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ABSTRACT

This thesis examines the local delivery operations at

the Naval Supply Centers in Oakland and San Diego. The

local delivery problem is formulated as a model applicable

to these supply centers. Specifically, the model involves

routing a fleet of vehicles from a central depot to each of

a set of customers so as to satisfy their demands. Twelve

heuristic solution methods applicable to this model are

reviewed and illustrated with examples. They are also com-

pared with respect to quality of resulting solutions and

computational efficiency. Finally, recommendations on

improving the routing of vehicles at the two Naval Supply

Centers are made.
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I . INTRODUCTION

Managers at large Naval Supply Centers have a tremendous

need to be able to control, plan and document the distribu-

tion of material. Large volumes of material, tight delivery

requirements, and a lack of planning data limit the ability

of transportation managers to efficiently manage the distri-

bution of material.

To help alleviate these problems, the Naval Supply Sys-

tems Command (NAVSUP) is sponsoring the development of the

Navy Automated Transportation Documentation System (NAVADS)

.

This system's objectives are to maintain a data base (such

as weight and cube data) for support of its various modules,

to provide control over mode of shipment, to automate prepara-

tion of shipping documentation, to provide a transshipment

monitoring and control system and to provide a local delivery

scheduling system [Ref. 21].

It is the local delivery scheduling system that is the

subject of this thesis. The author has investigated the

local delivery operations at the Naval Supply Center (NSC)

in Oakland, California and the NSC in San Diego, California

for the purpose of selecting a vehicle routing algorithm that

can be automated. This investigation led the author to a

survey of "vehicle routing problem" (also called the local

delivery problem, or the vehicle scheduling problem) solution

techniques found in the operations research and industrial





engineering literature. The basic delivery model encompassed

in this problem is applicable to the delivery operations at

both Oakland and San Diego.

The local delivery operations at Oakland and San Diego

are described first to give the reader an understanding of

the real local delivery problem. Next the vehicle routing

problem model is described and solution techniques are sur-

veyed. Additionally, computational experience that operations

researchers have had with these solution techniques is pre-

sented. There are several classical and theoretical problems

related to the vehicle routing problem. These are discussed

in Appendices A through C. The capabilities of a few currently

available automated local delivery scheduling systems are

described in Appendix D.





II. CURRENT LOCAL DELIVERY OPERATIONS

The local delivery operations at the supply centers in

Oakland and San Diego are different in many respects—mostly

in the volume of material moved. However, in the case of

both San Diego and Oakland, deliveries are made from central

depots to customers that are not collocated with the respec-

tive supply centers. San Diego makes deliveries from three

separate centers of supply all within six miles of each other.

However, the items stored at each location are different, so

there is no decision required as to which depot delivers to

which customer.

The descriptions of the local delivery operations at

Oakland and San Diego that follow are somewhat more detailed

than is necessary to justify the application of the "vehicle

routing problem" model of Chapter III. However, it is felt

that an in-depth understanding of these operations is necessary

for anyone attempting to implement a Navy-wide automated system

for vehicle routing.

A. BAY AREA LOCAL DELIVERY

The Bay Area Local Delivery (BALD) system of the Naval

Supply Center at Oakland delivers to customers within approxi-

mately 10 miles of the center. According to Hrabosky, Owen,

and Popp [Ref. 15: p. 37-41] BALD services 162 shore activi-

ties in the Bay Area plus ships in the bay. Recently the

cities of Monterey, Stockton, and Tracy as well as Sharpe





supply depot in Sacramento have been delted from BALD runs.

Thus BALD makes deliveries to approximately 148 customers.

Deliveries are also made to the Military Overseas Terminal

Bay Area (MOTBA) in Oakland for further movement by water

and to Travis Air Force Base , McClellan Air Force Base, San

Francisco Airport and Oakland Airport for further movement

by air. The major points of delivery can be clustered into

eighteen distinct geographical groupings as listed in Table

II-I. Customers are proximately located in these groups,

and therefore all customers within each group can be con-

sidered as one customer for the purpose of routing vehicles.

There are a few customers that do not fall within these

clusters. However, the frequency and volume of delivery to

these customers does not merit additional groupings (for

example, the Naval Reserve Center, San Jose) . Bay area

customers are depicted on the map in Figure 1.

Currently there are four regularly scheduled routes

(called "stakes") that service customers around the bay on

a daily basis. The major customers on each stake along with

measurement ton data for each stake are given in Table II-II.

A measurement ton is a rough estimate of 40 cubic feet. In

addition to these four bay area stakes, two trucks per night

are sent to Travis A.F.B., one goes to the terminal for logis-

tics support of major Navy Fleet Centers within the continental

United States (QUICKTRANS) and the other goes to the Military

Airlift Command (MAC) terminal. All material that is to be

10





TABLE I I -I

CLUSTER LOCATION

1 NSC Oakland
2 Alameda
3 Point Molate
4 Mare Island/Skaggs Island
5 Concord
6 Moffett Field
7 Treasure Island/Yerba Buena

Island
8 Hunter' s Point
9 San Bruno

10 Presidio, San Francisco
11 Oakland
12 Naval Hospital Oakland
13 San Francisco Piers
14 Travis A.F.B.
15 McClellan A.F.B.
16 Government Island
17 Oakland Airport
18 San Francisco Airport

further transported within the United States and is suitable

for shipment by commercial airline goes to the QUICKTRANS

terminal. All other air cargo goes to the MAC terminal. A

commercial carrier also makes a daily trip from the NSC to

the QUICKTRANS terminal. Material destined for the MAC

terminal can also be sent on this truck because there is a

shuttle that moves material back and forth between the two

terminals. Finally, a truck is sent weekly to the terminal

for logistic airlift support of Air Force installations

(LOGAIR) at McClellan A.F.B.

Material that is to be shipped by BALD is brought into

the receiving section of building 341 (BALD warehouse) . This

material enters the building on pallets, but often is not

11
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TABLE II-II

MAJOR CUSTOMER

Point Molate
Mare Island
Concord

Treasure Island
S.F. Piers
Presidio
Hunter's Point
NAVFAC, San Bruno
Moffet Field

Alameda
Hospital, Oak

NARF , Alameda

FREQUENCY MEASUREMENT STAKE
TONS

Daily * 1

Daily * 1

Daily * 1

22 MT

Daily * 2

Thrice Weekly * 2

Weekly * 2

Daily * 2

Weekly * 2

Daily * 2

17 MT

Twice Daily * 3

Weekly * 3

4 MT

Twice Daily 4 MT 4

Notes

:

1. No individual consignee measurement ton data is
maintained by the NSC.

2. Stakes 1 and 2 use a 40 ft van and depart the BALD
warehouse at 0800 daily.

3. Stakes 3 and 4 use a 2-=- ton stake truck and depart the
BALD warehouse at 1000 and 1400 daily.

13





arranged by customer. Therefore, the material must be taken

off the pallets and sorted onto pallets by customer. The

material is then staged for delivery in a separate area for

each customer on the warehouse floor.

When the drivers from stakes 1 and 2 have completed their

daily stake run, they spot their trailers at the BALD ware-

house so that they may be loaded for the next day's deliver-

ies. Material on the floor for next-day delivery on stakes

1 or 2 is then loaded into the proper van trailer. In

addition, material coming into the warehouse after the trailers

are spotted and destined for the next day's delivery is loaded

immediately into the appropriate van trailers.

When material comes into the BALD receiving section, the

warehouseman removes the shipping documents from the material

and takes them to the shipping clerk. The shipping clerk

annotates these documents with the date and time that it

is expected that the material will be delivered. Material

for delivery on stakes 3 and 4 received before 1400 is dated

as shipped the same day. Material going to ships is held in

the BALD warehouse until the ship arrives in port. All

other material is dated for next-day delivery. The annotated

shipping document is considered to be proof of shipment of

the material and also serves to stop the imaginary clock

that tracks the transportation hold time. The actual time

the truck departs is not recorded on these documents nor

is there a procedure for obtaining proof or time of receipt

by the actual customer. No individual customer measurement

14





ton or weight and cube data are collected either, although

the measurement tons on each truck leaving building 341

are recorded.

The trucks that are used by the BALD system for delivery

do not belong to NSC Oakland, but are rented on an hourly

and mileage basis from the Public Works Center of San Fran-

cisco (PWC) . PWC also provides the drivers for these trucks.

Thus BALD does not run a dispatching operation but merely

clusters customers into stakes.

A normal round trip takes about 6.5 to 8 hours on stakes

1 and 2 but takes less than 4 hours on stakes 3 and 4. The

drivers on these regular stakes are the same each day. Thus

drivers are familiar with where and to whom delivery is to

be made. The drivers are told by BALD personnel which cus-

tomers on their stakes are to receive delivery. The drivers

then pick their own routes consistent with the order in which

the truck has been loaded. Each driver maintains a trip log

for each trip that he makes. In this log the driver records

the arrival and departure time for each stop that he makes

as well as the odometer reading (see Figure 2)

.

Trips that are not part of a regularly scheduled run are

called "overflow" and are frequently made for the following

reasons: material requiring a special truck must be moved

(e.g., a ship's propeller); an emergency request must be

filled; delivery must be made to a ship. There is no standard

procedure for handling overflow material. In the case of

15
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large material (e.g., steel), arrangements are made in

advance with PWC to provide a truck to BALD. The truck is

loaded at the storage location of the material and moved

immediately to its destination. Thus large material never

goes through building 341. Material requested by ships is

held in the BALD warehouse until the ship reaches port. Thus

deliveries made to ships are very large volume shipments.

Arrangements are usually made in advance for these deliver-

ies to be made over a two or three day period. These prior

arrangements give BALD time to request trailers from PWC

so that this material may be preloaded. Emergency requests

are handled by requesting a truck from PWC for use as soon

as possible.

When BALD requires an overflow truck, it does not contact

PWC directly. Instead, it calls the Labor and Equipment

Branch which is responsible for all vehicle usage at the

NSC. Labor and Equipment in turn calls PWC requesting the

vehicle. BALD has no control over the overflow drivers.

The major customers receiving overflow deliveries are listed

in Table II-III.

The trucks that make deliveries to Travis A.F.B. and

McClellan A.F.B. are paid for on the same job order number

as the rest of the BALD deliveries. However, the trucks

are requested by the packing foreman and not by BALD.

The Public Works Center runs two motor pool and dispatch

operations; one is at the supply center at Oakland, and the

other is in Alameda. Although PWC is responsible for providing

17





TABLE II-III

MAJOR CUSTOMER

NAS Alameda

NARF Alameda

Mare Island

Alameda Facility

Ships (NAS Alameda)

MOTBA

Ships (Mare Island)

Hunter's Point

Ships (Hunter's Point!

Ships (San Francisco)

AVERAGE NUMBER OF AVERAGE
DELIVERIES PER WEEK MT PER

DELIVERY

14 7

14 7

5 10

4 24

4 14

2 14

2 14

2 12

1 6

1 6

vehicles and transportation to many government activities

throughout the San Francisco Bay Area, most trucks are dis-

patched in support of NSC Oakland. PWC can respond to nor-

mal requests for vehicles within one day. Emergency re-

quests for vehicles can be handled within the same day by

shuffling dispatches.

The PWC operation is not a budgeted activity, but instead

receives its operating funds by charging customers for the

support that it renders. The rental rates for trucks and

trailers regularly used by BALD and the hourly wage rate

for drivers for FY 1981 are listed in Table II-IV. The PWC

18
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bills its customers for no more than eight hours of trailer

use each day which permits the spotting of trailers at no

additional charge. They bill for driver and truck usage

based upon the actual hours used. Drivers receive overtime

for any work in excess of eight hours per day or forty hours

per week. Currently, there is no extra charge for emergency

requests beyond the possibility of overtime.

The vehicles and drivers used by BALD are paid for by

the Naval Supply Systems Command (NAVSUP) in Washington,

D.C. , on the second destination job order #1687011. Thus,

there is no incentive for NSC Oakland or PWC San Francisco,

or the customer to be efficient in the use of vehicles. In

particular, there are frequent delays in the unloading of

trucks. The unloading of trucks is the responsibility of

the customer, and drivers sometimes must wait up to half a

day to get their trucks unloaded. On some occasions, vehicles

requested to make emergency deliveries to the Naval Air Re-

work Facility (NARF) on Alameda have had to wait because no

one at the NARF knew where the material was to be delivered.

Both BALD and PWC are very interested in doing their

best to service customers in a timely fashion. In order to

meet Uniform Military Movement Issue Priority System (UMMIPS)

delivery time frames, standards for transportation hold times

have been set by NAVSUP as follows: issue group 1 items have

one day; issue group 2, three days; and issue group 3,

seven days. The transportation hold time begins once an

item has been picked at the warehouse. AS a result the

20





transportation hold time clock actually starts before the

item reaches the BALD warehouse. The clock on an item stops

when the shipping clerk annotates the shipping document.

The responsibility for moving material from the storage

location to the BALD warehouse does not belong to BALD. In

fact BALD has no knowledge of shipments until they reach the

BALD warehouse.

As a result of this lack of information, there is a delay

associated with moving material to BALD. The average trans-

portation hold times in days for the months of July 19 8

through November 19 8 by issue group are listed below.

IG1 IG2 IG3

JUL 2.24 1.63 2.88
AUG 2.18 2.31 2.32
SEP 1.83 1.75 2.64
OCT 2.0 2.0 3.05
NOV 1.59 2.23 2.17

NAVSUP STD 1.0 3.0 7.0

Notice that the standard for issue group 1 is violated in

every case. This problem cannot be attributed to the BALD

section, because all material coming into BALD, regardless

of issue group, is delivered on the next scheduled truck.

This fact explains why there is little difference in the

hold time associated with each issue group.

In an attempt to access the efficiency of the BALD opera-

tion, the author examined driver's trip loss, production

This data was obtained from BALD production reports

21





reports and billing statements against the BALD job order num-

ber. Additionally, the author rode with stakes 3 and 4. An

examination of 3 5 trip logs totaling 197 hours of truck usage

from the months of November and December 1980 revealed that 27%

of the total time was spent servicing the customer/ 39% of the

time was travel time and 34% of the time included waiting to

be loaded, driver breaks and other miscellaneous actions.

It was interesting to note that in determining truck usage,

PWC usually rounded up to the nearest half hour. Of the re-

cords examined, round-up accounted for about 4% of the total

time. The average time spent actually servicing the customer

was 42 minutes per customer.

The production and cost figures associated with job order

#1687011 for the period October 1979 through December 1980

are listed in Table II-V. The measurement ton figures for air

cargo have been adjusted downward by 1/3 because approximately

1/3 of the air cargo is sent by commercial carrier and there-

fore not included in the costs.

In riding on stake 4, it was found that the NARF does not

have a central receiving facility. Therefore, the truck driver

must make several local stops at different warehouses.

B. SAN DIEGO LOCAL DELIVERY

The Naval Supply Center in San Diego makes local deliveries

to about fifty shore activities, including Long Beach, Camp

Pendleton, and ships in San Diego harbor. There are three

separate NSC facilities. All rackables , binables, chill and

22





TABLE II-V

Measurement Tons

MONTH MT AIR MT BALD MT TOTAL TOTAL COST $/MT

8049 8535 54,642 6.40

7839 8347 54,079 6.48

6403 6995 41,738 5.97

8159 8594 52,852 6.15

10122 10699 55,410 5.18

9174 9748 49,398 5.07

10005 10496 52,787 5.03

8666 9533 45,283 4.75

8741 9291 42,591 4.58

9441 10160 52,712 5.19

7986 8557 30,786 3.60

8645 9405 44,361 4.72

9574 10394 38,404 3.69

6327 6901 44,278 6.42

5722 6227 37,492 6.02

Oct 79

Nov 79

Dec 79

Jan 80

Feb 80

Mar 80

Apr 80

May 80

Jun 80

Jul 80

Aug 80

Sep 80

Oct 80

Nov 80

Dec 80

486

508

592

435

577

574

491

867

550

719

571

760

820

574

505

frozen items are stored at the Harbor Boulevard facility (also

the administrative headquarters for the NSC) . California Ice,

a commercial firm, stores all fresh fruit and vegetables and

is located on Imperial Street about two miles south of the

Harbor Boulevard facility. All other material, including dry

provisions, are stored at the National City Annex (NCA) which

is about six miles south of the Harbor Boulevard facility.

There are two other NSC facilities in the San Diego area, the

NSC fuel division is located at Point Loma and the Naval Air

Station annex on North Island. Neither of these facilities

are involved in local delivery.

23





All material except frozen or chill stored at the Harbor

Boulevard facility and destined for ships is consolidated at

Building 12 on the naval pier across the street from the

main facility. This material is then moved to the NCA for

subsequent delivery. Food items destined for ships (from

either Harbor Boulevard or California Ice) are trucked directly.

All shore activities receive delivery directly from the facility

where the items are stored.

Except for aircraft carriers, ships dock at the National

City piers. The carriers dock at the NAS on North Island.

The NCA makes deliveries to ships at the National City piers

with straddle trucks. Straddle trucks are vehicles specifically

designed to carry palletized material short distances (e.g.,

between warehouses) . A straddle truck only services one ship

before returning to the annex for another pick-up. The NCA

also provides fork lifts to the ships to aid in unloading trucks

from either Harbor Boulevard or California Ice. All shipments

to the carriers on North Island are sent by truck.

The transportation hold times by issue group are listed

below.

The standards for transportation hold time are the same

as those for Oakland. Notice that as with BALD, there is a

problem in meeting these standards, although in this case,

it is issue group 3 instead of issue group 1 that presents

2
This data was obtained from monthly production reports

of the local delivery section, NSC San Diego.
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MONTH IG1 IG2 IG3

Apr 80 1.55 4.52 7.19

May 80 .84 2.44 8.81

Jun 80 1.05 4.08 9.87

Jul 80

Aug 80

. —— ——Km nn a T77\ XT A r> T T7>

.59 2.58 9.87

Sep 80 1.22 4.34 9.14

Oct 80 1.21 5.03 9.09

Nov 80 .85 2.74 5.98

Dec 80 1.13 2.20 10.78

Jan 81 1.22 3.0 7.82

NAVSUP STD 1.0 3.0 7.0

the problem. Currently, the choice of what material to deliver

is made as material enters the delivery section. As with

BALD, no advance knowledge of delivery requirements is avail-

able to the delivery section. Thus local delivery is planned

on a day to day basis.

The trucks used by the NSC to make deliveries are rented

from PWC San Diego which is located in National City. Unlike

Oakland, trucks are rented on a monthly basis and the drivers

are navy personnel assigned to the NSC. The NSC is responsi-

ble for fueling the trucks and for scheduling maintenance.

However, actual maintenance work is performed by PWC.

Deliveries of chill, frozen, and fresh food items are

most frequently made by 40 ft. refrigerated vans, although

smaller trucks are available. Delivery of other material

is most frequently made with 40 ft flat-bed trucks. Other

types of trucks may also be used. A list of trucks used for

25





local delivery along with rental rates is displayed in

Table II-VI.

Each truck is equipped with a two-way radio capable of

contacting the dispatcher located at Harbor Boulevard.

Drivers contact the dispatcher upon arriving at and departure

from customers and report any problems in making delivery.

Drivers also fill out a log that lists location, arrival

time, departure time, and the number of pallets hauled. A

sample log is shown in Figure 3.

The San Diego local delivery system delivers about 35,000

pallets of material per month via navy carriers . An addi-

tional 5000 pallets per month are shipped through a commercial

carrier. The numbers of pallets delivered each month from

October 1979 to January 1981 are listed in Table II-VII

.

Notice that San Diego reports production in pallets and

Oakland in measurement tons. These two units are approxi-

mately the same in that both are rough estimates of 4 cubic

feet.

Both the commercial and navy carriers make deliveries to

Long Beach. Long Beach, an annex of the NSC in San Diego,

serves ships and facilities in the Long Beach area. The

average transport time to Long Beach by commercial carrier

is about three days whereas the navy carrier transport time

is only one day.

Local customers are divided into zones as shown in Figure

4 so that they know when to expect deliveries of material.

Zone deliveries are made according to the following schedule:
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TABLE I I -VI

CCDE DESCRIPTION

H 0308 Truck, 1/2 T, Utility

G 0313 Truck, 1/2 T, Pickup

G 0316 Truck, 1/2 T, Pickup

H 0327 Truck, 3/4 T, Pickup

H 0330 Van, Carryall

F 0342 Truck, IT, Pickup

I 0345 Truck, IT, Step

J 0443 Truck, 2T, Dump

J 0445 Truck, 2T, Stake

M 0590 Truck, 5T, Van

M 0603 Truck, 5T, Stake

M 0604 Truck, 5T, Truck Tree

M 0605 Truck, 5T, Van

M 0614 Truck, 7-*- T, Truck Tree

M 0617 Truck, 10T, Trk/Tractor

M 0633 Truck, 10T, Trk/Trac 6x4
Diesel Powered

N 0645 Truck, 15T, Truck/Trac

P 0817 Trailer, 20T, Van

P 0820 Trailer, 20T, Van Refrig

P 0827 Trailer, 51-60T,

P 0860 Trailer, Tank, 400 Gal

P 0890 Trailer, Tank 4-6K Gal

FY81

Hourly Mileage Man

1.08 .15 173

1.03 .15 165

1.03 .15 165

1.08 .15 173

1.08 .15 173

1.08 .16 173

1.08 .16 173

1.03 .21 165

1.03 .21 165

1.54 .21 246

1.54 .21 246

1.54 .21 246

1.54 .21 246

1.69 .16 270

1.69 .16 270

1.69 .16 270

2.67 .26 427

.46 74

.46 74

.46 74

.10 16

.46 74
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TABLE II-VII

Total Pallets of Material Moved by N9C Trucks

MONTH PALLETS

Oct 79 32,136

Nov 79 31,184

Dec 79 29,081

Jan 80 38,166

Feb 80 33,811

Mar 80 35,013

Apr 80 37,455

May 80 35,608

Jun 80 36,788

Jul 80 39,846

Aug 8 34,631

Sep 80 35,064

Oct 80 37,940

Nov 80 28,491

Dec 80 36,769

Jan 81 38,625
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ZONE 6

ZONE 7

Broadway Complex

ONE 9

San Diego Zone Map

FIGURE k

30





Zone 1—Monday and Thursday
Zone 2—Monday and Thursday
Zone 3—Tuesday and Friday
Zone 4--Monday through Friday
Zone 5—Monday and Wednesday
Zone 6—Tuesday and Thursday
Zone 7—Monday and Wednesday
Zone 8—Tuesday and Friday
Zone 9—Monday through Friday

Provisions, however, are delivered anywhere on any working

day regardless of the zone.

Shore activities can generally accept delivery any time

during the working day. Ships usually can accept delivery

any time during the day unless scheduled to leave port, in

which case delivery must be made before a specified time.

They prefer to receive in the morning, however.

The costs associated with the local deliveries around

San Diego were not obtained in this work. However, twenty

drivers' logs totaling 126 hours were examined. It was found

that 33% of the total time was spent unloading at customers,

31% of the time was spent travelling and 36% of the time was

spent loading at the depot and other miscellaneous actions.

Furthermore, the average time spent at a customer's site was

27 minutes . The Oakland and San Diego local delivery opera-

tions are compared in Figure 5

.

The NSC has tried scheduling vehicles using the IBM Vehi-

cle Scheduling Program Extended (VSPX—see Appendix D) . VSPX

is reported to have produced good feasible routes and to

3have utilized truck capacity well. The unit of capacity

3Mario Olsen, interview at NSC San Diego, February 4, 1980
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OAKLAND LOCAL DELIVERY

J>AU DIEGO LOCAL DELIVERY

FIGURE 5
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used was the pallet which also worked quite well. The major

problem leading to the discontinued use of VSPX was the

daily data collection effort required. The number of pallets

by customer had to be manually transfered to cards before

VSPX could be run. Data had to be hand-collected because

there was no way of relating the line item number of the re-

quest with the portion of a pallet that the item would occupy.

In order to complete vehicle schedules by 0630, it was necessary

to deliver the hand collected data to data processing by

1330 the previous day. However, the delivery section worked

until 1600 and did not really know the next day's delivery

requirements until the end of the day. Another problem with

VSPX was the standardization required to implement the package.

Some drivers would carry pallets that were double stacked

while others would not. Thus it was difficult to enter

the capacity of trucks into the program.

The data collection required to initialize the system

was tremendous. The distances between each pair of customers

had to be collected because the exact distance option of the

VSPX package was used. Moreover, time standards for off-

loading at each customer had to be developed. Also, VSPX

did not provide any data collection capability that could

be used to evaluate the efficiency of the delivery system.

However, in spite of all of these difficulties, VSPX would

have been a valuable tool if the daily data collection problem

could have been solved.
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III. THE VEHICLE ROUTING PROBLEM

The classical vehicle routing problem (VRP) analyzed in

the operations research literature involves routing a fleet

of vehicles from a central depot so as to service a set of

customers with known demand and so as to minimize some dis-

tribution objective. In this chapter the VRP is described

as it relates to local delivery operations at NSCs and solu-

tion techniques are surveyed.

A. PROBLEM DESCRIPTION [Ref . 3: p. 315-317]

Consider a time period T over which deliveries must be

made to a set N of customers. There is a set V of vehicles

available to make deliveries during the time period T. The

ith customer is characterized by the following:

1. A demand of Q(i) units;

2. A time required to unload (this may depend on truck

type )

;

3. An early time and a late time forming a time window

during which deliveries can be made.

The jth vehicle may be characterized as follows:

1. A total capacity L(j) measured in the same units as

demand

;

2. An early time and a late time forming a period during

which the vehicle can operate;

3. A time required to load at the depot.
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All customers and the depot are interconnected by a road

network such that the distance between any customer and any

other customer (or the depot) is the shortest possible dis-

tance. The road system, customers and depot, collectively,

may be thought of as forming a network. The set N of customers

and the depot are represented by nodes. The shortest path

between two customers (or the depot and a customer) along

the road system corresponds to an arc connecting the related

nodes. The length of the shortest path along the road network

is set equal to the length of an arc. In many cases, the time

it takes to travel between two points is of more interest

than the distance between the two points. In such cases,

the length of an arc may be throught of as corresponding to

a travel time instead of a distance.

A route, in the sense of the VRP , is a path starting at

node P(0), which corresponds to the depot, passing once

through each node in a subset of all the nodes and ending

at P(0). The vehicle routing problem is to find a set of

routes that together pass through every customer, satisfy a

set of conditions and minimize some objective. There are

many conditions that may have to be satisfied. Conditions

applicable to NSC local delivery are:

1. The total demand of all customers on a route may not

exceed the capacity of the vehicle assigned to that route;

2. Trucks may only operate during specified hours each

day;
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3. Delivery to customer P(i), at node P(i), should be

made within that customer's time window.

The time window restriction occurs infrequently. Shore

activities can almost always accept delivery whenever it

arrives and a ship can usually accept delivery as long as

they know when it is coming.

There are many possible objectives to the VRP . Two

possibilities are to minimize the number of vehicles re-

quired to make delivery and another is to minimize the total

vehicle time (distance) used to make delivery. The first

objective mentioned is equivalent to minimizing fixed costs

and the second to minimizing variable costs. However, many

non-optimal solution methods (heuristics) cannot distinguish

very well between these two objectives [Ref. 3: p. 327].

B. SOLUTION METHODS

Many algorithms have been developed in an attempt to

solve the vehicle routing problem. These algorithms fall

into two general categories—exact algorithms and heuristic

algorithms. Exact methods, when carried through to comple-

tion, are guaranteed to find the optimal solution. The prob-

lem with exact methods is that, as the number of customers in-

creases, the computation time involved in solving the problem

increases and quickly becomes prohibitive [Ref. 11: p. 122].

An exact method for solving the VRP is briefly described in

Section J of this chapter.
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Heuristic algorithms are not guaranteed to produce

optimal or even near-optimal solutions. The advantage of

heuristics is that a solution can be obtained in a short time

relative to exact algorithms. In addition, a good heuristic

will usually provide optimal or near-optimal solutions to

large problems. Moreover, the constraints of day-to-day

operations can be easily included in the logic of these

algorithms [Ref. 2]. For these reasons, this chapter concen-

trates on heuristic techniques.

The two fundamental steps of all heuristic techniques

are grouping customers and sequencing customers. How this

is done and the order in which it is done varies from method

to method. Some methods sequence before grouping, while

others group and then sequence. Still other methods perform

both steps at the same time. Heuristic algorithms can also

be grouped into the categories of sequential route builders

and multiple route builders. Sequential route building

algorithms build one route at a time while multiple route

building algorithms build more than one route at a time.

Generally, algorithms which build routes sequentially

run faster and require less computer memory because fewer

feasibility checks need to be made, and once a route is built

it can be output rather than kept in memory. Multiple-route

algorithms usually, though not always, give better solutions,

but take longer to run and require more computer memory

.

The sequencing of customers, in many algorithms, requires

the solving of the travelling salesman problem (TSP) . The
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TSP involves routing a single vehicle from a depot through

every customer in a set of customers and back to the depot

so as to minimize distance (or time or cost) . The TSP is

discussed in Appendix A. Other problems that arise in the

discussion of the VRP are the minimum spanning tree problem

(Appendix B) and the shortest path problem (Appendix C)

.

The data requirements for all algorithms discussed in

this chapter are the same, with the exception of the sweep

algorithm. The additional data requirements for the sweep

algorithm are discussed with that algorithm in Section I.

The data needed for the basic algorithms are number of avail-

able vehicles by type, vehicle capacity by type, customer

demand, and a matrix of shortest distances between stops.

In the sections which follow, algorithms are described

which have applicability to the routing of vehicles for local

delivery at Naval Supply Centers. All include vehicle capacity

and route time constraints. An algorithm which includes

time window conditions is discussed in Section N. In all of the

algorithms that follow, it is assumed that the demand of each

customer is less than the capacity of a vehicle. In cases

where this is not true, full vehicles are routed to each

customer whose demand exceeds the capacity of one vehicle

until the remaining demand for each customer is less than one

vehicle load. Furthermore, the distance D(i,j) between two

customers P(i) and P(j) is assumed to be symmetric. In other

words D(i,j) is equal to D(j,i) for all customers P(i) and

P(j) .
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The chapter concludes with a manual procedure for routing

vehicles. Solution quality and computation time are discussed

in Chapter IV.

C. NEAREST NEIGHBOR ALGORITHM

The "nearest neighbor" algorithm is a heuristic first

developed by M.S. Tyagi [Ref. 25]. In his original explana-

tion of the algorithm, Tyagi did not consider the possibility

of a distance constraint. This constraint can be added, but

some modification to the method is required. In the explana-

tion that follows, Tyagi 's algorithm is modified to include

the distance constraint.

The general method of the algorithm is to sequentially

build routes (i.e., build one route at a time) by first grouping

customers into routes and then sequencing the customers

within these routes. Customers are grouped by using the

nearest neighbor method. Starting at the dept, P(0) , find

the nearest customer, say P(l), and add this customer to the

first route. At this point, this route goes from P(0) to

P(l) and back to P(0). Record the distance travelled, 2D(0,1),

and the total demand, Q(l), for this route. Next find the

unrouted customer, say P(2), that is closest to P(l). Calcu-

late the total route demand Q(l) +Q(2) and total route dis-

tance D(0,1) +D(1,2) +D(2,0) that would occur if P(2) were

added to the route. If neither capacity nor distance con-

straints are violated, P(2) is added to the route and the

process of finding the nearest customer to the last feasibly
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added customer continues. Total route demand when customer

P (m) is added to the route is Q(l) +Q(2) +...+Q(m) and

total route distance is D(0,1) +... + D(m-l,m) +D(m / 0) where

P (m) is the last feasible customer added to the route.

If the first route constraint to be violated is the

capacity constraint, a modification to the above procedure

is made in an attempt to increase vehicle utilization. If

customer P (m) is the last customer added to a route and cus-

tomer P Cm+1) causes the route capacity to be exceeded, then

customer P(m+1) is considered for possibly replacing either

customer P(l) or P (m) . The replacement, if either, which

results in the largest increase in vehicle utilization is

made. At this point the current route is closed from further

additions of customers and a new route is formed.

If at any stage the distance constraint is violated, it

is possible that further customers may still be added to the

current route because the customer sequence within the route

is not optimal. Thus, customers may be resequenced using a

travelling salesman algorithm before concluding that no

further customers can be added. This resequencing is accom-

plished by temporarily adding to the route the customer

P(m+1) that violated the distance constraint and solving

the travelling salesman problem (TSP) . If the result is a

distance-feasible route, the process of adding the nearest

neighbor to the last customer in the resequenced route con-

tinues until another constraint is violated. If the route

still is not feasible, customer P(m+1) is removed from the
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route and the route closed from further additions of cus-

tomers. Once all routes have been formed, each one is rese-

quenced using a travelling salesman algorithm. Customers are

resequenced within routes to insure that the travel distance

of each route is a minimum.

D. CLARK AND WRIGHT ALGORITHM

Clark and Wright [Ref . 4] first developed the concept of

routing vehicles based on the combining of customers into

routes by maximizing savings. This method attempts to allo-

cate vehicles to customers such that all customer demands

are satisfied and the total mileage traveled is a minimum.

Although Clark and Wright in their original formulation did

not include the possibility of a maximum allowable distance

(or time) for each route, it is easily included into the

method and will be described here as part of the method

[Ref. 23] .

The idea is to initially allocate one truck to each cus-

tomer so that all customer demands are satisfied. Therefore,

there must theoretically be as many trucks as there are cus-

tomers. Realistically, this is not going to be the case.

However, it can be assumed initially that there are enough

trucks to make this allocation of trucks to customers— later

when customers have been combined into routes, there will

probably be enough trucks to service all of the routes

formed.
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This method makes sequential choices of which customers

to combine into routes based upon a largest savings criterion.

Initially each customer is linked directly to the depot. Thus,

if there are n customers, there are n initial routes. If

two customers, P(i) and P(j), are then combined into one

route, the total travel distance is reduced by an amount

S(i,j) = D(0,i) +D(0,j) -D(i,j) where S(i,j) represents the

savings resulting from combining customers P(i) and P(j).

This reduction in travel distance results from the fact that

initially, the total distance travelled to service customers

P(i) and P(j) is: 2D(0 ,i) + 2D (0 , j ) . When customers P(i)

and P(j) are linked into one route, the distance travelled

to service these two customers becomes D(0,i) +D(0,j) +D(i,j).

The savings S(i,j) is the difference between the original

travel distance and the new travel distance.

An example inter-distance matrix for a five customer

problem is shown in Table III-I. The savings S(l,2) obtained

by linking customers P(l) and P(2) into one route is

D(0,1) +D(0,2) -D(l,2) - 10+12-3 = 19. The ordered list

of savings associated with each link P(i) -P(j) are given

in Table III-II.

Once the savings associated with each link P(i) -P(j)

have been calculated, the algorithm proceeds to add links

starting with the link which has the highest associated

savings and which can be feasibly added. Before a link can

be added, the following feasibility checks must be made.
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TABLE III--I

Q P(D)

1500 10 P(l)

400 12 3 P(2)

400 8 7 4 P(3)

400 6 13 13 8 PC4)

400 5. 5 5 12 10 11 P(5)

TABLE III-II

LINK SAVINGS

Pd

P(2

P(l

Pd

P(3

P(2

P(2

P(3

Pd

P(4

-P(2)

-P(3)

-P(3)

-P(5)

-P(4)

-P(5)

-P(4)

-PCS)

-P(4)

-P(5)

19

16

11

10. 5

6

5. 5

5

3. 5

3

i 5
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1. The time taken to service the newly formed route may

not exceed the allowable working time of a vehicle.

2. There must be a vehicle available with sufficient

capacity to service the combined demand of all customers

on the new route

.

3. The two customers being linked together may not

already be on the same route.

4. Both of the customers being linked together must be

end points (i.e., first or last customer) on a route. This

restriction prevents a customer from being linked to more

than two other customers.

Once a link has been added between two customers, it is

never subsequently removed.

As an illustration of this algorithm, consider the inter-

distance matrix of Table III-I. Furthermore suppose that each

customer P(i) has demand Q(i) given in column 1 of Table

III-I. Two trucks are available—one with capacity 1200

and the other with capacity 1950. The highest savings is

associated with link PCD-PC2). A truck is available with

sufficient capacity to service the combined demand of cus-

tomers P(l) and P(2) and all of the other feasibility cri-

teria are satisfied so the link P(l)-P(2) is added. At this

point there are four routes as follows: P (0) -P (1) -P (2) -P (0) ;

P(0)-P(3)-P(0) ; P(0)-P(4)-P(0) ; and P (0) -P (5 ) -P ( 0) .

The next link from Table III-II is link P(2)-P(3). If

this link were added, a new route P (0) -P (1) -P (2) -P (3) -P (0)

would be formed with a total demand of 2300. However, there
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is not a vehicle with sufficient capacity to service a route

with a demand of 2 300. Thus the link P(2)-P(3) cannot be

added and the first route is complete. To establish the

first linking on the second route, Table III-II is examined

again, excluding all links involving customers on the first

route. Those remaining are P(3)-P(4), P(3)-P(5), and P(4)-

P(5). The largest savings occurs for P(3)-P(4). Then link

P(3)-P(5) is added and the second route is complete. In

summary, the two routes are P (0) -P (1) -P (2) -P (0) with a route

distance of 25 and P (0) -P (5) -P (3) -P (4) -P (0) with a route

distance of 29.5. The combined distance of the two routes

is 54.5.

E. TILLMAN AND COCHRAN ALGORITHM

A simple extension of the Clark and Wright algorithm is

that of Tillman and Cochran [Ref. 24]. This method results

in solutions that are better than those of Clark and Wright

but at the expense of an increase in computation time. This

method differs only in the selection criterion that is used

to link customers into routes. The calculation of savings

and all other aspects of the method are exactly the same.

In the Clark and Wright algorithm the criterion for

choosing a link is greatest savings. In this revised method

the criterion is to select the best link that allows a second

link to be chosen such that the combined savings of the two

links is greatest. The example of Section D serves to illus-

trate this new link selection criterion. In Table III-II, the

45





highest savings obtainable by a single link is 19 when cus-

tomers P(l) and P(2) are linked. Once P(l) and P(2) are

combined into the same route, no additional customers can

be put into this route because the capacity constraint of

the largest available truck (here 1950) would be violated.

The Cochran and Tillman method looks beyond the highest

feasible savings to investigate the highest feasible savings

obtainable by adding two feasible links (see Table III-III)

.

It does this by temporarily adding the feasible link yielding

the highest possible savings; this is again 19 for the link

P(l)-P(2). It then adds the feasible link yielding the

second highest savings; this is the link P(3)-P(4). Notice

that links P(2)-P(3), P(l)-P(3), and P(l)-P(5) all have higher

savings associated with them than does link P(3)-P(4). How-

ever, due to capacity constraints, these three links are not

feasible (remember the truck capacities are 1950 and 1200)

.

Then the total savings obtained from both links is recorded.

It is 25 for this combination of links. The list of savings

is next examined for another possible combination of two

TABLE III-III

LINK 1 1-2 2-3 1-3 1-5 3-4 2-5 2-4 3-5 1-4 4-5

SAVINGS 19 16 11 10.5 6 5.5 5 3.5 3 .5

LINK 2 3-4 1-5 2-5 2-3 1-2 2-3 1-2 1-2 2-3 1-2

SAVINGS 6 10.5 5.5 16 19 16 19 19 16 19

TOTAL
SAVINGS 25 26.5 16.5 26.5 25 21.5 24 22.5 19 19.5
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links. This time it is based on the feasible link yielding

the second highest savings. A search is then made for a

feasible link that, when added, yields a total savings of

the two temporary links that is greatest. In this case

the links P(2)-P(3) and P(l)-P(5) have been added yielding

a total savings of 26.5. This process is continued by looking

at the possible combinations of two links by considering the

third, fourth, and so on highest feasible links and temporarily

adding to each of these links the feasible link yielding the

highest savings. The total potential savings for each com-

bination is recorded. The process ends when all links have

been tried as the first link.

After the above search has been made, the highest total

savings is selected and the first link of the two links

yielding the highest total savings is added permanently.

In this case there is a tie between link P(l)-P(5) and P(2)-

P(3) as the first link to be added. Hallberg and Kriebel

[Ref. 12] suggest breaking ties by selecting the link with

the shortest length. Thus, in the example problem, the first

link to be permanently added using the Tillman and Cochran

method is link P(2)-P(3). The method carried to its conclusion

on the example problem yields routes P (0) -P (1) -P (5) -P (0) and

P(0)-P(2)-P(3)-P(4)-P(0) for a total distance travelled on

both routes of 50.5. Thus, on this problem the Tillman and

Cochran algorithm produces a better solution than the Clark

and Wright method.
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F. T.J. GASKELL'S ALGORITHM

Gaskell [Ref. 9] suggested three extensions of the basic

Clark and Wright algorithm. Two of these extensions differ

in the way that the savings are calculated and the third

differs in the logic used to form routes. Additionally,

he suggested a generalization of the savings calculation

that can be used to produce several routes that may be

compared.

The savings calculation of Clark and Wright tends to

emphasize combinations of customers that are furthest from

the depot. This is true because savings result by dropping

links between the depot and customers. Thus, the further

from the depot the customers are, the greater the savings

is likely to be. Gaskell suggested that this method of cal-

culating savings places too much emphasis on the distance of

customers from the depot and not enough emphasis on the

mutual proximity of customers. The result is that a route

restricted by load tends to have most of its customers far

away from the depot (peripheral routes) while a route restricted

by distance tends to have more customers close to the depot.

To reduce the emphasis placed on the distance from the

depot, Gaskell suggested two new savings calculations.

a) LB(i,j) = S(i,j) (DA +D(0,i) -D(0,j) -D(i,j))

b) PI(i,j) = S(i,j) -D(i,j)

where LB(i,j) is the first modified savings formula; PI(i,j)

is the second modified formula; DA is the average of all the

distances between the depot and each customer; all other terms
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are the same as those used in the explanation of the Clark

and Wright algorithm (see reference 9 for a more detailed

justification of these formulas). Both LB(i,j) and PI(i,j)

give a higher priority to points that are closer to the depot

than does S(i,j). The logic used to combine customers into

routes is the same as that of the Clark and Wright algorithm.

The third method suggested by Gaskell differs in how the

routes are formed. The savings calculation, however, does

not differ from that of Clark and Wright. In the Clark and

Wright algorithm all routes are considered at the same time

(multiple routes) . In this method routes are formed one at

a time (sequentially). Thus, the only links that can be made

are links to end points of the route currently under con-

struction. When there are no more feasible links that can

be added to the current route, it is output and a new route

is formed. The results of this method are generally inferior

(though not always) to multiple routing methods.

The PI savings formula was generalized by Gaskell into

the following formula:

M(i,j) = D(0,i) +D(0,j) - (TH)D(i,j)

where M(i,j) is the generalized savings; TH is a parameter

that may vary from problem to problem; all other variables

are as before. Levy, Golden and Assad [Ref. 17] have sug-

gested solving the problem with several different values of

TH and then picking the best resulting solutions.
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G. MOLE AND JAMESON

The method of Mole and Jameson [Ref. 19] is a sequential

route building algorithm using a savings criteria based on

a generalization of the Clark and Wright savings formula.

The algorithm consists of three steps that are repeated over

and over again until all customers have been routed or until

it is not feasible to route any more customers. An optional

fourth step then refines the results of the first three steps

by looking for ways to move customers between routes.

Step one looks for the best place in the route currently

under construction to place each customer that has not yet

been routed. Step two then selects from all the unrouted

customers the one that is best placed in the current route.

The third step is a travelling salesman algorithm that rese-

quences the customers in the current route. The travelling

salesman algorithm used by Mole and Jameson was the 2-optimal

heuristic method of Lin [Ref. 8], although any reasonable

algorithm can be used (see Appendix A)

.

Steps one, two and four use the generalized savings criteria

of Mole and Jameson to make decisions. The savings that re-

sult from inserting unrouted customer P (k) between routed

customers P(i) and P(j) is given by:

SV(i,k,j) = 2D(0,k) +D(i,j) -D(i,k) -D(j,k).

The logic for this savings formula is illustrated in Figure 6.

In Figure 6(a) there are two routes with a combined total

distance of 2D(0,k) +0(0,1) + D(i,j) +D(0,j). In Figure 6(b)
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there is one route with a total distance of D(0,i) + D(i,k) +

D(k,j) + D(0,j). The difference between these two distances

is SV(i,k,j). This formula can be rewritten in the form:

SV(i,k,j) = 2D(0,k) -ST(i,k,j)

where

:

ST(i,k,j) = D(i,k) + D(j,k) -D(i,j) .

The best place to insert unrouted customer P (k) is between

the two adjacent customers P(i) and P(j) (both already in

the current route) such that SV(i,k,j) is a maximum for all

adjacent P(i) and P(j) already in the current route. Since

for any customer P (k) , 2D(0,k) is a constant, this is equiva-

lent to minimizing ST(i,k,j) . This calculation is made for

each unrouted customer in step one of the algorithm.

The customer P(k) to enter the route is selected such that

SV(l,k,m) is a maximum and customer P(k) does not cause feasi-

bility constraints (capacity, distance, etc.) to be violated.

Based upon the work of Gaskell, Mole and Jameson extended

their savings criteria by adding two parameters to the savings

calculation. This modified savings formula is:

MSV(i,k,j) = (LB)D(0,k) +(.U)D(i,j) -D(i,k) -D(j,k)

where LB and U are the two parameters. This formula can be

rewritten as:

MSV(i,k,j) = (LB)D(0,k) -MST(i,k,j)
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where

MST(i,k,j) = D(i,k) + D(j,k) - (U)D(i, j) .

Up to now the discussion has only involved inserting a

customer between two customers already in the current route.

Two other points need to be considered. The first involves

inserting a customer between the depot and a customer already

routed and the second is determining which two customers will

be used to initiate the current route. To address the first

point, there is no difference in inserting a customer between

the depot and another customer or inserting a customer between

two adjacent customers. The savings formula for inserting

a customer between the depot and another customer is:

SV(0,k,j) = 2D(0,k) +D(0,j) -D(0,k) -D(j,k)

= D(0,k) + D(0,j) -D(j,k)

= S(j,k).

The modified formula is:

MSV(0,k,j) = (LB)D(0,k) + (U)D(0,j) -D(0,k) -D(j,k)

= (LB-l)D(0,k) +(U)D(0,j) -D(j,k).

To initiate a route any of several selection criteria

may be used to select the first customer(s). Possibilities

include selecting the unrouted customer furthest from the

depot, or the unrouted customer with the largest demand.

Another possibility is to select the unrouted pair of customers
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that are feasible and when put into the route, yield the

greatest savings using the Clark and Wright formula for

savings

.

The optional fourth step attempts to look for potential

improvements by moving customers between routes and then

trying to eliminate a route by redistributing customers from

the least capacity route to all the other routes. The cri-

terion used to move a customer is based on the value of either

ST(i,k,j) or MST(i,k,j) . If ST or MST can be made smaller

than its current value by moving customer P (k) to another

route, and customer P (k) can feasibly be added to this new

route, then the transfer is made. This procedure is employed

to overcome a basic problem of sequential route building.

Sequential methods tend to add customers to the current route

simply because a load or distance constraint has not been

met, even if it may be expensive to do so.

After every customer has been checked for potential

rerouting, an attempt is made to reduce the number of routes

by redistributing the customers on the smallest laden route

among the remaining routes. If this can be done feasibly,

the first part of the refinement procedure is used again to

look for improvements by rerouting customers. The procedure

ends when no further reductions in routes can be made.

The sample problem of Section D is now solved using this

algorithm. Initiate route 1 by selecting the customer furthest

from the depot; this is customer P(2). Since there is only

one customer in the current route, any customer added to the
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route must be placed between customer P(2) and the depot.

Maximizing SV(0,i,2) over P(i) where i is an element of

{1,3,4,5} is equivalent to maximizing S(i,2) over P(i) where

i is an element of (1,3,4,5}. From Table III-II, i = 1

maximzies SV(0,i,2). Customer P(l) is added to route 1 and

route 1 is closed because there is not a truck with suffi-

cient capacity to service the additional demand of any of

the remaining customers.

Route 2 is initiated by selecting the unrouted customer

furthest from the depot which is customer P(3) . Maximizing

S(i,3) over P(i) where i is an element of {4,5} results in

a maximum for i = 4. Route 2 is now P (0) -P (4) -P (3) -P (0)

.

Since in this example only customer 5 remains unrouted, it

will be inserted into route 2 is it is feasible to do so.

It is found that ST(i,5,j) is a minimum for i = 3 and j = 0.

The sequencing of the customers in route 2 cannot be improved

Thus route 2 is P (0) -P (4) -P (3) -P (5) -P CO) . No refinements

are possible because it is impossible to move any customer

from any route to any other route due to capacity constraints

The final solution is the same as that contained using the

Clark and Wright algorithm.

H. HOLMES AND PARKER

In the original Clark and Wright algorithm, once two

customers are linked together in a route, they cannot be

unlinked and reexamined for improvements. To help improve

results, Holmes and Parker [Ref. 14] suggest a procedure of
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progressively eliminating high-savings links and looking for

any improvements that may result.

The method starts by initially solving the VRP using the

Clark and V7right algorithm and recording the order in which

links are added. Call the resulting solution SL(1). The

next step is to temporarily prohibit the first link added

in SL(1), say link P(l*)-P(j*), from entering into a subse-

quent solution by temporarily setting S(i*,j*) = 0. The VRP

is then solved again using the Clark and Wright algorithm and

solution SL(2) is obtained. If SL(2) is better than SL(1),

SL(2) becomes SL(1) and S(i*,j*) is set permanently to zero.

Then the first link P (il*) -P ( jl*) added in the new SL(1) has

S(il*,jl*) temporarily set to zero and the VRP is solved

again. If, however, SL(2) is not better than SL(.l), S(i*,j*)

is set equal to its original value, the next link added in

SL(1) has its savings temporarily set to zero and the VRP

is solved again. This procedrue continues until a specified

number of successive temporary link suppressions yield no

improvement or until all links in SL(1) have been temporarily

suppressed with no resulting improvement.

Consider again the example problem of Section D. The

Clark and Wright algorithm produces SL(1) = (P (0) -P (1) -P (2) -P (0)

;

P(0)-P (5)-P(3) -P (4)-P(0) in which the first link added was

P(l)-P(2). Temporarily set S(l,2) =0 and resolve the

problem. If this is done the resulting solution SL(2) =

(P(0)-P(2)-P(3)-P(4)-P(0) ;{P(0)-P (1) -P (5) -P (0) } is obtained.

The combined route distance of SL(1) is 54.5 while for SL(2)
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it is 50.5. Thus SL(1) is set equal to SL(2) and S(l,2)

is set permanently to zero. The first link added in the new

SL(1) was link P(2)-P(3). Temporarily set 3(2,3) to zero

and solve the problem again. The resulting solution is

SL(2) = (P(0)-P(l)-p(3)-P(0) ; P (0) -P (4) -P (2) -P (5) -P (0)

}

with a combined route distance of 61.5. The new solution

is not better than SL(1) , so S(2,3) is again set to its

original value of 16. The second link added in SL(1) was

link P(l)-P(5). Therefore this link is temporarily set to

zero and the problem solved again. The procedure terminates

when the last link added in the current SL(1), namely P(3)-

P(4), is temporarily set to zero and no improvement results.

In this example, the current solution is the final solution.

It is also the same one found by the Tillman and Cochran

algorithm.

I. SWEEP ALGORITHM OF GILLET AND MILLER

The sweep algorithm of Gillet and Miller [Ref. 10] is

conceptually different than the savings approach. In order

to use this method, not only is the matrix of interstop dis-

tances required, but geographical coordinates for each customer

are also needed. The idea is to sequentially form routes by

sweeping through an ordered list of customers. Once a route

has been formed, potential improvements are sought by attempt-

ing to add customers to or delete customers from the route.

When there are no more possible improvements, the next route

is formed and the process is continued until all customers
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have been routed or until no further customers can be routed.

After the final route has been formed, a new initial ordering

of customers is used to initiate the process again.

The ordering of customers is the key to the method. A

customer is selected as a reference to form a base direction

with the depot which is the origin. Then all customers are

ordered according to the polar coordinate angle that they

form with this base direction. In other words, an imaginary

arm is pivoted around the depot starting with the base custo-

mer. Customers are added to the ordered list as the pivot

arm passes over them.

The first step is to form routes, one at a time, by adding

customers to the current route from the ordered list until

no further customers can be feasibly added. Periodically,

a travelling salesman algorithm is used on the current route

to optimize the sequence of deliveries. If this is not done,

the distance constraint may force the formation of a new

route before it should.

When no further customers can be added to the current

route, an improvement process (the second step) is used that

looks for ways of adding or deleting customers. Assume that

P(l) was the last customer added to the current route. A

search is then made to find the unrouted customer P(n) that

is nearest to customer P(l) . P (n) is not necessarily the

customer next on the ordered list. If P (n) can be feasibly

added to the current route, and it is advantageous (this term

is explained below) to do so, it is put into the route. If
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P(n) is added to the current route, P(l) is updated (P(l)

on any route is defined to be the customer with the greatest

polar coordinate angle) and this step is repeated.

The term "advantageous" used in the description of the

algorithm means that a changed route will result in a smaller

total combined distance for the current route and the route

to be formed next. This may seem strange in that the next

route has not been formed yet. To overcome this problem an

arbitrary number of the next unrouted customers (say 5 or

6) from the ordered list are selected. A travelling salesman

algorithm is used to determine the minimum distance of a route

through these unrouted customers. Call this distance D2.

Dl is the minimum distance of the current route. Next assume

that the change has temporarily taken place. Recalculate

these two minimum distances and call them Dl ' and D2 ' . If

D1+D2 > Dl'+D2' then the change is advantageous, otherwise

it is disregarded.

If P(n) cannot be added to the route, the best customer

P(r) to be removed from the route is found. The best customer

for removal is the customer that will be best (out of the cus-

tomers on the current route) included in the next route. Such

a customer should be close to the depot and close to the cus-

tomers that will form the next route. P(r) can be found by

minimizing the function D (0 , j
) -AN

( j ) (AD) over all customers

P(j) on the current route, where AN(j) is the polar coordinate

angle of customer j and AD is the average distance of all

customers from the depot. If feasible and advantageous, P (r)
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is replaced by P (n) , P(l)is updated as before and the previ-

ous step is repeated. Otherwise, the final step is initiated

The final refinement step involves investigating the

possibility of replacing P (r) by two customers P (n) and P(s)

where P(s) is the second nearest customer to P(l) . Obviously

if replacing P(r) by P(n) in the previous step was not feasi-

ble, this step will not be feasible either and can be skipped

However, if the previous step was feasible, but not advan-

tageous, this step may be feasible and advantageous. If

the replacement of P (r) by P(n) and P(s) is made, P(l) is

updated and a return is made to the second step. Otherwise,

the current route is complete and a return is made to the

first step where the first unrouted customer in the ordered

list starts the next route. If there are no more trucks

to route or all customers are routed, the first iteration

of the algorithm is complete.

After each iteration of the algorithm the base direction

is rotated by one customer until all possible forward rota-

tions have been considered. Once all of the forward rota-

tions have been considered, the direction of rotation can be

changed and all possible backward rotations considered. In

general each forward and backward rotation will yield differ-

ent results. The best routing of all those considered is

selected.

As an example of this algorithm, again consider the prob-

lem of Section D. Each customer has cartesian coordinates

and polar coordinate angles as given in Table III-IV. The
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TABLE III-IV

CUSTOMER X Y

P(0)

Pd) 5 2

P(2) 4 3

P(3) 1 4

P(4) -5 2

PC5) 5 -1

Angle in radians referenced
to P(5)

.566

.79

1.52

2.95

angles are in radians and are with reference to customer

P(5) . The algorithm might actually try other customers as

the reference direction before finding that customer P(5)

will produce the best solution. The algorithm starts forming

route 1 by progressively adding customers from the ordered

list until a feasibility condition is violated. Customers

P(5) and P(l) are thus added before the capacity of the

largest vehicle (1950 in this case) is exceeded. Thus at

the end of step 1, route 1 is P (0) -P (5) -P (1) -P (01 .

Step 2 of the algorithm now looks for the unrouted custo-

mer nearest P(l), the last customer added to route 1 and

tries to add this customer to route 1. This customer is

found to be P(2). However, customer P(2) cannot be added

to the route without exceeding the vehicle's capacity.

Step 3 finds the customer on route 1 best suited for

replacement by P(2) by minimizing D (.0 ,i) -AD (AN (i) ) over P(i)

an element of route 1. This expression is minimized for
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P(l). Only three unrouted customers remain, so the decision

of whether to replace P(l) with P(2) is made by comparing the

total route distance of 50.5 for {P (0) -P ( 5) -P (1) -P (0) ;

P(0)-P(2)-P(3)-P(4)-P (0) } with 60.5 for {P (0) -P (5) -P (2) -P (0 ) ;

P(0)-P(l)-P(3)-P(4)-P(0) } . Note that each route listed is

optimally sequenced. This comparison leads to the decision

to keep P(l) in route 1.

The fourth step investigates replacing P(l) with the

first and second nearest unrouted customers to P(l). The

second nearest customer is found to be P(3) . Therefore a com-

parison is made between {P (0) -P (5) -P (1) -P (0) ; P ( 0) -P (2) -P (3) -

P(4)-P(0)} and {P (0) -P (5) -P (2) -P (3) -P (0) ; P (0) -P (1) -P (4 ) -P (0)

}

The latter' s total route distance is 58.5 and therefore is

kept in route 1. Route 1 is now established and the next

route is formed by returning to step 1. The final routes are

P(0)-P(5)-P(l)-P(0) and P (0) -P (2) -P ( 3) -P (4 ) -P (0) .

J. TREE SEARCH

The tree search algorithm [Ref. 3: p. 313-317] is an

exact method and theoretically can yield the optimal solution

to the vehicle routing problem. However, with increases in

the number of customers, the method quickly becomes impracti-

cal because of the computation time involved. Thus, heuristic

tree search methods have been developed based upon the exact

method. One such heuristic is explained in this section.

However, to understand the heuristic, it is helpful to

understand the concept of the exact method first.
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The exact tree search algorithm is a depth-first search

method whereby every feasible routing of vehicles is or can

be explored by going through a methodical process. The

search starts by setting the objective value of the incumbent

set of routes to infinity or to the value of the best known

solution. An incumbent set of routes is defined as the best

(in terms of the objective) set of routes found at any stage

during a search. If at some point in the search a better

set of routes is found, this new set of routes becomes the

incumbent set. As will be explained later, the search can

be limited somewhat by using bounding and feasibility arguments

Initially none of the customers are routed. A customer

is selected and a route (also called a node) containing this

customer is formed that can be serviced by at least one truck

in the fleet. Usually there are many such routes that can

be formed, all of which will be investigated eventually.

Once this route is formed there are two distinct sets of

customers, those that have been routed and those that have

not been routed. From among the unrouted customers another

customer is selected. A route containing this customer that

can be feasibly serviced by at least one truck in the fleet

is then formed. This process of forming routes from unrouted

customers is continued until either all customers have been

routed or until it is not feasible to route any further

customers. At this point one branch of a tree has been formed

where each node of the branch represents a route serviced by

63





a single vehicle. In Figure 7 one such branch is depicted

where the candidate solution CS = {R(l ,k) 1) ) ,R( 2 ,k (2) ) , . . .

,

R(n,k(n))}. In the notation R(i,k(i)), i refers to the ith

stage and k(i) refers to the k(i)th route formed at the ith

stage

.

Following back up the branch, none of the customers in

any route R(i,k(i)) can be found in any other route R(j,k(j))

.

Since the criterion for forming a route is that at least one

vehicle from the fleet be able to service the entire route,

it is possible that there is not a feasible assignment of

vehicles to routes. Thus, at each stage after a new route

has been formed a check must be made to determine if there

is a feasible allocation of trucks to routes. If no such

allocation exists, the most recently added route is removed

and not considered again.

When a search ends at stage n along a branch because there

are no more customers to route, a candidate solution has been

found. The candidate set of routes is compared with the

incumbent set of routes. The set of routes with the best

objective value is kept and the other set deleted. Next, a

backtracking process begins. The route R(n,k(n)) is replaced

with route R(n,k(n)+1) (if R(n,k(n)+1) exists) and the search

is continued. If at stage n, R(n,k(n)+1) does not exist or

bounding or feasibility arguments prove the optimal solution

does not lie along the current branch, a return is made to

stage n-1 and R( (n-1) ,k (n-1) ) is replaced with route

R( (n-1) ,k (n-1) +1) and the search is continued.
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FIGURE 7
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The above search procedure can be narrowed as mentioned

earlier by using feasibility and bounding arguments. The

last node added along the current branch can be removed from

further consideration if one of the following conditions

occurs: 1) trucks cannot be feasily assigned to routes;

2) the cost of all routes currently formed plus a lower bound

on the cost of routing the unrouted customers is greater

than the best solution found so far; 3) the remaining vehi-

cles have insufficient capacity to service the unrouted custom-

ers; 4) a lower bound along the current branch is greater

than an upper bound along another branch.

In Table III-V the interstop distances for a three-customer

problem are given. Suppose that two trucks each with a capacity

of 10 are available to service the demand of each customer

listed in column Q of Table III-V. The solution of this prob-

lem using the exact tree search method is depicted in Figure 8.

The circles represent nodes or routes and the numbers in the

circles are the customers on the respective route. The nodes

of stage 1 collectively exhaust all feasible single-vehicle

routes. The nodes of stage 2 represent feasible single-vehi-

cle routes given that the corresponding route at stage 1 has

already been created. The numbers under the nodes of stage

2 are the total travel distance of the respective branch and

NF indicates that the given branch is not feasible. The

branches with the best objective value corresponds to the

branches consisting of the routes P CO) -P (1) -P (0) and

P(0)-P(2)-P(3)-P(0) .
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TABLE III-V

Q P(0)

5 5 P(l)

5 6 5 P(2)

5 7 7 4 P(3)

Trucks

Capacity 10

Available 2

(a) (b)

FIGURE 8
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The concept of the heuristic tree search algorithm is

to limit the search process to branches that show promise

of yielding routes with low objective values. Thus, all

branches are not considered and the resulting solution may

not be optimal.

In the exact algorithm, at any stage i, all branches

leading from the current node at stage i are investigated.

The heuristic algorithm, however, only generates a small

portion of these branches . A measure that can be used in

generating these branches is a varying linear combination

of the savings criteria of Clark and Wright and an extra

mileage criterion. The formula is:

G(i,j) = S(i,j) - (U)EM(0,i,j)

where EM(0,i,j) is the minimum extra mileage associated with

either inserting unrouted customer P(i) between routed

customer P(j) and the depot or P(j) between routed customer

P(i) and the depot. The extra mileage is determined from

EM(0,i,j) = min[D(0,i)+ D(i,j) -D(0,j); D(0,j) +D(i,j) -D(0,i)]

Several (say five or ten) candidate routes can be formed from

unrouted customers by varying the U parameter. Each route

is formed using the sequential route-forming logic of Mole

and Jameson. However, only one route is formed for each U

value

.

Once several candidate routes have been created, it is

necessary to evaluate them for inclusion in the final set of

routes. This evaluation cannot be exact because how good a
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route is depends on how good future routes formed by the

algorithm will be. Therefore a quick estimate of the future

routing distance for all potential candidates needs to be

found. This estimate can be obtained by solving the minimum

spanning tree problem (see Appendix B) . The process works

by finding the minimum spanning tree rooted at the depot for

customers that would be left unrouted if the current candi-

date were to be put into the final set of routes. The

minimum spanning tree is used because it finds a quick lower

bound and therefore an approximation to the optimum routing

of the remaining customers. The total distance of the mini-

mum spanning tree can be found quickly and added to the distance

of the current candidate. Thus the following is calculated

for each candidate:

BR(i) = DR(i) -TF(i)

where DR(i) is the total distance of candidate route R(i)

and TF(i) is the minimum spanning tree distance of the un-

routed customers F(i) that would be left if R(i) were to be

routed. The candidate route with the smallest value of BR(i)

is routed and the whole process is started again at the next

node in the tree. The algorithm stops when either no further

customers can be added feasibly or when all customers have

been routed.

The problem of Section D will now be solved using this

heuristic. In Table III-VT, G(i,j) has been calculated for
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TABLE IV-VI

G
LINK S EM U = 1

1-2 19 1

2-3 16

1-3 11 5

1-5 10.5 .5

3-4 6 6

2-5 5.5 5.5

2-4 5 7

3-5 3.5 7.5

1-4 3 9

4-5 .5 10.5

(1)

18

(2)
16

(4)

6

(3)
10

(5)

(6)

(7)
-2

(8)
-4

(9)
-6

(10)
-10

G
U = 4

(2)
15

(1)

16

(4)
-9

(3)

8.5

(6)
-18

(5)
-16.5

(7)
-23

(8)
-26.5

(9)
-33

(10)
-41.5

every link P(i)-P(j) and for values of U = 1 and 4. The

numbers in parenthesis in columns four and five represent

the rank order (from highest to lowest) of the associated G

value. For a parameter value of U = 1, the highest value

link is link P(l)-P(2). When link P(l)-P(2) is added, the

candidate route P (0) -P (1) -P (2) -P (0) is formed (call this

CR1) . No further customers can be added to CR1 because of

the vehicle capacity constraint. For a parameter value of
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U = 4, the highest value link is link P(2)-P(3). After this

link is added, the next feasible link that will add customers

to this route is link P(3)-P(4). Thus CR2 = P(0)-P(2)-

P(3)-P(4)-P(0) is formed. The distance of CR1 is Dl = 25

and the distance of CR2 is D2 = 30.

Next the minimum spanning tree distance for the unrouted

customers is found for each of these cases. The minimum

spanning tree distance associated with CR1 is MSI = 19.5

and with CR2 is MS2 = 10.5. Comparing Dl +MS1 = 44.5 with

D2 +MS2 = 40.5, CR2 is found to be the better route. When

CR2 is kept as the first route the second route is found

to be P (0) -P (1) -P (5) -P (0) and the optimal solution results.

K. A TWO-PHASE ALGORITHM

The two-phase algorithm [Ref. 3: p. 313-337] consists of

two phases that are used over and over again until all cus-

tomers have been routed or until no further customers can

be routed. The purpose of the first phase is to determine

key customers, each of which will start the formation of a

route in the second phase. These key customers are found by

going through an initial-route building procedure. The key

customers are then the customers that initiate each of these

routes. The second phase then sequentially forms routes based

upon the key customers until all customers are routed, or

until no further customers can be placed in routes. At the

end of the second phase, if unrouted customers still remain,

the algorithm returns to phase 1 with the unrouted customers.
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In phase 1 routes are formed sequentially by first

selecting an unrouted customer to start the formation of a

route. Call the current route being formed R(i) . Any of

several criteria may be used to select the initial customer.

A possibility is to pick the unrouted customer furthest from

the depot. Assume now that the customer to start the next

route has been chosen and is P (a) . Now for each unrouted

customer P(j), calulate the following:

K(j) = D(0,j) + (U)D(a,j)

where U is an arbitrary parameter greater than 1.

Next pick the customer P(j*) that has the smallest K

value and put this customer into the current route. Opti-

mize the sequence of the customers in the current route by

solving the travelling salesman problem. Continue placing

customers in the current route by selecting the feasible

customer with the smallest K value. Solve the travelling

salesman problem each time a customer is added to the route.

This step is continued until there are no more customers

that can be feasibly added to the current route.

Next close the current route and select an unrouted cus-

tomer to form a new route as before. This process is con-

tinued until all customers are routed or until all remaining

customers cannot be routed. At this point phase 1 of the

method ends and phase 2 begins. At the end of phase 1,

there were a number of routes (say h) that were formed. Each

of the customers (called key customers) that were selected to
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initially form each of the h routes in phase 1 is now se-

lected to form h single-customer routes. Thus at the beginning

of phase 2 there are h routes of the form depot-customer-depot.

The first step in phase 2 is to associate each of the

now unrouted customers with one of the key customers found

in phase 1. In making this association, unrouted customer

P(i) should be matched with a routed customer P (k) that is

far from the depot and close to P(i) . This is done by

determining the following value for each unrouted customer

P(i) and routed customer P(k):

V(i,k) = D(0,i) + (U)D(i,k) -D(0,k)

where U is greater than or equal to 1. Call V an association

coefficient. Each customer P(i) is then best associated

with that route for which the association coefficient is

smallest. At the same time that the best association for

P(i) is being found, the second best association is also

found. The second best association is with routed customer

P(k') such that V(i,k') is second smallest.

At this point there are h single-customer routes and all

unrouted customers are associated with one of these routes.

However, it is not certain now whether or not it is feasible

to put all the unrouted customers into their associated routes.

Therefore each route must have an ordered list of its asso-

ciated customers that can be brought in one at a time until

no further customers can be added. This ordering is done by

picking that customer associated with a given route that has
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the highest difference in "association" between its second

best associated route and its best associated route.

The procedure of ordering the associated customers involves

first picking one of the routes (say route R(k) ) . The follow-

ing value is then calculated for each customer P(i) associated

with R(k)

:

DL(i) = V(h' ,i) -V(h,i) .

Here, P(h') is the key customer to which P(i) has its second

best association. Then the first associated customer to

enter the current route is that customer for which DL(i) is

a maximum.

Each time a customer is brought into the route, the route

is resequenced with a travelling salesman algorithm. Cus-

tomers are added to the current route using the max DL cri-

teria until none of the remaining customers are feasible.

This step is completed for each of the routes and the asso-

ciated customers. At this point phase 2 of the algorithm is

complete. If unrouted customers remain at the end of phase

2, the algorithm returns to phase 1 with the unrouted cus-

tomers. Otherwise it terminates.

This algorithm will now be demonstrated on the example

problem of Section D. Initialize route 1 of phase 1 by

selecting the customer furthest from the depot. This is

customer P(2) from Table III-I. The value of K(j) for each

unrouted customer P(j) is calculated. Using a U value of 1,

K(l) = 13, K(3) = 12, K(4) = 19 and K(5) = 17.5 Customer
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P(3) enters route 1 first because K(3) is smallest.

Customer P(l) cannot enter next because of the capacity con-

straint. Customer P(5) enters route 1 next and is the last

customer to enter, again because of vehicle capacity. Route

1 is P(0)-P (2)-P(3)-P (5)-P (0) after customers are optimally

sequenced. The above procedure yields P (0) -P (1) -P (4) -P (0)

for the second route where P(l) initializes route 2.

The two routes P (0) -P (2) -P (0) and P (0) -P (1) -P (0) are

formed to initiate phase 2. Values of the association

coefficients are found as follows:

Association
Coefficients

Route 1 Route 2 Difference Route Asso
ciation

P(3) 5 5 1

P(4) 7 9 2 1

P(5) 5.5 .5 5 2

Based on the above, P(3) enters route 1 first because the

difference between its second smallest and smallest associa-

tion coefficients is largest. Customer P(4) enters second.

Customer P(5) enters route 2. Customers are optimally

sequenced and routes P (0) -P (1) -P (5) -P (0) and P (0 ) -P (2) -P (3)

-

P(4)-P(0) are thus formed.

L. GIANT TOUR

The method of the giant tour algorithm [Ref. 17: p. 14-17]

is to form a single route (the giant tour) and then break up
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this giant tour into feasible subtours, each of which can

be serviced by a truck. The giant tour can be formed by

using a travelling salesman algorithm (see Appendix A)

.

The problem of breaking up the giant tour can be solved

by transforming it into a shortest path problem (see Appendix

C for an explanation of the shortest path problem) . The

TSP tour can be written as P (0) -P (K (1) ) -P (K(2) ) - . . .-P (K(n) ) -P (0)

where K(i) is the index for the ith customer in the tour.

For any two customers P(K(i)) and P(K(j)), i less than j,

the transformed distance between them, D ' (K (i) ,K
( j ) ) is set

equal to the distance of the subtour P (0) -P (K (i+1) ) -P (K (i+2) )

-

. . . -P (K
( j)

) -P (0) if this subtour is feasible. If it is not

feasible, D' (K (i) ,K
( j) ) is set equal to infinity. The process

of creating the transformed matrix is a device whereby every

feasible way of breaking up the giant tour is enumerated.

The result of the above transformation is a distance

matrix where the entry of row P(K(i)) and column P(K(j))

represents the distance of route P (0) -P (K (i+1) ) -P (K (i+2) )

-

. . ,-P (K
( j )

) -P (0) . The shortest path problem is then solved

to find the shortest path from the depot to customer P(K(n)).

The arcs of the shortest path can be quickly transformed into

a solution to the vehicle routing problem. Arc (P (K(i) ) ,P (K(j) )

)

of the solution to the shortest path problem corresponds to

a route P (0) -P (K (i+1) ) -P (K(i+2) ) - . . .-P (K ( j )
) -P (0) .

Figure 9 illustrates this concept graphically. The

transformed distance D ' (k (0) ,k (2) ) is equal to the distance

of the route P (0) -P (k (1) ) -P (k (2) ) -P (k (0) ) . Likewise, the
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transformed distance D (k (1) ,k ( 3) ) is equal to the distance

of the route P (0) -P (k (2) ) -P (k ( 3) ) -P (0) . If in either of these

cases the route is infeasible, the respective transformed

distance is set equal to infinity. If the solution to the

problem of finding the shortest path between P(0) and P(k(4))

using the transformed distance matrix is found to be

P(0)-P(k(2) )-P(k(4) ) , the corresponding routes are P(0)-P(k(l))

-P(k(2))-P(0) and P (0) -P (k ( 3) ) -P (k (4) ) -P (0)

.

If all customers from the example problem of Section D

are put into a single route (giant tour) , the optimal se-

quence of the customers is P (0) -P (4) -P (3) -P ( 2) -P (1) -P (5) -P (0) .

This sequence of customers is found by solving the TSP.

Using this giant tour, a transformed distance matrix is

found as shown in Table III-VII. Entry (P(0),P(2)) corres-

ponds to feasible route P (0) -P (4 ) -P (3) -P (2) -p (0) which has

a route distance equal to 30. Entry (P(4),P(2)) corresponds

to feasible route P (0) -P ( 3) -P (2) -P ( 0) with a route distance

TABLE III-VII

P(4) P(3) P(2) P(l) P(5)

PCK(l)) P(K(2)) P(K(3)) P(K(4)) P(K(5))

P(0) P(K(0)) 12 22 30 oo oo

P(4) P(K(1)) °° 16 24 oo co

P(3) P(K(2)) » co 24

.P(2) P(K(3)) CO 00 CO

P(l) P(K(4)) CO CO CO
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of 24 . Entries corresponding to infeasible routes are

infinity.

Once the transformed matrix has been created, the shortest

path between the depot and the last customer of the giant

tour (P(5)) is found using this matrix. The shortest path

is found to be P (0) -P (2) -P (5) with a path distance of 50.5.

This shortest path corresponds to routes P (0) -P (4) -P (3) -P (2) -

P(0) and P(0)-P(l)-P(5)-P(0) .

M. R-OPTIMAL ALGORITHM

The r-optimal algorithm [Ref. 7] is based upon the r-

optimal travelling salesman heuristic of Lin [Ref. 8: p. 132-

135] (see Appendix A) . A feasible solution S to the VRP is

said to be r-optimal if no improvement (decreased time or

ditance) can be made by replacing r links of S by r other

links such that feasibility is maintained. This algorithm

is thus an improvement heuristic whereby an initial feasible

solution is improved by making feasible exchanges of r links

with r other links such that the new solution is feasible and

has an improved objective value.

Before the algorithm proceeds, the matrix of interstop

distances (times or costs) needs to be transformed. Suppose

that an initial solution with w routes is generated. Then

replace the original depot in the matrix with w artificial

depots each of which is the same distance as the original

depot from each customer. Furthermore, to prevent one arti-

ficial depot from being linked to another artificial depot,
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make all interdepot distances infinity. This transformation

has been made on the matrix of Table III-I and is given in

Table III-VIII under the assumption the two routes P(0)-P(1)-

P(2)-P(0) and P ( 0) -P (5) -P ( 3) -P (4) -P (0) have been generated

as the initial solution. The w routes of the initial solu-

tion can now be transformed into a single tour in which each

route of the initial solution starts at one artificial depot

and ends at another artifial depot. For example, the initial

set of routes selected for the current example can be written

as P(01)-P(l)-P(2)-P(02)-P(5)-P(3)-P(4)-P(01) where P (01)

and P(02) are the artificial depots.

Given a single tour in which there are n customers,

there are C = n!/ (r ! (n-r) ! ) ways of choosing r links. Thus,

to prove that a given tour is r-optimal , C combinations of

links must be checked for possible replacements. The step-

by-step procedure follows.

TABLE III-VIII

P(01) P(02) Pd) P(2) P(3) P(4) P(5)

P(01) 00 00 10 12 8 6 5.5

P(02) 00 00 10 12 8 6 5.5

Pd) 10 10 00 3 7 13 5

:(2) 12 12 3 CO 4 13 12

P(3) 8 8 7 4 CO 8 10

P(4) 6 6 13 13 8 CO 11

P(5) 5.5 5.5 5 12 10 11 CO
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Step 1. Generate a feasible solution to the VRP . This

can be done by using any of the other heuristics described

in this chapter, by hand or randomly. If a random solution

is generated, this method can be used with several different

initial feasible solutions, and the resulting r-optimal

solution with the best objective value selected. Transform

the interstop matrix as described above and identify the

initial single tour. Set COUNT = 0.

Step 2. Select r links for temporary removal. Add one

to COUNT.

Step 3. Insert r new links such that feasibility is

maintained.

Step 4. If the new set of links results in an improve-

ment, permanently replace the old set with the new set, set

COUNT = and go to Step 2. Otherwise continue on to Step 5.

Step 5. If all feasible ways of replacing the original

r links have not been considered, go to Step 3. Otherwise

continue to Step 6.

Step 6. If COUNT = C, the r-optimal solution has been

found and the algorithm terminates. Otherwise go to Step 2.

An r-optimal solution where r is equal to the number of

customers is the optimal solution. Unfortunately, this method

is prohibitive in terms of computation time with problems

of any size for values of r greater than 3.

An interesting property of the transformed interstop

matrix needs to be mentioned. If all interdepot distances
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are set to infinity, the final r-optimal solution will have

the same number of routes as the initial solution. If however,

the interdepot distances are set to zero, the algorithm will

reduce the number of routes, if this is consistent with re-

duced total mileage. This property of the transformed dis-

tance matrix allows one the flexibility to minimize the dis-

tance (time or cost) subject to using a specified number of

trucks or to minimize total distance without such a restric-

tion. It should be pointed out that the minimum-mileage

set of routes may not have the minimum number of routes.

An example problem using this algorithm is worked in

Section N.

N. TIME WINDOWS [Ref. 22]

Consider a problem in which a set of customers S (where

S is a subset of all customers) have an early time and a

late time (both of which fall within delivery period T)

during which delivery must be made. Call the time between

the early time and the late time a time window . Given an

initial feasible solution to this problem, the r-optimal

algorithm can be used to improve upon the initial value of

the objective while maintaining feasibility. An initial

feasible solution to this problem can be found by initially

routing all customers while disregarding the time window

requirements. If all time window restrictions are met, an

initial solution is found. If the time windows for some

customers are not met, start removing those customers (one
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at a time) for which time windows are violated until all

routes are feasible. Then, for each customer thus removed,

route one truck from the depot to that customer and back to

the depot, such that all time window conditions are met.

These single-vehicle routes may require that a truck leave

the depot after time zero in order to arrive within a given

time window. With this initial feasible solution, the r-

optimal algorithm can now be employed.

As an example, consider the problem for which interstop

times and customer demands are given in Table III-IX. In

this problem, customer P(2) must receive delivery between

time and time 10. All other customers have no time windows.

The delivery period starts at and ends at 30. Two trucks,

each with a capacity of 20 are available. Assume an initial

solution has been found using the procedure described above and

that it is P(0)-P(l)-P(3)-P(0) , P (0) -P (2) -P (0) and P (0) -P (5) -P (4)

-P(0). Table III-IX includes the three artificial depots

TABLE III-IX

Q P(01) P(02) P(03) Pd) P(2) P(3) P(4) P(5)

P(01) 5 7 7 8 4

P(02) 5 7 7 8 4

P(03) 5 7 7 8 4

P(D 10 5 5 5 CO 10 6 13 8

P(2) 5 7 7 7 10 CO 5 4 3

P(3) 5 7 7 7 6 5 CO 10 7

P(4) 10 8 8 8 13 4 10 CO 3

P(5) 5 4 4 4 8 3 7 3 CO
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corresponding to these three routes. The initial solution

can be written in terms of the artificial depots as

P(01)-P(l)-P(3)-P(02)-P(2)-P(03)-P(5)-P(4)-P(01) . Notice

that the initial solution has more routes than vehicles avail-

able. This difficulty is overcome during the improvement

process

.

If 2-optimal procedures are employed, a search must be

made for two links that can be removed and replaced by two

other links that result in less total travel time but maintain

feasibility. If links P(01)-P(l) and P(02)-P(2) are removed

and replaced with links P(01)-P(02) and P(l)-P(2) an improved

feasible route is found. The new sequence of customers is

P(01)-P(02)-P(3)-P(l)-P(2)-P(03)-P(5)-P(4)-P(01) which

corresponds to routes P (0) -P (2) -P (1) -P (3) -P (0) and P(0)-P(5)-

P(4)-P(0). Another search finds that replacing links P(3)-P(02)

and P(2)-P(l) with links P(02)-P(l) and P(3)-P(2) will result

in the improved sequence P (01) -P (02) -P (1) -P (3) -P ( 2) -P (03)

-P (5) -P (4) -P (0) . This sequence of customers corresponds to

routes P (0)-P(2)-P (3)-P(l) -P (0) and P (0 ) -P (5) -P (4) -P (0) which

is the optimal solution.

It should be noted that when checking a route for feasi-

bility, that there are two directions in which a route can

be traversed. Therefore, the time of arrival at each customer

must be checked for both directions of travel before concluding

that a time window has been violated. This point can be demon-

strated with route P (0) -P (2) -P (3) -P (1) -P (0) , which is feasi-

ble. However, the route P (0) -P (1) -P ( 3) -P ( 2) -P (0) is not.
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0. A MANUAL METHOD

According to Doll [Ref. 5], most of the improvement that

results from computerized vehicle scheduling results from

the scrutiny that the whole delivery process comes under

when the system is implemented. He argues that any well

organized manual method of developing schedules will result

in solutions as good as or better than those produced by

heuristics. His method is based on the fact that good routes

do not overlap themselves or other routes and tend to be

teardrop shaped.

The procedure for this method follows

:

1. Estimate the number of schedules S required. Schedules

are the number of delivery trucks leaving the depot throughout

the day. Thus, a truck which leaves in the morning, returns

to the depot, and leaves again in the afternoon counts as

two separate schedules . The number of schedules is a function

of customer demand and truck capacity.

2. Estimate the number of required vehicles V to service

all customers . This number is a function of the vehicle

daily distance or time constraint.

3. Next determine any geographical features (such as

rivers) that will force a boundary between routes.

4. Starting with any boundary created above (or any

artificial boundary) start building a feasible route as much

like a tear drop as possible. Avoid having the route cross

itself unless this is necessary because of one-way streets.
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5. Directly adjacent to the route just formed start

constructing another route.

The routes formed in steps four and five above must be

feasible. The total number of routes should equal S and

the total number of vehicles used should equal V.

Formulas for estimating S and V follow:

S = N/C

V = N(T1)/L

where

:

Tl = (A) (T2)/C + BJ(E) (T2)/N + F/C + G

rp

S = number of schedules

N = number of customers

C = average number of customers per schedule

V = number of vehicles

1 = average travel time per day per customer

L = length of the delivery period

A = 1.8, B = 1.1 (found by regression)

T2 = average depot to customer time

E = length of one side of the smallest square
containing the delivery area

F = fixed time associated with a schedule
(driver's lunch, coffee breaks, etc.)

G = average service time per customer.

Consider the problem for which the depot to customer

times and customer demands are given in Table III-X. The
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TABLE III-X

TIME FROM
CUSTOMER DEPOT (HRS)

Pd) .25

P(2) .5

P(3) .2

P(4) .1

P(5) .75

P(6) .3

P(7) .4

P(8) .1

P(9) .2

PdO) .5

Pdl) .6

P(12) .25

DEMAND

2

7

10

6

13

4

1

1

2

4

6

1

trucks available have a capacity of 20. The average demand

per customer is 4.75. Thus the average number of customers

per schedule is 20/4.75 which is approximately 4. If the

fixed time per route is .5 hours, the average time per customer

is .25 hours, the length of the delivery period is 8 hours,

and the length of one side of the smallest square containing

the delivery area is 15 miles, then the following can be

calculated using the above formulas:

S = N/c = 3

Tl = .74
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V = (12)(.74)/8 = 1.1 rounded up = 2.

Thus, three schedules and two trucks are needed to service

all customers. Routes are formed using a map and the proce-

dure discussed in steps 3 through 5. Notice that even though

three schedules are needed, only two trucks are required.

Therefore, one truck will have to return to the depot to be

reloaded before making further deliveries.

This concludes the survey of vehicle routing algorithms.

The next chapter discusses implementation issues such as

computational efficiency and quality of solution for each

of these algorithms. Additionally, methods for obtaining

data for the interstop matrix are examined.
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IV. A COMPARISON OF ALGORITHMS

A. COMPUTATIONAL EFFICIENCY

A good algorithm produces solutions with small objec-

tive values across a broad spectrum of problems in a small

amount of computation time. In this section each of the

algorithms presented in Chapter III are evaluated with respect

to these three criteria. Computation results from several

sources are summarized in Table IV-I . The source of the test

problems is reference 7.

The nearest neighbor algorithm is the fastest algorithm

but produces solutions with high objective values and a compu-

tation time only slightly better than that of Clark and Wright

[Ref . 11] . The algorithm of Cochran and Tillman, though it

produces solutions with lower objective values than the Clark

and Wright algorithm, requires many more comparisons before

selecting a link. To illustrate this point, consider a prob-

lem with 50 customers. For such a problem there are

50!/( (2!) (48!) ) = 1225 possible links to insert as the first

link. The Clark and Wright algorithm picks the link with the

highest savings. If the savings are ordered, the link selec-

tio process of that algorithm picks the first feasible link

from the ordered link list. On the other hand, the Tillman

and Cochran algorithm (assuming all links are feasible) re-

quires all 1225 comparisons before making the first link

selection. Thus for problems of any size, the computation
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TABLE IV-I

ROUTE DISTANCE

Clark & Wright (Ref . 2,6)

3-optimal (Ref. 6)

Sweep (Ref. 2)

Giant Tour (Ref. 20)

Holmes and Parker (Ref. 12)

Mole and Jameson (Ref. 2)

Heuristic Tree Search (Ref.

Two-Phase (Ref. 2)

2)

No. of Nodes

50 75 100

585 900 886
556 876 863
532 874 851
636 958 969
573 886 876

575 871 851
534 871 851
547 883 851

NO. OF ROUTES

Clark & Wright
3-optimal
Sweep
Giant Tour
Holmes and Parker
Mole and Jameson
Heuristic Tree Search
Two-Phase

6 10 8

5 10 8

5 11 8

6 11 8

5 10 8

5 10 8

5 11 8

5 11 8

COMPUTATION TIME (SEC)

Clark & Wright
3-cptiinal

Sweep
Giant Tour
Holmes and Parker
Mole and Jameson
Heuristic Tree Search
Two-Phase

.8 (36)* 1.7 (78)* 2.4 (1

120 240 600
12.2 24.3 65.1
4.8** 10.8** 28.2**
58*** 162*** ]_24***

5.0 11 36

7.1 15.6 38.2
2.5 4.2 9.7

Notes

:

The Clark & Wright, Sweep, Mole and Jameson, Tree search
and Two-Phase algorithms were refined with the 2-optimal
algorithm,

All times are on the CDC-6600 unless indicated otherwise,

IBM 7090

*IBM 370/168

***
Univac 1108
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time becomes large in comparison with the Clark and Wright

algorithm.

The method of Gaskell produces solutions that are of

about the same quality as Clark and Wright but with slightly

longer computation times. In his original paper, Gaskell

conjectured that each particular distribution of customers

would have a TH parameter value that would always produce

good solutions for every problem based on those customers

.

In practice this has not been found to be the case [Ref. 26:

p. 365] .

The sweep algorithm produces fast solutions for problems

that have a small number of customers in each route. It

spends most of its time sequencing customers within routes.

Its computation time increases linearly with the number of

routes (i.e., is proportional to the number of routes), but

increases quadratically with the average number of customers

in a route (i.e., is proportional to the square of the average

number of customers per route) [Ref. 10: p. 346]. Furthermore,

the algorithm groups customers based upon a euclidian distance

metric. Therefore, if the delivery area has geographical

barriers (e.g., rivers, harbors, bays), the grouping of cus-

tomers can be adversely affected [Ref. 3: p. 337]. For these

reasons this algorithm is not universally applicable.

Beltrami and Bodin [Ref. 1: p. 68] have found that the

giant tour algorithm produces good solutions in cases where

there are many customers on a route and in which the side
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conditions are "loose". However, Russel [Ref. 22: p. 522]

has found that for all problems he has tested, including those

with loose side conditions, this algorithm produces solutions

with rather high objective values.

The r-optimal procedure is only practical (in terms

of computation time) for values of r = 2 or 3. Christofides

and Eilon [Ref. 7] have found that a procedure in which the

following steps are followed works well:

1. Generate an initial random tour.

2. Use two-optimal procedures.

3. Use three-optimal procedures on the results of step 2.

4. Repeat (three to ten times) and select the best solution.

Christofides, Mingozzi and Toth [Ref. 3: p. 333-337]

have tested the algorithms of Clark and Wright, Mole and

Jameson, the sweep algorithm, the tree search algorithm and

the two-phase algorithm on fourteen different test problems

and augmented each with the 2-optimal algorithm. In problems

where customer locations are random and uniformly distributed,

the sweep algorithm produces solutions with the lowest objec-

tive values, but these solutions are only slightly better

than the tree search and two-phase algorithms. However, in

real problems, customers are not uniformly randomly distributed,

but tend to be grouped together. In cases where customers

are grouped together the sweep algorithm does not perform

as well as either the two-phase or tree search algorithms.

Moreover, the two-phase and the tree search algorithms are

the most stable in that their relative performances are not
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data-dependent. In terms of computation time, the Clark

and Wright algorithm and the two-phase algorithm are the

fastest, but the latter consistently produces solutions with

better objective values.

B. DATA REQUIREMENTS

In order to implement the automated routing of vehicles,

regardless of the algorithm used, the travel time between

each pair of customers must be found. Times can be obtained

using any of three methods. The most sophisticated method

requires that a computer map of the delivery area be stored

[Ref. 19: p. 250], Each customer's location is then speci-

fied on this map and the shortest route problem is solved

between each pa:".r cf customers. This method is valuable

when customer locations chance radically from one delivery

period to the next. Also, very accurate intercustomer times

can be obtained. However, the detailed work involved in

producing accurate computer maps makes this method impracti-

cal for small problems.

Another method that can be used is to collect accurate

time data between each pair of customers in the delivery

area [Ref. 16: p. 9], This method requires that all potential

customers must be known and that their locations be fixed.

Collecting this data is a huge task for problems of only

moderate size. For example, a problem with only 50 customers

requires that 51!/ ( (2 ! ) (49 ! ) ) = 1275 times be collected for

a symmetric problem. Traffic congestion as a function of time
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of day and one-way streets can increase the numger of inter-

customer times needed significantly.

A third technique is to approximate inter-customer times

by using euclidian distances. This method requires that the

cartesian coordinates of each customer be given and then each

inter-customer time is assumed proportional to the associated

euclidian distance. To improve upon the accuracy of this

technique, barriers (such as rivers) and congested areas

can be designated [Ref. 16: p. 9-11]. Each barrier B(i)

is recorded with j designated crossing points, CP(i,j). The

distance between two customer P(a) and P (b) on opposite sides

of B(i) is then the minimum over j of D(a,CP(i,j)) + D(b,CP (i, j )

]

Congested areas are areas where traffic causes vehicles

to travel more slowly than is normal. A link that passes

through a congested area is increased in length in proportion

to the percentage of the link that passes through the congested

area

.

The chief advantage of this method is that the data collec-

tion effort is minimal. An accurate street map can be used

along with an arbitrary grid system to locate customers.

The primary disadvantage of this method is that accuracy

must be sacrificed.

There are techniques that can be used to decrease the

number of inter-customer times that need to be found. The

first method involves creating zones into which several

customers are placed [Ref. 16]. A zone is an area within

which travel time can be considered negligible. The center
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of each zone is used for the purpose of calculating inter-

customer times. A problem involving 50 customers has 1275

potential links if all pairings are considered. If these 50

customers are grouped into 25 zones of two customers each,

the total number of potential links is reduced to 325—

a

significant reduction in the number of links

.

A second method for decreasing the number of customer

links has been suggested by Golden, Magnanti and Nguyen

[Ref. 11: p. 126]. Many of the possible links between cus-

tomers would never be found in a solution because the travel

time involved is too great. To eliminate these unlikely

candidates, an arbitrary grid system can be placed over the

delivery area such that each customer is contained in a rec-

tangle with width W and height H. The set of allowable cus-

tomer links then consists of the links between the depot and

each customer and links between customers in the same or adja-

cent rectangles. The smaller the values of H and W are, the

fewer the number of candidate links

.

In addition to inter-customer times, there are other data

required to implement automated vehicle routing. Specifically,

the time to service each customer (exclusive of travel time)

and the time to load each truck are needed. Customer service

time may depend on how well a customer is equipped to unload

trucks . Both load and unload time depend on the type of

truck being used. For example, a stake truck or a flat bed

can be unloaded from the side or rear, whereas a van can only

be unloaded from the rear. If equipment, such as a fork lift
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is being used to unload a van, a ramp must be available so

that the fork lift can drive into the truck. Thus, loading

and unloading of a van may take longer than a stake truck

or flat bed.

Other information that must be available is the early

start time and late finish time for the delivery fleet.

Additionally, any customers with time window requirements

must be specified along with the allowable early and late

delivery times.
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V. CONCLUSIONS AND RECOMMENDATIONS

The Naval Supply Centers in Oakland and San Diego oper-

ate local delivery operations that differ in two important

respects. At Oakland, the entire local delivery operation

is centered in one warehouse, whereas in San Deigo, the equiva-

lent operation is located at two separate facilities about

six miles apart. Additionally, in San Diego, fresh fruit

and vegetables are stored in cold storage at a commercial

firm. Also, the volume of material delivered in San Diego

in much larger.

The local delivery problem model is applicable to both

San Diego and Oakland. Although delivery is not made from

one central depot in San Diego, the material stored at each

of its separate facilities is different and no decisions need

to be made as to which depot is going to make delivery to

which customer. Therefore, there are three separate local

delivery problems.

Automated vehicle routing must be able to route vehicles

more quickly and efficiently than a human dispatcher to be

of any value. Situations in which automated vehicle routing

may be applicable can be characterized as follows:

1. A large number of customers;

2. Many routes with several customers per route;

3. The delivery operation can be standardized in terms

of a unit of demand and capacity and in terms of time
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standards to perform specific actions such as loading and

unloading;

4. Customer volume of demand changes significantly from

delivery period to delivery period so as to make fixed

schedules impractical;

5. Everyone in the delivery system is interested in

being efficient.

Under these conditions it is likely that a computer program

can route vehicles more efficiently than a human dispatcher.

In Oakland, customer demand does not vary much from day

to day. Therefore, vehicle routes change little from day to

day. Furthermore, even though the total number of different

customers BALD services over a year is quite large, the num-

ber of routes and the number of customers per route each day

is small. Also, it is difficult to predict how long it takes

to service a particular customer. In one dirver's log it

was noted that it took four hours for the truck to be unloaded.

In talking to BALD and PWC personnel, it was found that such

delays are not uncommon. These delays not only contribute

to the cost of delivery, but also make automated vehicle

routing very difficult.

Tightening up of current operations seems to be much more

important at Oakland than trying to use an algorithm to schedule

vehicles. Once this is done and adequate data is obtained,

the transportation assets required to make deliveries can

be planned using a simple manual procedure such as that suggested

by Doll.
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The author did not have enough time to study the San

Diego local delivery operation and recommend for, or against,

automated vehicle routing. However, the IBM VSPX package

has been used there in the past with some success. The major

problem encountered in its use was that the daily collection

of customer demand data was considered to be too time consuming

since it was not automated. With the planned automation

under the Naval Integrated Storage, Tracking and Retrieval

System (NISTARS) concept, that difficulty should be miti-

gated. If, in addition, the various times needed by a

shceduling algorithm can be reliably obtained, then a

scheduling algorithm is crucial to its success. The VSPX

package used in the past at San Diego was not interactive

and manual adjustments had to be made to accommodate customer

demands occurring late in the day prior to delivery.

If an algorithm is deemed worthwhile to the local delivery

system, then the author would recommend the two-phase algorithm

refined by 2-optimal procedures. This algorithm is applicable

to a broad range of problems and yields solutions with rela-

tively low objectives in a small amount of computation time.
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APPENDIX A

THE TRAVELLING SALESMAN PROBLEM

In this appendix, the travelling salesman problem (TSP)

and some of its characteristics are briefly discussed. There

is such a tremendous volume of literature on the TSP that it

is impossible to review everything written on the subject.

Therefore, only two algorithms—one exact and one heuristic

—

are explained.

A. THE TRAVELLING SALESMAN PROBLEM

The basic TSP involves routing a salesman from his home

city through n-1 remaining cities and then returning home so

that the total distance (or time or cost) of the tour through

the cities is a minimum. It is assumed here that a complete

matrix of distances between each pair of cities is given,

that the matrix is symmetric and that it satisfies the triangle

inequality. Symmetry implies that the distance between any

pair of cities is the same, regardless of the direction of

travel (i.e., D(i,j) = D(j,i) for any pair of cities P(i)

and P(j)). The triangle inequality requires that the direct

distance between two cities is shorter (cheaper) than the

distance between the same two cities where an intermediate

city is visited (i.e., D(i,j) is less than or equal to

D(i,k) +D(k,j) for every P(i), P(k) and P(j)). In the general

TSP, neither of these assumptions are required. However, for

the purposes of this thesis, these assumptions are reasonable.
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In general, the TSP is computationally complex. There

are (n-1) 1/2 possible tours for a problem of n cities.

Thus, for a problem of only 10 cities, there are 181,440

possible tours, among which the optimum tour(s) is (are) to

be found.

It can be shown that for the conditions stated above,

the optimal tour visits each city exactly once. Furthermore,

the optimal tour does not intersect itself. This last fact

about optimum TSP tour is the motivation for the heuristic

algorithm to be discussed.

B. A BRANCH AND BOUND ALGORITHM

Little et al . , [Ref. 18] have developed a depth-first

branch and bound algorithm for solving the TSP . To clarify

the explanation of the algorithm, some definitions are given.

An arc (i,j) is the shortest path between two arbitrary cities

P(i) and P(j) . A tour is a set of arcs that form a single

path (called a tour) through all cities and such that exactly

two arcs have end points at each city. A node of the search

tree in the branch and bound algorithm consists of a set of

tours. The term "best solution" is used to mean the shortest

tour. Finally, the incumbent solution is the best solution

found at any stage of the search.

The concept of the algorithm is to divide the set of

tours of a node into two mutually exclusive sets of tours,

each of which forms a new node (see Figure A-l) . In Figure

A-l, node A is the set of all possible tours. This node
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is divided into two mutually exclusive sets by picking an

arc (i,j) . Node B (labeled (i,j) ') consists of the set of

all possible tours that do not include arc (i,j) . Node C

(labeled (i,j) consists of all the tours that do include the

arc (i, j) . Next, a lower bound is a number that is guaranteed

to be less than or equal to the distance of the shortest

tour in that set. A method for determining lower bounds is

discussed below.

Many different decision rules may be used to determine

which node to branch from next. The rule suggested by Little

et al . , is to branch from the node with the smallest lower

bound. In Figure A-l, since node C has a smaller lower bound

than node B, node C is selected to be branched from next.

The arc (k,l) is selected to divide node C resulting in node

F with a lower bound (LB) equal to 30 and node G with LB = 25.

At this point, the nodes available for further division are

nodes B, F and G. Since node B has the smallest lower bound,

branching continues from that node.

If the branching process is continued far enough, even-

tually a tour is found. This tour becomes the incumbent

solution and the algorithm continues looking for better solu-

tions. If a node has a lower bound that is greater than the

incumbent solution, then the optimum solution is known not

to be developed beyond that node. Therefore, no further

branching from that node need be made. Notice that at node

M in Figure A-l, a tour is found with tour length LB equal

to 35. Since this tour length is less than the lower bounds
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of the remaining available nodes, the optimal tour is

found.

Two points now need elaboration. First, a rule for

selecting the arc (i,j) at each stage is needed and secondly,

a quick method for determining a lower bound on the best tour

in each set is required. The rule used for selecting the arc

to branch on should divide the current set of tours into two

sets—one set where the optimal solution is likely to occur

and the other one where the optimal solution is unlikely to

occur. Such a rule minimizes the number of branches that

must be searched.

Before discussing either of these rules, a discussion of

how to reduce the distance matrix is needed (see Table A-I)

.

A matrix is reduced when it is both row and column reduced.

A distance matrix is column (row) reduced by subtracting the

smallest number in each column (row) from every other number

in that column (row). When this is done, every column (row)

has at least one zero in it. In Table A-I (a) through A-I(c),

an example of a column reduced and a column and row reduced

matrix is given. The numbers in column 1 of Table A-I (b)

are obtained by subtracting 5 from every number in column 1

of Table A-I (a). The remaining columns of Table A-I (b) are

obtained in a similar fashion. The matrix in Table A-I(c)

is obtained by row reducing the matrix of Table A-I (b) . The

reader should ignore the circled numbers for the moment.

The interesting point about adding or subtracting any

number from every element of any column (row) is that it does
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not change the optimum solution to the problem. This is

true since each city must have exactly one arc leading into

(out of) the city. Therefore, changing the length of every

possible arc leading into (out of) a city does not change

the relative effect of having any particular arc in a tour.

Furthermore, the length of a tour after the ditance matrix

is reduced differs from the original problem by the sum of

the numbers used to reduce the matrix.

To illustrate matrix reduction, consider the tour

P (1)-P(2)-P (3) -P (4) -P (5)-P (6)-P (1) . From Table A-I (a) , the

length of this tour is 57. Using the column reduced matrix

of Table A-I (b) , the tour length is 30 . The sum of the

reducing constants is 27. Notice that 30+27 = 57 and is the

length of the tour using the unreduced matrix.

The problem now is to select the arc (i,j) such that if

this arc is omitted from the set of possible arcs, the per-

missible tours are least likely to contain the optimal solu-

tion. If, for example, arc (a,b) is omitted, then node P (a)

must have an arc leaving it not going to P(b) and P (b) must

have an arc coming into it but not from P (a) . Thus, the

length of the best tour not containing arc (a,b) must be at

least as large as the sum of the smallest arc leaving P(a)

not going to P (b) and the smallest arc entering P(b) not

coming from P (a) . Call this distance THETA(a,b). The arc

(i,j) selected for omission at any stage is the arc (i,j)

such that THETA(i,j) is a maximum over all arcs in the current

node. Only arcs (i,j) that have an inter-node distance
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D(i,j) of zero in the reduced matrix need be considered.

Otherwise, THETA(i / j) is equal to zero. In Table A-I(c),

the circled numbers represent the values of the THETA(i
, j

)

' s

.

As an example, consider the circled number 3 in row 2 and

column 5 of the matrix in Table A-I(c) . In row 2, the smallest

number not in column 5 is 3. In column 5, the smallest num-

ber not in row 2 is zero. Thus, THETA(2,5) = 3+0 = 3.

Next a method is needed to determine a lower bound on the

best solution in the current node. Such a bound can be found

by taking the sum of the reducing constants . As described

earlier, if a tour found under a non-reduced matrix has

length z(t) and the same tour under the reduced matrix has

length zl(t) , then z(t) = zl(t)+h where h is the sum of the

reducing constants. Since the method of reducing the matrix

insures that zl(t) _> 0, it must be true that h < z(t) for

any tour in the current node. Thus h is a lower bound on

the length of the best tour in the current node. A lower

bound on the optimal tour for the matrix in Table A-I(a) is

28.

The algorithm now works according to the following steps.

Step 1 initializes the algorithm by setting up the original

distance matrix, C, setting the current node, X, equal to

the set of all tours and setting the length of the incumbent

tour to infinity (since no tours have been found yet)

.

Step 2 reduces the current distance matrix and labels the

current node with its lower bound.
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Step 3 selects the arc (i,j) on which to base the next

branching. This selection is made as described previously.

Step 4 extends the search tree from the current node, X,

to the node Y', in which the arc (i,j) determined in step three

is omitted. Node Y* is labeled with its lower bound where

LB(Y') =LB(X) +THETA(i / j).

Step 5 sets up the node Y that must contain the arc

(i,j). Since arc (i,j) is committed to every tour in node

Y, row i and column j of the distance matrix C are no longer

needed in node Y and are delted from the matrix. In node

Y, there is a set of arcs besides (i,j) that are committed to

every tour in node Y. Thus, it is possible that the arc (i,j)

is connected to other arcs forming a path leading from some

node, P (d) , and ending at some node, P(e) . Each such arc (d,e)

must not be permitted in node Y, otherwise a subtour (or a

tour of less than n cities) is formed. To prevent this, each

D(d,e) is set to infinity. Now the matrix C of node Y is

reduced. The lower bound for node Y is determined to be

LB(&) = LB(X) +h where h is the sum of the reducing constants.

Step 6 checks to see if a single tour node is near. If

the matrix C has been reduced to a 2X2 matrix, the LB(Y) is

equal to the length of the only remaining tour in node Y.

If C is 2X2 and LB(Y) is less than the length of the incum-

bent tour, ZB, the tour in node Y becomes the incumbent, and

the length of ZB is set equal to LB(Y) . If C is not 2X2 or

LB(Y) > ZB, go immediately to step seven.
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In step 7 the next node, X, for branching is selected.

As mentioned earlier, the node with the smallest lower bound

is selected.

Step 8 checks to see if the optimum solution has been

found. If ZB < LB(X) then the best possible solution has

been found and the algorithm terminates.

Step 9 sets up the distance matrix of node X selected in

Step 7. If the new node X is equal to the old node Y, the

C matrix is already set up and a return is made to Step 3.

Otherwise

:

1. Set C equal to the original matrix.

2. For each arc (i,j) required to be in all solutions

developed from node X, let g = the sum of the lengths of

these arcs.

3. For each arc (i,j) committed in node X delete row i and

column j . For each path starting at some node P (d) and ending

at some node P(e) among the committed arcs, set D(d,e) to

infinity. For each arc (r,s) prohibited from node X, set

D(r,s) to infinity.

4. Reduce the C matrix.

5. Label X with LB(X) = g +n.

Return to Step 3.

A four-node problem is worked out in Figure A-2, where

each node is labeled in capital letters and each matrix is

labeled in arabic numerals . The original inter-distance

matrix is labeled (1) . When matrix (1) is column and row

reduced, the result is matrix (2) . The sum of the reducing
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constants is 10 and therefore, node A is labeled with a

lower bound of 10. In matrix (2) , the circled numbers are

the THETA(i
, j

) 's . Notice that the THETA (i
, j

)
' s are non-zero

only where the reduced matrix entry is zero. The largest

THETA(i,j) corresponds to arc (1,4). Thus, in node B, arc

(1,4) is prohibited and in node C is required. The lower

bound of node B is equal to LB (A) + THETA (1,4) = 20.

In node C, the arc (1,4) is required. Thus, row 1 and

column 4 of matrix (2) are no longer required. Furthermore,

D(4,l) is set to infinity to prevent the subtour P (1) -P (4) -P (1) .

In the reduced matrix (4) , the THETA (i,j) 's have been calcu-

lated and the sum of the reducing constants, h, is 10.

Therefore LB(C) = LB (A) +h = 20. Since both node B and node

C have the same lower bound, either node can be selected to

branch from. In Figure A-2 node C is selected and the branching

process continues. In node E, the reduced matrix is 2X2. The

arcs (1,2) and (4,3) of the reduced matrix have as their

distances and are therefore the final two arcs required to

make a tour along that branch. Node E corresponds to tour

P (1)-P(4) -P (3)-P (2) -P (1) with length 20. Since node E has

a lower bound that is less than or equal to the lower bound

of any remaining node, an optimum solution has been found.

C. THE R-OPTIiMAL HEURISTIC

The r-optimal heuristic, developed by Lin [Ref. 8: p. 132-

135], is an improvement algorithm which replaces r links of

an incumbent tour with r new links that result in a tour and
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such that the new tour is shorter in length. The new tour

then becomes the incumbent tour and the process of replacing

r links continues. The algorithm terminates when no improve-

ment can be found by replacing r links of the incumbent tour

with r new links. A tour which cannot be improved by replacing

r links is called r-optimal . Before this algorithm can be

used, an initial tour must be generated. In general, differ-

ent initial tours result in different r-optimal tours. There-

fore, a strategy that can be employed is to generate several

initial tours, find the r-optimal tour resulting from each

and then select the shortest tour. In order to prove that a

tour is r-optimal, every combination of r links must be

examined for possible replacement. Since there are

C = n!/(rl (n-r) i ) ways of choosing r arcs from n arcs, a

problem with n cities requires C checks be made to prove that

a tour is r-optimal.

As an example, consider the problem in Figure A-3 where

each figure is drawn to scale. Starting with the initial tour

in Figure A-3 (a) and using r = 2, consider removing arc (1,3)

and arc (2,7). When these two arcs are removed, the only

possible replacements that maintain a tour are arc (2,3) and

arc (1,7). Since the new tour is better than the old tour,

the new replaces the old and the process continues. The

algorithm terminates when no two arcs can be replaced by two

other arcs that result in an improvement. In this problem,

there are eight arcs that make up a tour. Since there are

28 ways to select 2 arcs from 8 arcs, the algorithm terminates
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after checking 28 pairs of arcs. An interesting property of

two-optimal tours is that they do not intersect themselves.

Notice that the tour of Figure A- 3 (d) is intersectionless

.

When r is greater than 2, there is more than one way to

form a new tour when r arcs are removed. Specifically, when

r = 3, there are eight ways of replacing 3 arcs and still

maintaining a tour. This fact is demonstrated in Figure A-4

.

In Figure A-4 (a), the arcs P(l)-P(8), P(3)-P(4) and P(5)-P(6)

are removed from the tour P ( 1) -P (2) -P (3) -P (4) -P (5) -P (6) -P (7)

-

P(8)-P(l). The seven additional ways of forming a tour are

shown in Figures A-4 (b) through A-4 (h)

.

Obviously a tour that is n-optimal is the optimal tour.

However, this algorithm has little practical use beyond r = 3

because the computation time becomes too large.
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APPENDIX B

THE MINIMUM SPANNING TREE PROBLEM

The minimum spanning tree problem [Ref. 13: p. 220-224]

can most easily be explained in terms of providing telephone

lines to each of n cities. It is desired to provide these

lines such that the total length of cable used is a minimum

and there is a line traceable from any city to any other city.

The minimum spanning tree can be found quickly and also pro-

vides a lower bound in the heuristic tree search algorithm

for the VRP.

The algorithm is initialized by selecting a city, P(i)

.

The first step is to find the city that is closest to city

P(i)z say P(j). Connect these two cities with arc (i,j).

Cities P(i) and P(j) now form a set of connected cities.

Call this set of connected cities, S.

In Step 2, find the cities not in the set S that are

closest to each of the cities in the set S. Connect the two

cities (one in S and one not in S) corresponding to the smallest

distance and add the newly connected city to the set S. If

there are unconnected cities remaining, repeat this step.

Otherwise, the algorithm terminates.

As an example, consider a problem for which the inter-

city distances are given in Table B-I. City P(l) is selected

to initialize the algorithm. The city P(4) is closest to

P(l). Therefore the arc (1,4) is added to the tree first.

116





P(l)

P(3)

P(2)

TA3LE 3-1

p(l)

)

P(3

20 P(2

10 30 )

5 12 11 PW
17 7 25 8 P(5)

15 25 9 7 12 P(6)

23

!

21 24 11 7 9 P(7)

117





At this point the cities P(l) and P(4) are connected and are

therefore put into the set S. The next city closest to

P(l) is P(3) and the next city closest to P(4) is P(6). The

distance between P(4) and P(6) is 7 which is less than 10,

the distance between P(l) and P(3). Therefore the arc (4,6)

is added to the tree and P(6) is put into the set. The next

city closest to a city in the set S is P(5) . Therefore the

arc (.4,5) is added to the tree and P(5) is put into S. The

final solution to the problem is shown in Figure B-l. The

sum of the arc lengths is 43 which is a lower bound on the

total distance of a set of routes that visit the customers

P(l) through P(6) (see the tree search algorithm).
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APPENDIX C

THE SHORTEST PATH PROBLEM

The shortest path problem [Ref. 6: p. 217-220] concerns

finding the shortest path from an origin to a destination

through a connected network. If the network is thought of

as a system of streets where the nodes are street intersec-

tions and the arcs are the streets connecting each intersection,

then the problem is equivalent to finding the shortest route

from any street intersection to any other street intersection.

In the discussion that follows, the term directly connec-

ted is used. Two nodes P(i) and P(j) are said to be directly

connected if the arc P(i)-P(j) exists. Before the algorithm

can be applied, a network with an origin node and a destina-

tion node must be given and the length of each arc in the

network must be known. A simple network is shown in Figure

C-l. The origin node is labeled P(0), the destination node

P(7) and each arc is labeled with its length.

The first step of the algorithm is to find the node P(i)

closest to the origin. Node P(i) and P(0) are then placed

in the set of nodes, S, for which the distance from the ori-

gin is known.

In the second step, the algorithm looks for the node,

P(j), not an element of S that is closest to the origin.

The node P(j) must be directly connected to one of the nodes

in the set S. If P(j) is not directly connected to a node in
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S, then there exists a node P (k) not an element of S that is

closer to the origin. If P(j) is the next node to enter S

and P(j) is directly connected to P(i), an element of S,

then the shortest distance between P(0) and P(j), D(0,j),

is D(0,i) +D(i,j). The distance D(0,j) and the node P (i)

to which P(j) is connected are recorded. It is possible that

more than one node in S, when connected to P(j), results in

P(j) being the same distance from the origin. Therefore,

each of these nodes are also recorded as being connected

to P(j). P(j) is then added to S . If P(j) is the destination

node, the algorithm continues on to Step 3. Otherwise, this

step is repeated.

Step 3 is the backtracking step. When the destination

node is reached, each chain of arcs terminating at the destina-

tion node is traced back to the origin. Each such chain

forms a shortest path between the origin node and the destina-

tion node .

As an example of this algorithm, consider the problem

illustrated in Figure C-l in which P(0) is the origin and P(7)

the destination. The solution is completely worked out in

Table C-I . At stage 1, P(2) enters into S because P(2) is

closest to the origin. The node P(2) is connected to P(0)

and is a distance of 3 from the origin. At stage 2, P(l)

enters S because D(0,1) = 5 is less thanD(0,2) + D(0,5) = 6

(where P(r) is the node closest to P(2)). This process is

continued until node P(7) is reached. Notice that P(4) is
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connected to both P(l) and P(5) because D(0,1) +0(1,4) =

D(0,5) + D(5,4) = 10.

Next the backtracking process is used to determine the

shortest path(s) between P(0) and P(7). From Table C-I,

P(7) is connected to P(4). Therefore, an arc of the shortest

path is P(4)-P(7). The node P(4) is connected to both P(l)

and P(5). Therefore, two separate paths back to the origin

exist, one through P(l) and the other through P(5) . Continu-

ing the backtracking procedure yields paths P (7 ) -P (4 ) -P (1) -P (0)

and P(7)-P(4)-P(5)-P(2)-P (0) , both of which have length 15.
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APPENDIX D

AUTOMATED VEHICLE SCHEDULING PROGRAMS

A. THE IBM VSPX

The IBM Vehicle Scheduling Program-Extended (VSPX) is

designed specifically for the IBM system/360 and IBM system/

370. In its current form this program dates back to 1970.

It routes vehicles from a central depot to service the demand

of a set of customers so as to minimize total route distance

or time. Its method is based on the algorithm of Clark and

Wright and includes many day-to-day operational conditions in

producing routes. These conditions may be segregated into

customer and vehicle conditions. Permissible customer condi-

tions are as follows:

1. Time windows for each customer may be specified.

2. An average fixed time per stop in addition to time
required for loading and unloading may be set.

3. Special time involved in making deliveries to specific
customers can be specified.

4. Vehicle size or type restrictions by customer are
permissible

.

In addition to these customer conditions, the following

fleet or route conditions can also be included:

1. Up to 255 different vehicle types may be used.

2. The average fleet speed may be modified to account for
special conditions such as weather.

3. The earliest start time and the latest finish time for
the whole fleet may be specified.
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4. The maximum permissible route time by vehicle type
can be specified.

5. The maximum number of stops per route can be set.

6. Vehicles may have up to fifteen different compartments
specified by vehicle type. Compartments allow separa-
tion of quantities by customer.

7. Up to fifteen vehicle and trailer types can be desig-
nated along with information as to which vehicle type
can be connected to which trailer type.

8. The average unload time per unit of material can be
specified. This time is used in calculating customer
stop time.

9. Two dimensions of quantity (e.g., weight and cube) can
be used in describing demand or capacity.

10. More than one route can be serviced by a vehicle
during a delivery period.

11. Journeys lasting more than one day can be handled.

12. Low priority loads can be specified. This option
gives the user the ability to quickly delete low pri-
ority deliveries from the delivery schedule if a
schedule turns out to be infeasible.

13. This system uses the zone concept described in Chapter
IV. One average intercustomer time (distance) within
a zone applicable to all zones can be specified to
help in calculating route time.

14. A maximum route mileage can be specified.

15. A predetermined begin or end point of a route can be
selected.

Two options for entering customer inter-stop distances

are available. The two options are exact distance and euclidian

distance, both of which are described in Chapter IV. De-

pending on the capabilities of the particular IBM system used,

VSPX can schedule anywhere from 250 to 1650 customers per

run.
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This program is not interactive. Once the required data

is collected and input, the program is run. Any changes to

the resulting routes must either be made by manually editing

the output or by changing the input data and running the

program again

.

B . IVESS

McDonnel Douglas Automation Company (MCAUTO) markets a

system called Interactive Vehicle Scheduling System (IVESS)

developed by Decision Graphics. This system solves the same

problem as the IBM system. It has generally the same capa-

bilities as the IBM system, but, unlike VSPX, is interactive.

All day-to-day delivery requirements are input through a

remote terminal to a computer in St. Louis. The computer-

generated routes and a map of the delivery area along with

customer information can be displayed at the terminal. Then,

any route infeasibilities that either the computer does not

recognize or cannot resolve can be taken care of by the human

operator through a set of simple commands. These commands

allow movement of customers between and within routes.

The system includes several different heuristics that

generate the computer solutions. The heuristic used depends

on the specifics of the particular dispatch operation. Inter-

face with the computer can be made with most Tektronix graphics

terminals which can be bought or rented from MCAUTO. It is

also possible to use terminals at local MCAUTO offices. Charges

for the use of the system include any labor involved in setting
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up or modifying data and computer time. Charges for computer

time vary dependent on the type of job but average about $75

per clock hour. The system is capable of scheduling up to

187 customers per run.

C. AVS

The Automatic Vehicle Scheduling (AVS) program developed

by David W. Taylor Naval Ship Research and Development Center

is an interactive program designed specifically for the

routing of vehicles at the NSC in Charleston, N.C. The dis-

patching problem that AVS addresses is different than the

problem IVESS and VSPX are designed to handle. At Charleston

there are 92 potential pick-up and delivery sites, any one

of which may be making deliveries to or receiving deliveries

from any of the other 9 2 sites. Additionally, of the 9 2

sites, only six are located remote from the center. The AVS sys'

tern does not combine off-center locations into routes . In

other words, any trucks going to off-center locations are

scheduled to leave an on-center location, visit a single off-

center location and return to the base.

All vehicles are dispatched from a single building to

service a set of orders, where an order consists of a pick-

up and a delivery. The program combines orders into a set

of routes that are both time-feasible and capacity-feasible.

The AVS system can handle up to 99 pick-up and delivery

sites and four vehicle types. The program is written in

FORTRAN and is designed specifically for the Burroughs B3500

computer

.
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D. CONCLUSION [Ref. 2]

In addition to the aforementioned programs, many other

specialized systems are available commercially, some with

true optimization capabilities. The efficiency and cost of

these systems varies between jobs. Generally, good per-

formance for local delivery operations requires interactive

access, a customer- tailored algorithm, a well understood set

of instructions for the human operator, and real-time computer

resources which commonly cost as much as operating several

vehicles. Experience with these systems has revealed that

"thumb- rules" are not always reliable, that significant

operational savings can be achieved, but that the managerial

context must admit necessary discipline. This discipline is

justified and accepted primarily in terms of reducing opera-

ting costs. For Navy operations, it may be difficult to

achieve such a managerial environment, and thus to succeed

at automated vehicle scheduling.
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