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ABSTRACT

Computer simulation studies of two frequency domain

adaptive beamforming algorithms for planar arrays are

presented. The algorithms are modified complex LMS adaptive

algorithms that can process an arbitrary number of

harmonics. The algorithms provide estimates of the spherical

coordinates (i.e., range, depression angle, and bearing

angle) of multiple broadband targets in both the near-field

and far-field. Computer simulation results comparing the

average estimation error for range, depression angle, and

bearing angle as a function of the input SNR, range (near-

field and far-field) , and harmonic number, are presented.

The "full angular coverage" capability of the algorithms was

also tested.
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I. INTRODUCTION

Frequency domain adaptive beamforming is a signal

processing technique used to cophase the output electrical

signals at each element in an array of sensors. The adaptive

algorithm recursively adjusts the complex weights at each

element in the array minimizing the mean-square-error between

a reference signal and its estimate. The resulting steady-

state phase weights represent the uncorrupted phase variation

across the face of the array. The phase values at the

elements in the array contain the location information of the

source. Herein lies the usefulness of such an algorithm. By

cophasing the output signals at each of the elements in a

receive array using an adaptive beamformer, noise corruption

that occurs in the medium and/or at the receiver can be

effectively cancelled. The resulting steady-state phase

values can be manipulated to determine the position of the

source relative to the array. One obvious application for a

beamformer of this nature is in determining the position of

a sonar target in an ocean medium.

Target localization in bearing and depression angles has

been successfully achieved using an adaptive beamformer of

this design [Refs. 1, 2]. However, one localization parameter

that is of significant interest and yet unsolved for by the

previously mentioned signal processing algorithm [Refs. 1, 2]



is "target range." The objective of this thesis is to develop

a localization algorithm that can process spherical wavefront

information in a noise environment in order to determine the

position of a target in range, bearing, and elevation. The

freguency domain adaptive beamformer developed in [Refs. 1,

2] will be applied to this problem.

In our analysis, we modeled the target as a broadband

sound source. As we convert a received output electrical

signal to the freguency domain, the complex freguency spectrum

of the target contains many freguency components. The

freguency domain adaptive beamforming algorithm processes each

spectral line of the target's signature independently. As a

result, the target's position is estimated for each freguency

component. Given a multi-target situation, the algorithm is

capable of localizing each target provided that at least one

unigue spectral line can be associated with each sound source

(target)

.

In Chapter II, we will develop the theoretical groundwork

used in solving the localization problem. First, we consider

the acoustical properties of wave propagation in an isospeed

ocean medium. In Section II. A, we begin with a general form

of the inhomogeneous wave eguation and develop the output

electrical signals at each of the elements in a planar array.

Based on a given signal-to-noise ratio (SNR) , we corrupt the

output electrical signals with noise. This time-domain signal

is converted to the freguency domain for processing (Sec.



II. B) . The signal is filtered using a freguency domain,

modified least-mean-sguares (LMS) adaptive algorithm. Since

we are analyzing spherical waves, this routine has been

modified to include analysis that assumes non-separable

complex weights. Other phase distortions introduced by the

signal processing routine are cancelled using technigues

discussed in the remainder of Section II. B. The last section

of Chapter II presents an algorithm that was developed to

process the complex weights in order to determine the position

of the target in spherical coordinates.

In Chapter III, several computer simulation studies are

discussed. The test cases were selected in order to

demonstrate the significant properties of the localization

algorithm. In each case, the run was first conducted in a

noise-free environment to validate the propagation and

localization models. Once the baseline results were

generated, the test cases were repeated in a noise

environment.

Section III. A tests the full angular coverage capability

of the algorithm. Full angular coverage implies that the

target can be localized regardless of its relative position

to the receive array. A single target is placed at a

broadside and then endfire position relative to the array.

The range of the target is then varied to determine the

performance of the algorithm in the near and far-field

regions. One additional test case placing the target at an



arbitrary geometry relative to the array is also examined in

this section. In Section III.B, the multi-harmonic capability

of the algorithm is exercised. The test case reviews the

performance of the algorithm given a single target with

several harmonics, covering a wide freguency spectrum. In the

final section of our results chapter, Section III.C, we

examine the multi-target performance of the algorithm. In

this simulation study, three targets with different locations

are tested. The final conclusions and recommended areas for

further research are presented in Chapter IV.



II. THEORETICAL DEVELOPMENT

The purpose of this chapter is to present the theoretical

groundwork used in solving the localization problem. The

approach can be divided into three major areas (see Figure

2.1). In generating the output electrical signals at the

elements in the receive array, we first consider the

acoustical nature of the problem. Beginning with a general

form of the wave equation, we derive a mathematical model for

spherical wave propagation in a homogeneous medium. The wave

propagation model is used to generate both the input acoustic

signals and the output electrical signals at the transducers

in the array. Based on a given signal-to-noise ratio (SNR)

,

Localization

Algorithm

A I I

Figure 2.1 The Block Diagram Representation of the Analysis
Steps Used in Solving the Localization Problem.



the output electrical signals are corrupted by noise. Using

a frequency-domain adaptive beamformer, the output signals

from the elements in the receive array are co-phased. The

steady-state phase weights determined by the beamformer are

then processed by a localization algorithm that provides an

estimate of the target's position in spherical coordinates.

A. SIGNAL GENERATION

The starting point of the localization problem is the

generation of the acoustic signal incident on the planar

array. The signal must represent wave propagation in an

isospeed ocean medium. Specifically, our signal must exhibit

spherical wavefront curvature that is a function of the range

between the source and the array. This mathematical signal

model is developed by solving the wave equation. The

corresponding output electrical signals are then discretized

by taking a preset number of time samples over the data record

length at each element. The final step of signal generation

is to add noise to the electrical signals. The output from

this section is a time-domain, noise-corrupted signal at each

transducer element in the receive array (see Figure 2.2).

1. Spherical Wave Propagation Model

The propagation of acoustic energy in the ocean can

be described by the following inhomogeneous wave equation:

2

V
2

(pO>r)--i_JL cp(t,r) = x M (t,r) (2.1)

'CO at

2
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Figure 2.2 The Block Diagram Representation of the Major
Steps Performed in Signal Generation.



where cp ( t, r) is the velocity potential at time t and position

r > xM ( t, r) represents the source distribution, and c(r) is the

speed of sound in the ocean. In our problem, we are

interested in wave propagation in a homogeneous medium.

Therefore, c(r) is set equal to a constant sound speed c.

When the speed of sound is constant, the solution to the wave

Equation (2.1) is given by:

cp(t,r) = I ^—ri r—

*

J- dV (2.2)

where I r - r
|

is shown in Figure 2.3 [Ref. 3:p. 286].

Next, we model the source distribution generated by

the target as an omnidirectional point source with arbitrary

time dependence located at r = r
o

(see Figure 2.3). That is,

let

*mO.O = g(0 S(r-r
) (2.3)

where g(t) is an arbitrary function of time. By substituting

Equation (2.3) into Equation (2.2) and performing the

integration, the velocity potential cp ( t, r), reduces to

<p(t,r)= - v

4tiR
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Directional

Point Source

(Target)
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Figure 2.3 Spherical Coordinates r =
|

r
, Qq, and, Vo defining

the Position of the Target.



where

R
-I

r " r°|- (2.5)

As a result, we can express the acoustic signal y^ ( t, r)

incident upon the array [Ref. 4] as

r. >
8
l

t

"c"J ( 2 - 6 )

At this point, we can apply the physical conditions

of our array to this general expression of the input acoustic

signal Equation (2.6). First, we shall assume that the output

electrical signal y(t,r) is directly proportional to the input

acoustic signal, that is,

y(t,r) = yM (t,r) (2>7)

where the constant of proportionality has been dropped. Next,

we will sample this continuous electrical signal at a sampling

rate f
s ,

providing a discrete form of the time-domain signal

in preparation for signal processing. Consider a planar array

lying in the XY plane. Given the intarelement spacings of the

array d
x

and d , the element position vector r (see Figure

2.3) can be expressed as

r = md
x
x + nd

y y,
z = 0. (2.8)

10



The location of the source as measured from the center of the

array r is

«<>. <N

r = x x + y y +z z.
(2.9)

Therefore, the magnitude of the range to the target, R, can

be expressed as

R=l r-rn 1
= (md x -x )

2
+ (nd

y
-y

)

2
+z

2 %
(2.10)

By taking L time samples over the record length, the

discrete representation of the signal is

y(lT
s , md x, nd

y )
=

s
c (2.11)

where "1" corresponds to a particular time instant and

^=Vt (2.12)

is the sampling period.

The arbitrary function of time g(t) is represented by

the following finite Fourier series:

K

g( t ) = a + 2£ a
q
cos ( 27qfot + 9

q ),
(2.13)

11



where: a is the DC component of the source signal,

a is the magnitude of the Fourier series coefficient

of the source signal at harmonic q,

6 is the phase of the Fourier series coefficient of

the source signal at harmonic q,

f is the fundamental frequency of the source signal,

and K is the total number of harmonics.

By setting time t in Equation (2.13) equal to the retarded

time IT — and substituting this equation into Equation
I

S
c

/

(2.6), we obtain the final form of the output electrical

signal at the receive array:

y(lT
s ,md x , nd

y )
= jV a + 2]Ta

q
cos 2rcqf flT

s
- |j+ (2.14)

2 . Noise Addition

To validate the signal processing and localization

algorithms, as well as our wave propagation model used in

generating the signals, we first perform the analysis in a

noise-free environment. However, once the baseline results

have been obtained, we must test the performance of the

overall algorithm under realistic environmental conditions.

Therefore, we corrupt the output signal at each element in

the array with noise. Additive, zero mean, white, Gaussian

noise is added to the output signals from each element in the

12



planar array. We select various signal-to-noise ratio (SNR)

values to simulate a particular noise environment. The

resulting signals represent discrete time, noise corrupted,

output signals at each element in the planar array.

B. FREQUENCY DOMAIN SIGNAL PROCESSING

The output signal at each of the transducer elements is

converted to the frequency domain by using a Discrete Fourier

Transform (DFT) routine. In this section, we will begin our

discussion by deriving the form of the radiated signal after

taking the DFT. Next, we will examine all phase components

that surface in our frequency-domain analysis. Common terms

associated with wavefront curvature will then be presented.

The frequency-domain signal processing routine can be

divided into three major functions (see Figure 2.4). The

modified least-mean-squares (LMS) adaptive algorithm will be

the first topic of discussion. By cophasing the output

signals from the elements in the array to yield a minimum

least-squares error, the noise corruption of the signal is

reduced. Another source of phase distortion occurs in the

conversion to the frequency domain. The phase values

calculated by taking the DFT are limited to a closed interval

between [
— 7r , 7r ] . This phase "wrapping" effect must be

rectified prior to further processing by the localization

algorithm. This effect is corrected by the phase unwrapping

algorithm. The "unwrapped", steady-state phase weights are

13
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-*-f Frequency Domain Signal Processing V-

Figure 2.4 Block Diagram Representation of the Major
Steps Performed in Signal Processing.
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then smoothed along the X and Y axes using non-linear least-

squares estimation. The output from this signal processing

section is an estimate of the uncorrupted phase at each

element in the receive array.

1. Phase Components Encountered in Frequency Domain
Analysis

From our analysis in Section II. A. 1, we developed a

discrete, time-domain expression of the output electrical

signal at each of the elements in the planar array. As in

most signal processing applications, it is often more

convenient to operate on the signal in the frequency domain.

Therefore, our first manipulation is to take the DFT of the

signal. The sampled output spectrum, Y
s
(q,m,n), is given by

L

I
1=-L

Y
s
(q,m,n) = cm £ y (

1T
S, md x , nd

y )
e

"j27lql/L

, q=l,2,...,K (2.15)

where L'=(L-l)/2 (2.16)

and c
mn

is the complex weight at each element (m,n).

Substituting Equation (2.11) into Equation (2.15) yields

Y
s
(q,m,n) = ^X g[ 1T

S - |)e
j2"*L

, q = l,2,...,K (2.17)
\=-f

15



The Fourier series coefficients introduced to represent the

arbitrary function of time g(t) in Equation (2.13) can be

expressed by the following complex coefficients, c :

c
q
=a

q
e
j6
\ q=l,2,...,K (2.18)

where a is the magnitude and 6
q

is the phase of harmonic q.

Since the Fourier series coefficients c represent g(t), then

we know from the properties of Fourier series that g(t + t )

will have the Fourier series coefficients c e
±

J

2" qf"o l o

Therefore, Equation (2.17) can be written in the following

simplified form [Ref. 5
: pp . 162-166]

Y
s (q,m,n) = L

C|niCqe
-J^qWc

q = ]2 R (2 . 19)

where R/c is substituted for t . The range R is given by

Equation (2.5) as the magnitude of the vector , which is

the range from a particular element in the array to the target

(see Figure 2.3). Using vector algebra, this magnitude can

be rewritten as

,1/2

|

r - ro| = [(r-r ).(r-r
]] . (22Q)

By expanding the dot product within the radical, R can be

rewritten as

16



r - rn = Tn - 2ro(K' r
)

.1/2

+ r (2.21)

where
a
ro
=uox + voy + woz (2.22)

is the unit vector in the direction of r , and is defined in

terms of direction cosines u , v , and w as follows (see

Figure 2.3):

u = sin 6 cos\|/

v = sin 6 sin \j/

and w =cos9o.

(2.23)

(2.24)

(2.25)

By taking the dot product of Equation (2.8) with Equation

(2.22), and substituting the result into Equation (2.21) we

obtain:

r-r |
= r ^roluomd^VondyJ + lmdZ + lndy)

-.1/2

(2.26)

From this range expression and by referring back to Equation

(2.19), we can define the phase term due to the propagation

of acoustic energy from the source as

e
r
^

2?cqf
( 2 2

r ^rojuomdx + vondyj + jmdj +jnd,

-.1/2

(2.27)

17



This term, 9
r

, is the phase due to source radiation and

contains the physical localization information of the target.

By solving for r , u , and v , we can determine the spherical

coordinates of the source.

At this point in our discussion it is proper to

introduce all of the other phase components that exist at a

given transducer element in the receive array. Beginning at

the source, the first phase term that we have discussed is

due to the physical propagation of acoustic energy, 6
r

.

Additionally, another phase term exists that originates from

the target. The source signal also contains an initial phase

term at each harmonic. Specifically, we defined this in

Equation (2.12) as the phase of the Fourier coefficient, .

Since this phase is not known a priori from the localization

side of the problem, we must solve for this unknown in order

to obtain the radiation phase term, 6
r

. Our objective in this

section is to develop an approximation of the uncorrupted

signal phase and to pass this output

e sig
=e r+ e

q (2.28)

to the localization algorithm (see Section II. C).

Three other phase terms exist that distort the signal

phase mentioned above. We can represent the noise corruption

18



of the input acoustic signal by a phase term, 9
n

. This phase

term varies at each element and for each harmonic analyzed.

The objective of the IMS adaptive algorithm is to cancel this

noise phase term at each element. Another source of phase

distortion occurs in the conversion to the frequency domain.

The phase values calculated by taking the DFT are limited to

a closed interval between [
— 7r , 7r ] . When a phase value exceeds

the interval of [-7r,7r], the phase is "wrapped" within the

limits of the interval by adding/subtracting 2n . This phase

"wrapping" effect can be accounted for by the term 9
wr

. The

function of the "phase unwrapping algorithm" is to unwrap the

phases at the elements along the X and Y axes. Lastly, a

constant phase term is added to the phase at each element in

the array as a result of the cophasing process of the LMS

adaptive algorithm. This phase term, 6
C , is not cancelled by

the signal processing routine of this section. The phase term

e
c

is passed along with the estimate of
sjg

to the

localization algorithm. This algorithm groups the
C
term

with the 6
q
component, and cancels them both yielding the

r

term. In summary, the total phase component at a particular

element can be described by the following equation:

etot=er+0 q
+e n+e wrap+e Ci (2.29)

19



2 . Common Terms Associated with Wavefront Curvature

A wavefront is defined as a surface of constant phase.

Figure 2.5 depicts two sound sources (targets) located at

broadside relative to a planar array. The target shown in

Figure 2. 5. a is located close to the receive array. Looking

at the incident wavefront on the surface of the array, we

observe significant wavefront curvature. When a wavefront,

as measured at the receive array, exhibits significant

curvature, the target is considered to be in the "near-field

(NF) U
. Figure 2.5.b shows the same target at a more distant

position from the array. The amount of wavefront curvature

seen at the array face is noticeably less. If a wavefront has

slight curvature or resembles a plane wave, the target is

considered to be in the "far-field (FF)". One observation

that can be made from this figure is that the range

information of a target's position can be found in the

curvature of the wavefront. The range to the physical

boundary between the near-field and far-field regions is a

function of the array size and the wavelength of the incident

acoustic field (see Figure 2.6) and is given by [Ref. 5:p. 33]

R
2

K K aiTay (2.30)
P

where p is the range to the NF/FF boundary, Rarray is the

effective radius of the array, and \ is the wavelength of

20



(a)

(b)

Figure 2.5 Representation of the Range Effects

on Wavefront Curvature.
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~ '* J>- array

NF

$
FF

Figure 2.6 Representation of Near-Field/ Far-Field Boundary.
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the incident field. By considering a rectangular array of M

x N elements, Eguation (2.30) becomes

where

and

71

p =
x M

L* = (M-l)d
3

L
y
= (N-l)d

3

dx ±:dy
= x»iy

1 . = c
mm max

(2.31)

(2.32)

(2.33)

(2.34)

(2.35)

Given a target with Kmax harmonics, fmax is equal to

the total number of harmonics, \axt times the fundamental

frequency, f , that is

f = K f1 max ** max 1 (2.36)

Since the broadband signal of the target can encompass a wide

range of frequencies, one unique value for p that delineates

the boundary between the near and far fields does not exist.

Rather, one can only specify a unique NF/FF boundary for a

given harmonic of interest due to the frequency dependence of

the range, p. However, a target can be classified as a near-

field target at all harmonics provided that it is located

within a minimum p value defined in terms of the maximum

wavelength as follows:

23



7t

Pmin
-

1

L
/2 )

2+

(V2 )

:

(2.37)

Conversely, if a target's range is greater than a maximum p

value, it is classified as a far-field contact for all

harmonics, where

7t

Pmax
~~

^mini(ww (2.38)

This NF/FF boundary is a helpful tool in classifying the

relative target position to the array since it takes into

account array size and target freguency components. One

misconception that has resulted from establishing a boundary

of this nature is the argument that only targets located in

the near-field can be localized in range. Although it is true

that a near-field target has significant wavefront curvature,

our research demonstrates that an adequate range estimate can

be determined given a wave with a slight amount of wavefront

curvature (i.e., for targets located well into the far-field)

.

At the beginning of this section, we defined a

wavefront as a surface of constant phase. Using the phase

information at the elements of the planar array, another way

in which wavefront curvature can be defined is by plotting

the phase as a function of element position across the X and

Y axes. For a near-field target, this phase distribution will

exhibit significant curvature. The phase distribution across
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either the X or Y axis of the array for a far-field target

will be more linear. In the results section, we will plot the

ideal phase distribution across these two array axes for each

of the cases that we analyze.

3 . Least-Mean-Squares (LMS) Adaptive Algorithm

As discussed in the previous section, the phase passed

to the frequency-domain modified LMS adaptive algorithm for

processing is comprised of many components. The measured

phase,
m , can be described by

em=©r+6q +e n+6wrap- (2.39)

The objective of the adaptive algorithm is to cancel out the

noise term, 6
n

. The algorithm performs this function by

adaptively updating the complex weights at each element in

the array while attempting to minimize the mean-square error.

The LMS adaptive algorithm is a well known signal

processing aid [Ref. 6]. In recent research work [Ref. 1]

,

a frequency-domain modified LMS adaptive algorithm was applied

to a planar array to process plane-wave signals.

Specifically, complex weights at each element in the array

were optimized adaptively with respect to a reference signal.

The ideal value of the phase of each complex weight is equal

to the negative value of the uncorrupted wrapped signal phase.

The algorithm used for this plane wave case assumed that the

complex weights were separable. This is a valid assumption
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for plane-wave analysis or cases when the wavefront curvature

is minimal (i.e., far-field problems). However, for those

cases with significant wavefront curvature and a resulting

interdependence between x and y coordinates, this assumption

is not valid.

The following eguations summarize the key steps that

comprise the adaptive algorithm assuming separable complex

weights [Ref. 2]. For the remainder of the thesis, this

algorithm will be called LMS
flat , where the word "flat" implies

negligible curvature.

1 V
Estimate zi(q) =

nvi\rX d i(q' n )X c i(q'm }
Ylq.nvO (2.40)

where Zj(q) is the estimate of the reference signal at harmonic

g at the i
th iteration and where the complex weights c^ are

assumed to be separable, that is,

cmn(q) = c(q'm )
d

(
ci' n ) (2.41)

Error Signal: e
i
(q)=z{q)-z

i (q (2.42)

Complex Weight Update:

c i+1 (q,m) = c
i

(q,m) + 2u
i
(q)e

i (q)|Xd i
(q,n)Y(q,m,n)l (2.43a)

d
i + i(q' n )

= d
l
(q,n) + 2u

i
(q)e

i (q) Xci(q,m)Y(q,m,n)
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Hi(q)=
where

L
|Y|q.o,o)|

2

(2.43c)

is the step size parameter. The adaptive routine computes

Equations (2.40) through Equations (2.43c) N times, minimizing

the error signal e
f

. After each iteration, the magnitude of

the complex phase weights c j+1 (q,m) and d j+1 (q,n) are normalized

in order to maintain unit magnitude. By normalizing the

magnitude of the phase weights after each iteration, the phase

component of the phase weights is the term that is recursively

optimized to minimize least-squares error. With this

modification, the final output from the algorithm is a set of

steady-state, phase weights that represent the negative values

of the uncorrupted wrapped phase of the output electrical

signal at each element in the array.

The adaptive algorithm summarized above (derived in

[Ref. 2]) was modified to process near-field waves (i.e.,

waves with significant wavefront curvature) by expressing the

complex weights in a non-separable form. This algorithm will

be referred to as LMS curve where the word "curve" implies

significant curvature. The complex weights c^ are set equal

to w(m,n) in these equations:

Estimate: Z;( q }
= y^XZ w

i( *m >n ) *l ^'m '
n

I (2.44)
m n

Error Signal:
e,l n I = z( a I-

z

: ( a )
(2.A5)= z(q)-z

i (q
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Complex Weight Update:

w
1 + 1

(q,m,n) = w
i
{q,m,n) + 2^

i
(q)e

i
{q)Y*(q,m,n) (2.46)

where Mj(<3) is defined in Equation(2 . 43c) . As in the LMS flat

algorithm, the magnitude component of the complex phase

weights is normalized to unity after each iteration.

In summary, adaptive algorithm LMS
flat

assumes that the

complex weights are separable and will work best for cases

with minimal wavefront curvature. LMScurve assumes non-

separable weights and will give better performance for cases

with significant wavefront curvature. In the results section,

both algorithms have been used for each scenario presented to

demonstrate these properties of the two algorithms.

4 . Phase Unwrapping Algorithm

The output from the two LMS adaptive algorithms are

processed sets of steady-state, "wrapped" phase values of the

output electrical signals at each element in the array. As

mentioned earlier, phase distortion occurs in the conversion

to the frequency domain. The phases calculated by the DFT are

limited to a closed interval between [-ir,ir]. As a phase value

exceeds this interval, the phase is "wrapped" within the

limits of [-7r,7r] by adding/subtracting 2tt . This phase

"wrapping" effect is undesirable and must be rectified prior
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to further processing by the localization algorithm. The

phase unwrapping algorithm performs this task.

Figure 2.7 is an example of the complexities of phase

wrapping. Figure 2.1. a depicts the ideal, "unwrapped" phase

variation across the X axis. As the phase value exceeds ±180°

(see Figure 2.7.b), a noticeable jump in phase is evident as

the phase is wrapped within the limits. This jump is detected

by the phase unwrapping algorithm and is properly corrected.

The phase unwrapping algorithm compares the phase

difference between two adjacent elements. If the difference

exceeds ±tt radians, the unwrapping algorithm is activated and

a phase correction is made. The routine then moves to the

next adjacent element and performs the same logic check and

correction as necessary. Prior to discussing the details of

the logic steps performed in the unwrap algorithm, we will

first examine the basis for choosing ±n as the criteria for

phase wrap detection. The maximum phase difference resulting

from wave propagation (6 r ) that could exist between adjacent

elements is equal to it . If a phase difference exists that is

greater than n , then it must be due to phase wrapping.

The two extreme cases that yield the maximum phase

slope across the X axis are shown in Figure 2.8. The first

example is a contact located in the extreme near-field at a

broadside orientation to the array. An additional constraint

is that the maximum slope only occurs at the highest harmonic.

The second example is a target located at endfire relative to
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the array and positioned in the far-field. The maximum slope

for this case also occurs at the highest harmonic only.

Starting with our expression for the radiated phase 9
r

(see

Equation (2.27)), we will apply the conditions of these two

extreme cases and calculate the maximum slope.

First, let us rewrite Equation (2.27) for use in this

section:

e
r
=

2:cqf
r -2r (u md

x + v ndy) + (md
x

)

2
+ (nd

y)

:

1/2

(2.47)

For each case we will only perform the analysis across the X

axis, since similar results can be derived assuming the Y

axis. Therefore, we set the index in the Y direction, n = 0.

In the limiting near-field case, the target is located at

broadside relative to the array. As a result, the direction

cosine term u is equal to zero. For a target positioned in

the very near field, the square of the range term r is

considered negligible as compared to (md
x ) . Therefore,

Equation (2.47) can be simplified as follows:

r
=± 2rcK max f md.

(2.48)

where Kmax is the highest harmonic. The derivative of 6
r
with

respect to element number m is equal to

I dm /max
= +

27cK ma* f d
x

(2.49)
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By using Equation (2.34) through Equation (2.36), the

interelement spacing term d can be expressed as

iL-'"^K^fo" (2.50)

Substituting Equation (2.50) into Equation (2.49) yields

(3 -±-
idm/max

(2.51)

For the second case, the target is located at endfire.

Therefore, the maximum value that u can attain is ±1. If we

set u = ±1, then Equation (2.47) simplifies to

q _ 27tK maxf
r -2r (md

x )
+ (md x)

2

.1/2

(2.52)

The term inside the radical of Equation (2.52) can be

rewritten as

r
2
-2r (md

x )
+ (md x|

2
= (r -md x

)

2
. (2>53)

Therefore, the radiated phase can be expressed as

e I.±^(rl-»d1 i.
< 2 - 54

>

Taking the derivative with respect to m yields
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M8 r \
27cK max f d x\—l\ = ±

max u x
. (2.55)

Finally, substituting Equation (2.50) for d
x

into Equation

(2.55) yields the maximum slope

^l) = ±JC .
(2.56)

dm ) max

The phase unwrapping algorithm uses this value of n

as the criterion for detecting a phase wrap between elements.

The logic flow of the phase unwrapping algorithm is pictured

in Figure 2.9. The phase unwrapping algorithm begins at the

center element of the array. If the unwrapping is to be

performed in the (+) X direction, then the step size is set

equal to unity (for negative X direction, s = -1). Two

iterations through the comparator section of the routine are

required. This double pass approach is necessary due to the

effects of wavefront curvature. That is to say, since the

slope of the phase variation can be both positive and negative

across the axis, the direction of unwrapping becomes more

complex. In the first pass, the phase values between adjacent

elements are compared. When a wrap is detected a positive

correction is applied to the phase value. This positive

correction is equal to +2k7r, where the constant k is the

number of times the phase value at the adjacent element has

been wrapped. On the second pass through this routine, a
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backup check of the phase unwrapping is conducted. If the

phase value has been incorrectly unwrapped, the algorithm

applies a negative correction. In this way, even in cases of

significant wavefront curvature, the values are correctly

unwrapped between the elements.

This process is repeated along the ( + ) X axis out to

the final element. The routine then returns to the center

element and iterates along the (-) X axis. Upon unwrapping

the X axis, the algorithm operates on the Y axis in a similar

manner. Since the center element is a common element for both

axes, it is essential to start the unwrapping here for both

cases (versus beginning at the end of either axis) . The

output from this section is a set of unwrapped, steady-state,

phase weights at the elements along the X and Y axes. The

final step in the signal processing routine is to smooth the

phase values along the X and Y axes using non-linear least-

squares estimation.

5. Non-Linear Least-Squares Estimation

The two major sources of phase distortion, that is,

9
n

and ©wrap , have been eliminated using the techniques

mentioned in the last two sections. One further step is

necessary prior to passing the unwrapped, steady-state phase

information to the localization algorithm. Although the

modified LMS adaptive algorithms cancel the majority of the

noise corruption in the received signals, some jitter still

exists in the steady-state phases. The localization algorithm
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uses the phase information at three elements along the X and

Y axes to estimate the range to the target. Specifically, the

phase values at the end elements and the center element are

used. Our research has shown that the slight jitter that may

exist in the phase values at these elements can have a radical

impact on the resulting range estimate. Therefore, the last

step in our signal processing routine is to find a curve that

represents the best fit given the discrete phase values along

the two axes. The technique used to perform this smoothing

is non-linear least-squares estimation.

Given n+1 equally spaced data points assigned to

values of x, where x = 0, 1, . . . , n, a non-linear curve

that best fits this data can be determined using orthogonal

polynomials [Ref. 7]. The equation of this curve is given by

[Ref. 7]

P(x) = a Pn0{x) + ajP nl (x) + • • • +amPnm(x) (2 .57)

where m is the degree of the polynomial, Pno (x), P
n1

(x) , . . .
,

Pm (x) are the orthogonal polynomials, and a , a,,..., a m are

the coefficients of the orthogonal polynomials. Orthogonal

polynomials have the following property:

ZP nj(x)PJx) = 0, j*k. (2 - 58)

X=0

The general formula used in computing the orthogonal

polynomials is [Ref. 7]
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P-W-J ^(T)(
m

i

+I
(g. -0.1.2.... .„ (2>59)

|?L, m
\ (2.60)

1/ (m+l)!i!
*

Using this formula, the first four polynomials are given as

follows:

P„oM=l, (2.61)

Pnl(x)=l-2^-, (2.62)

Pn2(
x}= 1-6^+6^41, (2-63)

nZX
' n n(n - 1)

and

P_,x = l - 12-+30-J rr-20—

^

An ^ . (2 64)1131 ' n nn-1 nn-1 n-2 \*.o*t)

By using these four polynomials and by calculating the values

for their respective coefficients, we can construct a cubic

polynomial to fit the given phase data while minimizing the

least-squares error. The equation for calculating the

coefficients is given by [Ref. 7]

I *W PniM

a^— i = 0,l,...,m, (2.65)
n ~

x=0
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where the values of f(x) are the phase values given for each

element along a particular axis.

Using orthogonal polynomials, one can derive the

equation for a curve of degree m with minimum least-squares

error, where m < n (n+1 is the number of data points) . For

the results that we will present in Chapter III, we performed

a best fit approximation using a cubic polynomial (m = 3).

A polynomial of this degree was adequate to perform the

smoothing required for our phase data.

One additional value that we calculated and monitored

in our computer runs was the actual least-squares error. This

error can be calculated from the following equation [Ref. 7]:

n ni

x=0 i=0 x =

(2.66)

The value of this error gives an indication of how well the

non-linear curve fits the data.

This concludes all the steps used in the frequency-

domain signal processing section of our research. The output

from this section is a set of smoothed phase values for the

elements along the X and Y axes where the effects of noise

have been minimized and the frequency-domain signal has been

smoothed, and unwrapped. The target localization algorithm

will take these values and determine an estimation of the

spherical location of the target.
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C. TARGET LOCALIZATION IN SPHERICAL COORDINATES

Beginning with the noise-corrupted output electrical

signals at the elements in the receive array, our goal has

been to take this time-domain information and localize a

target or a group of targets in spherical coordinates. One

intermediary step was to convert the signals into the

frequency domain and filter out as much of the distortion due

to noise as possible. With this accomplished, we are now in

a position to take these processed signals and work backwards

in order localize the targets.

The localization algorithm applies the physical properties

of wave propagation developed in Section II. A, and utilizes

the symmetry of the receive array to obtain a position

estimate. The first step in this routine is to isolate the

terms that contribute to wavefront curvature, and then to

estimate the target range. Having solved for this parameter,

the wavefront curvature is cancelled, leaving a linear phase

relationship. By manipulating the slope information from this

conditioned phase data, the angular position of the target is

determined (see Figure 2.10).

1. Three Point Range Algorithm

Our first step in the localization problem is to

manipulate the unwrapped, smoothed, steady-state phase

information received from the signal processing routine to

estimate target range. We denote this processed phase as 6
p

.
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As discussed in section II.B.l, Q is comprised of three phase

components, that is,

e
p
=e

r
+e

q
+e c (2 . 67)

where 6
r

is the phase due to wave propagation, 9 is the

phase of the Fourier series coefficient c , and 6
C
is the phase

term that represents a constant phase shift that is generated

at each element due to the LMS algorithm. In our range

algorithm, 8 and 6
C
are grouped together and considered as one

constant phase term 6 ,, that is,

e
q
.= e

q
+e c . (2.68)

Recall from Equation (2.27) that, the radiated phase is given

by

e
r
(q,m,n)= — r - 2r (u md

x + v nd
y )
+ (mdj

2
+ (nd

y|

2

1/2

(2.69)

The range algorithm uses the phase information at

three elements per X and Y axis to estimate range. For this

analysis, let us consider the X axis (set n=0) . The phase of

the two end elements on each side of the X axis are combined

to form one equation in terms of range r and ,. Since the

end elements are symmetrical about the center element, this

equation can be simplified. The second equation is formed by

the value of the phase at the center element. This equation
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is also a function of our two unknowns, r and 9ql . These two

equations are manipulated to solve for the two unknowns. In

this fashion, we obtain a value for the range based on three

elements along the X axis. The same approach is implemented

on the three corresponding elements on the Y axis. As a

result, we obtain two estimates of the range.

The processed phase at the center element is obtained

by combining Equation (2.67) through Equation (2.69) and

setting m=0 and n=0:

27iqf
e
p
(q,0,0)=e

q
^r . (2.70)

This is the first equation needed to solve for our two

unknowns. The equation from the symmetrical end elements

requires a more detailed derivation. First, from Equation

(2.67) and Equation (2.68), we can write that

6
p
(q,m,n}-

q
.= 9

r
(q,m,n)

.

(2.71)

Assuming M
total

elements along the X axis, the element number

m of these two symmetrical elements can be expressed as ±m',

where m' is defined as

m '=(Mtotal-l)/2. (2.72)
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Let us derive an equation at element -m' first. To eliminate

the radical of Equation (2.69), we square both sides of

Equation (2.71) after substituting Equation (2.69) into

Equation (2.71). The element number -m' is then substituted

in place of m yielding

4
2 2

f
2

Gp (q,m\0)- 20
p
(q,m\O)e

q
.+ 8,.= - \

°
r -2r u (-m'}d

x + (-m'd
x^ (2.73)

In the same manner, the equation at +m' is given by

2 2 2
A C r

ep(q.m',0) - 29p(qjn-.0) 9
q
.+ 9,.= - \

°
ro^rouom'd^lm'dj' (2.74)

Equation (2.73) is added to Equation (2.74) to cancel out the

term containing the direction cosine information to yield

2 2-2 r

6p(q.-m-.0)+ ep{q.m
,

.0)-2e
q
{e

p
(q.-m'.0) + e

p
(qjn

,

.0)]+ 29q-= y-^ r + (m'd xf
(2.75)

This is the second equation needed to solve for our two

unknowns. Next, we square both sides of Equation (2.70) to

form

2 2 2
2 2 4ti q f 2

e
p
M.0)-29

p
(q.0.0)9

q
.+ e

q
.= ^-°T

2

(2.76)

This equation is then substituted into Equation (2.75) to

solve for the 6 , estimate,
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e,.=

2 2 2
2 2 2 8tc q fn ?

2G p -e p
-0

P
+ -±—>'d xPO P-m- Pm' 2 I *'

c

2f2e_-(e_ +e D )PO \ P-m' Pm/

(2.77)

which is one of the two unknowns. Having solved for the first

unknown, we substitute the estimated value for eql into

Equation (2.70) to solve for r . Upon algebraically solving

for r in terms of 6, from Equation (2.70), we obtain

?o=[e q
-e

p (q,o,o)]
2rcqf

(2.78)

In summary, we cancelled the term that contains the

direction cosine variable u in Equation (2.69) by using

symmetrical elements along the X axis (±m'). We combined the

resulting equations derived from these two elements with the

equation representing the phase at the center element. From

these three elements, we formed two equations to solve for two

unknowns. One of these unknowns is the range estimate to the

target, r . The routine is then repeated for the

corresponding three elements along the Y axis.

2 . Estimation of Bearing and Depression Angles

Knowing the range estimate r and the value for 9 ,

greatly simplifies the task of solving for the angular

estimates. We manipulate the terms containing these two

quantities within the phase at each element and effectively

cancel out the wavefront curvature along the X and Y axes.

We perform a linear least-squares estimation to calculate a

45



line that best fits this corrected phase data. The slope of

this line is equal to the direction cosine u given data along

the X axis; v for Y axis data. From the direction cosine

estimates, we can calculate the bearing and depression angles.

For this angular analysis, our goal is to formulate

a new phase term that is a function of a single direction

cosine only. Specifically, we solve for the term u m by

setting n=0 in Equation (2.69) and define this value as our

new phase term. The first step is to subtract the estimated

value of 6 , found in the previous section from the phase value

at each element, to solve for 6
r

(see Equation 2.71). We

substitute this value for 8
r
into Equation (2.69) and solve

for u m as follows

8 uJq,m,n) = u m =
2nqf

8
r
(q,m,n| i"o -(md *T

"2r d x

, n = 0. (2.79)

By setting m=0 and performing a similar algebraic

manipulation, v n can be solved for as

e v lq,m,n) = v n =
2rcqf

6
r
(q,m,n] r -|nd/

-2r d
y

, m = 0.
(2.80)

Using these two equations, we recalculate the new phase at

each element along the X and Y axes. These conditioned phases

are linear along the X and Y axes. From the non-linear

estimation discussion of Section II. B. 5, we utilize the first

two orthogonal polynomials Pno
and P

nl
(see Equation (2.61) and
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Equation (2.62)) to perform a linear least-squares estimation

on this data. The slope of the resulting line estimates is

equal to u and v , respectively.

From these calculated values of u
o

and v , we can

calculate the estimates of the bearing and depression angles

as follows:

and

n = sin
-l

(uo +vo)

1/2

-1 v

¥o =tan -

(2.81)

(2.82)

With this information, our localization of the target is

complete (see Figure 2.3).
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III. SIMULATION RESULTS

Three major categories were chosen in order to validate

the significant capabilities of the localization algorithm.

In Section III. A, the results validating the full angular

coverage capability are presented. Full angular coverage

implies that the target can be localized regardless of its

relative position to the receive array. The multi-harmonic

capability of the algorithm is exercised in Section III.B.

The two test cases presented review the performance of the

algorithm given a single target with several harmonics,

covering a wide frequency spectrum. In the final section of

this chapter, Section III.C, we examine the multiple broadband

target performance of the algorithm. Three targets with two

unique harmonics each and at different locations are tested.

Prior to presenting the results from these test cases, a

review of the design limitations of our computer simulation

is necessary. The computer code is written in the Fortran

language and is organized in modular sections (i.e.,

subroutines reflect major analysis blocks in Figures 2.4 and

2.9). Since the program was written as a research tool, the

emphasis was placed on making the code detailed and easy to

follow. One adverse consequence of this decision is longer

processing times. Given the restrictions on computer
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simulation run times, certain self-imposed design limitations

were required.

The first design limitation is the number of time samples

taken when converting the signal to the frequency domain. In

all of the test cases conducted, 65 time samples at each

element were taken. In the context of our research, we found

that our localization estimates improved when we took more

time-domain samples over the data record. This principle is

also formally documented in [Ref. 1] . The other major

constraint was the number of elements that comprised the

planar array. In each of the following test cases, we used

an 11 x 11 element array. Two beneficial results occur as we

increase the number of elements in the receive array. First,

the dimensions of the array increase. With a larger array,

the wavefront curvature becomes more pronounced. Secondly,

the performance of the modified, frequency-domain, LMS

adaptive algorithm, as well as the curve fitting accomplished

by the non-linear least-squares estimation routine are

enhanced as the data from more elements is processed.

In each of the test cases, the simulation run was first

conducted in a noise-free environment to validate the

propagation and localization models. Once the baseline

results were generated, the test cases were repeated in a

noise environment. The two noise environments chosen

represented SNR values of 0.0 dB and -3.0 dB. An overview of

the algorithm's performance is presented at the beginning of
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the respective test case. The average estimation error of the

target's location at a given harmonic are presented for each

test case.

The modified, freguency-domain LMS adaptive algorithms

conduct a specified number of iterations as the complex

weights are recursively updated (see Section II. B. 3). In all

of the noise cases that were tested, the number of iterations

used in the LMS adaptive algorithms was egual to 100. The

estimation errors that are presented for each test case are

average values. For a given SNR, the average estimation

errors for the range, bearing and depression angles were

obtained by running the computer simulation 50 times.

Lastly, since the range estimate is very sensitive to

wavefront curvature, a plot of the ideal phase variation

across the X or Y axis is given for each test case. Aside

from the actual range position (i.e., NF/FF) , other factors

that affect wavefront curvature include freguency (i.e.,

harmonic number) and relative geometry. Rather than examine

the contribution of each of these individual effects, the

performance of the range estimate will be considered in light

of the plot of wavefront curvature for a given target

(location) and harmonic number.
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A. CATEGORY I: VALIDATION OF THE "FULL ANGULAR COVERAGE"
CAPABILITY

A single target was placed at three positions relative to

the center of the receive array. The first geometry analyzed

is with the target located at a position broadside relative

to the receive array. The range of the target is then varied

to examine the range limitations of the algorithm. In the

second test case, an arbitrary position between broadside and

endfire geometries is analyzed. For these two cases, a single

freguency component of 1000 Hz was used in analyzing the

target. In the final case, the target is placed at a position

endfire to the plane of the array. Three harmonics with a

fundamental freguency of 1000 Hz were used for the target in

this case.

1. Case I. A: Target Located Broadside Relative to the
Planar Array

In this case, the target is located at a depression

angle 9 of 0.0° (i.e., broadside relative to the array). In

Table 1, the no-noise data is presented. Three range cases

are summarized in this table. At a range of 5.89 meters, the

target is located well within the near-field (0.1*p). A

second range located at a position in the middle of the NF

region, 29.4 meters (0.5*p) was tested. The third range

examined represents a position in the extreme far-field, 58.9

km (1000*p) and was chosen to show how well the algorithm

works in this ideal no-noise case, given minimal wavefront
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TABLE 1

CASE I.A.1- TARGET AT BROADSIDE, SINGLE HARMONIC, NO NOISE.

Actual Location Average Estimation Error Range % Diff

LMS
Case

R
o

(m)
%

(deg) (deg) (m)
%
(m)

e
e„

(deg)

So
(deg)

e
>v %

Flat

Curve

0.1*p

5.8905

5.8905

0.0

0.0

0.0

0.0

-0.414

-0.002

-0.414

-0.002

0.0

0.0

-18.3

-45.0

-7.0

0.0

-7.0

0.0

Flat

Curve

0.5*p

29.452

29.452
0.0

0.0

0.0

0.0

-0.095

0.002

-0.095

0.002

0.0

0.0

-90.0

-45.0

-0.3

0.0

-0.3

0.0

Flat

Curve

1000*p

58905
58905

0.0

0.0

0.0

0.0

-0.006

-0.004

-0.006

-0.004

0.0

0.0

-11.3

-45.0

0.0

0.0

0.0

0.0
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curvature. The plot of the wavefront curvature for these

three range values is given in Figure 3.1.

The results from the two modified LMS adaptive

algorithms are presented in Table 1. The algorithm that

assumes separable weights, LMS
flat , is identified as "Flat" in

the table. The algorithm assuming non-separable phase

weights, LMScurve , is denoted by "Curve". Recall that LMS
flat

is ideally suited for minimal wavefront curvature. This

property is supported by the results in that, as target range

increases, the range estimation error decreases. In fact,

when the target is located in the extreme NF region, the range

estimate using LMS
flat

is 7% larger than the actual range

value. LMS curve performs well at all three of these range

cases.

Note the wavefront curvature in Figure 3.1 for the FF

case (1000*/)). For this no-noise case, both algorithms

accurately estimated this extreme range value. For all the

results presented, both algorithms correctly estimated the

depression angle G . In this case, the bearing angle is

arbitrary. Throughout the remaining examples, we will only

discuss the highlights of the results. Since both algorithms

generally give good estimates of the angular information, most

of our discussion will be focused on range estimates.

Table 2 summarizes the broadside results for the 0.0

dB SNR case. The LMS curve algorithm does well in the near

field. However, as the range position is increased to a value
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TABLE 2

CASE I.A.2- TARGET AT BROADSIDE, SINGLE HARMONIC, 0.0 DB.

Actual Location Average Estimation Error Range % Diff

LMS
Case

R
o

(m) (deg) (deg) (m)
X
(m)

e
e„

(deg) (deg)

e^ X
Flat

Curve

0.1 *p

5.8905
5.8905

0.0

0.0

0.0

0.0

-0.409

0.002

-0.423

-0.033

-0.1

-0.3

-174.6

-166.2

-6.9

0.0

-7.2

0.0

Flat

Curve

0.5*p

29.452

29.452
0.0

0.0

0.0

0.0

-0.150

-0.713

-0.449

-0.635

-0.1

-0.3

-168.9

-172.8

-0.5

-2.4

-1.5

-3.1

Flat

Curve

1.0*p

58.905

58.905

0.0

0.0

0.0

0.0

-0.295

-1.701

0.770
-1.852

-0.1

-0.3

-167.2

-164.8

-0.5

-2.9

1.3

-3.1

Flat

Curve

3.0*p

176.72

176.72

0.0

0.0

0.0

0.0

-3.52

-79.2

-16.42

-164.1

-0.1

-0.3

-163.0

-180.7

-2.0

-44.8

-9.3

-92.3

Flat

Curve

4.0*p

235.6

235.6

0.0

0.0

0.0

0.0

-20.4

-161.8

-12.9

-711.4

-0.1

-0.2

-185.0

-192.9

-8.7

-68.7

-5.5

-302

Flat

Curve

5.0*p

294.5

294.5

0.0

0.0

0.0

0.0

-117.2

294.6

-28.1

60.8

-0.1

-0.1

-176.6

-182.3

-39.8

100

-9.5

20.6
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into the FF, the range estimates become unreliable (i.e.,

range estimation error is large; X and Y estimates differ) due

to minimal wavefront curvature. LMS
flat

estimates range out to

a position of 3*p adequately. Figure 3.2 shows the difference

in wavefront curvature for 3*p to 5*p, the region where the

range estimates of the LMS flat algorithm become erroneous. In

the remainder of our test cases, the range estimates of LMS
flat

will be shown as superior to those of LMS curve as we enter the

FF region. However, LMS curve will be seen to perform better in

the extreme NF. This property reflects the assumptions made

concerning the complex phase weights (i.e., separable versus

non-separable) . Even as range estimates became

unsatisfactory, both algorithms continued to estimate the

angular information to within a few tenths of a degree.

Table 3 summarizes the broadside results for -3.0 dB

SNR. As expected, in this noisier environment, the estimates

of both algorithms are degraded. Once again, since range is

the most sensitive of the estimated spherical coordinates, the

corresponding estimates are more severely degraded. Note that

the 6 estimate is still accurate even as the range estimate

becomes more unreliable.

2 . Case I.B: Target with Arbitrary Position

For this test case, the target is positioned at an

arbitrary position given a bearing angle tf of 140° and a

depression angle 9 of 35°. Figure 3.3 depicts the wavefront

curvature for the range values tested in this case. At this
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TABLE 3

CASE I.A.3- TARGET AT BROADSIDE, SINGLE HARMONIC, -3.0 DB.

Actual Location Average Estimation Error Range % Diff

LMS
Case

R
o

(m) (deg)

%
(deg)

e
Ro,

(m)
X
(m)

e
e„

(deg) (deg)

eK X
Flat

Curve

0.1 *p

5.8905

5.8905

0.0

0.0

0.0

0.0

-0.407

0.002

-0.428

-0.049

-0.1

-0.5

-175.1

-167.2

-6.9

0.0

-7.3

-0.8

Flat

Curve

0.5*p

29.452
29.452

0.0

0.0

0.0

0.0

-0.190

-1.287

-0.606

-1.129

-0.1

-0.4

-168.5

-172.0

-0.6

-4.4

-2.1

-3.8

Flat

Curve

1.0*p

58.905
58.905

0.0

0.0

0.0

0.0

-0.518

-3.789

0.960
-6.658

-0.1

-0.4

-174.7

-164.0

-0.9

-6.4

1.6

-11.3

Flat

Curve

3.0*p

176.72

176.72

0.0

0.0

0.0

0.0

-8.505

338.9

-31.53

203.8

-0.1

-0.4

-162.8

-187.5

-4.8

-192

-17.8

-115

Flat

Curve

4.0*p

235.6

235.6
0.0

0.0

0.0

0.0

-58.5

-48.7

-29.0

36.0

-0.1

-0.3

-184.9

-193.2

-24.8

-20.7

-12.3

15.3

Flat

Curve

5.0*p

294.5

294.5

0.0

0.0

0.0

0.0

-33.9

227.0

13.0

-1534
-0.1

-0.4

-176.5

-174.8

-11.5

77.1

4.4
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geometry, the wavefront curvature is considerably less than

the broadside case. The resulting range estimates in a noise

environment bear witness to this fact.

Table 4 documents the results of the no-noise case.

The results indicate minimal error even at a range of 1000*/).

Tables 5 and 6 summarize the performance of the two algorithms

in a noise environment. The same trends that were discussed

in the last section are evident. Once again, LMS
flat

gives the

most reliable maximum range (about 3*p) . The angular

estimates are excellent in both noise environments.

3 . Case I.C; Target with Endfire Geometry

This test case is significant in that it exposes two

limitations in the target localization problem. One

limitation occurs in the phase unwrapping routine performed

in the signal processing section. The second deficiency

observed in this test case can be traced to the range

estimation eguation in the localization algorithm.

Specifically, at this extreme endfire position, the estimates

of the localization algorithm become unreliable.

The first discrepancy occurs when analyzing the

highest harmonic of a target located at an endfire position

relative to the X or Y axis. From our discussion in Section

II. B. 4, we identified this extreme case as the basis for

choosing n radians as the setpoint for the phase unwrapping

algorithm. In our research, we observed that with noise

corruption, or with the slight distortion that resulted from
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TABLE 4

CASE I.B.1- TARGET AT ARBITRARY POSITION, SINGLE HARMONIC,
NO NOISE.

Actual Location Average Estimation Error Range % Diff

LMS
Case

R
o

(m) (cleg) (deg)

***
(m) (m)

e
e„

(deg) (deg)
W %

Flat

Curve

0.1*p

5.8905
5.8905

35.0

35.0

140.0

140.0

-0.198

-0.003

-0.120

-0.002

1.09

0.01

0.35
-0.01

-3.4

0.0

-2.0

0.0

Flat

Curve

0.5*p

29.452
29.452

35.0

35.0

140.0

140.0

-0.071

-0.002

-0.042

-0.002

0.03

0.0

0.02

0.0

-0.2

0.0

-0.1

0.0

Flat

Curve

1000*p

58905
58905

35.0

35.0

140.0

140.0

20.7

24.4

0.114

21.7

0.0

0.0

0.0

0.0

0.4

0.4

0.0

0.4
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TABLE 5

CASE I.B.2- TARGET AT ARBITRARY POSITION,
SINGLE HARMONIC, 0.0 DB.

Actual Location Average Estimation Error Range % Diff

LMS
Case

R
o

(m) (deg) (deg) (m) (m)

e
e„

(deg) (deg)
^ %

Flat

Curve

0.1 *p

5.89

5.89

35.0

35.0

140.0

140.0

-0.192

-0.009

-0.110

-0.012

1.1

0.0

0.3

0.0

0.0

0.0

0.0

0.0

Flat

Curve

0.5*p

29.45

29.45

35.0

35.0

140.0

140.0

-0.356

-0.926

0.078
-0.443

0.0

0.0

0.0

0.0

-1.3

-3.1

0.3

-1.5

Flat

Curve

1.0*p

58.9

58.9

35.0

35.0

140.0

140.0

0.552
-3.47

-0.856

0.230

0.0

0.0

0.0

0.0

0.9

-5.9

-1.4

0.4

Flat

Curve

2.0*p

117.8

117.8

35.0

35.0

140.0

140.0

-3.23

-75.9

-3.15

-591

0.0

0.0

0.0

0.0

-2.7

-64.4

-2.7

-501

Flat

Curve

3.0*p

176.7

176.7

35.0

35.0

140.0

140.0

-23.6

-63.7

-4.6

-239
0.0

0.0

0.0

0.0

-13.3

-36.1

-2.6

-135

Flat

Curve

4.0*p

235.6

235.6

35.0

35.0

140.0

140.0

-25.2

130.1

-29.9

5273
0.0

0.0

0.0

0.0

-25.0

55.2

-12.7

2238
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TABLE 6

CASE I.B.3- TARGET AT ARBITRARY POSITION,
SINGLE HARMONIC, -3.0 DB.

Actual Location Average Estimation Error Range % Diff

LMS
Case

R
o

(m)
%

(deg) (deg) (m) (m)

e
e„

(deg) (deg)
% X

Flat

Curve

0.1 *p

5.89

5.89

35.0

35.0

140.0

140.0

-0.190

-0.019

-0.106

-0.022

1.1

0.0

0.3

0.0

-3.2

-0.3

-1.8

-0.4

Flat

Curve

0.5*p

29.45

29.45

35.0

35.0

140.0

140.0

-0.512

-1.709

0.105
-0.782

0.0

0.0

0.0

0.0

-1.7

-5.8

0.4

-2.7

Flat

Curve

1.0*p

58.9

58.9

35.0

35.0

140.0

140.0

0.541

-8.69

-1.379

-1.555

0.0

0.0

0.0

0.0

0.9

-14.8

-2.3

-2.6

Flat

Curve

2.0*p

117.8

117.8

35.0

35.0

140.0

140.0

-7.93

128

-7.07

16.6

0.0

0.0

0.0

0.0

-6.7

109

-6.0

14

Flat

Curve

3.0*p

176.7

176.7

35.0

35.0

140.0

140.0

-50.4

-174

-17.5

-137
0.0

0.0

0.0

0.0

-28.5

-98.7

-9.9

-77.4

Flat

Curve

4.0*p

235.6

235.6
35.0

35.0

140.0

140.0

-65.0

474
-413

359
0.0

0.0

0.0

0.0

-27.6

161

-175

122
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the signal processing section of our analysis (in the absence

of noise) , the phase difference between two elements might

deviate slightly above the maximum slope of the phase

variation (ir radians) . The phase unwrapping algorithm

classifies this phase difference as a wrap, even though one

did not occur. The localization algorithm cannot properly

process the phase data with this erroneous unwrapping.

Conversely, the phase unwrapping algorithm might not detect

an element where the phase had been wrapped. This unwrap

anomaly only occurs at the highest harmonic when the target

is located at endfire on an axis of the receive array.

The second limitation observed from this endfire case

is more general in that it applies to all harmonics.

Additionally, the discrepancy occurs when the target is

located at a position endfire to the array, irrespective of

the on-axis condition. Referring to Equation 2.77, which is

one of the two equations essential for estimating the range,

it can be seen that as the denominator approaches zero, the

equation becomes invalid. Therefore, one limit of this

equation is when twice the phase value at the center element,

©pC 1?/ °/ °) / is equal to the sum of the phase values at the end

elements, 9 (q,-m',0) + 6 (q,m',0). This condition is

approached when the target is located at a position endfire

to the receive array.

Since the second limitation is more general than the

unwrap anomaly, we chose to examine a target at an endfire

64



position off the array axis. Specifically, the bearing angle

<I» chosen is equal to 237°. Additionally, we examined a

target with three harmonics with a fundamental frequency of

1000 Hz. From Table 7, the no-noise case, we observe a

discrepancy in the spherical coordinate estimates for LMS
flat

in the extreme NF (0.1*pm
-

n ). Tables 8 and 9 document the

performance of the algorithm in the presence of noise. Aside

from the 0.1*pmin case for LMS flat , both algorithms estimate the

angular information satisfactorily. However, the range

estimates of both algorithms using the phase values in the Y

direction are erroneous. The phase variation curves shown in

Figures 3.4 and 3.5 were generated for the highest frequency

component (3 000 Hz) . By comparing the curvature in Figure 3.4

with that shown in Figure 3.5, we see that the phase variation

along the Y axis is more linear. With near linear phase

variation at endfire, the denominator of Equation 2.77

approaches zero.

In summary, this range estimation limitation only

occurs at endfire geometries when a near-linear phase

variation exists. The error introduced to the 9 , estimate

(see Equation 2.75) is cancelled by the resulting error in

range estimation (see Equation 2.76) such that the angular

estimates are still valid (see Equations 2.79 and 2.80). This

discrepancy combined with the unwrap deficiency outlined above

are the only two limitations observed as we analyzed the full

angular coverage capability of the algorithm.
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TABLE 7

CASE I.C.I- TARGET AT ENDFIRE POSITION,
THREE HARMONICS, NO NOISE.

Actual Location Average Estimation Error Range % Diff

q
(m) (deg) (deg) (m)

%
(m)

e
e

f
de

fi)
(deg)
^ %

Flat 0.1*pmin

1 0.654 90.0 237.0 -0.026 -0.163 33.5 3.66 -3.98 -24.9

2 0.654 90.0 237.0 -0.004 -0.151 31.9 4.34 -0.61 -23.1

3 0.654 90.0 237.0 -0.038 -0.567 45.4 16.7 -5.81 -86.7

Curve

1 0.654 90.0 237.0 -0.008 0.019 0.0 -1.29 -1.22 2.91

2 0.654 90.0 237.0 0.000 0.027 0.0 -1.31 0.0 4.13

3 0.654 90.0 237.0 -0.001 0.026 0.0 -1.30 -0.15 3.98

Flat 0.5*pmin

1 3.272 90.0 237.0 -0.206 -1.064 0.0 1.38 -6.30 -32.5

2 3.272 90.0 237.0 -0.448 -1.510 0.0 1.00 -13.7 -46.2

3 3.272 90.0 237.0 -4.159 9.435 0.0 -3.81 -127 288

Curve

1 3.272 90.0 237.0 0.003 0.008 0.0 0.0 0.09 0.24

2 3.272 90.0 237.0 0.002 0.004 0.0 0.0 0.06 0.12

3 3.272 90.0 237.0 -0.001 -0.002 0.0 0.0 -0.03 -0.06

Flat 1000*pmax

1 19635 90.0 237.0 48.7 -40.2 0.0 0.0 0.25 -0.20

2 19635 90.0 237.0 17.0 20.0 0.0 0.0 0.09 0.10

3 19635 90.0 237.0 -10.6 0.04 0.0 0.0 -0.05 0.00

Curve

1 19635 90.0 237.0 -75.4 -53.9 0.0 0.0 -0.38 -0.27

2 19635 90.0 237.0 -10.3 45.0 0.0 0.0 -0.05 0.23

3 19635 90.0 237.0 -7.12 31.4 0.0 0.0 -0.04 0.16
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TABLE 8

CASE I.C.2- TARGET AT ENDFIRE POSITION,
THREE HARMONICS, 0.0 DB.

Actual Location Average Estimation Error Range % Diff

q R
o

(m)

So
(deg)

T
o

(deg) (m)
%
(m)

e
e„

(deg)

So
(deg)

e«.
e\

Flat 0.1*pmir i

1 0.654 90.0 237.0 -0.024 -0.170 33.6 3.82 -3.67 -26.0

2 0.654 90.0 237.0 -0.003 -0.149 30.5 4.38 -0.46 -22.8

3 0.654 90.0 237.0 -0.321 -0.006 42.0 11.4 -49.1 -0.92

Curve

0.654 90.0 237.0 -0.002 -0.020 7.29 -1.53 -3.36 3.061

2 0.654 90.0 237.0 0.007 0.025 2.88 -0.98 1.07 3.82

^ 0.654 90.0 237.0 -0.340 -0.922 35.2 16.3 -51.9 -140

Flat 0.5*pmin

1 3.27 90.0 237.0 -0.209 -1.38 0.0 1.21 -6.39 -42.0

2 3.27 90.0 237.0 -0.401 -1.95 0.0 0.904 -12.3 -63.7

3 3.27 90.0 237.0 -3.14 -3.91 10.8 -0.866 -96.1 120

Curve

1 3.27 90.0 237.0 -0.120 -1.88 3.34 -0.349 -3.67 -42.0

2 3.27 90.0 237.0 0.144 -1.95 2.67 -0.120 -4.40 -59.7

3 3.27 90.0 237.0 -0.027 -0.266 15.3 4.25 -0.83 -8.13

Flat 1.0*pmax

1 19.6 90.0 237.0 -6.60 -5.91 1.24 -0.1 -33.6 -30.1

2 19.6 90.0 237.0 -1.33 -9.20 1.41 0.105 -6.77 -46.8

3 19.6 90.0 237.0 -0.22 -2.44 0.861 0.06 -1.12 -12.4

Curve

19.6 90.0 237.0 23.8 16.9 5.27 -2.04 121 85.91

2 19.6 90.0 237.0 0.115 6.47 2.79 0.079 0.59 32.9

3 19.6 90.0 237.0 -1.85 14.6 12.0 2.32 -9.40 74.2

Flat 3.0*pmax

1 58.9 90.0 237.0 -12.3 80.6 2.56 -0.14 -20.8 137
2 58.9 90.0 237.0 2.46 -140 1.62 -0.05 4.18 -238

3 58.9 90.0 237.0 -202 -157 1.72 -0.01 -343 -267

Curve

58.9 90.0 237.0 49.4 56.5 3.69 -0.245 83.9 96.01

2 58.9 90.0 237.0 21.8 71.7 2.20 -0.180 37.0 122
3 58.9 90.0 237.0 -183 31.0 10.2 2.20 -310 52.7
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TABLE 9

CASE I.C.3- TARGET AT ENDFIRE POSITION,
THREE HARMONICS, -3.0 DB.

Actual Location Average Estimation Error Range % Diff

q
(m) (deg) (deg) (m)

X e
e„

(deg) (deg)

e
*o, %

Flat 0.1*pmin

1 0.654 90.0 237.0 -0.023 -0.173 33.5 3.90 -3.52 -26.0

2 0.654 90.0 237.0 -0.001 -0.144 28.6 4.30 -0.15 -22.8

3 0.654 90.0 237.0 -0.223 -0.076 42.5 4.97 -34.1 -0.92

Curve

1 0.654 90.0 237.0 0.054 0.130 10.3 2.34 8.26 19.9

2 0.654 90.0 237.0 -0.041 -0.036 5.84 -0.65 -6.27 -5.50

3 0.654 90.0 237.0 -1.698 -1.613 44.2 16.5 -259 -246

Flat 0.5*pmir

1 3.27 90.0 237.0 -0.230 -2.09 0.0 1.13 -7.03 -63.9

2 3.27 90.0 237.0 -0.988 -3.10 0.0 0.745 -30.2 -94.6

3 3.27 90.0 237.0 -3.11 3.93 17.4 0.912 -95.0 120

Curve

1 3.27 90.0 237.0 -0.837 1.75 4.07 -0.483 -25.6 53.6

2 3.27 90.0 237.0 -0.275 -1.28 2.83 0.124 -8.40 -39.1

3 3.27 90.0 237.0 -8.51 0.843 24.5 7.59 -260 25.8

Flat 1.0*pma*

1 19.6 90.0 237.0 -15.6 19.2 1.50 -0.107 -79.6 98.0

2 19.6 90.0 237.0 -2.88 38.9 1.74 0.133 -14.7 198

3 19.6 90.0 237.0 -0.569 36.4 1.13 0.068 -2.9 185

Curve

1 19.6 90.0 237.0 20.6 11.7 8.38 -5.54 105 59.8

2 19.6 90.0 237.0 10.5 7.52 4.01 0.363 53.7 38.3

3 19.6 90.0 237.0 3.30 17.2 26.2 9.08 16.8 87.7

Flat 3.0*pmax

1 58.9 90.0 237.0 -105 37.1 2.92 -0.209 -179 63.0

2 58.9 90.0 237.0 25.6 -31.6 1.88 -0.079 43.4 -53.6

3 58.9 90.0 237.0 -42.7 99.7 2.04 -0.012 -72.5 169

Curve

58.9 90.0 237.0 77.5 133 4.38 -1.61 132 2251

2 58.9 90.0 237.0 41.2 58.0 2.24 -0.087 70.0 98.5

3 58.9 90.0 237.0 67.1 -279 23.9 7.96 114 -472
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B. CATEGORY II: VALIDATION OF THE MULTI-HARMONIC CAPABILITY

The wavefront curvature, as measured at the surface of a

receive array, is a function of a target's range (see Section

II. B. 2). In addition, the amount of wavefront curvature is

also a function of the wavelength and thereby, frequency of

the harmonic being processed. Given a target at a fixed

position in space, for a given harmonic, the range value of

the target can be represented by a constant times the range

to the NF/FF boundary (const * p) . As we analyze a target at

a different harmonic, the value for the range to the NF/FF

boundary (p) changes (see Equation 2.31). As we discuss the

results of this section, we will occasionally refer to the

range to the NF/FF boundary for a given harmonic as p , where

q is the harmonic of interest. To describe this harmonic

dependency of p , and the resultant relative position of the

target to this p, consider the following example. Suppose a

target has 10 harmonics to be analyzed in the frequency

domain. Assume that at the highest harmonic, the range of the

target can be specified as 0.1 * p 10
. The range to the same

target is equal to 1.0 * p 1
at the lowest harmonic. At the

highest harmonic, the relative range to the target can be

considered in the extreme near-field region. While, for the

lowest harmonic, the relative range of the target is equal to

p 1r the range to the NF/FF boundary. From this example, we

see that a scenario could exist where a target may be

considered as a NF target at one harmonic and a FF target at
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another harmonic, even though the target remains at a fixed

position in space.

In this case study, we analyze the performance of the two

algorithms given a target that has many frequency components.

In the first case, the target is located at a relative range

of 0.56 * p 9
(NF) at the highest harmonic. At the lowest

harmonic, the relative position of the target is equal to 5

* p
1

(FF) . The second example is chosen to represent a target

with a relative range in the extreme NF at the highest

component (0.1 * p 7 ) , to a relative range closer to the NF/FF

boundary at the lowest component (0.7 * p.,) .

1. Case II. A: Target With Nine Harmonics

In this test case, a fundamental frequency was chosen

at 400 Hz. With nine harmonics, the band of the frequency

spectrum varies from 400 to 3600 Hz. The results summarizing

the performance of the two localization algorithms are

presented in Tables 10 through 12. In the no-noise case

(Table 10) , the LMS curve data reflects the dependence of the

relative target position on frequency. At the lowest

harmonic, where the target is at five times the relative NF/FF

boundary (5 * p.,) , the range estimation error is largest. As

harmonic number increases, the relative position of the target

with respect to the p value at a given harmonic decreases.

At the highest harmonic, the relative position of the target

is in the NF and the range estimation error is the lowest.

This effect is not evident in the LMS
flat

results.
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TABLE 10

CASE D.A.l - SINGLE TARGET, MULTI-HARMONIC (9), NO NOISE.

Actual Location Average Estimation Error Range % Diff

q R
o

(m) (deg)

%
(deg) (m)

X e
e„

(deg) (deg)
w %

Flat

1

5.0*pmin

5.0 310.0 -0.023 -0.023 0.013 -0.002 -0.25 -0.259.09

2 9.09 5.0 310.0 -0.023 -0.023 0.013 -0.001 -0.25 -0.25

3 9.09 5.0 310.0 -0.023 -0.023 0.013 -0.001 -0.25 -0.25

4 9.09 5.0 310.0 -0.023 -0.023 0.013 -0.001 -0.25 -0.25

5 9.09 5.0 310.0 -0.023 -0.023 0.013 -0.001 -0.25 -0.25

6 9.09 5.0 310.0 -0.023 -0.023 0.013 -0.001 -0.25 -0.25

7 9.09 5.0 310.0 -0.023 -0.023 0.013 -0.001 -0.25 -0.25

8 9.09 5.0 310.0 -0.023 -0.023 0.013 -0.001 -0.25 -0.25

9 9.09 5.0 310.0 -0.023 -0.023 0.013 -0.001 -0.25 -0.25

Curve 5.0*pmin

1 9.09 5.0 310.0 0.004 0.004 -0.002 0.0 0.04 0.04

2 9.09 5.0 310.0 0.002 0.002 -0.001 0.0 0.02 0.02

3 9.09 5.0 310.0 0.001 0.001 -0.001 0.0 0.01 0.01

4 9.09 5.0 310.0 0.001 0.001 0.0 0.0 0.01 0.01

5 9.09 5.0 310.0 0.001 0.001 0.0 0.0 0.01 0.01

6 9.09 5.0 310.0 0.001 0.001 0.0 0.0 0.01 0.01

7 9.09 5.0 310.0 0.001 0.001 0.0 0.0 0.01 0.01

8 9.09 5.0 310.0 0.001 0.001 0.0 0.0 0.01 0.01

9 9.09 5.0 310.0 0.000 0.584 0.0 0.0 0.00 0.00
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TABLE 11

CASE D.A.2- SINGLE TARGET, MULTI-HARMONIC (9), 0.0 DB.

Actual Location Average Estimation Error Range % Diff

q R
o

(m)

e
(deg) (deg) (m)

X
(m)

e
e„

(deg)

So
(deg)
% %

Flat

1

5.0*pmin

5.0 310.0 108 7.02 -0.559 3.00 1190 77.29.09

2 9.09 5.0 310.0 -11.0 -2.73 -0.311 2.48 -121 -30.1

3 9.09 5.0 310.0 -2.46 -1.28 0.010 -0.855 -27.1 -14.1

4 9.09 5.0 310.0 -1.18 -0.813 -0.096 -0.843 -13.0 -8.94

5 9.09 5.0 310.0 -0.350 -0.010 -0.017 0.524 -3.85 -0.11

6 9.09 5.0 310.0 -0.027 -0.094 0.032 0.268 -0.30 -1.03

7 9.09 5.0 310.0 -0.016 -0.225 0.007 -0.094 -0.18 -2.48

8 9.09 5.0 310.0 -0.143 -0.245 -0.003 0.829 -1.57 -2.70

9 9.09 5.0 310.0 -0.034 -0.289 0.017 -0.104 -0.37 -3.18

Curve 5.0*pmm

1 9.09 5.0 310.0 7.94 8.84 -4.72 93.5 87.3 97.2

2 9.09 5.0 310.0 8.91 9.91 -1.82 25.3 98.0 109

3 9.09 5.0 310.0 -7.64 1.60 -2.17 6.11 -84.1 17.6

4 9.09 5.0 310.0 1.60 -20.5 0.062 2.08 17.6 -226

5 9.09 5.0 310.0 -8.48 4.43 -0.164 2.10 -93.3 48.7

6 9.09 5.0 310.0 -2.05 -2.14 -0.093 -0.056 -22.6 -23.6

7 9.09 5.0 310.0 -5.19 -8.44 -0.079 -0.165 -57.1 -92.8

8 9.09 5.0 310.0 -8.85 0.207 -0.218 0.587 -97.4 2.28

9 9.09 5.0 310.0 -1.77 0.584 -0.364 0.605 -19.4 6.42
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TABLE 12

CASE D.A.3- SINGLE TARGET, MULTI-HARMONIC (9), -3.0 DB.

Actual Location Average Estimation Error Range % Diff

q R
o % W \ e

e„ %) % \(m) (de?) (deg) (m) (m) (deg) (dep)

Flat

1

5.0*pmin

5.0 310.0 7.97 -16.3 -1.05 25.5 87.7 -1799.09

2 9.09 5.0 310.0 -10.6 16.0 -0.526 3.55 -116 176

3 9.09 5.0 310.0 -4.14 -5.91 -0.010 -1.35 -45.6 -65.0

4 9.09 5.0 310.0 -3.29 -2.70 -0.155 -1.19 -36.2 -29.7

5 9.09 5.0 310.0 -1.41 -0.218 -0.039 0.682 -15.6 -2.40

6 9.09 5.0 310.0 -0.114 -0.336 0.033 0.319 -1.25 -3.70

7 9.09 5.0 310.0 -0.110 -0.427 0.002 -0.051 -1.21 -4.70

8 9.09 5.0 310.0 -0.279 -0.550 -0.013 1.21 -3.07 -6.05

9 9.09 5.0 310.0 -0.149 -0.511 0.018 -0.154 -1.64 -5.62

Curve 5.0*pmin

1 9.09 5.0 310.0 11.5 8.88 -17.4 102 127 97.7

2 9.09 5.0 310.0 0.088 10.0 -8.21 53.3 0.97 110

3 9.09 5.0 310.0 2.38 106 -8.00 39.4 26.2 1171

4 9.09 5.0 310.0 -89.8 18.8 -2.17 26.4 -988 207

5 9.09 5.0 310.0 -2.24 -1.62 -1.31 12.5 -24.6 -17.8

6 9.09 5.0 310.0 5.30 -4.04 -2.99 21.5 58.3 -44.4

7 9.09 5.0 310.0 -1.40 1.93 -2.83 13.3 -15.4 21.2

8 9.09 5.0 310.0 15.4 -3.40 -0.526 2.11 170 -37.4

9 9.09 5.0 310.0 -1.75 -4.53 -1.07 16.7 -19.2 -49.9
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Figure 3 . 6 describes the phase variation across the

X axis for three harmonics. At the highest harmonic, the

wavefront curvature is most significant; whereas, for the

lowest component, the curvature is minimal. The test case

results for the scenarios with noise corruption are presented

in Tables 11 and 12. In general, LMS flat performs the best

over the wide range of frequencies. For the lowest three

harmonics, neither algorithm provides an adequate range

estimate.

2 . Case II. B: Target With Seven Harmonics

In this case, we examine a target with a range value

equal to 0.7 * pr The fundamental frequency is 400 Hz and

the band of the frequency spectrum covers 400 to 2800 Hz.

Since the lowest harmonic describes the maximum relative range

of the target to the NF/FF boundary, the relative ranges at

every harmonic will be within the NF. This case was chosen

to demonstrate the performance of both LMS algorithms at each

harmonic. As was previously discussed, LMS
flat

should perform

best in cases with minimal wavefront curvature. The converse

is true for LMS curve . A different bearing and depression angle

were chosen for this case.

The trends discussed in the last section are evident

in the results presented in Tables 13 through 15 for this

case. In the noise cases (Tables 14 and 15), LMS
flat

gives a

better range estimate for the first two harmonics than the

LMS curve
estimates. LMS curve

performs best for the higher
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TABLE 13

CASE II.B.1- SINGLE TARGET, MULTI-HARMONIC (7), NO NOISE.

Actual Location Average Estimation Error Range % Diff

q R
o

(m) (deg) (deg) (m)
X
(m)

e
e„

(deg)
W X

Flat

1

0.7*pmin

23.0 129.0 -0.109 -0.125 1.285 -0.177 -5.18 -5.942.104

2 2.104 23.0 129.0 -0.109 -0.124 1.283 -0.175 -5.18 -5.89

3 2.104 23.0 129.0 -0.108 -0.124 1.279 -0.174 -5.13 -5.89

4 2.104 23.0 129.0 -0.107 -0.123 1.274 -0.171 -5.09 -5.85

5 2.104 23.0 129.0 -0.106 -0.122 1.265 -0.173 -5.04 -5.80

6 2.104 23.0 129.0 -0.105 -0.120 1.254 -0.175 -4.99 -5.70

7 2.104 23.0 129.0 -0.103 -0.118 1.241 -0.178 -4.90 -5.61

Curve 0.7*pmin

1 2.104 23.0 129.0 0.005 0.005 -0.037 0.1 0.24 0.24

2 2.104 23.0 129.0 0.002 0.002 -0.004 0.1 0.10 0.10

3 2.104 23.0 129.0 0.001 0.001 0.007 0.1 0.05 0.05

4 2.104 23.0 129.0 -0.002 -0.002 0.045 0.1 -0.10 -0.10

5 2.104 23.0 129.0 -0.002 -0.002 0.042 0.1 -0.10 -0.10

6 2.104 23.0 129.0 -0.002 -0.002 0.040 0.1 -0.10 -0.10

7 2.104 23.0 129.0 -0.002 -0.002 0.038 0.1 -0.10 -0.10
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TABLE 14

CASE II.B.2- SINGLE TARGET, MULTI-HARMONIC (7), 0.0 DB.

Actual Location Average Estimation Error Range % Diff

q R
o % % e

*ox X e
e„

e
Vo e R,

e
R

(m) (dc: . (deg)
iEL (m) (deg) w T)x oy

Flat

1

0.7*pmm

23.0 129.0 -0.171 -0.220 1.395 -0.130 -8.13 -10.52.104

2 2.104 23.0 129.0 -0.171 -0.130 1.367 0.214 -8.13 -6.18

3 2.104 23.0 129.0 -0.116 -0.131 1.279 0.161 -5.51 -6.23

4 2.104 23.0 129.0 -0.104 -0.119 1.163 -0.169 -4.94 -5.66

5 2.104 23.0 129.0 -0.106 -0.135 1.231 -0.286 -5.04 -6.42

6 2.104 23.0 129.0 -0.115 -0.121 1.280 -0.088 -5.47 -5.75

7 2.104 23.0 129.0 -0.102 -0.125 1.240 -0.229 -4.85 -5.94

Curve 0.7*pmin

1 2.104 23.0 129.0 -0.988 0.338 -1.78 2.31 -47.0 16.1

2 2.104 23.0 129.0 -0.356 -0.323 -0.506 2.35 -16.9 -15.4

3 2.104 23.0 129.0 -0.016 -0.076 -0.022 -1.36 -0.76 -3.61

4 2.104 23.0 129.0 0.058 0.153 -4.29 -3.11 2.76 7.27

5 2.104 23.0 129.0 -0.028 -0.002 -1.40 1.09 -1.33 2.99

6 2.104 23.0 129.0 -0.063 -0.063 -0.006 -0.008 -2.99 -1.57

7 2.104 23.0 129.0 -0.020 -0.214 0.29 -0.447 -0.95 -10.2
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TABLE 15

CASE H.B.3- SINGLE TARGET, MULTI-HARMONIC (7), -3.0 DB.

Actual Location Average Estimation Error Range % Diff

q R
o

(m)
%

(deg) (deg) (m) (m)

e
9„

(deg)

eV
(deg)

e^ %
Flat

1

0.7*pmin

23.0 129.0 -0.238 -0.292 1.385 -0.095 -11.3 -13.92.104

2 2.104 23.0 129.0 -0.204 -0.139 1.380 0.387 -9.70 -6.61

3 2.104 23.0 129.0 -0.122 -0.135 1.264 0.298 -5.80 -6.42

4 2.104 23.0 129.0 -0.105 -0.119 1.113 -0.159 -4.99 -5.66

5 2.104 23.0 129.0 -0.108 -0.142 1.211 -0.328 -5.13 -6.75

6 2.104 23.0 129.0 -0.120 -0.123 1.289 -0.056 -5.70 -5.85

7 2.104 23.0 129.0 -0.103 -0.128 1.240 -0.250 -4.90 -6.08

Curve 0.7*pmin

1 2.104 23.0 129.0 -6.38 -0.471 -6.13 4.58 -303 -22.4

2 2.104 23.0 129.0 2.35 -0.174 -5.37 6.89 112 -8.27

3 2.104 23.0 129.0 -0.050 0.093 -3.22 -7.16 -2.38 4.42

4 2.104 23.0 129.0 0.373 3.67 -7.79 -3.96 17.7 17.4

5 2.104 23.0 129.0 -0.088 -0.074 -4.26 -2.52 -4.18 -3.52

6 2.104 23.0 129.0 -0.268 -0.578 -2.36 1.95 -12.7 -27.5

7 2.104 23.0 129.0 -1.94 -0.590 -0.792 1.09 -92.2 -28.0
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harmonics. The phase variation for harmonics three through

seven contain significant wavefront curvature as seen in

Figure 3.7. Harmonics one and two have minimal wavefront

curvature. This case demonstrates the regions where one LMS

algorithm is superior to the other.

C. CATEGORY III: VALIDATION OF THE MULTIPLE TARGET
CAPABILITY

In this final section, the performance of the two

algorithms is evaluated in a multiple target, multiple

harmonic case. Three targets are oriented at random

geometries in both the NF and FF regions. Each target

radiates two unigue spectral lines resulting in six total

harmonics. A fundamental frequency of 100 Hz was chosen.

Therefore, the band of the frequency spectrum is 100 to 700

Hz. Many factors affect the amount of wavefront curvature

for a given harmonic. This test case shows the complexities

involved in analyzing a target when several of the wavefront

curvature limiting effects are combined. Two major factors

are evident as we analyze the multiple targets in this

scenario. First, as a target's depression angle increases

from the broadside position, the amount of wavefront curvature

becomes less significant. Secondly, as we analyze data at

lower harmonics, the wavefront curvature is also less. These

two factors were examined individually in Sections III. A. 3 and

Section III.B.
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Target 1 is located in the near field (0.3 * p mjn ) at

e =42° and $ = 153° and radiates harmonics 1 and 3. Target

2 is closer to the NF/FF boundary (1.8 * /> min ) at 6 = 71° and

$ = 218° (harmonics 2 and 5). The final target is in the FF

(3.0 * p max ) at 6 = 2° and <& = 47° (harmonics 4 and 6). In

order to prevent the FF target from being masked by the noise

levels of the other targets, the initial magnitude of the

Fourier series coefficients were weighted so that the signal

strength of each target at the receive array would be equal.

We will summarize the results in Tables 16 through 18 by

considering the targets one at a time.

From Table 16, in the absence of noise, the LMS curve routine

localizes Target 1 with minimal estimation errors. However,

in a noise environment (see Tables 17 and 18) , LMS
fLat

yields

a more accurate estimate of the spherical coordinates at both

harmonics. Given the phase variation shown in Figure 3.8, it

is clear that at both harmonics, significant wavefront

curvature is present. Under these conditions, LMS curve should

perform better than LMS
flat , but it does not.

This performance discrepancy can be attributed in part to

the design of the array. Since the interelement spacing is

optimally designed for the highest frequency of interest, the

performance of the localization algorithm at lower frequencies

is degraded. The results recorded in Table 16 bear witness

to this fact. The range estimation error is maximum at the

lowest harmonic. A similar trend was also observed in the
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TABLE 16

CASE ID- MULTI-TARGET (3), MULTI-HARMONIC (6), NO NOISE.

Actual Location Average Estimation Error Range % Diff

q R
o

(m) (deg)

%
(deg) (m)

X
(m)

e
e„

(deg) (deg)
X %

Flat

1 9.817 42.0 153.0 -0.659 0.039 1.81 1.35 -6.71 0.40

2 58.90 71.0 218.0 -0.685 -0.294 -0.411 -0.067 -1.16 -0.50

3 9.817 42.0 153.0 -0.619 0.066 1.72 1.36 -6.31 0.67

4 294.5 2.0 47.0 -0.026 -0.026 0.00 0.00 -0.01 -0.01

5 58.90 71.0 218.0 -0.707 -0.302 -0.411 -0.066 -1.20 -0.51

6 294.5 2.0 47.0 -0.026 -0.026 0.00 0.00 -0.01 -0.01

Curve

1 9.817 42.0 153.0 0.040 0.020 -0.132 -0.042 0.41 0.20

2 58.90 71.0 218.0 0.028 0.016 -0.023 0.00 0.05 0.03

3 9.817 42.0 153.0 -0.005 -0.011 0.021 -0.041 -0.05 -0.11

4 294.5 2.0 47.0 0.004 0.004 0.00 0.00 0.00 0.00

5 58.90 71.0 218.0 -0.011 -0.006 0.009 0.00 -0.02 -0.01

6 294.5 2.0 47.0 0.002 0.002 0.00 0.00 0.00 0.00
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TABLE 17

CASE ID- MULTI-TARGET (3), MULTI-HARMONIC (6), 0.0 DB.

Actual Location Average Estimation Error Range % Diff

q R
o

(m) (deg) (deg) (m)
%

(m)

e
e„

(deg) (deg)
^ X

Flat

1 9.817 42.0 153.0 -1.19 -0.275 1.99 1.29 -12.1 -2.8

2 58.90 71.0 218.0 -72.5 -18.8 -0.596 -0.10 -123 -32.1

3 9.817 42.0 153.0 -0.542 0.051 1.58 1.46 -5.52 0.52

4 294.5 2.0 47.0 626 -53.1 -0.044 -0.270 213 -18.0

5 58.90 71.0 218.0 -2.96 -2.52 -0.301 -0.047 -5.02 -4.27

6 294.5 2.0 47.0 -11.2 -26.3 0.037 0.107 -3.80 -8.94

Curve

1 9.817 42.0 153.0 -3.47 9.84 -3.57 -0.453 -35.3 100
2 58.90 71.0 218.0 31.8 165 -1.18 0.168 54.1 280
3 9.817 42.0 153.0 1.83 0.918 -3.85 4.09 18.7 9.35

4 294.5 2.0 47.0 276 301 -0.255 -32.2 93.8 102

5 58.90 71.0 218.0 146 -34.0 0.723 -0.214 248 -57.7

6 294.5 2.0 47.0 -8.03 -10.4 -0.145 -2.52 -2.73 -3.54
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TABLE 18

CASE IH- MULTI-TARGET (3), MULTI-HARMONIC (6), -3.0 DB.

Actual Location Average Estimation Error Range % Diff

q R
o

(m) (deg)

T
o

(deg)
%
(m)

e
e„

(deg)
^ %

Flat

1 9.817 42.0 153.0 -1.74 -0.488 1.85 1.32 -17.7 -4.97

2 58.90 71.0 218.0 160 21.5 -0.794 -0.112 271 36.5

3 9.817 42.0 153.0 -0.549 0.023 1.52 1.49 -5.59 0.23

4 294.5 2.0 47.0 497 145.7 -0.070 -0.241 168 49.5

5 58.90 71.0 218.0 -7.30 -4.91 -0.280 -0.038 -12.4 -8.34

6 294.5 2.0 47.0 -242 12700 0.050 0.055 -82.2 4303

Curve

1 9.817 42.0 153.0 -1.52 6.65 -9.80 2.32 -15.5 67.8

2 58.90 71.0 218.0 41.3 50.9 1.33 -0.747 70.1 86.4

3 9.817 42.0 153.0 5.28 1.04 -6.65 16.5 53.8 10.6

4 294.5 2.0 47.0 -29.1 228 -1.30 -53.1 -9.88 77.6

5 58.90 71.0 218.0 22.1 5.59 9.48 -2.84 37.5 9.49

6 294.5 2.0 47.0 53.6 419 -0.256 -15.6 18.2 142
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single target, multiple harmonic cases in Section III.B (see

Tables 10 and 13) . Although the wavefront curvature is

minimal at the lowest harmonic, another contribution to the

increase in range estimation error at the lower harmonics is

the inefficiency introduced from the array design.

From Tables 17 and 18, it appears that the LMS curve

algorithm is more sensitive to the inefficient array design

at the lower harmonics. In the single harmonic test cases

previously discussed (Section III. A), the maximum reliable

range estimate determined by the LMS curve algorithm for the 0.0

dB noise case was approximately 1.0 * p. Whereas, for the

same conditions, the LMS
fLat

algorithm could adeguately

determine a range estimate out to a range value of 3.0 * p.

Given a scenario with an increased number of harmonics, this

disparity in the maximum range estimate performance of the

two algorithms is amplified at lower harmonics. As a result,

even though Target 1 exhibits significant wavefront curvature,

the LMS
curve algorithm does not efficiently analyze the target

at the low harmonics (q = 1,3).

The wavefront curvature of Target 2 is negligible at both

of its harmonics, q = 2,5. The major cause for this is the

depression angle
O

. Target 2 is located at a depression

angle G = 71°. This target, although positioned at the NF/FF

interface region, is located close to endfire. As a result,

the phase variation across the Y axis is negligible (see

Figure 3.9). The LMS
curve

algorithm cannot correctly estimate
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the range of a target given this minimal wavefront curvature.

At the higher harmonic (q=5) , the LMS flat
algorithm gives a

good range estimate for this target.

Target 3, the target located in the FF region, radiates

harmonics q = 4,6. For the 0.0 dB case (refer to Table 17),

LMS curve produces a good estimate at the highest harmonic q =

6. Both algorithms perform poorly for this target at q = 4.

From Figure 3.10 it can be seen that significant wavefront

curvature is evident at these harmonics even with the target

positioned in the far-field. As seen in our earlier results,

this can be attributed to the near broadside orientation of

the target relative to the array (6 = 2°). The superior

performance of LMS curve at this harmonic, can be attributed to

significant wavefront curvature coupled with the fact that

the array design is optimized at this highest harmonic. The

LMS
flat

algorithm adequately estimates the target range at

harmonic 6. In summary, this case is the most complex to

analyze in that several factors must be considered simul-

taneously at each harmonic to evaluate algorithm performance.

At low harmonics, the performance of the LMS
flat

algorithm is

slightly superior to that of LMScurve
for the given targets.

The LMS curve algorithm performed better than LMS
flat

at the

highest harmonic for the target near broadside. Target 2

generates minimal wavefront curvature and was most difficult

to localize in range. All angular estimates were within five

degrees for the 0.0 dB noise case and 10 degrees for -3.0 dB.
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IV. CONCLUSIONS AND RECOMMENDATIONS

The purpose of this thesis was to develop a localization

algorithm that could process spherical wave information

incident upon a planar array and estimate the three spherical

coordinates range r , depression angle G , and bearing angle

$ . This goal has been achieved by the signal processing

model described in Section II. B and the localization algorithm

outlined in Section II. C. Two different modified freguency-

domain LMS adaptive algorithms were used to cancel the noise

corruption of the output electrical signals. A comparison of

the performance of each of these adaptive algorithms was

detailed in the results section (Section III) . The following

comments highlight the significant findings from our results:

• The spherical wave propagation model used in generating
the ouput electrical signals at each element in a planar
array has been validated.

• The adaptive beamforming and non-linear least-sguares
estimation routines used in the signal processing section
have been tested satisfactorily in a no-noise and noise
environment.

• In the absence of noise, or in high SNR cases, the
localization models using both modified LMS adaptive
algorithms accurately estimate range well into the far-
field region.

• Regardless of range estimation performance, both
algorithms accurately estimated the bearing and depression
angles in all cases tested.

• In a noisy environment, for a signal target, the routine
that assumed non-separable phase weights in the LMS
algorithm performed best given a wavefront with
significant wavefront curvature.
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• In a noisy environment, for a single target, the routine
that assumed separable phase weights in the LMS algorithm
performed best given minimal wavefront curvature. As a

result, this routine could estimate the range to targets
positioned at further distances from the receive array.
Also, this routine was superior in estimating the range
value at lower harmonics. Range estimates into the far-
field were accurately determined by this algorithm in a
noise environment.

• Aside from the case where the target is located at an
endfire position relative to the receive array, the full
angular coverage capability of the algorithm was tested
satisfactorily.

• The ability to process several harmonics over the
freguency spectrum of a single, broadband target was
tested satisfactorily.

• Given multiple targets positioned in both the near-field
and far-field with unique spectral lines, both algorithms
determined adequate estimates of the spherical coordinates
for these targets in a noise environment.

Given the design limitations presented in the introduction

to Section III, the following trend was observed in the

maximum range estimate capability of the separable weight

routine LMS
flat

: In a noise environment characterized by a SNR

value of 0.0 dB, the range estimate is valid to a distance of

three times the range to the near-field/ far-field boundary.

For an 11 x 11 element array designed to process a maximum

frequency of 1000 Hz, the planar array dimensions would be 7

meters x 7 meters. The maximum range estimate, as specified

by the rule above, works out to be 180 meters (about 25 times

the array length) . If we use typical dimensions for a towed

array, the maximum range value for this scenario would equal

approximately 5 kilometers.
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This maximum range rule for 0.0 dB SNR must be considered

in light of the design limitations of our computer simulation

(see Section III) . Assuming that we have a computer system

with more available resources (CPU's), we could increase two

significant values: the number of time samples taken per

element over the data record length, and the number of

elements in the receive array. Our research has shown that

by increasing the number of samples, our location estimates

improve. With more elements, the array would be larger,

thereby improving the detection of wavefront curvature.

Additionally, with more elements, the performance of the

signal processing model is enhanced. One direct result of

increasing these two parameters is an increase in the maximum

estimation range determined by the algorithm. Our research

has shown that the range estimate in a noise environment

approaches the ideal no-noise result as we increase these

parameters. Each test case conducted was validated to a range

in excess of 100 kilometers for the no-noise condition.

In the course of our analysis the following topics for

further research surfaced:

• Analyzing the performance of the localization algorithm
in estimating target coordinates in an inhomogeneous
medium.

• Development of a surface fitting routine to replace the
non-linear least-squares estimation algorithm which only
performs smoothing along the X and Y axes.

• Improving the performance of the modified LMS frequency-
domain adaptive algorithms or replacing these algorithms
with other beamforming algorithms.
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