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FORWARD

This report serves as an introduction to the subject of human

describing function measurement. Particular emphasis has been placed

upon development of the spectral analysis relations utilized in the

describing function measurement techniques. The work was performed by

Dr. Hess as part of a research study sponsored by the Air Force Flight

Dynamics Laboratory, Air Force Systems Command.

This technical memorandum has been reviewed and is approved.
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ABSTRACT

A review of the spectral analysis techniques used in the

measurement of human describing functions is presented. The

describing function relations for single loop, compensatory tracking

tasks are developed. The effect of sinusoidal inputs and finite run

lengths are discussed and a brief discussion on mechanization

techniques is included.
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Io INTRODUCTION

This memo is a brief introduction to the subject of human

describing function measurement with particular emphasis placed upon

mathematical formulation. The presentation is intended to serve as a,

guide to the uninitiated.

The problem to be treated here is one of modeling the human

operator via the describing function technique in a single axis,

compensatory, tracking task. For discussion of such tasks, see Ref. 1,

pp. 7-9- Figure 1 is a block diagram of the compensatory system.

Experiments have shown that in tasks such as this, the human operator

is nonlinear and time varying in behavior. However, a good deal of

success has been achieved in treating him in a quasi-linear fashion .

This quasi-linear model assumes that, for the most part, the human

behaves in a linear, time invariant manner. This means that the major

portion of his response can be attributed to a linear, time invariant

operation on his visual stimulus.

Figure 2 is a more detailed block diagram in which the operator

12^
has been modeled via a linear describing function and a remnant ' ' .

The term describing function is preferred to transfer function to

emphasize the fact that the model is approximating a nonlinear element

and is valid only for particular inputs. Nonetheless, the term transfer

function does appear in the literature; e.g., Ref. h.

Briefly then, the describing function accounts for the operator's

linear behavior, the remnant, his nonlinear time varying behavior.

Being more specific, in Figure 2:

p(t) represents that portion of the total operator output

c(t) which can be obtained by a linear operation on the
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visual stimulus e(t).

n(t), the remnant, represents that portion of the total

output c(t), which is not linearly correlated with

the input i(t).

It should be evident that the utility of this quasi-linear

technique depends upon the extent to which the operator is, indeed,

linear. If the remnant is relatively large, the describing function

technique is of little value in itself.

The modeling problem to be treated here is an empirical one; i.e..,

to determine Y (j(u) and I (w) based upon the physical measurements
p w / nn x-

of finite tracking runs in laboratory experiments. The conditions

under which these measurements are to be taken are as follows:

1) The conditions implicit in Figure 2 are in effect;

i.e., the task is single axis, compensatory, and the

system dynamics are linear and time invariant.

2) The input i(t) is truly random or at least random

appearing.

3) The operator is well trained. This simply means that

his adaptation and learning periods have passed.

Of these three conditions, perhaps the second deserves a brief

comment. The reason that the input form must be established is that

the operator's dynamics are a definite function of the input; e.g.,

the operator's behavior vhen tracking a single sinusoid has been found

to be considerably different than when tracking a random or random

appearing input. Indeel, the very nature of the task can change when

the input is predictable. The rationale behind choosing a random or

random appearing input is that it more truly represents the environment





to v*ich human operator models are to he applied; e.g., pilot pitch

attitude tracking in the presence of atmospheric turbulence. ,





II. SPECTRAL ANALYSIS

The techniques used in describing function measurement depend

to a great extent upon spectral or harmonic analysis. The brief

review which follows is intended to summarize these analytic tools.

For a more thorough treatment the reader is referred to Ref . 6,

Chapters 2 and 13-

A. Periodic Signals

1. Fourier Series

A periodic signal x(t), with fundamental frequency in

which satisfies the Mrichlet conditions (Ref. 7> p. 2U8) can be

represented by a Fourier series

x(t) = £ X(n)e
dnU)

l
t

- (1)

n=-«>

T/2

X(n) = |J x(t)e-J
'

nU>
l
t

dt (2)

-T/2

2. Autocorrelation and power spectal density

The autocorrelation function for the periodic signal x(t) is

defined as

T/2

qkx
(T) ' = |J x(t)x(t+x)dt (3)

-T/2





It can be shown that

V(T)=^|x(n)|VnV (U)

Now,

*„ (n) = |x(n)|
2

(5)xx

Where $ (n) is referred to as the power spectral density of the

signal x(t). It can "be shown that

-T/2

and from eqn. (h)

xx x '

n=-oo

3. Crosscorrelation and cross power spectral density

The crosscorrelation function for two periodic signals

x(t) and y(t) with identical fundamental frequencies co and which

satisfy the Dirichlet conditions is defined as

T/2

Cp
xy (T)

=
|J X (t )y(t+T)dt (8)

-T/2

It can he shown that

00

V(T) =
L X(n)Y(n)e°"

nV (9)





where X(n) denotes the complex conjugate of X(n). Kow,

§ (n) = X(n)Y(n) (10)
•Vjr

Where § (n) is referred to as the cross power spectral density of
xy

the signals x(t) and y(t). One can show

T/2

?
xy
(n)= l/v<T)e

"3nVdT (U)

-T/2

and from eqn. (9)

00

Onw.T
"xy x

Z_, xy'

n=-«

Two periodic signals are said to be linearly uncorrelated when

cp (t) = for all t.
^xy

B. Transient Signals

1. Fourier Integral

A signal x(t) is said to be transient if

lim x(t) =

t-*«>

If such a signal

1) satisfies the Dirichlet conditions in any finite interval

2) satisfies the inequality
00

J|x(t)|dt < oo

-CO

Then the signal can be expressed as a Fourier integral (Ref . 7 3 p. 279)





x(t) -I^JxfoaOe^da (13)

where

00

xQu)) = f x(t)e~i(A dt (1*0

2. Autocorrelation and energy spectral density

The autocorrelation function for the transient signal

x(t) is defined as

CO

CpXX
(T) = J

X(t)x(t+T)dt (15)

— 00

It can he shown that

03

-09

Now,

?
xx

(u)) =
l
x^®)|

2
(17)

Where § (u>) is referred to as the energy spectral density of the
XX

signal x(t). It can be shown that

00

§
xx

(u,) =
J «xx

(T)e
~dU,T

dT (l8)

-09

and from eqn. (16)

CO





3. Crosscorrelation and cross energy density spectra

The crosscorrelation function for two transient signals

x(t) and y(t) each of which satisfies the Dirichlet conditions in

every finite interval and which sati>.

J |x(t)]dt < «

CO

CO

J |jr(*)|

-co

CO

dt < °>

is defined as:

<P (t) =
J x(t)y(t+r)dt (20)Txy

-co

It can be shown that

V (T) = h I X(0"))Y(0*"))e
dU,T

d» (21)xy
-co

Now

S^Cw) = X(jo))Y(jo)) (22)

Where $ (u>) is referred to as the cross energy spectral density
xy

of the signals x(t) and y(t).

It can he shown that

§
xy

(u>) =
J V(T)e

"d<BT
dT (23)

-co

and from eqn. (21)

10





vM-isJV") *
,"Tto <*>

Two transient signals are said to be linearly uncorrelated when

cp (t) = for all t.

C. Random Signals

1. Fourier Integral

Consider a random signal x(t) as a sample function from

a stationary, ergodic random process. Since, in general,

J |*(t)| dt

is not finite, one cannot write a Fourier integral representation

for x(t).

2. Autocorrelation and Power Spectral Density

The autocorrelation function for the random signal x(t)

is defined

T

«^(t) = lim ~ J x(t)x(t+r)dt (25)
1

-T

Now cp (t) can be represented by a Fourier integral since it

satisfies the too conditions of section II. B. 1. Hence, it can be

shown

v< T
> = h J W>«d" "

. <
26 >

11





where $ (cu) is referred to as the power spectral density of the
xx

signal x(t). Here

03

§xx^)= J*x
'""**

(27)

_co

3. Crosscorrelation and Cross Power Spectral Density

The crosscorrelation function of two signals x(t) and

y(t) which are sample functions from two different random processes,

each of which are stationary and ergodie and jointly ergodic, is

defined

T

cp (t) = lim ^ J
x(t)y(t+r)dt (28)

-T

Now it can be shown that

cp ( T )
* T * (co)e

du>T
do, (29)

^xy ' 2rr J xy

where $ (to) is referred to as the cross power spectral density of
xy

the two random signals x(t) and y(t). Here

00

§ («>) = f cp (T)e"
jU)T

dr (30)
xy J ^xy^ '

-00

Two random signals are said to he linearly uncorrelated when

cp (t) = for ail t.

12





I . Ergodicity

Briefly, ergodicity is the property of a- random process which

ensures the equivalence of statistical and time averages. For example,

if x(t) is a sample function from an ergodic random process

T

Cx(V ]
= iim

|r J x(t)dt

i.e., the expected value of the signal x(t) at time t, (a statistical

average) equals the time average on the right hand side of the

equation.

Ergodicity also ensures that the statistical or spectral

measures (they're now equivalent) taken from a single experiment

are indeed representative of the random process under study.

E. Relations for Linear Systems

Ref. 6, p. 333 shows that, given a linear, time -invariant

system, with weighting function (impulse response) h(t), input x(t),

and output y(t), where x(t) and y(t) are the random functions alluded

to in section II. C. 2, 3

x(t) E> h(t) -£5~y(t)

3 (u)) = $ (co) JH(au))i
2

(31)
yy xx * •

13





AlSv

H(J«) = -S— (32)
§ («w)

where

H(ju>) =
J h(t)e-

dujfc
dt =

J
h{t)e~

5wt
dt = H(s)| (33)

S=J(I)

and H(s) is the system transfer function.

lU





C. DESCRIBING FUNCTION RELATIONS

A. Problem Statement

Consider Figure 2 again. Let the input i(t) be a sample

bion from an ergodic random process. On the "basis of measurements

of finite time histories of the signals i(t), e(t), c(t) and m(t),

one wishes to find

1) The operator's linear describing function Y (gu>).
P

2) The power spectral density of the remnant signal n(t),

$ (u>).
nn

B. Finite Run Length

Obviously, for the purposes of practical data collection,

only finite time histories of the system signals of Figure 2 are

available. But referring to section II. C, one sees that integration

over infinite time is implied in the various spectral measures of the

random signals . The question of just how long the histories must be

in order to ensure accurate spectral measurements naturally arises.

Here it will simply be stated that T, the run length, must be long

enough to ensure accurate determination of the autocorrelation

functions

.

Consider the system input, i(t), in Figure 2. Define

i
T
(t) = i(t) - T < t < T

i
T
(t) = other t

Now let

T

*i±
(t)

t
= h I y^yt+odt (3»o

-T

15





Not- vhat

lim cp.
i
(T)

T
= <p (t) (35)

Also define

T

§
ii

(w)
T

=
J *U< TVr

*DT dT (36)

-T

Note that

lim §..(u)L = $..(«>) (37)
T-*oo

J"L x xx

In light of the definition of iT
(t), eqns . (3*0 and (36) can he written

^Vs/V*^*** (38)

11
(tu)

T
=
! C

Pii
(T)

T
e
"dU,T

dT (39)

Finally, since im(t) looks very much like a transient signal, one can

assume that the conditions of section II. B. 1 are applicable and that

the Fourier integral (or transform) of iT (t) can be written; i.e.,

I(J») =
J i

T
(t)e"

d(Bt
dt (hO)

16





Furthermore, from eqns. (38) and (39)

03 CO

2T J

— CO —CO

Nov- defining a new variable u as

U = t + T

one can write

$
ii

(t0)
T

= k ! 1 i
T
(t)i

T
(u)e-

Jw(ll-t)
dtdu (k2)

|-T[Jyt)e^dtIJiT
(u)e-^.du]

=
M. I(Ju,) I l(jto)

]
= irl^^l

2
(U3)

from eqns. (37) and (h-3)

*
±±W = lim[|^|l(jcu)|

2
] (UU)

T-»oo

•Likewise, one can show

§.
c
(u)) = lim[ ^ I(»C(»

]
(U5)

T-«a>

17





The limiting processes of eqns* (kk) and (^5) should be

interpreted as allowing T to be large enough to ensure accurate

spectral measurements but finite so that eqn. (4o) is still valid.

G . Spect^ al Relations

Referring again to the block diagram of Figure 2

E(ja>) = I(ja>) - M(jo))

= I(daj) - [ N(ju>) + E(jU))Y U®) ]yc (j(jo)

or

i(ju>) - N(ju>)y (jto)

E(ju)) = 2

1 + Y (ju>)Y (ju>)
c p

Now

i(3«0r i(*») - n(J«0y„(3«>) 1
I(ju))E(ou>) = != £_—J- (U6)

1 + Y (jcu)Y (ju>)

In like manner, dropping the (ju>) notation,, one can show

iTyi+yn!
IC = ._k-P 2_J . (k7)

1 + Y Y
c p

r I - Y H T Y I + If I
EC = t _

c
_ -*- c i- (U8)

[ 1 + Y
c
Y
p J 1 + Y

c
Y
p ]

[i-YlTl-YN
EE = L -S--=L ^-^ (*9)

L
1 + Y

c
YpI 1 + Vp J

18





[ H + Y
p
T J * T

p
I
]

[ 1 + Y
c
Y
p J 1 * Vp

'oc ' F~ -
P
- % e " i (50)

Now as in eqns. (hh) and (^5)

i r - i i
Y

[
I " Y

c
N "

2T
T-» T-w 1 .+ Y Y

c p

lim
|r

II - Y lim |- IN

1 + Y Y
c p

11
- $. Y

in c

1 + Y Y
c p

(51)

Now

8.
in

- J V
±J^ WJ

** (52)

But since the remnant, n(t), is, "by definition, linearly uncorrelated

with the input, i(t),

Thus

cp. (t) = for all t

Finally

8. (to) =

8,.(a>)

$ („) = ^1 (53)
16

1 + Y Y (ju>)
c p

19





Likewise

$. (u>) = -^-
1C

1 + Y Y (3<o)
C T>

(5*0

Y («ju>)§. .(») - Y (j«))$ (to)

$ (10; = -£-—
ec

|1 + Y
c
Y
p
(J»)|

(55)

ee
|l + YY(»| 2

c p

(56)

§ (») + |Y (3<»)|
2
$..(u>)

nn ' p » ii
$ (to) =
CC

|1 + Y Y (ju))|
2

1 c p

(57)

Now from the above

*. («o)

Y (Jcd) = -iS
P

§
ie

(tD)

(58)

$ (w) =
nn

|1 + Y
c
Y
p
(3(D)|**

cc
(«>) - |Y

p
(ju>)! §..(">)

ii

(59)

20





Equations (58) and (59) form the basis for the describing

function measurement techniques to "be discussed. Before proceeding,

it may be interesting to point out a pitfall in describing function

measurement. Occasionally in the literature; e.g., Ref. 8, Y (ju>)

is given as

YW' = -25—- (6°)

From the preceding results , however
s
one can see that

§ (u>) Y (ju>) §..(<») - Y (jo))$ (u>)

§ (u>) $..(«>) + |Y (jco)|
2
5 (u))

ee 11 ' c nn

This relation represents Y (jcu) only when the remnant is zero,

i.e. $ (w) = . Thus Y (juj) measurement via eqn. (60) will, in

general, be contaminated by remnant, whereas measurement via eqn. (58)

will not.

D. Sinusoidal Inputs

1. Introduction

The describing function relations in section III. C were

predicated on the existence of a truly random input i(t). Often in

experimental work the random input is replaced by a random appearing

input, mechanized as the sum of sine waves; i.e.,

N

i(t) =^A
k
sin<«

1

t

k=l

21





the ux ere chosen so as to be non-commensurable (no frequency is

an Integral multiple of another), and roughly evenly spaced on a

logarithmic scale. In addition, the ta are selected so that in a

finite experimental run length, say 100 seconds., all the constituent

sine waves in i(t) will have completed an integral number of cycles.

Finally, the \ are chosen to lie within the range of interest of

human response work; i.e.,

0.1 < ui < 20 rad/sec

As few as four sine waves can be utilized to create a random appearing

input; e.g. Ref. 1, p. 78.

2. Comparison of Spectral Relations

The spectral relations for pure sinusoids and finite

time histories of pure random signals deserve some comparison. This

is done in Table I. The reason that this comparison is important is

that signals in tracking tasks with sinusoidal inputs contain both

random and periodic components . The random component stems from the

remnant (see Ref. 2, p. 127), the periodic component stems from the

input. Thus the question naturally arises as to which definitions

to use in computing cross power and power spectral densities. The

answer is

1) Use column A in computing spectral measures at the input

frequencies.

2) Use column B in computing spectral measures at other than

input frequencies.

22





TABLE I

Comparison of Random and Sinusoidal Spectral
Relations

A B

Sinusoids Finite, Random

OB

x(t) =Yx(n)e ju)
l
t

&_

n=-«°

CO

X
T
(t) =|^Jx(oa))e^d«,

-co

T/2

X(n)=||x(t)e-^lt

-T/2

dt

CO

X(J») =
J x

T
(t)e-^ dt

-03

T/2

cfi^CO =|Jx(t)x(t+T

-T/2

)dt

T

^c(T)
T = lrJVt)x

T
(t+T)dt

-T

T/2 T

-T/2 -T

^(n) = |x(n)|
2

«„(.), - ^ [ |j |x<*0|
]

$xy
(n) = X(n)Y(n) i^W^ -

X£ [ |j X(»Y(» ]

Here T can "be any multiple of

the period of x(t)

23





The reasoning "behind statements (l) and (2) is quite simple.

At other than input frequencies, all the power in the system signals

steins from the random remnant, thus the natural selection of column B.

The measurements made at input frequencies will involve cross spectral

measures with the periodic input, thus the choice of column A.

Referring to Table I, one can see that if T contains an

integral number of periods of the periodic signal the following

relations hold between columns A and Bs

X(jox) = 2TX(il)^ * (62)

where ux denotes frequencies existing in the sinusoidal input,

and X(n, )the Fourier transform of x(t) evaluated at w.

3. Advantages of Sinusoidal Inputs

The chief advantage in utilizing sinusoidal inputs lies

in the simplification of the spectral measurements of eqns. (58) and

(59). Recalling eqn. (58):

$. (u>)

YJju>) = ic

*ie
(u))

At the input frequencies, and with T large and containing an integral

number of periods of i(t)

P
(i\) =

*le (\> ^ieKV 2T
*ie

(V

2k





or

YjJ«0 =
P V

.'

*ic
(n
k} ^(yccy-

or

Y '

P^V " 17^ (63)

Thus s with the sinusoidal input, the necessity of measuring cross

power spectral densities is sidestepped. Only the Fourier integrals

(or transforms) of the signals c(t) and i(t) are needed and this is a

preferable alternative to cross spectral measurements.

A second advantage to sinusoidal input experiments lies

in the simplification of eqn. (59) • That equation reads

2.
$ (<u) = |l + Y Y (ju>)| i„ (<o) - |Y (J(o)l $..(«>)
nn c p ' cc • p ' ii

The function § (u>) is evaluated by taking the difference between
nrr

two quantities which, in practice, are comparatively large and

nearly equal. This leads to inaccuracies in calculating $ (m) .

If, however, one utilizes sinusoidal inputs and measures $ (cu) at
' ' nn

other than input frequencies, one can write

since ^(a^). = °-

25





wher-* o& indicates frequencies other than input frequencies.

Note that at the frequencies m

Vn> *

:(^)

although some literature seems to indicate otherwise . An estimate

of Y (d<0 to he used in eqn. (6k) can be obtained by interpolating

between values of Y ( jcu) found at the two input frequencies to either

side of ai .

h. Disadvantages of Sinusoidal Inputs

Probably the chief disadvantage of sinusoidal input

experiments is that measurement of Y (jw) can be made only at input

frequencies. Whereas with inputs with continuous spectra, the cross

spectral densities utilized in defining Y (jcu) can be made at virtually

any frequency desired.

Another, minor disadvantage of sinusoidal inputs is that

some "shaping" of the sum of sinusoids is necessary to simulate the

continuous spectra inputs/disturbances encountered in actual man-

machine systems. A quite satisfactory way of doing this is utilized

in Ref . 11.

26





CON

The methods of performing the measurements indicated in Eqs„ (58)

a^d (59) of Section III-C are quite varied. Perhaps just a word about

three of them is in order.

A. Autocorrelation-Spectral Density-

Reference 12 exemplifies an approach wherein the autocorrelation

functions <p. (t) and ep. (t) are first calculated and the cross power

spectral densities $. (u>) and $. (u») obtained from these. Tape
J.C XG

recordings of the signals are digitized and the correlation and

spectral density calculations are performed digitally.

B. Analog Fourier Transformation

The Systems Technology Inc. Describing Function Analyzer is an

analog device which computes the Fourier transform of any system

9
signal . The analyzer also provides the system input as the sum of .

five sinusoids. The recommended measurement is

«V " 'A' skiK'i V\>
but from Section III-C

$ieK )
_ 1

$
ii

(\ }

"

x + Vp^^

Thus, knowing Y ( juO, one can find Y (Jul ) by measuring .

c ^V
C. Hybrid Fourier Transformation

Reference 10 offers an on-line hybrid (analog-digital)

mechanization in which the Fourier transformation of the signals

27





is performed on a hybrid computer using Fast Fourier

transform techniques. Here

C(nk}

YJK) -V k'
EC^)

28





V. ..OMMKHT

Ihe author hopes that this memo has served as a readable

introduction to the subject of describing function measurement. The

treatment was not intended to be exhaustive but rather to highlight the

salient features of measurement techniques based upon spectral analysis.

If the reader has obtained a fair grasp of the material, he should be

able to move on to the subject of describing function measurements in

multiloop tasks. Reference 13 offers a good introduction to the subject,
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