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ABSTRACT

This thesis applies the state of the art techniques for

methodical design of secure operating systems to a

distributed, multi-microprocessor environment. Explicit

process structure and utilization of virtual environments

are the fundamental concepts that form a basis for the

design presented. The primary design techniques utilized in

the design are segmentation, distributed operating system,

security kernel, multiprocessing, "cache" memory strategy

and multiprogramming. The resulting design is for a family

of distributed operating systems that can provide the power

of yesterdays large computer in a microprocessor

environment. Security, configuration independence, and a

loop free structure are the primary characteristics of the

design. The design, although hardware independent, was

formulated with the Zilog Z3000 or similar microprocessor in

mind

.
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I . INTRODUCTION

The microprocessors available today are affordable and

powerful computing devices. Applying these resources to

various applications, especially those requiring multiple

microprocessors, presents a formidable problem. The solution

to this problem is a family of operating systems to

effectively orchestrate processor and memory management

across a wide range of applications. However, such systems

have not come from the specialized microprocessor operating

systems in use today. Such an operating system family could

provide a major reduction of overall system software cost in

the microprocessor environment.

In this thesis the substantial body of operating system

design principles are applied to a methodical design of an

operating system for the microprocessor environment. For

realism the Zilog Z8000 microprocessor [l] is considered

representative of modern features. Configuration

independence, distributed processing, multiple protection

domains, multiprocessing and multiprogramming are addressed

in the design of a secure operating system suitable for a

family of operating systems: ranging from a specialized

tactical system to a multi-user time sharing system.

The thesis will also identify meaningful subsets of the

design (viz., smaller members of the family) for potential

use, and state hardware needed (future development) to





implement the design to its fullest capabilities. The

operating system designed in this thesis will he referred to

as the SYSTEM throughout the thesis.

A. MOTIVATION

The processing power of microprocessors is increasing.

If this power could he effectively coordinated by an

operating system it could provide a more affordable and

powerful product. In addition, there is a growing emphasis

on the protection of information stored and processed in

computers; hence, the requirement for a system that also

provides information security.

The multi-microprocessor systems in use today suffer

performance degradation as more processors (generally a

maximum of 4 to 5) are added to the system. Sophisticated

crossbar interconnections between processors and memories

can reduce this problem. However, there is still a need for

a combination of microprocessors and memory that do not

suffer massive degradation as more processors are added.

The ability to configure a system to meet a variety of

capacity needs is an important feature; however as software

becomes an increasing portion of system cost, the ability to

reconfigure the system as requirements change without major

re-design effort is often an even more valuable feature. For

this reason the design technique of resource visualization

will be applied as a way to realize configuration

independence

.





B. 3ASIC ELEMENTS OF DESIGN

The SYSTEM is composed of a supervisor and a security

Kernel [2]. The supervisor supports user services (dynamic

linking, discretionary security, demand memory management

and a hierarchical file system). The security kernel

controls the physical system resources (processors, memory,

and external devices) to provide virtual resources for the

supervisor.

1. Process Structure

A process within the computer system is an internal

representation of the computational task of a user utilizing

the system. Each process is characterized by an execution

point and an address space. Attributes of each process

include a security class authorization and a unique

identifier that corresponds to the user. By supporting

distinct, explicit processes the operating system allows an

application to he divided into several cooperating parts.

Such a process structure leads to simpler more effective

software

.

2. Segmented Virtual Memory

Segmentation involves separating all stored

information into discrete packages called segments. Each

segment has attributes such as security class and access

(read or write) permissions. A process' address space is a

collection of segments. Segmentation is used by the

10





supervisor to present the user a random access virtual

memory. Copies of all segments are kept on secondary storage

until actually referenced, at which time room is made for it

in main memory, possibly by removing another segment from

memory. This demand memory management is done within the

supervisor. The supervisor views a non-random access virtual

memory. 3y presenting the supervisor and the user with

virtual environments the kernel establishes configuration

independence for them.

3. Distributed Operating System

The address space of each process has three domains

(user, supervisor and kernel). The domains form sub-sets of

the address space by limiting the segments that can be

accessed when the process' execution point is within a given

domain. The operating system is part of each process. It is

distributed throughout all the processes in protected

domains (supervisor domain and kernel domain). Maximum

access is in the kernel domain. It is the most priviledged,

and the traditional "privileged instruction' can be executed

only in the kernel domain. Only the kernel domain has access

to system wide data bases.

The kernel domain creates an extended machine for

the supervisor and is supported by system processes. The

supervisor is less priviledged but provides the user domain

with certain common services such as discretionary security

and virtual memory. It should be noted that by distributing

11





the operating system throughout all processes, services are

independently (and simultaneously) available to each

process

.

4. Processor-Local Memory

The operating system is designed to support a

multi-processor configuration with a local memory in close

proximity to each processor. The local memory is addressable

only by that processor. In addition there is a global memory

that is addressable by all processors (Figure 1).

Segmentation is the key to effective allocation of

information between local and global memory. Problems can

arise in the use of a local memory. If a process is allowed

to execute on any processor then each time the process is

switched from one processor to another the contents of local

memory must also be switched. Thus the use of local memory

implies that general multiprogramming should not be allowed.

This problem can be alleviated by allowing mult iprogrammed

processes to be semi-dedicated, that is make an effort to

restrict the process to a certain processor.

5. Security Kernel

Security cannot in general be built around a present

system (i.e., added to) but rather a system must be built

around security. let today there are a limited number of

"secure" systems. One of the main obstacles in providing

security is verifying the system is secure. The recently
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developed security kernel [2] technology has made it possible

to solve this problem. By keeping all the things that

provide the security in the security kernel and keeping the

things that do not involve security out, the security kernel

can be kept relatively small and verifiable. The desire to

keep the security kernel small (to simplify the verification

procedure) is one of the goals driving several design

choices .

C. STRUCTURE OF THE THESIS

First, the fundamental concepts (process structure,

virtual memory and security) and their relationships to the

SYSTEM are discussed. Second, the design of the SYSTEM is

presented. This includes a discussion of the design

techniques utilized as well as an explanation of the

proposed design. Third, the conclusions are presented.

14





II. FUNDAMENTAL CONCEPTS

A. PROCESS STRUCTURE

By dividing a job into asynchronous parts and executing

these parts as seperate entities significant "benefits can be

realized. Within a single processor system, the partitioning

into asynchronous parts provides 'only* design simplicity

(and thus software economy). In a multi-processor system the

partitioning into asynchronous parts is essential if the

parallel processing potential of the system is to be

realized

.

1 . Definition of a Process

A process is characterized by an execution point and

an address space. Saltzer[3] defines a process as a program

in execution on a pseudo-processor. Each process is assigned

a unique identifier and is an explicit entity that requires

management. In a distributed operating system, those

portions of the operating system that are logically part of

the sequential flow of control (viz., locus of execution)

are within the address space of the user process. This is

made possible by dividing the operating system into

procedures which are called like any other procedure. It

should be noted that in a distributed operating system there

is no 'master" assigning processes to processors. Rather,

each running process "hands off" its processor to the next

15





process that is to run.

2. Multiple Domains

To protect these procedures from the user, the

process' address space is divided into hierarchical domains:

user, supervisor, and kernel. The kernel domain is the most

privileged. Only the security kernel executes in this domain

and can access all segments within the address space. All

system wide data oases are restricted to access by the

security kernel to prevent any exchange of information

between processes, in violation of confinement [4] . There

could he more than three domains, and all domains n.eed not

he hierarchical, hut three is minimum for this design.

The supervisor domain is less priviledged and

excludes segments representating the management of the

shared resourses. The supervisor domain is separated from

the user to protect the user from inadverently destroying

the operating system services. The user domain is the least

priviledged. The data oases utilized oy the supervisor

contain only "process local" information - that is,

information that is required by this process alone.

Proper controls and checks are utilized when

switching the domains (flow of control) so that the security

policies are not violated. The hierarchy could be

implemented with rings [5] in hardware. Since hardware rings

are not available in microprocessors, separate segment

descriptors for each domain can be used, with software ring

16





changes as was done in the original Multics design[6] . The

Zilog Z802, f can use multiple memory management units (MMU)

to provide the separate descriptor for each domain.

Operating system procedures generally are permitted

to reside within the local memory (possibly ROM) of each

processor. In »the cases of the security kernel, some of the

data bases of these procedures are shared by all processors

and therefore will reside in global memory. To prevent

undesired intervention by simultaneous accesses to these

data bases a locking scheme must, of course, be provided.

Choosing to put the operating system procedures in each

local memory will "waste* memory but may well provide a

higher performance by keeping most memory references to

local memory where there is no contention for the BUS to

global memory. In a specific instance the choice will be

determined by whether or not the cost of memory is

significant when compared to the value of the increase in

perfo rmance.

3 . Communication and Synchronization

For parallel processing, a job that is composed of a

mixture of sequential and non-sequential tasks is explicitly

divided into an appropriate structure of processes that can

run concurrently. Inter-process communication and

synchronization are necessary for parallel processing.

Inter-process communication provides synchronization to

coordinate the exchange of data between processes. The

17





actual exchange is realized by use of a shared writable

segment. This segment acts like a mailbox in that messages

(data) can be delivered by any process that has the

appropriate access (both discretionary and

non-discretionary).

The synchronization between processes is supported

by the SLOCK and WAKEUP, which are kernel calls to the

traffic controller. It should be noted that the P and 1

semaphores [7] are useable for synchronization but were not

chosen. The traffic controller concept is taken from

Saltzer[3], and his block and wakeup have demonstrated their

usefulness in his design for Multics. The traffic controller

is the operating system (kernel) module that manages

processes. The traffic controller has the job of scheduling

user processes. The traffic controller does this by

multiplexing the users processes onto a limited number of

virtual processors.

The 3L0CK and WAKIUP are primitives of the traffic

controller that provide synchronization for the user

processes. How the user's procedures invoke the BLOCK and

WAKEUP primitives will, of course, determine the actual

process structure. These primitives can be used to provide

simple cooperation, such as mutual exclusion, or complex

interactions when required by the application. A process can

only block itself and cannot block another process. The

block invokes the traffic controller and the traffic

controller puts that process in the blocked state and then

13





schedules another process to run on that virtual processor.

The process that is scheduled next is based on the specific

scheduling policy of the traffic controller.

The wakeup is used to provide asynchronous processes

a synchronization signal. The parameter passed with the

wakeup is the process ID of the process for which the wakeup

is intended. The wakeup invokes the traffic controller. The

traffic controller checks the state of the process specified

by the parameter. If that process is not in the blocked

state the traffic controller returns, otherwise he will put

that process in the ready state and determine if there is

another process running with a lower priority. If this is

the case the traffic controller will send the virtual

processor that the lower priority process is running on a

pre-empt interupt, and then return. The process that

receives the pre-empt interupt will transfer control to the

traffic controller who will in turn schedule the ready

process with the highest priority.

Another SYSTEM module concerned with synchronization

is the inner traffic controller. This manages the hardware

(real) processors to create the virtual processors that are

managed by the traffic controller. The inner traffic

controller provides the interface between the virtual and

physical (real) processors. The inner traffic controller is

responsible for assigning the small, fixed number of virtual

processors to physical processors. Each physical processor

has associated with it several virtual processors. Some

19





virtual processors are multiplexed "between users processes

by the traffic controller. The remaining virtual processors

are allocated to the system processes. Each system process

is assigned a virtual processor. The inner traffic

controller determines which virtual processor will run on

the physical processor based on the priority assigned to

each virtual processor. The primitives SIGNAL and WAIT are

used by the inner traffic controller to provide

communication and synchronization between the virtual

processors. SIGNAL and WAIT are very similar in form and

function to 3L0CK and WAK3UP, except for the fact that they

relate to virtual processors rather than user processes.

4. System Processes

System processes are used to perform operating

system functions that are asynchronous to each user process.

System processes are typically responsible for the shared

resources. The system processes are in the kernel and

therefore permitted to access information of any access

class. The system processes include the I/C_MANAG3R and

MEMORY_MANAGEH.

5

.

Process Switching

Process switching is the removing and assigning of

processes to virtual processors. When a process switch

occurs the execution point (internal registers) and address

space of the process being removed must be saved (unloaded),

20





and then the execution point and address space of the new

process must "be loaded.

Some systems utilize a descriptor case register

(D3R) [6, p. 12] , which is a pointer to multiple descriptor

lists in memory - one list for each process. To change the

address space you only need to switch the D3R in the

physical processor. However, in microprocessor systems a

descriptor list is implemented as registers in the memory

management unit (MMU). Process switching can he costly when

MMU registers are saved and restored for each change in

address space. Alternatively, it is possible to increase the

number of MMUs and then the address space could be changed

by just switching control to another MMU".

B. SEGMENTED VIRTUAL MSMCRY

In many memory handling schemes a user process cannot

run until there is sufficient memory available to load its

entire address space. This requires large main memory and

restricts the size of the process's address space. An

alternative is to use the operating system to produce the

illusion of an extremely large memory. Since the large

memory is merely an illusion, it is called virtual memory.

Demand segmentation is a memory management scheme which is

used to realize the concept of virtual memory in this

design.

Memory has three different views which corresponds to

the three different domains (user, supervisor, kernel)
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within the computer system. Starting with the user, each

view is derived from the previous view "by means of an

"extended machine" view. The user sees a practically

unlimited segmented virtual memory. The user is no longer

involved in memory management. Demand memory management is

utilized to interface between the user view and the

supervisor view.

The supervisor views a fixed amount of virtual memory.

The memory is fixed by the physical memory allocated to each

process by the kernel. The kernel establishes a mapping

between the supervisor memory and the kernel memory. The

memory is virtual because there are only absolute addresses

in the kernel. The supervisor multiplexes the user's

segments onto this fixed virtual memory in response to a

hardware fault when the process references a segment that is

not in memory. The demand memory management was placed in

the supervisor because it is not involved with security and

we want to keep the security kernel as simple and small as

possible .

The kernel views a fixed physical memory. The physical

memory is limited by the local memory available to the

processor for use by the user processes. There is some

minimum amount of memory required by the operating system

for each processor. Before a process is elgible to run, its

fixed virtual memory (of the supervisor) must be mapped into

the fixed physical memory of the processor. We then call the

process "loaded". The kernel's memory manager is responsible
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for the proper mapping as the processes address spaces are

multiplexed onto the processor's physical memory.

The idea is to require that a limited amount of the job

be resident in memory. When the user requests a portion of

the process that is not currently in memory, a fault will

occur. The supervisor, using the demand memory manager, must

find the requested segment and decide where it wishes to

place the requested information in virtual memory. The

supervisor then sends a reauest to the kernel to bring this

information into memory, thereby repairing the fault so that

normal processing can resume.

1. Segmentation

In most micro systems, the user cannot effectively

share memory because the different uses of memory can not be

specified. The inability to specify the memory use makes

memory management difficult, especially when there is memory

local to each processor. The different uses are denoted by

shared/unshared and writeable/non-writeable (read). The

following matrix lists the uses and where they may reside.

shared

unshared

wri teable

global

local

non-wri teable

local/global

local

If the memory can be divided by uses and each part has

attributes which distinguish the uses, then the management

of memory is made reasonable.
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Segmentation provides the ability to divide the

memory into parts (segments). A segment is a collection of

information important enough to be given a name. Each

segment is distinguished from others by its logical

attributes, that provide the basis for the desired control.

Segmentation provides a mechanism for a limited portion of a

processes' information to reside in memory at any one time.

This also facilitates easy movement of information by

segment in and out of memory. The collection of all segments

that a process may access (whether or not In physical

memory) is what composes its address space.

2. Loading

The loading of a segment consists of finding a

segment and making it known (discussed later) to the

requesting process (viz., adding the segment to the address

space). It is the added feature of segmentation that this

loading may be delayed until the segment is actually needed.

At that time a segment name can be transformed into a file

system pathname. The pathname can then be resolved into the

unique identifier for a segment. Then the supervisor

requests a segment number be assigned by the kernel, which

makes the segment known to the process. If the segment is

then required for execution it is physically loaded into

memory when actually referenced.

Each segment has associated with it a segment

descriptor [6] which contains its attributes (address in
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memory, size, access allowed). Since this descriptor is

referenced "by the hardware at each access request to this

segment, then the memory uses can be distinguished. The

different segment descriptors of a process can then he

contained in a descriptor list. This design utilizes the MMU

(memory management unit) which consists of a set of

registers to implement the descriptor list. Each register

(segment descriptor) contains the descriptor of a particular

segment. The MMU registers retain the distinct attributes of

each segment at execution time and, therefore, makes it

possible for another process to share selected segments, if

desired

.

The dynamics of a segment fall into two classes,

physical and logical. An example of the physical dynamics is

the request of a user for write access to a currently used

segment. The operating system can physically move the

segment from local to global memory so the segment can be

shared without the user's knowledge. A stack segment whose

size varies is an example of logical dynamics.

3. Dynamic Linking'

When a procedure segment makes an external reference

to another segment, the address of the later segment must be

determined. This is called linking, the constructing of

executable instructions that achieve references to extemel

objects (segments). Linking need not be completed at load

time. It can be postponed until the actual reference is

25





encountered. This waiting to Link, until referenced, is

called dynamic linking[8] . Segmentation is not necessary to

achieve dynamic linking, hut it helps. When a process begins

execution, it should not have to find and bring into memory

any more of its segments than is absolutely necessary to

begin running. The mere presence of a reference to an

external segment in a segments text is no guarantee that the

flow of control will touch this reference. Therefore, there

is little point to undertake the expense of finding a

segment and making it known unless there is some significant

expectation that that segment will be referenced during the

time allotted to that process. Dynamic linking permits

unnecessary linking to be eliminated.

Once the segment has been made known to the process

(assigned a segment number), even though it may be moved in

and out of memory, the references to this segment need not

be changed since the segment number remains the same. The

segment descriptor is used to reflect the presence of a

segment in memory and the current address in memory. The

segment looses none of its attributes by virtue of having

been made known to this process.

4. Information Sharing

Segmentation allows direct addressability by the

process to any segment within the process' address space.

The basic advantage of direct addressability is that the

copying of data is no longer mandatory. A segment is also a
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unit of sharing. This eliminates the need to duplicate a

segment for each requesting process and saves memory. Even

more important is the idea that sharing provides a means of

inter-process communication. This is important for realizing

the power of the explicit process structure, that is

essential to an effective multi-processor environment.

In general each procedure segment must be pure to

ensure sharing is implemented correctly. A pure procedure

operates on variables in registers or in separate data

segments associated with the process. It never stores data

internally, nor does it alter itself. The linkage segment is

such a data segment used to support the pure procedure. A

linkage segment is associated with each process. The linkage

segment is composed of linkage sections. There is one

linkage section for each procedure segment. The linkage

section is used to place all alterable information (linkage

faults, segment numbers, other static temporary variables)

for the pure procedures. Thus, the processes' segments which

are pure may be shared while linkage sections must be unique

to each process. The fact that the linkage segments are not

shared makes it possible to assign different segment numbers

to the same procedure in different processes since segment

numbers occur explicitly only in linkage segments, that may

be different for each process.

The approach in this design is to place the copies

of requested segments into local memory, thereby reducing

the data bus traffic If the read-write access requirements
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are such that a segment must be physically shared, then it

is placed in global memory and every process that is given

access will access it there. The key to this memory

management is segmentation that keeps a segment's attributes

explicit. The kernel can properly manage placement in local

and global memory with no intervention from the supervisor

or the user to "declare" that the sharing is needed.

5

.

Access Control

The access control in this design is separated into

discretionary (supervisor) and non-discretionary (security

kernel). When a segment is requested the supervisor

references the access control list attribute for that

segment and the access authorized for that process (subject)

is determined. The supervisor then passes this to the

security kernel so that a non-discretionary check can be

made. The kernel compares the access class of the segment

with that of the process and the appropriate access is

allowed. This access authorized is always the lesser of that

requested by the supervisor and that permitted by the

kernel. The access one process has for a segment is

independent of the access another process has for that same

segment

.

6

.

Functional Subsets

Some members of the family of operating systems will

not include all of the functions made available by this

28





design. As an example, consider a family member (e.g. for

tactical system) supporting applications that are entirely

resident in memory and pre-linked. It would require none of

the virtual memory functions provided by the supervisor.

This design readily allows this sort of functional

subsetting because of its loop free structure [9]

.

C. SECURITY

The increased capability of the computer system in the

last decade has dramatically increased its possible uses.

Many users have actively allowed the computer system to

assume an increasing number of jobs upon which the user

depends to successfully function. As more dependence was

placed on the computer it became evident (regrettably by

example) that a knowledgeable user (employee of a user) who

has access to the computer also has access to all the

information contained within the system. Users such as the

government (classified information), banking facilities

(transfer of funds), corporations (trade secrets) have a

need to protect certain information from specific users;

therefore, there is an increasing demand for a secure

computer system. Designating a specific computer to only run

at a specific security class or only running certain

security classes at specific times has proven unsatisfactory

for the user who has information at many access classes.

What is commonly called a "multilevel" environment is one in

which information and users at different security classes
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can exist simultaneously on the same computer system without

permitting a user to access information he is not authorized

to use. One goal is to design a system which will allow

secure operation in a multilevel environment.

1 . Computer Security Problems

The initial attempts to provide a secure system

involved adding security onto existing systems. This proved

largely useless for designers were intuitively trying to

block methods of would-be-penetrators rather than providing

a technically sound system design. These futile attempts [10]

led to the emerging technique of methodically designing a

secure system based on a security kernel derived from a

mathematical model (discussed later).

Information security can be provided by external

and/or internal control. External control includes guards,

watch dogs, door ciphers or anything which would prevent an

unauthorized penetration of the compound. Once the

penetration is made, the pot of gold is exposed. The

internal control is concerned with preventing unauthorized

penetration of the computer system. This involves insuring

the effectiveness of internal mechanisms in the operating

system so that only authorized exchanges of information in a

multilevel environment can occur. This includes providing no

information to unauthorized users and consistent replies to

security violations. The latter is necessary to insure no

inadvertant leakage of information [4] concerning the
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internal mechanisms. External control is expensive and

human-prone. It does not provide for the secure sharing of

information needed by many applications, thus forcing users

to forego many of the capabilities of modern computers. A

goal of this thesis is to design an operating system that

provides information security by utilizing internal control.

External controls are, of course, still required to

physically protect the computer system's information.

The reference monitor is an abstraction created to

present the conceptual idea of providing a secure computer

system. The reference monitor is composed of subjects,

objects, and an access matrix. Subjects are system entities

such as a user or a process that, can access system

resources. Objects are system entities such as data,

programs and peripheral devices that can be accessed by

subjects. The access matrix represents the permitted

accesses between subjects and objects. The reference monitor

must support the ability of subjects to reference objects as

per the access matrix and it must also support the ability

to alter the access matrix.

The security kernel [2] is a relatively recent

technical breakthrough for computer security. The security

kernel is that portion of the computer's hardware and

software which enforces the authorized access relationships

between subjects and objects. It is the realization of the

abstract concept of a reference monitor. The software

portion of the kernel acts as an interface between the rest
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of the system and the hardware. The software content of the

security kernel is influenced by the hardware features of

the processor. The underlying idea is that if the hardware

is proven correct and if the software is kept small and it

can he proven correct, then we can provide internal security

controls that are effective against all possible internal

attacks. Global variables such as the unique identifier have

been excluded from the supervisor. This has been done to

prevent undesired leakage of information. The global

variables are placed in the kernel where their proper use

can be verified [111

.

The security kernel must meet three essential design

requirements. First, the kernel must be tamperprocf. Second,

the kernel must be invoked on every attempt to access

information. Every reference must be checked by either

software or hardware that is provided with sufficient

information to make correct decisions on granting or denying

access. Finally, the kernel must be subject to

certification. "Subject to certification" implies that the

kernel's correctness must be proveable in a rigorous manner

using a mathematical model as the basis for the criteria to

be met.

In developing a secure system the approach to be

followed should consist of the following: determine the

security policy to be enforced, develop a mathematical model

consistent with desired security policy, design a security

kernel based on the mathematical model, implement the design
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using available hardware and required software. A computer

system is said to be "secure" with respect to some specific

security policy. A security policy consists of the external

laws, rules and regulations that establish what access is to

be permitted. There are two distinct types of security

policy: non-discretionary and discretionary.

NON-DISCRETIONARY POLICY involves checking the

requested (viz., the object's) access class (oac) with the

access class of the (subject) requestor (sac) to insure they

are compatible. Each system contains a lattice structure [12]

that defines the relationships between different access

classes. The following defines the access permitted:

sac=oac, read/write permitted

sac>oac, read permitted

sac<oac, no access

The lattice can be totally ordered (all classes related) or

it can be partially ordered (not all classes related). An

example of a policy with totally ordered classes would be

the government classification (unclassified, confidential,

secret, top secret) of information, oac and the access class

of its' users, sac, called the user's clearance. For such a

lattice policy the system must insure that access to

classified information is always confined to cleared users.

DISCRETIONARY POLICY involves checking an access

control list (ACL). If the user requesting access is not

included on the ACL then the access is not permitted. This

allows users to specify who can access their files. This
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policy really lies within the non-discretionary structure

and provides further refinement. This policy would reflect

the "need to know' rule of DOD.

There are many distinct system designs which

correspond to the almost endless number of policies;

however, the current state of the art allows a simple,

uniform mechanism for nearly all practical policies. The

implication is that the kernel designer does not have to

concern himself with the particular security policy of a

specific customer. He must, however, consider the two broad

classes of policy: discretionary and non-discretionary.

2. Mathematical Model

A. mathematical model [13] is a powerful design tool

for formally translating the requirements of security policy

into a precise representation of the behavior of the

corresponding security kernel. The mathematical model is a

finite state machine model that gives a set of rules of

operation for making a state transition. If the system is

initialized to a secure state, then the rules of operation

guarantee that all subsequent states are secure. Previous

research[14] has proven that security kernels whose design

is based on mathematical models can be certified correct.

Two of the basic elements of the model are subjects

and objects. The model defines types of accesses that a

subject may have to an object. These access types are read

and/or write. The state of the system with respect to
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non-discretionary and discretionary security is represented

by four sets (b, m, f, h). This design implements

non-discretionary security policy in the kernel (sets b, f)

and the discretionary policy in the supervisor (sets m, h).

The folowing discussion pertains to non-discretionary

securi ty.

b - represents the current access relationships that

exists between all subjects and objects. This set is

represented by the segment descriptor list, viz., the

contents of the hardware registers in the MMU (memory

management unit ) .

f - gives the access class of all subjects and

objects in the system. This set is distributed in this

design: the process's access class is found in the active

process table (APT) and the segments access class is in the

active segment table (AST).

The desired properties of the system are then

realized in the form of rules. These rules enforce the

desired security policy by manipulating the sets which may

or may not change the state of the system. If the state of

the system is changed it must guarantee that the new state

is secure.

The discretionary security policy is enforced in the

supervisor. This design decision was made because of the

lesser importance of "need to know' controls to the

military, and to keep the kernel small for ease of

verification .
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The sets which are used to enforce the discretionary

policy are m and h.

m - corresponds to an access matrix which represents

the potential access of the subjects to objects (implements

the "need to know" security policy). This set is represented

by the access control list for the segment (object).

h - indicates how the objects are hierarchically

organized in a directory tree structure. The hierarchical

tree structure consists of nodes, leaves, and a root from

which the tree eminates. The nodes represent a directory

segment (list of attributes for other segments) and the

leaves represent non-directory segments (data or procedure).

A user is free to create either directory or non-directory

segments. The ability to add directories implies that a

user, if he chooses, can add to the overall system hierarchy

a subtree of arbitrary depth.

3 . Properties And Conditions

There are a few basic security properties which

need to be considered:

SIMPLE SECURITY CONDITION- this condition addresses

the problem of security compromise. If in set b all subjects

have an access class greater than or equal to the access

class of their objects, this condition is satisfied. This

insures the subject only reads information at or below the

class for which it is cleared.

CONFINEMENT - this property addresses potential
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(rather than actual) security compromises. If all subjects

could he trusted to perform in a proper manner (with respect

to security), then this property would not he needed. The

fact is that unless a program is proven to behave in a

certain fashion as described by the mathematical model or

formal specification, we cannot make any statements

concerning its behavior. We must therefore make the

assumption that the programs will attempt to violate

security regulations. Subjects are therefore assumed to be

untrustworthy. The potential for a security compromise

occurs when a subject has simultaneous read access which is

at class a and write access at class b (class a >class b).

For example, the potential for compromise is realized if two

events occur: (1) the subject reads secret information from

the secret object and writes it into the unclassified

object. (2) a second subject whose access class is

unclassified gains access to this (nominally unclassified)

object and reads the secret information. There are two ways

of preventing this type of situation from occurring: high

water mark and confinement property.

High Water Mark - upgrade the class of the file to

the highest class requested. This solution, while

technically correct, would over classify information so that

it would not be available to normally cleared subjects.

Confinement Property (^-Property) - this prooerty

requires that all objects to which a subject has write

access have the same access class as the subject and that
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all objects to which it has read access have an access class

less than or equal to the access class of the subject. Since

a subject will always have write access to some object if it

is to perform a computation, we define the current access

class to be that class at which the subject wishes to have

write access. Since all subjects are assumed untrustworthy

with respect to security requirements, the confinement

property eliminates the certification requirement outside

the security kernel. This eliminates the immense job of

certifying the supervisor and the user programs. This

property is enforced in the kernel by not allowing any

subject write access to an object with a lower access class.

COMPATIBILITY PROPERTY - If an object in the

hierarchical structure is inferior (child) to an object

(parent) and the access class of the parent is greater than

that of the child, then a subject with an access class the

same as the child can never access that information since it

can not access the access control list which is kept in the

parent. In order to avoid this problem we introduce the

concept of "compatibility". A hierarchy is compatible if

access classes are non-decreasing as one moves down the

hierarchy from the root. The access class of an object in

the hierarchy must always be greater than or equal to the

access class of its parent. Since the root has no parent its

security attributes are implied (viz., are the "lowest" of

any object). In this design compatibility is enforced in the

kernel, but not in the traditional sense of enforcing the
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access relationship of the parent/child hierarchical

structure. There is no hierarchical structure in the kernel.

When the segment is created the compatibility is implicitly-

enforced before the request is allowed.

The reference monitor is an abstraction of the

hardware and software mechanisms that mediate all attempts

by subjects to access objects. The decision to permit or

deny access is determined by the security kernel. The

mathematical model is an interpretation of the reference

monitor abstraction and describes the behavior of a secure

system in terms of four component data bases (b, m, f, h)

and rules of operation. These rules specify how the data

base may be changed, they represent an "authorize"

operation. The security kernel can only allow subjects to

access objects as permitted by its representation of the

model's set b. The data base of the security kernel must

correspond to the model's data base and can only change as

permitted by the model's rules.

The reference monitor of a physical computer system

is realized by a combination of software and hardware. The

portion required in software depends on the capabilities and

limitations of the hardware. There may be objects to which

the hardware can not properly control access and there may

be alternative representations of the same security state.

Either one of these situations require a kernel function

that does not change the security state. In the former case

there would be one or more functions to permit interpretive
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access to an object; in the latter there would be functions

for changing the representations of the security state

without changing the actual state.

Thus the functions of the security kernel

software [2] fall into three classes that correspond to the

fundamental operations of authorize, access, and null: (1)

functions that correspond to the rules of the model, thus

changing the security state; (2) functions that implement a

part of the reference monitor by allowing interpretive

access to objects as permitted by the current security

state, thus complementing the hardware access controls ar.d

(3) functions that change the representation of the current

security state .

4. Segmentation

The mathematical model addresses abstract subjects

and objects. In this design subjects are the processes and

the principal information objects are segments. Processes

(subjects) can only access segments (objects) as permitted

by the access controls. Every segment has associated with it

logical attributes (access class, size, read/write

permission) which are made visible at the time of actual

reference to the information. Sy including access control as

part of the logical attributes, a way to control access to

the information in the system has been provided. Only

"authorized" accesses are allowed.

Segmentation provides the mechanism so that all
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online information stored in the system is directly

addressable by a processor and hence available for direct

reference by any computation. A basic advantage of direct

addressability is that users can physically share a single

copy. A concern which arises from sharing is that

information may be passed illegally between users. This is

prevented by the enforcement of the confinement property and

the simple security condition. The copying of data is no

longer mandatory as many users can share a single copy with

controlled access .

5 . Hardware Requirements

There are no absolute hardware requirements for

secure computer systems, any hardware is theoretically

acceptible. Given the current state of the technology,

however, certain hardware features are essential if we are

to build efficient secure systems [2]. These essential

features reduce and simplify the software portion of the

security kernel . Reduction and simplification of software at

the expense of additional hardware is necessary because

producing proveably correct software and hardware in the

security kernel is a necessity to achieve computer security.

One of the essential features is support for a

segmented memory. Segmentation allows all information in the

system to be stored in one type of object, the segment.

Havinar to support only a single object type simplifies the

kernel. Segmentation allows all information in the system to
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be ccmpartneritallized into individual packages called

segments. Every segment has associated with it access

controls as previously mentioned. Only authorized accesses

as delineated in the access control list and allowed by the

access class are permitted. The address of information is

composed of two parts (segment #, offset). It is necessary

to efficiently resolve the two dimensional address into an

absolute address, therefore segmentation should be

implemented in hardware.

The other essential hardware feature is multiple

execution domains. This feature is used in most contemporary

systems to protect operating systems from applications

programs. Strictly speaking only two execution domains are

necessary (one for the kernel and one for everything else),

but in practice it will still be desireable to continue to

protect the operating system from applications software so

three domains (kernel, supervisor, user) will be used in

this design.
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III. DESIGN

A. DESIGN TECHNIQUES

When designing an operating system there are several

approaches to consider: top down, bottom up and middle out.

Although most designs begin as top down or bottom up they

generally end up as middle out. In the design there are

several design choices available to the designer. In some

cases a certain design choice will preclude the ability to

utilize a specific design later on in the system design,

while in other cases a specific design choice could be a

driving force to dictate other design choices. Eor example

in the SYSTEM the design choice was made to keep the kernel

relatively small to reduce the verification process. This

particular choice became a heavily weighted factor when, for

example, deciding where to support the demand memory

management which ended up in the supervisor. Following are

some of the design techniques that contributed to the

SYSTEM.

1. Resource Visualization

By using virtual processors and virtual memory

throughout the upper levels of the design, most of the

design is independent of the physical configuration. The

SYSTEM provides the virtual to real binding in the kernel.

This permits changing the configuration to meet user or
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maintenance requirements without major changes to the

system. Since the processes are assigned virtual processors

there is no effect on the user when real processors are

added or deleted (except for the change in performance). Of

particular interest was the ability to add and delete

processors to the SYSTEM. More important was to develop a

design that allowed good capacity growth with the addition

of processors. In general, configuration independence

implies that the hardware (processors, memory and

peripherals) can he reconfigured without causing any

problems visible to the user.

2. Distributed System

The SYSTEM is distributed logically and physically.

Logically, portions of the operating system are distributed

within the address space of the users process within the

supervisor and kernel domains. The use of domains permits

the process to maintain its security attributes while

interacting with the operating system.

The physical distribution of segments among the

individual local memories provides performance (provides

high speed memory access and limits 3US contention). The

physical distribution allows the tradeoff of memory (viz.,

multiple copies) for performance. Although one of the

potential benefits of segmentation is sharing of pure

procedures the choice was made to disregard this benefit

when possible (no user has write access). This allows the
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segment (viz., a copy) to reside in local memory to reduce

BUS contention. The initial hypothesis is that the memory

wasted (much of it possibly ROM) is a small price to pay to

allow performance to grow well with the addition of

processors. This addresses the problem that in typical

multiprocessor systems capacity scales poorly because of

increase load on the BUS. However, this choice is not

fundamental to the design and could be changed to eliminate

multiple copies.

Similarly for processors, processing is distributed

to processors to eliminate the dependency on a single

controlling unit. The system wide data bases are kept in

global memory providing access to all processors.

3. Multiple Protection Domains

The foremost consideration in the design of the

SYSTEM was security. This is acheived by use of the security

kernel technology, and segmentation provides one of the keys

to providing" security within the system. The set of segments

that are accessible is defined as a domain. The conventional

two state system does not provide the desired support for a

secure system. For this reason the 2-state (and associated 2

domains) is generalized to a hierarchical n-domain

system[6] . In the design of the SYSTEM (a minimum of)

3-domains were considered adequate - user, supervisor and

kernel. In addition, the design permits that, based on user

application, a number of user domains could be supported.
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Each domain is in concept similar to a ring[6]. The

authorized access of a process is determined by the current

ring of execution. The access within the different rings

form a set of nested domains. Ring (kernel) is the largest

set and ring n-1 is the smallest.

The ring structure with the associated controls

provides a means for regulating the information that passes

between domains (rings). Cross-ring calls and parameter

passing are well defined [15] . When the proper controls are

used they allow outer rings to make requests to inner rings,

but also protect the inner rings from unintentional or

intentional tampering. The ring structure when combined with

segmentation provides mechanism for the design of an

effective secure system by protecting the secure kernel.

4. Multiprocessing

The process structure provides the essentials for

parallel processing: support for a set of assynchronous

processes that can communicate with each other. Parallel

processing does not require a multi-processor environment.

However, in a multi-processor environment parallel

processing can provide faster completion of a job.

There are many applications for parallel processing

within tactical as well as non-tactical systems. Whenever a

job depends on a mixture of asynchronous and synchronous

tasks and time is a factor, parallel processing is a

possible solution to getting the job done in the allocated
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time. By using several processors working on the same job,

each doing seperate tasks, the overall time required to do

the job can "be reduced (provided the job has been structured

into explicit processes). In microprocessors where

processors are relatively inexpensive and slow, parallel

processing may be the answer to keeping the cost down while

still being able to complete the job in the required time.

The above discussion provides some of the major reasons why

the SYSTEM was designed to support parallel processing on

multiple processors.

5. 'Cache ' Memory Strategy

A cache memory is generally thought of as a small

amount of high speed memory that is utilized with a large

low speed main memory in a system to construct a memory

system that appears to be a larger high speed memory. This

appearance of a high speed memory is generally possible as a

result of locality of reference [16, p. 3011 .

In a multiprocessor environment, where each

processor has its own cache memory, problems arise when

accessing shared memory. The main problem being that shared,

writable memory cannot be put in a cache. Segmentation

allows the assignment of attributes to segments, which

provides a way to identify cacheable segments (those

segments that are not writable and shared).

In a multi-microprocessor system where BUS

contention can become a problem a cache memory strategy
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could "be quite effective in reducing the number of requests

to the main memory, even though the cache and shared memory

are the same speed. The main advantage is avoiding access to

the system BUS rather than the increase in speed of the

actual memory access. The SYSTEM uses the strategy of a

cache in the form of a local memory per processor. Now

rather than being a copy of what is in global memory the

local memory (cache) becomes the place where the data is

stored instead of global memory (note that with a cache,

global memory need not contain a copy while the information

is in the cache)

.

Each processor has its own local memory which is

relatively large in size where cacheable segments are

stored. This means that large blocks of data will be moved

when a process is removed from one processor and

(subsequently) loaded on another processor. In addition a

global memory is utilized for shared writable segments

(unencacheable segments). Segmentation allows the SYSTEM to

utilize the concept of caches and main memory but in the

form of local and global memory. The overall reason is the

same (speed up memory access), but in the SYSTEM this is

achieved by reducing the BUS contention through directing

most access to local memory.

6. Multiprogramming

In a system where there are more processes than

processors there must be a means of switching processors
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from process to process. Some reasons for switching process

are: current process completes, a higher priority process is

ready, current process is blocked, or current process is

waiting I/O. Whatever the reason for switching, there are

certain things that must he done in performing the switch:

first, save the address space of the old process as well as

the current execution point represented by a portion of the

processor state, and secondly, reloading the address space

and previous execution point cf the new process. The process

switch must occur in a specific sequence to insure the new

process resumes execution at the same point and in the same

logical state as when it was previously switched. In the

SYSTEM re-establishing the local memory to its previous

state becomes part of the process switch (when switching

user processes )

.

Eecause of the overhead (unloading and loading all

the MMU registers) associated with process switches,

provisions are included to make the processes semi-dedicated

to a processor and thus make the requirement for memory

switches infrequent. In order to make the process switch

totally hidden outside the kernel, the segments that were in

memory the last time the process was executing must be

loaded in memory prior to allowing the process to resume

execution. The lack of a "DBR" [5 ,p. 12] is a problem, but

saving copies of the MMU, that can. be reloaded when required

reduces the severity of the problem.

7. Family of Operating Systems
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The design in this thesis is not really for a single

operating system, "but rather for a whole family of operating

systems. For any specific system the family member chosen

depends on the functions required. A tactical system which

is static in nature does not require many of the user

services supported by the SYSTEM. For this reason the family

member that consists of only the kernel could he the

specific operating system chosen for a tactical system. A

general purpose time sharing system, on the other hand, is

very dynamic in nature, utilizing large address spaces,

variable number of users, etc. The family member that

supports dynamic linking, a hierarchical file system and

demand memory management could be the specific operating

system for the general purpose time sharing system.

Operating system sub-setting refers to the ability

to form meaningful sub-sets of an operating system. In the

design of the SYSTEM a sub-setting capability was one of the

goals. The structure is such that many of the services

provided oy the SYSTEM can be eliminated without effecting

the usefulness of the remaining system. That is the SYSTEM

can be tailored to fit a number of specific requirements.

This is made possible primarily by utilizing a loop free

structured! within the design. For explanation purposes

consider the operating system to be composed of modules. In

a loop fTee structure the dependency is inward or downward

(toward the hardware), depending on your point of view. A

module only depends on another module at a lower level.
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Requiring a loop free dependency structure allows system

correctness to be established one nodule at a time.

Modifying a module would only effect the modules above which

depend on it.

The design choice to keep the kernel relatively small

and put the common user services in the supervisor lends

itself to sub-setting. The security kernel would not be

changed in any of the sub-sets ani thus would not require

re-verification. The supervisor supported services (dynamic

linking, discretionary security, demand memory management,

hierarchical file system) could be removed to meet the needs

of the specific use of the system. This makes the sub-sets

of the SYST3M suitable for tactical application, where there

is generally no need for demand memory management or dynamic

linking (static environment), as well as for general purpose

application where all the features can be utilized. It

should be noted that any of these meaningful sub-sets would

be a secure system since the kernel remains unchanged in

every sub-set. Sub-sets of the kernel can also be

constructed; however, this would require reverification of

the kernel

.

S. Levels Of Abstraction

Abstraction is a way of avoiding complexity and a

tool by which a finite piece of reasoning can cover a myriad

of cases [17], The purpose of abstracting is net to be vague,

but to create a semantic level in which one can be
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absolutely precise. Levels of abstraction have been

demonstrated to be a powerful design methodology for complex

systems. In general, the use of levels of abstraction leads

to a better design with greater clarity and fewer errors. A

level is defined not only by the abstraction that it

supports (for example, a segmented virtual memory) but also

by the resources employed to realize that abstraction. Lower

levels (closer to the machine) are not aware of the

abstractions or resources of higher levels? higher levels

may apply the resources of lower levels only by appealing to

the functions of the lower levels. This pair of restrictions

reduces the number of interactions among parts of a system

and makes them more explicit.

Each level of abstraction creates a virtual machine

environment. Programs above some level do not need to know

how the virtual machine of that level is implemented. For

example, if a level of abstraction creates sequential

processes and multiplexes one or more hardware processors

among them, then at higher levels the number of physical

processors in the system is not important. 3y the rules of

abstraction calls to a procedure at a different level must

always be made in a downward direction and the corresponding

return in the upward direction. Note that at least two of

the levels (kernel and supervisor) define virtual machines

with rigidly enforced (via hardware) invocation of 'extended

instruction", i.e. the kernel and supervisor calls.
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B. PROPOSED DESIGM

The SYSTEM is composed of two parts, the supervisor and

the kernel. The supervisor provides operating system

services while the kernel manages physical resources. This

division also contributes to the ability to sub-set without

affecting the kernel. The supervisor, which consists of

procedures, is distributed and exists within the supervisor

domain of each user process. The kernel is made up of both

procedures and system processes. The procedures are part of

the distributed operating system and exist within the kernel

domain of each user process. The system processes are not

distributed but are separate processes.

1. Notation

The following is an explanation of the notation used

in the following discussions. When a CALL is used the name

of the module is given followed by the parameters within

parenthesis. When a name in quotes appears as the first

parameter in the parantheses it is used to specify the entry

within the module. For example CALL INNER_TC ( 'UNLOAD '

,

SEGMENT,*, WRITTEN) the module name is INNSR_TC, 'UNLOAD'

specifies the entry point and SEGMENT_* and WRITTEN are the

parameters. When a SIGNAL is used the first name in quotes

specifies the process for whom the signal is intended, the

second name in quotes (optional) specifies the specific

function requested of that process and the remaining names

represent parameters. For example SIGNAL ( 'MEMORY_MANAGER'

,
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'OUT', SEG-KENT_#, WRITTEN) the signal is meant for the

memory manager process, 'OUT' is the requested function and

SEGMENT_* and WRITTEN are parameters. WAIT is used when a

process cannot continue execution until it receives a signal

from another process. WAIT( P?.OCESS_ID, MSG) . The return

parameters PROCESS_II) and MSG- are used to indicate the

process that sent the signal and the message sent. It should

be noted that the above notation is only used to simplify

the understanding of what is happening. In an actual

implementation the parameters need not be passed in

precisely this fashion.

2 . System Overview

The following is an overview of the SYSTEM'S modules

and processes and how they function. Figure 2 represents the

modules that exist in the distributed supervisor and the

distributed kernel. The levels are used to indicate the

dependencies that exist between these modules. The

supervisor is made up of four levels of abstraction. It

should be noted that all data within the supervisor is per

process .

The linker, a level 1 module called LINKER, exists

in a segmented virtual memory and provides the mechanisms of

dynamic linking. He is invoked by CALL

LINOR(SYM30LIC_NAME). It should be noted that the call

could be by link fault as in MULTICS[6]. The linker keeps

track of snapped links in the linkage segment (figure 3).
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The linker utilizes the CALL SEARCH(SYMBOLIC_NAME,

SEGPENT_#) to obtain the segment number for unsnapped links.

The searcher, a level 2 module called SEARCH, is

invoked by SEAECH(SYKBOLIC_NAME, SEGr<ENT_#) and is required

to return the segment number of the segment specified by the

symbolic name. By applying the 'search rules' the symbolic

name is converted to a path name in the hierarchical file

system. The searcher gets the desired segment number by the

CALL SEG_HNB(?ATH_NAME t SEGMENT_#).

The segment handler, a level 3 module called

SEG_HNL\ is invoked by CALL SEG_HND( ?ATH_NAME , SEGMENTJ*)

and is responsible for returning the appropriate segment

number. The segment handler utilizes the Segment Table

(figure 4) as its data base. To maintain the data base he

uses the CALL SEG_MGR( 'MAKE_KNOWN ' , PAR__SEG_#, ENTRT_#,

ACCESS, SEGMENT_#, SIZE) to the kernel to obtain a segment

number for a segment and the CALL DISC_SEC ( SEGMENT_#

,

ENTRY_#, ACCESS) to determine the authorized access

(discretionary). The segment handier is also invoked by the

virtual faults, SEG_HND( 'SEG_EAULT' , SEGMENT.*) and

SEG_END( >EM_FAULT', SEGMENT_#). The 'SEG_FAULT' is a

discretionary security access check and is handled by a CALL

DISC_SEC(SEGMENT_*, ENTRT_#) . The 'MEM_FAULT' is a request

to bring a segment into memory and is handled by a CALL

MEM_END(S3GMENT_#, SIZE).

The memory handler and discretionary security, level

4 modules called ME^_HND and DISC_SEC respectively, are
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invoked by MEM_HND(SEGMENT_#, SIZE) and DISC_SEC ( SEGMENT_#

,

ENTST_#, ACCESS) respectively. The memory handler provides

the dynamic memory management utilizing the Memory Map data

"base (figure 5). The memory handler uses the CALL

SEG_MGR( 'SWA?_IN', SEGMSNT_#, BASE_ADDRESS ) in the kernel to

brin* a segment into memory and the CALL SEG_MGR( 'SWAP_0UT '

,

SEGMENT_#) to remove a segment. The discretionary security

checks the access control lists to determine the authorized

access of the process (discretionary).

The distributed kernel is composed of three levels.

The segment manager, a kernel level 1 module called SEG_MGR,

is invoked by the CALL SEG_MGR( 'MAKE_KNOWN ' , PAR_SEG_#,

ENTRY_#, ACCESS, SEGMENT_#), CALL SEG_MGR ( 'SWAP_IN ' ,

SEGMENT_#, BASE_ADDRESS) and CALL SSG_MGR( 'SWAP_OUT '

,

SEGMENT_#). The segment manager maintains the Known Segment

Table (figure 6) as a per process data base. The segment

manager determines allowable access by the CALL

NON_DISC_SEC(UNIQUE_ID, ACCESS) and assigns segment numbers

by the CALL INNSR_TC( 'ASSIGN', S2GM3NT_#, ACCESS). The

segment manager brings segments into memory by

SIG-NAL('MEMORT_MANAGER', 'IN', SEGMENT_#, UNIQUS_ID,

5ASE_ADDRESS ) and removes segments from memory by

SIGNAL( 'MEMORY_MAMAGER', 'OUT', SEGMENT_#).

The non-discretionary security, a Kernel level 2

module called NON_DISC_SEC , is responsible for determining

the authorized access for a given segment. Non-discretionary

security is invoked by the CALL NON_DISC_SEC(UNIQUS_ID,
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ACCESS)

.

The traffic controller, a kernel level 2 module

called TRAFEIC_CONT, is responsible for multiplexing user

processes to virtual processors. The traffic controller

utilizes the Active Process Table (figure 7) as its data

base. traffic controller is invoked by the CALL

TRAFEIC_CONT( 'BLOCK', MSG, WAKING_ID) and CALL

TRAEEIC_CONT( 'WAKEUP', P?.0CESS_ID, MSG). The traffic

controller uses the SIGNAL( 'MEMORTJ1ANAGER' , 'LOAD',

7IRT_MEM_MAP) and SIGNAL ( 'MEMORY_MANAC-ER ' , 'UNLOAD',

WRIT_3IT_MAP ) to load and unload the processes' segments in

memory on the virtual processors. The traffic controller

uses the CALL INNER_TC( 'LOAD_MMU ' , ?RCCESS_ID) AND CALL

INNER_TC('UNLOAD_MMU') to load or unload the memory

management registers of the virtual processors. The traffic

controller uses the CALL I NNER_TC
(

'IDLE' ) to remove a

virtual processor from contention for rescources. Actually

the virtual processor is assigned the lowest priority

available and the idle process is loaded.

The inner traffic controller, a kernel level 3

module called INNSR_TC, provides the multiplexing of virtual

processors to real processors. The inner traffic controller

uses the Processor Table (figure 3) as its data base.

The non-distributed kernel consists of two system

processes. The memory manager process maintains the Active

Segment Table (figure 9) and Global Memory Map (figure 10)

as data bases. Basically it loads segments into memory. The
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memory manager process is responsible for putting segments

in local/global memory based on user's access.

The I/O manager process processes all the external

I/O, this includes I/O to and from the user terminals. The

terminals can be thought of as being hard wired. Specific

terminals have specific access classes** therefore no kernel

passwords are required to determine access class.

The next three sections provide a detailed

discussion of the design.

3 . Supervisor

The supervisor can be invoked by the following

external (user) calls:

SUP_CREATE_SEGMENT(ACCESS_CLASS ,SIZE)

SUP_DELETE_SEGMENT( SEGMENT_#)

LINKER ( SYMBOLICJIAME

)

SDP_BLOC£(KSG)

SUPJfAOUP( PROCESSED, MSG)

SU?_CR2ATE_PR0CESS ( PROCESSED , ADDR3SS_S?ACE )

SUP_DESTROY_PROCESS (PROCESSED)

a. Linker (Supervisor)

The linker exists in a segmented virtual memory

environment. It is only aware of symbolic names and segment

numbers. The choice was made to provide dynamic linking and

not assign segment numbers to segments at compile or load

time; therefore there is a requirement to resolve external

references at run time. In general it is the linker's job to
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intervene on a procedure's external references and direct

the reference to the appropriate segment. To accomplish this

the linker utilizes a "linkage segment" (each process has a

linkage segment). The linkage segment contains an entry for

each segment known to the process.

Each external reference results in a call to the

linker with a parameter that on first reference permits

finding the symbolic name of the desired segment.

LINKER(SYMBOLIC_NAME) The linker searches for

the entry corresponding to the symbolic name. If found it

transfers to the segment number and offset specified in the

linkage segment. If not found (first reference) it must

first determine the segment number and offset. To obtain the

segment number the linker calls the searcher passing as a

parameter the symbolic name. SEARCH(SYMBOLIC_NAME,

3EGMENT_#) The parameter returned is the segment number. The

linker completes the entry in the linkage segment and

transfers control to the desired segment,

b. Searcher (Supervisor)

The searcher is aware of the hierarchical file

system and a set of search rules. It is involked by

SEARCH(SYMBOLIC_MAME, SEGMENT_*). The searcher has the task

of resolving a symbolic name into a path name. The searcher

recieves as a parameter a symbolic name which is processed

and eventually the segment number of the symbolically named

segment is returned. To accomplish this the searcher applies

the 'search rules '[6]. The search rules are a list of path
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names and a simple technique that convert the symbolic name

to a path name (note that this is independent of security).

The searcher utilizes a calling directory and working

directory [6, p. 230]. Once the path name is determined the

searcher calls the segment handler passing the path name as

a parameter. SSG_HND(PATH_NAME , SEGMENT_#) The parameter

returned is the segment number. The searcher returns passing

the segment number as a parameter to the linker.

c. Segment Handler (Supervisor)

The segment handler understands the hierarchical

file system, parent, entry number, access control lists, and

segment numbers. The segment handler deals with virtual

segment faults (access checks) and virtual memory faults. He

is involked by the call SEG_HND(PATH_NAME, SSGMENT_#). The

segment handler gets assistance in performing his tasks by

utilizing the following calls: MEW_HND(SEGMENT_#, SIZE) to

request a segment be put in virtual memory,

DISC_SEC(SEGMENT_#, ENTRY_#) a function to determine the

authorized access (discretionary security) to a segment,

SSG_MGR( 'MAKE_KNOWN', ?AR_SEG_#, ENTRY_#, ACCESS, SEGMENT_#)

a kernel call used to determine the segment number and size

of the segment indicated by the parent segment number and

entry number.

The segment handler maintains a segment table

with information that is necessary to control segments at

the supervisor level (figure -i). The segment number is

unique within the process. Parent segment number is the
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segment number of the parent and entry number is the entry

within the parent for the segment. Access is that access

authorized by the discretionary security policy. Size is the

memory required by the segment. The segment handler is

required to convert path names to segment numbers as well as

to handle virtual segment faults (discretionary security

checks) and virtual memory faults. To accomplish these tasks

the segment handler has three entry points: SEG_HND,

ME(*_FAULT and SEG_7AULT.

SEG_HND(?ATH_MAME t SEGMENT_#) The segment

handler receives as a parameter the path name of the desired

segment. One of the design characteristics of the

hierarchical file system is that access to a segment

requires read access to every segment on the path of the

segment. One by one the segments on the path name must be

made known and the access established. To do this a

recursive algorithm can be utilized that will process each

entry within the path name until the path name is resolved.

The segment number assigned to the desired segment is

returned

.

SEG_HND('MEM_?AULT' f SEGMENT_#) A virtual memory

fault is utilized to support the dynamic memory management

outside the kernel. When a segment that is not in memory is

referenced a virtual memory fault (hardware initiated, the

kernel provides the software interpretation of the fault and

provides a transfer vector to the supervisor) is generated

to the segment handler. The segment handler uses the Segment
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Table to determine the SEGMENT_# and the SIZE of the

segment. The memory handler is called, MEM_HND( SEGM2NT_#

,

SIZE)

.

SEG_HND( 'SEG_FAULT', SEGMENT_#) A virtual

segment fault is used to tell the supervisor that the ACL

for the segment referenced has heen changed since the last

time the segment had heen referenced. The segment handler

must re-establish the discretionary security. This is done

by checking the Segment Table for the parent's segment

number and entry number, calling DISC_SEC ( SEGMENT_#

,

ENTRY_#, ACCESS), check the new access, update the Segment

Table and return.

d. Memory Handler (Supervisor)

It is the job of the memory handler to provide

the dynamic memory management within a fixed size linear

virtual memory. The memory handler utilizes two kernel calls

'SWAP_IN' and 'SWAP_OUT' to perform his tasks.

SEG_MGR( 'SWAP_IN', SEGMENT_#, BASE_ADDRESS ) is used to

request that a segment be brought into memory.

SEG_MGR( 'SWAP_0UT', SEGMENT_#) is used to remove a segment

from memory.

The memory handler is tasked by the segment

handler to put a segment into memory and provided with the

SEGMENT_# and SIZE of this segment. The data base utilized

is a Memory Map (figure 5) which indicates free areas and

allocated areas. Each process has a memory nap which is used

to keep track of the virtual memory allocated to the
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process.

To provide the demand memory management there

are many suitable algorithms [16, p .155] . First fit, best fit

and worst fit are among the possible choices for allocating

free areas. A least recently used algorithm is generally

used for deallocating memory. The used bit is available to

provide information to the dealocation scheme. The CALL

INNSR_TC( 'G-ET_USED_BITS ', USE2_BITS) returns an array of the

status of all the used bits. The CALL

INNER_TC( 'SET_USED_BITS ', USED_BITS) provides an array of

the desired value of the used bits. This provides the

mechanism for an approximating efficient Least Recently Used

algorithm for dealocation [16] . Allocated areas (figure 5)

are identified by (SEGMENT_#, BASE_ADDRESS , SIZE). When

tasked, the memory handler searches for a free area large

enough for the segment. If there is no free area large

enough, the memory handler must utilize the CALL

SEG_MGR( '5VA?_0UT', SEGMENT_#) to establish a large enough

free area. The memory map is updated and the CALL

SEG_MGE( 'SWAP_IM', SEGMENT_#, BASE_ADDRSSS ) is generated.

The memory map is updated and the memory handler returns.

e. Discretionary Security (Supervisor)

This module is only aware of access control

lists (figure 11) and how to search one to determine the

access to be given the current process. The input parameter

is the segment number (of the directory) and entry number of

the ACL for the desired segment. The discretionary security
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searches the ACL for the P?.OCESS_ID of the calling process

and thereby determines the access, which is returned.

4. Distributed Kernel

There is a gate mechanism (domain change) through

which all kernel and supervisor calls pass. Checks are made

to determine proper (complete) parameters and the call is

directed to the proper module. The kernel is the

"priviledged mode" and can execute priviledged instructions.

Calls coming from outside the kernel are:

MAKE_KNOWN(PAR-SEG_#, ENTRY_#, ACCESS, SEGMENT_#)

SWAP_IN(SEGMENT_#, BASE_ADDRSSS

)

SWA?_OUT(SEGMENT_#)

SET_SEG_EAULT( SEGMENT _#)

BL0CK(MSG,WAKING_IB)

WAKEUP (PROCESSED, MSG)

CREATE_PROCESS( PROCESSED, ADDRESS _S?ACE )

START_PROCES3 (PROCESSED, EXECUTION_?OINT

)

ST0P_?R0CESS (PROCESSED)

DESTPOY_PROCESS (PROCESSED)

CREATE_SEGMENT(PAR_SEG_#, ENTRY_#, ACCESS_CLASS

,

SIZE)

DELETE_SEGMENT(UNIQUE_ID)

INNER_TC( 'GET_USED_BITS' , USED_BITS)

INNER_TC( 'SET_USED_BITS' , USED_BITS )

a. Segment Manager (Kernel)

The segment manager's environment is a segmented
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physical memory. The segment manager assigns segment numbers

and is responsible for maintaining the status of all

segments known to a process. The segment manager's primary

data base is the Known Segment Table (KST) (figure 6). The

unique_ID is a unique, system wide identifier assigned to

each segment. They are assigned from an available list of

integers (can be reused when a segment is deleted). Each

segment also has an alias that is the uniaue_ID of and the

entry number in its parent. This provides a means of

determining the unique_ID of a segment from the segment

number of and entry number in the parent.

It should be noted that the reason for the alias is

to prevent the unique_IL from leaving the kernel. The alias

chosen is derivable from information known to the

supervisor, because it relates to the hierarchical file

system. This information is per process and not system wide

in nature. Although the hierarchical structure of the file

system can be derived from the kernel's alias data base, the

contention is that the file system in the kernel is a flat

one. This method also eliminates the confinement problem.

The kernel only requires that the access class of a segment,

when created must be at or above the access class of the

process creating the segment.

The segment manager can be involked by several

calls:

SEG-_MGR( 'MAKS_KNCWN', PAR_SEG_#, ENTRY_#, ACCESS,

SEGMENT #)
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SEG_MGR( 'SET_SEG_EAULT', SSGMENT_#)

SEG_MGR( 'SWAP_IN' t SEGMENT_#, BASE_ADDRESS

)

SEG_MGR( 'SWAP_OUT', SEGMENT_#)

The CALL SEG_MGR( 'MAKE_KNOWN

'

f PAR_SEG_#,

ENTRY_#, ACCESS, SEGMENT_#) . The task is to assign a segment

number to the segment specified. ?AR_SEG-_# and ENTRY_# are

the segment number of the parent directory and the entry

within that directory. The parent segment number is used to

determine the unique_ID of the parent from the KST and this

combined with the entry number forms an alias for the

desired segment. The segment manager searches the KST to

determine if the segment has already been assigned a segment

number (already known). If this is the case the segment

number already assigned is returned. If the segment is not

known then a KST entry must be made. The procedure is as

follows: use the ?AR_SEG_# and the KST to determine the

unique_ID of the parent. Combine the unique_ID of the parent

and the entry number to derive the alias of the segment. Use

the alias to determine the unique_ID of the desired segment

from the alias table (figure 12). CALL

NON_DISC_SEC(UNIQUE_ID, ACCESS) to determine the authorized

access. The access granted is the desired access or the

authorized access, whichever is less. Assign a segment

number. Fill in KST entry. CALL INNER_TC
(

'ADD_SEG '

,

SEGMENT_#, ACCESS). Return assigned segment number.

The CALL S3G_MGR( 'SET_SEG_?AULT ' , SEGMENT_#).

This call is used when the access control list for a segment
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is changed. The segment manager determines the unique_ID of

the segment specified and does a SIGNAL
(
'MEMORT_MANAGER',

'SET_SEG_IAULT', UNIQUE_ID).

The CALL SEG_MGR( 'SWAP_IN '
, SEGMENT_*,

BASE_ADDRESS ) . A request to load the specified segment into

memory at the indicated base address (relative). The segment

manager locates the appropriate KST entry and does a

SIGNAL('MENORY_MANAGER' t 'IN', SEGMENT_*, UNICUE_ID,

BASS_ADDR3SS) and a WAIT ( PROCESSED , ABS_ADD, BOUND). The

memory manager process loads the segment in memory and

returns the absolute address and hound of the segment. The

segment manager notifies the inner traffic controller of the

update in segment information CALL INNER_TC ( 'LOAD '

,

SEGMENT_#, ABS_ADD, 30UND). The segment manager returns.

The CALL SEG_MGR( 'SWA?_0UT ' , SEGMENT_#). The

segment manager is tasked with removing the segment from

memory. He does a CALL INNER_TC ( 'UNLOAD ', SEGMENT_#,

WRITTEN) to obtain the value of the written bit and then to

unload the segment from memory a SIGNAL
(

'MEM0RYJ1ANAGER' f

'OUT', SEGMENT_#, WRITTEN), WAIT( 'MEMORY_MANAGER') and then

returns.

b. Non-Discretionary Security (Kernel)

The purpose of the non-discretionary security is

to enforce the non-discretionary security policy by checking

the access class of the process against the access class of

the desired segment. The access is determined as a result of

this comparison. The non-discretionary security module is
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invoked by the CALL NON_DISC_SEC( UNIQUS_ID ) . An algorithm is

used for interpreting the lattice for comparing the access

classes and determining the authorized access. The

non-discretionary security module returns passing the

access .

C. Traffic Controller (Kernel)

The job of the traffic controller is to schedule

and control processes. The traffic controller utilizes an

Active Process Table (system vide) (figure 7) and a Virtual

Processor Table (figure 8) to maintain the necessary

information about each process. Each virtual processor has a

priority (this priority is used by the inner traffic

controller when the virtual processors are multiplexed on

the physical processors). PROCSSS_ID is a unique identifier

for each process, which can be mapped to the user. STATE

refers to the present state of a process (ready, block,

stop, run). AFFINITY is used to specify a binding of a

process to a virtual processor either by virtue of

dissimilar processor characteristics (strong) or the process

has segments in local memory of a processor (weak). PRIORITY

is used to determine a scheduling behavior. LOC_EX_STATS

provides the means for keeping track of the execution state

of the process and is a pointer to a storage area that

contains information about the execution state (figure 13).

The traffic controller schedules the processes

to run on virtual processors. There is a virtual processor

for every loaded process. Each virtual processor has a low
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priority process (IDLE) so that the processor is never

stopped. The traffic controller provides the BLOCK and

WAKEUP functions as a means of providing inter-process

communication. -

The traffic controller would have a priority

driven scheduling algorithm to determine what process to

schedule. This could he a simple first come first served

algorithm or it could he a complex time sharing algorithm to

dynamically change process priority. The method utilized in

this thesis is that the traffic controller works on the

premise of scheduling the ready process with the highest

priority and the proper affinity whenever a virtual

processor is availahle.

Whenever a process blocks itself it is in fact a

call to the traffic controller. The traffic controller

changes the state of the process to blocked, The traffic

controller now has the option of reassigning the virtual

processor to another user process or scheduling the idle

process (CALL INNEE_TC( 'IDLE' ) ) . In the latter case there is

no loading or unloading of the process involved and this can

be beneficial to control thrashing. Since there are other

virtual processors competing for the processor the traffic

controller scheduling algorithm will try to leave the

process loaded. When the process is put back in the run

state it will be in contention for the processor. If another

process is to be assigned to the virtual processor then the

old process must be unloaded. First the status of the
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written bits are determined (CALL INNER_TC ( 'WRITTEN_BITS ' ) )

.

The execution state of the old process is unloaded (CALL

INNER_TC( 'UNLOAD_MMU', PROCESSED, LOC_EX_STATE ) )

.

SIG-NAL( 'MEMORY_MANAGER', 'UNLOAD', WRIT_BIT_MA? ) and

WAIT( 'MEMORY_MANAGER', VIRT_MEM_MAP ) are generated, the

virtual memory map of the process is returned by the manager

process process. The execution state and the virtual memory

map of the old process are saved. Now the new process can be

loaded. The virtual memory map of the new process is passed

to the memory manager process, a SIGNAL( 'MEMORY_MANAGER '

,

'LOAD', VIRT_MEM_MAP) and WAIT ( 'MEMORY_MANAGER ' ,

ABS_ADD_MAP) are generated. A map indicating the absolute

address of the loaded segments is returned by the memory

manager process. The execution state of the new process is

loaded (CALL INNSR_TC
(

'LOAD' , LOC_EX_STATE , A3S_ADD_MAP ) )

.

This completes the process of switching user processes on a

virtual processor.

The TRAFTIC_CONT( 'WA5EUP", ?FOCSSS_ID) is also

a call to the traffic controller. If the process specified

by PROCESS_ID is in the blocked state the traffic controller

puts that process in the ready state, he checks the

priorities of the running processes and if there is a lower

priority process in the run state the virtual processor it

is running on is sent a pre-empt interupt CALL

INNER_TC( '?RE_EMPT_INT', VIRT_?R0_ID ) and the traffic

controller returns. The pre-empt interupt forces the

pre-empted virtual processor to transfer control to the
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traffic controller. The traffic controller puts this process

in the ready state and then schedules the highest priority

process, subject to affinity, as indicated above. If the

idle process was running on the virtual processor and if the

process loaded in that virtual processor is in the ready

state it could be assigned the virtual processor by the CALL

I\'NER_TC('UNIDLE', VIR_PR0_ID ) . This has the effect of

unloading the idle process and loading the process that was

previously loaded. It should be noted that except for the

special case of the idle process, switching processes is

lengthy and, if done too frequently, could lead to thrashing

problems

.

The traffic controller can be invoiced by the

calls: 'STOP_PROCSSS', 'CREATE,PROCESS '
, 'START_PROCESS*

,

and 'DESTROY_?ROCESS '.

'CREATE_PROCESS ', ?ARAMETER_LIST is used to

begin a new process. An entry for the process is made in the

active process table.

'ST0P_PR0CES3 ' is used to put a process in the

STOPPED STATE and the process is removed from the active

process table and put in the stopped process table (SPT).

The SPT is similar to the APT but it is referenced

infrequently.

'START_PROCES3 ' is used to move a process from

the stopped process table (ST?) to the active process table

and also from the stopped state to the ready state.

'DESTROY PROCESS' is used to terminate the life
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of a process. The process is removed from the APT or SPT and

the memory manager process is signaled to disconnect the

process from any connected segments.

d. Inner Traffic Controller (Kernel)

The inner traffic controller multiplexes the

virtual processors with the physical processors [18] . There

is a many to one correspondence from the virtual processors

of the traffic controller to the physical processors. In

addition there are the virtual processors assigned the

system processes. The inner traffic controller uses the data

case shown in figure 14. He is also responsible for the

mapping registers (hardware segment descriptors) which

contain the information shown in figure 15. Each physical

processor has only specific virtual processors that can be

multiplexed on it. Each virtual processor has a priority and

a state (running, ready and wait). The inner traffic

controller allows the virtual processor with the highest

priority in the ready state to run on the processor. The

wait pending bit[3,p.30J is used to avoid a race condition

between the signal and wait primitives. The inner traffic

controller is able to swap the virtual processors in and out

of the processors by loading and unloading the appropriate

execution state and mapping registers.

The inner traffic controller provides

inner-process as well as intra-process services. He is

invoked by a number of calls requesting information

contained in the mapping registers or providing information

??
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to update the mapping registers. To supplement the hardware

fault within the memory management registers the inner

traffic controller maintains a set of software faults for

each segment (segment fault, memory fault). This allows the

inner traffic controller to interpret the hardware fault and

venerate an appropriate virtual fault.

INNER_TC('ASSIGN', SSGMENT_#, ACCESS) -a new

segment number has been assigned with the indicated access.

Load the appropriate register with the access, set the fault

bit and the software memory fault.

INNER_TC( 'LOAD', SEGMENT_#, ABS_ADD, BOUND) - a

segment has been loaded into memory, load the appropriate

addresses in the mapping register and reset the memory

software fault and fault bit if appropriate.

I NNERJEC ('UNLOAD', SEGMENT_#, WRITTEN) - the

segment is being removed from memory, set the memory

software fault and the fault bit and return the value of the

written bit.

INNER_TC( 'WRITTEN_3ITS', BITS) - an array

reflecting the value of the written bits is returned.

INNER_TC('GET_USED_3ITS', USED_BITS) - an array

reflecting the value of the used bits is returned.

INNER_TC( 'SET_USED_BITS', USED_BITS) -an array

is received reflecting the desired value of the used bits.

The inner traffic controller sets the used bits to the

desired values. The hypothesized hardware used bits are also

set by hardware whenever a segment is referenced.
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INNEE_TC( 'LOAD_MMU', LOC_EX_STATE, AES_ADD_MAP)

- a request to load a virtual processor with a new process

and create the memory management unit registers.

INNER_TC( 'UNLOAD_MMU', LOC_EX_STATE) - a request

to unload a virtual processor and save the execution state

in the indicated location.

INNER_TC('SET_SEG_EAULT', PROCESSED, SEGMENT_#)

- a request to set the software segment fault in the data

base (figure 14)

.

INNEP_TC( 'IDLE') - a request to load the idle

process and reduce the priority of the virtual processor to

the lowest possible.

INNER_TC( 'PRE_EMPT_INT', VIRT_PRO_ID) - a

request to generate a virtual pre_empt interupt to the

indicated virtual processor. The inner traffic controller

determines which physical processor the virtual processor is

in and sends an appropriate hardware interrupt to that

processor. If the virtual processor is in the wait state the

interupt is held pending until the virtual processor is put

in the ready state.

INNEE_TC( 'UNIDLE', 7I?.T_P30_ID) -a request to

unload the idle process, reinstate the loaded process and

restore the priority of the virtual processor.

The inner traffic controller is also invoiced by

the signal and wait. Signal and wait provide the

synchronization between the system processes and the user

processes. The inner traffic controller utilizes the signal
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and wait primitives to change the state of the virtual

processors and thereby control the multiplexing of the

virtual processors to the real processors, based on their

priorities .

5 . Non-Distributed Kernel

The non-distributed kernel consists of the system

processes. These processes have the characteristic that they

function asynchronous to each user process. The system

processes, as they are called, can reside in the local

memory of each processor but their shared data bases will

reside in global memory.

a. Memory Manager (System Process)

The memory manager process utilizes the Active

Segment Table (figure 9) as a data base. The portion of the

AST that contains system wide information will reside in

global memory. The portion of the AST that only relates to a

single processor can be distributed and will reside in local

memory.

The memory manager process is responsible for

two basic tasks: requests to brins* segments into memory and

requests to remove segments from memory. Other processes

task him by use of the signal and wait primitives. The

memory manager process has four tasks (entries): IN, OUT,

LOAD, and UNLOAD. The IN and OUT are requests to load and

remove a single segment. The LOAD and UNLOAD are requests to

load and unload a number of segments.
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The task to load a segment requires several

considerations. Is the segment currently active (AST entry)?

If it is, is it presently residing in global memory? If it

is not in global memory does the access of the added process

reauire that it be moved to global memory? How to alert the

processes with copies? The AST provides all the necessary

answers to render the proper decision as to where to load

the segment

.

At this time a better look: at the AST is called

for. It should be noted that every segment that presently

resides in memory is active and its address can be

determined from the AST. The virtual processor that it is in

can also be determined as well as the segment number by

which it is known within that virtual processor.

When a segment must be loaded into global memory

(based on user access) there is a need to notify processors

with a copy, of the segment, of the segments relocation.

After the segment has been loaded in global memory, the

memory manager process, tasked to load the segment, can

determine form the AST in which processors the segment is

presently loaded. These processors are sent

SIG-NAL('MEMORY_MANAGER', 'MOVE', UNIQUE_ID, ABS_ADD) where

ABS_ADR is the global address of the segment. Zach memory

manager process that receives the signal( 'move ' ) will check

his local AST to determine which processes have the segment

loaded and the segment number assigned and then CALL

INNER_TC( 'CHANGE_ADD', PROCESSED, SEGMENT.*, A3S_ADD) for
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each process that has the segment in local memory. The inner

traffic controller will update the mapping register to

reflect the new absolute address.

If a user requests access, and another user

already has write access, there is a need to get the current

copy moved to global memory. In this case the memory manager

process attempting to load the segment must

SIGNAL! 'MEMORY_MANAGER' , 'M0V2_IT"
t

UNIQUE_ID) and

WAITf PROCESS_ID, MSG). The processor with the current copy

of the segment was determined from the AST. The memory

manager process with the current copy, after receiving the

signaK 'move_it ' ) , will relocate the segment in global

memory, CALL INNER_TC ( 'CHAMGE_ADD ', PROCESSED, SEGMENT_#,

ABS_ADE) and SIGNAL( 'MEMORY_MANAGSR' , 'MCVEL', UNIQUS_ID,

ABS_ADD). It should be noted that there is some

synchronization required between the memory manager process

and the inner traffic controller to insure the segment had

not been written in during the time it took to move it and

change the address.

As segments are loaded and unloaded the AST is

updated appropriately. When a segment is removed from memory

if it has been written in the segment is copied baci to

secondary storage.

The AST also provides a method of notifying

processes of segment faults. If the memory manager process

(for each processor connected with a loaded connected

process) is notified when the access control list for a
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segment is changed by SIGNAL( 'MEMORY_MANAGER'

,

'SET_SEG_FAULT', UNIQUE_ID) then every loaded connected

process can be notified fey CALL INNER_TC
( 'SET_SEG_FAULT '

,

PROCESS_ID, SEGMENT_#). For processes that are not loaded,

the traffic controller is similarly called to set the

software segment fault (figure 13). This means that the

software segment fault will have to be set for connected

processes when a segment is removed from the AST.

b. I/O Manager

The I/O manager is responsible for the external

I/O. There could be more than one I/O manager process,

conceivably one for each external device? corresponding

kernel calls must be provided. For example there could be an

I/O manager that handles all the external I/O to and from

the user terminals. It is sufficent, at this point, to say

that the I/O manager exists and handles external I/C.

6. Follow On Work

It should be re-emphasized that this is a design

and not an implementation. Although the detail is left for

further work:, the design proposed forms a substantial basis

upon which an implementation can be realized. The system

process structure is provided for in the design? however,

the system processes have been treated lightly and require

additional work. The user interface (supervisor calls)

presented is by no means an exhaustive list and could use

further extension for additional supervisor services.
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IV. CONCLUSION

The state of the art techniques and design methodology

used to design secure operating system for multiple mini and

maxi processors have been found applicable to the multiple

microprocessor environment. The principal conclusion is that

the operating system design in this thesis will make it

possible to more effectively use modern microprocessors than

has been possible in the past.

One question that is addressed concerns the operating

system's ability to scale. Systems now available can support

four or five microprocessors. Increasing that number of

microprocessors quickly brings serious degradation because

of the increased bus contention. The expected scaling factor

is much better for this design. The bus contention has been

significantly reduced - segmentation permits effectively

using local memory instead of arlobal memory.

This design supports a family of operating systems, not

just one designed for a specific application. Sub-sets of

this system can be constructed to provide the desired

functions because the design used a loop free structure.

Included family members range from a core resident tactical

system to a virtual memory time sharing system.

Configuration independence is supported in this design.

One or many physical processors can be added or subtracted

from the system without affecting the workability of the
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system. Similarly memory can be added or subtracted.

Security has been designed into this system. It was not

added on as an afterthought. This design used a security

kernel based upon a mathematical model to insure the

security. A secure multilevel environment is provided by

this system.

Commercial devices will soon be widely available to

implement this operating system. The Zilog Z8000 series,

microprocessor, for example will provide the segmentation

and multiple domains necessary for an effective system. The

present data buses are compatible and when used with this

operating system allow a significant number of processors to

be effectively used.
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