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Abstract

We consider the numerical construction of a unitary Hessenberg matrix from spectral data using

an inverse QR algorithm. Any unitary upper Hessenberg matrix // with nonnegative subdiagonal

elements can be represented by 2n — 1 real parameters. This representation, which we refer to as

the Schur parameterization of //, facilitates the development of efficient algorithms for this class of

matrices. We show that a. unitary upper Hessenberg matrix // with positive subdiagonal elements

is determined by its eigenvalues and the eigenvalues of a rank-one unitary perturbation of II. The
eigenvalues of the perturbation strictly interlace the eigenvalues of II on the unit circle.
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1. Introduction

In this paper we focus on an inverse eigenvalue problem for unitary Hessenberg matrices with pos-

itive subdiagonal elements. Throughout this paper all Hessenberg matrices are upper Hessenberg

matrices. This class of matrices bears many similarities with the class of Jacobi matrices, i.e. real

symmetric tridiagonal matrices with positive subdiagonal elements. Any matrix in either class is

normal and has distinct eigenvalues. Both n x n Jacobi matrices and n x n unitary Hessenberg

matrices with positive subdiagonal elements can be parameterized by 2n — 1 real parameters. This

is obvious for Jacobi matrices; for unitary Hessenberg matrices this parameterization is described

below. Since unitary Hessenberg matrices with positive subdiagonal elements are determined by

O(n) parameters, one can develop efficient algorithms for this class of matrices. These algorithms

are analogous with algorithms for Jacobi matrices. For example, the unitary QR algorithm, de-

scribed in [Gr2], has many similarities with the QR algorithm for Jacobi matrices. Another example

is provided by the divide-and-conquer methods that have been developed for both the tridiagonal

and unitary eigenproblems [Cu], [DS], [GRl], [GR2].

In this paper we show another analogy of unitary Hessenberg matrices with Jacobi matrices, namely,

that a unitary Hessenberg matrix H with positive subdiagonal elements is uniquely determined

by its eigenvalues and the eigenvalues of a unitary rank-one perturbation of H . The matrix H
can be constructed using 0(n 2

) arithmetic operations using an inverse unitary QR algorithm.

Similar results for Jacobi matrices are well-established [BGl], [BG2], [GH]. The inverse unitary QR
algorithm is analogous with the algorithm described in [GH] for Jacobi matrices.

2. Unitary Hessenberg Matrices and Szego Polynomials

We refer to a finite Schur parameter sequence of length n as a sequence of complex numbers {7j}j_i

with |7j| < 1 for 1 < j < n and |7n |
= 1. Also define the complementary Schur parameters {&j}"~l

by aj := y/l — \fj\
2

. Associated with the finite Schur parameter sequence {Aj}"=1 is a unitary

Hessenberg matrix H with positive subdiagonal elements

H = H{lu . . .,7n-i,7n) := G x { lx )G 2 {l2 ) . . .Gn _ 1 (7n _ 1 )G n (7n), (2.1)

where the Givens reflector Gj(jjj) is the identity matrix of appropriate size except for the 2x2
principal submatrix

r

j i + i
Gj

j j+l
-
7j <jj

with the bar denoting complex conjugation. The matrix on the right in the product (2.1) is defined

by Gnifn) := diag[l, 1, . . ., 1, -7„]. The nonzero entries of H = [Vj,k]jk=i are t^ien given by

rjj+i j := o
d
and n^ k := -7

j
_ 1 ai (7j +1 . . .Ok-ilk for 1 < j < k, where 70 := 1.

It is easy to see that every n X n unitary Hessenberg matrix H = [Vj,k]
1

j t
k-i with Vj+iJ > is

uniquely determined by a finite Schur parameter sequence of length n. In fact, the Schur parameters

{jj}]= i
and the complementary Schur parameters {oj}*-!] can be determined from // by

a
3
= rjj+ij, 1 < j < n; jj = -r)i,j/°i°2 -'^j-i, 1 < j < n.

Hence, we have a one-to-one correspondence between Schur parameter sequences of length n and

nxn unitary Hessenberg matrices with positive subdiagonal elements. This Schur parameterization

of unitary Hessenberg matrices with positive subdiagonal elements shows that these matrices are

determined by 2n - 1 real parameters: the real and imaginary parts of jj for 1 < j < n, and the



argument of fn . To avoid numerical instability, however, we also retain the complementary Schur

parameters.

Let // = H„ := #(71, ,7n-i,7n), and let Hk := Gi (71)^2(72) • • •Gk-i('Tk-i)Gk('l(k) be the

leading principal sub-matrix of II = IIn of order k. Introduce the functions

4>k{\):=e
T,(XI-H k

)- l e^

lMA):=det(A/-tf fc ),

jr*(A) := det(AJ - H'U ),

where e\ := [1,0, ... ,0]
T

, and H'
t
!_ 1

denotes the trailing principal submatrix of IIk of order k — 1.

Thus, <f>k(X) — 7r A:(A)/t/'fc(A). The following proposition can be verified by induction.

Proposition 2.1. The polynomials V')fc(A) and ^(A), A; > 0, satisfy

<Ma; 7Tfe(A)

**(A)

A 7 a- ^fc-l(A) TTfc-l(A) Vo(A) 7T (A

7fcA 1 V'a-i(A) 7Tfc_l(A)
)

V'o(A) 7T (A

1/A

It follows that for each A*, the polynomials V'A-(A) := A*V^.(1/A) are obtained by reversing and

conjugating the coefficients of 0/-(A). From the initial conditions we recognize va-(A) to be the A'th

Szego polynomial determined by the Schur parameter sequence {7j}j =1 - n

The Szego polynomials {ipk}k=o are orthogonal with respect to a discrete measure on the unit

circle. This measure assigns a positive weight ujk to each zero A^ of «/'n (A). These weights are the

numerators in the partial fraction decomposition

<MA)=:]T
uk

k=\
A- X,

see [Grl] for details.

Let H = UAU*, with A = diag[A 1? A 2 , . .
.

, A n ] and U unitary, be the spectral resolution of

// = H(fi, . . . ,7 n _i, 7 n ), where * denotes transposition and complex conjugation. Let u :— I'
1
ej

be the vector containing the first components of the eigenvectors of H . Since II has nonzero sub-

diagonal elements, every entry of u = [v\, t>2, . . . , iJn]
T

is nonzero, and we normalize U so that each

vk > 0. Then
n o

n(A)= U*{XI-\)- l
U

n

k=l
A,

Hence, the weights u>k — v\ are guaranteed to be positive, and ^£=1 w* — 1-

3. The Inverse Unitary QR Algorithm

Given n distinct unimodular complex numbers {A/j£=1 and associated positive weights {u£}jj_j,

we can construct a unitary Hessenberg matrix // with the Ajt and Vk equal to the eigenvalues and

first components of the corresponding eigenvectors of//, respectively. This construction is achieved

using an inverse QR algorithm, which is analogous with the procedure of [Gil] for real symmetric

tridiagonal matrices.

The required Hessenberg matrix is obtained by performing a sequence of elementary unitary simi-

laritv transformations to transform the matrix
A

to a Hessenberg matrix
11

without



using or changing the arbitrary entry 8. Then // = H(ji,

.

. .,7n -i,7n) has the desired eigenvalues

and associated eigenvectors.

The idea is to build the Hessenberg matrix by adding weight-abscissa pairs one at a time. Suppose

that we have constructed the unitary Hessenberg matrix Hm := #(7i, . . • j7*n-i>7m)s f°r some
m < n, corresponding with the weight-abscissa pairs {(u;^, Afc)}™=1 . Let gq :— (Y^k=\ ^k)

1 ^ 2 and

assume that the first components of the eigenvectors of Hm are {(t>fc/co)}™=1 - In order to add the

weight-abscissa pair (v 2
, A) and construct the corresponding [m + 1) X (m + 1) unitary Hessenberg

matrix H'm+l := H(X'
1 , A 2 , . , X'm +\), we perform a sequence of unitary similarity transformations

to put the (777. + 2) x (777 + 2) matrix

AM:=
6 V aQ e\

V A 0*

a ei Hm

G 2 (a )H {1) =: # (2) -

'6 v Co

v A

oo x X X X X

= X X X X X

X X

X

X X

X X

and «o

X X

?t a' := Va
o + v 2 := -v

'6 v oq

Oq X X X X X X

x x x X X X

X X X X X

X X X X

X X X

. X X .

is a Hessenberg matrix with a trailing principal (m + 1) x (m + 1) submatrix, which is both unitary

and of Hessenberg form. On the completion of the similarity transformation of H^ l \ we obtain

HWG*
2
{aQ )

= (3.1)

The circled element in (3.1) forms a "bulge", which is to be chased down along the subdiagonal in

order to obtain a matrix of Hessenberg form. Define G^ai) so that G^a^H^Gofao) =: H^ is

a Hessenberg matrix. Then H^G^(qi) has a bulge, which we annihilate by multiplying from the

left with 6*4(0:2). Proceeding in this manner, we ultimately chase the bulge off the bottom of the

matrix, and obtain the Hessenberg matrix ^^ m-1;G^_
1 (7m _3), which is unitarily similar to H^\

The trailing principal (m + 1) x (777 + 1) submatrix of iT^
Tn-1)G^_

1 (7m _3) is unitarily similar to

a unitary Hessenberg matrix with positive subdiagonal elements. The latter matrix is the desired

Hessenberg matrix H'm+l = ff(7i,72> • • • >7m+i)-

This procedure for adding a weight-abscissa pair to Hm , if implemented by directly manipulating the

elements of the matrices H^ k\ for 1 < k < m, would require 0(m 2
) arithmetic operations. However,



we note that for each k the trailing (m-j-1 )x(m+l) principal submatrix of I~I
(h>

is unitary and of Hes-

senberg form, and, therefore, is unitarily similar to a unitary Hessenberg matrix, denoted by #„j+ii
with positive subdiagonal elements. Hence, we can carry out the similarity transformations by ma-

nipulating the Schur parameters of the matrices IIm+{ - #(7{,72> • • ->7a;5 ^
k
ak,~fk+i, • • -,7m)-

This gives rise to a method that requires only O(m) arithmetic operations in order to add a weight-

abscissa pair to Hm . We refer to this method as the inverse unitary QR algorithm because of its

relationship with the unitary QR algorithm presented in [Gr2].

Inverse Unitary QR Algorithm: adding a weight-abscissa pair (r 2
,
A), where |A| = 1. v > 0.

<r,o •- \/ao + v2
\

a := -v/a'oi (3 := aQ /(r'
;

for k := 1,2, . .
.

, m

o\. :- fik-iJal 4- |Qfc_i + 7fcA
fc
- 2a fc_i|

2
;k

Pk

L7l-

7m +i := A7m ;

= fa-iH^-i + 7fcA*
2 a A._ 1

)/a[.;

= 0k-i<rk/<r'ki

= /?Li7fc " A fc" 2a A--1 i

Thus, the inverse unitary QR algorithm can be used to construct the unitary n x n Hessenberg

matrix H = #(71, . . -,7n-i?7n) from its eigenvalues and the first components of its normalized

eigenvectors in 0(n 2
) arithmetic operations.

4. An Inverse Spectral Problem

E u'k
Let H = #(7i,---,7n-i,7n) and 4>n (\) =

n
-

v'n(A) ^ A - A A-

and consider the polynomials

XkW = (1 - a)A7r,-(A) + o^-(A), < k < n.

Let a := e
lT

for some < r < 27r.

(4.1)

Proposition 4.1. The polynomials {\'a-(A)}£_ are the monk Szego polynomials corresponding

with the Schur sequence {o7a.}£= i-

Proof. The definition (4.1) and Proposition 2.1 yield

U-(A)

e*(A)

A 7fc

7JfcA 1

\a-i(A)1 [\o(A)l
r

1

e*-i(A)j
1

Leo(A) j
a

where ^-(A) := (1 - a)A7ffc(A) + a^fc(A). On setting X>(A) = a^.(A), we obtain

Xfc(A) A Otlk Xfc-i(A) \o(A

U(A) Q7* A 1 U-i(A)
?

[\o(A

An immediate consequence of Proposition 4.1 is that each zero of \„(A) lias unit modulus. When

a = -1 the polynomials {\jt(A)}£_ are known as the Szego polynomials of the second kind

corresponding with {7fc}£= i>



Proposition 4.2. The zeros {fJ-k} k-o of

\

n (A) strictly interlace the zeros {A^.}^_ of ipn (X) on the

unit circle. Moreover, Ylk=i(^k/^k) — Q -

Proof. Let A := e
t9

for some < 6 < 2x, and let a =: e
tT

for some < r < 2n. Then

n
Xn(A) V"^ A - qA *MA):=^ =E uk

-

V'n(A) ^ A - X k

A 1 - AA fc + a(l - AA fc )

fc=i
|A-A,|

_^ 9 .>/2 ,

Re(c-/ 2 (1-AA,))
= 2>,T/2w

*

fc=l
|A-A,|2

Thus, Im(e- IT / 2 $ n (e^)) = for < 6> < 2?r. Let A
fc
=: e*'** . We may assume that < X < 62 <

< 9n < 2tt. Then

cos(r/2) - cos(r/2 + 0* - #)
c *n(£ ) = > iWjt ; ^ o& fc

(
l_ cos(0, -0))2 +sin

2
(#, -0)

fc=l

cos(r/2) - cos(r/2
UJl.

1 — cos(^/
c
—

cos(r/2) - cos(r/2) cos(6k - 6) + sin(r/2) sin(0
fc
- 0)

ujk= ]Tu?fc

= ^ uk (cos(r/2) + sin(r/2)cot((0
fc
- 0)/2))

.

From < r < 27r and uk > for all fc, it follows that

e-
!r/2—

$

n(e^)= -sin(r/2)^^,/sin 2((^-^)/2)>0 for 0^ 9kt 1 < k < n.

Thus, $„(e ie
)
-+ -oo as \ Ok , and $ n (e

l(?

) -+ oo as / 8k+1 . This shows that 9 - $ n (e
ie

) has

precisely one zero in ]6k ,0k+\[. Consequently, the zeros fij of $ n (A) strictly interlace the Xj on the

unit circle. The second statement of the Proposition follows from the fact that Xn(0)/V'n(0) — <* D

Let X k =: e i6k and fik =: e*"* for < d k ,vk < 2tt. Then we have ELiK ~ ^*) = r - We ma >'

assume that the arguments have been ordered so that

< 01 < VX < #2 < • • • < "n-X < On < »n < #1 + 2tT. (4.2)

Proposition 4.3. With the above notation, and the ordering (4.2), the weights u>k are given by

ft ain(to - ^-)/2)
1 j=i

U!k
=

.

sin^2
) ft -b(» - »»)/2)

Proof. We have

m mm n(A*-w)
1 - QjAfcWjt = lim A - Afc) = = —

^n(A) ^(A,)
n (Afc _ Ai )



since Xn(^) an<̂ ^n(^) are monic. Thus.

f[(ei6k -eivi) n(l-e*<"i-^)) ft sin((^ - 6>
fc )/2)

(l-ap, = e-^^- - = ^- - = -2^if _, (4.3)

Yl (c
tff* _ cWy) ft (1 - c*'(*i-«*)) ft sin((^ -

fc )/2)

because

1 -e tp = -2isin(/5/2), (4.4)

and $^^=1 (i/j — #,) = r. The formula for the weights now follows by substituting (4.4) with /3 := r

into (4.3).

We can now state the inverse spectral problem and its solution.

Problem: Given two sets of n mutually interlacing points on the unit circle {A^}^ =1 and {/u-}"=1 .

determine the unique unitary Hessenberg matrix H = //(71, . .
. ,7n-i)7n) and |o| = 1 such that

the spectrum of// is {A/.}£=1 and the spectrum of II(a~f\, . .

.

, a7n_i, Q7„) is {/U-}£= i-

Solution: Let a :— Yl^ii Vk/^k), calculate the weights by Proposition 4.3. and use the inverse

unitary QR algorithm to construct H — //(71, . .

.

,7n-i,7n)-
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