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ABSTRACT

This paper investigates the conditions under which a

discrete optimization problem can be formulated as a dynamic pro-
gram. Following the terminology of (Karp and Held 1967), a

discrete optimization problem is formalized as a discrete deci-
sion problem and the class of dynamic programs is formalized as a

sequential decision process. Necessary and sufficient conditions
for the representation in two different senses of a discrete de-
cision problem by a sequential decision process are established.
In the first sense (a strong representation) the set of all op-
timal solutions to the discrete optimization problem is obtain-
able from the solution of the functional equations of dynamic
programming. In the second sense (a weak representation) a

nonempty subset of optimal solutions is obtainable from the solu-
tion of the functional equations of dynamic programming. It is
shown that the well known principle of optimality corresponds to
a strong representation. A more general version of the principle
of optimality is given which corresponds to a weak representation
of a discrete decision problem by a sequential decision process.
We also show that the class of strongly representable discrete
decision problems is equivalent to the class of sequential deci-
sion prcesses which have cost functions satisfying a strict mono-
tonicity condition. Also a new derivation is given of the result
that the class of weakly representable discrete decision problems
is equivalent to the class of sequential decision processes which
have a cost function satisfying a monotonicity condition.



1 . Introduction

Dynamic programming has proven to be one of the principal

methods for the formulation and solution of discrete optimization

problems. A number of studies have explored the extent to which

dynamic programming is applicable to such problems, including

(Mitten 1964, Held and Karp 1967, Elmaghraby 1970, Bonzon 1970,

Ibaraki 1972,1973, and other cited in the references). A recent

survey of solution techniques and applications of dynamic pro-

gramming appears in (Morin 1978). Mitten was the first to point

out the essential role that the monotonicity of the cost function

plays in a dynamic program. Subsequently, (Held and Karp 1967)

studied dynamic programs in terms of a finite state machine with

a superimposed cost structure (an sdp as defined below), and

attacked the problem of characterizing the representations of a

discrete optimization problem by a sdp with a monotonic cost

function.

In this paper the notion of a discrete optimization problem

is formalized as a discrete decision problem (ddp) and the gen-

eral setting within which the functional equations of dynamic

programming can be applied is formalized as a sequential decision

process (sdp) following along the general lines of (Karp and Held

1967). Necessary and sufficient conditions for the representa-

tion in two different senses of a ddp by a sdp are established in

theorems 2 through 7. In the first sense (a strong representa-

tion) the set of all optimal solutions to the discrete optimiza-
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tion problem is obtainable from the solution of the functional

equations of dynamic programming. In the second sense (a weak

representation) a nonempty subset of optimal solutions is obtain-

able from the solution of the functional equations of dynamic

programming. It is shown that the well known principle of

optimality corresponds to a strong representation. A more gen-

eral version of the principle of optimality is given which

corresponds to a weak representation of a ddp by a sdp. It is

shown that sdp's having a strictly monotonic cost function are in

one to one correspondence with strong representations of ddp's.

Finally a new derivation is given of the result that sdp's having

a monotonic cost function are in one-to-one correspondence with

weak representations of a ddp.

Our notion of a weak representation is new in that we nei-

ther require all optimal solutions nor the correct cost of the

optimal solutions, but are satisfied with some optimal solutions.

Presumeably if the correct costs were required, one could compute

the cost of an optimal solution using the cost function of the

ddp after they have been found by some method. The notion of

strong representation was introduced, along with an even stronger

sense of representation, in (Ibaraki 1972).

2. Definitions .

A discrete decision problem is intended as a general model

of combinatorial optimization problems. A discrete decision

-2-



problem is a system D=(A,S,P,f) where

A is a finite nonempty alphabet (set of primitive deci-

sions) ,

SCA (set of feasible policies),

P is a set (the set of data inputs for the problem)

,

f:SxP->R where R is the set of positive reals, (cost or

objective function)

.

An instance of a discrete decision problem D, denoted D(p),

is given by a particular data input pGP. A policy sGS is optimal

with respect to input pGP if VtGS f (s ,p) <f ( t ,p) . The set of

optimal policies for the problem instance D(p) is denoted 0(D,p).

We will be interested in the conditions under which the problem

of finding 0(D,p) or a subset of 0(D,p) can be formulated by a

dynamic program.

One of the simplest discrete decision problems is the prob-

lem of finding the least cost path from the start node to a goal

node in an arc-weighted directed graph. This problem can be

represented as a ddp as follows; let A be the set of arcs (i,j)

in the graph where (i,j) represents the decision to move from

node i to node j, S is then the set of sequences of arcs which

move from the start node to a final node, P is the set of cost

matrices (p.- ±) where p,- j; is the cost of arc (i,j), and finally

f(s,p) is the cost of arc sequence (path) s with respect to input

p; more precisely, f(s,p) = T p.- ^.
(i, j)Gs 1,J

-3-



The functional equations of dynamic programming apply to a

kind of process called a sequential decision process. A sequen-

tial decision process ( sdp ) is a system 11= (A,Q f q ,

Q

f
,T ,h ,k , P)

where

A is a finite nonempty alphabet (set of primitive deci-

sions) ,

Q is a set (set of states)

,

q nGQ (start state)

,

QfCQ (set of final states)

,

t:QxA-»Q (transition function),

h:RxQxAxP-»R (cost or objective function)

,

k:P-»R (initial cost function),

P is a set (input data specifications).

The transition function t applies a decision aGA to a state qGQ

resulting in a transition to a new state t(q,a). We can extend

is

the domain of t to QxA by the following recursive definition:

let t(q,e)=q for qGQ, where e is the empty sequence,

t (q,xa) =t (t (q,x) ,a) for qGQ, xGA , and aGA. Thus t(q,xa) is the

state resulting from applying the decision sequence xa to the

initial state q. When only one argument is given to t the path

will be assumed to originate at the start state, thus t(x) is the

state resulting from applying the decision sequence x from the

start state. Let F (II) ={x 1 1 (x)SQ-) . xGF(II)is a feasible decision

sequence which t maps (by definition) from q to some final state

qfGOf. Note that the first five components of a discrete deci-

sion problem comprise a finite state automaton (Hopcroft and Ull-
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man 1969). The cost function h(c,q,a,p) is the cost of reaching

state t(q,a) by a sequence reaching state q with cost c which is

extended by decision a. The initial cost function k (p) is the

cost of a null sequence given input p. It will be useful to con-

sider the special case of decision sequences applied to the start

state as follows: let g(e,p)=k(p), g(xa,p) = h (g (x,p) , t (x) , a ,p)

for x6A , aGA, pGP. Thus g(x,p) gives the cost of reaching state

t(x) from qg by means of the sequence of decisions x. Finally

since we are interested in optimal decision sequences let us

define (and assume the existence of) G(q ,p)=k(p) and G(q,p) =

min g(x,p) for all q^q_, p6P, thus G(q,p) is the cost of
{x|t(x)=q} b

the least cost decision sequence reaching state q from qg. We

*
say xSA is an optimal decision sequence reaching state c[ if

t(x)=q and G (q, p) =g (x , p) . The set of optimal decision sequences

reaching a final state of II are denoted O(ITfP). Note that O(ITfP)

is always nonempty since there is at least one least cost

sequence reaching each final state of T[. A sdp IT represents a

ddp D if F(II)=S and (Ilf P) CO (D,p) .

3 . Representations of a^ discrete decision problem .

Before turning to our primary problem of characterizing the

representations of a ddp by a dynamic program, we give necessary

and sufficient conditions for the representation, as defined

above, of a ddp by an sdp. We first summarize some concepts and

results on finite automata (Hopcroft and Ullman 1969) which will
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be needed only in the present section. The equiresponse relatio n

of a finite automaton is defined by the relation xRy iff

t(x)=t(y) for all x,yGA . An equivalence relation R on A is

*
called right invariant if xRy -> (Vz€A )xzRyz. If R and T are

equivalence relations on A then R refines T if Vx,yGA xRy ->

xTy. An equivalence relation has finite rank if it has only a

finite number of equivalence classes. Note that the equiresponse

relation on a finite automaton is right invariant since t(x)=t(y)

-» t(xz) = t(t(x),z) = t(t(y),z) = t(yz). Finally for some SCA

define the equivalence relation Rg as follows:

xR
gy iff (VzSA*) xzSS <-> yzGS

.

The following lemma gives us an essential property of finite

automata

.

Proposition 1. Let SCA and let R be a riqht invariant

equivalence relation of finite rank, then R is the equiresponse

relation of a finite automaton which accepts S iff R refines R~

.

proof: see (Hopcroft and Ullman 1969; pp 29).

Theorem 1. A sdp U= (A,Q,q
Q ,Q f

,T , h ,k , P) represents a ddp

D=(A,S,P,f) iff the following conditions hold:

1. the equivalence relation R defined by xRy iff t(x)=t(y) for

*
x,y6A is a right invariant equivalence relation of finite

rank which refines Rg.

2. (VpGP) (Ex s.t. t(x)6Q
f
)(Vy s.t. t(y)6Q f ) g (y , p) <g (x , p) ->

yGO(D,p)

.
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proof: (if): Suppose that conditions 1 and 2 hold. By proposi-

tion 1, R is the equiresponse relation of a finite automaton

which accepts the language S, so F(TI)=S. Let x satisfy condition

2, so (VyeS s.t. t(y)GQ
f ) g (y ,p) <g (x , p) -» yGO(D,p). Let

yeO(IT,P) so (Vy s.t. t(y)6Q
f ) g(y,p)<g(y,p) -» g (y ,p) <g (x ,p) -»

yeO(D,p) thus 0(Il,p)CO(D,p).

(only if): Suppose now that IT represents D, so F(11)=S and

(IT, p) CO (D ,p) . R is the equiresponse relation of a finite auto-

maton which accepts S, so R is a right invariant equivalence

relation of finite rank. By proposition 1, R refines R
g , so con-

dition 1 holds. Let ySOfllrP) then (Vy s.t. t(y)6Q
f )

g(y,p)<g(y,p) -» g(y,p) = g(y,p) -> yeo(IlfP) -> yeo(D,p). Thus

condition 2 holds. QED

There are several important aspects to our representations

of ddp's by sdp's which should be pointed out. In mapping from a

ddp to a sdp, we assume the notion of a state (the equivalence

classes of R in theorem 1), the existence of the transition func-

tion t which only depends on the current state and input deci-

sion, and a cost function which is separable in the sense that

the cost of adding a transition onto the end of a sequence only

depends on the current state, the input decision, and the cost of

the sequence (in general the cost might depend on all previous

decisions). This much structure is implicit in the concept of a

dynamic program. A closer examination of these assumptions may

be found in (Elmaghraby 1970).
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4 . Strong representations of a discrete decision problem .

Our purpose is to discover the conditions under which a sdp

II represents a ddp D by means of a discrete dynamic program. The

principal underlying dynamic programming has been formulated by

Bellman in the Principle of Optimality (Bellman 1957) and can be

paraphrased as follows:

An optimal sequence has the property that no matter what the

next-to-last state and the next-to-last decision are the sequence

reaching the next-to-last state must be optimal.

This version of the principle of optimality is illustrated

in figure la. If for aGA, x€A xa is an optimal sequence from

state q n to q^ then x is an optimal sequence from q Q
to q. In

general the principle of optimality implies that if xy, for

x,y€A , is an optimal sequence from q Q to q^ then x is an optimal

sequence from q n to t(q n ,x) and y is an optimal sequence from

t(qn* x ) to 3f as illustrated in figure lb. This illustration

applies only to discrete sequences and so should not be construed

to demonstrate the full range of dynamic programming which is

much broader.

In terms of an sdp the principle of optimality can be made

precise as follows:

(Vp6P) (VxGA*) (VaGA) G ( t (xa ) ,
p) =g (xa , p) -> G (t (x) ,

p) =g (x , p) d)

-8-



1f % Vi

a

Figure 1.

The following lemma states an equivalent form for (1). Let

11= (A,Q,q n ,Qf ,T , h ,k , P) be a sdp. h is s '

-

monotonic if for all

states qGQ, optimal sequences xa reaching state q, and sequences

ya reaching q, we have g (x,p) <g (y ,p) <-> g (xa , p) <g (ya , p) . A sdp

containing a s'-monotonic cost function is a s '-monotonic seque n-

tial decision process (s'-msdp). We say h is strictly monotonic

(s-monotonic) if for all x,y€A such that t(x)=t(y),

g (x,p) <g (y ,p) -» g (xa ,p) <g (ya ,p) . A sequential decision process

which contains a s-monotonic cost function is called a s trictly

monotonic sequential decision process (s-msdp)

.

Theorem 2. (1) holds for an sdp 11= (A, Q ,q Q ,Q f
,T ,h ,k , P) iff h is

s '-monotonic.

proof: (only if): Suppose that (1) holds for some sdp IT and

that h is not s'-monotonic. Let xa be an optimal sequence reach-

ing state q and let y be a sequence such that t(x)=t(y). Suppose

first that g (x, p) <g (y , p) and g (xa
, p) >g (ya ,p) . Since

G (q, p)=g (xa ,p)>g (ya,p) , we have g (xa ,p) =g (ya , p) . By (1),
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G (q' ,p)=g (x,p)=g (y,p) , but this contradicts our assumption that

g(x,p)<g(y,p) . Thus g(x,p)<g(y,p) -» g (xa ,p)<g (ya ,p) . Suppose

instead we have g(xa,p)<g(ya f p) but g (x, p) >g (y , p) . g (x, p) ?*g (y ,p)

since g (xa ,p) ?q (ya ,p) so g (x f p) >g (y ,p) . But by (1) and our

assumption that xa is an optimal sequence reaching q, we have

G (q ' ,p)=g (x,p) <g (y,p) by definition of G. This contradiction

shows that g (xa , p) <g (ya ,p) -» g (x,p) <g (y , p) when x is an optimal

sequence reaching state q. Thus (1) —> h is s'-tnonotonic.

(if): Suppose now that h is s ' -monotonic . If (1) does not

hold then for some sequence xa such that t(xa)=q, we have

G (q, p)=g (xa ,p) but G (q
' ,p) ?q (x , p) where t(q',a)=q. For some yGA

such that t(x)=t(y) we have G (q
* ,

p) =g (y ,p) <g (x, p) . If

g (ya ,p) =g (xa ,
p) =G (q,p) then h is not s'-monotonic (with respect

to optimal sequence xa) , so we must have g (ya , p) >g (xa , p) . But

since h is s'-monotonic we have g (y , p) >g (x,p) which contradicts

our earlier finding that g (y ,p) <g (x, p) . Thus (1) must hold. QED

In practice we wish to find optimal policies between states.

We define below the tables T(q,p) which store the information

necessary to obtain optimal policies. Formally for all qGQ f pGP

T(q,p) is a subset of QxA. (T: 0xP->2^xA ) . A set of policies

9(q,p) are obtainable from the tables T(q,p) as follows: let

e (c[
S fP) = {(q s re)}, where e is the empty string,

©(q,P) = {ya| (q
1 ,a)6T(q,p) and yee(q',p)} for q^q s

.

A ddp D=(A,S,P,f) is strongly- represented (weakly- represented ) by

-10-



a sdp IT= (A,Q f q ,Q f
,T,h ,k ,P) if i) IT represents D, ii) the func-

tional equations (2) and (3) given below hold and iii) for q€Q,

p€P the set of policies obtainable from the tables T(q,p) is the

set (subset) of all optimal policies; in particular

U 9 (q,p) =0 (HfP) ( U 9 (q, p)C0 (IT/P) for a weak representa-
q€Q f q6Q f

tion) .

G (q«.,p)=k (2)

G(q,p) = min h (G (q
' , p) ,q '

, a ,p) (3)
{ (q' ,a) |t(q' ,a)=q}

T(q,p)={ (q' ,a) I t (q ' ,a)=q, G (q , p) =h (G (q ' , p) ,q ' , a ,p) } (
4 )

Note that if IT strongly (weakly) represents D then by (i)

0(IT,p)=0(D,p) and thus U 9(q f p) = 0(D,p) ( U 9 (q , p) CO (D ,p) )

qSQ
f q€Q f

i.e., the construction of the tables 9 by means of (2), (3), and

(4) results in the construction of all (a nonempty subset of)

optimal solutions to the ddp D.

Lemma _1. xG9(q,p) -» x is an optimal sequence reaching state q.

proof: the lemma follows immediately from the stronger lemma 2

which is given in the appendix.

We do not require that an optimal sequence have the same cost in

D as in IT- Our interest is in obtaining optimal solutions and in

making use of the functional equations (2) and (3). These equa-

-11-



tions are characteristic of dynamic programming and are often

considered a direct translation of the principle of optimality.

We take (1) as a more direct translation and show next that in

the sense of a strong representation (1) and the equations (2)

and (3) are equivalent.

Theorem 3_. A ddp D=(A f S,P f f) is strongly-represented by an sdp

TI= (A,Q,q Q ,Q f
,T,h,k ,P) iff IT represents D and (1) holds.

proof: (if): Suppose that (1) holds and II represents D. In

order to show that the ddp D may be strongly-represented by an

sdp Ilf we must show that II represents D (which we have assumed),

(2) and (3) hold, and that all optimal policies may be obtained

from the tables defined by (4). First, (2) holds by definition

of G. Let H(q,p) denote the right hand side of (3). We will

show that G (q,p) =H (q,p) . Suppose that ya is an optimal policy

reaching state q, so G (q, p) =g (ya ,p) . Since (1) holds we then

have G (q,p)=g (y,p) where t(q,a)=q. Thus G(q,p) = h (g (y , p) ,q , a ,p)

= h(G(q,p) ,q,a,p) > min h (G (q ' ,p) ,q ' , a ,p) =H(q,p),
-{ (q' ,a) I t (q ' ,a)=q}

or G(q,p)>H(q,p)

.

Now let H (q,p)=h (G (q,p) ,q,a,p) for some q€Q and suppose

G (q,p) =g (y,p) where t(y)=q. i.e., y is an optimal policy reach-

ing q. Let t(ya)=q then G (q, p) <g (ya ,p) = h (g (y , p) ,q , a ,p) =

h (G (q,p) ,q,a,p) = H(q,p), thus G (q,p) <H (q, p) . Combining these

results we have G (q,p) =H (q,p) and (3) holds.

By lemma 1 all policies in 0(q,p) are optimal with respect

to h. Suppose though that not all optimal policies can be

-12-



obtained from (4). Let xa be an optimal policy of shortest

length reaching state q which is not in 9(t(xa),p). Let t(x)=q'.

By (1) x is optimal thus x€0(q*,p) (since x has shorter length

than xa) and G (q
' ,

p) =g (x ,p) . Since xa £ 0(t(xa),p) we must have

G(t(xa),p) < h(G(q' ,p) f q' ,a,p) = h (g (x,p) ,q
* ,a ,p) = g(xa,p), but

this contradicts our assumption that xa is an optimal sequence

reaching state q. Therefore (q
' , a) €T (q, p) and by definition

xa00(q,p), so 0(q,p) is the set of all optimal sequences reaching

state q. In particular U 0(q,p) = O(ITfP).
qeQ

f

(only if): Suppose now that the ddp D is strongly-

representable by the sdp IT. For some q€Q, x€A we are able to

obtain all optimal policies reaching state q using (2), (3), and

(4). consider xa£0(q,p) where t(xa)=q, t(x)=q'. By lemma 1 xa

is an optimal sequence reaching state q. By definition

x60(q',p), and by lemma 1 x is an optimal policy reaching q', so

G (q
' ,p) =g (x

, p) . Thus (1) holds. II represents D by assumption.

QED

Corollary 1_. A ddp D=(A,S,P,f) is strongly-represented by a sdp

11= (A, Q, q Q ,Qf:
,T ,h ,k , P) iff Vl represents D and TT is a s'-msdp.

proof: immediate from theorems 2 and 3.

The s ' -monotonici ty of the cost function of an sdp is an

essential ingredient in a strong representation of a ddp. It can

be shown however that any s'-monotonic cost function is effec-

tively equivalent to some str ictly-monotonic cost function.

-13-



Given a s'-monotonic function h, define the function g
1 (and

thereby h' implicitly) as follows:

g' (xa,p) =
g ( xa , p

)

if G (q,p)=g (xa,p)
(5)

G (q,p)+g ' (x,p) otherwise.

Define G'(q.p) = min g'(x,p). Note that by definition
{q|t(x)=q}

G (q,p)=G ' (q, p) for all states q and inputs p. Lemma 4 given in

the appendix establishes the effective equivalence of h and h* in

the sense that the set of optimal sequences obtained for each

state is the same for both cost functions.

Lemma 3. If h is s'-monotonic then h' defined by (5) is strictly

monotonic.

proof: Let h' be defined from the s'-monotonic function h by (5).

Suppose for x,y6A such that t(x)=t(y), we have g
' (x,p) <g

' (y , p)

.

We have 2 cases to consider in order to show that

g ' (xa r p) <g
' (ya ,p) . Let a€A such that t(xa)=q. Case 1: ya is not

optimal. By construction of g', g
' (ya ,

p) =G (q, p) +g
' (y , p) and

g'(xa,p) has the value G(q,p) or G (q, p) +g ' (x, p) either of which

is strictly less than g'(ya,p). Case 2: ya is an optimal

sequence reaching state q. If ya is optimal then

g
' (ya ,p) =g (ya ,p) =G (q, p) . Also by theorem 2, (1) holds so y is an

optimal sequence; i.e., g'(y,p) = g(y,p) = G(q' f p) = G'(q',p),

but this contradicts our assumption that g * (x,p) <g
' (y , p) =

G' (q' ,p) . OED
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Theorem 4_. A ddp D=(A,S,P,f) is strongly represented by a sdp

IT= (A,Q,q n , Qf ,T,h , k ,P) iff there is a strictly monotonic sdp

IT = (A,Q,q n ,Qf ,T,h ' ,k ,P) which strongly represents D.

proof: (only if): Clearly any s-msdp is an s'-msdp so by corol-

lary 1 the statement of the theorem is consistent and D is

strongly represented by 11' •

(if): Suppose that D is strongly represented by

11= (A,Q,q n ,Qf ,T,h ,k ,P) , then by corollary 1 h is a s'-monotonic

cost function. Consider h' defined by (5) which is s-monotonic

by lemma 3. We need to show that TT
1 = (A, Q ,

q

,Q f
,T ,h ' ,k , P)

strongly represents D. (2) holds by definition. In order to

show that (3) holds, let xa be an optimal sequence reaching state

q. By construction G (q,p) =G ' (q,p) for all states q9Q. Equation

(3) then holds for G 1 since it holds for G by corollary 1. Equa-

tion (4) holds since lemma 4, given in the appendix, shows that

* (q,p) =9 (q,p) so 9'(q,p) is the set of all optimal sequences

reaching state q. Finally IT' represents D since F fTP ) =F (II) =S and

0(D,p)=0(II,P) = U 9(q,p) = U 9'(q,p) =0(IT,p). QED
q€Q f q9Q f

5 . Weak representations of a discrete decision problem .

We have been looking at the conditions under which we can

find all optimal decision sequences reaching any state from q Q .

In practice we may relax this requirement and be satisfied with

some (or just one) optimal sequences to each state in Q. We now

explore the conditions under which this requirement can be satis-
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fied.

We have seen how a direct translation of the principle of

optimality helped to establish the conditions for its applica-

tion. In the more general situation faced now it may be helpful

to give a generalized principle of optimality which applies when

we are interested in obtaining only some optimal decision

sequences.

Generalized principle of optimality ( forward version ) : If there

is an optimal sequence reaching state q, then there is an optimal

sequence reaching state q with the property that no matter what

the last decision and last state q' were, the sequence reaching

q' is an optimal sequence.

Given p6P, a sequence xa is 1-optimal if G (t (xa) ,p) =g (xa ,p) and

G (t (x) ,p) =g (x, p) . This generalized principle of optimality can

be formalized as follows:

(Vp€P) (VqSQ) there is a 1-optimal sequence reaching state q (*>)

In these terms we can reformulate the (original) principle of

optimality as follows: Vp6P VqGQ every optimal sequence reaching

state q is 1-optimal. Condition (6) can be expressed soley in

terms of the cost function h as given below in theorem 5. h is

b-monotonic if for all q€Q, some optimal sequence xa reaching q,

and sequence yaSA reaching q, we have g (xa ,p) <g (ya ,p) ->

g(x f p)<g(y,p) . A sdp 11= (A, Q, q , Q f
,T ,h ,k , P) in which h is b-

monotonic is a b-monotonic sequential decision process (b-mdsp)

.
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Theorem 5^. (6) holds iff h is b-monotonic.

proof: (if): Consider an arbitrary state q€Q and let h be b-

monotonic. We will show there exists a 1-optimal sequence reach-

ing state q. Let xa be an optimal sequence reaching state q.

Let P(q) denote the set of sequences such that yGP(q) iff t(y)=q.

Partition P(t(x)) into two sets as follows: let

Y(x,a) = {y |yGP(t (x) ) , g (xa ,p) =g (ya , p) , g (x,p) >g (y , p)

}

Z(x,a) = {z|z€P(t (x) ) , g (xa,p)<g (za,o) } U

{z I zGP(t (x) ) , g (xa f p) =g (za,p) , g (x, p) <g (z , p) }

For any z6Z(x,a) we have g (x , p) <g (z
, p) , either by the monotoni-

city of h in the case that g (xa ,p) <g (za ,p) or by definition in

the other case. Thus if Y(x,a) is empty then G (t (x) ,
p) =g (x , p)

and xa is a 1-optimal sequence reaching state q. On the other

hand if Y(x,a) is nonempty, we have y'= min g(y»p) for some
ySY(x,a)

y'6Y(x,a). Then g (y
* ,p) <g (y , p) for all y€Y(x,a), and

g (y
• ,p) <g (x,p) <g (z,p) for all zGZ(x,a), thus G ( t (x) ,

p) =g (y
' ,p)

.

But g (y ' a ,p) =g (xa ,p) =G (q , p) , so y'a is a 1-optimal sequence

reaching state q.

(only if): Suppose now that ("S) holds. For an arbitrary

state q, let G (q, p) =g (xa ,p) and G (q
' ,

p) =g (x f p) where t(q',a)=q

and t(x)=q*; i.e., xa is 1-optimal sequence reaching state q.

Suppose that h is not b-monotonic, so for some sequence ya we

have g (xa ,p) <g (ya ,p) and g (x , p) >g (y , p) . By the 1-optimality of

xa we have g (x, p) =G (q
' ,p)<g (y , p) . Furthermore we must have

g (x,p) <g (y, p) since g (x,p) =g (y ,p) -» h (g (x , p) , t (x) , a ,p)

h (g (y , p) , t (x) ,a ,p) ; i.e., g (xa ,p) =g (ya ,p) . This contradiction
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shows that h is b-monotonic. QED

Theorem 6. A ddp D«(A,S,P,f) is weakly-represented by a sdp

I!=(A f Q,q ,Q f
,T,h,k r P) iff II represents D and (6) holds.

proof: (if): Suppose that the ddp D=(A,S,P,f) is weakly-

represented by a sdp 11= (A,Q,q ,Q f
,T, h, k ,P) . By definition I!

represents D. Now let q be an arbitrary state. By (2) ,

G(q,p)= min h (G (q '
, p) , q '

, a , p) . Let G(q,p)
{(q\a) |t(q',a)=q}

h(G(§,p) ,q,a,p) and let G (§ ,p) =g (y ,p) , then G(q,p)

h(G (q,p) ,§,a,p) = h (g (y ,p) ,§ , a ,p) = g(ya,p). We have just shown

that ya is a 1-optimal sequence reachinq state q. Thus (6)

holds.

(only if): Suppose now that IT represents D and (6) holds.

For any state q6Q, there exists a sequence xa such that t(xa)=q,

G(q,p)=g (xa,p) , and G (§ ,p) =g (x,p) . G(q,p) = g(xa f p)

h (g (x, p) ,

q

,a

,

p) = h (G (q, p) , § , a , p) which implies that we can find

the value G(q f p) by minimizing the expression h (G (q

'

r p) ,q
' ,a,p)

over all q'€Q, a6A such that t(q' f a)=q, and thus we get (3). (2)

follows by definition. By definition all elements of 0(q,p) are

optimal sequences which reach state q. To see that 9(q,p) is

nonempty, note that since (6) holds there is a sequence xa such

that G (q,p)=g (xa ,p) and G (q

'

, p) =g (x,p) where T(q' f p)=q and by

definition such an xa is in 9(q,p). Finally ft represents D by

assumption. QED
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Corollary 2. A ddp D=(A,S,P,f) is weakly-representable by a sdp

TI55 (A,Q,q , Q f
,T,h, k , P) iff ft represents D and II is a b-msdp.

proof: immediate from theorems 5 and 6.

We have now characterized the classes of sdp's which weakly

and strongly represent ddp's. The difference between these two

types of representations is illustrated in figure 2. Here h is

b-monotonic but h is not s'-monotonic. According to equation

(3), in order to determine an optimal sequence reaching q, we

consider an extension of an optimal sequence reaching q
1

. But in

restricting the search to optimal sequences reaching q', equation

(3) overlooks the optimal sequence ya reaching q. This illus-

trates why b-msdp's can only weakly-represent a ddp.

The conditions established for the weak-representation of a

ddp are necessary in order to take care of fairly pathological

cost functions. It can be shown however that the cost function

of any sdp which weakly represents is equivalent to other cost

g (x,p)=10 g (xa ,p)=16
g(y,p)=12 g(ya f p)=16 % %

Figure 2.
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functions with nicer properties. Given a cost function h which

is b-monotonic, define the function g* (and thereby h') as fol-

lows :

g'(x,p)=i" (7)

p3(x,p) if x is 1-optimal

|G(t(x),p)+l otherwise.

Define G'(q,p)= min g'(x,p). Lemma 4 given in the appendix
t(x)=q

establishes the effective equivalence of h and h' in the sense

that the set of optimal sequences obtained for each state is the

same for both cost functions.

h is monotonic if Vx,y€A VaGA such that t(x)=t(y)

g (x, p) <g (y , p) -> g (xa , p) <g (ya , p)

.

An sdp with cost function h

which is monotonic is a monotonic sequential decision process

(m-sdp )

.

Lemma 5^. If for some sdp 11= (A,Q,q n ,Qf , T, h , k ,P) h is b-monotonic

then h' defined by (7) is monotonic.

proof: Consider the function h' defined in (7). h' can be shown

to be monotonic as follows. Let t (x) =t (y) =q ' , t(q',a)=q and

g
' (x,p) <g

' (y,p) . If xa is 1-optimal then g
' (xa ,

p) =g (xa ,p) =G (q, p)

and since g'(ya,p) has the value G(q,p) or G(q,p)+1,

g
' (xa ,p) <g' (ya ,p) . Suppose now that ya is 1-optimal, then

G (q,p)=g (ya,p) and G (q

'

f p) =g (y , p) ,
g

' (ya ,p) =g (ya , p) and

g' (y,p)=g(y,p)=G (q' ,p)=g' (x,p) (since g
' (x, p) <g

' (y ,p) . But if

g' (x,p)=g' (y,p) then g'(xa,p) = h 1 (g ' (x r p) ,q
' ,a,p)

h' (g' (ya,p) ,q' ,a,p) = g'(y,p) (thus g
' (xa ,p)<g ' (ya , p) ) . If
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neither xa nor ya is 1-optimal then g
• (xa ,p) =g

' (ya ,p) =G (q,p) +1

.

In all cases the monotonicity of h' is shown. QED

The following result is well known (Elmaghraby 1970, Bonzon

1970) in the sense that dynamic programs are in one to one

correspondence with monotonic sdp's. However to the author's

knowledge it has not been pointed out that m-sdp's can only

weakly represent a ddp; i.e., one is not guaranteed to be able to

obtain all optimal solutions from a representation by a m-sdp.

Theorem 7. A ddp D=(A,S,P,f) is weakly-represented by some sdp

11= (A,Q,q Q ,Q f
,T,h,k ,P) iff there is a m-sdp

TT'= (A,Q,q
Q ,Qf ,T,h ' ,k ,P) which weakly-represents D.

proof: (if): We must show that a m-sdp can represent D. Let xa

be an optimal sequence reaching q, so G (q,p) =g (xa ,p) . Suppose

g (xa ,p) <g (ya ,p) yet g (x,p) >_g (y ,p) . By the monotonicity of h 1

, we

get g (xa ,p) >g (ya ,p) which contradicts our assumption. Thus

g (x,p) >g (y ,p) and h' is b-monotonic. By corollary 2, TT
1 weakly-

represents D.

(only if): Suppose that D is weakly-represented by an sdp

11= (A,Q,q ,Q f
,T,h,k ,P) , and h' is defined by (7) from h, then by

corollary 2, h is b-monotonic and by lemma 5 h' is monotonic.

We can show that D is weakly-represented by the sdp

n ,= (A,Q,q
Q ,Q f

,T,h
'
,k,P) . (2) holds by definition. Let xGA* be a

1-optimal sequence reaching state q€Q so G (q ,p) =g (x,p) . Such a

sequence exists by theorem 6. By construction g ' (x,p) =g (x,p) so
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G '
(q,p)»G (q,p) for all states qGQ. Equation (3) must hold for

G' (q,p) since it holds for G(q,p) as a result of corollary 2.

Lemma 4 shows that 9 (q, p) =9 • (q, p) so 9'(q,p) is a nonempty subset

of optimal sequences. Finally IT' represents D since F (IT
1

) =F (II) =S

and 0(11', P) = U 9'(q,p) = U 9(q,p) = 0(H,p) C 0(D f p). QED
qeQ

f q6Q f

6 . Conclusion .

This paper has given necessary and sufficient conditions for

the strong and weak representation of a discrete decision problem

by a sequential decision process. Strictly monotonic (monotonic)

sequential decision processs have been shown to be equivalent in

the strong (weak) representation sense to the class of discrete

decision problems which can be formulated as discrete dynamic

programs. We have shown that the problems to which the principle

of optimality applies are a subclass of the problems to which the

functional equations of dynamic programming are applicable.

Appendix

In order to establish lemma 1 we will need the following defini-

tion and lemma. We say xGA is completely-optimal if every ini-

tial segment (every y€A such that there exists z€A such that

yz=x) y of x is 1-optimal.

Lemma 2. xa69(q,p) iff xa is completely optimal.

proof: by induction on the length of a sequence. Let the length
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of x be 1, i.e., x9A. (q g
, x) ee (q,p) iff x6T(q,p) and e99(q,p)

where e is the empty sequence and t(x)=q. By definition

e69(q
s ,p) and x99(q,p) iff G (q ,

p) =g (x , p) iff x is an optimal

sequence.

Induction step: Assume that the lemma holds for any

sequence of length <m and let the length of the sequence xa be m.

xaee(q,p) iff (q
' ,p) 9T (q,p) and x69(q',p) where T(q',p)=q. By

induction hypothesis xG9(q',p) iff x is completely optimal. This

implies that G (q
' ,p) =g (x,p) . Also (q ' ,p) 9T (q ,p) iff

G (q,p)=h (G (q
1

,p) ,q' ,a,p) = h (g (x , p) ,q
* , a ,

p) =g (xa ,p) . (xa is 1-

optimal and x is completely optimal -»xa is completely optimal),

i.e., xa is completely optimal. QED

The following lemma establishes the effective equivalence of h

and h' defined by (5) in the sense that the set of optimal

sequences obtained for each state is the same for both cost func-

tions. The lemma also holds true for h' defined by equation (7).

Lemma A. Vq90, VpGP 9(q,p)=9' (q,p)

.

proof: x99(q,p) iff x is completely optimal (by lemma 2),

iff x=a^a2...a and a^-.-aj is 1-optimal with respect to h for

i=l,...,n

iff q' (a
1
,p)=g(a

1
,p)=G' (tia-L) ,p) and ... and g ' (a

x
. . . a

n ,p)

g(a^...a ,p) = G (t (a^ • • • a ) ,p) by construction,

iff x is completely optimal with respect to h*,

iff x€9' (q,p) (by lemma 2) .

QED
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