

Calhoun: The NPS Institutional Archive DSpace Repository

A numerical study of airplanes flying in proximity

Porter, David B.

Monterey, California. Naval Postgraduate School
https://hdl.handle.net/10945/26657

Downloaded from NPS Archive: Calhoun

DUDLEYKNO GURY
NAVAL POSTGRADUATE SCHOOL
MONTEREY CA 93943-5101

Approved for public release; distribution is unlimited.

A Numerical Study of Airplanes Flying in Proximity
by
David B. Porter
Lieutenant Commander, United States Navy
B.S.A.E., United States Naval Academy, 1980

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN AERONAUTICAL ENGINEERING

 from theNAVAL POSTGRADUATE SCHOOL
September, 1993

REPORT DOCUMENTATION PAGE

REPORT SECURITYCLASSIFICATION Unclassified		1b. RESTRICT	E MARKII		
SECURITY CLASSIFICATION AUTHORITY		3. DISTRIBL	ON/ AVAl	Y OF	
DECLASSIFICATION/DOWNGRADING SC	EDULE				
PERFORMING ORGANTZATION REPORT	MBER(S)	5. MONITOR	G ORGAT	REPOR	R(S)
NAME OF PERF(ORMING ORGANIZATION Naval Postgraduate School	6b.OFFICE SYMBOL (If Applicable) AA	7a. NAME OF Naval Pos	ONITORIN graduate	$\overline{\text { ANIZAT }}$	
ADIRESS (city, state, and ZIP code)		7b. ADDRESS	ity, state, an		
Monterey, CA 93943-5000		Monterey	CA 93943		
NAME OF FUNDING/SPONSORING organization	8b. OFFICESYMBOL (If Applicable)	9. PROCORE	ENT INSTR	TDENT	NOMBER
ADDRESS (city, state, and ZIP code)		10. SOURCE OFFONDING NOMBERS			
		PROGRAM ELEMENT NO.	$\begin{aligned} & \text { PROJECT } \\ & \text { NO. } \end{aligned}$	$\begin{aligned} & \text { TASK } \\ & \text { NO. } \end{aligned}$	WORK UNIT ACCESSION NO

TYTLE (Include Security Classification)
A NUMERICAL STUDY OF AIRPLANES FLYING IN PROXIMITY
PERSONAL AOTHOR(S)
Porter, David B.
a. TYPEOF REPORT

Master's Thesis

13b. TIME COVERED
FROM

| 14. DATE OF REPORT (year, month, day) |
| :--- | :--- | :--- |
| September 1993 |

SUPPLEMENTAKY NOTATION
The views expressed in this thesis are those of the author and do not reflect the official policy or position of the Department of Defense or the U.S. Goverminent.

COSATICODES

FIELD	(GROCP	SUBGROCP

18. SUBJECT TERMS (continue on reverse if necessary and identify by block number)

Formation Flying, Panel Method, Stability and Control

ABSTRACT (Continue on reverse if necessary and identify by block number)
During an emergency such as an unsafe landing gear indication, a second aircraft is often used to perform an airborne visual inspection of the landing gear. The chase airplane may be quite dissimilar in size and wing loading and consequently experience unexpected aerodynamic forces and moments caused by the other airplane. A numerical study of the inherent danger involved with the aerodynamic interaction of aircraft flying in proximity was made using the low-order panel code PMARC (Panel Method Ames Research Center). PMARC validation was made by comparing wind tunnel and analyticallyderived stability data for T-34 and F-14 models with PMARC results. A T-34 was then placed at various distances underneath an F-14 to determine changes in lift and pitching moments on the T-34. Color illustrations of pressure coefficients were used to highlight the changes in aerodynamic forces and moments as vertical separation between the two aircraft was decreased. PMARC showed that 4.5 deg. of elevator trim change were required as a T-34 approached to within its semispan of an F-14.

DISTRIBUTION/AVAILABILITY OF ABSTRACT
X UNCLASSIFIEIDUNUMTIED $\quad \square$ SAME AS RPT. $\quad \square$ - NaME OF RESponsible indivildual Richard M. Howard
21. ABSTRACT SECCURITY CLASSIFICATION

Unclassified
22b. TELEPHONE (Include Area Code)
(408) 656-2870

22c. OFFICE SYMBOL AA/HO

Abstract

During an emergency such as an unsafe landing gear indication, a second aircraft is often used to perform an airborne visual inspection of the landing gear. The chase airplane may be quite dissimilar in size and wing loading and consequently experience unexpected aerodynamic forces and moments caused by the other airplane. A numerical study of the inherent danger involved with the aerodynamic interaction of aircraft flying in proximity was made using the low-order panel code PMARC (Panel Method Ames Research Center). PMARC validation was made by comparing wind tunnel and analytically-derived stability data for T-34 and F-14 models with PMARC results. A T-34 was then placed at various distances underneath an F-14 to determine changes in lift and pitching moments on the T-34. Color illustrations of pressure coefficients were used to highlight the changes in aerodynamic forces and moments as vertical separation between the two aircraft was decreased. PMARC showed that 4.5 degrees of elevator trim change were required as a T-34 approached to within its semispan of an F-14.

TABLE OF CONTENTS

I. INTRODUCTION 1
II. BACKGROUND 3
A. NAVY FORMATION FLYING 3
B. PREVIOUS FORMATION FLYING STUDIES 6
C. COMPUTER CODES 7

1. PMARC Background 8
a. PMARC Description 8
b. Operating Systems. 9
c. Coordinate Systems 9
d. Geometry Modeling 10
e. Wake Modeling 11
2. GVS Background 12
a. GVS Description 12
b. Operating Systems. 12
III. GROUNDWORK AND PMARC VALIDATION 14
A. ANALYTIC DERIVATION OF T-34 STABILITY DERIVATIVES 14
3. T-34 Lift-Curve Slope, $\mathrm{C}_{\mathrm{L}_{\alpha}}$ 14
4. T-34 Change in Pitching Moment with Angle of Attack, $\mathrm{C}_{\mathrm{m} \alpha}$ 14
5. T-34 Change in Lift Coefficient with Elevator Deflection, $\mathrm{C}_{\mathrm{L}_{\delta}}$. 16
6. T-34 Change in Pitching Moment with Elevator Deflection, $\mathrm{C}_{\mathrm{m}}^{\delta}$ 16
B. T-34 DERIVATIVE COMPARISON WITH SIMILAR AIRPLANES 17
C. PMARC AND MODELING VALIDATION 17
7. NACA 4415 Airfoil Evaluation 18
a. PMARC Data Versus 2-D Airfoil Data 18
b. Computer-Generated Versus Operator-Defined Wakes 19
8. T-34 Geometry Evaluation 21
9. F-14 Geometry Validation 24
DUDIEY KNOX LIBRARY NAVAL POSTGRADUATE SCHOOL MONTEREY CA 93943-5101
IV. ANALYSIS OF AIRPLANES FLYING IN PROXIMITY 30
A. LARGE WING AND T-34 WING AND TAIL IN PROXIMITY 30
B. F-14 AND T-34 IN PROXIMITY 35
10. Vertical Separation 35
11. Horizontal Separation 40
12. F-14 Jet Intake Effects 45
V. CONCLUSIONS AND RECOMMENDATIONS 47
A. CONCLUSIONS 47
B. RECOMMENDATIONS 48
APPENDIX A PMARC/GVS FIGURES 50
APPENDIX B PMARC F-14/T-34 INPUT 71
LIST OF REFERENCES 128
INITIAL DISTRIBUTION LIST 130

NOMENCLATURE

$a c$
$a t$
$a_{W} \quad$ wing lift curve slope
$A R \quad$ aspect ratio
$\overline{\mathrm{c}} \quad$ length of mean aerodynamic chord
cg center of gravity
$\mathrm{C}_{l_{\alpha}} \quad$ local section lift curve slope
$\mathrm{C}_{l_{\alpha \text { tail }}}$ local section lift curve slope for the tail
$\mathrm{C}_{\mathrm{l}_{\mathrm{\delta e}}} \quad$ change in section lift coefficient due to elevator deflection
$\mathrm{C}_{\mathrm{L}} \quad$ lift coefficient
$\mathrm{C}_{\mathrm{L}_{\alpha}} \quad$ change in lift coefficient with angle of attack (lift curve slope)
$\mathrm{C}_{\mathrm{L}_{\alpha \text { tail }}}$ tail lift curve slope
$\mathrm{C}_{\mathrm{L}_{\alpha \text { wing }}}$ wing lift curve slope
$\mathrm{C}_{\mathrm{L}_{\text {e }}}$
$\mathrm{C}_{\mathrm{m}} \quad$ pitching moment coefficient
$\mathrm{C}_{\mathrm{m}_{\alpha}} \quad$ change in pitching moment coefficient with angle of attack
$\mathrm{C}_{\mathrm{m}}^{\mathrm{\delta e}}$ \quad change in pitching moment coefficient due to elevator deflection
$\mathrm{d} \varepsilon / \mathrm{d} \alpha \quad$ change in downwash angle due to change in angle of attack
$\Delta_{\delta \mathrm{e}} \quad$ change in elevator deflection
$\varepsilon_{1 \text { wing }}$ induced-angle span efficiency factor of wing
$\varepsilon_{\text {tail }}$ induced-angle span efficiency factor of tail
$h \quad c g$ position, in fraction of mac
$\mathrm{h}_{\mathrm{ac}}^{\mathrm{wb}}$ \quad position of aerodynamic center for wing-body, in fraction of mac
$\mathrm{l}_{\text {tail }} \quad$ length from cg to horizontal tail aerodynamic center
mac mean aerodynamic chord
$\eta_{\mathrm{t}} \quad$ efficiency factor for tail, $\mathrm{q}_{\text {tail }} / \mathrm{q}$
$\rho \quad$ air density
$\mathrm{q} \quad$ dynamic pressure $\left(1 / 2 \rho \mathrm{~V}^{2}\right)$
$\mathrm{q}_{\text {tail }} \quad$ tail dynamic pressure $\left(1 / 2 \rho \mathrm{~V}_{\mathrm{t}}^{2}\right)$
V free-stream velocity
$S_{W} \quad$ wing area
$\mathrm{S}_{\mathrm{t}} \quad$ horizontal tail area
$\mathrm{V}_{\mathrm{H}} \quad$ horizontal tail volume coefficient
$V_{t} \quad$ free-stream velocity at tail

ACKNOWLEDGMENTS

This study could not have been completed without the help and generosity of many people. Dan Lyon's initial instruction and guidance on PMARC fundamentals were instrumental in getting this project started. Stephen Bachner and Mark Byers of NAWC AD spent considerable time gathering and discussing F-14 and T-34 data. Steve Keith of Sterling Software was always available for help with GVS. He developed a truly great product in GVS and to him I give credit for the outstanding images in Appendix A. Matthew Koebbe's expertise in UNIX and the NPGS Visualization Lab was instrumental in the production of the video associated with this thesis.

I would especially like to thank Dr. Richard Howard, my thesis advisor, for all of his help and guidance. Finally, a very special recognition goes to Mr. Dale Ashby of NASA Ames. His unselfish dedication and technical expertise with PMARC kept the project on track.

I. INTRODUCTION

On 14 January 1992, an F-14A experienced an unsafe landing gear indication prior to recovery at a Naval air station. The F-14 air crew requested a chase aircraft to conduct a visual inspection of their landing gear in accordance with Naval Air Training and Operating Procedures Standardization Program (NATOPS) procedures. A T-34C with instructor and student pilot joined on the F-14 to inspect the landing gear. Shortly after notifying the F-14 crew that their gear looked good, the T-34 collided with the substantially larger aircraft. Significant damage to T-34 control surfaces resulted in uncontrolled flight and subsequent loss of the aircraft and its air crew. The F-14 received minor damage and returned to the Naval air station without further incident.

A study of Navy and Air Force mid-air collisions involving formation flying over the past ten years has shown that pilot error is the predominant common denominator. Task saturation; preoccupation with cockpit duties; and failures to judge closure rates and take sufficient, timely and appropriate action to avoid collision, are major factors in mishap findings [Refs. 1 and 2]. Mutual interference of the flow patterns around aircraft in proximity is rarely discussed in mishap findings or even flight training, yet may be a significant causal factor. Interference of airflow over lifting surfaces such as wings and tails can alter the aerodynamic characteristics of the aircraft. Unexpected changes in lift and pitching moments may occur that affect closure rate and task saturation of the unaware or uninformed pilot.

Very little information is available to military aviators concerning changes in aerodynamic forces and moments that result when airplanes fly close to each
other. NAVAIR has subsequently tasked the Naval Postgraduate School to investigate mutual interference of aircraft flying in formation. The desires for better insight into the aerodynamic interactions between formation aircraft and a means to educate military aviators about them form the impetus for this study.

This study is a numerical investigation in aerodynamic trim changes of dissimilar aircraft flying in formation. The low-order panel code PMARC was used to determine aerodynamic pressures, forces and moments on various wings, wing-bodies and aircraft in proximity. Discussions include PMARC validation, numerical results, and limitations associated with the computer code for this type of study. Color illustrations and histograms are used to present the changes in pressure coefficients on a T-34 wing and tail as its vertical separation from an F-14 decreases. Subsequent changes in elevator trim position and lift are addressed to provide the aviator with a better understanding of the aerodynamic effects one airplane has on the other.

This study is offered as a supplement to existing formation flying literature and training aids. A video that graphically depicts the numerical results with narration oriented toward the student aviator has been produced as a training tool for aviation safety and formation flying education. Its purpose is to expose student pilots to changes in airplane trim and handling characteristics brought about by disturbances associated with formation flying. This research ultimately provides AIR-530 with an engineering approach to investigate the aerodynamics of formation flying.

II. BACKGROUND

A. NAVY FORMATION FLYING

Military pilots are instructed in the fundamentals of formation flying throughout their training syllabus. Ultimately, formation flying becomes standard operating procedure for most tactical aviators. Unfortunately the fundamentals are often limited to basic procedures and visual cues for flying in formation with similar type aircraft.

Student Naval aviators begin primary flight training in the T-34C. After solo and basic instrument instruction, the student is taught basic procedures for flying in formation with other T-34C airplanes. Classroom emphasis is placed on operating area familiarization, join-up, formation and breakup procedures with appropriate visual cues. Visual cues are used to judge closure rates, and to maintain proper separation and placement in level flight, turn and cross-under maneuvers. Classroom instruction does not include a thorough discussion of interference between airplanes in flight. Interference from lead aircraft prop wash and its effects on lateral-directional stability of airplanes in trail is addressed, however. ${ }^{1}$ Aircraft in trail or performing cross-under maneuvers experience a weather-vane effect when flying in the lead aircraft's prop wash. This phenomenon is discussed with students and often demonstrated in flight.

Primary flight instructors come from diverse backgrounds. Most come from P-3, C-130, E-2 and helicopter communities where formation flying is not a

[^0]primary means of operation. This is not to say that these pilots do not make good formation pilots; but rather they have relatively little formation flying experience outside the basic principles they were taught during flight training and their more recent T-34 instructor under training (IUT) syllabus. Without vast experience in formation flying they rely heavily on "textbook" procedures and visual cues. The instructors may not be able to provide detailed information about potential changes in airplane aerodynamic characteristics caused by flying in proximity.

The latest revision of the T-34C Flight Training Instruction has a new subsection addressing formation flight with dissimilar aircraft, specifically during landing gear inspections. This inclusion is attributed to the F-14 and T-34 mid-air collision and is evidence of the need for increased awareness of formation flying hazards. Adverse aerodynamic conditions that cause upward pitching moments and trim changes to maintain control of the aircraft are discussed. The instruction now stipulates [Ref. 3]:
...If the wing man does not anticipate this trim change, it could cause a significant controllability problem which could result in airborne collision. The magnitude of this flow interference is related to the configuration, speed, weight and distance between the two aircraft.

The actual aerodynamic flow between a T-34C and a dissimilar aircraft will not normally be known. Because of the inherent danger involved when inspecting landing gear of dissimilar aircraft, the inspection pilot should be aware of the possible adverse flight conditions and avoid them.

Advanced flight training for tactical aviators is taught in the Navy's T-2, A-4 and T-45 aircraft. Formation training again places instructional emphasis on area and formation procedures and visual cues, with little formal instruction on mutual interference of flow patterns. Primary positions such as parade and line are discussed with video highlights. Hand signals, radio communications and maneuvers are also presented with video support. The new T-45 training program provides flight simulators to aid in formation flying instruction.

Simulators expose the student pilot to section take-off, TACAN rendezvous, breakup and rendezvous, turns, cross-under and acrobatic formation maneuvers. Formation flight instruction in the T-45 primarily emphasizes procedures and visual cues, but pilots are also exposed to changes in aircraft stability as T-45's get closer together. A T-45 flight instructor from VT-21 in Kingsville, Texas, indicated that formation pilots, lead and wing man, can feel the presence of each other's airplane through changes in trim conditions as they get closer. ${ }^{2}$ Instructor pilots warn the students of the danger in flying too close and demonstrate how to maneuver back to the ideal position, but the aerodynamic cause and effect do not seem to be addressed at this level. Formation flying is limited to groups of similar aircraft as the students prepare for carrier qualifications and fleet aircraft selection.

Formation flying becomes routine in most fleet tactical squadrons as airplanes sortie together for low-level navigation, strikes, combat air patrol, in-flight refueling and escort operations. Procedures and visual cues remain primary instructional tools, but complexities and variations arise due to the diversity of carrier aircraft. Without a basic understanding of potential aerodynamic interferences between airplanes flying in formation, the inexperienced fleet aviator may have few resources to call upon when joining on a different type aircraft, especially for the first time.

The truth is that most formation flying instruction appears to be passed down from aviator to aviator. Procedural standards and techniques are presented to the students and fleet aviators for their type aircraft, but there is very little textbook information to supplement the mechanics of formation flying. Even the Blue

[^1]Angels aerial demonstration team relies on basic techniques that are passed from one formation pilot to the next. A diamond formation pilot for the Blue Angels could not pinpoint any known literature used by the team to teach potential interference effects between airplanes in the formation. ${ }^{3}$

Aerodynamics For Naval Aviators, by H. H. Hurt, is the only Navy textbook found by the author that addresses disturbances in flow patterns caused by formation flying. Besides describing the phenomenon, Hurt points out [Ref. 4:p. 385]:

A common collision problem is the case of an airplane with a malfunctioning landing gear. If another airplane is called to inspect the malfunctioning landing gear, great care must be taken to maintain adequate separation and preserve orientation. Many instances such as this have resulted in a collision when the pilot of the trailing airplane became disoriented and did not maintain adequate separation.

In-flight refueling and supersonic flight issues pertaining to formation flying are also addressed, though recommended procedures are lacking.

To maintain proficiency, combat readiness and safety, Naval aviators receive continuous training in the cockpit, simulator and classroom. To this end, a more thorough understanding of formation flying aerodynamics provided by this study can enhance pilot awareness and safety.

B. PREVIOUS FORMATION FLYING STUDIES

Many studies have been conducted involving formation flying. Topics include formation flight trainer evaluations, formation station keeping concepts, wakes at large distances (up to 250 chords) from wings, airplane formation flying qualities, and potential benefits of flying aircraft in formation on extended range

[^2]missions. Human factor and physiology issues have also been addressed. There seems to be very little information available, however, concerning the issue of aerodynamic interference between airplanes flying in formation. [Refs. 5-8]

Vortex lattice calculations have been used to study the benefits of formation flying. Maskew [Ref. 8] applied a quadrilateral vortex-lattice method to a formation of three wings. Force and moment data were used in estimating potential benefits to flying aircraft in formation on extended range missions. Only echelon and double row formations were presented, but Maskew did point out that trimming in roll was required for the echelon formation.

C. COMPUTER CODES

Computational fluid dynamics have become an integral part of aircraft design and analysis. Most recently, powerful computer systems and codes provide solutions to Navier-Stokes and Euler equations for simple three-dimensional wing-body configurations. Potential flow panel codes have been developed for the past 25 years to aid in the design and analysis of arbitrary three-dimensional wing-bodies. Today's engineer has the option to choose from an abundance of computational programs based on project scope, available computer resources and problem complexity.

The potential-flow panel code PMARC (Panel Method Ames Research Center) was used for this study. PMARC was designed to numerically predict flow fields around complex three-dimensional bodies. Adjustable size arrays permit tailoring of the code for the size problem being solved and the available computer hardware. The decision to use PMARC was also based on past success using the code at the Naval Postgraduate School to conduct aerodynamic studies
of the Pioneer unmanned air vehicle and the Service Aircraft Instrumentation Package (SAIP) [Refs. 9 and 10].

PMARC data are displayed by GVS 3.1 (General Visualization System) software. Designed specifically for PMARC, the program is ideal for visual representations of aerodynamic data on complex geometries.

1. PMARC Background

a. PMARC Description

PMARC is a low-order, potential flow panel code that is patterned after Analytical Methods Inc. VSAERO (Vortex Separation Aerodynamics Program). Surface geometries are broken up into panels with constant strength source and doublet distributions over each panel. These singularities distributed with constant strength over each panel qualify PMARC as a low-order panel method. Higher-order methods allow the singularity strengths to vary linearly or quadratically over each panel. Better accuracy is obtained by the higher-order methods at the expense of code complexity and computation time [Ref. 11: p. 2]. Experience and research have shown, however, that low-order panel methods can provide nearly identical results as higher-order methods over a wide range of cases. PMARC's potential flow model theory can be found in Ref. 11.

PMARC version 11 is written in FORTRAN 77. Adjustable size arrays within the code permit simple to very complex geometries, wakes, off-body velocity scans and streamlines. Basic input data include body geometry and coordinate systems, free-stream conditions, angular position and rates, symmetry parameters and requests for off-body velocity scans and streamlines. Outputs consist of geometries, wakes, aerodynamic parameters, off-body velocities and off-body streamline data. Aerodynamic data provide doublet strength, velocity
components, pressure coefficient, and local Mach number for each panel. Forces and moments for panel sections, components and entire geometries are summed and put in coefficient form. Force and moment coefficients are then expressed for wind, stability and body axes.

b. Operating Systems

PMARC is designed to run on computers ranging from personal computers (Macintosh II based) to the powerful Cray Y-MP. Disk space and memory requirements for operating the code are dependent on the size of the operator-selected arrays. This research used approximately 2,350 geometry panels. According to Ref. 11, the scratch disk space required to run PMARC is approximately 67 Mb for this application. Memory requirements for storing the executing instructions and output data are difficult to predict and are significantly effected by dimensioning the code.

The Naval Postgraduate School's Cray Y-MP EL 8/2048 was used to operate PMARC for this study. There was ample storage on the Cray with 2 Gigabytes of main memory and several 50-Gigabyte local disks. Eight vector processors provided a peak operation of 133-MFLOP (Million Floating point Operations) per processor [Ref. 12].

c. Coordinate Systems

Aircraft geometries are described in a body-fixed coordinate system. PMARC assumes that the body-fixed coordinate system is coincident with the origin of an inertial reference frame. Assembly and component coordinate systems are also provided for complex geometries and configurations. Separate component and assembly coordinate systems were used in this analysis to differentiate between the F-14 and T-34, for example.

Constant velocity vectors and constant angular rotation rates about the three coordinate axes are used to describe geometry motion. Normalized velocities with zero angular rotation rates were used throughout this analysis. The geometry incrementally moved through the prescribed motion in a series of time steps. Solutions were computed at each incremental time step that included updated surface source strengths. Instantaneous free-stream velocity vectors in the body-fixed reference frame were subsequently computed from the surface source strengths.

d. Geometry Modeling

PMARC geometries are modeled by a set of panels. Complex geometries such as aircraft, are subdivided into several pieces and modeled with sets of panels called patches. Patches are formed from two or more sections. A section is a set of points defining a cross-sectional area of the modeled object. Patches are usually four sided but fewer sides can exist for complex or intricate shapes. Wings, for example, are made by folding a patch over onto itself to form a common edge. [Ref. 11:p. 14]

Low-order panel methods do not demand exact matching between panels as higher-order methods do. This difference becomes important when trying to model from three-view drawings with little detail. Small gaps and panel mismatches that may arise due to modeling inaccuracies or ambiguities can be tolerated in PMARC without severe penalties in data accuracy.

The T-34 geometry sections were defined using the three-view drawing in Appendix A, Figure A1. Airfoil data were obtained from Ref. 13. The tailless F-14 model, Appendix A, Figure A2, was used by Naval Air Warfare Center, Weapon Division (NAWC WD), China Lake, to conduct stores separation
analysis. Horizontal and vertical tails were added with small gaps between them and the fuselage to simplify the model and minimize deformities. F-14 tail airfoil data were obtained from Ref. 14. Half-plane models were used with the assumption that the airflow and geometry are symmetric around the XZ plane. PMARC automatically adds the influence of the mirror image when calculating the total force and moment coefficients.

e. Wake Modeling

Wakes are shed from user-specified separation lines on the surface geometry. PMARC has provisions for three wake options. A time-stepping wake model is developed that moves downstream with the local velocity field. This option requires significant processing, particularly with complex and high-density panel geometries. Alternatively, the user can specify an initial wake that allows analysis of the steady-state problem without going through several time steps to reach a steady-state condition. A no-wakes option is also available, but its use for this study's application was limited to geometry-only plotting.

Initial wakes were specified for the majority of data runs in this analysis. The decision to use initial-wake specifications vice time-stepping wakes was based on discussions with PMARC's principal programmer, Dale Ashby. Numerical results between the two wake options are generally within five to seven percent of each other as long as the wake is reasonably approximated. Part of the wake should separate at or near the wing trailing edge, for example. Verification data are presented in Chapter III.

Wake separation lines and initial specifications must be handled with great care because they affect numerical results. User-defined wake sections must all go in the same direction as the separation line [Ref. 11:p. 16]. Defining
the wake separation line becomes an art as the user stitches it along wing and fuselage panel edges. If the separation line changes direction or is incomplete, due to input coding errors, inaccurate and often unrealistic data will result. Specified wakes must also carry downstream approximately 20 chord lengths in order to provide reliable data. ${ }^{4}$

2. GVS BACKGROUND

a. GVS Description

GVS is designed to display PMARC data in a variety of formats. One of two PMARC output files is used by GVS to display geometries, wakes, and on-body and off-body streamlines that are collectively called objects. PMARC phenomena such as component velocities, pressure coefficients, doublet strengths and Mach numbers are qualitatively displayed in color on the various objects. A quantitative association for the data is provided by a histogram that identifies a numerical value for each color displayed, depending upon the observed phenomenon. Displayed objects can be rotated, translated and scaled for ease in data analysis.

b. Operating Systems

GVS is designed to run on Silicon Graphics Incorporated (SGI) Iris ${ }^{\mathrm{TM}}$ computer graphics workstations. It is a computationally intensive program that requires a great deal of memory and disk resources. A minimum of 72 Megabytes of disk space is required [Ref. 15]. Main memory requirements are difficult to estimate. GVS was designed on a system with 24 Megabytes of RAM and a 20 MHz processor but has run on Naval Postgraduate School SGI Iris

[^3]machines running at 16 MHz with 16 Megabytes of RAM. The graphics monitor must provide 24 -bit color; otherwise the color display of phenomenon data will be distorted. The program is designed to compile and run using IRIX 3.0. x and IRIX 4.0.x system software.

A SGI 4D/380, model VGX, Iris ${ }^{\text {TM }}$ workstation was used for GVS data analysis, display and reproduction. The Naval Postgraduate School's Visualization Lab SGI system operates at 36 MHz and provides 128 Megabytes of RAM and 4 Gigabytes of disk space [Ref. 12:p. 4]. Color graphics were provided by a Shinko color Postscript printer.

III. GROUNDWORK AND PMARC VALIDATION

A. ANALYTIC DERIVATION OF T-34 STABILITY DERIVATIVES

The Navy did not buy stability derivative data when the T-34C was procured. ${ }^{5}$ Several derivatives were required for this analysis, however, in order to determine elevator trim changes and to compare with PMARC output data. Stability and control data were consequently estimated from Smetana [Ref. 16], and from Perkins and Hage [Ref. 17]. Stability derivatives were then compared with typical values for other airplanes. Table I contains aerodynamic parameters and assumptions used in calculating T-34 stability derivatives for the cruise configuration, defined as gear and flaps retracted.

1. T-34 Lift-Curve Slope, $\mathrm{C}_{\mathrm{L}_{\alpha}}$

Equation (1) [Ref. 16:p. 57] was used to approximate the lift curve slope of the T-34C. The contribution of the fuselage was assumed to be negligible.

$$
\begin{equation*}
\mathrm{C}_{\mathrm{L}_{\alpha}}=\mathrm{C}_{\mathrm{L}_{\alpha \text { wing }}}+\mathrm{C}_{\mathrm{L}_{\alpha \text { fuselage }}}+\mathrm{C}_{\mathrm{L}_{\alpha \text { tail }}}\left(1-\frac{d \varepsilon}{d \alpha}\right) \frac{\mathrm{S}_{\text {tail }}}{\mathrm{S}_{\text {wing }}} \eta_{\text {tail }} \tag{1}
\end{equation*}
$$

Substitution of data from Table I into equation (1) yielded: $\mathrm{C}_{\mathrm{L}_{\alpha}}=0.0894 / \mathrm{deg}$.
2. T-34 Change in Pitching Moment with Angle of Attack, $\mathrm{C}_{\mathrm{m} \alpha}$

The change in pitching moment coefficient with angle of attack has significant impact on an airplane's longitudinal stability. It determines the response of the airframe to elevator motions, gusts and other aerodynamic disturbances. $\mathrm{C}_{\mathrm{m}_{\alpha}}$ is estimated by equation (2) [Ref. 16:pp. 67-69].

[^4]TABLE I T-34 STABILITY AND CONTROL DERIVATIVE DATA

Wing Airfoil Type (1)	NACA 23012
$\mathrm{C}_{\mathrm{l}_{\alpha}}(2)$	$0.107 / \mathrm{deg}$.
$\mathrm{S}_{\mathrm{W}}(1)$	$179.56 \mathrm{ft}^{2}$
Wing Aspect Ratio (1)	6.22
$\mathrm{C}_{\mathrm{L}_{\alpha \text { wing }}(6)}$	$0.0812 / \mathrm{deg}$.
$\varepsilon_{1 \text { wing }}(3)$	0.99
d $\varepsilon / \mathrm{d} \alpha(4)$	0.45
Tail Airfoil Type (1)	NACA 0008.2
$\mathrm{C}_{\mathrm{l}_{\alpha \text { tail }}}(5)$	$0.10965 / \mathrm{deg}$.
$\mathrm{S}_{\mathrm{t}}(1)$	$37.15 \mathrm{ft}{ }^{2}$
Tail Aspect Ratio (1)	3.99
$\mathrm{~V}_{\mathrm{H}}(1)$	0.5628
$\mathrm{l}_{\text {tail }}(1)$	14.74 ft
$\varepsilon_{1 \text { tail }}(3)$	0.97
$\mathrm{C}_{\mathrm{L}_{\alpha \text { tail }}}(6)$	$0.0723 / \mathrm{deg}$.
$\eta_{\mathrm{t}}(7)$	1.0

1. Ref. 13
2. Ref. 18
3. Ref. 16
4. Ref. 17
5. $2 \pi / 57.3$
6. $\mathrm{C}_{\mathrm{L}_{\alpha}}=\frac{\mathrm{C}_{\mathrm{l}_{\alpha}}}{1+\mathrm{C}_{\mathrm{l}_{\alpha}} \frac{57.3}{\pi \varepsilon_{1} A R}}$ [Ref. 16:p. 58]
7. Assumed

$$
\begin{equation*}
\mathrm{C}_{\mathrm{m}_{\alpha}}=\mathrm{a}_{\mathrm{w}}\left[\left(\mathrm{~h}-\mathrm{h}_{\mathrm{ac}_{\mathrm{wb}}}\right)-\mathrm{V}_{\mathrm{H}} \frac{\mathrm{a}_{\mathrm{t}}}{\mathrm{a}_{\mathrm{w}}}\left(1-\frac{d \varepsilon}{d \alpha}\right)\right] \tag{2}
\end{equation*}
$$

The aircraft cg was assumed to be at the aerodynamic center. C_{m} equals $-0.0339 / \mathrm{deg}$.

3. T-34 Change in Lift Coefficient with Elevator Deflection, $\mathbf{C}_{\mathbf{L}_{\delta}}$

The change in lift coefficient due to elevator deflection is approximated by equation (3) [Ref. 16:p. 94].

$$
\begin{equation*}
\mathrm{C}_{\mathrm{L}_{\delta_{\mathrm{e}}}}=1.05 \mathrm{C}_{\mathrm{l}_{\delta_{\mathrm{e}}}} \frac{\mathrm{C}_{\mathrm{L}_{\alpha_{\mathrm{t}}}}}{\mathrm{C}_{\mathrm{l}_{\alpha_{\mathrm{t}}}}} \frac{\mathrm{~S}_{\mathrm{t}}}{\mathrm{~S}_{\mathrm{w}}} \eta_{\mathrm{t}} \tag{3}
\end{equation*}
$$

A positive elevator deflection is defined as trailing-edge down. The derivative represents the change in overall lift from a change in tail camber caused by an elevator deflection. Everything else remains constant; therefore angle of attack and associated lift changes are not considered in this derivative. The derivative is normally positive and small for conventional aircraft. Substitution of data from Table I into (3) yields: $\mathrm{C}_{\mathrm{L}_{\delta_{e}}}=0.00745 / \mathrm{deg}$.

4. T-34 Change in Pitching Moment with Elevator Deflection, $\mathbf{C}_{\mathbf{m}_{\delta}}$

The change in pitching moment coefficient with change in elevator deflection is commonly referred to as "elevator power" or "elevator effectiveness." The sign is usually negative due to the way elevator deflection is defined. Therefore, a positive deflection provides a negative pitching moment, making elevator power negative. A numerical value for elevator power is obtained from equation (4) [Ref. 16:p.101].

$$
\begin{equation*}
\mathrm{C}_{\mathrm{m}_{\delta_{e}}}=-\frac{1_{\text {tail }}}{\overline{\mathrm{c}}} \mathrm{C}_{\mathrm{L}_{\delta_{e}}} \tag{4}
\end{equation*}
$$

Substituting (3) into (4) yields a $\mathrm{C}_{\mathrm{m}_{\delta \mathrm{e}}}$ value of $-0.02026 / \mathrm{deg}$.

B. T-34 DERIVATIVE COMPARISON WITH SIMILAR AIRPLANES

Stability and control derivatives for three similar aircraft are presented in Table II for comparison to estimated T-34C derivatives. The approximations appear reasonable and fall within Smetana's typical values. Further validation will be made by comparing the derivatives to PMARC results in subsequent sections.

TABLE II STABILITY DERIVATIVES OF VARIOUS AIRPLANES (1)

Derivative	$\mathrm{C}-172(2)$	Navion (3)	Jet Trainer (4)	$\mathrm{T}-34 \mathrm{C}$
$\mathrm{C}_{\mathrm{L}_{\alpha}}$	0.0803	0.0775	0.0960	0.0894
$\mathrm{C}_{\mathrm{m}_{\alpha}}$	-0.0155	-0.0119	-0.0042	-0.0339
$\mathrm{C}_{\mathrm{L}_{\delta \mathrm{e}}}$	0.0075	0.0062	0.0066	0.0075
$\mathrm{C}_{\mathrm{m}_{\delta \mathrm{e}}}$	-0.0223	-0.0161	-0.0154	-0.0203

1. All derivatives are per degree and for a cruise configuration.
2. Ref. 19:p. 592
3. Ref. 20:p. 252
4. Ref. 19:p. 609

C. PMARC AND MODELING VALIDATION

PMARC was evaluated first using a simple wing test case. PMARC data from the test case were compared with data derived from 2-D airfoil theory for validity. Data from computer-generated wake models were then compared with data associated with operator-defined wake models. Geometry models for the T34 and the F-14 were also validated by comparing PMARC results with analytically-derived stability data or wind tunnel report data. Observations and conclusions from these evaluations constituted the groundwork for the more complex analysis of two airplanes in proximity presented in Chapter IV.

1. NACA 4415 Airfoil Evaluation

a. PMARC Data Versus 2-D Airfoil Data

A NACA 4415 wing with an aspect ratio of 15 was analyzed at various angles of attack. Appendix A, Figure A3 shows the 4415 wing and its initial wake. The wake was defined by the author and extended 20 chord lengths aft of the trailing edge. Figure 1 shows the lift curve slope generated from PMARC data and corresponding information derived from a 2-D NACA 4415 airfoil from Abbott and Doenhoff [Ref. 18:p. 490]. Data from Ref. 18 were corrected for aspect ratio using the equation in Table I, note 6 . Figure 2 shows analogous data for pitching moment coefficient versus angle of attack.

Figure 1. NACA 4415 Wing Lift Curve Slope
Upon inspection, PMARC results for a high-aspect-ratio wing correspond well with corrected 2-D data, especially at lower angles of attack.

Larger differences at higher angles of attack could be associated with the fact that the flow starts to separate, moving the effective aerodynamic center forward. A less negative pitching moment subsequently results. Indications of flow separation and subsequent stall are not predictable by panel codes. Within the scope of this analysis, however, PMARC results sufficiently agree with theoretical data.

Figure 2. NACA 4415 Wing C_{m} (cg @ 0.25 mac) versus Angle of Attack

b. Computer-Generated Versus Operator-Defined Wakes

An experiment was made to determine the differences between PMARC results for geometries with user-defined wakes and those with computer-generated wakes. The motivation for this test was a reduction of high CPU times associated with computer-generated wakes without sacrificing data accuracy. Results indicate that data from a well-defined wake model are within two percent of the computer-generated wake model data as shown in Figures 3
and 4. An NACA 4415 wing and its computer-generated wake are found in Appendix A, Figure A4. Table III indicates the CPU times for each run. A threefold saving in CPU time was made with very little sacrifice in data accuracy.

TABLE III CPU TIMES FOR PMARC WAKE MODELS

Wake Model	CPU Time (sec.)
User-defined	48
Computer-generated	170

It is important to emphasize that the CPU times in Table III are for a very simple geometry with 315 panels. The CPU times for test cases of the F-14 and T-34 together with operator-defined wakes were approximately 25 minutes. In contrast, a PMARC execution of a T-34 geometry with computer-generated wake experienced a CPU time-out after 2.5 hours.

Figure 3. NACA 4415 Wing Lift Curve Slope

Figure 4. NACA 4415 Wing C_{m} (cg @ 0.25 mac) versus Angle of Attack
User-defined wakes were implemented for the remainder of the analysis based on the small differences in data sets between the computergenerated and user-defined wake geometries. The savings in CPU time permitted greater diversity of tests and test conditions within research time constraints.

2. T-34 Geometry Evaluation

A T-34 wing and tail were initially modeled to compare PMARC data with analytically-derived stability and control data described earlier. Appendix A, Figure A5 contains a T-34 wing and tail at five degrees angle of attack. Streamlines generated by PMARC are also included. Wakes on all remaining geometries are not shown to avoid clutter. A complete T-34 was then modeled with similar comparisons made. A T-34 model at one degree angle of attack is
shown in Appendix A, Figure A6. Streamlines are moved outboard to observe the flow over the wing and tail vice the fuselage.

PMARC-generated lift and pitching moment coefficients are plotted against angle of attack in Figures 5 and 6 respectively. A cg location at 0.25 of the mean aerodynamic chord (mac) was assumed and used for all PMARC executions.

Figure 5. T-34 Geometry Lift Curve Slope
Lift curve slopes for each model were determined from Figure 5 by simple curve fits. The corresponding changes in pitching moment with angle of attack were obtained from curve fits of Figure 6. Stability derivatives are presented in Table IV for comparison with analytical results.

The lift curve slopes of each model are within five percent of analytical data. Pitching moment changes are within 34 percent of estimated data. The

Figure 6. T-34 Geometry C_{m} (cg @ 0.25 mac) versus Angle of Attack larger disparity in pitching moment data may be attributed to approximations for the geometric coordinates of the 0.25 mean aerodynamic chord location. PMARC uses these coordinates to compute forces and moments. Discrepancies

TABLE IV T-34 STABILITY DERIVATIVES

Derivative	T-34 Wing and Tail	T-34	Analytic Estimation
$\mathrm{C}_{\mathrm{L}_{\alpha}}$	0.0933	0.0908	0.0894
$\mathrm{C}_{\mathrm{m}_{\alpha}}$	-0.0271	-0.0224	-0.0339

between surface areas used in the analytical approximations and those generated from PMARC input geometries may also affect accuracy. Rounded T-34 wing and tail tips were truncated and modeled with little detail in order to keep the geometries as simple as possible.

It is important to emphasize that the analytic derivations used as reference standards for comparison were just estimates. A comparison of data in Tables II and IV shows that PMARC and analytic estimations are fairly close to expected values for the T-34's category of aircraft. The only exception is the estimate for the change in pitching moment with angle of attack. PMARC results appeared more consistent; therefore, the data were considered sufficiently accurate to conduct an investigation in the changes in trim conditions caused by airplanes flying in proximity.

3. F-14 Geometry Validation

A tailless F-14 model was obtained from NAWC WD, China Lake, CA. China Lake engineers used the model, written in VSAERO, to study stores separation characteristics. The code was converted to PMARC and used for this analysis. Thirty degrees of flaps were added to the model before conducting PMARC studies. Figures 7 and 8 show PMARC generated lift and moment coefficients versus angle of attack respectively. Geometry data from Ref. 14 were used to approximate a cg location at 0.25 of the wing's mean aerodynamic chord. The position was estimated by adding 0.25 of the mean geometric chord length to the longitudinal station coordinates of the mean geometric chord's leading edge. This center of gravity location was taken as noted with no verification by further analysis.

The tailless F-14's lift curve slope as a function of angle of attack was then determined by simple curve fit and is presented in Figure 9. Wind tunnel report data from Ref. 14 are included for comparison. The differences between PMARC and wind tunnel report data are attributed to variations in configuration

Figure 7. Tailless F-14 Lift Curve Slope

Figure 8. Tailless F-14 C m (cg @ 0.25 mac) versus Angle of Attack

Figure 9. Tailless F-14 $\mathrm{C}_{\mathrm{L}_{\alpha}}$ versus Angle of Attack
for each test. Table V shows the configurations used for each data set. Flow separation effects at high angles of attack, mentioned earlier for the 4415 wing evaluation, could also account for contrasts in data.

TABLE V F-14 TEST CASE CONFIGURATIONS

Test Case	Landing Gear	Flaps	Slats	Speed Brake	Direct Lift Control
PMARC	Up	30°	Retracted	Retracted	Stowed
Ref. 14	Down	35°	Extended	Extended	Stowed

Tails were then modeled based on airfoil information obtained from Ref. 14. The tail patches did not join the original model but were placed as close as possible. Small gaps between patch surfaces remained but did not appear to corrupt output data. This approach simplified the model and provided an
additional benefit of having moveable tail surfaces that were later used to trim the F-14. This modeling technique was not considered unrealistic, because the horizontal tail of the F-14 is an all moveable control surface attached to the airframe by a single pin.

The complete F-14 geometry used for this study is shown in Appendix A, Figure A7. PMARC-generated lift and pitching moment coefficients are plotted against angle of attack in Figures 10 and 11 respectively. A cg location at 0.25 mac was used for all PMARC applications. Computer simulation data from Ref. 21, are included for comparison. The simulation data were corrected to a cg location at 0.25 mac using equation (5) [Ref. 14:p. 1-3].

$$
\begin{equation*}
C_{m}=C_{m_{\mathrm{cg}} @ 0.162}+C_{L}(h-0.162) \tag{5}
\end{equation*}
$$

The configurations were the same as those used for the tailless investigation presented in Table V. The horizontal tail used in the PMARC model was aligned with the body axis (zero relative angle of attack). The zero reference line for the F-14 tail angle of attack was not known, so data sets from several tail positions are presented in Figure 11. Differences between the PMARC body axes and the actual F-14 zero reference line could account for the PMARC data in Figure 11 lying between the +5 and 0 symmetric tail position data sets. Configuration differences mentioned in Table V and approximations for 0.25 mean aerodynamic chord location could also affect data.

The F-14 lift curve slope as a function of angle of attack was then determined by simple curve fit and is presented in Figure 12. Wind tunnel report data from Ref. 14 are included for comparison.

Figure 10. F-14 Lift Curve Slope

Figure 11. C_{m} (cg@ 0.25 mac) Versus Angle of Attack

Figure 12. F-14 $\mathrm{C}_{\mathrm{L}_{\alpha}}$ Versus Angle of Attack
PMARC validation based on the results found in Figures 7 through 12 was not possible due to the configuration variations among the data sets. Data similarities in magnitudes and trends were deemed adequate for this study, however. The F-14 model was considered a good representation for further investigation of dissimilar airplanes flying in proximity.

The F-14 was then "trimmed" at 11 degrees angle of attack for the remainder of this study. This flight condition was based on a gross weight of $57,000 \mathrm{lbs}$. and an airspeed of 135 kts . Detailed test conditions are presented in Chapter IV. A horizontal elevator position of 4.9 degrees trailing-edge up was used to zero the pitching moment of the F-14 model. This trim setting was facilitated by the fact that the horizontal tail was modeled separately and was free to rotate independently.

IV. ANALYSIS OF AIRPLANES FLYING IN PROXIMITY

Several combinations of PMARC geometries were used to study the aerodynamic disturbances between airplanes in proximity. A T-34 wing and tail geometry was observed first as the configuration approached a much larger wing. Then, the T-34 model was looked at as it flew closer to an F-14. An additional study kept the vertical separation between two airplanes constant and varied their relative longitudinal positions fore and aft. Disturbances created by jet intakes were also briefly examined. Streamlines, lift coefficients, pitching moments and pressure coefficients were observed at incremental distances between PMARC geometries. Data were provided by PMARC output tables and displayed by GVS. Data reduction included changes in elevator deflection required to maintain longitudinal trim of the smaller geometry as it approached the larger configuration.

Geometry separations for all of the PMARC studies were constrained to the XZ plane of symmetry. This limitation was due to the half-plane models used, so PMARC could automatically add the influence of the mirror image when calculating the total force and moment coefficients. Investigations in other planes would require full geometry models, adding complexity and computational burden to the analysis, and were beyond the scope of the current study.

A. LARGE WING AND T-34 WING AND TAIL IN PROXIMITY

A large untapered wing and a T-34 wing and tail were modeled as shown in Appendix A, Figure A8. The two bodies were aligned in the XZ plane such that the T-34 wing's ac was directly under the larger wing's ac. Distances between the two geometries varied between 170.83 and 8.33 feet. In terms of T-34 wing
spans, the distances varied between approximately 5.0 and 0.25 . Test conditions and relative geometry sizes are presented in Table VI. Angles of attack for each geometry remained constant, as indicated in Table VI, throughout the PMARC executions. Variations in lift, moments and elevator trim requirements caused by aerodynamic interference could then be studied as a function of vertical separation only.

TABLE VI PMARC TEST CONDITIONS

Geometry	Airfoil	Span (ft)	Area (ft ${ }^{2}$)	MAC (ft)	CG	AOA
Large Wing	4415	64.125	695.0	10.83	0.25 MAC	11 deg
T-34 Wing	23012	33.34	180.0	8.33	0.25 MAC	5 deg
T-34 Tail	0008	12.5	38.45	3.1	----	-----

Figure 13 indicates a change in lift of the wing and tail as the vertical separation between modeled geometries decreases. The decrease in lift may be due to a reduction in local angle of attack caused by flow curvature under the larger wing or to increased ambient pressure due to the pressure side of the large wing. Figure 13 shows a 50 percent reduction in lift of the T-34 wing and tail when the model approaches the larger wing to within its own semi-span.

The pitching moment was also affected by changes in vertical separation as shown in Figure 14. At five degrees angle of attack, the T-34 configuration developed a nose-down pitching moment as expected. As the T-34 wing and tail approached the larger wing to within 12.5 feet, PMARC indicated that a nose-up pitching moment had developed. The nose-up pitching moment was approximately equal in magnitude to the nose-down moment obtained beyond the aerodynamic interference of the larger wing as shown in Figure 14.

Figure 13. T-34 Wing and Tail Lift Coefficient Versus Vertical Separation

Figure 14. T-34 Wing and Tail C_{m} (cg @ 0.25 mac) Versus Vertical Separation

A baseline pitching moment coefficient of -0.10 was established for the T-34 wing and tail model at five degrees angle of attack, from Chapter III, Figure 6. The differences between the pitching moment coefficients for each vertical distance and the baseline were used to determine the changes in elevator deflection to maintain trim at five degrees angle of attack. The change in elevator deflection as a function of vertical separation was determined by equation (6).

$$
\begin{equation*}
\mathrm{C}_{\mathrm{m}_{\text {baseline }}}-\mathrm{C}_{\mathrm{m}_{\text {interference }}}=\mathrm{C}_{\mathrm{m}_{\delta_{e}}} \Delta \delta_{e} \tag{6}
\end{equation*}
$$

Changes in elevator deflection data are presented in Figure 15. A positive change represents more trailing-edge down. PMARC data showed that a change

Figure 15. Change in Elevator Deflection Versus Vertical Separation
of 9.5 degrees in elevator deflection, more trailing-edge down, was required for trim as the T-34 wing and tail approached to within 8.33 feet of the large wing.

Streamlines plotted by GVS provided a qualitative analysis of the aerodynamic disturbances between the two configurations. Appendix A, Figure A9 shows just the T-34 wing and tail and associated streamlines. Appendix A, Figure Al() shows the streamlines when the T-34 wing and tail were 12.5 feet below the large wing. As the distance between the two models decreased, the streamlines were deflected slightly downward behind the large wing. This apparent downwash probably contributed to the positive pitching moment of the T-34 wing and tail. The downwash decreased the tail's relative angle of attack, decreasing positive lift and eventually producing lift in the downward direction.

The color display of pressure coefficients on the wing and tail also provided insights into the changes in pitching moment. Appendix A, Figure All shows the bottom of the T-34 tail when the wing and tail configuration was beyond any interference effects of other airplanes. The underside of the tail is predominantly yellow at the leading edge and blends to green toward the trailing edge. Freestream conditions are represented by green. The histogram to the right of the figure indicates these pressures represent a small suction peak at the lower leading edge that tapers off to almost zero pressure coefficient, or free-stream pressure, at the trailing edge. Appendix A, Figure A12 shows the bottom of the tail when it is 8.33 feet from the large wing. A noticeable red band along the lower-surface leading edge has developed. A much stronger suction peak exists; therefore a greater downward force is acting on the tail. This downward force provided the positive pitching moment determined by PMARC and depicted in Figure 14.

B. F-14 AND T-34 IN PROXIMITY

1. Vertical Separation

An F-14 and T-34 were modeled as shown in Appendix A, Figure A13. The PMARC input code for this evaluation is presented in Appendix B. The two bodies were aligned in the XZ plane such that the T-34's cg was directly under the F-14's cg. Distances between the two geometries varied between 170.83 and 12.5 feet. In terms of T-34 wing spans, the distances varied between approximately 5.0 and 0.4. PMARC test conditions were determined from the data in Table VII. Angles of attack for each geometry remained constant, as indicated in Table VII, throughout the PMARC executions.

TABLE VII PMARC TEST CONDITIONS (F-14 AND T-34)

Configuration\A/C	T-34	F-14
Weight (lbs)	3760	57000
Velocity (kts)	135	135
Wing Area $\left(\mathrm{ft}^{2}\right)$	180	565
$\mathrm{CL}^{2}(1)$	0.35	1.70
Angle of Attack	1°	11°
CG	0.25 MAC	0.25 MAC (2)

1. Standard day@ 1000 ft
2. Wing Mean Geometric Chord

Figure 16 shows a decrease in lift of the T-34 as it approaches the F-14. The T-34 loses approximately 55 percent of its lift when it is one wing span away from the larger aircraft and 91 percent of its lift when a semi-span away. Once again, the decrease in lift may be due to a decrease in the local angle of attack of the T-34 wing and the increased pressure felt by the upper wing surface due to its proximity to the pressure side of the F-14 wing. To the pilot, this loss of lift can correspond to a sensation of being pushed away by the F-14.

Figure 16. T-34 Lift Coefficient Versus Vertical Separation
The changes in lift on the T-34 are highlighted in Appendix A, Figures A14, A15 and A16. Figure A14 uses color to represent pressure coefficients on the T-34 wing and tail upper surfaces. The histogram to the right of the airplane geometry quantifies the representative colors. There is a large red band on the leading edge of the wing that represents a relatively strong suction peak. The colors transition to yellow, green, then dark blue at the trailing edge. Dark blue represents free-stream conditions for Figures A14, A15, and A16. Figure A15 displays the pressure coefficients on the T-34 when it is 37.5 feet or about a wing span beneath the F-14. The suction peak on the wing has decreased in magnitude and area as indicated by the smaller, narrower band of light red. Yellow has filled in for the red indicating less negative pressure coefficients. The lift coefficient at this flight condition was 0.183 , indicating a loss of
approximately 48 percent of the T-34 lift. Figure A16 represents the pressure coefficients on the T-34 when it was 25 feet from the F-14. Traces of red are very faint, while the wing's leading edge is predominately yellow. At 25 feet, the T-34 had lost 71 percent of its lift. The loss in T-34 lift is highlighted best by a comparison of the T-34 wing leading edge in Figures A14 and A16.

The T-34 pitching moment was also affected as the vertical separation between the two airplanes decreased. In the cruise configuration and at one degree angle of attack, the modeled T-34 had a small (0.004), positive pitching moment coefficient. Figure 17 shows that as the T-34 approached the F-14, the

VERTICAL DISTANCE BELOW F-14 (ft)
Figure 17. T-34 Cm (cg @ 0.25 mac) Versus Vertical Separation
T-34 pitching moment coefficient increased until the two airplanes were 25 feet, or 0.75 T-34 wing spans, away. The pitching moment coefficient then decreased with decreasing separation distance as shown in Figure 17. To the pilot, the
increases in nose-up pitching moment will increase push-stick forces and will require nose-down trim to zero these forces. Nose-down trim will then have to be decreased if the distance between the two airplanes becomes less than 25 feet.

The decrease in pitching moment coefficient at separation distances of less than 25 feet is probably due to local pressure effects of the F-14 fuselage. The reader should be aware, however, that distances directly below another airplane of less than 20 feet are not considered pertinent to most practical applications of formation flying.

The color display of pressure coefficients on the bottom of the T-34 tail also provided insight into the changes in pitching moment. Appendix A, Figure 17 shows the bottom of the T-34 tail when the airplane was beyond interference effects of other aircraft. The underside of the tail is predominantly yellow at the leading edge and blends to green and then blue toward the trailing edge. The histogram to the right of the figure indicates these pressures represent a small suction peak at the leading edge that tapers off to free-stream conditions at the trailing edge. Free-stream conditions are represented by dark blue in the figure. Figure Al7 represents the tail of the T-34 model with a pitching moment coefficient of 0.004 . Appendix A, Figure 18 shows the bottom of the tail when the T-34 model is 37.5 feet below the F-14. F-14 panel edges are white while T34 panel edges are colored. A noticeable red band has developed along the lower leading edge, indicating a much stronger suction peak exists. The tail is generating more lift in the downward direction providing the model with a greater nose-up pitching moment. The suction peak increased further when the airplanes closed to 25 feet as shown in Appendix A, Figure A19. The downward
lift generated by the tail at this vertical distance produced the maximum nose-up pitching moment for the given test conditions as indicated in Figure 17.

A baseline pitching moment coefficient of 0.004 was established for the T-34 model at one degree angle of attack from Chapter III, Figure 6. As before, the differences between the pitching moment coefficients for each vertical distance and the baseline were used to determine the changes in elevator deflection to maintain trim at one degree angle of attack. Changes in elevator deflection for trim are presented in Figure 18. A positive change represents more

VERTICAL DISTANCE BELOW F-14 (ft)
Figure 18. T-34 Change in Elevator Deflection Versus Vertical Separation
trailing-edge down. PMARC results indicated that a change of approximately 3.5 degrees in elevator deflection, more trailing-edge down, was required for trim as the T-34 approached to within 25 feet of the F-14. As the airplanes continued
to close, the nose-down trim changes from the baseline decreased to zero as shown in Figure 18. The T-34 formation pilot will need to change the trim 3.5 degrees (nose-down) for approaches within 25 feet of the F-14. The required nose-down trim will then decrease if the airplanes close further.

Streamlines provided a qualitative analysis of the aerodynamic disturbances between the F-14 and T-34. Appendix A, Figure A20 shows the streamlines around the T-34 when it is 33.33 feet or a wing span beneath the F14. Appendix A, Figure A21 depicts the streamlines when the two airplanes are 16.67 feet away from each other. Streamlines were spaced 10 inches apart. A comparison of Figures A20 and A21 shows that as the two airplanes approach each other, the streamlines are deflected downward. There are six streamlines above the tail in Figure A20 while there are only five above the tail in Figure A21. The sixth streamline from the top in Figure A21 flows below the horizontal tail. Unfortunately, PMARC did not provide quantitative streamline deflection angles. This apparent downwash depicted by the streamlines decreased the tail's relative angle of attack, thereby contributing to the nose-up pitching moment.

2. Horizontal Separation

An investigation was made to determine the changes in lift and moment coefficients as the T-34 maintained altitude below the F-14 but changed position in the horizontal direction. The intent was to simulate a T-34 approaching the F14 from behind with a closure rate that was too high for a proper rendezvous. A 25 -foot step-down position was chosen because the maximum pitching moment coefficient was found at that separation distance from the previous study. Horizontal distances were chosen along the F-14's longitudinal axis. A positive
horizontal value represented the T-34 cg ahead of the $\mathrm{F}-14 \mathrm{cg}$, and a negative value behind.

The lift coefficient increased over a range of 0.3 as the $\mathrm{T}-34$ position changed from 16.67 feet aft of the F-14 cg to a position 25 feet forward of the F14 cg . Figure 19 shows the change in lift coefficient with horizontal distance from the F-14 cg. It is important to emphasize that the T-34 vertical separation

Figure 19. T-34 Lift Coefficient Versus Horizontal Distance from F-14 CG
from the F-14 remained fixed at 25 feet. This change in lift occurs from interference effects caused by the flow over the F-14. The flow is deflected downward as it comes off of the F-14's lifting surfaces. When the T-34 is aft of the F-14 cg, this downwash decreases the local angle of attack on the T-34 lifting surfaces, decreasing its overall lift. As the T-34 moves forward of the F-14 cg, it
eventually experiences the upwash that occurs ahead of the F-14 wing and fuselage. The upwash increases the local angle of attack on the T-34, increasing its lift. Local ambient pressure changes due to the T-34's proximity to the highpressure side of the F-14 wing complicate the analysis, but nonetheless, the changes in lift of the T-34 as it flies along the longitudinal axis of the F-14 are profound. The T-34 formation pilot should be acutely aware of these potential changes and how they might affect vertical closure rates. Unanticipated closure rates toward the F-14 as the T-34 develops more lift may increase the probability of a collision.

The T-34 pitching moment coefficient also changed with horizontal separation as shown in Figure 20. A maximum nose-up pitching moment coefficient occurred 8.33 feet ahead of the F-14 cg. The pilot experiences a

Figure 20. T-34 C C_{m} (cg at 0.25 mac) Versus Horizontal Distance From F-14 CG
nose-up pitching moment throughout the longitudinal movement but the magnitude changes. The corresponding changes in elevator deflection for trim are presented in Figure 21. The data show that continuous elevator changes are required for trim and a maximum change of 4.12 deg. occurs at 8.33 feet forward of the $\mathrm{F}-14 \mathrm{cg}$ position.

Figure 21. T-34 Change in Elevator Deflection Versus Horizontal Distance From F-14 CG

A follow-up study was conducted with the T-34 cg located 8.33 feet forward of the F-14 cg, where the maximum pitching moment coefficient discovered so far by the study was located. Vertical separation tests were performed to see if the T-34 pitching moment increased further. Lift and moment coefficient data are presented in Figures 22 and 23 respectively. The T-34 lift coefficient shown in Figure 22 does not decrease as appreciably as the lift
coefficient shown in Figure 16. This is probably due to the upwash from the F-14 wing. When the T-34 is 8.33 feet forward of the original test position, it is exposed more to the upwash of the F-14 wing. The direction of flow in the upwash is more uniform; therefore the changes in local angle of attack with vertical separation changes are not as high. Under the F-14 cg, however, the flow experiences more bending and perturbations, consequently having a greater effect on the T-34's angle of attack and subsequent lift.

Figure 22. T-34 Lift Coefficient Versus Vertical Separation
A similar trend was noted with the T-34 pitching moment coefficient. The pitching moment did not decrease to zero as it had for the previous study. A new maximum pitching moment coefficient was obtained when the T-34 was 20.83 feet from the F-14 as shown in Figure 23. The change in elevator deflection required for trim was 4.47 degrees. It is important to emphasize that the scope of this study was limited and that a higher pitching moment may exist.

Figure 23. T-34 Cm (cg @ 0.25 mac) Versus Vertical Separation

3. F-14 Jet Intake Effects

PMARC provides a capability to prescribe normal velocities on groups of geometry panels. A brief investigation was conducted to see how the flow into the large F-14 jet intakes affected the lift and pitching moments on the T-34. A vertical separation study was conducted with the T-34 cg 8.33 feet forward of the $\mathrm{F}-14 \mathrm{cg}$. The location provided the maximum pitching moment discovered by this study and it placed the T-34 wing underneath the intakes. A flow velocity of Mach 0.3 was assumed at the face of the jet intakes. The changes in lift and pitching moment coefficients with vertical separation are shown in Figures 24 and 25 respectively. Data from Figures 22 and 23 are included to compare the effects with and with out jet intake considerations.

The data show that the flow into the jet intakes does influence the lift and pitching moment of the T-34. The influence is relatively small, however, as lift and pitching moments were increased by less than 5 percent. A new maximum
pitching moment was determined, however, at 20.83 feet below the F-14 with the T-34 cg 8.33 feet forward of the F-14 cg. In the presence of jet intake effects, a pitching moment of 0.0956 was realized on the T-34. The change in elevator deflection required for trim was 4.5 degrees.

Figure 24. T-34 Lift Coefficient Versus Vertical Separation From Jet Intakes

VERTICAL DISTANCE BELOW F-14 (ft)

Figure 25. T-34 C m (cg @ 0.25 mac) Versus Vertical Separation From Jet Intakes

V. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS

Airplanes flying in proximity to one another create mutual interference. PMARC studies have shown that this mutual interference affects the flow over each airplane, subsequently altering their aerodynamic characteristics. Significant changes in the lift and pitching moments of an airplane flying in formation underneath another were observed.

A T-34 flying beneath an F-14 will lose half of its lift as it closes to within one wing span. This loss of lift is accompanied by a nose-up pitching moment. The T34 formation pilot is subsequently presented with confusing cues as he approaches the larger airplane. The loss of lift will correspond to a sensation of being pushed away by the F-14; yet as he gets closer, the T-34 will want to pitch up toward the F-14. This may cause the inexperienced or uninformed pilot to become disoriented. An appreciation of this mutual interference phenomenon combined with anticipated nose-down trim changes should help to avoid the possibility of a collision.

A T-34 will experience large changes in lift as it travels fore and aft underneath an F-14 with approximately one wing span of vertical separation. PMARC showed that as the T-34 moved from a point 25 feet aft of the F-14 cg to a point approximately 18 feet forward of the cg, the lift coefficient increased by 0.3 . Combined with variations in nose-up pitching moments, unanticipated and possibly dangerous closure rates toward the F-14 may occur.

This study discovered that 9.5 degrees of elevator trim change were required as a T-34 wing and tail approached a large wing. A maximum of 4.5 degrees was
required for a T-34 as it approached an F-14. There are several issues that account for the relative discrepancy. The test conditions were identical except the AOA of the T-34 wing and tail was arbitrarily chosen at five degrees while the T-34 model AOA was established at one degree. This AOA difference varied the baseline pitching moments used to compute changes in elevator deflection. A case was conducted with the T-34 model at 5 degrees that showed a maximum of 7.5 degrees of elevator trim change was required underneath the F-14. Additionally, the flow disturbances created by the large wing were probably more effective than the F-14 on the T-34 tail. Downwash from the entire span of the large wing could impinge upon the T-34 tail creating a greater nose-up pitching moment. The F-14 fuselage prevented a significant portion of the downwash from interfering with the tail at the given test conditions.

Dissimilar airplanes in formation may experience aerodynamic interference. This phenomenon requires an increased awareness of the pilot to anticipate necessary trim and lift changes. A more thorough understanding of the effect one airplane has on another will increase the safety of formation flying.

B. RECOMMENDATIONS

1. Conduct further studies with complete geometry models. This will enable investigations into the changes in lateral and directional aerodynamic characteristics of formation aircraft. Geometries will not be confined to the XZ plane of symmetry; therefore, typical fleet formations such as parade and inflight refueling can be examined. There may be areas under the F-14 that provide more adverse effects than those revealed in this study.
2. Conduct further studies that include wing loading considerations for each airplane in the formation. This study assumed an F-14 that was "trimmed" in a
modified approach configuration. AOA and loading variations for the F-14 and T-34 were not addressed.

APPENDIX A PMARC/GVS FIGURES

Figure A2 Tailless F-14 (Top View)

Figure A3 NACA 4415 Wing with Operator Defined Wake

Figure A4 NACA 4415 Wing with PMARC Generated Wake

Figure A5 'T-34 Wing and 'Tail with Streamlines at $5^{\circ} \mathrm{AOA}$

Figure A6 T-34 at $1^{\circ} \mathrm{AOA}$ with Streamlines

Figure A7 F-14 at $11^{\circ} \mathrm{AOA}$

Figure A8 Large NACA 4415 Wing with T-34 Wing and Tail

Figure A9 T-34 Wing and Tail Beyond Interference Effects

Figure Al0 T-34 Wing and Tail 12.5 Feet Below Large Wing

Figure A11 Pressure Coefficients on Bottom Surface of T-34 Tail When Beyond Interference Effects of Other Airplanes

Figure A12 Pressure Coefficients on Bottom Surface of T-34 Tail When 8.33 Feet From Large Wing

Figure A13 F-14 and T-34 in Proximity Test Case

Figure Al4 Pressure Coefficients on T-34 Wing and Tail When Beyond Interference Effects of Other Airplanes

Figure A15 Pressure Coefficients on T-34 Wing and Tail When 37.5 Feet Beneath the F-14

Figure A16 Pressure Coefficients on T-34 Wing and Tail When 25 Feet Beneath the F-14

Figure A17 Pressure Coefficients on Bottom Surface of T-34 Tail When Beyond Interference Effects of Other Airplanes

Figure A18 Pressure Coefficients on Bottom Surface of T-34 Tail When 37.5 Feet Beneath the F-14

Figure A19 Pressure Coefficients on Bottom Surface of T-34 Tail When 25 Feet Beneath the F-14

Figure A20 T-34 and Streamlines 33.33 Feet Beneath the F-14

Figure A21 T-34 and Streamlines 16.67 Feet Beneath the F-14

APPENDIX B PMARC F-14/T-34 INPUT

F14 AND T34
\&BINP2 LSTINP=2, LSTOUT=1, LSTFRQ=1, LENRUN=0, \&END \&BINP3 LSTGEO $=1$, LSTNAB=0, LSTWAK=3, LSTCPV=0, LSTJET=0, \&END \&BINP4 MAXIT $=250$, SOLRES $=0.0005$, \&END \&BINP5 NTSTPS $=1$, DTSTEP $=0.5$, \&END
\&BINP6 RSYM=0.0, $\quad \mathrm{RGPR}=0.0, \quad \mathrm{RFF}=5.0, \quad \mathrm{RCORE}=0.05, \quad$ \&END
\& BINP7 VINF=1.0, VSOUND=1116.0, UNIT=0, COMPOP=0.0, \&END
\&BINP8 ALDEG=0.0, YAWDEG=0.0, THEDOT=0.0, $\mathrm{PSIDOT}=0.0$, PHIDOT=0.0,
\&END
\& BINP9 CBAR=65.028, $\mathrm{SREF}=25862.4, \mathrm{SSPAN}=200.04$, RMPX $=26.20, \quad \mathrm{RMPY}=0.00, \quad \mathrm{RMPZ}=0.00$,
\&END
\&BINP10 NORSET $=0, \quad$ NBCHGE $=0, \quad$ NCZONE $=0$, NCZPAN $=0, \quad$ CZDUB $=0.0, \quad$ VREF $=0.0$, \& END
\&BINP11 NORPCH=0, \quad NORF=0, NOCF=0, NOCL=0,
\&BINP12 KPAN=0, KSIDE=0, NORL=0,
VNORM=0, \&END
KSIDE=0, \quad NEWNAB $=0, \quad$ NEWSID $=0, \quad \& E N D$
\&ASEM1 ASEMX $=0.00$, ASEMY $=0.00$, ASEMZ $=0.00$, ASCAL=1.00, ATHET=1.00, NODEA=0, \&END
\&ASEM2 $\mathrm{APXX}=0.0, \quad \mathrm{APYY}=0.0, \quad \mathrm{APZZ}=0.0$, $\mathrm{A} H X X=0.0, \quad \mathrm{~A} H \mathrm{Y}=1.0, \quad \mathrm{AHZZ}=0.0, \quad$ \&END
\&ASEM1 ASEMX $=0.00$, ASEMY $=0.00$, ASEMZ $=0.00$, ASCAL $=1.00, \quad$ ATHET $=1.00$, NODEA $=0$,
\&END
\&ASEM2 APXX=0.0, \quad APYY $=0.0, \quad$ APZZ $=0.0$,
$\mathrm{A} H X X=0.0, \quad \mathrm{~A} H Y Y=1.0, \quad \mathrm{AHZZ}=0.0$,
\&END
\&ASEM1 ASEMX $=-511.00$, ASEMY=0.00, \quad ASEMZ $=2004.00$, ASCAL $=1.00, \quad$ ATHET $=11.00$, NODEA $=0, \quad$ \&END
\&ASEM2 APXX=0.0, \quad APYY $=0.0, \quad$ APZZ $=0.0$, $\mathrm{AHXX}=0.0, \quad \mathrm{AHYY}=1.0, \quad \mathrm{AHZZ}=0.0, \quad$ \&END
$\begin{array}{ll}\& A S E M 1 ~ A S E M X=-511.00, ~ A S E M Y=0.00, ~ & \text { ASEMZ }=2004.00, \\ \text { ASCAL }=1.00, & \text { ATHET }=11.00, ~ \\ \text { NODEA }=5, & \text { \&END }\end{array}$
\&ASEM2 $\mathrm{APXX}=0.0, \quad \mathrm{APYY}=0.0, \quad \mathrm{APZZ}=0.0$, $\mathrm{A} H X X=0.0, \quad \mathrm{~A} H Y \mathrm{Y}=1.0, \quad \mathrm{AHZZ}=0.0, \quad$ \& END
\&COMP1 COMPX $=0.00, \quad$ COMPY $=0.00, \quad$ COMPZ $=0.00$,
\& COMP2 $\mathrm{CPXX}=0.0, \quad \mathrm{CPYY}=0.0, \quad \mathrm{CPZZ}=0.0$, CHXX $=0.0, \quad \mathrm{CHYY}=1.0, \quad \mathrm{CHZZ}=0.0, \quad$ \&END
$\begin{array}{lllll}\& C O M P 1 & \text { COMPX }=0.00, & \text { COMPY }=0.00, & \text { COMPZ }=0.00, & \text { \&END } \\ & \text { CSCAL }=1.00, & \text { CTHET }=0.0, & \text { NODEC }=5, & \end{array}$
$\& \mathrm{COMP} 2 \mathrm{CPXX}=0.0, \quad \mathrm{CPYY}=0.0, \quad \mathrm{CPZZ}=0.0$, $\mathrm{CHXX}=0.0, \quad \mathrm{CHYY}=1.0, \quad \mathrm{CHZZ}=0.0, \quad$ \&END
\&PATCH1 IREV=0, IDPAT=2, MAKE=0, KCOMP=1, KASS=1, \&END T34 FUSELAGE FORWARD \#1
\&SECT1 STX $=-99.38, \mathrm{STY}=0.00, \mathrm{STZ}=0.00, \mathrm{SCALE}=1.0$,
ALF $=0.0$, \quad THETA $=0.0$,
$\operatorname{INMODE}=4, \operatorname{TNODS}=0, \operatorname{TNPS}=0$, TINTS $=0$,
\&END
$\begin{array}{lll}0.0 & 0.0 & 25.388\end{array}$
\& BPNODE TNODE $=3$, TNPC $=12$, TINTC $=3$,
\&END
\&SECT1 STX=-81.359, STY=0.00, \quad TZ $=0.00, \quad$ SCALE $=1.0$,
ALF $=0.0, \quad$ THETA $=0.00$,
INMODE $=4$, TNODS $=2$, TNPS $=2$, TINTS $=0, \quad$ \& END
$\begin{array}{lll}0.0 & 0.0 & 16.926\end{array}$
$\begin{array}{lll}0.0 & 3.238 & 17.57\end{array}$
$\begin{array}{lll}0.0 & 5.98 & 19.404\end{array}$
$\begin{array}{lll}0.0 & 7.817 & 22.15\end{array}$
$\begin{array}{lll}0.0 & 8.462 & 25.388\end{array}$
$\begin{array}{lll}0.0 & 7.817 & 28.626\end{array}$
$\begin{array}{lll}0.0 & 5.98 & 31.371\end{array}$
$\begin{array}{lll}0.0 & 3.238 & 33.206\end{array}$
$\begin{array}{lll}0.0 & 0.0 & 33.85\end{array}$
\&BPNODE TNODE $=3$, TNPC=12, TINTC=3, \&END
\&SECT1 STX $=-61.7$, STY $=0.0, \quad$ STZ $=0.0, \quad$ SCALE $=1.0$,
ALF $=0.0$, THETA $=0.0$,
$\operatorname{INMODE}=4$, TNODS $=2$, TNPS $=2$, TINTS $=0$,
$\begin{array}{lll}0.0 & 0.0 & 5.46\end{array}$
$\begin{array}{lll}0.0 & 12.0 & 6.0\end{array}$
$\begin{array}{lll}0.0 & 15.8 & 10.0\end{array}$
$\begin{array}{lll}0.0 & 16.3 & 15.0\end{array}$
$\begin{array}{lll}0.0 & 16.926 & 21.84\end{array}$
$\begin{array}{lll}0.0 & 16.5 & 28.0\end{array}$
$\begin{array}{lll}0.0 & 15.0 & 34.3\end{array}$
$\begin{array}{lll}0.0 & 10.0 & 37.5\end{array}$
$\begin{array}{lll}0.0 & 0.0 & 38.22\end{array}$
\&BPNODE TNODE $=3$, TNPC $=12$, TINTC=3, \&END
\&SECT1 STX $=-44.23$, STY $=0.0, \mathrm{STZ}=0.0, \quad$ SCALE $=1.0$,
ALF $=0.0$, THETA $=0.0$,
INMODE $=4$, TNODS $=2$, TNPS $=2$, TINTS $=0, \quad$ \&END
$\begin{array}{lll}0.0 & 0.0 & 0.0\end{array}$
$\begin{array}{lll}0.0 & 6.0 & 0.25\end{array}$
$\begin{array}{lll}0.0 & 12.0 & 0.5\end{array}$
$\begin{array}{lll}0.0 & 17.5 & 4.0\end{array}$
$\begin{array}{lll}0.0 & 19.4 & 9.0\end{array}$
$\begin{array}{lll}0.0 & 19.5 & 14.0\end{array}$
$\begin{array}{llll}0.0 & 19.657 & 19.11\end{array}$
$\begin{array}{lll}0.0 & 19.4 & 25.0\end{array}$
$\begin{array}{lll}0.0 & 19.2 & 31.0\end{array}$
$\begin{array}{lll}0.0 & 17.5 & 36.4\end{array}$
$\begin{array}{lll}0.0 & 13.0 & 38.35\end{array}$
$\begin{array}{lll}0.0 & 6.5 & 38.46\end{array}$
\& BPNODE TNODE $=3, \mathrm{TNPC}=12$, TINTC $=3$,
\&END
\&SECT1 STX $=-10.375, \mathrm{STY}=0.0, \mathrm{STZ}=0.0, \mathrm{SCALE}=1.0$,
ALF $=0.0$, THETA $=0.0$,
INMODE $=4$, TNODS $=1, \mathrm{TNPS}=2, \mathrm{TINTS}=0$,
\&END
$\begin{array}{lll}0.0 & 0.0 & -5.714\end{array}$
$0.0 \quad 7.5 \quad-5.1$
$\begin{array}{lll}0.0 & 15.0 & -4.5\end{array}$
$\begin{array}{lll}0.0 & 20.9 & 0.0\end{array}$
$\begin{array}{lll}0.0 & 21.9 & 6.0\end{array}$
$\begin{array}{lll}0.0 & 22.4 & 11.0\end{array}$
$\begin{array}{lll}0.0 & 22.8 & 16.38\end{array}$
$\begin{array}{lll}0.0 & 22.4 & 23.0\end{array}$
$\begin{array}{lll}0.0 & 22.0 & 30.0\end{array}$
$\begin{array}{lll}0.0 & 19.0 & 35.0\end{array}$
$\begin{array}{lll}0.0 & 14.5 & 38.5\end{array}$
$\begin{array}{lll}0.0 & 7.0 & 39.25\end{array}$
$\begin{array}{lll}0.0 & 0.0 & 39.77\end{array}$
\& BPNODE TNODE $=3, \mathrm{TNPC}=12$, TINTC $=3$,
\&END
\&SECT1 STX=0.0, STY=0.0, STZ=0.0, SCALE $=1.0$,
ALF $=0.0$, THETA $=0.0$,
INMODE $=4$, TNODS $=3, T N P S=0$, TINTS $=0$,
$0.0 \quad 0.0 \quad-5.714$
$\begin{array}{lll}0.0 & 5.5 & -5.714\end{array}$
$\begin{array}{llll}0.0 & 10.92 & -5.714\end{array}$
$\begin{array}{lll}0.0 & 15.0 & -4.5\end{array}$
$\begin{array}{lll}0.0 & 22.93 & 0.0\end{array}$
$\begin{array}{lll}0.0 & 22.93 & 8.0\end{array}$
$\begin{array}{lll}0.0 & 22.8 & 16.38\end{array}$
$\begin{array}{lll}0.0 & 22.4 & 24.0\end{array}$
$\begin{array}{lll}0.0 & 22.0 & 30.0\end{array}$
$\begin{array}{lll}0.0 & 19.0 & 35.0\end{array}$
$\begin{array}{lll}0.0 & 14.5 & 38.5\end{array}$
$\begin{array}{lll}0.0 & 7.0 & 39.35\end{array}$
$\begin{array}{lll}0.0 & 0.0 & 39.77\end{array}$
\& BPNODE TNODE $=3, \mathrm{TNPC}=12$, TINTC=3,
\&PATCH1 IREV=0, IDPAT=1, MAKE=0, $\mathrm{KCOMP}=1$, KASS=1,
\&END

T34 WING \#2
\&SECT1 STX=0.0, $\mathrm{STY}=22.93, \mathrm{STZ}=0.0, \mathrm{SCALE}=1.0$,
ALF $=0.0$, THETA $=0.0$,
$\mathrm{INMODE}=4, \mathrm{TNODS}=0, \mathrm{TNPS}=0, \mathrm{TINTS}=0$,
\&END
$\begin{array}{lll}88.457 & 0.0 & 0.0\end{array}$
$84.03 \quad 0.0 \quad-0.849$
$\begin{array}{lll}79.61 & 0.0 & -1.513\end{array}$
$\begin{array}{llll}70.766 & 0.0 & -2.698\end{array}$
$\begin{array}{lll}61.92 & 0.0 & -3.724\end{array}$
$53.07 \quad 0.0 \quad-4.591$
$44.229 \quad 0.0 \quad-5.254$
$35.383 \quad 0.0 \quad-5.661$
$26.537 \quad 0.0-5.714$
$22.114 \quad 0.0 \quad-5.555$
$17.69 \quad 0.0 \quad-5.21$
$13.269 \quad 0.0 \quad-4.679$

```
8.846 0.0 -3.954
6.634 0.0
4.423 0.0
2.21 0.0
1.105 0.0
0.0 0.0}00.
&BPNODE TNODE=2,TNPC=15, TINTC=0, &END
0.0}00.
1.105 0.0}
2.21 0.0}4.17
4.423 0.0 5.511
6.634
8.846
13.269}00.
17.69 0.0
22.114 0.0 
26.537 0.0 8.448
35.383}00.0\quad8.02
44.229}00.
53.07 0.0 6.183
61.92 0.0}4.91
70.766 0.0
79.61 0.0 1.911
84.03 0.0 1.053
88.457 0.0 0.0
&BPNODE TNODE=3, TNPC=15, TINTC=0,
&SECT1 STX=10.92,STY=45.87,STZ=2.1, SCALE=.84
ALF=4.0, THETA=0.0,
INMODE=0,TNODS=2,TNPS=0,TINTS=3,}\quad&EN
&SECT1 STX=21.84, STY=202.0, STZ=22.0, SCALE=1.0,
ALF=1.0, THETA=0.0,
INMODE=4,TNODS=3,TNPS=10,TINTS=3, &END
41.0 0.0 0.0
38.95 0.0 -0.287
36.9 0.0
32.8 0.0
28.7 0.0
24.6 0.0
20.5 0.0
16.4 0.0
12.3}00.
10.25
8.2 0.0 -1.63
6.15
4.1 0.0
3.08
2.05 0.0 -0.93
1.03
0.51 0.0
0.0 0.0 0.0
\& BPNODE TNODE \(=2\), TNPC \(=15\), TINTC \(=0\),
0.0 0.0 0.0
0.51 0.0}1.0
1.03 0.0 1.48
```

2.05	0.0	2.01
3.08	0.0	2.38
4.10	0.0	2.64
6.15	0.0	2.95
8.2	0.0	3.08
10.25	0.0	3.116
12.3	0.0	3.096
16.4	0.0	2.93
20.5	0.0	2.63
24.6	0.0	2.24
28.7	0.0	1.79
32.8	0.0	1.26
36.9	0.0	0.69
38.95	0.0	0.38
41.0	0.0	0.0

$\& \mathrm{BPNODE}$ TNODE $=3, \mathrm{TNPC}=15, \mathrm{TINTC}=0$, \&END
\&PATCH1 IREV=0, IDPAT=1, MAKE=2, $\mathrm{KCOMP}=1, \mathrm{KASS}=2$, \&END
T34 WING TIP \#3
\&PATCH2 ITYP=1, TNODS=3, TNPS=2, TINTS=0, NPTTIP=0, \&END
\&PATCH1 IREV=0, IDPAT=2, MAKE=0, $\mathrm{KCOMP}=1, \mathrm{KASS}=1$, \&END
T34 FUSELAGE UNDER WING \#4
$\& S E C T 1$ STX $=0.0, \mathrm{STY}=0.0, \mathrm{STZ}=0.0, \mathrm{SCALE}=1.0$,
ALF $=0.0$, THETA $=0.0$,
$\mathrm{INMODE}=4, \mathrm{TNODS}=0, \mathrm{TNPS}=0, \mathrm{TINTS}=0$,
\&END
$0.0 \quad 0.0 \quad-5.714$
$\begin{array}{llll}0.0 & 10.92 & -5.714\end{array}$
$\begin{array}{lll}0.0 & 15.0 & -5.5\end{array}$
$\begin{array}{lll}0.0 & 22.93 & 0.0\end{array}$
\& BPNODE TNODE $=3, \mathrm{TNPC}=0$, TINTC $=0$,
\&END
$\& S E C T 1 ~ S T X=0.0, S T Y=0.0, S T Z=0.0, S C A L E=1.0$,
ALF $=0.0$, THETA $=0.0$,
INMODE $=4$, TNODS $=0$, TNPS $=3$, TINTS $=0$, \&END
$6.634 \quad 0.0 \quad-5.714$
$\begin{array}{llll}6.634 & 10.92 & -5.714\end{array}$
$\begin{array}{llll}6.634 & 18.57 & -5.714\end{array}$
$6.634 \quad 22.93-3.485$
\&BPNODE TNODE $=3$, TNPC $=0$, TINTC $=0$, \&END
$\& S E C T 1$ STX=0.0, STY=0.0, STZ=0.0, $\mathrm{SCALE}=1.0$,
$\mathrm{ALF}=0.0, \mathrm{THETA}=0.0$,
INMODE $=4$, TNODS $=0$, TNPS $=0$, TINTS $=0$, \&END
$8.846 \quad 0.0 \quad-5.714$
$8.846 \quad 10.92 \quad-5.714$
$8.846 \quad 18.57-5.714$
$8.846 \quad 22.93-3.954$
\& BPNODE TNODE $=3$, TNPC $=0$, TINTC $=0$, \&END
$\& S E C T 1$ STX=0.0, STY=0.0, STZ=0.0, $S C A L E=1.0$,
ALF $=0.0$, THETA $=0.0$,
INMODE $=4$, TNODS $=0$, TNPS $=0$, TINTS $=0$,
\&END
$13.269 \quad 0.0 \quad-5.714$
$13.269 \quad 10.92-5.714$
$\begin{array}{llll}13.269 & 18.57 & -5.174\end{array}$
$13.269 \quad 22.93-4.679$
\& BPNODE $\mathrm{TNODE}=3, \mathrm{TNPC}=0$, TINTC $=0$,
\& END
$\& S E C T 1 \quad \mathrm{STX}=0.0, \mathrm{STY}=0.0, \mathrm{STZ}=0.0, \mathrm{SCALE}=1.0$, ALF $=0.0$, THETA $=0.0$,
$\mathrm{INMODE}=4, \mathrm{TNODS}=0, \mathrm{TNPS}=0$, $\mathrm{TINTS}=0$,
\&END
$17.69 \quad 0.0 \quad-5.714$
$\begin{array}{lll}17.69 & 10.92 & -5.714\end{array}$
$17.69 \quad 18.57 \quad-5.714$
$17.69 \quad 22.93-5.21$
\& BPNODE TNODE $=3$, TNPC $=0$, TINTC $=0$,
\&END
$\& S E C T 1 S T X=0.0, S T Y=0.0, S T Z=0.0, S C A L E=1.0$,
ALF $=0.0$, THETA $=0.0$,
INMODE $=4, \mathrm{TNODS}=0, \mathrm{TNPS}=0, \mathrm{TINTS}=0$, \&END
$22.114 \quad 0.0 \quad-5.714$
$\begin{array}{llll}22.114 & 10.92 & -5.714\end{array}$
$\begin{array}{llll}22.114 & 18.57 & -5.714\end{array}$
$22.114 \quad 22.93-5.555$
\&BPNODE TNODE $=3$, TNPC=0, TINTC=0, \quad \&END
$\& S E C T 1$ STX $=0.0, \mathrm{STY}=0.0, \mathrm{STZ}=0.0, \mathrm{SCALE}=1.0$,
ALF $=0.0$, THETA $=0.0$,
INMODE $=4$, TNODS $=0$, TNPS $=0$, TINTS $=0$, \&END
$26.537 \quad 0.0 \quad-5.714$
$\begin{array}{llll}26.537 & 10.92 & -5.714\end{array}$
$\begin{array}{llll}26.537 & 18.57 & -5.714\end{array}$
$26.537 \quad 22.93-5.714$
\& BPNODE TNODE $=3$, TNPC $=0$, TINTC $=0$, \&END
$\& S E C T 1 \quad S T X=0.0, S T Y=0.0, S T Z=0.0, S C A L E=1.0$,
ALF $=0.0$, THETA $=0.0$,
INMODE $=4$, TNODS $=0$, TNPS $=0$, TINTS $=0$, \&END
$35.383 \quad 0.0 \quad-5.661$
$\begin{array}{llll}35.383 & 10.92 & -5.661\end{array}$
$\begin{array}{llll}35.383 & 18.57 & -5.661\end{array}$
$\begin{array}{lll}35.383 & 22.93 & -5.661\end{array}$
\& BPNODE TNODE $=3$, TNPC=0, TINTC=0, \quad \&END
$\& S E C T 1 \quad S T X=0.0, S T Y=0.0, S T Z=0.0, S C A L E=1.0$,
ALF=0.0, THETA=0.0,
INMODE $=4, \mathrm{TNODS}=0, \mathrm{TNPS}=0, \mathrm{TINTS}=0$, \&END
$44.229 \quad 0.0 \quad-5.254$
$44.229 \quad 10.92-5.254$
$44.229 \quad 18.57-5.254$
$44.229 \quad 22.93-5.254$
\& BPNODE TNODE $=3$, TNPC=0, TINTC=0, \&END
$\& S E C T 1$ STX $=0.0, S T Y=0.0, S T Z=0.0, S C A L E=1.0$,
ALF=0.0, THETA=0.0,
INMODE $=4, \mathrm{TNODS}=0, \mathrm{TNPS}=0, \mathrm{TINTS}=0$, \&END
$53.07 \quad 0.0 \quad-4.591$
$53.07 \quad 10.92-4.591$
$53.07 \quad 18.57 \quad-4.591$
$53.07 \quad 22.93-4.591$
\&BPNODE TNODE $=3$, TNPC $=0$, TINTC $=0$, \quad \& END
$\& S E C T 1$ STX=0.0, STY=0.0, $\mathrm{STZ}=0.0, \mathrm{SCALE}=1.0$,
ALF=0.0, THETA=0.0,
INMODE $=4$, TNODS $=0$, TNPS $=0$, TINTS $=0$, \&END
$61.92 \quad 0.0 \quad-3.724$
$61.92 \quad 10.92-3.724$
$61.92 \quad 18.57 \quad-3.724$
$61.92 \quad 22.93-3.724$
\& BPNODE TNODE $=3$, TNPC $=0$, TINTC $=0$,
\&END
\&SECT1 STX=0.0, $\mathrm{STY}=0.0, \mathrm{STZ}=0.0$, $\mathrm{SCALE}=1.0$,
ALF $=0.0$, THETA $=0.0$,
$\operatorname{INMODE}=4$, TNODS $=0, \mathrm{TNPS}=0$, TINTS $=0$,
\&END
$70.766 \quad 0.0 \quad-2.698$
$\begin{array}{llll}70.766 & 10.92 & -2.698\end{array}$
$\begin{array}{lll}70.766 & 18.57 & -2.698\end{array}$
$70.766 \quad 22.93-2.698$
\&BPNODE TNODE $=3$, TNPC $=0$, TINTC $=0$,
\&END
\&SECT1 STX=0.0, STY=0.0, STZ=0.0, SCALE $=1.0$,
ALF $=0.0$, THETA $=0.0$,
INMODE $=4$, TNODS $=0$, TNPS $=0$, TINTS $=0$, \&END
$79.61 \quad 0.0-1.513$
$79.61 \quad 10.92-1.513$
$79.61 \quad 18.57-1.513$
$79.61 \quad 22.93-1.513$
\& BPNODE TNODE $=3$, TNPC=0, TINTC $=0$, \&END
\&SECT1 STX=0.0, STY=0.0, STZ=0.0, SCALE=1.0,
ALF $=0.0$, THETA $=0.0$,
INMODE $=4$, TNODS $=0$, TNPS $=0$, TINTS $=0$, \&END
$84.03 \quad 0.0 \quad-0.849$
$\begin{array}{lll}84.03 & 10.92 & -0.849\end{array}$
$\begin{array}{lll}84.03 & 18.57 & -0.849\end{array}$
$\begin{array}{llll}84.03 & 22.93 & -0.849\end{array}$
\&BPNODE TNODE $=3$, TNPC $=0$, TINTC $=0$, \&END
\& SECT1 $\mathrm{STX}=0.0, \mathrm{STY}=0.0, \mathrm{STZ}=0.0$, $\mathrm{SCALE}=1.0$,
ALF $=0.0$, THETA $=0.0$,
INMODE $=4$, TNODS $=3$, TNPS $=0$, TINTS $=0$,
\&END
$88.457 \quad 0.0 \quad 0.0$
$88.457 \quad 10.92 \quad 0.0$
$88.457 \quad 18.57 \quad 0.0$
$88.457 \quad 22.93 \quad 0.0$
\& BPNODE TNODE $=3, \mathrm{TNPC}=0$, TINTC $=0$, \&END
\&PATCH1 IREV $=0$, IDPAT $=2$, MAKE $=0$, $\mathrm{KCOMP}=1$, $\mathrm{KASS}=1$, \&END T34 UPPER MIDDLE FUSELAGE \#5
\& SECT1 $\mathrm{STX}=0.0, \mathrm{STY}=0.0, \mathrm{STZ}=0.0, \mathrm{SCALE}=1.0$,
ALF $=0.0$, THETA $=0.0$,
INMODE $=4$, TNODS $=0$, TNPS $=0$, TINTS $=0$,
\&END
$\begin{array}{lll}0.0 & 22.93 & 0.0\end{array}$
$\begin{array}{llll}0.0 & 22.93 & 13.1\end{array}$
$\begin{array}{lll}0.0 & 22.38 & 16.38\end{array}$
$\begin{array}{lll}0.0 & 22.0 & 30.0\end{array}$
$\begin{array}{lll}0.0 & 20.0 & 36.0\end{array}$
$\begin{array}{lll}0.0 & 14.5 & 39.0\end{array}$
$\begin{array}{lll}0.0 & 0.0 & 39.77\end{array}$
\&BPNODE TNODE $=3$, TNPC=9, TINTC=3, \&END
\&SECT1 STX $=0.0, \mathrm{STY}=0.0, \mathrm{STZ}=0.0, \mathrm{SCALE}=1.0$,
ALF=0.0, THETA=0.0,
INMODE $=4$, TNODS $=0$, TNPS $=3$, TINTS $=0$, \&END
$\begin{array}{lll}6.634 & 22.93 & 6.431\end{array}$
$6.634 \quad 22.93 \quad 25.1$

6.634	21.00	32.22
6.634	6.55	39.9
6.634	4.0	40.0
6.634	2.0	41.0
6.634	0.0	41.498

\& BPNODE TNODE $=3, \mathrm{TNPC}=9$, TINTC $=3$,
\&END
\&SECT1 STX=0.0, STY=0.0, STZ=0.0, SCALE=1.0,
ALF=0.0, THETA=0.0,
$\mathrm{INMODE}=4, \mathrm{TNODS}=0, \mathrm{TNPS}=0, \mathrm{TINTS}=0, \quad$ \&END
$8.846 \quad 22.93 \quad 7.112$
$8.846 \quad 22.93 \quad 25.1$
$8.846 \quad 21.00 \quad 32.22$
$8.846 \quad 11.47 \quad 36.58$
$8.846 \quad 6.0 \quad 41.498$
$8.846 \quad 2.0 \quad 43.136$
$8.846 \quad 0.0 \quad 44.775$
\& BPNODE TNODE $=3$, TNPC= $=9$, TINTC $=3$, \&END
$\& S E C T 1$ STX $=0.0, \mathrm{STY}=0.0, \mathrm{STZ}=0.0, \mathrm{SCALE}=1.0$,
ALF $=0.0$, THETA $=0.0$,
INMODE $=4$, TNODS $=0$, TNPS $=0$, TINTS $=0$, \quad \& END
$13.269 \quad 22.93 \quad 7.935$
$13.269 \quad 22.93 \quad 25.1$
$13.269 \quad 21.00 \quad 32.22$
$13.269 \quad 14.46 \quad 36.038$
$13.269 \quad 6.0 \quad 43.68$
$13.269 \quad 2.0 \quad 46.96$
$13.269 \quad 0.0 \quad 49.416$
\& BPNODE TNODE $=3, \mathrm{TNPC}=9$, TINTC $=3$, \&END
$\& S E C T 1$ STX $=0.0, \mathrm{STY}=0.0, \mathrm{STZ}=0.0, \mathrm{SCALE}=1.0$,
ALF $=0.0$, THETA $=0.0$,
INMODE $=4$, TNODS $=0$, TNPS $=0$, TINTS $=0$, \quad \&END
$\begin{array}{lll}17.69 & 22.93 & 8.315\end{array}$
$17.69 \quad 22.93 \quad 25.1$
$17.69 \quad 21.00 \quad 32.22$
$\begin{array}{lll}17.69 & 15.28 & 36.038\end{array}$
$\begin{array}{lll}17.69 & 6.5 & 48.05\end{array}$
$\begin{array}{lll}17.69 & 2.0 & 51.6\end{array}$
$17.69 \quad 0.0 \quad 54.0$
\&BPNODE TNODE $=3$, TNPC=9, TINTC=3, \&END
$\& S E C T 1$ STX=0.0, $\mathrm{STY}=0.0, \mathrm{STZ}=0.0, \mathrm{SCALE}=1.0$,
ALF $=0.0$, THETA=0.0,
$\mathrm{INMODE}=4, \mathrm{TNODS}=0, \mathrm{TNPS}=0, \mathrm{TINTS}=0, \quad$ \&END
$22.114 \quad 22.93 \quad 8.465$
$\begin{array}{lll}22.114 & 22.93 & 25.1\end{array}$
$\begin{array}{lll}22.114 & 21.00 & 32.22\end{array}$
$\begin{array}{lll}22.114 & 15.28 & 36.038\end{array}$
$22.114 \quad 7.0 \quad 49.69$
$22.114 \quad 2.0 \quad 53.51$
$22.114 \quad 0.0 \quad 56.79$
\&BPNODE TNODE $=3$, TNPC=9, TINTC $=3$, \quad \&END
\&SECT1 STX=0.0, STY=0.0, STZ=0.0, SCALE=1.0,
ALF=0.0, THETA=0.0,
INMODE $=4$, TNODS $=0$, TNPS $=0$, TINTS $=0$, \quad \& END
$\begin{array}{lll}26.537 & 22.93 & 8.448\end{array}$

26.537	22.93	25.1
26.537	21.00	32.22
26.537	15.28	36.038
26.537	8.5	55.15
26.537	2.0	57.33
26.537	0.0	58.97

\&BPNODE TNODE $=3$, TNPC= 9, TINTC $=3$,
\&END
$\& S E C T 1 S T X=0.0, S T Y=0.0, \mathrm{STZ}=0.0$, $\mathrm{SCALE}=1.0$,
ALF $=0.0$, THETA $=0.0$,
INMODE $=4$, TNODS $=0$, TNPS $=0$, TINTS $=0$,
\&END
35.383 $22.93 \quad 8.023$
$\begin{array}{lll}35.383 & 22.93 & 25.1\end{array}$
$35.383 \quad 21.00 \quad 32.22$
$\begin{array}{lll}35.383 & 15.28 & 36.038\end{array}$
$35.383 \quad 9.0 \quad 55.15$
$35.383 \quad 2.0 \quad 57.33$
$\begin{array}{lll}35.383 & 0.0 & 58.97\end{array}$
\&BPNODE TNODE $=3$, TNPC=9, TINTC $=3$,
\&END
\& SECT1 STX $=0.0$, $\mathrm{STY}=0.0$, $\mathrm{STZ}=0.0$, $\mathrm{SCALE}=1.0$,
ALF $=0.0$, THETA $=0.0$,
INMODE $=4$, TNODS $=0$, TNPS $=0$, TINTS $=0$, \&END
$44.229 \quad 22.93 \quad 7.236$
$44.229 \quad 22.93 \quad 25.1$
$44.229 \quad 21.00 \quad 32.22$
$\begin{array}{lll}44.229 & 15.28 & 36.038\end{array}$
$44.229 \quad 9.0 \quad 55.15$
$\begin{array}{lll}44.229 & 2.0 & 57.33\end{array}$
$\begin{array}{lll}44.229 & 0.0 & 58.97\end{array}$
\&BPNODE TNODE $=3$, TNPC=9, TINTC=3, \&END
\& SECT1 STX $=0.0$, $\mathrm{STY}=0.0$, $\mathrm{STZ}=0.0$, $\mathrm{SCALE}=1.0$,
ALF $=0.0$, THETA $=0.0$,
INMODE $=4$, TNODS $=0$, TNPS $=0$, TINTS $=0$, \&END
$\begin{array}{lll}53.07 & 22.93 & 6.183\end{array}$
$\begin{array}{lll}53.07 & 22.93 & 25.1\end{array}$
$\begin{array}{lll}53.07 & 21.00 & 32.22\end{array}$
$\begin{array}{lll}53.07 & 15.28 & 36.038\end{array}$
$\begin{array}{lll}53.07 & 9.0 & 55.15\end{array}$
$\begin{array}{lll}53.07 & 2.0 & 57.33\end{array}$
$\begin{array}{lll}53.07 & 0.0 & 58.97\end{array}$
\&BPNODE TNODE $=3$, TNPC=9, TINTC=3, \&END
$\& S E C T 1$ STX $=0.0$, $\mathrm{STY}=0.0$, $\mathrm{STZ}=0.0$, $\mathrm{SCALE}=1.0$,
ALF $=0.0$, THETA $=0.0$,
INMODE $=4$, TNODS $=0$, TNPS $=0$, TINTS $=0$,
\&END
$\begin{array}{lll}61.92 & 22.93 & 4.918\end{array}$
$\begin{array}{lll}61.92 & 22.93 & 25.1\end{array}$
$61.92 \quad 21.00 \quad 32.22$
$\begin{array}{llll}61.92 & 15.28 & 36.038\end{array}$
$\begin{array}{lll}61.92 & 9.0 & 55.15\end{array}$
$\begin{array}{lll}61.92 & 2.0 & 57.33\end{array}$
$\begin{array}{lll}61.92 & 0.0 & 58.97\end{array}$
\&BPNODE TNODE $=3$, TNPC=9, TINTC $=3$,
\&END
\&SECT1 STX $=0.0$, $\mathrm{STY}=0.0, \mathrm{STZ}=0.0$, $\mathrm{SCALE}=1.0$,
ALF $=0.0$, THETA $=0.0$,
$\mathrm{INMODE}=4, \mathrm{TNODS}=0, \mathrm{TNPS}=0, \mathrm{TINTS}=0$,
\&END
$\begin{array}{lll}70.766 & 22.93 & 2.609\end{array}$
$\begin{array}{lll}70.766 & 22.93 & 25.1\end{array}$
$\begin{array}{lll}70.766 & 21.00 & 32.22\end{array}$
$\begin{array}{lll}70.766 & 15.28 & 36.038\end{array}$
$\begin{array}{lll}70.766 & 9.0 & 55.15\end{array}$
$\begin{array}{lll}70.766 & 2.0 & 57.33\end{array}$
$70.766 \quad 0.0 \quad 58.97$
\&BPNODE TNODE=3, TNPC=9, TINTC=3, \&END
$\& S E C T 1 S T X=0.0, S T Y=0.0, S T Z=0.0, S C A L E=1.0$,
$\mathrm{ALF}=0.0, \mathrm{THETA}=0.0$,
INMODE $=4$, TNODS $=0$, TNPS $=0$, TINTS $=0, \quad$ \&END
$\begin{array}{lll}79.61 & 22.93 & 1.911\end{array}$
$\begin{array}{lll}79.61 & 22.93 & 25.1\end{array}$
$79.61 \quad 21.00 \quad 32.22$
$\begin{array}{lll}79.61 & 15.28 & 36.038\end{array}$
$79.61 \quad 9.0 \quad 55.15$
$79.61 \quad 2.0 \quad 57.33$
$79.61 \quad 0.0 \quad 58.97$
\&BPNODE TNODE $=3$, TNPC $=9$, TINTC $=3$, \&END
$\& S E C T 1$ STX $=0.0, \mathrm{STY}=0.0, \mathrm{STZ}=0.0, \mathrm{SCALE}=1.0$,
ALF $=0.0$, THETA $=0.0$,
INMODE $=4$, TNODS $=0$, TNPS $=0$, TINTS $=0$, \&END
$84.03 \quad 22.93 \quad 1.053$
$84.03 \quad 22.93 \quad 25.1$
$84.03 \quad 21.00 \quad 32.22$
$84.03 \quad 15.28 \quad 36.038$
$84.03 \quad 9.0 \quad 55.15$
$84.03 \quad 2.0 \quad 57.33$
$84.03 \quad 0.0 \quad 58.97$
\&BPNODE TNODE $=3$, TNPC=9, TINTC $=3$, \&END
\&SECT1 STX=0.0, STY=0.0, $S T Z=0.0, S C A L E=1.0$,
$\mathrm{ALF}=0.0$, $\mathrm{THETA}=0.0$,
INMODE $=4$, TNODS $=3$, TNPS $=0$, TINTS $=0$, \&END
$88.457 \quad 22.93 \quad 0.0$
$88.457 \quad 22.93 \quad 5.0$
$88.457 \quad 22.93 \quad 10.0$
$88.457 \quad 22.93 \quad 15.0$
$88.457 \quad 22.93 \quad 20.0$
$88.457 \quad 22.93 \quad 25.1$
$88.457 \quad 21.00 \quad 32.22$
$88.457 \quad 15.28 \quad 36.038$
$88.457 \quad 9.0 \quad 55.15$
$88.457 \quad 2.0 \quad 57.33$
$88.457 \quad 0.0 \quad 58.97$
\&BPNODE TNODE $=3$, TNPC $=9$, TINTC $=3$,
\&PATCH1 $\mathrm{IREV}=0$, $\operatorname{IDPAT}=2, \mathrm{MAKE}=0, \mathrm{KCOMP}=1, \mathrm{KASS}=1$,
\&END

T34 AFT FUESELAGE \#6
\&SECT1 STX=0.0, $S T Y=0.0, S T Z=0.0, S C A L E=1.0$,
ALF $=0.0, \mathrm{THETA}=0.0$,
INMODE $=4$, TNODS $=0$, TNPS $=0$, TINTS $=0$, \&END
$88.457 \quad 0.0 \quad 0.0$
$88.457 \quad 10.92 \quad 0.0$
$88.457 \quad 18.57 \quad 0.0$
\&END

88.457	22.93	0.0
88.457	22.93	5.0
88.457	22.93	10.0
88.457	22.93	15.0
88.547	22.93	20.0
88.457	22.93	25.1
88.457	18.0	34.0
88.457	15.28	36.038
88.457	9.0	55.15
88.457	4.0	57.33
88.457	0.0	58.97

\& BPNODE TNODE $=3$, TNPC $=12$, TINTC $=3$,
\&END
$\& S E C T 1 \quad \mathrm{STX}=0.0, \mathrm{STY}=0.0, \mathrm{STZ}=0.0, \mathrm{SCALE}=1.0$,
ALF=0.0, THETA=0.0,
INMODE $=4$, TNODS $=2$, TNPS $=2$, TINTS $=3$,
\&END
$\begin{array}{lll}119.58 & 0.0 & 2.73\end{array}$
$119.58 \quad 10.92 \quad 2.73$
$119.58 \quad 18.02 \quad 2.73$
$119.58 \quad 18.02 \quad 21.30$
$\begin{array}{lll}119.58 & 18.02 & 33.85\end{array}$
$\begin{array}{lll}119.58 & 14.74 & 39.31\end{array}$
$119.58 \quad 10.92 \quad 43.00$
$119.58 \quad 0.0 \quad 48.05$
\&BPNODE TNODE $=3, \mathrm{TNPC}=12$, TINTC $=3$,
\&END
\&SECT1 STX=0.0, STY=0.0, STZ=0.0, $\mathrm{SCALE}=1.0$,
ALF=0.0, THETA=0.0,
INMODE $=4$, TNODS $=2, \mathrm{TNPS}=2, \mathrm{TINTS}=3$,
\&END
$127.77 \quad 0.0 \quad 4.37$
$127.77 \quad 10.92 \quad 4.37$
$127.77 \quad 16.93 \quad 4.37$
$127.77 \quad 16.93 \quad 21.3$
$127.77 \quad 16.93 \quad 33.85$
$127.77 \quad 14.7439 .31$
$127.77 \quad 10.37 \quad 42.04$
$127.77 \quad 0.0 \quad 45.87$
\& BPNODE TNODE $=3, \mathrm{TNPC}=12$, TINTC=3, \&END
$\& S E C T 1$ STX=0.0, $\mathrm{STY}=0.0, \mathrm{STZ}=0.0, \mathrm{SCALE}=1.0$,
ALF $=0.0$, THETA $=0.0$,
INMODE=4, TNODS $=2$, TNPS $=2$, TINTS $=3$, \quad \&END
$\begin{array}{lll}146.88 & 0.0 & 7.64\end{array}$
$\begin{array}{lll}146.88 & 10.92 & 7.64\end{array}$
$146.88 \quad 14.74 \quad 7.64$
$146.88 \quad 14.74 \quad 21.3$
$146.88 \quad 14.7433 .85$
$146.88 \quad 13.00 \quad 38.5$
$146.88 \quad 8.7440 .41$
$146.88 \quad 0.0 \quad 44.22$
\&BPNODE TNODE=3, TNPC=12, TINTC=3,
\& END
\&SECT1 STX=0.0, STY=0.0, STZ=0.0, $\mathrm{SCALE}=1.0$,
ALF=0.0, THETA=0.0,
$\mathrm{INMODE}=4, \mathrm{TNODS}=2, \mathrm{TNPS}=2, \mathrm{TINTS}=3$,
\&END
$\begin{array}{lll}179.64 & 0.0 & 13.3\end{array}$
$\begin{array}{lll}179.64 & 3.0 & 13.3\end{array}$
$179.64 \quad 7.00 \quad 13.3$

194.332
8.7432 .939
195.370
8.7433 .199
196.408
8.7433 .378
197.445
8.7433 .511
$199.520 \quad 8.7433 .695$
$201.595 \quad 8.7433 .803$
$203.670 \quad 8.7433 .860$
$205.745 \quad 8.74 \quad 33.870$
$209.895 \quad 8.7433 .822$
$214.045 \quad 8.7433 .681$
$218.195 \quad 8.74 \quad 33.479$
$222.345 \quad 8.74 \quad 33.230$
$226.495 \quad 8.7432 .942$
$230.645 \quad 8.74 \quad 32.616$
$234.795 \quad 8.7432 .216$
\&BPNODE TNODE $=3$, TNPC $=15$, TINTC $=3$, \&END \&SECT1 STX=0.0, STY=0.0, STZ=0.0, $\mathrm{SCALE}=1.0$,

ALF=0.0, THETA=0.0,
INMODE $=4$, TNODS $=3, \mathrm{TNPS}=7, \mathrm{TINTS}=3$,
\&END
$231.517 \quad 73.168 \quad 32.216$
$229.797 \quad 73.168 \quad 32.031$
$228.077 \quad 73.168 \quad 31.884$
$224.637 \quad 73.168 \quad 31.614$
$221.197 \quad 73.168 \quad 31.376$
$217.757 \quad 73.168 \quad 31.169$
$214.317 \quad 73.168 \quad 31.002$
$210.877 \quad 73.168 \quad 30.885$
$207.437 \quad 73.168 \quad 30.840$
$205.717 \quad 73.168 \quad 30.853$
$203.997 \quad 73.168 \quad 30.900$
$202.277 \quad 73.168 \quad 30.990$
$200.557 \quad 73.168 \quad 31.142$
$199.697 \quad 73.168 \quad 31.253$
$198.837 \quad 73.16831 .401$
$197.977 \quad 73.168 \quad 31.616$
$197.289 \quad 73.168 \quad 31.781$
$197.117 \quad 73.168 \quad 32.216$
\&BPNODE TNODE $=2$, TNPC $=15$, TINTC $=3$, \&END
$197.117 \quad 73.168 \quad 32.216$
$197.28973 .168 \quad 32.650$
$197.977 \quad 73.168 \quad 32.816$
$198.837 \quad 73.16833 .031$
$199.697 \quad 73.168 \quad 33.179$
$200.557 \quad 73.168 \quad 33.290$
$202.277 \quad 73.168 \quad 33.442$
$203.997 \quad 73.168 \quad 33.532$
$205.717 \quad 73.168 \quad 33.579$
$207.437 \quad 73.168 \quad 33.592$
$210.877 \quad 73.168 \quad 33.547$
$214.317 \quad 73.168 \quad 33.430$
$217.757 \quad 73.168 \quad 33.263$
$221.197 \quad 73.168 \quad 33.056$
$224.637 \quad 73.168 \quad 32.818$
$228.077 \quad 73.168 \quad 32.548$
\& BPNODE TNODE $=3$, TNPC $=15$, TINTC $=3$,
\&PATCH1 IREV=0, IDPAT=1, MAKE=7, KCOMP=1, KASS=2,
\&END
T34 HORIZONTAL TAIL TIP \#8
\&PATCH2 ITYP=1, TNODS=3, TNPS=2, TINTS=0, NPTTIP=0, \&END
\&PATCH1 IREV $=0$, IDPAT $=2$, MAKE $=0, \mathrm{KCOMP}=1, \mathrm{KASS}=1$, \&END
T34 FUSELAGE UNDER TAIL \#9
\&SECT1 STX=0.0, STY=0.0, STZ=0.0, SCALE $=1.0$,
ALF $=0.0$, THETA $=0.0$,
INMODE $=4$, TNODS $=0$, TNPS $=0$, TINTS $=0$, \&END
$\begin{array}{lll}181.83 & 0.0 & 13.65\end{array}$
$\begin{array}{lll}181.83 & 10.92 & 13.65\end{array}$
$\begin{array}{lll}181.83 & 10.92 & 25.0\end{array}$
$\begin{array}{lll}181.83 & 10.92 \quad 27.84\end{array}$
$\begin{array}{lll}181.83 & 10.92 & 32.216\end{array}$
\&BPNODE TNODE $=3$, TNPC $=0$, TINTC $=0$, \&END
\&SECT1 STX=0.0, STY=0.0, STZ=0.0, SCALE $=1.0$,
ALF $=0.0$, THETA $=0.0$,
INMODE $=4$, TNODS $=2$, TNPS $=6$, TINTS $=0$, \&END
$\begin{array}{lll}193.295 & 0.0 & 15.83\end{array}$
$\begin{array}{lll}193.295 & 8.74 & 15.83\end{array}$
$193.295 \quad 8.74 \quad 25.0$
$193.295 \quad 8.74 \quad 27.84$
$193.295 \quad 8.74 \quad 32.216$
\&BPNODE TNODE $=3$, TNPC $=0$, TINTC $=0$, \&END
\&SECT1 STX $=0.0, \mathrm{STY}=0.0, \mathrm{STZ}=0.0, \mathrm{SCALE}=1.0$,
ALF $=0.0$, THETA $=0.0$,
INMODE $=4$, TNODS $=0$, TNPS $=0$, TINTS $=0, \quad$ \& END
$\begin{array}{lll}194.332 & 0.0 & 16.00\end{array}$
$\begin{array}{llll}194.332 & 8.14 & 16.00\end{array}$
$194.332 \quad 8.14 \quad 25.0$
$\begin{array}{llll}194.332 & 8.74 & 27.84\end{array}$
$194.332 \quad 8.74 \quad 31.493$
\& BPNODE TNODE $=3$, TNPC $=0$, TINTC $=0$, \&END
\&SECT1 STX=0.0, STY=0.0, STZ=0.0, SCALE $=1.0$,
ALF=0.0, THETA=0.0,
INMODE $=4$, TNODS $=0$, TNPS $=0$, TINTS $=0, \quad$ \& END
$\begin{array}{lll}195.370 & 0.0 & 16.10\end{array}$
$195.370 \quad 7.94 \quad 16.10$
$195.370 \quad 7.94 \quad 25.0$
$\begin{array}{lll}195.370 & 8.74 & 27.84\end{array}$
$195.370 \quad 8.74 \quad 31.233$
\&BPNODE TNODE $=3$, TNPC $=0$, TINTC $=0, \quad$ \& END
\&SECT1 STX=0.0, STY=0.0, STZ=0.0, SCALE=1.0,
ALF=0.0, THETA=0.0,
INMODE $=4$, TNODS $=0$, TNPS $=0$, TINTS $=0$, \&END
$\begin{array}{lll}197.445 & 0.0 & 16.381\end{array}$
$197.445 \quad 7.34 \quad 16.381$
$197.445 \quad 7.34 \quad 25.0$
$\begin{array}{lll}197.445 & 8.74 & 27.84\end{array}$
$\begin{array}{lll}197.445 & 8.74 & 30.921\end{array}$
\&BPNODE TNODE $=3, \mathrm{TNPC}=0, \mathrm{TINTC}=0$,
$\&$ SECT1 $\mathrm{STX}=0.0, \mathrm{STY}=0.0, \mathrm{STZ}=0.0, \mathrm{SCALE}=1.0$,
$\mathrm{ALF}=0.0, \mathrm{THETA}=0.0$,
INMODE $=4$, TNODS $=0$, TNPS $=0$, TINTS $=0$,
\&END
$199.520 \quad 0.0 \quad 16.654$
$199.520 \quad 7.04 \quad 16.654$
$199.520 \quad 7.04 \quad 25.0$
$199.520 \quad 8.74 \quad 27.84$
$199.520 \quad 8.74 \quad 30.737$
\&BPNODE TNODE $=3$, TNPC $=0$, TINTC $=0$, \&END
$\& S E C T 1 \quad \mathrm{STX}=0.0, \mathrm{STY}=0.0, \mathrm{STZ}=0.0, \mathrm{SCALE}=1.0$,
$\mathrm{ALF}=0.0, \mathrm{THETA}=0.0$,
INMODE $=4$, TNODS $=0$, TNPS $=0$, TINTS $=0$,
\&END
$201.595 \quad 0.0 \quad 16.93$
$201.595 \quad 6.74 \quad 16.93$
$201.595 \quad 6.74 \quad 25.0$
$201.595 \quad 8.74 \quad 27.84$
$201.595 \quad 8.74 \quad 30.629$
\& BPNODE $\mathrm{TNODE}=3, \mathrm{TNPC}=0$, $\mathrm{TINTC}=0$,
$\& S E C T 1 \quad \mathrm{STX}=0.0, \mathrm{STY}=0.0, \mathrm{STZ}=0.0, \mathrm{SCALE}=1.0$,
ALF $=0.0, \mathrm{THETA}=0.0$,
INMODE $=4$, TNODS $=0$, TNPS $=0$, TINTS $=0$,
\&END
$203.67 \quad 0.0 \quad 17.473$
$203.67 \quad 6.44 \quad 17.473$
$203.67 \quad 6.44 \quad 25.0$
$203.67 \quad 8.74 \quad 27.84$
$203.67 \quad 8.74 \quad 30.572$
\& BPNODE TNODE $=3$, TNPC $=0$, TINTC $=0$, \quad \&END
$\& S E C T 1 \quad S T X=0.0, S T Y=0.0, S T Z=0.0, S C A L E=1.0$, $\mathrm{ALF}=0.0, \mathrm{THETA}=0.0$,
INMODE $=4$, TNODS $=0$, TNPS $=0$, TINTS $=0$,
\&END
$\begin{array}{lll}205.745 & 0.0 & 18.02\end{array}$
$205.745 \quad 6.14 \quad 18.02$
$205.745 \quad 6.14 \quad 25.0$
$205.745 \quad 8.74 \quad 27.84$
$205.745 \quad 8.74 \quad 30.556$
\&BPNODE TNODE $=3$, TNPC $=0$, TINTC $=0$, \quad \&END
$\&$ SECT1 STX=0.0, $\mathrm{STY}=0.0, \mathrm{STZ}=0.0, \mathrm{SCALE}=1.0$,
ALF $=0.0$, THETA $=0.0$,
INMODE $=4$, TNODS $=0, \mathrm{TNPS}=0, \mathrm{TINTS}=0$,
\&END
$209.895 \quad 0.0 \quad 18.9$
$209.895 \quad 5.84 \quad 18.9$
$209.895 \quad 5.84 \quad 25.0$
$209.895 \quad 8.74 \quad 27.84$
$209.895 \quad 8.74 \quad 30.61$
\&BPNODE TNODE $=3$, TNPC $=0$, TINTC $=0$,
\&END
\&SECT1 STX=0.0, STY $=0.0, \mathrm{STZ}=0.0, \mathrm{SCALE}=1.0$,
ALF $=0.0, \mathrm{THETA}=0.0$,
INMODE $=4$, TNODS $=0$, TNPS $=0$, TINTS $=0$,
\&END
$214.045 \quad 0.0 \quad 19.11$
$214.045 \quad 5.54 \quad 19.11$
$214.045 \quad 5.54 \quad 25.0$
$214.045 \quad 8.74 \quad 27.84$
$214.045 \quad 8.74 \quad 30.751$
\& BPNODE $\mathrm{TNODE}=3, \mathrm{TNPC}=0$, $\mathrm{TINTC}=0$,
$\& S E C T 1$ STX=0.0, $\mathrm{STY}=0.0, \mathrm{STZ}=0.0, \mathrm{SCALE}=1.0$, ALF $=0.0$, THETA $=0.0$,
INMODE $=4$, TNODS $=0$, TNPS $=0$, TINTS $=0$,
\&END
$218.195 \quad 0.0 \quad 20.48$
$218.195 \quad 5.24 \quad 20.48$
$218.195 \quad 5.24 \quad 25.0$
$218.195 \quad 8.74 \quad 27.84$
$218.195 \quad 8.74 \quad 30.953$
\& BPNODE $\mathrm{TNODE}=3, \mathrm{TNPC}=0$, TINTC $=0$,
$\& S E C T 1$ STX $=0.0, \mathrm{STY}=0.0, \mathrm{STZ}=0.0, \mathrm{SCALE}=1.0$, $\mathrm{ALF}=0.0, \mathrm{THETA}=0.0$,
INMODE $=4$, TNODS $=0$, TNPS $=0$, TINTS $=0, \quad$ \&END
$222.345 \quad 0.0 \quad 21.30$
$222.345 \quad 4.94 \quad 21.30$
$\begin{array}{lll}222.345 & 4.94 & 25.0\end{array}$
$222.345 \quad 8.74 \quad 27.84$
$\begin{array}{lll}222.345 & 8.74 & 31.202\end{array}$
\& BPNODE TNODE $=3$, $\mathrm{TNPC}=0$, TINTC $=0$, \&END
$\& S E C T 1$ STX $=0.0$, STY $=0.0, \mathrm{STZ}=0.0, \mathrm{SCALE}=1.0$, ALF=0.0, THETA=0.0,
$\mathrm{INMODE}=4$, TNODS $=0$, TNPS $=0$, TINTS $=0$, \&END
$\begin{array}{lll}226.495 & 0.0 & 21.84\end{array}$
$226.495 \quad 4.64 \quad 21.84$
$226.495 \quad 4.64 \quad 25.0$
$226.495 \quad 8.74 \quad 27.84$
$226.495 \quad 8.74 \quad 31.49$
\&BPNODE TNODE $=3, \mathrm{TNPC}=0$, TINTC $=0$, \&END
$\& S E C T 1$ STX $=0.0, \mathrm{STY}=0.0, \mathrm{STZ}=0.0, \mathrm{SCALE}=1.0$, ALF=0.0, THETA=0.0,
INMODE $=4$, TNODS $=0$, TNPS $=0$, TINTS $=0$, $\quad \& E N D$
$230.645 \quad 0.0 \quad 22.67$
$230.645 \quad 4.34 \quad 22.67$
$230.645 \quad 4.34 \quad 25.0$
$230.645 \quad 5.74 \quad 27.84$
$230.645 \quad 8.74 \quad 31.816$
\&BPNODE TNODE $=3, \mathrm{TNPC}=0$, TINTC $=0$, \&END
$\& S E C T 1$ STX $=0.0, \mathrm{STY}=0.0, \mathrm{STZ}=0.0, \mathrm{SCALE}=1.0$, ALF=0.0, THETA=0.0,
INMODE=4, TNODS $=0$, TNPS=0, TINTS=0, \&END
$\begin{array}{lll}232.72 & 0.0 & 23.04\end{array}$
$232.72 \quad 4.04 \quad 23.04$
$\begin{array}{lll}232.72 & 4.04 & 25.0\end{array}$
$\begin{array}{lll}232.72 & 5.74 & 27.84\end{array}$
$\begin{array}{lll}232.72 & 8.74 & 31.993\end{array}$
\& BPNODE TNODE $=3$, TNPC $=0$, TINTC $=0$, \&END
$\& S E C T 1$ STX $=0.0, \mathrm{STY}=0.0, \mathrm{STZ}=0.0, \mathrm{SCALE}=1.0$, ALF=0.0, THETA=0.0,
INMODE $=4$, TNODS $=0$, TNPS $=0$, TINTS $=0$, \&END
$234.795 \quad 0.0 \quad 23.95$
$234.795 \quad 3.74 \quad 23.95$
$\begin{array}{lll}234.795 & 3.74 & 25.0\end{array}$
$234.795 \quad 4.74 \quad 27.84$
$234.795 \quad 8.74 \quad 32.181$
\& BPNODE $\mathrm{TNODE}=3, \mathrm{TNPC}=0$, TINTC $=0$,
\&END
$\& S E C T 1 \quad S T X=0.0, S T Y=0.0, S T Z=0.0, S C A L E=1.0$,
$\mathrm{ALF}=0.0$, $\mathrm{THETA}=0.0$,
INMODE $=4$, TNODS $=3$, TNPS $=0$, TINTS $=0$,
\&END
$\begin{array}{lll}235.5 & 0.0 & 23.95\end{array}$
$\begin{array}{lll}235.5 & 0.0 & 24.1\end{array}$
$235.5 \quad 0.0 \quad 25.0$
$235.5 \quad 0.0 \quad 27.84$
$235.5 \quad 0.0 \quad 32.181$
\& BPNODE TNODE $=3, \mathrm{TNPC}=0$, $\mathrm{TINTC}=0$,
\&END
\&PATCH1 $\mathrm{IREV}=0$, IDPAT=2, $\mathrm{MAKE}=0, \mathrm{KCOMP}=1, \mathrm{KASS}=1$,
\&END
T34 VERTICAL TAIL \#10
\&SECT1 $\mathrm{STX}=0.0, \mathrm{STY}=0.0, \mathrm{STZ}=0.0, \mathrm{SCALE}=1.0$, $\mathrm{ALF}=0.0, \mathrm{THETA}=0.0$,
INMODE $=4$, TNODS $=2$, TNPS $=0$, TINTS $=3$, \&END
$181.83 \quad 0.0 \quad 47.5$
$198.76 \quad 0.0 \quad 98.83$
$198.76 \quad 0.0 \quad 98.83$
\&BPNODE TNODE $=3$, TNPC=0, TINTC $=3$, \&END
$\& S E C T 1$ STX=0.0, $\mathrm{STY}=0.0, \mathrm{STZ}=0.0, \mathrm{SCALE}=1.0$,
$\mathrm{ALF}=0.0, \mathrm{THETA}=0.0$,
INMODE=4, TNODS $=2, \mathrm{TNPS}=0, \mathrm{TINTS}=3$,
\&END
$182.47 \quad 0.49 \quad 47.5$
$199.22 \quad 0.35 \quad 98.83$
$199.22 \quad 0.0 \quad 98.83$
\&BPNODE TNODE $=3$, TNPC $=0$, TINTC $=3$, \quad \&END
\&SECT1 $\mathrm{STX}=0.0, \mathrm{STY}=0.0, \mathrm{STZ}=0.0, \mathrm{SCALE}=1.0$,
$\mathrm{ALF}=0.0, \mathrm{THETA}=0.0$,
INMODE=4, TNODS $=2$, TNPS=0, TINTS=3, \quad \&END
$183.12 \quad 0.67 \quad 47.5$
$199.69 \quad 0.48 \quad 98.83$
$199.69 \quad 0.0 \quad 98.83$
\&BPNODE TNODE $=3, \mathrm{TNPC}=0$, TINTC $=3$,
\&END
\&SECT1 STX=0.0, STY=0.0, $\mathrm{STZ}=0.0, \mathrm{SCALE}=1.0$, ALF $=0.0$, THETA $=0.0$,
INMODE $=4$, TNODS $=2$, TNPS=0, TINTS=3. \quad \&END
$184.41 \quad 0.92 \quad 47.5$
$200.62 \quad 0.66 \quad 98.83$
$200.62 \quad 0.0 \quad 98.83$
\&BPNODE TNODE $=3$, TNPC=0, TINTC=3, \quad EEND
$\& S E C T 1 \quad S T X=0.0, \mathrm{STY}=0.0, \mathrm{STZ}=0.0, \mathrm{SCALE}=1.0$,
$\mathrm{ALF}=0.0, \mathrm{THETA}=0.0$,
INMODE $=4$, TNODS $=2$, TNPS $=0$, TINTS $=3, \quad$ \&END
$185.69 \quad 1.08 \quad 47.5$
$201.54 \quad 0.78 \quad 98.83$
$201.54 \quad 0.0 \quad 98.83$
\& BPNODE TNODE $=3$, TNPC=0, TINTC=3, \quad \&END
\&SECT1 STX=0.0, STY=0.0, STZ=0.0, $\mathrm{SCALE}=1.0$,
ALF=0.0, THETA $=0.0$,
INMODE $=4, \mathrm{TNODS}=2, \mathrm{TNPS}=0, \mathrm{TINTS}=3$,
\&END
$186.98 \quad 1.21 \quad 47.5$
$202.47 \quad 0.87 \quad 98.83$
$202.47 \quad 0.0 \quad 98.83$
$\& S E C T 1 \quad \mathrm{STX}=0.0, \mathrm{STY}=0.0, \mathrm{STZ}=0.0, \mathrm{SCALE}=1.0$, ALF $=0.0$, THETA $=0.0$,
$\operatorname{INMODE}=4, \mathrm{TNODS}=2, \mathrm{TNPS}=0, \mathrm{TINTS}=3$,
\&END
$189.56 \quad 1.38 \quad 47.5$
$204.33 \quad 0.99 \quad 98.83$
$204.33 \quad 0.0 \quad 98.83$
\&BPNODE TNODE $=3, \mathrm{TNPC}=0$, TINTC $=3$,
\&END
$\& S E C T 1 \quad S T X=0.0, S T Y=0.0, S T Z=0.0, S C A L E=1.0$, ALF=0.0, THETA=0.0,
INMODE $=4$, TNODS $=2$, TNPS $=0$, TINTS $=3, \quad$ \&END
$192.13 \quad 1.48 \quad 47.5$
$206.18 \quad 1.06 \quad 98.83$
$206.18 \quad 0.0 \quad 98.83$
\&BPNODE TNODE $=3$, TNPC $=0$, TINTC $=3$, \quad \&END
$\& S E C T 1$ STX=0.0, $\mathrm{STY}=0.0, \mathrm{STZ}=0.0, \mathrm{SCALE}=1.0$, ALF=0.0, THETA=0.0,
$\mathrm{INMODE}=4, \mathrm{TNODS}=2, \mathrm{TNPS}=0, \mathrm{TINTS}=3$,
$194.71 \quad 1.53 \quad 47.5$
$208.04 \quad 1.10 \quad 98.83$
$208.04 \quad 0.0 \quad 98.83$
\&BPNODE TNODE $=3, \mathrm{TNPC}=0$, TINTC $=3$, \&END
$\& S E C T 1 \quad S T X=0.0, S T Y=0.0, S T Z=0.0, S C A L E=1.0$, ALF=0.0, THETA=0.0,
INMODE=4, TNODS $=2$, TNPS=0, TINTS=3, \quad \&END
$197.28 \quad 1.55 \quad 47.5$
$209.89 \quad 1.11 \quad 98.83$
$209.89 \quad 0.0 \quad 98.83$
\&BPNODE TNODE $=3$, TNPC $=0$, TINTC $=3$, \quad \&END
$\& S E C T 1 \quad \mathrm{STX}=0.0, \mathrm{STY}=0.0, \mathrm{STZ}=0.0, \mathrm{SCALE}=1.0$, $\mathrm{ALF}=0.0, \mathrm{THETA}=0.0$,
INMODE $=4$, TNODS $=2$, TNPS=0, TINTS $=3$,
\&END
$202.43 \quad 1.49 \quad 47.5$
$213.60 \quad 1.08 \quad 98.83$
$213.60 \quad 0.0 \quad 98.83$
\& BPNODE TNODE $=3, \mathrm{TNPC}=0$, TINTC $=3$,
\&END
\&SECT1 STX=0.0, STY=0.0, $\mathrm{STZ}=0.0, \mathrm{SCALE}=1.0$, ALF $=0.0$, THETA $=0.0$,
$\mathrm{INMODE}=4, \mathrm{TNODS}=2, \mathrm{TNPS}=0, \mathrm{TINTS}=3, \quad$ \&END
$207.58 \quad 1.36 \quad 47.5$
$217.31 \quad 0.98 \quad 98.83$
$217.31 \quad 0.0 \quad 98.83$
\&BPNODE TNODE $=3$, TNPC $=0$, TINTC $=3$, \&END
\&SECT1 STX=0.0, STY=0.0, STZ=0.0, $\mathrm{SCALE}=1.0$, ALF=0.0, THETA=0.0,
INMODE $=4$, TNODS $=2$, TNPS $=0$, TINTS $=3$, $\quad \& E N D$
$212.73 \quad 1.18 \quad 47.5$
$221.02 \quad 0.85 \quad 98.83$
$221.02 \quad 0.0 \quad 98.83$
\& BPNODE TNODE $=3$, TNPC $=0$, TINTC $=3$,
\&END
$\& S E C T 1 \quad S T X=0.0, \mathrm{STY}=0.0, \mathrm{STZ}=0.0, \mathrm{SCALE}=1.0$,
ALF=0.0, THETA=0.0,
INMODE $=4$, TNODS $=2$, TNPS $=0$, TINTS $=3$,
\&END
$217.88 \quad 0.94 \quad 47.5$
$224.73 \quad 0.68 \quad 98.83$
$224.73 \quad 0.0 \quad 98.83$
\&BPNODE TNODE $=3$, TNPC $=0$, TINTC=3, \&END
\&SECT1 STX=0.0, $\mathrm{STY}=0.0, \mathrm{STZ}=0.0, \mathrm{SCALE}=1.0$,
ALF $=0.0$, THETA $=0.0$,
INMODE $=4$, TNODS $=2$, TNPS $=0$, TINTS $=3$, \&END
$223.03 \quad 0.68 \quad 47.5$
$228.44 \quad 0.49 \quad 98.83$
$228.44 \quad 0.0 \quad 98.83$
$\& B P N O D E T N O D E=3$, TNPC $=0$, TINTC $=3$,
\&END
\&SECT1 STX=0.0, STY=0.0, STZ=0.0, SCALE $=1.0$,
ALF $=0.0$, THETA $=0.0$,
INMODE $=4$, TNODS $=2$, TNPS $=0$, TINTS $=3$,
\&END
$228.18 \quad 0.37 \quad 47.5$
$232.15 \quad 0.27 \quad 98.83$
$232.15 \quad 0.0 \quad 98.83$
\&BPNODE TNODE $=3$, TNPC $=0$, TINTC $=3$, \& \quad END
\&SECT1 STX=0.0, $\mathrm{STY}=0.0, \mathrm{STZ}=0.0, \mathrm{SCALE}=1.0$,
ALF=0.0, THETA=0.0,
INMODE $=4$, TNODS $=2, \mathrm{TNPS}=0$, TINTS $=3$,
\&END
$\begin{array}{lll}230.76 & 0.21 \quad 47.5\end{array}$
$234.01 \quad 0.15 \quad 98.83$
$234.01 \quad 0.0 \quad 98.83$
\&BPNODE TNODE $=3$, TNPC=0, TINTC=3
\&END
\&SECT1 STX=0.0, STY=0.0, STZ=0.0, SCALE=1.0,
ALF $=0.0$, THETA $=0.0$,
$\operatorname{INMODE}=4$, TNODS $=3, \mathrm{TNPS}=0$, TINTS $=3$,
\&END
$233.33 \quad 0.0 \quad 47.5$
$\begin{array}{lll}235.86 & 0.0 & 98.83\end{array}$
$235.86 \quad 0.0 \quad 98.83$
\&BPNODE TNODE $=3$, TNPC $=0$, TINTC $=3$, \& END
\&PATCH1 $\mathrm{IREV}=0$, IDPAT $=2$, MAKE $=0, \mathrm{KCOMP}=1, \mathrm{KASS}=1$,
\&END
T34 FUS BTWN HOR AND VERT TAIL 1HV \#11
\&SECT1 STX=0.0, STY=0.0, STZ=0.0, SCALE $=1.0$,
ALF $=0.0$, THETA $=0.0$,
INMODE $=4$, TNODS $=0$, TNPS $=0$, TINTS $=0$,
\&END
$\begin{array}{lll}181.83 & 10.92 & 32.216\end{array}$
$\begin{array}{lll}181.83 & 5.00 & 37.17\end{array}$
$\begin{array}{lll}181.83 & 2.6 & 39.86\end{array}$
$181.83 \quad 0.0 \quad 47.5$
\&BPNODE TNODE $=3$, TNPC $=0$, TINTC $=0$,
\&END
\&SECT1 STX=0.0, $\mathrm{STY}=0.0, \mathrm{STZ}=0.0, \mathrm{SCALE}=1.0$,
ALF $=0.0$, THETA $=0.0$,
INMODE $=4$, TNODS $=0$, TNPS $=0$, TINTS $=0$,
\&END
$\begin{array}{lll}182.47 & 10.68 & 32.216\end{array}$
$\begin{array}{lll}182.47 & 5.0 & 37.07\end{array}$
$\begin{array}{lll}182.47 & 2.55 & 39.44\end{array}$
$182.47 \quad 0.49 \quad 47.5$
\&BPNODE TNODE $=3$, TNPC $=0$, TINTC $=0$, \&END
\&SECT1 STX=0.0, $\mathrm{STY}=0.0, \mathrm{STZ}=0.0, \mathrm{SCALE}=1.0$,
ALF $=0.0$, THETA $=0.0$,
INMODE $=4$, TNODS $=0$, TNPS $=0$, TINTS $=0$,
\&END
$\begin{array}{lll}183.12 & 10.44 & 32.216\end{array}$
$183.12 \quad 5.0 \quad 36.97$
$183.12 \quad 2.50 \quad 39.02$
$183.12 \quad 0.67 \quad 47.5$
\& BPNODE TNODE $=3$, TNPC $=0$, TINTC $=0$,
\&END
\&SECT1 STX=0.0, STY=0.0, STZ=0.0, $\mathrm{SCALE}=1.0$,
ALF=0.0, THETA=0.0,
INMODE $=4$, TNODS $=0$, TNPS $=0$, TINTS $=0$,
\&END
$184.41 \quad 10.20 \quad 32.216$
$\begin{array}{lll}184.41 & 5.0 & 36.87\end{array}$
$184.41 \quad 2.45 \quad 38.6$
$184.41 \quad 0.92 \quad 47.5$
\&BPNODE TNODE $=3$, TNPC $=0$, TINTC $=0$, \&END
$\& S E C T 1 \quad S T X=0.0, S T Y=0.0, S T Z=0.0, S C A L E=1.0$,
ALF=0.0, THETA=0.0,
INMODE $=4$, TNODS $=0$, TNPS $=0$, TINTS $=0$, \&END
$185.69 \quad 9.96 \quad 32.216$
$185.69 \quad 5.0 \quad 36.77$
$185.69 \quad 2.40 \quad 38.4$
$185.69 \quad 1.08 \quad 47.5$
\&BPNODE TNODE $=3, \mathrm{TNPC}=0$, TINTC $=0$, \&END
$\& S E C T 1 \quad S T X=0.0, S T Y=0.0, S T Z=0.0, S C A L E=1.0$,
ALF $=0.0$, THETA $=0.0$,
INMODE $=4$, TNODS $=0$, TNPS $=0$, TINTS $=0$, \quad \&END
$186.98 \quad 9.72 \quad 32.216$
$186.98 \quad 5.0 \quad 36.67$
$186.98 \quad 2.38 \quad 38.18$
$186.98 \quad 1.21 \quad 47.5$
\&BPNODE TNODE $=3$, TNPC $=0$, TINTC $=0$, \&END
\&SECT1 STX=0.0, $\mathrm{STY}=0.0, \mathrm{STZ}=0.0, \mathrm{SCALE}=1.0$,
$\mathrm{ALF}=0.0, \mathrm{THETA}=0.0$,
INMODE $=4$, TNODS $=0$, TNPS $=0$, TINTS $=0$, \quad \&END
$189.56 \quad 9.48 \quad 32.216$
$\begin{array}{lll}189.56 & 5.0 & 36.57\end{array}$
$189.56 \quad 2.35 \quad 37.76$
$189.56 \quad 1.38 \quad 47.5$
\& BPNODE TNODE $=3, \mathrm{TNPC}=0$, TINTC $=0$, \&END
$\& S E C T 1 \quad \mathrm{STX}=0.0, \mathrm{STY}=0.0, \mathrm{STZ}=0.0, \mathrm{SCALE}=1.0$,
$\mathrm{ALF}=0.0, \mathrm{THETA}=0.0$,
INMODE $=4$, TNODS $=0$, TNPS $=0$, TINTS $=0$, \quad \& END
$192.13 \quad 9.24 \quad 32.216$
$\begin{array}{lll}192.13 & 4.5 & 36.37\end{array}$
$\begin{array}{lll}192.13 & 2.32 & 37.34\end{array}$
$192.13 \quad 1.48 \quad 47.5$
\& BPNODE TNODE $=3$, TNPC $=0$, TINTC $=0$, \&END
$\& S E C T 1$ STX $=0.0$, STY $=0.0, \mathrm{STZ}=0.0, \mathrm{SCALE}=1.0$,
ALF $=0.0, \mathrm{THETA}=0.0$,
INMODE $=4$, TNODS $=3$, TNPS $=0$, TINTS $=0, \quad$ \&END
$193.295 \quad 8.74 \quad 32.216$
$193.295 \quad 4.00 \quad 36.17$
$193.295 \quad 2.3 \quad 36.92$
$193.295 \quad 1.5 \quad 47.5$
\& BPNODE $\mathrm{TNODE}=3, \mathrm{TNPC}=0, \mathrm{TINTC}=0$,
\&END
\&PATCH1 $\operatorname{IREV}=0, \operatorname{IDPAT}=2, \mathrm{MAKE}=0, \mathrm{KCOMP}=1, \mathrm{KASS}=1$,
\&END

T34 FUS BTWN HOR AND VERT TAIL 2H \#12
\&SECT1 STX=0.0, STY=0.0, STZ=0.0, SCALE=1.0,
ALF=0.0, THETA=0.0,
INMODE $=4$, TNODS $=0$, TNPS $=0$, TINTS $=0$, \&END
$193.295 \quad 8.74 \quad 32.216$
$193.295 \quad 4.0 \quad 36.17$
$193.295 \quad 2.3 \quad 36.92$
$193.295 \quad 1.6 \quad 38.0$
\& BPNODE TNODE $=3$, TNPC $=0$, TINTC $=0$,
\&END
\&SECT1 STX=0.0, STY=0.0, $\mathrm{STZ}=0.0, \mathrm{SCALE}=1.0$, $\mathrm{ALF}=0.0$, THETA=0.0,
INMODE $=4$, TNODS $=0$, TNPS $=0$, TINTS $=0$, $\quad \& E N D$
$\begin{array}{lll}193.814 & 8.74 & 32.74\end{array}$
$193.814 \quad 4.0 \quad 36.0$
$193.814 \quad 2.3 \quad 36.82$
$193.814 \quad 1.6 \quad 38.0$
\& BPNODE TNODE $=3, \mathrm{TNPC}=0$, TINTC $=0$, \&END
\&SECT1 STX=0.0, STY $=0.0, \mathrm{STZ}=0.0, \mathrm{SCALE}=1.0$,
ALF $=0.0$, THETA $=0.0$,
INMODE $=4$, TNODS $=0$, TNPS $=0$, TINTS $=0$,
\&END
$194.332 \quad 8.74 \quad 32.939$
$194.332 \quad 4.0 \quad 35.9$
$194.332 \quad 2.3 \quad 36.72$
$194.332 \quad 1.6 \quad 38.0$
\& BPNODE TNODE $=3$, TNPC $=0$, TINTC $=0$, \&END
$\& S E C T 1$ STX $=0.0$, STY $=0.0, \mathrm{STZ}=0.0, \mathrm{SCALE}=1.0$,
ALF=0.0, THETA=0.0,
INMODE $=4$, TNODS $=0$, TNPS $=0$, TINTS $=0$,
\&END
$\begin{array}{lll}195.37 & 8.74 & 33.199\end{array}$
$195.37 \quad 4.0 \quad 35.8$
$195.37 \quad 2.3 \quad 36.62$
$195.37 \quad 1.6 \quad 38.0$
\& BPNODE TNODE $=3, \mathrm{TNPC}=0$, $\mathrm{TINTC}=0$,
\&END
\&SECT1 STX=0.0, STY=0.0, $\mathrm{STZ}=0.0, \mathrm{SCALE}=1.0$,
$\mathrm{ALF}=0.0, \mathrm{THETA}=0.0$,
INMODE $=4$, TNODS $=0$, TNPS $=0$, TINTS $=0, \quad$ \&END
$\begin{array}{lll}196.408 & 8.74 & 33.378\end{array}$
$196.408 \quad 4.0 \quad 35.7$
$196.408 \quad 2.3 \quad 36.52$
$196.408 \quad 1.6 \quad 38.0$
\&BPNODE $\mathrm{TNODE}=3, \mathrm{TNPC}=0, \mathrm{TINTC}=0$,
\&END
$\& S E C T 1 \quad \mathrm{STX}=0.0, \mathrm{STY}=0.0, \mathrm{STZ}=0.0, \mathrm{SCALE}=1.0$,
ALF $=0.0, \mathrm{THETA}=0.0$,
INMODE $=4$, TNODS $=0$, TNPS $=0$, TINTS $=0, \quad$ \&END
$197.445 \quad 8.74 \quad 33.511$
$197.445 \quad 4.0 \quad 35.6$
$197.445 \quad 2.3 \quad 36.42$
$197.445 \quad 1.6 \quad 38.0$
\&BPNODE TNODE $=3$, TNPC $=0$, TINTC $=0$, \&END
$\& S E C T 1 \quad \mathrm{STX}=0.0, \mathrm{STY}=0.0, \mathrm{STZ}=0.0, \mathrm{SCALE}=1.0$,
$\mathrm{ALF}=0.0, \mathrm{THETA}=0.0$,
INMODE $=4$, TNODS $=0$, TNPS $=0$, TINTS $=0$, \quad \&END
$\begin{array}{lll}199.520 & 8.74 & 33.695\end{array}$
$199.52 \quad 4.0 \quad 35.5$
$199.52 \quad 2.3 \quad 36.32$
$199.52 \quad 1.6 \quad 38.0$
\& BPNODE TNODE $=3$, TNPC $=0$, TINTC $=0$, \&END
\&SECT1 STX=0.0, STY=0.0, $\mathrm{STZ}=0.0, \mathrm{SCALE}=1.0$,
ALF=0.0, THETA=0.0,
INMODE $=4$, TNODS $=0$, TNPS $=0$, TINTS $=0$,
\& END
$201.595 \quad 8.74 \quad 33.803$
$201.595 \quad 4.0 \quad 35.4$
$201.595 \quad 2.3 \quad 36.22$
$201.595 \quad 1.6 \quad 38.0$
\& BPNODE TNODE $=3$, TNPC $=0$, TINTC $=0$, \&END
$\& S E C T 1$ STX $=0.0, \mathrm{STY}=0.0, \mathrm{STZ}=0.0, \mathrm{SCALE}=1.0$,
ALF $=0.0$, THETA $=0.0$,
INMODE $=4$, TNODS $=0$, TNPS $=0$, TINTS $=0$,
\&END
$203.67 \quad 8.74 \quad 33.86$
$203.67 \quad 4.0 \quad 35.3$
$203.67 \quad 2.3 \quad 36.12$
$203.67 \quad 1.6 \quad 38.0$
\&BPNODE TNODE $=3, \mathrm{TNPC}=0$, TINTC $=0$, \&END
\&SECT1 STX=0.0, STY=0.0, $\mathrm{STZ}=0.0, \mathrm{SCALE}=1.0$,
ALF $=0.0$, THETA $=0.0$,
INMODE $=4$, TNODS $=0$, TNPS=0, TINTS=0, \quad \&END
$\begin{array}{lll}205.745 & 8.74 & 33.87\end{array}$
$205.745 \quad 4.0 \quad 35.2$
$205.745 \quad 2.3 \quad 36.02$
$205.745 \quad 1.6 \quad 38.0$
\&BPNODE TNODE $=3$, TNPC=0, TINTC=0, \&END
\&SECT1 STX=0.0, STY=0.0, STZ=0.0, $\mathrm{SCALE}=1.0$,
ALF $=0.0$, THETA $=0.0$,
INMODE $=4$, TNODS $=0$, TNPS $=0$, TINTS $=0$, \quad \&END
$\begin{array}{lll}209.895 & 8.74 & 33.822\end{array}$
$209.895 \quad 4.0 \quad 35.1$
$209.895 \quad 2.3 \quad 35.92$
$209.895 \quad 1.6 \quad 38.0$
\&BPNODE TNODE $=3$, TNPC $=0$, TINTC $=0$, \&END
\&SECT1 STX=0.0, STY=0.0, $\mathrm{STZ}=0.0, \mathrm{SCALE}=1.0$,
ALF $=0.0$, THETA $=0.0$,
INMODE $=4$, TNODS $=0$, TNPS $=0$, TINTS $=0, \quad$ \&END
$\begin{array}{lll}214.045 & 8.74 & 33.681\end{array}$
$214.045 \quad 4.0 \quad 35.0$
$214.045 \quad 2.3 \quad 35.82$
$214.045 \quad 1.6 \quad 38.0$
\&BPNODE TNODE $=3, \mathrm{TNPC}=0$, TINTC $=0$, \&END
\&SECT1 STX=0.0, STY=0.0, STZ=0.0, $\mathrm{SCALE}=1.0$,
ALF $=0.0$, THETA $=0.0$,
INMODE $=4$, TNODS $=0$, TNPS $=0$, TINTS $=0$, \quad \&END
$\begin{array}{lll}218.195 & 8.74 & 33.479\end{array}$
$218.195 \quad 4.0 \quad 34.9$
$218.195 \quad 2.3 \quad 35.72$
$218.195 \quad 1.6 \quad 38.0$
\&BPNODE TNODE $=3$, TNPC $=0$, TINTC $=0$, \&END
$\& S E C T 1 \quad S T X=0.0, S T Y=0.0, S T Z=0.0, S C A L E=1.0$,
ALF=0.0, THETA=0.0,
$\mathrm{INMODE}=4, \mathrm{TNODS}=0, \mathrm{TNPS}=0, \mathrm{TINTS}=0$,
\&END

222.345	8.74	33.23
222.345	4.0	34.8
222.345	2.3	35.62
222.345	1.6	38.0

\&BPNODE TNODE $=3$, TNPC $=0$, TINTC $=0$,
\&END
\&SECT1 STX=0.0, $\mathrm{STY}=0.0, \mathrm{STZ}=0.0, \mathrm{SCALE}=1.0$,
ALF=0.0, THETA=0.0,
INMODE $=4$, TNODS $=0$, TNPS $=0$, TINTS $=0$, \&END
$\begin{array}{lll}226.495 & 8.74 & 32.942\end{array}$
$226.495 \quad 4.0 \quad 34.7$
$226.495 \quad 2.3 \quad 35.52$
$226.495 \quad 1.6 \quad 38.0$
\&BPNODE TNODE $=3$, TNPC $=0$, TINTC $=0$, \&END
\&SECT1 STX=0.0, $\mathrm{STY}=0.0, \mathrm{STZ}=0.0, \mathrm{SCALE}=1.0$,
ALF=0.0, THETA=0.0,
INMODE=4, TNODS $=0$, TNPS $=0$, TINTS=0, \&END
$230.645 \quad 8.74 \quad 32.616$
$230.645 \quad 4.0 \quad 34.6$
$230.645 \quad 2.3 \quad 35.42$
$230.645 \quad 1.6 \quad 38.0$
\&BPNODE TNODE $=3$, $\mathrm{TNPC}=0$, TINTC $=0$, \&END
\&SECT1 STX=0.0, STY=0.0, STZ=0.0, $\mathrm{SCALE}=1.0$,
ALF=0.0, THETA=0.0,
INMODE $=4$, TNODS $=0$, TNPS $=0$, TINTS $=0$, \quad END
$\begin{array}{lll}232.72 & 8.74 & 32.439\end{array}$
$232.72 \quad 4.0 \quad 34.5$
$232.72 \quad 2.3 \quad 35.32$
$232.72 \quad 1.6 \quad 38.0$
\&BPNODE TNODE $=3, \mathrm{TNPC}=0$, TINTC $=0$, \&END
\&SECT1 STX=0.0, STY=0.0, $\mathrm{STZ}=0.0, \mathrm{SCALE}=1.0$,
ALF=0.0, THETA $=0.0$,
INMODE=4, TNODS $=0$, TNPS $=0$, TINTS $=0$, \&END
$\begin{array}{lll}234.795 & 8.74 & 32.216\end{array}$
$234.795 \quad 4.0 \quad 34.4$
$234.795 \quad 2.3 \quad 35.22$
$234.795 \quad 1.6 \quad 38.0$
\&BPNODE TNODE $=3, \mathrm{TNPC}=0$, TINTC $=0$, \&END
$\& S E C T 1 \quad S T X=0.0, \mathrm{STY}=0.0, \mathrm{STZ}=0.0, \mathrm{SCALE}=1.0$,
$\mathrm{ALF}=0.0$, THETA $=0.0$,
INMODE=4, TNODS $=3$, TNPS=0, TINTS=0, \&END
$235.2 \quad 0.0 \quad 32.216$
$235.2 \quad 0.0 \quad 34.4$
$235.2 \quad 0.0 \quad 35.12$
$234.0 \quad 0.0 \quad 38.0$
\& BPNODE TNODE $=3$, TNPC $=0$, TINTC $=0$, \&END
\&PATCH1 $\mathrm{IREV}=0$, IDPAT=2, $\mathrm{MAKE}=0, \mathrm{KCOMP}=1, \mathrm{KASS}=1$,
\&END
T34 FUS BTWN HOR AND VERT TAIL 3V \#13
\&SECT1 STX=0.0, STY=0.0, $\mathrm{STZ}=0.0, \mathrm{SCALE}=1.0$,
$\mathrm{ALF}=0.0$, THETA=0.0,
$\operatorname{INMODE}=4$, TNODS $=0$, TNPS $=0$, TINTS $=0$,
\&END
$193.295 \quad 1.6 \quad 38.0$
$193.295 \quad 1.5 \quad 47.5$
\& BPNODE $\mathrm{TNODE}=3, \mathrm{TNPC}=0, \mathrm{TINTC}=0$,
\&END
\&SECT1 STX=0.0, STY=0.0, STZ=0.0, SCALE $=1.0$, ALF $=0.0$, THETA $=0.0$,
INMODE $=4$, TNODS $=0$, TNPS $=0$, TINTS $=0$, \&END
$\begin{array}{lll}194.71 & 1.6 & 38.0\end{array}$
$\begin{array}{lll}194.71 & 1.53 & 47.5\end{array}$
\&BPNODE TNODE $=3$, TNPC $=0$, TINTC $=0$,
\& END
\&SECT1 STX=0.0, STY=0.0, STZ=0.0, SCALE=1.0, ALF $=0.0$, THETA $=0.0$,
$\operatorname{INMODE}=4$, TNODS $=0, \mathrm{TNPS}=0, \mathrm{TINTS}=0$,
\&END
$\begin{array}{lll}197.28 & 1.6 & 38.0\end{array}$
$\begin{array}{lll}197.28 & 1.55 & 47.5\end{array}$
\& BPNODE TNODE $=3$, TNPC $=0$, TINTC $=0$, \&END
\&SECT1 STX $=0.0, \mathrm{STY}=0.0, \mathrm{STZ}=0.0, \mathrm{SCALE}=1.0$, ALF $=0.0$, THETA $=0.0$,
INMODE $=4$, TNODS $=0$, TNPS $=0$, TINTS $=0, \quad$ \&END
$202.43 \quad 1.6 \quad 38.0$
$202.43 \quad 1.49 \quad 47.5$
\&BPNODE TNODE $=3$, TNPC $=0$, TINTC $=0, \quad$ \& END
$\& S E C T 1 \quad \mathrm{STX}=0.0, \mathrm{STY}=0.0, \mathrm{STZ}=0.0, \mathrm{SCALE}=1.0$,
ALF $=0.0$, THETA $=0.0$,
INMODE $=4$, TNODS $=0$, TNPS $=0$, TINTS $=0, \quad \& E N D$
$207.58 \quad 1.6 \quad 38.0$
$\begin{array}{lll}207.58 & 1.36 & 47.5\end{array}$
\& BPNODE TNODE $=3$, TNPC $=0$, TINTC $=0$,
\&END
\&SECT1 STX=0.0, STY=0.0, STZ=0.0, SCALE=1.0,
ALF $=0.0$, THETA $=0.0$,
INMODE $=4$, TNODS $=0$, TNPS $=0$, TINTS $=0$,
\&END
$\begin{array}{lll}212.73 & 1.6 & 38.0\end{array}$
$\begin{array}{lll}212.73 & 1.18 & 47.5\end{array}$
\&BPNODE TNODE $=3$, TNPC $=0$, TINTC $=0$, \& \quad END
\&SECT1 STX $=0.0, \mathrm{STY}=0.0, \mathrm{STZ}=0.0, \mathrm{SCALE}=1.0$, ALF $=0.0$, THETA $=0.0$,
INMODE $=4$, TNODS $=0$, TNPS $=0$, TINTS $=0$, \&END
$\begin{array}{lll}217.88 & 1.6 & 38.0\end{array}$
$\begin{array}{lll}217.88 & 0.94 & 47.5\end{array}$
\&BPNODE TNODE $=3$, TNPC $=0$, TINTC $=0, \quad$ \& END
\&SECT1 STX $=0.0$, STY $=0.0, \mathrm{STZ}=0.0, \mathrm{SCALE}=1.0$, ALF $=0.0$, THETA $=0.0$,
INMODE $=4$, TNODS $=0$, TNPS $=0$, TINTS $=0, \quad \& E N D$
$\begin{array}{lll}223.03 & 1.6 & 38.0\end{array}$
$\begin{array}{lll}223.03 & 0.68 \quad 47.5\end{array}$
\&BPNODE TNODE $=3$, TNPC $=0$, TINTC $=0, \quad$ \&END
\&SECT1 STX=0.0, STY=0.0, STZ=0.0, SCALE $=1.0$,
ALF $=0.0$, THETA $=0.0$,
INMODE $=4$, TNODS $=0$, TNPS $=0$, TINTS $=0$, \&END
$\begin{array}{lll}228.18 & 1.6 & 38.0\end{array}$
$228.18 \quad 0.37 \quad 47.5$
\&BPNODE TNODE $=3$, TNPC $=0$, TINTC $=0$, \&END
\&SECT1 STX $=0.0, \mathrm{STY}=0.0, \mathrm{STZ}=0.0, \mathrm{SCALE}=1.0$, ALF $=0.0$, THETA=0.0,
INMODE $=4$, TNODS $=0$, TNPS $=0$, TINTS $=0$, \&END
$\begin{array}{lll}230.76 & 1.6 & 38.0\end{array}$
$\begin{array}{lll}230.76 & 0.21 & 47.5\end{array}$
\&BPNODE TNODE $=3$, TNPC $=0$, TINTC $=0$,
\&END
$\& S E C T 1 \quad \mathrm{STX}=0.0, \mathrm{STY}=0.0, \mathrm{STZ}=0.0, \mathrm{SCALE}=1.0$,
ALF=0.0, THETA=0.0,
INMODE $=4$, TNODS $=0$, TNPS $=0$, TINTS $=0$,
\&END
$233.33 \quad 1.6 \quad 38.0$
$233.33 \quad 0.0 \quad 47.5$
\&BPNODE TNODE $=3$, TNPC $=0$, TINTC $=0$,
\&END
$\& S E C T 1 \quad \mathrm{STX}=0.0, \mathrm{STY}=0.0, \mathrm{STZ}=0.0, \mathrm{SCALE}=1.0$,
$\mathrm{ALF}=0.0$, $\mathrm{THETA}=0.0$,
INMODE $=4$, TNODS $=3$, TNPS $=0$, TINTS $=0$,
\& END
$234.0 \quad 0.0 \quad 38.0$
$234.0 \quad 0.0 \quad 47.5$
\& BPNODE $\operatorname{TNODE}=3, \mathrm{TNPC}=0$, TINTC $=0$,
\&END
\&PATCH1 $\operatorname{IREV}=0, \operatorname{IDPAT}=2, \mathrm{MAKE}=0, \mathrm{KCOMP}=2, \mathrm{KASS}=3, \quad$ \&END F14 NOSE CONE \#14
$\& S E C T 1$ STX $=0.0000$, STY $=0.0000, \mathrm{STZ}=0.0000, \mathrm{SCALE}=1.0000$,
$\mathrm{ALF}=0.0$, THETA $=0.0$,
INMODE $=4$, TNODS $=0$, TNPS $=0$, TINTS $=0, \quad \& E N D$
$93.00000 \quad 0.00000 \quad 131.50000$
\&BPNODE TNODE $=3$, TNPC $=0$, TINTC $=0, \quad$ \&END $\&$ SECT1 $\mathrm{STX}=0.0000, \mathrm{STY}=0.0000, \mathrm{STZ}=0.0000, \mathrm{SCALE}=1.0000$,
$\mathrm{ALF}=0.0, \mathrm{THETA}=0.0$,
INMODE $=4$, TNODS $=0$, TNPS $=0$, TINTS $=0, \quad \& E N D$
$103.00000 \quad 0.00000 \quad 127.41701$
$103.00000 \quad 2.13000 \quad 127.99400$
$103.00000 \quad 3.87900 \quad 129.38200$
$103.00000 \quad 4.68200 \quad 131.45700$
$103.00000 \quad 4.63300 \quad 133.66901$
$103.00000 \quad 4.04400 \quad 135.14101$
$103.00000 \quad 2.96900 \quad 136.28101$
$103.00000 \quad 1.57700 \quad 136.91800$
$103.00000 \quad 0.00000 \quad 137.08299$
\&BPNODE TNODE $=3$, TNPC $=0$, TINTC $=0, \quad$ \&END
$\& S E C T 1$ STX $=0.0000$, STY $=0.0000, \mathrm{STZ}=0.0000, \mathrm{SCALE}=1.0000$,
$\mathrm{ALF}=0.0, \mathrm{THETA}=0.0$,
INMODE $=4$, TNODS $=0$, TNPS $=0$, TINTS $=0, \quad$ \&END $116.23801 \quad 0.00000 \quad 123.50900$
$116.23801 \quad 4.28500 \quad 124.68500$
$116.23801 \quad 7.77400 \quad 127.46800$
$116.23801 \quad 9.54400 \quad 131.54401$
$116.23801 \quad 9.51700 \quad 135.97501$
$116.23801 \quad 8.28300 \quad 138.98700$
$116.23801 \quad 6.04300 \quad 141.30400$
$116.23801 \quad 3.21400 \quad 142.77800$
$116.23801 \quad 0.00000 \quad 143.25700$
\&BPNODE TNODE $=3$, TNPC $=0$, TINTC $=0, \quad$ \&END
$\&$ SECT1 $\mathrm{STX}=0.0000, \mathrm{STY}=0.0000, \mathrm{STZ}=0.0000, \mathrm{SCALE}=1.0000$,
$\mathrm{ALF}=0.0, \mathrm{THETA}=0.0$,
$\operatorname{INMODE}=4, \mathrm{TNODS}=0, \mathrm{TNPS}=0$, TINTS $=0, \quad$ \& END
$133.02400 \quad 0.00000 \quad 120.12601$
$133.02400 \quad 6.51000 \quad 121.62900$
$133.02400 \quad 11.79000 \quad 125.72900$
$133.02400 \quad 14.50300 \quad 131.82800$
$133.02400 \quad 14.48400 \quad 138.50101$
$133.02400 \quad 12.63100 \quad 143.14600$
$133.02400 \quad 9.20500 \quad 146.74001$
$133.02400 \quad 4.91000 \quad 149.18500$
$133.02400 \quad 0.00000 \quad 150.00800$
\&BPNODE TNODE $=3$, TNPC $=0$, TINTC $=0, \quad$ \&END
$\&$ SECT1 STX $=0.0000$, STY $=0.0000, \mathrm{STZ}=0.0000, \mathrm{SCALE}=1.0000$, $\mathrm{ALF}=0.0, \mathrm{THETA}=0.0$,
$\mathrm{INMODE}=4, \mathrm{TNODS}=0, \mathrm{TNPS}=0$, TINTS $=0, \quad \& E N D$ $153.68600 \quad 0.00000 \quad 117.67900$
$153.68600 \quad 8.73900 \quad 119.05800$
$153.68600 \quad 15.82700 \quad 124.28101$
$153.68600 \quad 19.35200 \quad 132.37300$
$153.68600 \quad 19.28300 \quad 141.22099$
$153.68600 \quad 16.89700 \quad 147.56000$
$153.68600 \quad 12.34600 \quad 152.53600$
$153.68600 \quad 6.61300 \quad 156.03900$
$153.68600 \quad 0.00000 \quad 157.18800$
$\& B P N O D E$ TNODE $=3$, TNPC $=0$, TINTC $=0, \quad$ \&END
$\& S E C T 1$ STX $=0.0000, \mathrm{STY}=0.0000, \mathrm{STZ}=0.0000, \mathrm{SCALE}=1.0000$, $\mathrm{ALF}=0.0, \mathrm{THETA}=0.0$,

INMODE $=$	4, TNODS $=$		0, TNPS $=$	0, TINTS $=$	0,
178.57300	0.00000	117.08900			\&END
178.57300	10.37500	118.23801			
178.57300	19.10200	123.87100			
178.57300	23.54800	133.21300			
178.57300	23.30400	143.62100			
178.57300	20.45399	151.51801			
178.57300	15.28600	158.09599			
178.57300	8.22000	162.42900			
178.57300	0.00000	163.96500			

\&BPNODE TNODE $=3$, TNPC $=0$, TINTC $=0, \quad$ \&END
$\& S E C T 1$ STX $=0.0000$, STY $=0.0000, \mathrm{STZ}=0.0000, \mathrm{SCALE}=1.0000$, $\mathrm{ALF}=0.0, \mathrm{THETA}=0.0$,
INMODE $=4$, TNODS $=0$, TNPS $=0$, TINTS $=0, \quad \& E N D$ $208.05000 \quad 0.00000 \quad 118.00000$ $208.05000 \quad 11.66900 \quad 118.07700$ $208.05000 \quad 21.59200 \quad 123.72800$ $208.05000 \quad 26.31100 \quad 134.23700$ $208.05000 \quad 26.10600 \quad 145.88000$ $208.05000 \quad 23.01401 \quad 155.58600$ $208.05000 \quad 17.26601 \quad 163.95900$ $208.05000 \quad 9.82200 \quad 170.55701$ $208.05000 \quad 0.00000 \quad 172.95399$
$\& B P N O D E$ TNODE $=3$, TNPC $=0$, TINTC $=0$,
\&END
$\& S E C T 1$ STX $=0.0000$, STY $=0.0000, \mathrm{STZ}=0.0000, \mathrm{SCALE}=1.0000$, $\mathrm{ALF}=0.0, \mathrm{THETA}=0.0$,
INMODE $=4$, TNODS $=0$, TNPS $=0$, TINTS $=0, \quad \& E N D$ $242.50500 \quad 0.00000 \quad 118.53799$
$242.50500 \quad 12.89300 \quad 118.53799$
$242.50500 \quad 24.25000 \quad 124.16200$
$242.50500 \quad 29.02000 \quad 135.87700$
$242.50500 \quad 27.78101 \quad 148.71400$
$242.50500 \quad 23.29300 \quad 161.87100$
$242.50500 \quad 16.32100 \quad 173.58900$
$242.50500 \quad 12.03400 \quad 186.30701$
$242.50500 \quad 0.00000 \quad 192.42900$
$\& B P N O D E$ TNODE $=3$, TNPC $=0$, TINTC $=0, \quad$ \&END $\& S E C T 1$ STX $=0.0000$, STY $=0.0000, \mathrm{STZ}=0.0000, \mathrm{SCALE}=1.0000$, $\mathrm{ALF}=0.0, \mathrm{THETA}=0.0$, $\mathrm{INMODE}=4, \mathrm{TNODS}=0, \mathrm{TNPS}=0, \mathrm{TINTS}=0, \quad$ \&END $282.34595 \quad 0.00000 \quad 119.48500$
$\begin{array}{lll}282.34595 & 14.21600 & 119.48500\end{array}$
$\begin{array}{lll}282.34595 & 26.76700 & 124.61500\end{array}$
$282.34595 \quad 30.03900 \quad 138.00000$
$282.34595 \quad 28.83099 \quad 152.14200$
$282.34595 \quad 24.04201 \quad 166.91901$
$282.34595 \quad 16.33200 \quad 179.94299$
$282.34595 \quad 13.20600 \quad 194.35699$
$282.34595 \quad 0.00000 \quad 201.38699$
$\& B P N O D E$ TNODE $=3$, TNPC $=0$, TINTC $=0, \quad$ \&END $\& S E C T 1$ STX $=0.0000, \mathrm{STY}=0.0000, \mathrm{STZ}=0.0000, \mathrm{SCALE}=1.0000$,
$\mathrm{ALF}=0.0, \mathrm{THETA}=0.0$,
$\mathrm{INMODE}=4, \mathrm{TNODS}=3, \mathrm{TNPS}=0$, TINTS $=0, \quad \& E N D$
$328.00000 \quad 0.00000 \quad 121.00000$
$328.00000 \quad 14.86000 \quad 121.00000$
$328.00000 \quad 28.51601 \quad 125.18899$
$328.00000 \quad 30.58900 \quad 139.50000$
$328.00000 \quad 29.24100 \quad 154.28600$
$328.00000 \quad 25.38100 \quad 168.91600$
$328.00000 \quad 17.39000 \quad 181.56599$
$328.00000 \quad 12.95200 \quad 195.45200$
$328.00000 \quad 0.00000 \quad 202.50000$
$\& B P N O D E$ TNODE $=3$, TNPC $=0$, TINTC $=0, \quad$ \&END
\&PATCH1 $\operatorname{IREV}=0$, $\operatorname{IDPAT}=2, \mathrm{MAKE}=0, \mathrm{KCOMP}=2, \mathrm{KASS}=3$, \&END F14 INLET REGION FORWARD \#15
$\& S E C T 1 S T X=0.0000, \mathrm{STY}=0.0000, \mathrm{STZ}=0.0000, \mathrm{SCALE}=1.0000$,
$\mathrm{ALF}=0.0, \mathrm{THETA}=0.0$,
INMODE $=4$, TNODS $=0$, TNPS $=0$, TINTS $=0, \quad \& E N D$
$328.00000 \quad 0.00000 \quad 121.00000$
$328.00000 \quad 14.86000 \quad 121.00000$
$328.00000 \quad 28.51601 \quad 125.18899$
$328.00000 \quad 30.58900 \quad 139.50000$
$328.00000 \quad 29.24100 \quad 154.28600$
$328.00000 \quad 37.00000 \quad 154.70000$
$328.00000 \quad 66.20000 \quad 159.70000$
$328.00000 \quad 66.20000 \quad 159.70000$
$328.00000 \quad 66.20000 \quad 159.70000$

328.00000	51.61000	157.39999
328.00000	37.00000	154.70000
328.00000	29.24100	154.28600
328.00000	25.38100	168.91600
328.00000	17.39000	181.56599
328.00000	12.95200	195.45200
328.00000	0.00000	202.50000

\&BPNODE TNODE $=3$, TNPC $=0$, TINTC $=0, \quad$ \&END
$\& S E C T 1 S T X=0.0000, S T Y=0.0000, S T Z=0.0000, \mathrm{SCALE}=1.0000$, $\mathrm{ALF}=0.0, \mathrm{THETA}=0.0$,
INMODE $=4$, TNODS $=0$, TNPS $=0$, TINTS $=0, \quad$ \&END
$357.08691 \quad 0.00000 \quad 122.01800$
$357.08691 \quad 14.14000 \quad 122.01800$
$357.08691 \quad 27.86501 \quad 124.20000$
$357.08691 \quad 31.13400 \quad 137.08099$
$357.08691 \quad 30.26401 \quad 151.18201$
$357.08691 \quad 37.00000 \quad 152.22800$
$357.08691 \quad 67.61800 \quad 157.86400$
$357.08691 \quad 69.50101 \quad 158.76900$
$357.08691 \quad 70.54401 \quad 160.34000$
$357.08691 \quad 54.00101 \quad 161.64700$
$357.08691 \quad 35.98199 \quad 159.46300$
$357.08691 \quad 28.72700 \quad 158.54500$
$357.08691 \quad 24.83299 \quad 171.10201$
$357.08691 \quad 17.64301 \quad 182.00000$
$357.08691 \quad 11.81700 \quad 193.49899$
$357.08691 \quad 0.00000 \quad 198.79100$
$\& B P N O D E$ TNODE $=3$, TNPC $=0$, TINTC $=0, \quad \& E N D$
$\& S E C T 1$ STX $=0.0000, S T Y=0.0000, \mathrm{STZ}=0.0000, \mathrm{SCALE}=1.0000$, $\mathrm{ALF}=0.0, \mathrm{THETA}=0.0$,
$\mathrm{INMODE}=4, \mathrm{TNODS}=0, \mathrm{TNPS}=0$, TINTS $=0, \quad \& E N D$
$386.17505 \quad 0.00000 \quad 123.24699$
$386.17505 \quad 12.78800 \quad 123.24699$
$386.17505 \quad 25.44200 \quad 123.75900$
$386.17505 \quad 30.56300 \quad 133.70799$
$\begin{array}{lll}386.17505 & 30.07500 & 146.43800\end{array}$
$386.17505 \quad 37.04900 \quad 147.28700$
$386.17505 \quad 68.82201 \quad 154.23399$
$386.17505 \quad 75.02901 \quad 156.59399$
$386.17505 \quad 80.02100 \quad 160.00200$
$\begin{array}{llll}386.17505 & 58.87100 & 165.02200\end{array}$
$386.17505 \quad 34.87601 \quad 162.34599$
$386.17505 \quad 27.45100 \quad 161.24699$
$386.17505 \quad 24.01199 \quad 171.91400$
$386.17505 \quad 17.36400 \quad 180.76601$
$386.17505 \quad 10.32100 \quad 189.32600$
$386.17505 \quad 0.00000 \quad 193.44000$
\& BPNODE TNODE $=3$, TNPC $=0$, TINTC $=0, \quad$ \&END $\& S E C T 1$ STX $=0.0000, S T Y=0.0000, \mathrm{STZ}=0.0000, \mathrm{SCALE}=1.0000$,
$\mathrm{ALF}=0.0, \mathrm{THETA}=0.0$,
$\mathrm{INMODE}=4, \mathrm{TNODS}=0, \mathrm{TNPS}=0$, TINTS $=0, \quad \& E N D$
$415.26294 \quad 0.00000 \quad 124.44099$
$415.26294 \quad 11.16300 \quad 124.44099$
$415.26294 \quad 22.29300 \quad 124.55701$

415.26294	29.54201	130.31599
415.26294	29.44800	141.43401
415.26294	37.09000	142.61800
415.26294	69.68401	150.79601
415.26294	81.52000	154.37601
415.26294	91.67900	159.97301
415.26294	65.19400	167.75000
415.26294	34.42599	163.95200
415.26294	26.56400	162.25700
415.26294	22.86800	171.35600
415.26294	16.87900	178.78200
415.26294	9.18000	184.71300
415.26294	0.00000	187.72400

$\& B P N O D E$ TNODE $=3$, TNPC $=0$, TINTC $=0, \quad$ \&END $\&$ SECT1 $\mathrm{STX}=0.0000$, STY $=0.0000, \mathrm{STZ}=0.0000, \mathrm{SCALE}=1.0000$,
$\mathrm{ALF}=0.0, \mathrm{THETA}=0.0$,
$\mathrm{INMODE}=4, \mathrm{TNODS}=3, \mathrm{TNPS}=0, \mathrm{TINTS}=0, \quad \& E N D$
$444.35107 \quad 0.00000 \quad 125.88400$
$444.35107 \quad 8.36100 \quad 125.88400$
$444.35107 \quad 16.71700 \quad 125.90199$
$444.35107 \quad 24.23399 \quad 127.19800$
$444.35107 \quad 27.81599 \quad 132.70300$
$444.35107 \quad 37.41299 \quad 134.37399$
$444.35107 \quad 70.11400 \quad 147.76100$
$444.35107 \quad 87.96400 \quad 152.57401$
$444.35107 \quad 103.00700 \quad 160.05800$
$444.35107 \quad 71.23000 \quad 170.03200$
$444.35107 \quad 34.35699 \quad 165.24200$
$444.35107 \quad 24.38800 \quad 162.92799$
$444.35107 \quad 20.74600 \quad 170.36200$
$444.35107 \quad 15.17400 \quad 176.36000$
$444.35107 \quad 7.97000 \quad 180.43201$
$444.35107 \quad 0.00000 \quad 182.50600$
$\& B P N O D E T N O D E=3$, TNPC $=0$, TINTC $=0, \quad \& E N D$
\&PATCH1 $\mathrm{IREV}=0, \operatorname{IDPAT}=2, \mathrm{MAKE}=0, \mathrm{KCOMP}=2, \mathrm{KASS}=3, \quad \& E N D$ F14 INLET SIDE OUT \#16
$\& S E C T 1 S T X=0.0000, S T Y=0.0000, S T Z=0.0000, S C A L E=1.0000$, $\mathrm{ALF}=0.0, \mathrm{THETA}=0.0$,
INMODE $=4$, TNODS $=0$, TNPS $=0$, TINTS $=0, \quad \& E N D$ $328.00000 \quad 66.20000 \quad 159.70000$
\&BPNODE TNODE $=3$, TNPC $=0$, TINTC $=0, \quad$ \&END
$\& S E C T 1 ~ S T X=0.0000, S T Y=0.0000, S T Z=0.0000, \mathrm{SCALE}=1.0000$,
$\mathrm{ALF}=0.0, \mathrm{THETA}=0.0$,
INMODE $=4$, TNODS $=0$, TNPS $=0$, TINTS $=0, \quad$ \&END
$\begin{array}{lll}357.08691 & 66.61800 & 157.86400\end{array}$
$357.08691 \quad 66.82899 \quad 153.14799$
$357.08691 \quad 67.16499 \quad 148.43700$
$357.08691 \quad 68.16499 \quad 148.43700$

357.08691	67.82899	153.14799
357.08691	67.61800	157.86400

\&BPNODE TNODE $=3$, TNPC $=0$, TINTC $=0, \quad$ \&END $\& S E C T 1$ STX $=0.0000, S T Y=0.0000, S T Z=0.0000$, SCALE $=1.0000$, ALF $=0.0$, THETA $=0.0$,
INMODE $=4$, TNODS $=0$, TNPS $=0$, TINTS $=0, \quad \& E N D$
$386.17505 \quad 67.82201 \quad 154.23399$
$386.17505 \quad 68.60899 \quad 145.74001$
$386.17505 \quad 69.13699 \quad 137.22099$
$386.17505 \quad 70.13699 \quad 137.22099$
$386.17505 \quad 69.60899 \quad 145.74001$
$386.17505 \quad 68.82201 \quad 154.23399$
\&BPNODE TNODE $=3$, TNPC $=0$, TINTC $=0, \quad$ \&END $\& S E C T 1 S T X=0.0000, S T Y=0.0000, S T Z=0.0000, S C A L E=1.0000$,
$\mathrm{ALF}=0.0$, THETA $=0.0$,
INMODE $=4$, TNODS $=0$, TNPS $=0$, TINTS $=0, \quad \& E N D$
$415.26294 \quad 68.68401 \quad 150.79601$
$\begin{array}{lll}415.26294 & 70.55299 & 138.46600\end{array}$
$\begin{array}{lll}415.26294 & 71.10500 & 126.01199\end{array}$
$\begin{array}{llll}415.26294 & 72.10500 & 126.01199\end{array}$
$\begin{array}{lll}415.26294 & 71.55299 & 138.46600\end{array}$
$415.26294 \quad 69.68401 \quad 150.79601$
\&BPNODE TNODE $=3$, TNPC $=0$, TINTC $=0, \quad$ \& END
$\& S E C T 1 S T X=0.0000, S T Y=0.0000, S T Z=0.0000, S C A L E=1.0000$,
ALF $=0.0$, THETA $=0.0$,
INMODE $=4$, TNODS $=3$. TNPS $=0$,TINTS $=0, \quad \& E N D$
$\begin{array}{lll}444.35107 & 69.11400 & 147.76100\end{array}$
$\begin{array}{lll}444.35107 & 71.67500 & 131.95000\end{array}$
$444.35107 \quad 70.13499 \quad 117.03900$
$444.35107 \quad 71.13499 \quad 117.03900$
$\begin{array}{llll}444.35107 & 72.67500 & 131.95000\end{array}$
$444.35107 \quad 70.11400 \quad 147.76100$
\&BPNODE TNODE $=3$, TNPC $=0$, TINTC $=0, \quad$ \&END
\&PATCH1 IREV $=0$, IDPAT $=2, \mathrm{MAKE}=0, \mathrm{KCOMP}=2, \mathrm{KASS}=3$, \&END F14 INLET FACE \#17
$\&$ SECT1 $\mathrm{STX}=0.0000, \mathrm{STY}=0.0000, \mathrm{STZ}=0.0000, \mathrm{SCALE}=1.0000$,
ALF $=0.0$, THETA $=0.0$,
INMODE $=4$, TNODS $=0$, TNPS $=0$, TINTS $=0, \quad$ \&END
$444.35107 \quad 45.38000 \quad 112.40401$
$\begin{array}{llll}444.35107 & 39.77499 & 122.21201\end{array}$
$444.35107 \quad 37.41299 \quad 134.37399$
\&BPNODE TNODE $=3$, TNPC $=0$, TINTC $=0, \quad$ \& END
$\& S E C T 1 S T X=0.0000, S T Y=0.0000, S T Z=0.0000, S C A L E=1.0000$,
$\mathrm{ALF}=0.0, \mathrm{THETA}=0.0$,
INMODE $=4$, TNODS $=0$, TNPS $=0$, TINTS $=0, \quad \& E N D$
$\begin{array}{lll}444.35107 & 58.25800 & 114.72200\end{array}$
$\begin{array}{llll}444.35107 & 56.22500 & 127.08101\end{array}$
$444.35107 \quad 53.76349 \quad 141.06750$
\&BPNODE TNODE $=3$, TNPC $=0$, TINTC $=0, \quad$ \&END
$\& S E C T 1 S T X=0.0000, S T Y=0.0000, S T Z=0.0000, S C A L E=1.0000$,
ALF $=0.0$, THETA $=0.0$,
INMODE $=4$, TNODS $=3$, TNPS $=0$, TINTS $=0, \quad \& E N D$
$444.35107 \quad 71.13499 \quad 117.03900$
\&PATCH1 $\mathrm{IREV}=0$, IDPAT $=2, \mathrm{MAKE}=0, \mathrm{KCOMP}=2, \mathrm{KASS}=4$, \&END F14 INLET REGION AFT \#18
$\& S E C T 1$ STX $=0.0000, S T Y=0.0000, S T Z=0.0000, S C A L E=1.0000$, $\mathrm{ALF}=0.0$, THETA $=0.0$,
INMODE $=4$, TNODS $=0$, TNPS $=0$, TINTS $=0, \quad \& E N D$ $444.35107 \quad 0.00000 \quad 125.88400$
$444.35107 \quad 8.36100 \quad 125.88400$
$444.35107 \quad 16.71700 \quad 125.90199$
$\begin{array}{llll}444.35107 & 24.23399 & 127.19800\end{array}$
$\begin{array}{llll}444.35107 & 27.81599 & 132.70300\end{array}$
$\begin{array}{llll}444.35107 & 37.41299 & 134.37399\end{array}$
$444.35107 \quad 39.77499 \quad 122.21201$
$\begin{array}{llll}444.35107 & 45.38000 & 112.40401\end{array}$
$\begin{array}{llll}444.35107 & 58.25800 & 114.72200\end{array}$
$444.35107 \quad 71.13499 \quad 117.03900$
$\begin{array}{llll}444.35107 & 72.67500 & 131.95000\end{array}$
$\begin{array}{llll}444.35107 & 70.11400 & 147.76100\end{array}$
$\begin{array}{llll}444.35107 & 87.96400 & 152.57401\end{array}$
$444.35107 \quad 103.00700 \quad 160.05800$
$\begin{array}{lll}444.35107 & 71.23000 & 170.03200\end{array}$
$\begin{array}{lll}444.35107 & 34.35699 & 165.24200\end{array}$
$\begin{array}{llll}444.35107 & 24.38800 & 162.92799\end{array}$
$\begin{array}{llll}444.35107 & 20.74600 & 170.36200\end{array}$
$444.35107 \quad 15.17400 \quad 176.36000$
$\begin{array}{llll}444.35107 & 7.97000 & 180.43201\end{array}$
$444.35107 \quad 0.00000 \quad 182.50600$
\&BPNODE TNODE $=3$, TNPC $=0$, TINTC $=0, \quad$ \&END $\& S E C T 1 ~ S T X=0.0000, S T Y=0.0000, S T Z=0.0000, S C A L E=1.0000$,
$\mathrm{ALF}=0.0, \mathrm{THETA}=0.0$,
INMODE $=4$, TNODS $=0$, TNPS $=0$, TINTS $=0, \quad \& E N D$
$473.43799 \quad 0.00000 \quad 127.17400$
$473.43799 \quad 6.60500 \quad 127.17400$
$473.43799 \quad 13.21100 \quad 127.17400$
$\begin{array}{llll}473.43799 & 19.81500 & 127.17400\end{array}$
$473.43799 \quad 26.34599 \quad 127.86700$
$\begin{array}{llll}473.43799 & 38.01900 & 128.03999\end{array}$
$473.43799 \quad 40.06000 \quad 116.52699$
$473.43799 \quad 47.74100 \quad 109.59900$
$473.43799 \quad 58.27699 \quad 111.42300$
$473.43799 \quad 68.81300 \quad 113.24600$
$473.43799 \quad 73.53500 \quad 127.91299$
$473.43799 \quad 70.76700 \quad 144.75900$
$473.43799 \quad 94.41499 \quad 151.69299$
$473.43799 \quad 114.50301 \quad 159.95900$
$473.43799 \quad 77.30400 \quad 171.36800$
$473.43799 \quad 34.08701 \quad 166.06700$
$473.43799 \quad 22.09900 \quad 163.22701$
$473.43799 \quad 18.43300 \quad 169.16000$
$473.43799 \quad 13.36900 \quad 173.84801$
$473.43799 \quad 6.88200 \quad 176.34300$
$473.43799 \quad 0.00000 \quad 177.56500$
$\&$ BPNODE TNODE $=3$, TNPC $=0$, TINTC $=0, \quad$ \&END
$\& S E C T 1$ STX $=0.0000$, STY $=0.0000, \mathrm{STZ}=0.0000, \mathrm{SCALE}=1.0000$,
$\mathrm{ALF}=0.0, \mathrm{THETA}=0.0$,
$\operatorname{INMODE}=4, \mathrm{TNODS}=3, \mathrm{TNPS}=0$, TINTS $=0, \quad \& E N D$
$502.52588 \quad 0.00000 \quad 128.58400$
$502.52588 \quad 6.71300 \quad 128.58400$
$502.52588 \quad 13.42700 \quad 128.58400$
$\begin{array}{llll}502.52588 & 20.14000 & 128.58400\end{array}$
$\begin{array}{llll}502.52588 & 26.85300 & 128.58400\end{array}$
$\begin{array}{lll}502.52588 & 35.79401 & 128.58400\end{array}$
$\begin{array}{lll}502.52588 & 38.81200 & 114.92200\end{array}$
$502.52588 \quad 49.58400 \quad 108.03599$
$502.52588 \quad 58.37900 \quad 109.60500$
$\begin{array}{lll}502.52588 & 67.17300 & 111.17300\end{array}$
$502.52588 \quad 73.88800 \quad 125.70500$
$502.52588 \quad 71.30099 \quad 142.89500$
$502.52588 \quad 100.27901 \quad 151.67700$
$\begin{array}{lll}502.52588 & 124.46500 & 161.01900\end{array}$
$502.52588 \quad 82.08000 \quad 171.69000$
$502.52588 \quad 34.00000 \quad 166.54100$
$502.52588 \quad 18.95100 \quad 163.46100$
$502.52588 \quad 15.44200 \quad 167.86800$
$502.52588 \quad 10.95000 \quad 171.23801$
$502.52588 \quad 5.61800 \quad 173.00200$
$502.52588 \quad 0.00000 \quad 173.55099$
$\& B P N O D E$ TNODE $=3$, TNPC $=0$, TINTC $=0, \quad \& E N D$
\&PATCH1 IREV $=0, \operatorname{IDPAT}=2, \mathrm{MAKE}=0, \mathrm{KCOMP}=2, \mathrm{KASS}=3, \quad \& E N D$ F14 UPPER WING ROOT REGION \#19
$\& S E C T 1 S T X=0.0000, S T Y=0.0000, S T Z=0.0000, \mathrm{SCALE}=1.0000$,
$\mathrm{ALF}=0.0, \mathrm{THETA}=0.0$,
INMODE $=4$, TNODS $=0$, TNPS $=0$, TINTS $=0, \quad$ \& END
$\begin{array}{lll}502.52588 & 124.46500 & 161.01900\end{array}$
$502.52588 \quad 82.08000 \quad 171.69000$
$502.52588 \quad 34.00000 \quad 166.54100$
$\begin{array}{llll}502.52588 & 18.95100 & 163.46100\end{array}$
$502.52588 \quad 15.44200 \quad 167.86800$
$502.52588 \quad 10.95000 \quad 171.23801$
$502.52588 \quad 5.61800 \quad 173.00200$
$502.52588 \quad 0.00000 \quad 173.55099$
\&BPNODE TNODE $=3$, TNPC $=0$, TINTC $=0, \quad$ \&END
$\& S E C T 1$ STX $=0.0000$, STY $=0.0000, \mathrm{STZ}=0.0000, \mathrm{SCALE}=1.0000$,
$\mathrm{ALF}=0.0, \mathrm{THETA}=0.0$,
INMODE $=4$, TNODS $=0$, TNPS $=0$, TINTS $=0, \quad$ \&END
$\begin{array}{lll}506.24194 & 125.32700 & 163.75900\end{array}$
$506.24194 \quad 81.28200 \quad 171.63800$
$\begin{array}{lll}506.24194 & 34.00000 & 166.56799\end{array}$
$506.24194 \quad 18.58299 \quad 163.50200$
$\begin{array}{lll}506.24194 & 15.08500 & 167.72501\end{array}$
$506.24194 \quad 10.66200 \quad 170.94000$
$506.24194 \quad 5.46700 \quad 172.64600$
$506.24194 \quad 0.00000 \quad 173.18201$
$\& B P N O D E$ TNODE $=3$, TNPC $=0$, TINTC $=0$,
\& END
$\& S E C T 1 \quad S T X=0.0000, S T Y=0.0000, S T Z=0.0000, \mathrm{SCALE}=1.0000$, $\mathrm{ALF}=0.0, \mathrm{THETA}=0.0$,
INMODE $=4$, TNODS $=0$, TNPS $=0$, TINTS $=0, \quad \& E N D$
$\begin{array}{lll}511.12305 & 126.10500 & 165.30200\end{array}$
$511.12305 \quad 80.66299 \quad 171.57500$
$511.12305 \quad 34.00000 \quad 166.60400$
$511.12305 \quad 18.09801 \quad 163.55600$
$511.12305 \quad 14.61600 \quad 167.53500$
$511.12305 \quad 10.28500 \quad 170.54800$
$511.12305 \quad 5.27000 \quad 172.17799$
$511.12305 \quad 0.00000 \quad 172.69800$
$\& B P N O D E$ TNODE $=3$, TNPC $=0$, TINTC $=0, \quad$ \&END $\& S E C T 1 ~ S T X=0.0000, S T Y=0.0000, S T Z=0.0000, \mathrm{SCALE}=1.0000$, $\mathrm{ALF}=0.0$, THETA $=0.0$,
INMODE $=4$, TNODS $=0$, TNPS $=0$, TINTS $=0, \quad$ \&END $517.27002 \quad 125.32400 \quad 166.69701$
$517.27002 \quad 79.91299 \quad 171.49200$
$\begin{array}{lll}517.27002 & 34.00000 & 166.64900\end{array}$
$517.27002 \quad 17.48801 \quad 163.62300$
$517.27002 \quad 14.02900 \quad 167.29401$
$517.27002 \quad 9.81600 \quad 170.05200$
$517.27002 \quad 5.02500 \quad 171.58800$
$517.27002 \quad 0.00000 \quad 172.08800$
$\& B P N O D E$ TNODE $=3$, TNPC $=0$, TINTC $=0, \quad$ \&END $\& S E C T 1$ STX $=0.0000, S T Y=0.0000, S T Z=0.0000, \mathrm{SCALE}=1.0000$, $\mathrm{ALF}=0.0, \mathrm{THETA}=0.0$,
INMODE $=4$, TNODS $=0$, TNPS $=0$, TINTS $=0, \quad$ \&END $\begin{array}{lll}524.79297 & 124.90900 & 167.69901\end{array}$
$524.79297 \quad 79.59300 \quad 171.37601$
$524.79297 \quad 34.00000 \quad 166.70000$
$524.79297 \quad 16.80499 \quad 163.73300$
$524.79297 \quad 13.33400 \quad 166.98900$
$524.79297 \quad 9.26200 \quad 169.44200$
$524.79297 \quad 4.73600 \quad 170.86900$
$524.79297 \quad 0.00000 \quad 171.35400$
\&BPNODE TNODE $=3$, TNPC $=0$, TINTC $=0, \quad$ \&END $\& S E C T 1$ STX $=0.0000$, STY $=0.0000, \mathrm{STZ}=0.0000, \mathrm{SCALE}=1.0000$, $\mathrm{ALF}=0.0, \mathrm{THETA}=0.0$,
INMODE $=4$, TNODS $=0$, TNPS $=0$, TINTS $=0, \quad$ \&END
$533.80591 \quad 119.49400 \quad 168.57700$
$533.80591 \quad 76.75900 \quad 170.82401$
$533.80591 \quad 34.00000 \quad 166.70000$
$533.80591 \quad 16.88800 \quad 164.22900$
$533.80591 \quad 12.89000 \quad 166.42300$
$533.80591 \quad 8.89900 \quad 168.67799$
$533.80591 \quad 4.54500 \quad 170.05299$
$533.80591 \quad 0.00000 \quad 170.65100$
$\& B P N O D E$ TNODE $=3$, TNPC $=0$, TINTC $=0, \quad$ \&END $\& S E C T 1 ~ S T X=0.0000$, STY $=0.0000, S T Z=0.0000$, SCALE $=1.0000$,
$\mathrm{ALF}=0.0$, THETA $=0.0$,
$\mathrm{INMODE}=4, \mathrm{TNODS}=0$, TNPS $=0$, TINTS $=0, \quad \& E N D$ $\begin{array}{llll}544.42896 & 112.61700 & 168.84599\end{array}$
$\begin{array}{lll}544.42896 & 73.29201 & 170.20599\end{array}$
$544.42896 \quad 34.00000 \quad 166.70000$

544.42896	16.98599	164.81300
544.42896	12.76300	165.47501
544.42896	8.76700	167.63000
544.42896	4.48000	169.06100
544.42896	0.00000	169.82201

\&BPNODE TNODE $=3$, TNPC $=0$, TINTC $=0, \quad$ \&END
$\& S E C T 1$ STX $=0.0000, S T Y=0.0000, S T Z=0.0000, S C A L E=1.0000$,
$\mathrm{ALF}=0.0, \mathrm{THETA}=0.0$,
INMODE $=4$, TNODS $=0$, TNPS $=0$, TINTS $=0, \quad \& E N D$ $\begin{array}{lll}556.78906 & 103.03000 & 168.47600\end{array}$
$\begin{array}{lll}556.78906 & 68.48599 & 169.35800\end{array}$
$556.78906 \quad 34.00000 \quad 166.50700$
$556.78906 \quad 17.53900 \quad 164.55299$
$556.78906 \quad 13.06700 \quad 164.62100$
$556.78906 \quad 8.87000 \quad 166.45799$
$556.78906 \quad 4.53400 \quad 167.91400$
$556.78906 \quad 0.00000 \quad 168.62100$
$\& B P N O D E$ TNODE $=3$, TNPC $=0$, TINTC $=0, \quad \& E N D$
$\&$ SECT 1 STX $=0.0000$, STY $=0.0000, \mathrm{STZ}=0.0000, \mathrm{SCALE}=1.0000$,
$\mathrm{ALF}=0.0, \mathrm{THETA}=0.0$,
$\operatorname{INMODE}=4$, TNODS $=0$, TNPS $=0$, TINTS $=\quad 0, \quad \& E N D$
$571.02002 \quad 98.51700 \quad 167.31900$
$\begin{array}{lll}571.02002 & 66.23199 & 168.46899\end{array}$
$571.02002 \quad 34.00000 \quad 166.25301$
$571.02002 \quad 18.25101 \quad 164.09599$
$571.02002 \quad 13.56100 \quad 163.64900$
$571.02002 \quad 9.12400 \quad 165.07001$
$571.02002 \quad 4.66700 \quad 166.58400$
$571.02002 \quad 0.00000 \quad 167.19800$
\&BPNODE TNODE $=3$, TNPC $=0$, TINTC $=0, \quad \& E N D$ $\& S E C T 1$ STX $=0.0000, S T Y=0.0000, S T Z=0.0000, S C A L E=1.0000$, $\mathrm{ALF}=0.0, \mathrm{THETA}=0.0$,
$\mathrm{INMODE}=4, \mathrm{TNODS}=0, \mathrm{TNPS}=0$, TINTS $=0, \quad \& E N D$
$587.26099 \quad 90.91499 \quad 165.54300$
$587.26099 \quad 62.46899 \quad 166.91200$
$587.26099 \quad 34.00000 \quad 165.23100$
$587.26099 \quad 18.91000 \quad 163.79601$
$587.26099 \quad 14.11600 \quad 163.38200$
$587.26099 \quad 9.40000 \quad 164.08900$
$587.26099 \quad 4.77400 \quad 165.39900$
$587.26099 \quad 0.00000 \quad 165.93100$
\&BPNODE TNODE $=3$, TNPC $=0$, TINTC $=0, \quad$ \&END
$\& S E C T 1$ STX $=0.0000$, STY $=0.0000, S T Z=0.0000, \mathrm{SCALE}=1.0000$,
$\mathrm{ALF}=0.0, \mathrm{THETA}=0.0$,
$\operatorname{INMODE}=4, \mathrm{TNODS}=0, \mathrm{TNPS}=0$, TINTS $=0, \quad \& E N D$
$605.66089 \quad 85.64600 \quad 163.09500$
$605.66089 \quad 60.12300 \quad 165.03700$
$605.66089 \quad 34.40401 \quad 163.97600$
$605.66089 \quad 19.48100 \quad 163.31700$
$605.66089 \quad 14.57800 \quad 163.09000$
$605.66089 \quad 9.70100 \quad 163.18401$
$605.66089 \quad 4.88800 \quad 164.12300$
$605.66089 \quad 0.00000 \quad 164.51500$
$\& B P N O D E$ TNODE $=3$, TNPC $=0$, TINTC $=0$,
\&END
$\& S E C T 1$ STX $=0.0000$, STY $=0.0000, S T Z=0.0000$, SCALE $=1.0000$, $\mathrm{ALF}=0.0$, THETA $=0.0$,
INMODE $=4$, TNODS $=3$, TNPS $=0$, TINTS $=0, \quad \& E N D$ $\begin{array}{llll}626.37207 & 85.03799 & 159.84200\end{array}$ $626.37207 \quad 61.09300 \quad 162.53000$ $626.37207 \quad 35.88400 \quad 162.79300$ $626.37207 \quad 19.77699 \quad 162.28101$ $626.37207 \quad 14.82800 \quad 162.26500$ $626.37207 \quad 9.88100 \quad 162.31300$ $626.37207 \quad 4.94700 \quad 162.65100$ $626.37207 \quad 0.00000 \quad 162.73900$
\&BPNODE TNODE $=3$, TNPC $=0$, TINTC $=0, \quad$ \&END
\&PATCH1 $\mathrm{IREV}=0$, IDPAT $=2, \mathrm{MAKE}=0, \mathrm{KCOMP}=2, \mathrm{KASS}=3, \quad \& E N D$ F14 LOWER WING ROOT REGION \#20
$\& S E C T 1$ STX $=0.0000, \mathrm{STY}=0.0000, \mathrm{STZ}=0.0000$, SCALE $=1.0000$,
ALF $=0.0$, THETA $=0.0$,
INMODE $=4$, TNODS $=0$, TNPS $=0$, TINTS $=0, \quad$ \&END
$\begin{array}{lll}502.52588 & 0.00000 & 128.58400\end{array}$
$\begin{array}{lll}502.52588 & 6.71300 & 128.58400\end{array}$
$502.52588 \quad 13.42700 \quad 128.58400$
$\begin{array}{lll}502.52588 & 20.14000 & 128.58400\end{array}$
$\begin{array}{lll}502.52588 & 26.85300 & 128.58400\end{array}$
$\begin{array}{lll}502.52588 & 35.79401 & 128.58400\end{array}$
$\begin{array}{lll}502.52588 & 38.81200 & 114.92200\end{array}$
$502.52588 \quad 49.58400 \quad 108.03599$
$\begin{array}{llll}502.52588 & 58.37900 & 109.60500\end{array}$
$\begin{array}{lll}502.52588 & 67.17300 & 111.17300\end{array}$
$\begin{array}{lll}502.52588 & 73.88800 & 125.70500\end{array}$
$\begin{array}{lll}502.52588 & 71.30099 & 142.89500\end{array}$
$502.52588 \quad 100.27901 \quad 151.67700$
$502.52588 \quad 124.46500 \quad 161.01900$
\&BPNODE TNODE $=3$, TNPC $=0$, TINTC $=0, \quad$ \&END $\& S E C T 1 S T X=0.0000, S T Y=0.0000, S T Z=0.0000, S C A L E=1.0000$,
$\mathrm{ALF}=0.0, \mathrm{THETA}=0.0$,
INMODE $=4$, TNODS $=0$, TNPS $=0$, TINTS $=0, \quad \& E N D$
$506.24194 \quad 0.00000 \quad 128.77600$
$\begin{array}{llll}506.24194 & 6.85700 & 128.77499\end{array}$
$\begin{array}{lll}506.24194 & 13.71400 & 128.77600\end{array}$
$506.24194 \quad 20.57001 \quad 128.77499$
$506.24194 \quad 27.42700 \quad 128.77600$
$\begin{array}{llll}506.24194 & 35.52000 & 128.77600\end{array}$
$\begin{array}{llll}506.24194 & 38.66901 & 114.88300\end{array}$
$\begin{array}{lll}506.24194 & 49.77600 & 107.85800\end{array}$
$506.24194 \quad 58.33099 \quad 109.37199$
$\begin{array}{lll}506.24194 & 66.88600 & 110.88600\end{array}$
$506.24194 \quad 73.89600 \quad 125.42999$
$506.24194 \quad 71.37000 \quad 142.69000$
$\begin{array}{lll}506.24194 & 99.88100 & 151.27299\end{array}$
$506.24194 \quad 124.81900 \quad 158.46100$
\&BPNODE TNODE $=3$, TNPC $=0$, TINTC $=0, \quad$ \& END
$\& S E C T 1 S T X=0.0000, S T Y=0.0000, S T Z=0.0000, S C A L E=1.0000$,
ALF $=0.0$, THETA $=0.0$,
INMODE $=4$, TNODS $=0$, TNPS $=0$, TINTS $=0, \quad$ \&END

511.12305	0.00000	129.02699
511.12305	7.04500	129.02699
511.12305	14.09000	129.02699
511.12305	21.13499	129.02699
511.12305	28.18100	129.02699
511.12305	35.16200	129.02699
511.12305	38.48100	114.82600
511.12305	50.02699	107.62500
511.12305	58.26801	109.06700
511.12305	66.50999	110.50999
511.12305	73.90700	125.06500
511.12305	71.46001	142.42101
511.12305	100.25700	151.17101
511.12305	125.66400	157.50500

\&BPNODE TNODE $=3$, TNPC $=0$, TINTC $=0, \quad$ \& END $\& S E C T 1 S T X=0.0000, S T Y=0.0000, S T Z=0.0000$, SCALE $=1.0000$, ALF $=0.0$, THETA $=0.0$,
INMODE $=4$, TNODS $=0$, TNPS $=0$, TINTS $=0, \quad \& E N D$
$\begin{array}{lll}517.27002 & 0.00000 & 129.34300\end{array}$
$\begin{array}{llll}517.27002 & 7.28200 & 129.34300\end{array}$
$\begin{array}{llll}517.27002 & 14.56500 & 129.34300\end{array}$
$517.27002 \quad 21.84700 \quad 129.34300$
$\begin{array}{llll}517.27002 & 29.13000 & 129.34300\end{array}$
$\begin{array}{llll}517.27002 & 34.70900 & 129.34300\end{array}$
$\begin{array}{llll}517.27002 & 38.24600 & 114.74300\end{array}$
$\begin{array}{llll}517.27002 & 50.34300 & 107.33099\end{array}$
$\begin{array}{llll}517.27002 & 58.18900 & 108.68300\end{array}$
$\begin{array}{llll}517.27002 & 66.03500 & 110.03500\end{array}$
$\begin{array}{llll}517.27002 & 73.92101 & 124.59801\end{array}$
$517.27002 \quad 71.57300 \quad 142.08200$
$\begin{array}{llll}517.27002 & 100.91600 & 151.13200\end{array}$
$\begin{array}{llll}517.27002 & 126.83701 & 156.89799\end{array}$
\&BPNODE TNODE $=3$, TNPC= 0, TINTC= $0, \quad$ \& END
$\& S E C T 1 S T X=0.0000, S T Y=0.0000, S T Z=0.0000, S C A L E=1.0000$,
$\mathrm{ALF}=0.0, \mathrm{THETA}=0.0$,
INMODE $=4$, TNODS $=0$, TNPS $=0$, TINTS $=0, \quad \& E N D$
$524.79297 \quad 0.00000 \quad 129.73000$
$524.79297 \quad 7.53800 \quad 129.73000$
$524.79297 \quad 15.07700 \quad 129.73000$
$524.79297 \quad 22.61501 \quad 129.73000$
$\begin{array}{llll}524.79297 & 30.15401 & 129.73000\end{array}$
$524.79297 \quad 34.15401 \quad 129.73000$
$\begin{array}{llll}524.79297 & 37.97600 & 114.60400\end{array}$
$\begin{array}{llll}524.79297 & 50.78200 & 106.96700\end{array}$
$\begin{array}{llll}524.79297 & 58.10699 & 108.20799\end{array}$
$524.79297 \quad 65.43201 \quad 109.44800$
$\begin{array}{lll}524.79297 & 73.92799 & 123.99100\end{array}$
$524.79297 \quad 71.73300 \quad 141.64799$
$524.79297 \quad 99.69501 \quad 150.14700$
$524.79297 \quad 127.78599 \quad 156.44701$
\&BPNODE TNODE $=3$, TNPC= 0 , TINTC= 0 , \&END $\& S E C T 1 S T X=0.0000, S T Y=0.0000, S T Z=0.0000$, SCALE $=1.0000$,

ALF $=0.0$, THETA $=0.0$,
INMODE $=4$, TNODS $=0$, TNPS $=0$, TINTS $=0, \quad \& E N D$

533.80591	0.00000	130.18500
533.80591	7.36300	130.18500
533.80591	14.72500	130.18500
533.80591	22.08800	130.18500
533.80591	29.45100	130.18500
533.80591	33.45100	130.18500
533.80591	37.89000	114.10400
533.80591	52.02200	106.47099
533.80591	58.21001	107.56700
533.80591	64.39800	108.66299
533.80591	73.77800	122.91701
533.80591	72.22900	140.86301
533.80591	97.58800	149.31599
533.80591	123.47000	156.09300

\&BPNODE TNODE $=3$, TNPC $=0$, TINTC $=0, \quad$ \&END
$\& S E C T 15 T X=0.0000$, STY $=0.0000, S T Z=0.0000, S C A L E=1.0000$,
$\mathrm{ALF}=0.0, \mathrm{THETA}=0.0$,
INMODE $=4$, TNODS $=0$, TNPS $=0$, TINTS $=0, \quad \& E N D$
$544.42896 \quad 0.00000 \quad 130.72099$
$544.42896 \quad 7.15600 \quad 130.72099$
$544.42896 \quad 14.31100 \quad 130.72099$
$544.42896 \quad 21.46700 \quad 130.72099$
$544.42896 \quad 28.62300 \quad 130.72099$
$\begin{array}{lll}544.42896 & 32.62199 & 130.72099\end{array}$
$\begin{array}{lll}544.42896 & 37.80200 & 113.51100\end{array}$
$\begin{array}{lll}544.42896 & 53.48399 & 105.88600\end{array}$
$\begin{array}{llll}544.42896 & 58.33200 & 106.81200\end{array}$
$\begin{array}{lll}544.42896 & 63.17999 & 107.73700\end{array}$
$544.42896 \quad 73.59801 \quad 121.63600$
$544.42896 \quad 72.81300 \quad 139.93700$
$544.42896 \quad 96.19501 \quad 148.75200$
$544.42896 \quad 119.92999 \quad 155.97301$
\&BPNODE TNODE $=3$, TNPC $=0$, TINTC $=0, \quad$ \&END
$\& S E C T 1$ STX $=0.0000$, STY $=0.0000, S T Z=0.0000$, SCALE $=1.0000$,
$\mathrm{ALF}=0.0, \mathrm{THETA}=0.0$,
$\mathrm{INMODE}=4, \mathrm{TNODS}=0, \mathrm{TNPS}=0$, TINTS $=0, \quad \& E N D$
$556.78906 \quad 0.00000 \quad 131.26199$
$556.78906 \quad 6.98000 \quad 131.26199$
$556.78906 \quad 13.96100 \quad 131.26199$
$556.78906 \quad 20.94099 \quad 131.26199$
$556.78906 \quad 27.92200 \quad 131.26199$
$556.78906 \quad 31.92200 \quad 131.26199$
$\begin{array}{lll}556.78906 & 37.06799 & 114.24300\end{array}$
$556.78906 \quad 51.88901 \quad 105.68401$
$\begin{array}{llll}556.78906 & 56.86600 & 106.33400\end{array}$
$556.78906 \quad 61.84399 \quad 106.98300$
$556.78906 \quad 73.58701 \quad 120.44900$
$\begin{array}{llll}556.78906 & 73.59399 & 139.18300\end{array}$
$556.78906 \quad 92.73500 \quad 147.60600$
$556.78906 \quad 111.56599 \quad 156.15401$
$\& B P N O D E$ TNODE $=3$, TNPC $=0$, TINTC $=0, \quad$ \&END
$\& S E C T 1$ STX $=0.0000$, STY $=0.0000, S T Z=0.0000, \mathrm{SCALE}=1.0000$,
$\mathrm{ALF}=0.0, \mathrm{THETA}=0.0$,
$\mathrm{INMODE}=4, \mathrm{TNODS}=0, \mathrm{TNPS}=0$, TINTS $=\quad 0, \quad \& E N D$

571.02002	0.00000	131.87199
571.02002	6.79000	131.87199
571.02002	13.58000	131.87199
571.02002	20.37000	131.87199
571.02002	27.16000	131.87199
571.02002	31.16000	131.87199
571.02002	36.14500	115.22900
571.02002	49.50000	105.53200
571.02002	54.91000	105.85100
571.02002	60.31900	106.17000
571.02002	73.61099	119.09300
571.02002	74.50800	138.37000
571.02002	89.76401	146.58200
571.02002	103.62601	156.68201

$\& B P N O D E$ TNODE $=3$, TNPC $=0$, TINTC $=0, \quad$ \&END
$\& S E C T 1$ STX $=0.0000, S T Y=0.0000, S T Z=0.0000$, SCALE $=1.0000$, $\mathrm{ALF}=0.0, \mathrm{THETA}=0.0$,
INMODE $=4$, TNODS $=0$, TNPS $=0$, TINTS $=0, \quad \& E N D$ $587.26099 \quad 0.00000 \quad 132.66299$
$587.26099 \quad 6.62200 \quad 132.66299$
$587.26099 \quad 13.24500 \quad 132.66299$
$587.26099 \quad 19.86700 \quad 132.66299$
$587.26099 \quad 26.49001 \quad 132.66299$
$587.26099 \quad 30.59200 \quad 132.66299$
$587.26099 \quad 35.68700 \quad 115.52299$
$587.26099 \quad 49.50999 \quad 104.99001$
$587.26099 \quad 54.75500 \quad 105.11200$
$587.26099 \quad 60.00000 \quad 105.23500$
$587.26099 \quad 74.04100 \quad 117.84700$
$587.26099 \quad 75.72000 \quad 137.17999$
$587.26099 \quad 88.18300 \quad 144.52100$
$587.26099 \quad 95.70599 \quad 157.50301$
\&BPNODE TNODE $=3$, TNPC $=0$, TINTC $=0, \quad$ \&END
$\& S E C T 1$ STX $=0.0000$, STY $=0.0000, S T Z=0.0000$, SCALE $=1.0000$,
$\mathrm{ALF}=0.0, \mathrm{THETA}=0.0$,
$\operatorname{INMODE}=4, \mathrm{TNODS}=0, \mathrm{TNPS}=0$, TINTS $=0, \quad \& E N D$
$605.66089 \quad 0.00000 \quad 133.58299$
$605.66089 \quad 6.48500 \quad 133.58299$
$605.66089 \quad 12.97000 \quad 133.58299$
$605.66089 \quad 19.45399 \quad 133.58299$
$605.66089 \quad 25.93900 \quad 133.58299$
$605.66089 \quad 30.09900 \quad 133.58299$
$605.66089 \quad 35.38600 \quad 115.67400$
$605.66089 \quad 50.00000 \quad 104.39900$
$605.66089 \quad 55.00000 \quad 104.39900$
$605.66089 \quad 60.00000 \quad 104.39900$
$605.66089 \quad 74.45799 \quad 116.80099$
$605.66089 \quad 76.94299 \quad 135.99800$
$605.66089 \quad 87.76500 \quad 144.20599$
$605.66089 \quad 88.13400 \quad 158.54201$
\& BPNODE TNODE $=3$, TNPC $=0$, TINTC $=0, \quad$ \&END
$\& S E C T 1$ STX $=0.0000, S T Y=0.0000, S T Z=0.0000, \mathrm{SCALE}=1.0000$, $\mathrm{ALF}=0.0, \mathrm{THETA}=0.0$,
$\operatorname{INMODE}=4, \mathrm{TNODS}=3, \mathrm{TNPS}=0$, TINTS $=0, \quad \& E N D$

626.37207	0.00000	134.61800
626.37207	6.42900	134.61800
626.37207	12.85900	134.61800
626.37207	19.28799	134.61800
626.37207	25.71700	134.61900
626.37207	29.72900	134.61900
626.37207	35.17200	116.06100
626.37207	50.00000	104.02901
626.37207	55.00000	104.02901
626.37207	60.00000	104.02901
626.37207	74.50000	116.35699
626.37207	77.83000	135.25800
626.37207	86.06300	145.53000
626.37207	85.03799	159.84200

\&BPNODE TNODE $=3$, TNPC $=0$, TINTC $=0, \quad$ \&END
\&PATCH1 IREV $=0, \operatorname{IDPAT}=2$, MAKE $=0, \mathrm{KCOMP}=2, \mathrm{KASS}=3$, \&END F14 FUSELAGE AFT OF WING TE \#21
$\& S E C T 1$ STX $=0.0000$, STY $=0.0000, S T Z=0.0000$, SCALE $=1.0000$,
$\mathrm{ALF}=\quad 0.0, \mathrm{THETA}=0.0$,
INMODE $=4$, TNODS $=0$, TNPS $=0$, TINTS $=0, \quad$ \&END
$626.37207 \quad 0.00000 \quad 134.61800$
$626.37207 \quad 6.42900 \quad 134.61800$
$626.37207 \quad 12.85900 \quad 134.61800$
$626.37207 \quad 19.28799 \quad 134.61800$
$626.37207 \quad 25.71700 \quad 134.61900$
$626.37207 \quad 29.72900 \quad 134.61900$
$626.37207 \quad 35.17200 \quad 116.06100$
$626.37207 \quad 50.00000 \quad 104.02901$
$626.37207 \quad 55.00000 \quad 104.02901$
$626.37207 \quad 60.00000 \quad 104.02901$
$626.37207 \quad 74.50000 \quad 116.35699$
$626.37207 \quad 77.83000 \quad 135.25800$
$626.37207 \quad 86.06300 \quad 145.53000$
$626.37207 \quad 85.03799 \quad 159.84200$
$\begin{array}{llll}626.37207 & 61.09300 & 162.53000\end{array}$
$\begin{array}{llll}626.37207 & 35.88400 & 162.79300\end{array}$
$\begin{array}{llll}626.37207 & 19.77699 & 162.28101\end{array}$
$626.37207 \quad 14.82800 \quad 162.26500$
$626.37207 \quad 9.88100 \quad 162.31300$
$626.37207 \quad 4.94700 \quad 162.65100$
$626.37207 \quad 0.00000 \quad 162.73900$
\&BPNODE TNODE $=3$, TNPC $=0$, TINTC $=0, \quad$ \& END
$\& S E C T 1$ STX $=0.0000$, STY $=0.0000, S T Z=0.0000$, SCALE $=1.0000$,
ALF $=0.0$, THETA $=0.0$,
INMODE $=4$, TNODS $=0$, TNPS $=0$, TINTS $=0, \quad \& E N D$
$654.75000 \quad 0.00000 \quad 136.39200$
$\begin{array}{llll}654.75000 & 6.42500 & 136.39200\end{array}$
$654.75000 \quad 12.85000 \quad 136.39200$
$\begin{array}{llll}654.75000 & 19.27499 & 136.39200\end{array}$
$\begin{array}{llll}654.75000 & 25.70000 & 136.39200\end{array}$
$\begin{array}{llll}654.75000 & 29.11800 & 136.39200\end{array}$
$\begin{array}{llll}654.75000 & 35.95200 & 115.55800\end{array}$
$654.75000 \quad 54.14500 \quad 104.38400$

654.75000	58.86800	105.27000
654.55000	63.59000	106.15601
654.75000	75.65900	117.25400
654.75000	79.38300	133.42599
654.55000	87.54800	148.95900
654.75000	77.73300	160.97400
654.75000	61.18800	162.54401
654.75000	44.56500	162.40100
654.75000	30.76700	159.88000
654.75000	23.07500	159.88000
654.75000	15.38400	159.88000
654.75000	7.69200	159.88000
654.75000	0.00000	159.88000

$\& B P N O D E$ TNODE $=3$, TNPC $=0$, TINTC $=0, \quad \& E N D$ $\& S E C T 1 S T X=0.0000, S T Y=0.0000, S T Z=0.0000, S C A L E=1.0000$, ALF $=0.0$, THETA $=0.0$,
INMODE $=4$, TNODS $=0$, TNPS $=0$, TINTS $=0, \quad \& E N D$
$681.50000 \quad 0.00000 \quad 137.90900$
$\begin{array}{llll}681.50000 & 6.42500 & 137.90900\end{array}$
$681.50000 \quad 12.85000 \quad 137.90900$
$681.50000 \quad 19.27499 \quad 137.90900$
$681.50000 \quad 25.70000 \quad 137.90900$
$681.50000 \quad 29.20000 \quad 137.90900$
$681.50000 \quad 35.71001 \quad 117.27800$
$681.50000 \quad 53.95200 \quad 106.51900$
$681.50000 \quad 58.47400 \quad 107.08000$
$681.50000 \quad 62.99500 \quad 107.64000$
$\begin{array}{llll}681.50000 & 75.26300 & 117.16200\end{array}$
$\begin{array}{llll}681.50000 & 80.33099 & 131.93800\end{array}$
$681.50000 \quad 90.13100 \quad 146.81900$
$\begin{array}{llll}681.50000 & 81.01500 & 160.26199\end{array}$
$681.50000 \quad 63.71100 \quad 163.72200$
$681.50000 \quad 46.12100 \quad 163.43100$
$681.50000 \quad 34.17400 \quad 157.39799$
$681.50000 \quad 25.63000 \quad 157.39799$
$681.50000 \quad 17.08701 \quad 157.39799$
$681.50000 \quad 8.54300 \quad 157.39799$
$681.50000 \quad 0.00000 \quad 157.39799$
\&BPNODE TNODE $=3$, TNPC $=0$, TINTC $=0, \quad$ \& END
$\& S E C T 1 S T X=0.0000, S T Y=0.0000, S T Z=0.0000, S C A L E=1.0000$,
ALF $=0.0$, THETA $=0.0$,
INMODE $=4$, TNODS $=0$, TNPS $=0$, TINTS $=0, \quad \& E N D$
$708.25000 \quad 0.00000 \quad 139.06200$
$\begin{array}{llll}708.25000 & 6.42500 & 139.06200\end{array}$
$\begin{array}{llll}708.25000 & 12.85000 & 139.06200\end{array}$
$\begin{array}{llll}708.25000 & 19.27499 & 139.06200\end{array}$
$708.25000 \quad 25.70000 \quad 139.06200$
$708.25000 \quad 29.26601 \quad 139.06200$
$708.25000 \quad 35.69501 \quad 118.71001$
$\begin{array}{llll}708.25000 & 54.06700 & 108.46100\end{array}$
$708.25000 \quad 58.26801 \quad 108.92799$
$\begin{array}{lll}708.25000 & 62.46800 & 109.39400\end{array}$
$\begin{array}{llll}708.25000 & 74.49001 & 117.63400\end{array}$
$708.25000 \quad 80.79900 \quad 130.96800$
$708.25000 \quad 90.33501 \quad 145.56000$
$\begin{array}{llll}708.25000 & 80.97400 & 158.83400\end{array}$
$708.25000 \quad 63.68401 \quad 164.15700$
$708.25000 \quad 45.76801 \quad 163.93201$
$\begin{array}{llll}708.25000 & 34.06700 & 154.70700\end{array}$
$708.25000 \quad 25.55000 \quad 154.70700$
$708.25000 \quad 17.03300 \quad 154.70700$
$708.25000 \quad 8.51700 \quad 154.70700$
$708.25000 \quad 0.00000 \quad 154.70700$
\&BPNODE TNODE $=3$, TNPC $=0$, TINTC $=0, \quad \& E N D$ $\& S E C T 1$ STX $=0.0000$, STY $=0.0000, \mathrm{STZ}=0.0000, \mathrm{SCALE}=1.0000$,
$\mathrm{ALF}=0.0, \mathrm{THETA}=0.0$,
$\mathrm{INMODE}=4$, TNODS $=0$, TNPS $=0$, TINTS $=0, \quad \& E N D$
$735.00000 \quad 0.00000 \quad 140.36000$
$735.00000 \quad 6.45400 \quad 140.36000$
$735.00000 \quad 12.90700 \quad 140.36000$
$735.00000 \quad 19.36099 \quad 140.36000$
$735.00000 \quad 25.81400 \quad 140.36000$
$\begin{array}{lll}735.00000 & 29.58299 & 140.36000\end{array}$
$\begin{array}{lll}735.00000 & 36.01500 & 120.47501\end{array}$
$\begin{array}{lll}735.00000 & 54.13699 & 110.34300\end{array}$
$735.00000 \quad 58.08000 \quad 110.83099$
$735.00000 \quad 62.02300 \quad 111.32001$
$735.00000 \quad 73.89600 \quad 118.48900$
$735.00000 \quad 80.95399 \quad 130.47701$
$735.00000 \quad 89.65700 \quad 145.00101$
$735.00000 \quad 79.34300 \quad 157.84599$
$735.00000 \quad 62.82700 \quad 164.46300$
$735.00000 \quad 45.31700 \quad 163.97099$
$735.00000 \quad 34.00000 \quad 152.56300$
$735.00000 \quad 25.50000 \quad 152.56300$
$735.00000 \quad 17.00000 \quad 152.56300$
$735.00000 \quad 8.50000 \quad 152.56300$
$735.00000 \quad 0.00000 \quad 152.56300$
\&BPNODE TNODE $=3$, TNPC $=0$, TINTC $=0, \quad$ \&END
$\&$ SECT 1 STX $=0.0000$, STY $=0.0000$, STZ $=0.0000$, SCALE $=1.0000$,
$\mathrm{ALF}=0.0, \mathrm{THETA}=0.0$,
INMODE $=4, \mathrm{TNODS}=0, \mathrm{TNPS}=0$, TINTS $=0, \quad \& E N D$
$761.75000 \quad 0.00000 \quad 142.78600$
$\begin{array}{lll}761.75000 & 6.75600 & 142.79800\end{array}$
$761.75000 \quad 13.51100 \quad 142.81000$
$761.75000 \quad 20.26801 \quad 142.81200$
$761.75000 \quad 27.02400 \quad 142.81100$
$761.75000 \quad 31.02400 \quad 142.83000$
$\begin{array}{lll}761.75000 & 37.15500 & 122.34599\end{array}$
$\begin{array}{lll}761.75000 & 56.11900 & 113.10899\end{array}$
$761.75000 \quad 59.46800 \quad 113.41299$
$761.75000 \quad 62.81599 \quad 113.71600$
$761.75000 \quad 73.71600 \quad 119.99499$
$761.75000 \quad 80.60100 \quad 130.53500$
$761.75000 \quad 86.92300 \quad 144.64999$
$761.75000 \quad 75.72800 \quad 157.15300$
$761.75000 \quad 60.27200 \quad 164.18500$
$761.75000 \quad 43.89200 \quad 161.66600$

761.75000	34.00000	150.97701
761.75000	25.49899	150.98100
761.75000	16.99699	150.98399
761.75000	8.50100	151.01100
761.75000	0.00000	151.01300

\& BPNODE TNODE $=3$, TNPC $=0$, TINTC $=0, \quad$ \&END $\& S E C T 1$ STX $=0.0000$, STY $=0.0000, \mathrm{STZ}=0.0000, \mathrm{SCALE}=1.0000$, $\mathrm{ALF}=0.0$, THETA $=0.0$,
INMODE $=4$, TNODS $=3$, TNPS $=0$, TINTS $=0, \quad \& E N D$ $788.50000 \quad 0.00000 \quad 142.32100$
$\begin{array}{lll}788.50000 & 8.00600 & 142.88200\end{array}$
$788.50000 \quad 15.95800 \quad 143.92400$
$788.50000 \quad 23.88600 \quad 145.17599$
$788.50000 \quad 31.81400 \quad 146.42799$
$788.50000 \quad 34.59599 \quad 149.06599$
$788.50000 \quad 37.10200 \quad 125.63800$
$788.50000 \quad 57.66400 \quad 114.92500$
$788.50000 \quad 60.67500 \quad 115.44900$
$788.50000 \quad 63.68700 \quad 115.97301$
$788.50000 \quad 74.24100 \quad 122.92000$
$788.50000 \quad 80.74300 \quad 133.89400$
$788.50000 \quad 80.03300 \quad 146.55701$
$788.50000 \quad 72.40300 \quad 156.48100$
$788.50000 \quad 58.70100 \quad 162.17999$
$788.50000 \quad 44.10600 \quad 158.66901$
$788.50000 \quad 34.59599 \quad 149.06599$
$788.50000 \quad 26.10899 \quad 150.95200$
$788.50000 \quad 17.36700 \quad 151.13800$
$\begin{array}{lll}788.50000 & 8.74800 & 152.44600\end{array}$
$788.50000 \quad 0.00000 \quad 152.16499$
$\& B P N O D E$ TNODE $=3$, TNPC $=0$, TINTC $=0, \quad$ \&END
\&PATCH1 IREV $=0, \operatorname{IDPAT}=2, \mathrm{MAKE}=0, \mathrm{KCOMP}=2, \mathrm{KASS}=3, \quad \& E N D$ F14 EXHAUST CONE \#22
$\& S E C T 1$ STX $=0.0000$, STY $=0.0000, S T Z=0.0000, \mathrm{SCALE}=1.0000$,
$\mathrm{ALF}=0.0, \mathrm{THETA}=0.0$,
INMODE $=4$, TNODS $=0$, TNPS $=0$, TINTS $=0, \quad \& E N D$
$\begin{array}{lll}788.50000 & 34.59599 & 149.06599\end{array}$
$\begin{array}{llll}788.50000 & 37.10200 & 125.63800\end{array}$
$788.50000 \quad 57.66400 \quad 114.92500$
$788.50000 \quad 60.67500 \quad 115.44900$
$788.50000 \quad 63.68700 \quad 115.97301$
$788.50000 \quad 74.24100 \quad 122.92000$
$788.50000 \quad 80.74300 \quad 133.89400$
$788.50000 \quad 80.03300 \quad 146.55701$
$788.50000 \quad 72.40300 \quad 156.48100$
$788.50000 \quad 58.70100 \quad 162.17999$
$\begin{array}{llll}788.50000 & 44.10600 & 158.66901\end{array}$
$788.50000 \quad 34.59599 \quad 149.06599$
\& BPNODE TNODE $=3$, TNPC $=0$, TINTC $=0, \quad$ \&END
$\& S E C T 1$ STX $=0.0000$, STY $=0.0000, S T Z=0.0000$, SCALE $=1.0000$,
$\mathrm{ALF}=0.0, \mathrm{THETA}=0.0$,
$\mathrm{INMODE}=4, \mathrm{TNODS}=3, \mathrm{TNPS}=0, \mathrm{TINTS}=0, \quad$ \&END $813.00000 \quad 45.48801 \quad 144.40100$

813.00000	45.73599	131.46500
813.00000	57.16100	125.38600
813.00000	58.82700	125.66600
813.00000	60.49300	125.94701
813.00000	66.12399	129.47099
813.00000	69.17999	135.35300
813.00000	68.91200	142.06400
813.00000	65.01801	147.42999
813.00000	57.82100	150.74899
813.00000	49.94901	149.25301
813.00000	45.48801	144.40100

$\& B P N O D E$ TNODE $=3$, TNPC $=0$, TINTC $=0, \quad$ \&END
$\& P A T C H 1 ~ I R E V=0, \quad \operatorname{IDPAT}=2, \mathrm{MAKE}=0, \mathrm{KCOMP}=2, \mathrm{KASS}=3, \quad \& E N D$ F14 FUSELAGE TIP \#23
$\& S E C T 1 S T X=0.0000$, STY $=0.0000, S T Z=0.0000, \mathrm{SCALE}=1.0000$,
$\mathrm{ALF}=0.0, \mathrm{THETA}=0.0$,

INMODE $=$	4, TNODS $=$		0, TNPS $=$	0, TINTS $=$	0,
788.50000	0.00000	142.32100			\&END
788.50000	8.00600	142.88200			
788.50000	15.95800	143.92400			
788.50000	23.88600	145.17599			
788.50000	31.81400	146.42799			
788.50000	34.59599	149.06599			
788.50000	26.10899	150.95200			
788.50000	17.36700	151.13800			
788.50000	8.74800	152.44600			
788.50000	0.00000	152.16499			

$\& B P N O D E T N O D E=3$, TNPC $=0$, TINTC $=0, \quad$ \&END $\& S E C T 1 S T X=0.0000, S T Y=0.0000, S T Z=0.0000, \mathrm{SCALE}=1.0000$,
$\mathrm{ALF}=0.0, \mathrm{THETA}=0.0$,
INMODE $=4, \mathrm{TNODS}=0, \mathrm{TNPS}=0, \mathrm{TINTS}=0, \quad$ \&END
$813.00000 \quad 0.00000 \quad 145.46100$
$813.00000 \quad 5.13400 \quad 145.23100$
$813.00000 \quad 10.26700 \quad 144.99899$
$813.00000 \quad 15.35800 \quad 144.29700$
$813.00000 \quad 22.44901 \quad 146.59500$
$813.00000 \quad 24.42900 \quad 149.31200$
$813.00000 \quad 21.57300 \quad 152.52100$
$813.00000 \quad 14.38900 \quad 152.59100$
$813.00000 \quad 7.20500 \quad 152.03600$
$813.00000 \quad 0.00000 \quad 151.85500$
$\& B P N O D E$ TNODE $=3$, TNPC $=0$, TINTC $=0, \quad \& E N D$
$\& S E C T 1$ STX $=0.0000$, STY $=0.0000, \mathrm{STZ}=0.0000, \mathrm{SCALE}=1.0000$, $\mathrm{ALF}=0.0, \mathrm{THETA}=0.0$,
$\mathrm{INMODE}=4, \mathrm{TNODS}=3, \mathrm{TNPS}=\quad 0, \mathrm{TINTS}=0, \quad \& E N D$ $834.00000 \quad 0.00000 \quad 147.53500$
$834.00000 \quad 5.20300 \quad 147.53500$
$834.00000 \quad 10.40600 \quad 147.53500$
$834.00000 \quad 15.60900 \quad 147.53500$
$834.00000 \quad 20.81200 \quad 147.53500$
$834.00000 \quad 20.81200 \quad 149.53500$
$834.00000 \quad 15.60900 \quad 149.53500$
$834.00000 \quad 10.40600 \quad 149.53500$

834.00000	5.20300	149.53500
834.00000	0.00000	149.53500

\&BPNODE TNODE $=3$, TNPC $=0$, TINTC $=0$,
\&END
\&PATCH1 $\operatorname{IREV}=0$, $\operatorname{IDPAT}=2, \mathrm{MAKE}=0, \mathrm{KCOMP}=2, \mathrm{KASS}=4$, \&END F14 FUSELAGE TIP COVER \#24
$\& S E C T 1$ STX $=0.0000, S T Y=0.0000, S T Z=0.0000, S C A L E=1.0000$, ALF $=0.0$, THETA $=0.0$,
INMODE $=4$, TNODS $=0$, TNPS $=0$, TINTS $=0, \quad \& E N D$ $834.00000 \quad 0.00000 \quad 148.53500$ $834.00000 \quad 0.00000 \quad 148.53500$
\&BPNODE TNODE $=3$, TNPC $=0$, TINTC $=0, \quad$ \&END $\& S E C T 1$ STX $=0.0000$, STY $=0.0000$, STZ $=0.0000$, SCALE $=1.0000$, $\mathrm{ALF}=\quad 0.0, \mathrm{THETA}=0.0$,
INMODE $=4$, TNODS $=3$, TNPS $=0$, TINTS $=0, \quad \& E N D$ $834.00000 \quad 0.00000 \quad 149.53500$ $834.00000 \quad 5.20300 \quad 149.53500$ $834.00000 \quad 10.40600 \quad 149.53500$ $834.00000 \quad 15.60900 \quad 149.53500$ $834.00000 \quad 20.81200 \quad 149.53500$ $834.00000 \quad 20.81200 \quad 147.53500$ $834.00000 \quad 15.60900 \quad 147.53500$ $834.00000 \quad 10.40600 \quad 147.53500$ $834.00000 \quad 5.20300 \quad 147.53500$ $834.00000 \quad 0.00000 \quad 147.53500$
\&BPNODE TNODE $=3$, TNPC= 0 , TINTC= $0, \quad$ \&END
\&PATCH1 IREV $=0, \operatorname{IDPAT}=2, \mathrm{MAKE}=0, \mathrm{KCOMP}=2, \mathrm{KASS}=4, \quad \& E N D$ F14 EXHAUST COVER \#25
$\& S E C T 1$ STX $=0.0000, \mathrm{STY}=0.0000, \mathrm{STZ}=0.0000, \mathrm{SCALE}=1.0000$, ALF $=0.0$, THETA $=0.0$,
INMODE $=4$, TNODS $=0$, TNPS $=0$, TINTS $=0, \quad$ \&END $813.00000 \quad 57.33299 \quad 138.00000$ $813.00000 \quad 57.33299 \quad 138.00000$
\&BPNODE TNODE $=3$, TNPC $=0$, TINTC $=0, \quad$ \& END $\& S E C T 1$ STX $=0.0000, S T Y=0.0000, S T Z=0.0000, S C A L E=1.0000$,

ALF $=0.0$, THETA $=0.0$,

INMODE $=$	4, TNODS $=$	3, TNPS $=$	0, TINTS $=$	0,	$\& E N D$
813.00000	45.48801	144.40100			
813.00000	49.94901	149.25301			
813.00000	57.82100	150.74899			
813.00000	65.01801	147.42999			
813.00000	68.91200	142.06400			
813.00000	69.17999	135.35300			
813.00000	66.12399	129.47099			
813.00000	60.49300	125.94701			
813.00000	58.82700	125.66600			
813.00000	57.16100	125.38600			
813.00000	45.73599	131.46500			
813.00000	45.48801	144.40100			

\& BPNODE TNODE $=3$, TNPC $=0$, TINTC $=0, \quad$ \&END
\&PATCH1 $\mathrm{IREV}=0, \quad \mathrm{IDPAT}=1, \mathrm{MAKE}=0, \quad \mathrm{KCOMP}=2, \mathrm{KASS}=3, \quad$ \&END F14 WING \#26
$\& S E C T 1$ STX $=0.0000$, STY $=0.0000, \mathrm{STZ}=0.0000, \mathrm{SCALE}=1.0000$,
$\mathrm{ALF}=0.0, \mathrm{THETA}=0.0$,
INMODE $=4$, TNODS $=0$, TNPS $=0$, TINTS $=0, \quad \& E N D$
$626.37207 \quad 85.03799 \quad 159.84200$
$605.66089 \quad 88.13400 \quad 158.54201$
$587.26099 \quad 95.70599 \quad 157.50301$
$571.02002 \quad 103.62601 \quad 156.68201$
$556.78906 \quad 111.56599 \quad 156.15401$
$544.42896 \quad 119.92999 \quad 155.97301$
$533.80591 \quad 123.47000 \quad 156.09300$
$524.79297 \quad 127.78599 \quad 156.44701$
$517.27002 \quad 126.83701 \quad 156.89799$
$511.12305 \quad 125.66400 \quad 157.50500$
$506.24194 \quad 124.81900 \quad 158.46100$
$502.52588 \quad 124.46500 \quad 161.01900$
$506.24194 \quad 125.32700 \quad 163.75900$
$\begin{array}{lll}511.12305 & 126.10500 & 165.30200\end{array}$
$\begin{array}{lll}517.27002 & 125.32400 & 166.69701\end{array}$
$\begin{array}{lll}524.79297 & 124.90900 & 167.69901\end{array}$
$533.80591 \quad 119.49400 \quad 168.57700$
$544.42896 \quad 112.61700 \quad 168.84599$
$\begin{array}{llll}556.78906 & 103.03000 & 168.47600\end{array}$
$571.02002 \quad 98.51700 \quad 167.31900$
$587.26099 \quad 90.91499 \quad 165.54300$
$\begin{array}{lll}605.66089 & 85.64600 & 163.09500\end{array}$
$626.37207 \quad 85.03799 \quad 159.84200$
\&BPNODE TNODE $=3$, TNPC $=0$, TINTC $=0, \quad$ \&END
$\& S E C T 1$ STX $=0.0000$, STY $=0.0000, \mathrm{STZ}=0.0000, \mathrm{SCALE}=1.0000$,
$\mathrm{ALF}=0.0$, THETA $=0.0$,
INMODE $=4$, TNODS $=0$, TNPS $=0$, TINTS $=0, \quad$ \&END
$622.3692 \quad 92.0181 \quad 142.7208$
$604.7296 \quad 95.1021 \quad 153.6552$
$587.26099 \quad 102.70599 \quad 157.50301$
$\begin{array}{lll}571.02002 & 110.62601 & 156.68201\end{array}$
$\begin{array}{lll}556.78906 & 118.56599 & 156.15401\end{array}$
$544.42896 \quad 126.92999 \quad 155.97301$

533.80591	130.47000	156.09300
524.79297	134.78599	156.44701
517.27002	133.83701	156.89799
511.12305	132.66400	157.50500
506.24194	131.81900	158.46100
502.52588	131.46500	161.01900
506.24194	132.32700	163.75900
511.12305	133.10500	165.30200
517.27002	132.32400	166.69701
524.79297	131.90900	167.69901
533.80591	126.49400	168.57700
544.42896	119.61700	168.84599
556.78906	110.03000	168.47600
571.02002	105.51700	167.31900
587.26099	97.91499	165.54300
607.2193	92.2753	157.2231
622.3692	92.0181	142.7208

\& BPNODE TNODE $=3$, TNPC $=0$, TINTC $=0, \quad$ \&END
$\& S E C T 1 S T X=0.0000$, STY $=0.0000, \mathrm{STZ}=0.0000, \mathrm{SCALE}=1.0000$, $\mathrm{ALF}=0.0, \mathrm{THETA}=0.0$,
INMODE $=4$, TNODS $=0$, TNPS $=0$, TINTS $=0, \quad \& E N D$
$631.606 \quad 169.4923 \quad 142.01$
$615.33 \quad 169.4796 \quad 151.994$
$\begin{array}{lll}598.78296 & 169.58299 & 156.26801\end{array}$
$583.83203 \quad 169.58299 \quad 155.82899$
$\begin{array}{llll}570.73193 & 169.58299 & 155.67200\end{array}$
$559.35498 \quad 169.58299 \quad 155.73100$
$549.57593 \quad 169.58299 \quad 155.92799$
$\begin{array}{llll}541.28003 & 169.58299 & 156.20799\end{array}$
$534.35498 \quad 169.58299 \quad 156.56599$
$528.69604 \quad 169.58299 \quad 157.05499$
$524.20313 \quad 169.58299 \quad 157.80901$
$520.78296 \quad 169.58299 \quad 159.97400$
$\begin{array}{lll}524.20313 & 169.58299 & 162.53000\end{array}$
$\begin{array}{llll}528.69604 & 169.58299 & 163.84399\end{array}$
$534.35498 \quad 169.58299 \quad 164.90700$
$541.28003 \quad 169.58299 \quad 165.73300$
$\begin{array}{lll}549.57593 & 169.58299 & 166.25101\end{array}$
$559.35498 \quad 169.58299 \quad 166.36600$
$570.73193 \quad 169.58299 \quad 165.95799$
$583.83203 \quad 169.58299 \quad 164.92900$
$598.78296 \quad 169.58299 \quad 163.23801$
$617.5477 \quad 169.1831 \quad 155.1908$
$631.606 \quad 169.4923 \quad 142.01$
\& BPNODE TNODE $=3$, TNPC $=0$, TINTC $=0, \quad$ \&END
$\&$ SECT1 $\mathrm{STX}=0.0000$, STY $=0.0000, \mathrm{STZ}=0.0000, \mathrm{SCALE}=1.0000$,
$\mathrm{ALF}=0.0, \mathrm{THETA}=0.0$,
$\mathrm{INMODE}=4, \mathrm{TNODS}=0, \mathrm{TNPS}=0, \mathrm{TINTS}=0, \quad \& E N D$
$634.9622 \quad 211.0303 \quad 142.0361$
$620.5685 \quad 211.0325 \quad 150.6627$
$606.11182 \quad 211.13400 \quad 154.95799$
$592.97974 \quad 211.13400 \quad 154.50200$
$581.47485 \quad 211.13400 \quad 154.33400$
$571.48169 \quad 211.13400 \quad 154.38200$

589.52686	294.23706	150.83600
584.26074	294.23706	150.94299
579.86475	294.23706	151.10201
576.27173	294.23706	151.33000
573.41968	294.23706	151.71500
571.24976	294.23706	153.00600
573.41968	294.23706	154.66901
576.27173	294.23706	155.53101
579.86475	294.23706	156.26500
584.26074	294.23706	156.91100
589.52686	294.23706	157.43900
595.73462	294.23706	157.78600
602.95679	294.23706	157.85500
611.27271	294.23706	157.55000
620.76270	294.23706	156.80901
632.4114	293.9556	149.9858
641.4686	294.1341	141.81

$\& B P N O D E$ TNODE $=3$, TNPC $=0$, TINTC $=0, \quad$ \&END $\& S E C T 1$ STX $=0.0000, S T Y=0.0000, \mathrm{STZ}=0.0000, \mathrm{SCALE}=1.0000$, $\mathrm{ALF}=0.0, \mathrm{THETA}=0.0$,
$\operatorname{INMODE}=4$, TNODS $=0$, TNPS $=0$, TINTS $=0, \quad \& E N D$ $644.7274 \quad 335.6856 \quad 141.7054$

| 635.9524 | 335.736 | 146.2158 |
| :--- | :--- | :--- | :--- |

$\begin{array}{lll}628.08862 & 335.78906 & 150.39900\end{array}$
$\begin{array}{llll}620.41870 & 335.78906 & 149.74001\end{array}$
$\begin{array}{lll}613.69873 & 335.78906 & 149.34000\end{array}$
$607.86182 \quad 335.78906 \quad 149.13600$
$602.84473 \quad 335.78906 \quad 149.06500$
$\begin{array}{llll}598.58862 & 335.78906 & 149.07700\end{array}$
$595.03564 \quad 335.78906 \quad 149.14500$
$\begin{array}{llll}592.13281 & 335.78906 & 149.27200\end{array}$
$\begin{array}{lll}589.82764 & 335.78906 & 149.52699\end{array}$
$588.07373 \quad 335.78906 \quad 150.54601$
$\begin{array}{llll}589.82764 & 335.78906 & 151.91701\end{array}$
$592.13281 \quad 335.78906 \quad 152.64101$
$595.03564 \quad 335.78906 \quad 153.26401$
$\begin{array}{lll}598.58862 & 335.78906 & 153.83000\end{array}$
$\begin{array}{llll}602.84473 & 335.78906 & 154.32899\end{array}$
$607.86182 \quad 335.78906 \quad 154.71899$
$613.69873 \quad 335.78906 \quad 154.92500$
$\begin{array}{llll}620.41870 & 335.78906 & 154.86700\end{array}$
$628.08862 \quad 335.78906 \quad 154.48000$
$637.2959 \quad 335.5563 \quad 148.1527$
$644.7274 \quad 335.6856 \quad 141.7054$
\&BPNODE TNODE $=3$, TNPC $=0$, TINTC $=0, \quad$ \&END $\& S E C T 1 S T X=0.0000, S T Y=0.0000, S T Z=0.0000, S C A L E=1.0000$,
$\mathrm{ALF}=0.0, \mathrm{THETA}=0.0$,
INMODE $=4, \mathrm{TNODS}=3, \mathrm{TNPS}=0$, TINTS $=0, \quad \& E N D$ $648.0172 \quad 372.5153 \quad 141.08$
$641.1824 \quad 372.5725 \quad 144.3174$
$635.71191 \quad 372.60010 \quad 149.03300$
$629.86084 \quad 372.60010 \quad 148.35500$
$\begin{array}{lll}624.73486 & 372.60010 & 147.90900\end{array}$
$620.28296 \quad 372.60010 \quad 147.64000$

```
    616.45703 372.60010 147.48500
    613.20996 372.60010 147.39600
    610.50098}372.60010 147.3400
    608.28589 372.60010 147.30499
    606.52783 372.60010 147.36200
    605.18994 372.60010 148.07100
    606.52783 372.60010 149.15700
    608.28589}3372.60010 149.7410
    610.50098}3372.60010 150.24899 
    613.20996 372.60010 150.72400
    616.45703 372.60010 151.17000
    620.28296 372.60010 151.56700
    624.73486
    629.86084 372.60010 152.02699
    635.71191 372.60010 151.98399
    642.1627 372.4414 145.7307
    648.0172 372.5153 141.08
&BPNODE TNODE= 3,TNPC= 0,TINTC= 0,
&END
&PATCH1 IREV=0, IDPAT=1, MAKE=26, KCOMP=2, KASS=4, &END
    F14 WING TIP #27
&PATCH2 ITYP=1, TNODS=3, TNPS=3, TINTS=3, NPTTIP=0,
&END
&PATCH1 IREV=0, IDPAT=1, MAKE=0, KCOMP=2, KASS=3, &END
    HORIZONTAL TAIL #28
&SECT1 STX= 684.6, STY= 92.0, STZ= 145.5, SCALE= 0.96000,
    ALF= -4.9, THETA= 0.0,
    INMODE= 4,TNODS= 0,TNPS = 0,TINTS = 0, &END
    148.600 0.0 0.0
    141.170 0.0 -0.549
    133.74 0.0 -1.080
    126.31 0.0 -1.609
    118.88 0.0 -2.135
    111.45 0.0 -2.637
    104.02 0.0 -3.101
    96.59 0.0 -3.512
    89.16 0.0 -3.866
    81.73 0.0 -4.15
    74.3 0.0 -4.346
    66.87 0.0 -4.446
    59.44 0.0 -4.452
    52.01 0.0 -4.376
    44.58 0.0 -4.223
    37.15 0.0 -3.992
    29.72 0.0 -3.676
    22.29 0.0 -3.26
    14.86 0.0 -2.71
    11.145 0.0 -2.364
    7.43 0.0 -1.951
    3.715 0.0 -1.457
    1.857 0.0 -1.066
    1.114 0.0 -0.836
    0.743 0.0 -0.689
    0.0 0.0 0.0
```


\&WAKE1 IDWAK=1, IFLXW=0,
\&END
T34 WING WAKE
\&WAKE2 $\mathrm{KWPACH}=9, \mathrm{KWSIDE}=4, \mathrm{KWLINE}=2, \mathrm{KWPAN} 1=0$, KWPAN2 $=0$, NODEW $=0$, INITIAL=1,
\&END
\&WAKE2 KWPACH $=6, \mathrm{KWSIDE}=4, \mathrm{KWLINE}=4, \mathrm{KWPAN} 1=0$, KWPAN2 $=0$, NODEW $=0$, INITIAL $=1$,
\&END
\&WAKE2 KWPACH=2, KWSIDE=2, KWLINE=0, KWPAN1=0, KWPAN2 $=0$, NODEW $=3$, INITIAL=1,
\&END
\&SECT1 STX $=1900.0$, STY $=0.0, \quad \mathrm{STZ}=0.0, \quad \mathrm{SCALE}=1.0$, ALF $=0.0$, THETA $=0.0$, INMODE $=-1$, TNODS $=3$, TNPS $=15$, TINTS $=1, \quad$ \&END
\&WAKE1 IDWAK=1, IFLXW=0, \&END
T34 TAIL WAKE
\&WAKE2 KWPACH=7, KWSIDE=2, KWLINE=0, KWPAN1=0, KWPAN2 $=0$, NODEW $=3$, INITIAL $=1$,
\&END
\&SECT1 $\mathrm{STX}=1500.0, \mathrm{STY}=0.0, \quad \mathrm{STZ}=0.0, \quad \mathrm{SCALE}=1.0$, $\mathrm{ALF}=0.0, \mathrm{THETA}=0.0$,
INMODE $=-1$, TNODS $=3$, TNPS $=15$, TINTS $=1, \quad$ \&END
\&WAKE1 IDWAK $=1$ IFLXW=0, \&END
F14 HORIZONTAL TAIL WAKE
\&WAKE2 KWPACH $=28, \quad$ KWSIDE $=4, \quad$ KWLINE $=0, \quad$ KWPAN1 $=0$, KWPAN2=0, NODEW=3, INITIAL=1, \&END
$\& S E C T 1$ STX $=1800.0, \quad \mathrm{STY}=0.0, \quad \mathrm{STZ}=0.0, \quad \mathrm{SCALE}=1.0$, $\mathrm{ALF}=0.0, \mathrm{THETA}=0.0$,
INMODE $=-1, \mathrm{TNODS}=3, \mathrm{TNPS}=15$, TINTS $=0, \quad$ \& END
\&WAKE1 IDWAK $=1, \quad$ IFLXW $=0, \quad$ \&END
F14 VERTICAL TAIL WAKE
\&WAKE2 KWPACH $=31, \quad$ KWSIDE $=2, \quad$ KWLINE $=0, \quad$ KWPAN1 $=0$, KWPAN2=0, NODEW=3, INITIAL=1, \&END
$\& S E C T 1 S T X=1800.0, \quad \mathrm{STY}=0.0, \quad \mathrm{STZ}=0.0, \quad \mathrm{SCALE}=1.0$, $\mathrm{ALF}=0.0, \mathrm{THETA}=0.0$,
INMODE $=-1$, TNODS $=3$, TNPS $=15$, TINTS $=0, \quad$ \&END
\&WAKE1 IDWAK $=1, \quad$ IFLXW $=0$,
\&END
F14 WING WAKE
\&WAKE2 KWPACH $=26$, KWPAN2 $=0$,
\&WAKE2 KWPACH=21, KWPAN2=1,
\&WAKE2 KWPACH=21, KWPAN2=8,
\&WAKE2 KWPACH=21, KWPAN2=2,
\&WAKE2 KWPACH $=21$, KWPAN2 $=10$,
\&WAKE2 KWPACH $=21$, KWPAN2 $=0$,
\&WAKE2 KWPACH=22, KWPAN2=0,
\&WAKE2 KWPACH $=25$, KWPAN2 $=0$,

KWSIDE=4, NODEW $=0$,

KWLINE $=0, \quad$ KWPAN1 $=0$,
KWSIDE $=2$ NWIAL=1,
NODEW $=0$,
KWLINE $=13$,
$K W P A N 1=1$,
KWSIDE $=3$,
NODEW=0,
KWLINE=1,
INITIAL=1,
$K W P A N 1=8$,
KWSIDE=2,
KWLINE $=12$,
INITIAL=1,
$\mathrm{KWPANl}=2$,
KWLINE $=2, \quad$ KWPAN $1=9$,
INITIAL=1,
\&END
KWSIDE $=3$,
NODEW=0,
KWLINE $=10$,
NODEW $=0$,
INITIAL=1,
KWPAN1 $=3$, \&END
KWSIDE=2,
NODEW $=0$,
KWLINE=5,
INITIAL=1,
$\mathrm{KWPAN} 1=0$,
\&END
KWSIDE $=4$,
NODEW $=0$,
KWLINE=7,
INITIAL $=1$,
$\mathrm{KWPAN} 1=0$,
\&END
\&WAKE2 $\mathrm{KWPACH}=25, \quad \mathrm{KWSIDE}=2, \quad \mathrm{KWLINE}=11, \quad$ KWPAN1=0, KWPAN2=0, \quad NODEW $=0, \quad$ INITIAL $=1$, \& END
\&WAKE2 KWPACH=22, \quad KWSIDE $=4, \quad \mathrm{KWLINE}=1, \quad \mathrm{KWPAN} 1=0$, KWPAN2=0, NODEW=0, INITIAL=1, \&END
\&WAKE2 KWPACH=23, KWSIDE=2, KWLINE=5, KWPAN1=0, KWPAN2=0, NODEW=0, INITIAL=1, \&END
\&WAKE2 KWPACH=24, KWSIDE=4, KWLINE=5, KWPAN1=0, KWPAN2=0, \quad NODEW $=5, \quad$ INITIAL $=1$,
\& END
\&SECT1 STX $=-511.0, \quad \mathrm{STY}=0.0, \quad \mathrm{STZ}=2004.0, \quad \mathrm{SCALE}=1.0$,
ALF=11.0, THETA=0.0,
INMODE $=4$, TNODS $=2$, TNPS $=0$, TINTS $=0$, \quad \&END
$\begin{array}{lll}651.0 & 372.5153 & 140.0\end{array}$
$\begin{array}{lll}651.0 & 335.686 & 140.57\end{array}$
$650.0 \quad 294.134 \quad 141.04$
$645.0 \quad 252.5822 \quad 139.54$
$643.9 \quad 211.0303 \quad 138.02$
$\begin{array}{lll}643.0 & 169.4923 & 136.313\end{array}$
$\begin{array}{lll}640.0 & 120.0 & 133.91\end{array}$
$\begin{array}{lll}635.0 & 95.0 & 133.0\end{array}$
$\begin{array}{lll}656.0 & 82.0 & 148.0\end{array}$
$656.0 \quad 88.5 \quad 142.0$
$683.0 \quad 92.0 \quad 141.0$
$\begin{array}{lll}683.0 & 83.0 & 129.0\end{array}$
$\begin{array}{lll}684.0 & 77.0 & 116.0\end{array}$
$\begin{array}{lll}711.0 & 77.0 & 116.5\end{array}$
$\begin{array}{lll}739.0 & 76.0 & 117.0\end{array}$
$\begin{array}{lll}764.0 & 76.2 & 118.3\end{array}$
$\begin{array}{lll}789.5 & 75.0 & 121.4\end{array}$
$\begin{array}{lll}817.0 & 66.5 & 128.0\end{array}$
$817.0 \quad 57.333 \quad 136.5$
$817.0 \quad 45.5 \quad 143.0$
$\begin{array}{lll}792.0 & 34.596 & 148.0\end{array}$
$817.0 \quad 26.0 \quad 148.0$
$838.0 \quad 20.812 \quad 148.5$
$838.0 \quad 0.0 \quad 148.5$
\& BPNODE TNODE $=3, \mathrm{TNPC}=0$, $\mathrm{TINTC}=0$, \&END
\&SECT1 STX=-511.0, STY=0.0, $\mathrm{STZ}=2004.0, \quad \mathrm{SCALE}=1.0$,
$\mathrm{ALF}=11.0$, $\mathrm{THETA}=0.0$,
INMODE $=4$, TNODS $=2$, TNPS $=0$, TINTS $=0$, \&END
$\begin{array}{lll}656.0 & 372.515 & 137.0\end{array}$
$\begin{array}{lll}656.0 & 335.7 & 136.0\end{array}$
$\begin{array}{lll}654.0 & 294.1 & 135.5\end{array}$
$653.0 \quad 252.582 \quad 135.0$
$\begin{array}{lll}653.0 & 211.0 & 134.0\end{array}$
$\begin{array}{lll}653.0 & 169.5 & 132.0\end{array}$
$645.0 \quad 130.0 \quad 131.5$
$645.0 \quad 125.0 \quad 130.0$
$660.0 \quad 105.0 \quad 130.0$
$665.0 \quad 98.0 \quad 131.0$
$687.0 \quad 94.0 \quad 135.0$
$\begin{array}{lll}687.0 & 85.0 & 127.0\end{array}$
$\begin{array}{lll}687.0 & 79.0 & 115.5\end{array}$
$\begin{array}{lll}715.0 & 78.0 & 116.0\end{array}$
$\begin{array}{lll}743.0 & 77.0 & 116.0\end{array}$

768.0	76.5	117.5
794.0	75.5	120.5
821.0	66.5	127.5
821.0	57.4	135.5
821.0	45.5	142.0
798.0	34.6	147.0
821.0	26.0	147.0
842.0	20.8	147.5
842.0	0.0	147.5

\&BPNODE TNODE $=3, \mathrm{TNPC}=0$, $\mathrm{TINTC}=0$,
\&END
$\& S E C T 1$ STX $=-511.0, \quad \mathrm{STY}=0.0, \quad \mathrm{STZ}=2004.0, \quad \mathrm{SCALE}=1.0$,
$\mathrm{ALF}=11.0, \mathrm{THETA}=0.0$,
INMODE=4, TNODS $=2$, TNPS=0, TINTS=0,
$\begin{array}{lll}666.0 & 372.5 & 133.0\end{array}$
$\begin{array}{lll}666.0 & 335.7 & 132.0\end{array}$
$\begin{array}{lll}666.0 & 294.1 & 131.5\end{array}$
$663.0 \quad 252.6 \quad 132.0$
$663.0 \quad 211.0 \quad 131.5$
$\begin{array}{lll}663.0 & 169.5 & 130.0\end{array}$
$\begin{array}{lll}660.0 & 130.0 & 127.0\end{array}$
$\begin{array}{lll}660.0 & 125.0 & 125.0\end{array}$
$668.0 \quad 110.0 \quad 125.0$
$668.0 \quad 107.0 \quad 125.0$
$\begin{array}{lll}691.0 & 96.0 & 130.0\end{array}$
$691.0 \quad 88.0 \quad 125.0$
$691.0 \quad 80.0 \quad 115.0$
$\begin{array}{lll}720.0 & 78.5 & 115.5\end{array}$
$\begin{array}{lll}748.0 & 77.5 & 115.5\end{array}$
$\begin{array}{lll}773.0 & 77.0 & 115.0\end{array}$
$\begin{array}{lll}799.0 & 75.6 & 120.0\end{array}$
$826.0 \quad 66.6 \quad 127.0$
$826.0 \quad 57.4 \quad 135.0$
$826.0 \quad 45.5 \quad 141.5$
$815.0 \quad 34.6 \quad 146.5$
$826.0 \quad 26.0 \quad 146.5$
$848.0 \quad 20.8 \quad 147.0$
$848.0 \quad 0.0 \quad 147.0$
\&BPNODE TNODE $=3$, TNPC $=0$, TINTC $=0$,
\&SECT1 STX=-511.0, STY=0.0, STZ=2004.0, \quad SCALE=1.0,
$\mathrm{ALF}=11.0, \mathrm{THETA}=0.0$,
INMODE $=4$, TNODS $=2$, TNPS $=0$, TINTS $=0$,
\&END
$695.0 \quad 372.5$ 121.0
$\begin{array}{lll}695.0 & 335.7 & 121.0\end{array}$
$695.0 \quad 294.1 \quad 121.0$
$695.0 \quad 252.6 \quad 121.0$
$695.0 \quad 211.0 \quad 121.0$
$\begin{array}{lll}695.0 & 169.5 & 121.0\end{array}$
$695.0 \quad 130.0 \quad 121.0$
$\begin{array}{lll}695.0 & 125.0 & 115.0\end{array}$
$695.0 \quad 120.0 \quad 115.0$
$695.0 \quad 115.0 \quad 115.0$
$695.0 \quad 100.0 \quad 125.0$
$695.0 \quad 90.0 \quad 115.0$
$695.0 \quad 85.0 \quad 110.0$

728.0	80.0	115.0
756.0	81.0	112.0
781.0	80.0	114.0
806.0	75.6	120.0
834.0	66.6	127.0
834.0	57.4	135.0
834.0	45.5	141.5
834.0	34.6	146.5
834.0	26.0	146.5
856.0	20.8	147.0
856.0	0.0	147.0

\& BPNODE TNODE $=3$, TNPC $=0$, TINTC $=0$,
\&SECT1 STX=-511.0, STY=0.0, STZ=2004.0, \quad SCALE=1.0, ALF=11.0, THETA=0.0,
INMODE=4, TNODS=2, TNPS=0, TINTS=0, \&END
$760.0 \quad 372.5$
105.0
$\begin{array}{lll}760.0 & 335.7 & 105.0\end{array}$
$\begin{array}{lll}760.0 & 294.1 & 105.0\end{array}$
$\begin{array}{lll}760.0 & 252.6 & 105.0\end{array}$
$760.0 \quad 211.0 \quad 105.0$
$\begin{array}{lll}760.0 & 169.5 & 105.0\end{array}$
$\begin{array}{lll}760.0 & 130.0 & 105.0\end{array}$
$\begin{array}{lll}760.0 & 125.0 & 105.0\end{array}$
$\begin{array}{lll}760.0 & 120.0 & 105.0\end{array}$
$760.0 \quad 115.0 \quad 105.0$
$\begin{array}{lll}760.0 & 105.0 & 110.0\end{array}$
$\begin{array}{lll}760.0 & 100.0 & 110.0\end{array}$
$\begin{array}{lll}760.0 & 95.0 & 105.0\end{array}$
$\begin{array}{lll}760.0 & 85.0 & 110.0\end{array}$
$\begin{array}{lll}760.0 & 82.0 & 110.0\end{array}$
$\begin{array}{lll}791.0 & 80.0 & 110.0\end{array}$
$816.0 \quad 75.6 \quad 120.0$
$844.0 \quad 66.6 \quad 126.5$
$844.0 \quad 57.4 \quad 134.5$
$844.0 \quad 45.5 \quad 141.0$
$844.0 \quad 34.6 \quad 146.0$
$844.0 \quad 26.0 \quad 146.0$
$865.0 \quad 20.8 \quad 146.5$
$865.0 \quad 0.0 \quad 146.5$
\&BPNODE TNODE $=3$, TNPC $=0$, TINTC $=0$, \&END
$\& S E C T 1$ STX $=-511.0, \mathrm{STY}=0.0, \mathrm{STZ}=2004.0, \mathrm{SCALE}=1.0$,
ALF=11.0, THETA=0.0,
INMODE $=4$, TNODS $=2$, TNPS $=0$, TINTS $=0$, \&END
$\begin{array}{lll}870.0 & 372.5 & 95.0\end{array}$
$\begin{array}{lll}870.0 & 335.7 & 95.0\end{array}$
$870.0 \quad 294.1 \quad 95.0$
$870.0 \quad 252.6 \quad 95.0$
$870.0 \quad 211.0 \quad 95.0$
$870.0 \quad 169.5 \quad 95.0$
$870.0 \quad 130.0 \quad 95.0$
$870.0 \quad 125.0 \quad 95.0$
$870.0 \quad 120.0 \quad 95.0$
$870.0 \quad 115.0 \quad 95.0$
$870.0 \quad 105.0 \quad 100.0$

870.0	100.0	100.0
870.0	95.0	100.0
870.0	90.0	100.0
870.0	85.0	105.0
870.0	80.0	105.0
870.0	75.6	120.0
870.0	66.6	126.5
870.0	57.4	134.5
870.0	45.5	141.0
870.0	34.6	146.0
870.0	26.0	146.0
870.0	20.8	146.0
870.0	0.0	146.0

\&BPNODE TNODE $=3$, TNPC $=0$, TINTC $=0$,
\&END
\&SECT1 STX=1000.0, STY=0.0, STZ=0.0, $\mathrm{SCALE}=1.0$,
$\mathrm{ALF}=11.0$, $\mathrm{THETA}=0.0$,
INMODE $=-1, \mathrm{TNODS}=3, \mathrm{TNPS}=20, \mathrm{TINTS}=3$,
\&END

\&SLIN2		\&END
\&SLIN2	SX0 0 -110.0, $\mathrm{SY} 0=40.0, \mathrm{SZ} 0=-25.0$,	
	SU=50.0, $\mathrm{SD}=450.0, \mathrm{DS}=5.0$,	\&END
\&SLIN2	$S X 0=-110.0, \quad S Y 0=40.0, \quad S Z 0=-35.0,$	END
\&SLIN2	SX0=-110.0, $\mathrm{SY} 0=40.0, \mathrm{SZ} 0=-45.0$,	
	SU=50.0, \quad SD=450.0, DS=5.0,	\& END
\&SLIN2	SX0 $=-110.0, \mathrm{SY} 0=40.0, \mathrm{SZ} 0=-55.0$,	
	$\mathrm{SU}=50.0, \quad \mathrm{SD}=450.0, \mathrm{DS}=5.0$,	\& END

LIST OF REFERENCES

1. Naval Safety Center, Summary of Mid-Air Collisions During Formation Flight, Compiled by Mr. C. Byrd, NSC Code 10, February 1993.
2. Headquarters Air Force Safety Agency, HQ AFSA/SERD, 1982 To Date Mid-Air Collision Summary, Compiled by LtCol. J. R. Perkins, USAF, Director of Reports and Analysis, February 1993.
3. Chief of Naval Air Training, T-34C Formation Flight Training Instruction, CNAT P-357 (Rev. 05-93) PAT, 23 April 1993.
4. Hurt, H. H., Aerodynamics For Naval Aviators, pp. 383-385, Aviation Maintenance Publishers, Inc., 1965
5. Air Force Human Resources Lab, AFHRL-TR-74-102, Transfer of Training with Formation Flight Trainer, by G. B. Reid, M. L. Cyrus, December 1974.
6. Aircraft Engineering Vol. 43, Num. 7, Formation Flight Technology, by T. K. Speer, E. C. Mill, and J. L. Tate, July 1971.
7. National Aeronautics and Space Administration, NASA-TM-4465, Summary of the Effects of Engine Throttle Response on Airplane Formation-Flying Qualities, by K. R. Walsh, March 1993.
8. Analytical Methods, Inc., NASA-CR-151974, Formation Flying Benefits Based on Vortex Lattice Calculations, by B. Maskew, April 1977.
9. Lyons, D. F., Aerodynamic Analysis of a U.S. Navy and Marine Corps Unmanned Air Vehicle, Master's Thesis, Naval Postgraduate School, Monterey, California, June 1989.
10. Rixey, J. W., A Multi-Faceted Engineering Study of Aerodynamic Errors of the Service Aircraft Instrumentation Package (SAIP), Master's Thesis, Naval Postgraduate School, Monterey, California, September 1992.
11. NASA Technical Memorandum 102851, Potential Flow Theory and Operation Guide for the Panel Code PMARC, by D. L. Ashby, M. R. Dudley, S. K. Iguchi, L. Browne, and J. Katz, January 1991.
12. Naval Postgraduate School, W. R. Church Computer Center, Visualization Laboratory User's Guide, pp. 4-5, 18 June 1993.
13. Naval Air Systems Command, Report Number SD-507-3-2, Detailed Specification for Model T-34C Airplane Single Engine Turboprop Training Airplane, FY-78 Procurement, pp. 15-18 and 8-A, 15 February 1978.
14. Grumman Aircraft Corporation, Report Number A51-335-R-70-2, F-14A Stability and Control, and Flying Qualities Report, Status III, Part II, Aerodynamic Characteristics and Dimensional Data, pp. 3-3 through 313 and 6-35 through 6-37, June 1970.
15. COSMIC, The University of Georgia, GVS General Visualization System Handbook, S. R. Keith, p. 1-7, 1993.
16. Smetana, F. O., Computer Assisted Analysis of Aircraft Performance Stability and Control, pp. 57-102, McGraw-Hill Book Company, 1984.
17. Perkins, Courtland D., and Hage, Robert E., Airplane Performance Stability and Control, p. 224, John Wiley \& Sons, Inc., 1950.
18. Abbot, I. H., and Von Doenhoff, A. E., Theory of Wing Sections, Dover Publications, Inc., 1959.
19. Roskam, J., Airplane Flight Dynamics and Automatic Flight Controls, Part 1, pp. 592-609, Roskam Aviation and Engineering Corporation, 1982.
20. Nelson, Robert C., Flight Stability and Automatic Control, p. 252, McGraw-Hill Book Company, 1989.
21. NAVAIRWARCENACDIV, F-14 Six Degree of Freedom Simulator Data, Man Flight Simulator Building, Patuxent River, Maryland., 14 July 1993.

INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Technical Information Center 2
Cameron Station
Alexandria, Virginia 22304-6145
2. Library, Code 52 2
Naval Postgraduate School
Monterey, California 93943-5002
3. Mr. Jonah Ottensoser 2
Naval Air Systems Command, AIR-53011C
Washington, D. C. 20361-5300
4. Chairman, Code AA 1
Department of Aeronautics and Astronautics
Naval Postgraduate School
Monterey, California 93943-5000
5. Professor Richard M. Howard, Code AA/Ho 3
Department of Aeronautics and Astronautics Naval Postgraduate School
Monterey, California 93943-5000
6. Professor Oscar Biblarz, Code AA/Bi 1
Department of Aeronautics and Astronautics
Naval Postgraduate School
Monterey, California 93943-5000
7. LCdr. David B. Porter, USN 2
936 Forest Road
Lancaster, Pennsylvania 17601
8. Mr. Dale Ashby 1
Full-Scale Aerodynamics Research Division
NASA Ames Research Center
Moffet Field, California 94035
9. Commanding Officer 1
Training Squadron Six
Attn: Lt. Glen B. Freeman, USCG
7700 U.S.S. Enterprise St. Suite 102
Milton, Florida 32570-5100
10. LtCol. Steven Grossmeyer 1Aviation Safety Program, Code 034Naval Postgraduate SchoolMonterey, California 93943-5000
11. LtCol. Jerry R. Perkins 1HQ AFSA/SERD918 First Ave, Room 330Norton AFB, California 92409-7001

DUDIEY RUG WRARY NAVAL POSTGRADUATE SCHOOL MONTEREY C\& 33943-5101

[^0]: ${ }^{1}$ Phone Conversation, 28 July 1993 between author and Lt. Freeman, VT-6, Milton NAS, FL

[^1]: ${ }^{2}$ Phone Conversation, 28 July 1993 between author and Lt. Renner USN, VT-21, Kingsville NAS, TX

[^2]: ${ }^{3}$ Phone Conversation, 21 July 1993 between author and LCdr. Packer USN, Blue Angels Flight Demonstration Team, Pensacola NAS, FL

[^3]: ${ }^{4}$ Conversations between author and Dale Ashby, NASA Ames Research Center, April - June 1993.

[^4]: 5 Phone conversation between author and Mr. Buck Buchannon, NAVAIRSYSCOM Detachment PMA(F)-227, T-34C Class Desk, 5 August 1993.

