodes.
Here the procedure is slightly changed. A list of nodes to be checked is maintained, and after testing a given node, if none of the rounding rules apply, the successors of this node in the next level orly, are added tc the list. The nodes at highest levels are not added since, if it is required for them to ke tested, they will be generated when
their immediate predecessors are investigated. A convenient way to keep track of the nodes which must $k \in$ generated, in crder to be frotected from duplications, is as follows:

Consider two nodes with the property that the designation cf the second is the designation of the first plus an additional index larger than the larger index cf the first. The second node is said to be a direct lexicographic successor of the first. The "successors" of a node include its direct lexicographic successors, their direct successors, and so on. All solutions are partially ordered by this relationship. For the graphs which are considered as the froduct of a node of graph a with all nodes of graph B, each node dominates its lexicographic successors. Links of the direct lexicographic succession in figures 1 and 6 are shown as solid lines; they constitute a tree rooted at 0 and spanning all the ncies of the graph.

The above technique permits the calculation of the values of the objective functions and the values cf the constraints by the following recursive equaticns:

$$
\begin{align*}
& Z O(i)=Z \circ(i-1)+C(j) \\
& Z C(i)=Z C(i-1)+A(j) \tag{4}
\end{align*}
$$

Where: Zc: denotes the vector of objective functicns
i: denotes the level of the graph
 objective functions which are associated with X_{j}.
Zc: denotes the vector of constraint values.
A(j): denotes the vector of the coefficier.ts of the constraints which are associated with x_{j}.
2

As an illustration, in the example problem from the previous section, the above values for the node 23 in level 2 are as follows:

$$
\begin{aligned}
& \mathrm{Z} \circ(2)=\{4,1\} \\
& \mathrm{Z} \subset(2)=\{2,5,1\}
\end{aligned}
$$

Now to calculate these values in the $n \in x t$ level 3 for the nodes generated from node 23 , nodes 234 and 235 , it is cnly necessary to add the proper coefficients in the values of the previcus level. For node $234, \quad C(j)=C(4)=(3,1)$ and $A(j)=A(4)=(1,2,-1)$.
Thus:

$$
\begin{aligned}
& \operatorname{Zc}(3)=\operatorname{Zo}(2)+C(4)=\{(4+3), \quad(1+1)\}=(7,2) \quad \text { and } \\
& \operatorname{Zc}(3)=\operatorname{Zc}(2)+A(4)=\{(2+1),(5+2),(1-1)\}=(3,7,0)
\end{aligned}
$$

Analogously for the node 235:

$$
\begin{aligned}
& Z \circ(3)=(8,4) \quad \text { and } \\
& Z \subset(3)=(3,2,2)
\end{aligned}
$$

The following notation is introduced tc help in the formulaticn cf a step by step algorithm which employs these techniques.

```
SNT1, SNI2 = The sets of nodes to ke tested in grafhs A
        and B respectively.
SES = The set of currently efficiant solutions.
SOH = Solution on hand.
Now the algorithm can be formulated as fcllows:
```

STEP 0: (initializations).
SES=empty; SNT2=empty;
SNTY=\{ dild is a node from graph A \}.

STEP 1:
If $S N T=e m p t y$ then stop
SNT1=SNT1-ak where ak is some node in SNT1 whose the last digit is k. SNT2=\{ak \}

STEP 2: (pick the SOH)
If SNT2=empty go to Step 1
SNT2=SNT2-ak where ak is some ncde in SNT2

STEP 3: (check for dominance)
i. $\mathrm{SOH}=\mathrm{ak}$
ii. Calculate Zo for SOH using (4).
iii. If $S E S$ is empty go to step 4.
iv. If $S O H$ is bounded by some sclution in SES
then SNT2=SNT 2-alk for all $1=k-1, k-2, \ldots, f+1$ and gc to Step 2.

STEP 4:
(check for feasibility).
i. Calculate Zc for SOH using (4).
ii. If SOH is not feasible gc tc Step 5.
iii. Put $Z 0$ for $S O H$ in SES.
iv. Eliminate from SES all these scluticns which are kcunded frcm SOH.
∇. $\operatorname{SNT2}=S N T 2-a l k$ for all $l=k-1, k-2, \ldots, f+1$. Go to step 2.

STEP 5: (Generate next level successcrs) SNT $2=S N T 2 U\{a k j 1 j=k+1, k+2 \ldots, \ldots$ if $k>f$ $j=f+1, f+2, \ldots, n$ if $k \leq f\}$.
Gc to step 2.

7her
$+$
=

$+$

Table 3 summarizes the application of this algorithm to the previcusly used example.

```
STEP 0: SES=ampty; SNT1={0,1,2,12}; SNI2=empty
STEP 1: SNTT={1,2,12} (Node ak is node 0).
        SNT2={ 0 } .
STEP 2: SNT2 is not empty so SNT2=SNT2-0=empty.
STEP 3: i. SOH=0
    ii. ZO(0)=(0,0)
    iii. SES is empty so go to Step 4.
STEP 4: i. Zc(0) = (0,0,0)
    ii. Since B=(1,0,0), SOH is not feasible.
        Go to Step 5.
STEP 5: We have k=0 and f=2 so SNT2={3,4,5}
        Go to Step 2.
STEP 2: SNT2=SNT2-(3)={4,5} (We examine solution 3).
STEP 3: i. SOH=(3)
    ii. ZO(1) = ZO (0) +C (3)=(0+2, 0+2)=(2,2).
    iii. SES=empty so go to step 4.
STEP 4: i. ZC (1) = ZC (0) +A ( 3) = (1, 2, 2).
    ii. Since B=(1,0,0), SOH is feasible.
    iii. SES={ (2,2) }.
        Go to Step 2.
STEP 2: SNT2={ 5 } (we examine now node (4) ).
STEP 3: i. SOH=(4).
    ii. ZO(1)=(0+3,0+1)=( 3,1 ).
    iv. SOH is not bounded.
STEP 4: i. ZC (1) = (0+1,0+2,0-1)=(1,2,-1).
    ii. SOH is not feasible. Go to Step 5.
STEP 5: We have k=4 so SNT2=SNT2U{ 45 }={ 5,45}.
        Go to Step 2.
STEP 2: SNT2={45 } (We test now ncde 5).
```

STEP 3: i. SOH=(5)
ii. $\mathrm{Zo}(1)=(4,3)$
iv. SOH is bounded from the solution $(2,2)$. SNT2=SNT2-(45) =empty (ak=5 and $1=k-1=4)$. Go to Step 2.

STRP 2: SNT2=empty so go to Step 1.

From this point the reader should not have any difficulty fcllowing the way Table 3 has $b \in \in$ filled in. Note that in the constructicn of Table 3 , in order to caiculate the values of $Z o$ and $Z c$ for a node with more than two digits, two cr more values (if they appear in the table) are added. So for example, to calculate the value of $z c$ for the node (23), the corresponding values of $2 c$ for the nodes (2) and (3) are added. The calculation of the value cf 20 is analogous.
So, for the nodes for which the required information already appears in the table, the equations (4) can te replaced by:

$$
\begin{align*}
& Z c_{a j}=z c_{a}+Z c_{j} \quad \text { an } \grave{c} \\
& z o_{a j}=z c_{a}+Z o_{j} \tag{5}
\end{align*}
$$

where aj is the node with last digit jand the rest of the digits in the string a. Note that j can also be considered as a string of digits and that the digits which form the node can be partitioned in more than two substrings, for which the values of the corresponding nodes must be added to calculate the values for the examined ncde.
E. Implemetation using the computer

In this chafter the structure a computer program must have to solve the multiobjective problem will be examined.

In the previous sections the values cf $Z c$ and $Z c$ were calculated recursively using the equations (4), and the next level successors of each node were lexicographicaly generated by successively concatenating tc the node all digits which are greater than its last digit. Working with the computer it is important to keep in stcrage only that information which is required to proceed with the following steps. There are two approaches to searcha graph and to gen frate its nodes.
One approach is to search the graph level ry level. First all the information which corresponds to the level 1 is stored. From this information for the n nodes, the informaticn for the next level (${ }_{2}^{n}$) nodes is produced and
kept in memcry in order to generate the infcrmation for the next level, and so on. Another approach is to search the graph depth first, keeping in storage cne only ncde from each level. When the generated node has its last digit equal tc n, the procedure backtracks in the previous level and the graph is searched again all the way down until a node with a last digit of n is generated. As an example, in a problem with 5 variables the nodes $0,1,12,123,1234$ and 12345 are first generated, and then the procedure backtracks and replaces in level 4 node 1234 with the $n \in x t$ successor of node 123, node 1235. Since again the last digit is equal to n, the procedure goes rack two levels and from node 12 generates ncdes 124 and 1245; from here two levels back
again and from node 12 generates now node 125, and so on. In the first approach, the number of nods which must be kept in storage changes from level to level and its maximum value is $\binom{n}{1}$ where $l=n / 2$ for n even or $l=n / 2 \pm 1 / 2$ for n odd. In the second approach the number is constant ard it is equal tc $n+1$. Table 4 gives an indication of these numbers.

n	5	6	7	10	15	20
$\binom{n}{1}$	10	20	35	252	6435	184756
$n+1$	6	7	8	11	16	21

TABLE 4

In the FORTRAN program of the appendix, the second approach has been used.

APPENDIX A

The computer program for the implewetation of the algorithm has been written in FORTAN, the most pcpular language for the operation Researchers. The algorithm for this program is nearly that described ir the previous section; the sets are implemented as arrays which are searched and updated when required. A block structured language such as PASCAL or PLI, permiting the use of sets and array comparisons, would allow a clearer, more faithful representation.

The frogram consists of the main frcgram anc the subroutine CHILD. In the main program, the solution 0 is first tested for feasibility. If it is feasible, the next node is generated from graph A (node 1), and the value of the solution 0 is added to the set of efficient sclutions (SES). If the solution 0 is not feasible, itsfirst successor node is generated from graph B (i.e. the node which refresents the digit f+1). This is the initial step. From now on the recursive Equations (4) can be used since the values of $Z 0$ and $Z c$ in level 0 are both zero. After the successor to node 0 has been gen \in rated either in graph a or in graph B, the subroutine $C H I L D$ is called to test this node and to return to the main program the order to generate (IGNRT=1) or tc not generate (IGNRT=0) its successors (children). Depending on the value of the farameter IGNRT, the main frcgram searches, always depth first, the graphs and generates the $n \in x t$ solution to $b \in$ tested by the subroutine chIID. From the main program twc parameters are
passing to the subroutine. The parameter j corresponds to the level of the node from which the examined node has been generated, and the parameter m indicates the last digit in the examined node.

The subrcutine CHILD works as follows. First the values cf the objective function for the examined node are calculatєd. If the SES is empty, the feasibility of the node is examined and if it is feasible IGNRI=0 is returned. Otherwise the order to generate the child is given tc the main frogram. The subroutine continues to test for feasibility, until finding the first feasible solution. This soluticn is added to $S E S$ and frcm that point the program tests first if the examined node is dominated by some node in SES and then, if it is not, it tests its feasibility. If a solution is not dominated and it is feasible, then it is added in to SES and the solutions which are dominated by the $n \in w$ soluticn are removed from SES. The variable NSES keeps track of the number of solutions which are in SES. The values of the variables for the sclutions in SES are stored in the array $X 1$, so that the program is able to frint both the values of the objective functions and the solutions to which they correspond.

Using this program the example problem has been solved and the nodes which have been tested are frinted, sc that the reader to can compare these results with the cnes obtained from Table 3. The only difference here is that node 45 has been tested; in Table 3 the fact that node 5 was bounded, eliminated the need to test the node 45. The reason is that as long as the graphs are tested depth first, after node 4 has been tested node 45 is $g \in n \in r a t \in d$ first and then node 5 .

It must be noticed that this program can be used to solve one objective function problems also; the variable No,
which corresponds to the number of the objective functicns,

The results from 17 problems run on the IEM 360 computer of N.F.S. have been summarized in Table 5 .

THIS PROGRAM SO VES A MULTI OR ONE-CEJECTIVE FUNCTICN INTEGER ZERO-CNE MINIMIZATICN PROELEM, FORMALIZEC IN THE CANON ICAL FORM.

CREATOR: $\triangle G G E L O S ~ C . ~ S I M O P O U L O S ~$ MAJOR HELLENIC ARMY DECENBER 1577
the following notaticn has been usec:
$N=$ NUMBER OF VARIAELES IN TトE PRCELEM
NA $=$ NUMBER DF VARIAELES ASSOCIATEC WITH AT LEAST ONE NEGATIVE COEFFICIENT
$N B=N-\Lambda A$
NO = NUMBER OF OBJECTIVE FUNCTIONS
NC $=$ NUMBER OF CONSTRAINTS
$20(N+1, N O)=$ ARRAY CCNTAINING TFE VALUES CF THE $2 C(\Lambda+1, N C)=A R R A Y$ CCNTAINING TRE VALUES CF THE SES(**, NO) = SET OF AT MOST ** EFFICIENT SLNS IFLAGI F FLAG: INCICATES IF SLN C IS FEASIBLE CR NCT NSES = CURRENT NUMBER CF SLNS IN SES
XI(**, N) $=$ CONTAINS THE VALUES CF THE VARIAELES FCR NXI = CURRENT NUMBER CF SLNS IN XI

LCA(NA+I) = LAST DIGIT CF A NCCE IN GRAPH "A" FGR $\operatorname{LCB}(N B+1)=A S$ ABOEVELGCF THE GRAPH.

MA $=$ CURRENT LAST DIGIT IN A MCDE
LA $=$ CURRENT LEVEL CF GRAPH "\#"
LE CURRENT LEVEL CF GRAPH "E"
$C(N C, N)=$ MATRIX OF COEFFICIENTS FCR THE O\& FLNCTIONS
$A(N C$ ON) MATRIX OF COEFFICIENTS FGR THE CNSTRAINTS
$E(N C)=T H E$ E VECTCR FOR THE CCASTRAINT EGUATIONS

THE FOLLCWING PROGRAM HAS EEEN ARRANGEO TC SOLVE FRCELEMS UP TC 25 VARIABLES, 5 CEJECTIVE FLACTIOAS ANC IO CCNSTRAINT EQUATIONS ACRNAEPENOING ON THE NUMEER OF THE VARIABLESTN, FCRMATS 1201 ANC 1202 CORRESPCNDINGLY TO GIVE SUITABLE CLTFUT. IF AN ERROR OCCURS AND THE USER HAS CHECKED TO BE SURE THAT THE INPUT CATA ISS ACCCRCING TC THE FORMAT ARRAYS XI AND SES MLST BE INCREASEE. FOR EIGGER PROBLEMS THE DECLARATICNS ANC FCRMATS NUST BE CHANGED ACCORDING TO THE NOTATICN GIVEN abcVE.
BLECK OATA

$$
\begin{aligned}
& \text { CCMMON/S/ } \\
& \text { DATA } \\
& \text { END }
\end{aligned}
$$

READ	(5,100C	N,NA,NO,NC
READ	$(5,1001$	$((C)(I, J), J=1, N), I=1, N O)$
READ	(5,1001	$((A(I, J), J=1, N), I=1, N C)$
REAO	$(5,1002$	$(B(I), I=2, N C)$

TEGER	$x(25), x 1$
I	SES
$\begin{aligned} & \text { CCMMON /S/ } \\ & \text { CCMMON /Si/ } \end{aligned}$	$\begin{aligned} & \text { X,IFLSES,IFLAG1,NXI,NSES,MA,LA,LB,ZC, ZC } \\ & S E S, N, N O, N C, C, A, B, X 1 \end{aligned}$

FCRMAT	(/6x, 25 (I3)
EERMAT FORMA T	$\begin{aligned} & (45) \\ & (10 \mathrm{~F} .3) \end{aligned}$
FERMAT	(10F8.3)
FCRMAT	(5F5.0)
FCRMAT	(6F5.0)
FCRMAT	(//12x,'COE
crmat	(//12x,'COEFF

```
CONSTRAINTS'///
```

MI scellaneous

$$
\begin{aligned}
& \text { IF }(N A \cdot E Q \cdot O) \quad N A=1 \\
& \text { IF }(N A \cdot E Q \cdot N) N A=N-1
\end{aligned}
$$

TEST SCLUTION O FIRST
WRITE $(6,12 C O)(X(I), I=1, N)$
DO 2FI=1,NC
CONTINUE (I).GT.O.) GO TO 20

OTHERWISE SOLUTION O IS FEASIbLE

$$
N \times 1=1
$$

CONTINUE
DO 4 SES $I=1$,NO
ASESEONTINUE
NSES
IFLSES
S

$$
\begin{aligned}
& \text { IFLAG1 }=1 \\
& L A=1
\end{aligned}
$$

$$
L B=J B-1
$$

$$
L L B=L D B(L B j)
$$

$$
\begin{aligned}
& C O N T I N U E \\
& M B=L L B+1 \\
& G O=T C 120
\end{aligned}
$$

generate noces frcm graph b

$$
\begin{array}{rl}
D O \\
130 & \mathrm{~J}=L B, 1 \\
\times(M B)=1
\end{array}
$$

$$
\begin{aligned}
& 1 \\
& 1=8 K=L L B, N \\
& X(K)=0
\end{aligned}
$$

$$
\begin{aligned}
& I F(M B \cdot E G \cdot N) \text { GO TO } 135 \\
& X(M B)=0 \\
& \angle B=J B \\
& M B=M B+1 \\
& G O T O \quad 12 C
\end{aligned}
$$

Nunno
THE SUBROUT INE CHILC TESTS A SOLUTICN FOR OCMINATION CRCERTO GENERATE OR NCT GENERATE THE SUCCESSCRS CF THE CGRRESPONCING NODE
CONTINUE

$$
\text { IF (IFLSES.EQ.O) GO TO } 210
$$

$$
00202(I=1, N O \quad \text { NO } 20(J, I)+C(I, M)
$$

test if the sln is dcminated
$205 \quad \begin{array}{r}K=1\end{array}$, NSES
$I C N T R=0$
DO 204

$$
\begin{aligned}
& \text { SLBROUTINE CHILD (J, M, IGNRT) } \\
& \text { DIMENSICN ZO(26; 5) , ZC } 26,10), C(5,25), A(10,25), B(10) \text {, } \\
& { }^{1} \text { CCMMON /S/, SES (ISO, } 5 \text {) } \\
& \text { CCMMON /SI/ SES,N,NO,NC,C,A, E, Xi }
\end{aligned}
$$

```
CFECK FOR FEASIBILITY
210
212
215
                \(002 \frac{1}{2} C\left(\begin{array}{l}I=1, N C \\ J+1 \\ I\end{array}\right)=2 C(J, I)+A(I, M)\)
                    CONTINUE
                        CONTINUE
        IF (IFLSES.EQ.O) GC TC 315
    UPDATE SES AND XI
        \(N \times 1=\) NSES +1
DO 302
        CONTINLE
¿ O
C
C
C
C
C
    eliminate cominated slns from ses anc xi
    \(K=1\)
        00
            310 I \(=1\), NSES
                OC 305 IF I \(=1\), NC
```



```
                        CONTINUE
IF IICNTR.EQ.NO) GO TO \(30 \in\)
GO TO 310
C Ctherinise keep the slns in ses and in Cl
\[
\text { DO } \equiv 1 K
\]
CONTINUE
\[
\operatorname{SES}(K, I K)=20(J+1, I K)
\]
CONTINUE
\[
\begin{aligned}
& \text { CONTINUE } \\
& \text { DOIS }
\end{aligned}
\]
\[
\begin{aligned}
& \text { XIN }(K, I N)=X I(\Lambda X I, I N)
\end{aligned}
\]
\[
\begin{aligned}
& \text { NSES=K CONTINUE } \\
& \text { GCTO } 220
\end{aligned}
\]
315
\[
\begin{aligned}
& N S E S=K \\
& G C T O 20 \\
& O O^{2} \\
& \text { SIT IK }
\end{aligned}
\]
Enc
\begin{tabular}{lllll}
\(c\) & 0 & 0 & 0 & 0 \\
\(c\) & 0 & 1 & 0 & 0 \\
\(c\) & 0 & 0 & 1 & 0 \\
\(c\) & 0 & 0 & 1 & 1 \\
\(c\) & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 \\
1 & 0 & \(c\) & 1 & 0 \\
1 & 0 & 0 & 0 & 1 \\
1 & 1 & 0 & 0 & 0 \\
\(c\) & 1 & 0 & 0 & 0 \\
\(c\) & 1 & 1 & 0 & 0 \\
\(c\) & 1 & 0 & 1 & 0 \\
\(c\) & 1 & 0 & 0 & 1
\end{tabular}
the slas for the above problen are
valle:
\[
\begin{array}{ccccc}
2.00 & 2 . C C \\
\text { SOLUTICN: } & 0 & 0 & 1 & 0
\end{array}
\]
\[
\text { VALLE: } \quad 3.0 C \quad-3.00
\]
\[
\text { SOLUTICN: } 11100
\]

\section*{Coll}
\(x=1\)

\section*{电}

\section*{IIST OF REFERENCES}
1. Zangwill, Willard, Non Linear Programming: A Unified Approach, Prentice Hall 1967.
2. Beale, E.M.L., On Quadratic Programming, f. 227 to 243, Research Logistics Quartely, Vol 6. 1959.
3. Baukol J. and P. Wolfe, A Warehouse Location Prcblem, p. 252 to 263, Operations Research, Vcl 6, 1958.
4. Dorfman r., P.A. Samuelson and R. Solow, Iinear Programming And Economical Analysis, Mc Graw Hill 1958.
5. Gass, Saul I., Linear Programming: Methods And Applications, Mc Graw Hill, Third Editicn, 1969.
6. Orchard Hays, William, Advanced Linear programming Compuring Techniques, Mc Graw Hill, \(196 \varepsilon\).
7. Harvey M. Wagner, principles of operations Research, p. 385 to 388 , Prentice Hall, Inc., 1969.
8. Claude Mc Millan, Jr, Mathematic_al Eroqramming: An Introduction To The Design And Application of oftimal Desision Machines, p. 425 士0 444, Apfendix c, John Wiley And Sons, Inc., 1970.
9. Stanley Zionts, An Interactive Method For Evaluating Descrete Alternatives Invoiving Multiple Criteria, Working Paper No. 271, University Of New York At Eufalo School Cf Management, July 1976.
10. Gabriel R. Bitran, Linear Multiple Objective Ercgrams With Zero-one Values, p. 121 tc 139, Mathematical Programming, Vol 13, 1977.

\section*{INITIAL DISTRIBUTION LIST}

No. Copies
1. Defense Documentation Center ..... 2Cameron Station
Alexandria, Virginia ..... 22314
2. Library, Code 0142 ..... 2Naval Postgraduate SchoolMonterey, California 93940
3. Department Chairman, Code 52 ..... 2
Department of Computer Science Naval Pcstgraduate School Monterey, California 93940
4. Department Chairman, Code 55 ..... 2
Department of Operations Research
Naval Pcstgraduat \(\in\) School
Monterey, California 93940
5. Lcdr Stephen T. Hcll, Code 52 ..... 3
Departement of Computer Science Naval Pcstgraduate School Monterey, California 93940
6. Greek Army Headquarters ..... 2
Department of Research And Design Holargcs, Athenes, GREECE
7. Major Aggelos C. Simopoulos ..... 3
Kourtiou ..... 29.
Athens ..... 与08, GREECE
```

Thesis
:74010
S4959 Simopoulos
c.l
Multicriteria inte-
ger zero-one program-
ming: a tree-search
type algorithm.

```


32768001914211 DUDLEY KNOX LIBRARY```

