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ABSTRACT

The increasing cost and complexity of software in recent years is causing a growing

interest in the development of measurement technology to evaluate, predict and compare

software complexity. Metrics can be used throughout all the development cycle providing

valuable information to the software developers in order to enhance the final products. The

goal of this thesis is to verify empirically the fault-predictive ability of some software

complexity metrics and specifically their usefulness during the testing phase.

A set of eight programs, varying in length from 1,186 to 2,489 lines of Pascal code

with 157 faults identified with specific modules, provided the data for this study. The

results of the analysis of the programs using four metrics, cyclomatic complexity,

bandwidth, nested complexity and number of statements, show that control-structure metrics

can be effectively used to detect the more fault-prone modules. The nested complexity of

the modules seems to have some relation with the number of faults caused by wrong use

of variables and oven'estrictive input checks. These observations can be particularly useful

during the testing phase because testers can use control-structure metrics to predict not only

the modules that may cause more problems but also the more frequent types of faults and

use the metrics to guide the choice of testing techniques.

'TIS GRA&I
DTIC TAB

0

By . . ... .

ill j tA I e



TABLE OF CONTENTS

I. INTRODUCTION................................................1

11. SURVEY OF SOFTWARE COMPLEXITY MEASURES ................... 7

A. CONTROL ORGANIZATION METRICS.........................8

1. Cyclomatic complexity...................................8

2. Nesting Level ........................................ 10

3. Transfer of Control .................................... 11

4. Minimum Number of Paths..............................12

5. Evaluation of Control Organization Metrics ................... 13

B. DATA ORGANIZATION METRICS ........................... 14

1. The Usage of Data Within Each Module ..................... 14

2. The Usage of Data Between Modules ....................... 15

3. Evaluation of Data Organization Metrics ..................... 16

C. VOLUME METRICS ...................................... 17

1. Software Science Measures...............................17

2. Unit Count .......................................... 18

3. Length Estimators ..................................... 19

4. Evaluation of Volume Metrics ............................ 19

iv



D. COMPOSITE METRICS ................................. 20

1. Ordered-Pair M etrics ................................. 20

2. W eighted M easures .................................. 21

3. Hybrid M etrics ..................................... 21

4. Evaluation of Comp-site Metrics ......................... 23

E. THE ROLE OF SOFTWARE METRICS ...................... 24

IlI. DATA ANALYSIS .......................................... 26

A. METRICS INVESTIGATED ............................... 26

B. DESCRIPTION OF THE ENVIRONMENT .................... 27

C. RELATION OF METRICS WITH NUMBER OF FAULTS ......... 27

D. RELATION OF METRICS WITH TYPES OF FAULTS ........... 31

E. RELATION BETWEEN METRICS .......................... 32

IV. DATA INTERPRETATION .................................... 34

A. DATA LIMITATIONS ................................... 34

B. USING METRICS IN SOFTWARE DEVELOPMENT ............ 34

C. TESTING ANOTHER VERSION ........................... 37

V. CONCLUSIONS ............................................. 39

A. FUTURE RESEARCH ................................... 39

B. FINAL COMMENTS .................................... 41

v



APPENDIX - TABLES OF METRICS, CORRELATION COEFFICIENTS AND

ANALYSIS OF VARIANCE OF FAULTS WITH METRICS ........... 43

LIST OF REFERENCES ......................................... 69

INITIAL DISTRIBUTION LIST .................................... 73

vi



I. INTRODUCTION

Software testing and maintenance has been estimated to consume 70% of the overall

software development effort [1]. Testing and debugging costs range from 50% to 80% of

the cost of producing a first working version of a software package [2]. Thus, the

development of effective error detection techniques is one of the most important issues in

the effort to reduce the cost and to increase the quality of software.

There have been many different approaches to software testing and error detection

such as structural testing, functional testing or correctness proofs. Structural testing

techniques deal with the degree to which test cases exercise or cover the structure of the

program. Functional testing techniques are concerned with finding the input values with

which the program does not behave according to its specifications. Correctness proofs use

formal languages to specify the requirements and mathematical logic to verify that the

specifications are achievable by the program. None of these approaches can guarantee to

isolate all sources of program errors.

For complete confidence, structural testing strategies require that all the paths in a

program are tested, but testing all the paths is usually impossible because programs often

contain an infinite number of paths. This has led to the development of a number of path

selection criteria. A path coverage criteria is satisfied by certain sets of paths through a

program, where a path is a sequence of statements. An effective criteria requires paths with

high probability of revealing faults [3).



It has been hypothesized that software errors seem to come in clusters and some areas

of the programs seem to be more error prone than others [41, thus one of the goals of

software testing is to detect these areas. Some studies [5] indicate that there is some

relation between the number of errors found in most computer programs and their logical

complexity.

Software testers should select a sufficient number of paths to achieve coverage,

starting by the shorter and simpler functionally sensible paths, trying to mininize the

number of decision changes from path to path. The fundamental criteria is to assure that

every instruction has been exercised at least once and every decision (branch or case

statement) has been taken in each possible direction at least once. Associated with each

path the test plan must contain a specification of the inputs that will force that path and a

specification of all the outputs and database changes expected for that path. The derivation

of the path-forcing input values is called path sensitizing.

The path sensitizing process is sometimes very difficult because the input values are

not obvious. Some paths are confusing, counterintuitive and hard to understand. The

presence of loops and the fact that the same decision may recur several times in a routine

can reduce the number of paths through the routine to the point where seemingly sensible

paths are not achievable.

It has been hypothesized that one reason why errors are not identified by programmers

is that they are in parts of the code that are difficult to reach. Our assumption is that the

source code in those areas should be complex in terms of number of nested control

structures.
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One of our purposes is to verify empirically if there exists some relationship between

the software complexity that can be detected by static analysis at the source code level and

the actual number of errors found in the modules that have more complexity. It would be

useful to find some way to identify and differentiate the areas of the program that tend to

be more difficult to test and debug without having to walk through all the source code.

Another purpose of this study is to verify if the number of nested control structures

used in the programs has some relation to the types of errors detected in the areas that

contain them.

One of the goals of software engineering is to reduce the costs of software

development using a disciplined approach. A disciplined approach needs techniques to

identify or define indices of merit that can support quantitative comparisons and evaluations

[6]. The software complexity measures may be useful in preparing quality specifications

and making design tradeoffs between maintenance and development costs [7].

The use of measurement technology has been identified as one of the functional tasks

in the Department of Defense research program Software Technology for Adaptable,

Reliable Systems (STARS) [8]. This technology concerns the development of evaluation

criteria, their associated measures and metrics, and the experimental evaluation of

techniques, methods and tools. The goal is to find ways of measure software attributes so

that we can quantify software, and develop metrics that may be used to compare and predict

software complexity. Some of the more important questions in the study of software

metrics are how well the metrics really represent software complexity and development

effort, and how well the metrics relate to software errors and reliability.

3



Software complexity can be defined as a measure of how difficult a program is to

understand, modify and test. The importance of software complexity is represented in

Figure 1. The goal of any software project is to stay within a reasonable budget and

maximize the understandability, modifiability and testability of the code. The nature of the

system wider development will determine the proper weighting of the different quality

factors to be achieved in the delivered software. Maintainability is typically of primary

importance for business systems. Testability and reliability are critical concerns for life-

support systems software. Efficiency takes precedence in many embedded real-time

systems. Some quality factors, however, are contradictory and difficult to maximize.

Optimizing code often lowers its understandability. Software complexity metrics can be

used to monitor and modify the development effort according to their values: metrics can

be used to predict the resources that will be required to implement and test the code, metrics

can be used to predict the nunber of faults that may be found in subsequent testing or the

difficulty involved in modifying a section of code.

The initial budget and time scheduled for a project influence the complexity of the

software developed and consequently the quality of the product. The use of more resources

when the final product does not achieve the quality initially required increases the

development cost and time. Metrics are tools that can be used to control phases of the

software cycle, providing feedback information to the project managers and programmers

about the complexity of the product being developed.

4



Software Software
Complexity

Metrics Understandability

Sof tware Sof tware
Softwe

Complexity Modifiability Maintenance

I
Development Softl:ware Feedback

Cost & Time Testability Control

F Measure

Figure 1. Importance of Software Complexity

There has been a great research effort to develop ways of measuring the complexity

of programs. Using our intuitive notion of software complexity, we expect that complex

programs will cost more to build and test, and wil have more latent software errors.

Any useful measure of complexity must satisfy two basic requirements. First, it can

be calculated for all programs to which developers apply it, and second, by adding

something to a program (instructions, storage, processing time, etc.) the measured

complexity can never decrease. Some complexity measures may serve as good predictors

of particular properties of the programs.
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Our hypothesis is that software complexity due to the number of control structures and

the nesting level has some kind of relation with the degree of difficulty that programmers

face when they try to test their programs, specifically during the path sensitizing phase. To

test this hypothesis we analyzed the flow of control, types of control structures and levels

of nesting in some faulty programs using different software complexity metrics, the average

level of nesting bandwidth (BW), studied by Jensen and Vairavan [9], the cyclomatic

number (v(G)), proposed by McCabe [101, the nested complexity (NC) and the number of

statements (STM).

In Chapter 11, we briefly describe some measures of software complexity that have

been proposed, in order to provide a base of understanding for the following discussion.

Ii Chapter III we present the description of the environment and metrics used to test our

hypothesis, and the resulting data obtained from our analysis. Chapter IV details o ur

interpretation of the results and what can be done to improve the quality of software during

the development process using software metrics. Finally, in Chapter V, we provide our

conclusions concerning the possible directions of future work in this area. The Appendix

contains the tables with the metrics and faults, correlation coefficients and analysis of

variance obtained for each version.
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II. SURVEY OF SOFTWARE COMPLEXITY MEASURES

In this survey we are only concerned with complexity metrics that can be used for

testing and maintenance purposes.

Many methods to measure software complexity have been proposed and explored.

Software complexity metrics may be classified into two basic types, static and dynamic as

shown in Figure 2.

SSoftware Comp~lexity Measures

Control Dat Volume Composite
Organization Organization L Metrics Metrics

comol y it Software Ordered-Pair
usage Of cats8 Science Mettics

I Fwithin Modules

Unit Count Weighted

o7 control Usage of date

11 btenMdls Lines of Hybrid

Minimum # Code Metrics
of Pth I 

k

Figure 2. Classification of Software Complexity Measures
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Static measures are obtained by static analysis of the source code or the high level

description of the code. Dynamic measures consist of evaluation data collected at run time

and may change from one execution to another. Dynamic measures may be CPU execution

time, main storage used, data base size or computer turnaround time. Static measures may

in turn be divided into four types, control organization metrics, data organization metrics,

.volume metrics and composite metrics.

The following sections overview some of the static measures that have been described

in the software complexity research.

A. CONTROL ORGANIZATION METRICS

The control organization metrics are measures of the comprehensibility of control

structures. These metrics use the structure of the source code to quantify the degree of

complexity of the programs. Most of them use the structure of the algorithm represented

by a directed graph called the control-flow graph. For each structured program module it

is possible to get a directed graph with a unique entry node and a unique exit node. Each

node in the graph corresponds to a block of code in the program where the flow is

sequential and the arcs correspond to branches taken in the program.

1. Cyclomatic complexity

The metric originally proposed by McCabe [10] uses mathematical concepts from

graph theory applied to control-flow graphs. The cyclomatic complexity v(G) of a

control-flow graph G with n vertices, e edges and p connected components is:

v(G) = e - n + 2p
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The cyclomatic number in a strongly connected graph, a graph where each node

is reachable from every other node, is equal to the maximum number of linearly

independent paths. In a module, this has been shown to be equal to the count of the

number of decision statements in the module plus one. Thus, the cyclomatic complexity

of a control-flow graph gives us the minimum number of paths that we should test to

achieve independent path coverage. It has been proved that the cyclomatic complexity for

a program with several modules is just the sum of the cyclomatic complexities of the

individual modules.

The cyclomatic complexity metric seems to have some relation with the number

of software errors and the debugging effort [2]. McCabe claimed that an upper bound for

cyclomatic complexity equal to 10 seems to be a reasonable, but not magical upper limit

for software modules. The intention is to keep the size of the modules manageable and

allow for testing aU the independent paths.

Another metric that uses the same concept of counting the number of changes

in the flow of control is the count of decisions DE. Usually the sequential flow of control

may be interrupted in three different ways: forward branches (IF-THEN-ELSE or CASE

statements), backward branches (WHILE or REPEAT statements), and horizontal branches

(procedure calls). An easy way of measuring the number of decisions is to count the

predicates that affect the control flow. For instance an IF statement with two conditions is

going to contribute two tD the count of decisions. The same rule applies to the CASE

statement that can be considered an IF statement with multiple predicates.
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Gilb proposed two other metrics, CL, the absolute logical complexity which is

the number of binary decisions, and the relative logical complexity, cL, which is the ratio

of CL to the number of executable statements [111. These metrics have been supported by

some empirical evidence and the latter may be considered as an improvement over pure

control metrics as it also takes into account some size metrics.

Another control metric, NPATH, has been recently proposed by Nejmeh [12].

NPATH is a count of the number of acyclic execution paths through a function. It has been

used with functions written in C at AT&T Bell Laboratories. The author claims that this

metric overcomes the following shortcomings of v(G). First, tie number of acyclic paths

in a flow graph varies from a linear to an exponential function of v(G). Thus, the number

of acyclic execution paths that may not be tested by a methodology based on that metric

varies from 0 to 2", where n is the number of vertices in the flow graph. Second, the

problem of treating different control structures (IF, WHILE, FOR) in the same way.

Finally, the fact that v(G) does not consider the level of nesting.

2. Nesting Level

Structure complexity can be determined by the depth of nesting [13], the average

nesting level [14], and the bandwidth [9]. The basic assumption is that the higher the

nesting level, the more difficult it is to determine the right data values to exercise those

parts of the code. The nesting level of the first executable statement is assigned the value

of one. If the following statement is sequential then it is assigned the same nesting level,

otherwise it is assigned a nesting level of two. In general if the first statement is at level

I and the following statement is in the range of a loop or a conditional transfer of control

10



then the nesting level of that statement is I + 1. The average nesting level NL is equal to

the sum of all statement nesting levels divided by the number of statements. The bandwidth

BW is equal to the sum of (i * L(i)) divided by the total number of nodes in the control

graph, where L(i) is the number of nodes at level i.

3. Transfer of Control

The idea of measuring the use of GOTO statements in FORTRAN programs was

proposed by Woodward, Hennel and Hedley [15J. This measure is called knots. Imagine

a forward arrow drawn on the left margin of a program listing indicating the flow of control

from each GOTO statement to its respective LABEL and a backward arrow drawn from the

end to the beginning of the respective loop. There is a knot every time we find an

intersection of these arrows or control transfers. For equivalent programs the ones with the

lower number of knots are believed to be better designed. Baker and Zweben [16] showed

that in some cases this measure does not capture some control flow complexity differences.

They present an example with two linearizations of a program that are equivalent and have

different knots count measures. Another problem is that the addition of alternative

constructs affects this measure in programs written in FORTRAN. For languages with an

IF-THEN-ELSE operator the inclusion of an alternative construct does not affect the metric.

Programs with arbitrary amounts of structured transfer of control may have the same

complexity as any straight line code. This is an unappealing property of a general measure

of control flow complexity.

Another pair of measures based on the flow graph of the program was proposed

by Harrison and Magel in [171 called SCOPE and SCORT. A node is a sequential block

11



of code with a unique entrance and exit but no internal branch or loop. An edge is the flow

of control between the various nodes. The outdegree of node u is the number of edges

emanating from i, and the indegree of node u is the number of edges incident at u. Nodes

with outdegree 0 or I are RECEIVING nodes and those with outdegree greater than I are

SELECTION nodes. Given a selection node, we can find at least one lower bound node

which succeeds every immediate successor of the selection node. The lower bound node

that precedes every other lower bound is the greatest lower bound GLB. The number of

nodes preceding GLB and succeeding the selection node, plus one, yields the adjusted

complexity AC of that selection node. The SCOPE metric is calculated by summing up the

adjusted complexity of each node. SCORT is the scope ratio metric and is defined as:

SCORT = ( 1.0 - N/SCOPE ) * 100%

where N is the number of nodes in the flow graph excluding the terminal node. SCORT

increases towards 100% as complexity increases.

The SCOPE metric is dependent on the number of nodes in the flow graph.

Therefore this measure cannot always be reliable, since some programs can be rearranged

to give flow graphs with different scope measures [7].

4. Minimum Number of Paths

The minimum number of paths in a program, NP, and the reachability of a node,

R, were metrics proposed by Schneidewind and Hoffman [18]. The determination of NP is

done using path analysis to find a set of unique sequences of arcs from the start node to the

terminal node excluding paths with backward loops traversed more than once. Since every

decision leads to at least one extra path, it is always true that NP >= v(G). Reachability of

12



a node is defined as the number of unique ways of reaching that node. These metrics may

be hard to determine on large programs because the number of paths can be very large or

even inf'ite when loops exist.

5. Evaluation of Control Organization Metrics

Cyclomatic complexity and all the metrics that use the number of decisions are

based on the assumption that software faults are proportional to control-flow complexity.

This assumption seems to be well supported for v(G). There have been lots of empirical

studies, since that metric was proposed in 1976, that show some relation trween the higher

values of this metric and the modules that are more error-prone [36], [37].

The value of v(G), however, may lead us to incorrect conclusions about the

characteristics of the software product. A program may use several data structures very

hard to implement and manipulate, and lots of modules calling other modules recursively

and have a low value of v(G). Intuitively this program should be complex and hard to test,

and consequently more error-prone. Thus, this metric is not a good predictor of error-

proneness of the modules in every case. The cyclomatic complexity is an easy to use and

useful rule of thumb for comparing alternate approaches and for estimating the amount of

debug labor between similar programs developed in the same environment.

Jensen and Vairavan [91 have indicated that cyclomatic complexity correlates

better then some of the measures based on the nesting level (e.g., bandwidth) to the number

of program changes and problem reports.

13



The control organization metrics do not consider the contribution of any other

factor except control flow complexity. These metrics, however, can differentiate between

two programs of similar volume metrics and certainly are related to the software quality.

B. DATA ORGANIZATION METRICS

The data organization metrics are measures of data use and visibility, as well as the

interactions between data within a program. These metrics are concerned with the amount

of input data, output data and processed data internally used by software. The simplest data

structure metric is the count of variables thdt are defined and used in a program. Another

simple data structure metric is the count of the number of I/O formats in FORTRAN or

COBOL code.

1. The Usage of Data Within Each Module

The usage of data within a module may be measured using the concepts of live

variables and variable spans. The hypothesis is that the more data items a programmer

must keep track of when constructing a statement, the more difficult it is to construct. A

variable may be considered live from its first to its last references within a procedure. The

average nunber of live variables is the sun of the count of live variables divided by the

number of executable statements. The span is the number of statements between two

successive references to the same variable. Thus, a large span indicates that the

programmer during the construction process had to remember a variable that was last used

far back in the program. These metrics have been used in a study by Elshoff reported in

[19], using programs written in PL/, to identify areas of greater complexity. Programmers

14



have indicated that this measure can also be applied to other languages, particularly

COBOL, because the information presented is similar.

2. The Usage of Data Between Modules

Henry and Kafura [20] proposed a method to measure the complexity of code

due to the flow of information from one module to another using an information flow

metric. The flows of information into and out of a procedure are called fan-ins and fan-

outs. Local flows represent the flow of information to or from a routine through the use

of parameters and return values from function calls. Fan-in is the number of local flows

into a procedure plus the number of global data structures from which a procedure retrieves

information. Fan-out is the number of local flows from a procedure plus the number of

global data structures which the procedure updates. The complexity of a procedure p is

defined as:

C, = (fan-in * fan-out ) 2

Another approach to the evaluation of complexity between modules is to measure

the sharing of data as global variables among modules as suggested by Basily and

Turner [211. This may be done by counting the number of pairs (M, R) where M is a

segment or module and R is a global variable that is read or changed by M. These pairs

are called the segment-global usage pairs.

McClure proposed another metric focused on the complexity associated with the

control structures and control variables used to direct procedure invocation in a program

(22). She claims that all predicates do not contribute the same complexity. The control

variables appearing in conditional statements that determine time invocation of other

15



procedures contribute with a higher complexity. The complexity of a program module P

consists of two factors: the complexity associated with the control variables invoking

module P and the complexity associated with the control variables by which module P

invokes other modules. The overall complexity is determined by the sum of the

complexities of the modules.

3. Evaluation or Data Organization Metrics

These metrics are based on the assumption that software complexity is related

with the amount of data processed and the flow of data through the program. This

assumption may not be valid in some cases because there are other factors that contribute

to increase the complexity of software. The structural complexity and the size are examples

of those factors. There are some studies, however, that found some relation between these

metrics and the number of faults.

The information flow metric was used in an objective study of the UNXT'

operating system. This study found a statistical correlation of 0.95 between faults and

procedure complexity as measured by the information flow metric [20].

All these data organization measures attempt to capture a different kind of

complexity of the control organization metrics. The simplest is a count of the number of

entries in the cross-reference list of the program (VARS). The metric VARS seems to be

robust and even slight variations in algorithm computation schemes do not seem to affect

other measures based upon it.

16



C. VOLUME METRICS

The volume metrics are measures of the size of the product. There are many methods

to measure software size. The easiest one is the count of the lines of code. This metric

may include all the source lines or only the executable statements. Usually it includes the

lines containing program headers, declarations, executable and non-executable statements,

and excludes the lines containing comments. Other simple volume metrics are the number

of statements or the number of operators and operands.

1. Software Science Measures

These measures were created by Halstead and they are part of a more complex

family of metrics called Software Science [231. We include these measures in the software

size category although in his work there are several proposals of metrics to quantify other

aspects of software. All the measures are functions of the count of the tokens that form the

program.

The basic measures are:

n, = number of unique operators

n2 = number of unique operands

N, = total occurrences of operators

N2 = total occurrences of operands

Operators are symbols and keywords, and operands are variables, constants and

labels. The length of a program, N, is expressed in tokens as:

N = N, + N 2
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The Software Science measures defined other metrics related to size. The

vocabulary, it, is:

t = / I, + I12

The volume, V, is:

V = N * log2 it

There have been several studies that seem to show that these basic metrics are

strongly correlated to program size and numnber of errors [9], [241.

Some other measures were proposed, the bug prediction formula B, and

the programming effort E:

B = (N 1 + N 2 ) * log2 ( " I + 112) 3000

E = ( i, N 2 N log 2 1 ) / 2n 2

These measures are more controversial. There are some studies that seem to

confirm the bug prediction formula. They are reported by Lipow in [25] with a comparison

of actual and predicted bug counts over a range of program sizes from 300 to 12,000

executable statements. These results, however, are not conclusive. Conte, Dunsmore and

Shen in 126] conclude that these measures, B and E, have not been shown to have good

construct validity and they probably do not measure exactly what Halstead hoped they

would.

2. Unit Count

The idea behind this approach is to divide the source code in programming

modules or units. These modules may be defined in many different ways. A module may

be a segment of code that can be compilated separately or a procedure that executes a
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particular algoritlun. Each module may be divided in one or more functions. A function

is defined as a collection of declarations and executable statements that performs a certain

task. It is not easy to count the number of functions unless the programs are created with

each module as a separate function. Studies have shown that different programmers tend

to use a similar number of functions to solve the same probiem using a different number

of modules [27]. Another related measure is the count of the number of statements per unit,

the average length of a programming module.

3. Length Estimators

There have been several proposed metrics to estimate the length of the programs.

Halstead in [23] defined a program length estimator N, as:

N4 = ii log?, i + 1n2 log2 i2

Jensen and Vairavan [9] proposed an empirical expression to compute the length

N of a program, claiming that it was a more accurate estimate than lalstead's Nh:

Nj = log. (ii!) + log2 (12)

4. Evaluation of Volume Metrics

The volume metrics were the first measures of software complexity to be used.

They have the same limitations of the control organization metrics and the data organization

metrics because they are based on the assumption that complexity is only related to size.

The software reliability study by Thayer, Lipow and Nelson [5] showed error

rates ranging from 0.04% to 7% when measured against lines of code, with the most reliable

routine being one of the largest. This seems to confirm that there is no direct correlation

between faults and lines of code. Flaherty showed in [28] that there is some statistical
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correlation between lines of code and maintenance costs. Another study by Li and Cheung

[71 showed that the Software Science length estimator Nh overestimates the actual length for

small programs and underestimates N for large programs. Thus, it cannot be a reliable

measure of complexity.

The major limitation of volume metrics is that they can only be measured after

-the design has been carried out fully to the debugged code. By then it is usually too late

and too expensive to take the necessary corrective action.

D. COMPOSITE METRICS

Since each metric is designed to capture a particular feature of a program it is

impossible to determine the overah complexity of a system based exclusively on some

features. This conclusion led to several attempts to incorporate different metrics. The

composite metrics are an attempt to combine some aspects of the previous types.

1. Ordered-Pair Metrics

There have been several attempts to combine different metrics in ordered pairs.

Myers [29] proposed the pair (CYC-mid, CYC-max) where CYC-muax is

equivalent to the cyclomatic number, and CYC-mid is equal to CYC-min plus the number

equal to two less than the number of selections in a CASE statement (CYC-min is the count

of all conditionals and loops including CASE statements).

There are other measures proposed by Hansen [30] that consist on using an

ordered pair where one coordinate is a variation of the cyclomatic number and the other

coordinate is a software science measure.
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Oviedo 1311 proposed a complexity inetuic based on control flow complexity CF

(the cardinality of a set based on the control flow graph) and data flow complexity DF

(based on the count of variable definitions and references in each block).

This measure was defined as:

C = aCF + bDF

where a and b are some predefined weights.

2. Weighted Measures

Baker and Zweben [16] pointed out the need of a measure which should combine

some of the measuring capabilities of the software sciences and the complexity number.

A synthesis of software science measures and the cyclomatic number was proposed by

Ranamurthy and Melton in [32]. A weighted measure is built from a software science

measure by allowing certain operators and operands to contribute extra values. The purpose

is to assign weights so that the length and volume measures can detect complexity produced

by nonsequential control structures. If an operand or operator is part of a control structure

the idea is to add a value equal to the nesting level (weight) of that control structure to the

count of occurrences of that operand or operator. The authors claim that these measures can

detect the different types of complexity detected by the cyclomatic number and the software

science.

3. Hybrid Metrics

These metrics combine some aspects of data structure metrics and logic structure

metrics.
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The information flow metric of Henri and Kafura [201 may also be used as an

hybrid metric. The complexity of procedure p, C., is defined as:

C, = Ci, * (fan-in * fan-out )2

C,, is the internal complexity of procedure p determined by any code metric.

Another hybrid metric was proposed by Basily and Hutchens [33J. The

definition of a syntactic complexity family that could include volume and control metrics

led to a new metric called syntactic complexity (SynC). A program is called a proper

program if it has a single entry and a single exit, and every node of the program lies on

some path from the entry to the exit.

The measure SynC of a program p is defined as:

SynC(p) = 1.1 * C(pd) + 1 + log 2 (n+l) if p proper statement

or SynC(j) = 1.1 * C(p) + 2 * ( 1 + log2 (n+l ) if p not proper statement

where C(p) is the sun of all the syntactic complexities of each subcomponent p of the

program, n is the number of decisions in program p that are not part of any subcomponent

pi. Nesting is penalized by multiplying C(p) by 1.1, counting each statement 10% more

than it would have been counted for at the next outer level. Poorly structured code is

penalized twice as much as well as well structured code. Thus, this metric includes

consideration of nesting level, length (statement count) and structured programming

practices.

Li and Cheung propose another hybrid metric in [71. This hybrid metric is called

NEWI and integrates software science with the SCOPE measure. They define the raw
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complexity of a node V as E,:

Ej = Nj log, j / LA

where N, n,, and LA are the software science measures length, vocabulary and the estimate

of the program level of the node Vj. This last one can be calculated using the following

expression:

LA = 2/n * t)N 2

The adjusted complexity for a selection node is the sum of the values of the raw

complexity of every node within the SCOPE of that selection node, plus the value of the

selection node itself. A receiving node has an adjusted complexity equal to its raw

complexity. The complexity of the program is the sum of the adjusted complexities of

every node. They define NEW-1 as:

NEWI = (1.0 - Total Raw ComplexitieslTotal Adjusted Complexities) * 100%

4. Evaluation of Composite Metrics

Although composite metrics have the advantage of incorporating the strengths

of the primitive types of metrics and provide a more accurate measure of software

complexity, they tend to be harder to calculate. The interest and quality of the information

supplied may not be sufficient to justify the cost and effort of using them.

Most of the composite metrics have not been extensively tested as some of the

other types because composite metrics are relatively new. The validation process must

continue before these metrics can be effectively adopted in the characterization and

evaluation of software.
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E. THE ROLE OF SOFTWARE METRICS

Software metrics are standard ways of measuring some attribute of the software

development process. Some metrics have been used in industry while others have been

confined to academic environments. Those more commonly used in industry are: lines of

code (the simplest metric), cyclomatic complexity metric (proposed by McCabe in [7]) and

their variations, and Software Science measures (proposed by Halstead in [23]). The use

of these and other software complexity metrics in the industry and the armed forces is

reported in several recent studies [381, [39], [40].

The great number of software measures that have been and continue to be proposed

is a good indication that the controversy that has surrounded them since their first

appearance is far from ended. Some claim that metrics are useless and expensive exercises

in pointless data collection, while others argue that they are valuable management and

engineering tools.

The value of software measures, their limitations, their strengths, and the benefits they

can provide, has to be verified through empirical studies in different kinds of environments.

We cannot apply metrics without first understanding what we want to measure and how we

will measure what we want to know about. Another issue when applying metrics is how

to get the metrics results in a way that they can be used and understanded by the people in

charge of the process.

This study analyzes the use of some control organization metrics during the software

development process, specially the testing phase. Some of the specific questions that this

thesis addresses are: How do these metrics relate to the number of faults detected? How do
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these metrics relate to the types of faults detected? What is the relation between different

control organization metrics? How can these metrics be used to predict whether a given

module is error-prone?

As we collect more data about the relation between complexity metrics and potential

software problems, we may be able to understand better the real importance and usefulness

of metrics in issues of software reliability and cost.
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III. DATA ANALYSIS

A. METRICS INVESTIGATED

Out hypothesis is that one of the major reasons why errors are not identified by

programmers is that they are in parts of the code that are logically difficult to reach. In this

study we decided to use three different measures of complexity to verify our hypothesis: the

cyclomatic complexity v(G), the average nesting level BW and the number of statements

STM. We also use another measure obtained from the product of the cyclomatic complexity

and the bandwidth that we call nested complexity (NC). This is an attempt to find a metric

sensitive to the level of nesting within the various control structures.

BW and v(G) were chosen because intuitively they seem to capture the structural

complexity fairly well. The cyclomatic complexity metric, as a count of the number of

decisions in each module plus one, is related to the number of changes of control-flow.

However, it cannot detect any complexity due to nested structures. The bandwidth is a

measure of the average nesting level, therefore seems logical to try a combination with v(G)

to get a more accurate measure of total software complexity. That combination is the

measure NC. The metric number of statements STM was used because it is a volume

metric similar to lines of code, the most used measure of software complexity. In this

study, using Pascal programs, STM is the count of the tokens ";" and "BEGIN".

The cyclomatic complexity and the number of statements were calculated for each

module using a lexical scanner adapted to count the tokens according to the set of counting

26



rules for the Pascal language used by the Purdue University Software Metrics Research

Group [271. The nesting level of each module was analyzed by inspection.

B. DESCRIPTION OF THE ENVIRONMENT

A set of eight programs written from a single specification for a combat simulation

problem was used in this study. The programs were designed and written in Pascal by two-

person teams and the teams were assigned randomly from students in an upper division

computer science course. The length of the programs varies from 1186 to 2489 lines of

code and the number of modules of each program varies from 28 to 76 modules.

A previous study [341 extensively tested these programs. The number of faults

detected and a brief description of their types has been previously recorded. Five different

fault detection techniques have been used to detect these faults: code reading by stepwise

abstraction, multi-version voting, run-time assertions inserted by the programmers, functional

testing with follow-on structural testing, and static data-reference analysis. A total of 209

faults were detected in that experiment, with 157 faults identified with specific pieces of

code. The remainder mainly dealt with missing code and faults with distributed causes.

The fault classification scheme used in that study was a fault taxonomy with 13

classes designed specifically to reflect the variations in faults between the techniques. The

fault classification scheme is described in Table 1, drawn from [35).

C. RELATION OF METRICS WITH NUMBER OF FAULTS

The average values of the metrics and the numfer of faults found for each program

are shown in Table I of the Appendix.
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Our results seem to confirm that there is some relation between software complexity

due to the structure of the program and the number of errors. The modules with greater

TABLE 1 - FAULT TAXONOMY

CLASSES OF FAULTS EXAMPLES OF FAULTS TECHNIQUE USED

I - Overrestriction Rejecting legal inputs Assert, Read, Test, Vote

2 - Loop Condition Infinite loops Vote, Assert, Test

3 - Calculation Incorrect formulas Read

4 - Initialization Variables not initialized Statical Analysis, Test

5 - Substitution Wrong variables used Vote, Assert

6 - Missing Check Divide by zero faults Read

7 - Branch Condition Bad condition on a branch Vote, Read, Test

8 - Missing Branch Localized missing code Read, Test

9 - Missing Thread Missing path throughout Vote, Test
program

10 - Unimplemented Missing functionality on all Test
Requirement paths

II - Ordering Operations in wrong order Vote, Test

12 - Parameter Reversal Actual parameters permuted Vote, Assert
with formal parameters

13 - Data Structure Linked list becomes circular Vote, Test, Read, Assert

complexity using any of the three control structure metrics have more detected faults. These

results seem to confirm other studies by Walsh [361. The bandwidth and the nested

complexity seem to have also some relation with the number of faults. However, the

percentage of faults detected with these methods is not greater than the percentage obtained
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using v(G). This is a useful observation because the computation of v(G) is easier than the

computation of BW and NC.

We observed the following averages using the set of eight versions: 18% of the total

n umber of modules had v(G) greater than 10, and these modules contained 51% of the total

nunber of faults; the modules with BW greater than 2.5 were 24% of the total number of

modules, and these had 47% of the faults; the modules with NC greater than 29 were 17%

of the total, and these contained 47% of the faults. These values are a good indication that

we may be able to detect the modules with more tendency to have errors using complexity

metrics, specially these particular control structure metrics.

The modules having STM greater that 24 comprised 28% of the total number of

modules and these contained 52% of the faults detected. The small percentage of modules

is misleading because these modules have in average 65% of the total number of statements

in each version. The metric STM do not seem to have any relation with the number of

faults. This result is a confirmation of other studies [5] that did not find any relation

between lines of code and software faults.

Our preliminary results seemed to indicate that the modules where the metric NC was

less than 4, contained also a greater number of faults. Our first hypothesis was that this

could be a consequence of the carelessness of programmers only because the modules

seemed obvious and easy to implement. This assumption, however, was not validated by

our data because the large number of faults actually found in those modules was a direct

consequence of having many modules with small values of NC in this set of programs.
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The faults in the modules with less complexity seem to have a regular distribution:

16% of the modules have NC equal to 1 and 10% of the total number of faults; 43% of the

modules have NC less or equal to 4 and 23% of the faults; 56% of the modules have NC

less or equal to 8 and 35% of the total number of faults. These results seem to show that

the number of errors in the modules with less complexity increases proportionally at the

same rate that complexity when the value of NC is less than 30. In the modules where this

metric is greater than 30 the number of errors increases at an higher rate.

The complete analysis of variance of faults using the four different metrics with each

version are shown in TaL.: 9-22 of the Appendix. The between groups variance is the

estimate of variance based on the differences between the means of sets of modules with

the same value of the metric. This estimate reflects the internal differences in the number

of faults detected between sets of modules separated according to the values of the metrics.

The estimate of variance based only on the differences between individual modules is called

the within groups variance. This estimate reflects only the chance variations involved in

drawing a sample. The degree of freedom of the variation between groups is the number

of groups or sets of modules with the same value of the metric minus one. The degree of

freedom of the variation within groups is equal to the total number of modules minus the

total number of groups of modules. The F-ratio is the quotient of the two variances. The

F-ratio is used to determine if the difference between groups in a sample is significant or

not. This can be done using tables of the F-distribution and the values of the two degrees

of freedom. The mean square is the ratio between the sum of squares and the respective

degree of freedom.
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The analysis of variance of the number of faults using all the metrics presented very

low significance levels, which is an indication that the probability that our results were

obtained by chance is very low. The only exceptions were found using NC or v(G) in

version 8, and this may be a consequence of having only two modules with high complexity

containing only one fault in this progran. Our results indicate also that the variations in

the number of faults between the different sets of modules according to the values of the

metrics are significant, because in general all the versions have the variation between groups

greater than the variation within groups. This is another indication Or the good fault-

predictive ability of software control-structure metrics.

D. RELATION OF METRICS WITH TYPES OF FAULTS

We used the values of NC to divide the modules in two sets: those with NC less or

equal to 4 and those with NC greater or equal to 30. The modules with NC between 5 and

29 were not considered. Then, we identified the faults found in the two sets of modules and

their respective types according to the fault classification previously described.

We found some similarities and some differences between the types of faults detected

in the two sets of modules. About 43% of the total number of faults in both sets belonged

to classes 3 and 6. Class 3 faults are calculation faults, for instance the use of the wrong

expression in the calculation, and class 6 faults are due to missing code to deal with illegal

behavior, for example divide by zero faults. The first type of faults may occur because of

misunderstanding of the specifications during the translation to code, and obviously does

not depend on the complexity of the structure. The second type may be the result of the
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carelessness of programmers because of time constraints, so frequent during the

development of any software system.

The significant differences between the two sets of programs were found in the classes

I and 5, faults due to overrestrictive input checks and wrong variable uses, respectively.

The modules with less complexity had a low incidence in these type of faults (6%) while

the modules with more complexity had a high incidence (19%). These faults may be caused

by different reasons. We have two hypothesis to explain the observation. Programmers

tend to clutter the source code with unnecessary conditions when it is already complex from

the beginning. This may happen because they do not understand exactly what the program

should do in those areas, leading to class I faults. The reason for class 2 errors may be

related to the difficulty of keeping track of the variables and their use in the modules with

a large number of nested control structures.

The remaining classes of faults had no significant clusters to allow some conclusions

about their relation to structural complexity. Their distribution was quite similar in both

sets.

E. RELATION BETWEEN METRICS

In order to understand the relationship between the various software metrics used,

Pearson correlation coefficients were computed for every pair of metrics, indicating the

degree of linear relationship between them. Pearson values lie in the interval [0,1j. The

correlation coefficients for each program are shown in Tables 2-9 in the Appendix.

We observed that the correlation between v(G) and BW is not very high and its value

depends on the program. This observation does not confirm the earlier results of [6]. This
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seems to be intuitively correct because the two metrics are measuring different aspects of

software complexity.

The complexity measure NC seems to correlate well with v(G) and BW. This

measure seems to bridge the gap between the two previous metrics and conceptually is a

more refied measure of the complexity of the control structure.

Another observation is that the STM metric does not correlate well with any of the

other metrics. Tius result is different from other studies [9J that presented the cyclomatic

complexity correlating well with lines of code, another volume metric. Our values for the

correlation between v(G) and STM are similar to the results reported in a more recent study

by Henry and Selig [36] using Pascal source code (0.65 against 0.63).

The Tables 10-17 in the Appendix show tie values of time metrics and the number of

faults found for all modules in each version.
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1tV. DATA INTERPRETATION

A. DATA LIMITATIONS

It is important to consider several limitations when drawing conclusions from the data

presented in this study. First, this study used several versions of only one application

written in one language, Pascal, and this may not be representative of a large number of

applications. Second, data gathered from programs designed and written by students should

be used with caution. Lastly, the number of faults in each module may be misleading

because the versions may have more faults than those that were detected. However, time

final versions are relatively large and have been produced from a specification derived from

an industrial specification. They have been extensively tested and the testing methods used

provide a relatively good coverage.

B. USING METRICS IN SOFTWARE DEVELOPMENT

In spite of the limitations that unfortunately are common in this type of

experinentation, information can be derived from this study about the software development

process.

Our data indicates that the modules with higher values of software complexity using

the three different control organization metrics v(G), BW or NC, have more detected faults.

This is a good indication that these metrics can be used to predict the modules with more

tendency to have faults. This may be useful particularly if they are used at the design stage

providing feedback to the software developers, allowing the redesign of those modules. The
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fact that these metrics can be computed from the high level description of the algorithms

in the form of control-flow graphs or even pseudo-code is another reason why they must

be used in the earlier stages of the development process to reduce the impact of the changes

and consequently their cost.

The coding phase should start only after the detailed design phase has pruned out the

most troublesome areas according to the value of the software complexity metrics. If it is

not possible to eliminate those areas at the design stage, the project managers must be

alerted to inherent levels of complexity in the source code and take appropriate actions

during the reviewing and testing phases. Given a limited budget, a large project cannot

afford complete branch coverage or inspection coverage. It is most effective to simplify

unnecessarily complex modules and spend more time inspecting, reviewing and testing those

modules that are inherently more complex.

Another observation concerns the types of faults detected in the modules according

to their measured complexity. The most common types of faults detected in all the modules

independently of the value of the complexity metrics were calculation faults and faults due

to missing checks for obvious illegal behavior. This result seems to be an indication that

these types of faults are not related to structural complexity and have to be handled in a

previous stage of the development process, the requirements specification phase.

We verified also that the modules with more complexity had a relatively high

incidence of faults due to overrestrictive input checks and wrong uses of variables, when

compared to the modules with less complexity. This result seems to show that structural

complexity at the source code level is related to these particular types of faults.
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Our data suggest that software metrics can be used to divide the modules according

to their structural complexity before the testing phase starts. The testing techniques used

for each set of modules may be chosen according to the types of faults occurring more

frequently in each set. This would allow a more efficient use of the several testing

techniques because some of them are more suited to find particular types of faults.

There is no widely accepted detailed taxonomy for fault classification. Other

classification schemes that may be used in similar studies were proposed by Beizer 121,

Rubey 1421 and Endres 1431. This raises the issue of having a standard to define the

different types of software faults, even if it is evident that there is no universally correct

way to categorize faults. That standard taxonomy could be only a starting point. This

would allow a unified framework to all the research dealing with software faults and

software reliability.

The study of the relation between software metrics, fault detection techniques and the

different types of faults has to continue. The testing tools available now have to be used

in the most effective way because we cannot afford the cost of testing very large and

complex programs using brute-force approaches.

The maintenance phase may also get some benefits from the use of metrics. Most of

the software being developed now results from changes in existing products instead of new

products started from scratch. The modifications done to the programs usually consist of

adding new functionalities, resulting in higher complexity of the modules at the source code

level. Complexity metrics may be used to monitor changes to existing software to keep the

modules in a manageable and testable form.
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The creation of automated tools measuring software complexity at each stage of

development to flag potential problems to the project managers may reduce costs and

increase the reliability of software. These automated tools must present the metrics results

in a way that all the personnel involved in the process can understand them without

difficulty instead of providing just pages and pages of numbers, formulas and tables that

nobody wants to look at. There are already tools that present a graphical representation of

the cyclomatic complexity of the programs. This approach is giving better results than

before using only the numerical values because programmers and managers respond more

readily to the visual image [44].

Another useful observation of this study is that a great number of faults detected,

classes 3 and 6, were found just by reading the code. These results confirm the

observations of Beizer in [2] that desk checking and particularly code reading are the best

catchers of private bugs and cannot be completely replaced by any other technique.

C. TESTING ANOTHER VERSION

The existence of another version of the same program where the faults had not been

identified during the experiment reported in [34] gave us an opportunity to test some of the

results obtained with the other versions.

Our initial approach was the determination of the values of the metrics for each

module to establish different sets of modules according to their structural complexity. Then,

we tried to detect the maximum number of faults just by reading the code. Using this

technique we found 16 faults caused by missing code to deal with divide by zero situations.

The faults were scattered throughout the program without any special incidence in the
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modules with greater complexity. The modules with greater complexity had only 3 faults.

These observations seem to confirmn the results obtained with the other versions that

indicated that this type of faults does not have any relation to structural complexity.

In our effort to detect more faults we ran the program with 100 randomly-generated

test cases. Using this technique we verified that 15 cases gave us results that indicated the

existence of faults in some modules. Analyzing for the detected faults, we found a missing

branch in one routine, two faults involving variable initialization and use in another routine,

an unused function, a loop scoping fault and two calculation faults.

The use of random tests to detect the existence of faults and the nested complexity

metric to detect the modules that may contain those faults was extremely useful during this

testing phase. We found more incidence in faults caused by overrestrictive checks and

missing branches in the modules with greater complexity as Observation, Restoration and

OutputReport. This seems to confirm our previous observation that at least the first type

of faults is more frequent in the modules with higher values of nested complexity.

The values of the metrics and the faults detected for each module in this version are

presented in Table 18 of the Appendix. Due to the incompleteness of the data on this

version, statistical analysis was not performed on the relationship between detected faults

and the metrics. Nevertheless the results support the use of this metric in realistic testing.
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V. CONCLUSIONS

A. FUTURE RESEARCH

The use of metrics in software development is gaining an increasing interest in recent

years as research shows their usefulness. However, there have been many proposals of new

metrics, some of them complex and difficult to use and others trying to measure subjective

aspects of software that cannot be measured at all. We are running the risk of spending

more money implementing the metrics program to control the development process than

building the software systems themselves. This may be one of the reasons why software

metrics have raised so much controversy and skepticism among the software developers and

researchers. As we stated at the beginning of this work, a good metric must be simple to

calculate and understand by the software developers, otherwise its usefulness is completely

overwhelmed by the overhead of using it. Researchers should continue to test the existing

metrics with real data, with different kinds of programs and systems to verify their

applicability. Project managers and programmers in industry and in the armed forces should

start controlling their software development processes using different types of metrics

instead of only the traditional Software Science measures and the cyclomatic complexity.

More data must be collected incorporating programs of different types like operating

systems, compilers and embedded real-time systems to verify the usefulness of metrics.

The application of other fault detection techniques to version 9 trying to test the

results and hypothesis generated from the other versions may provide some answers to the
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following questions: Are the faults due to overrestrictive input checks and wrong variable

uses more frequent in the modules with greater complexity? Is the majority of faults in

programs caused by wrong expressions and missing checks? We need to know if our

observations are a good indication of some pattern or they are only a consequence of this

particular environment.

We can never be sure that a verification is correct, thus, we need to apply the testing

techniques in the most effective way to gain a reasoned and cautious assurance that the

programs will run satisfactorily. To achieve this goal we need to have a better knowledge

of the strengths and limitations of each testing technique. Are they particularly suited to

find some types of bugs? What are those types? We need more empirical studies to test and

compare the testing techniques in different environments to provide some answers to these

questions. Can we develop new testing tools to help us to find obvious illegal situations?

Can we build more powerful data flow analyzers to follow the use of the variables through

all the program? The automation of the testing process is another area of research that needs

to be addressed by the computer-science community.

The impact of using formal methods during the requirements specification phase is

another interesting area of research that can find answers to some of the questions raised

by our work. Can we reduce only some types of faults using that approach or can we

reduce all types of faults? Is the structural complexity of the programs reduced if we use

those methods or is it increased? Is it possible that when we are reducing the number of

faults caused by incorrect specifications we are also increasing the number of faults caused

by structural complexity? If we add more checks and more conditions to the code based on
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more correct specifications to assure that nothing in the requirements is left out, our

asswnption is that the program is going to be more complex. Therefore, it will be more

difficult to test and debug.

B. FINAL COMMENTS

This study raised new questions but also provided some answers to the questions and

hypothesis presented in the introduction.

This empirical study shows that control organization metrics can be used to predict

the more error-prone modules. Our data seem to indicate that the number of nested control

structures used in the programs has some relation with some types of faults. Namely the

faults caused by overrestrictive input checks and wrong use of variables. This observation

seems to confirm our hypothesis that some faults are not detected because they are in parts

of the code that are difficult to reach during the path sensitizing process. This information

may be useful during the testing phase because software developers know in advance that

the data flow in the modules with higher levels of nesting needs to be checked. The

modules with less nested complexity show a regular distribution of faults, most of them

caused by wrong expressions and missing checks that cannot be related with structural

complexity. These bugs seem to be caused by faulty specifications and have to be

eliminated in the requirements specification phase through the use of formal specification

techniques.

The software developers should use not only formal methods to specify the

requirements but also software metrics to control how those requirements are implemented.

Even if we use automated tools to build the systems based on formal specification
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languages, the human intervention caused by the interaction between the developers and the

customers during the definition of the requirements is going to cause faults. Another

problem that may arise is that usually code created by automated tools is highly optimized

and consequently very complex. Our data indicate that an increase in structural complexity

may create other types of faults and the detection of this increase can be done using control

structure metrics. Software complexity metrics can be used to identify the improper

integration of functional enhancements made to the systems. The analysis of the redesigned

versions of the systems using metrics can reveal poorly structured components. This can

be particularly useful to monitor maintenance activities, one of the most critical phases of

the software development cycle in terms of costs.
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APPENDIX - TABLES OF METRICS, CORRELATION COEFFICIENTS AND

ANALYSIS OF VARIANCE OF FAULTS WITH METRICS

TABLE I - AVERAGES OF METRICS

Version No. of No. of Average Average Average Average

Number Modules Faults v(G) BW NC STM

1 72 23 7.11 2.11 20.17 21.06

2 55 11 5.58 2.06 18.51 18.80

3 43 27 6.21 1.88 17.91 22.09

4 57 22 7.42 2.10 20.12 24.35

5 28 22 12.54 2.48 43.04 36.04

6 76 17 5.41 1.74 11.74 17.13

7 68 22 5.82 1.58 12.34 17.10

8 57 13 4.70 1.59 9.14 19.04
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TABLE 2 - CORRELATION COEFFICIENTS FOR VERSION 1

v(G) BW NC STM

v(G) 1 0.55 0.86 0.69

BW - 1 0.83 0.46

NC - - 1 0.63

STM - - I

TABLE 3 - CORRELATION COEFFICIENTS FOR VERSION 2

v(G) BW NC STM

v(G) 1 0.95 0.96 0.67

BW 1 0.97 0.64

NC 1 0.65

STM -

44



TABLE 4 - CORRELATION COEFFICIENTS FOR VERSION 3

v(G) BW NC STM

v(G) 1 0.82 0.94 0.67

BW - 1 0.93 0.60

NC - - 1 0.78

STM - I

TABLE 5 - CORRELATION COEFFICIENTS FOR VERSION 4

v(G) BW NC STM

v(G) 1 0.61 0.84 0.69

BW - 1 0.89 0.34

NC - 1 0.52

STM -- I
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TABLE 6 - CORRELATION COEFFICIENTS FOR VERSION 5

v(G) BW NC STM

v(G) 1 0.34 0.88 0.70

BW - 1 0.57 0.45

NC - 1 0.80

STM - I

TABLE 7 - CORRELATION COEFFICIENTS FOR VERSION 6

v(G) BW NC STM

v(G) 1 0.60 0.97 0.58

BW - 1 0.94 0.57

NC - - 1 0.64

STM - - I
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TA3LE 8 - CORRELATION COEFFICIENTS FOR VERSION 7

v(G) BW NC STM

v(G) 1 0.59 0.78 0.67

BW - 1 0.90 0.60

NC - 1 0.68

STM - - I

TABLE 9 - CORRELATION COEFFICIENTS FOR PROGRAM 8

v(G) BW NC STM

v(G) 1 0.68 0.91 0.56

BW - 1 0.88 0.65

NC - 1 0.65

STM -
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TABLE 10 - METRICS FOR VERSION 1

NAME OF MODULE v(G) BW NC STM FAULTS

Ceiling 4 1 4 8 -
Mini 2 1 2 3 -
MinR 2 1 2 3 -
MaxlR 2 1 2 5 -

SizeListLoc 2 1 2 13 -

OutsideRange 3 1 3 4 -
Scream 3 1 3 14 -
SquadAlive 1 1 1 4 1
BatAlive 5 1.40 7 15 -
Verifylr ut 6 1.33 8 11 -
CheckParams 14 1 14 18 1
CheckArmyValues 50 2.78 139 58 2
CheckComMsg 6 2.17 13 10 -
CheckWeather 11 1.91 21 14 2
BatVelocV 5 2.20 11 20 -
AltitudeZ 5 1 5 13 -

DistD 1 1 1 4 -
TerrMoveTM 7 1.14 8 14 1
WeatherSevFactWF 5 1.80 9 16 -
WeatherObservWC 2 1 2 8
WeatherMoveWM 1 1 1 8 -
Position 20 4.35 87 38 -
HeightH 1 I 1 10 -
FindAngle 5 1.40 7 14 -
FirstCondition 4 1.25 5 30 -
SecondCondition 5 1.80 9 23 -
SlopeIntensitylS 5 1 5 12 -
IntensityLociL 1 1 1 4 -
LocationlIntensityBI 2 1 2 6 -
VisualContrast 1 1 1 7 -
ObservJam 4 1.75 7 15 1
ThirdCondition 4 1.25 5 22 -
SendReports 12 2.75 33 37 -
Observation 19 8.37 159 44 1
Movement 8 2.88 23 17 -
PrepareOutput 14 4 56 39 2
Initialization 23 2.48 57 83 -
Restoration 1 1 1 8
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TABLE 10 - METRICS FOR VERSION 1

NAME OF MODULE V(G) BW NC STM FAULTS

Total RestoredCasualtiesFF 7 3.29 23 17 -

Coefficient 7 2.86 20 15 -

Nu'nSquadsRestoringNF 4 1.75 7 10 -

RestoreSuppArntFS 5 2.20 11 15 -

RestoreFactorF 11 3.64 40 28 2
Attrition 1 1 1 10 1
SetFiredUponCoords 12 5.33 64 21 2
AssignLLCoords 4 1.25 5 15 -

KiiledK 10 4.60 46 19 -

CalcEndurE 6 2.67 16 15 -

NumKitersNK 6 2.67 16 15 -

KillersAvailKA 8 3.50 28 21 -

TimesKilersUsedKU 10 4 40 22 -

TotalWeaplnUseNW 9 4 36 20 1
Communication 1 1 1 10 -

TotalSquadsSendingNS 5 2.20 11t 13 -

TotalSquadsReceiveNR 5 2.20 11 13 -

TotalSquadsiarnmingNJ 5 2.20 It 13 -

TotalSquadsProcessingNP 5 2.20 11 13 -

PutIntoList 6 1.33 8 29 1
SendMsgs 19 4.63 88 75 -

ProcessCommandMessages 5 2.20 11 21 -

ProcessReportMessages 10 3.80 38 48 -

MsgReceiptDelayRD 6 1.67 10 22 -

ManipProcessList 18 3.72 67 44 -

PutMsgOnSentLL 4 1.75 7 16 -

ManipMsgQueue 7 2.86 20 23 -

Update 15 1.93 29 59 1
InstantiateCommandMsg 6 1.33 8 44 3
ClearDeadSquads 8 2.25 18 20 -

ForEachSquad 10 1.70 17 25 -

ForEach Weap 6 1.67 10 33 -

UpdateArmyValues 3 1.33 4 18 1
Conflict 2 1 2 63 -
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TABLE 11 - METRICS FOR VERSION 2

NAME OF MODULE v(G) BW NC STM FAULTS

Conflict 1 1 1 81 -

Attritnit 5 2.20 11 31 -

MinReal 2 1 2 4 -

Minlit 2 1 2 4 -

Max 2 1 2 4 -

Maxlnt 2 1 2 4 -

Roof 3 1.33 4 6 -

Floor 3 1.33 4 4 -

Dist 1 1 1 4 -

Alt 5 1 5 15 2
TMove 3 1 3 12 -

Poshltens 6 1 6 20 -

WTotal 6 2 12 17 -

WMove 3 1.33 4 11 -

WObs 3 1.33 4 12 -

ScaleSquad 10 2.30 23 43 -

Positioning 4 1.75 7 12 -

Velocity 4 1.75 7 15 -

XMove 1 1 1 6 -

YMove 1 1 1 6 -

Movement 8 2.88 23 23 -

CalcContrast 6 2.67 16 10 -

Observation 14 5.35 75 29 -

CanJSeek 1 1 1 9 -

AngleBigEnough 17 4.70 80 20 3
Slope 1 1 1 4 -

FindPt 1 1 1 7 -

NoObstacles 3 1 3 18 -
Height 2 1 2 7 -
Ojamming 5 2 10 18 -
NoObsJammed 2 1 2 17 -
Attrition 1 1 1 5 -
Attrithffict 2 1 2 8 -

Weapons 15 4.80 72 35 -

FireCoord 14 4.93 69 40 -

Suffering 20 5.65 113 58 -

Restoration 18 4.67 84 47 -

Communication I 1 1 8 -
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TABLE I11 - METRICS FOR VERSION 2

NAME OF MODULE V(G) BW NC STM FAULTS

UpdateConum 8 3.25 26 26 1
AddToQ 7 1.57 11 15 -

CreateRepoits 10 3.10 31 29 1
CreateCommands 5 2.20 11 21 1
PullFromQ 9 2 18 26 -

RellayMessages 15 3.80 57 40 1
ConsumneReports 14 6 84 36 -

ConsumneComimands 12 4.92 59 40 1
Simulation 2 1 2 15 -

Initialization 3 1.33 4 15 -

Poswnt 3 1.33 4 12 -

Movelnit 1 1 1 I1 1
Obsinit 2 1 2 8
Commlnit 11 1 15 -

MoveOut 1 3.36 37 26 -

Output 11 1 5
AttritOut 5 2.20 11 20 -
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TABLE 12 - METRICS FOR VERSION 3

NAME OF MODULE v(G) BW NC STM FAULTS

max 2 1 2 4 -
min 2 1 2 4 -
Distance 1 1 1 4 -
Cieling 2 1 2 8 -
findA 5 1 5 12 4
Altitude 1 1 1 6 -
BI 1 1 1 11 2
TM 2 1 1 13 1
WF 4 1.75 7 13 -
WM 2 1 2 7 -
WO 2 1 2 7 -
Change 1 1 1 5 -
SubAngle 13 2.46 32 54 1
InitRec 1 1 1 14 -
Output 17 3.47 59 42 -
DataUpdate 13 3.62 47 47 -
ScanQueue 14 2.86 40 16 -
PutlnQueue 3 1 3 12 1
BatPosition 15 3.87 58 59 2
"llowCommandMessages 28 3.07 86 119 2
positioning 3 1.33 4 6 -
ReceiveMessages 12 w P5 27 52 1
Sighting 14 '...1 59 53 1
CompareRecDMessages 15 6.27 94 39 -
Observe 1 1 1 5 -
SendObservations 10 2.80 28 25 -
SendOrders 6 2.50 15 23 -
SendMessages 1 1 1 5 -
Update 2 1 2 7 -
DoDamage 1 1 1 6 -
WeaponSighting 14 3.07 43 38 5
Summation 2 1 2 13 -
Attrition 9 2.67 24 12 -
Jain 2 1 2 16 -
Move 2 1 2 13 -
Restore 4 1.75 7 14 1
PerformPassiveFunction 1 1 1 5 -
Aggression 6 2.67 16 11 -
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TABLE 12 - METRICS FOR VERSION 3

NAME OF MODULE v(G) BW NC STM FAULTS

DoAction 1 1 1 5 -

InitVals 11 3.36 37 53 3
Conflict 3 1.33 4 64 2
ScanCQueue 7 1.57 11 14 -

NM 11 3.09 34 14 1
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TABLE 13 - METRICS FOR VERSION 4

NAME OF MODULE V(G) BW NC STM FAULTS

Conflict 2 1 2 106 -

IsDestroyed 2 1 2 5 -

IsCasualty 10 2.40 24 4 -

Altitude I1 I 1 11 19 1
Distance 1 1 1 7 -

WSeverity 5 1.60 8 23 -

WEObservation 5 2 10 16 -

WEMovement 5 2 10 15 -

CalcVelocity 5 2.20 11 18 -

MTerraiii 8 1.25 10 15 -

SlopeIntensity 3 1 3 11 -

Altitensity 1 1 1 4 -

Loclntensity 1 1 1 4 -

IntensityOfLocation 1 1 1 4 -

Ceilig 2 1 2 4 -

PositionSquads 28 1.96 55 91 -

InitVisual. 3 1.33 4 10 1
Transfer 13 4.31 56 46 1
BattalionSize 6 2.67 16 14 -

PrepOutput 12 4.17 50 38
Attrition 1 1 1 5 -

SetCoordinates 13 5.62 73 39 1
Inflict I 1 1 5 -

WeaponCount I 1 1 5 -

WeapUsage 4 1.25 5 9 -

AvailableWeapons 3 1.33 4 13 -

WeaponInflict 19 5.21 99 42 -

Suffer 6 2.67 16 13 -

Endurance 2 1 2 7 -

SquadDamage 11 4.09 45 31 -

InitFireL-ist 7 3.14 22 15 -

Communications 22 4.23 93 45 -

Processmsg 12 3.33 40 45 3
SendMsg 8 2 16 36 -

QueueMsg 12 2.75 33 63 1
ReceiveMsg 13 2.30 30 60 -

AddToList 8 1.63 13 46 1
CmdReplace 14 1.21 17 55 2
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TABLE 13 - METRICS FOR VERSION 4

NAME OF MODULE v(G) BW NC STM FAULTS

ReportMessages 9 1.89 17 27 -

CommandMessages 7 1.43 10 23 -

Movement 8 2.88 23 28 -
Observation 15 5.53 83 30 6
ValidObservation 4 1.75 7 12 1
CheckHeight 2 1 2 9 -
ObsJaniming 7 2.71 19 18 1
Angle 18 2.61 47 45 -
Line 8 2.13 17 20 2
ObsContrast 3 1 3 5 -
LocationList 3 1.33 4 18 1
VisualContrast 8 3.38 27 19 -
NewCasualties 3 1.33 4 12 -
Total,'asualties 3 1.33 4 11 -
RestoreAnount 6 2.17 13 12 -
RestoreSupplies 4 1.25 5 13 -
SquadFixers 1 1 1 7 -
Restoration 9 3.22 29 26 -
Initialize 24 1.83 44 63 -
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TABLE 14 - METRICS FOR VERSION 5

NAME OF MODULE v(G) BW NC STM FAULTS

Conflict 4 1 4 65 -

Distance 3 1 3 4 -

Altitude I 1 1 13 3
CompWeath 5 9 45 18 -

Positioni 16 1.69 27 39 -

Simulate 9 2.33 21 22 -

ChangeOld 1 1 1 10 -

ChangeSquad 1 1 1 8 -

Attrition 5 1.40 7 6 -

Suffer 11 4.82 53 36 -

Inflict 27 3.52 95 94 2
Comnicat 40 3.35 134 157 5
StoreMess 5 2.20 11 23 -

ReprtMess 6 1.17 7 21 -

ComndMess 5 2.20 11 23 -

UpdateComm Vars 1 1 1 12 -

Movement 11 2.09 23 29 -

WeffMov 2 1 2 7 -

TeffMov 3 1 3 13 -

Observation 49 6.98 342 151 -

SpacePoints 7 2 14 36 2
IntnstyLoc 1 1 1 13 2
WeffObs 2 1 2 6 -

Restoration 14 2.57 36 32 1
Wear 10 3.6 36 21 -

Validate 89 2.73 243 70 4
Set~ntial Values 8 2.50 20 38 3
OutputResults 11 3.91 43 37 1
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TABLE 15 - METRICS FOR VERSION 6

NAME OF MODULE v(G) BW NC STM FAULTS

Conflict 1 1 1 59 -

Min 2 1 2 4 -
Max 2 1 2 4 -
IMin 2 1 2 4 -
IMax 2 1 2 4 -
Ceiling 3 1.33 4 6 -
Distance 1 1 1 7 -
Height 5 1.40 7 13 -
UpdateBattalionVelocity 3 1.33 4 13 -
CheckBattConstants 24 1.17 28 24 -
AlignSquads 13 2 26 31 -
InitBattalion 23 1.96 45 43 3
Initialize 17 1.29 22 28 -
CreateLosList 2 1 2 10 -
PerfomiSimulation 3 1.33 4 20 1
UpdateWeather 1 1 1 6 -
UpdatePresentEvents 4 1.75 7 23 -
AddNewEvents 3 1.33 4 14 -
PerfonnOneDt 1 1 1 9 -
WeatherSeverity 6 1.67 10 17 -
Movement 4 1.75 7 5 -
MoveBattalion 1 1 1 15 -
TEOnMovement 2 1 2 11 -
WEOnMovement 2 1 2 10 -
Observation 4 1.75 7 10 -
GenObsList 9 3.22 29 25 -
Observable 3 1.33 4 11 1
AngleSubGreater 16 3.69 59 42 -
UpdateLOSList 2 1 2 14 1
LOSClear 3 1 3 20 1
CntrstOK 3 1 3 21 -
LocationIntensity 1 1 1 16 -
ObsJamming 3 1.33 4 1:. -
WEOnObservation 2 1 2 10 -
IncludeCominObs 7 2.57 18 27 1
CollectFinishedReport 13 3.85 50 13 -
UpdateLL 8 3.88 31 26 -

SumObsToNextBatt 12 3.25 39 27 -
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TABLE 15 - METRICS FOR VERSION 6

NAME OF MODULE v(G) BW NC STM FAULTS

Attrition 4 1.75 7 9 -

NumnWeapons 6 1.33 8 13 1
Track Weapons 2 1 2 12 1
UpdateUseList 5 1.40 7 14 -

ChooseTargets 14 3.29 46 33 1
SufferAttrition 11 3.55 39 38 1
Restoration 3 1.33 4 9 -

NewNumFixers 4 1.75 7 11 -

ApportionFixing 10 3 30 28 -

RemoveDestroyedSquads 8 1.50 12 19 -

Communication 1 1 1 8 -

SendCommunications 8 2.38 19 14 -

SendReport 4 1.25 5 20 -

NewNumSend 4 1.75 7 10 -

SendComnmand 2 1 2 18 -

ReceiveCommunications 1 1 1 8 -

FindReceivingDelay 6 2 12 29 1
-ReceiveReports 7 2.57 18 32 -

ReceiveCommands 7 2.57 18 33 -

UpdateNumVars 7 2.86 20 13 -

ProcesComniunications 1 1 1 7 -

HandleQueuing 1 1 1 7 -

QueueReports 6 2.67 16 21 -

FindQueueSpot 5 1.60 8 11 -

QueueCommnands 6 2.33 14 21 -

FindQueue 5 2.20 11 11 -

ProcessingDelay 4 1.75 7 11 -

ProcessMessages 9 3.11 28 30 -

FindNextReport 6 2.16 13 11 -

FimdNextComnmand 6 2.16 13 11 -

TakeAComninand 2 1 2 9 -

TakeAReport 2 1 2 9 -

NewNumProcessing 3 1.33 4 10 -

PrepareForNextDT 1 1 1 10 1
CollectCommands 7 2.57 18 27 -

CollectCommnand 10 2.30 23 23 2
PutInCommand 3 1.33 4 20 2
DetermineOutput 7 3 21 28 -
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TABLE 16 - METRICS FOR VERSION 7

NAME OF MODULE v(G) BW NC STM FAULTS

Conflict 1 1 1 23 1
float 1 1 1 4 -

WriteError 11 1 11 19 -

CheckMessages 6 2 12 16 -

CheckWeather 6 1.67 10 10 -

CheckParams 9 1 9 18 -

Process 11 2.91 32 55 -

InvalidPosition 5 1 5 7
CheckBatallionInfo 1 1 1 9 -

CheckNAnny 4 1.50 6 12 1
CheckPerBatallion 30 1 30 40 3
CheckPerSquad 6 1.67 10 13 -

CheckPerEnemy 5 1.80 9 9
CheckPerWeapon 10 2.50 25 16 -

GetTs 1 1 1 8 2
Altitude 1 1 1 16 -

Distance 1 1 1 7 -

WFactor 5 1.80 9 17 -

WXPosition 1 1 1 4 -

WYPosition 1 1 1 4 -

Height 1 1 1 9 -

Makent 2 1 2 4 -

Initialize 13 2.46 32 34 1
Velocity 4 1.75 7 14 -

SetSquad 3 1.33 4 27
SetPosition 11 2 22 39
LnitializeWeapData 3 1.33 4 11 1
PositionSquadrons 4 1.75 7 16
SetPosition 11 2 22 37 -

Observation 15 3.67 55 27 3
VisibleSquad 5 1.20 6 23 1
SubAngle 9 2.56 23 11 -

GetAngle 29 1 29 23 -

Series 2 1 2 16 1
ClearView 5 1.40 7 16 -
OContrast 4 1.25 5 22 -

Intensity I 1 1 16 -
OJamming 3 1.33 4 11 -
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TABLE 16 - METRICS FOR VERSION 7

NAME OF MODULE v(G) BW NC STM FAULTS

WObserve 2 1 2 7 -

CommandMess 24 5.29 127 56 1
RecDelay 2 1 2 13 -

JainiedSquads 5 2 10 17 -

Incorporate 4 1.25 5 25 1
Initialize WeData 3 1.33 4 11 -

Attrition 1 1 1 13 -

InflictAttrition 15 3.13 47 26 3
SetFire 4 1.50 6 23 -

CalcNumObserv 8 2.75 22 12 -

CalcNurnWeapToUse 11 3.55 39 27 1
Min 2 1 2 4 -

CalculateDazr'ges 13 3.69 48 14 -

InRange 2 1 2 10 -

Updatelnfo 5 1 5 16 -

UpdateBattalion 5 1.60 8 32 1
DeltaFixSuppl 2 1 2 11 -

UpdatePosition 1 1 1 16 -

SetRestoration 3 1.33 4 18 1
ChangeSquiadData 16 3.69 59 35 -

SetDamnage 2 1 2 7 -

Movement 2 1 2 17 -

WMovement 2 1 2 8 -

TerrEffect 2 1 2 11 -

SetOutput 3 1.33 4 16 -

GetDifference 6 2 12 28 -

Greatest 2 1 2 4 -

Least 2 1 2 4 -

GetStatus 5 1 5 13 -

Distance 1 1 1 6 -
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TABLE 17 - METRICS FOR VERSION 8

NAME OF MODULE v(G) BW NC STM FAULTS

Conflict 6 2.67 16 80 -

UpdateU 3 1.33 4 12 -

SquadPos 17 1.88 32 42 -

LinearDistance 2 1 2 4 -

Altitude 1 1 1 14 2
Velocity 5 2.20 11 20 -

WSevFactor 5 1.80 9 19 -

SetKU 2 1 2 15 -

InjiVariables 6 2.17 13 45 -

CaIcBl 3 1 3 17 2
VisContrast I 1 1 7 -

Movement 1 1 1 13 1
TerrainEffect 4 1.50 6 11 -

WeatherMoveEffect 2 1 2 9 -

Observation 11 3.82 42 45 1
FindAngle 19 1.53 29 20 -

SuniObiarn 5 2.20 11 22 1
WObsEffect 1 1 1 6
Observable 5 1.60 8 17 -

Height 1 1 1 4 -

Attrition 8 2.88 23 22 1
NumOfWeapons 3 1 3 8 -

SetAttacked 3 1 3 16 -

LengthOfList 2 1 2 10 -

ResetObserveLists 3 1.33 4 15 -

Restoration 8 2.50 20 20 -

UrdateVars 10 2.60 26 46 -

UpdateFS 3 1 3 14 -

UpdateFF 4 1.50 6 12 -

UpdateK 7 3.14 22 24 -

CaicCas 6 1.67 10 15 -

CaIcBK 8 2.63 21 13 -

UrdateNums 1 1 1 4 -

UpdateE 3 1.33 4 13 -

UpdateKA 5 1.80 9 21 -

UpdateKU 6 1.83 11 16 -

ClearAttackLists 3 1.33 4 15 -

PrepareOutput 3 1.33 4 10 -
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TABLE 17 - METRICS FOR VERSION 8

NAME OF MODULE v(G) BW NC STM FAULTS

SetLocation 10 2.90 29 42 1
SetStatus 3 1.33 4 15 -
Ceiling 2 1 2 6 -
InsertMsg 8 2.25 18 28 -
CommandMsg 3 1.33 4 11 -
hisertCoin 1 1 1 18 -
ReportMsg 2 1 2 7 -

InsertRep 3 1 3 27 -
Communication 1 1 1 7 -
ReceiveDelay 6 1.33 8 22 -
CaiRDelay 4 1.50 6 27 -
QueDelay 6 1.50 9 20 -
PutQueue 9 2.44 22 25 4
ProcessQue 5 2 10 20 -
ProcessMsg 9 2.22 20 28 -

MergeRepMsg 3 1.33 4 9 -
MergeConMsg 4 1 4 34 1
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TABLE 18 - METRICS FOR VERSION 9

NAME OF MODULE v(G) 13W NC STM FAULTS

Conflict 2 1 2 52 -

D 1 1 1 8 -

Ceiling 3 1.33 4 4 -

WF 6 2.17 13 18 -

WMorWO 8 2.13 17 14 -

SquadsPos 10 2 20 40 1
CalcVg 5 2 10 13 2
Initialize 11 3.36 37 33 -

CheckBattalions 33 15.17 527 15 -

CheckData 9 1.56 14 11 2
Z 1 1 1 12 2
TM 2 1 2 8 2
BI 1 1 I 11 2
Movement 5 2.20 11 23 -

Observation 16 4.56 73 39 2
Restoration 15 4.40 66 45 1
GetAngleCornerPts 7 1.57 11 23 -

Overlap 23 3.09 71 39 -

CheckAngle 3 1 3 11 2
CheckZ 4 1.25 5 14 1
GetOJ 4 1.50 6 11 -

CheckContrasts 3 1 3 8 -

CalcFgj 6 2 12 12 -

UpdateFFg 3 1.33 4 11 -

UpdateNFg 2 1 2 8 -

UpdateFSg 3 1 3 it -

GetLocation 2 1 2 11 -

GetLenLL 2 1 2 10 -

Attrition 1 1 1 8 -

Inflict 9 4 36 25 -

GetN W 8 2.75 22 13 1
Suffer 4 1.75 7 6 -

WearTear 6 2.67 16 10 -

AddLL 4 1.75 7 15 -

Send 10 2.70 27 29 1
HasObs 2 1 2 8 -

lnsertQ 5 2 10 17 -

Receive 16 3.94 63 83 1
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TABLE 18 - METRICS FOR VERSION 9

NAME OF MODULE V(G) BW NC STM FAULTS

Process 16 3.69 59 57 1
ChaiigeD atEnv 4 1 4 23 -

Communicate I 1 1 6
OutputReport 18 2.78 50 35 2
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TABLE 19 - ANALYSIS OF VARIANCE OF FAULTS WITH v(G)

Version
Number

Source of Sum of Degrees of Mean F-Ratio Significance
Variation Squares Freedom Square Level

Between
Groups

Within
Groups

1 16.82341 18 0.93463 3.340 0.0003
14.82936 53 0.27979

2 11.18333 16 0.69896 4.729 0.0000
5.61667 38 0.14781

3 30.54651 15 2.03643 2.156 0.0399
25.50000 27 0.94444

4 41.41353 19 2.17966 6.668 0.0000
12.09524 37 0.32689

5 45.24762 16 2.82797 5.690 0.0029
5.46667 11 0.49697

6 12.14627 17 0.71448 3.575 0.0001
1 1.59058 58 0.19984

7 24.12936 15 1.60862 7.779 0.0000
10.75299 52 0.20678

8 8.03576 12 0.66965 1.590 0.1298
18.52564 44 0.42104
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TABLE 20 - ANALYSIS OF VARIANCE OF FAULTS WITH BW

Version
Number

Source of Sum of Degrees of Mean F-Ratio Significance
Variation Squares Freedom Square Level

Between
Groups

Within
Groups

1 21.64520 30 0.72151 2.956 0.0007
10.00758 41 0.24408

2 11.4933 20 0.57467 3.682 0.0004
5.30667 34 0.15608

3 29.95560 17 1.76209 1.688 0.1140
26.09091 25 1.04363

4 51.37127 32 1.60535 18.025 0.0000
2.13750 24 0.08906

5 44.31428 18 2.46190 3.462 0.0309
6.40000 9 0.71111

6 14.60223 28 0.52151 2.683 0.0014
9.134615 47 0.19435

7 19.03387 20 0.95169 2.822 0.0018
15.84849 47 0.33720

8 17.69777 22 0.80444 3.086 0.0016
8.86364 34 0.26069
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TABLE 21 - ANALYSIS OF VARIANCE OF FAULTS WITH NC

Version
Number

Source of Sum of Degrees of Mean F-Ratio Significance
Variation Squares Freedom Square Level

Between
Groups

Within
Groups

1 22.04722 32 0.68898 2.797 0.0012
9.60556 39 0.24629

2 15.17592 23 0.65982 12.502 0.0000
1.58333 30 0.05278

3 48.98545 21 2.32835 6.797 0.0000
7.53636 21 0.34256

4 48.64211 29 1.67731 9.306 0.0000
4.86667 27 0.18025

5 45.41429 19 2.39023 3.608 0.0343
5.30000 8 0.66250

6 14.16322 28 0.50583 2.483 0.0029

9.57362 47 0.20369

7 26.14231 21 1.24487 6.873 0.0000
7.60769 42 0.18114

8 9.30585 19 0.48978 1.050 0.4345
17.2556 37 0.46636

67



TABLE 22 - ANALYSIS OF VARIANCE OF FAULTS WITH STM

Version
Number

Source of Sum of Degrees of Mean F-Ratio Significance
Variation Squares Freedom Square Level

Between
Groups

Within
Groups

1 18.06944 34 0.53145 1.448 0.1361
13.58333 37 0.36712

2 5.13333 24 0.21389 0.550 0.9316
11.66667 30 0.38889

3 41.62985 21 1.98237 2.888 0.0094
14.41667 21 0.68651

4 45.17544 32 1.41173 4.066 0.0004
8.33333 24 0.34722

5 46.04762 22 2.09307 2.243 0.1884
4.66667 5 0.93333

C 14.78880 32 0.46213 2.221 0.0075
8.94881 43 0.20812

7 19.03387 20 0.95169 2.822 0.0018
15.84849 47 0.33720

8 20.22807 26 0.77800 3.685 0.0004
6.33333 30 0.21111
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